diff options
author | Denys Vlasenko <vda.linux@googlemail.com> | 2010-11-03 02:38:31 +0100 |
---|---|---|
committer | Denys Vlasenko <vda.linux@googlemail.com> | 2010-11-03 02:38:31 +0100 |
commit | 833d4e7f84f59099ee66eabfa3457ebb7d37eaa8 (patch) | |
tree | 3be84e1049707ce8077291065fe3689497c69b9c /archival/libarchive/decompress_bunzip2.c | |
parent | 5e9934028aa030312a1a2e2e32d5ceade8672beb (diff) | |
download | busybox-w32-833d4e7f84f59099ee66eabfa3457ebb7d37eaa8.tar.gz busybox-w32-833d4e7f84f59099ee66eabfa3457ebb7d37eaa8.tar.bz2 busybox-w32-833d4e7f84f59099ee66eabfa3457ebb7d37eaa8.zip |
rename archival/libunarchive -> archival/libarchive; move bz/ into it
Signed-off-by: Denys Vlasenko <vda.linux@googlemail.com>
Diffstat (limited to 'archival/libarchive/decompress_bunzip2.c')
-rw-r--r-- | archival/libarchive/decompress_bunzip2.c | 822 |
1 files changed, 822 insertions, 0 deletions
diff --git a/archival/libarchive/decompress_bunzip2.c b/archival/libarchive/decompress_bunzip2.c new file mode 100644 index 000000000..4e46e6849 --- /dev/null +++ b/archival/libarchive/decompress_bunzip2.c | |||
@@ -0,0 +1,822 @@ | |||
1 | /* vi: set sw=4 ts=4: */ | ||
2 | /* Small bzip2 deflate implementation, by Rob Landley (rob@landley.net). | ||
3 | |||
4 | Based on bzip2 decompression code by Julian R Seward (jseward@acm.org), | ||
5 | which also acknowledges contributions by Mike Burrows, David Wheeler, | ||
6 | Peter Fenwick, Alistair Moffat, Radford Neal, Ian H. Witten, | ||
7 | Robert Sedgewick, and Jon L. Bentley. | ||
8 | |||
9 | Licensed under GPLv2 or later, see file LICENSE in this source tree. | ||
10 | */ | ||
11 | |||
12 | /* | ||
13 | Size and speed optimizations by Manuel Novoa III (mjn3@codepoet.org). | ||
14 | |||
15 | More efficient reading of Huffman codes, a streamlined read_bunzip() | ||
16 | function, and various other tweaks. In (limited) tests, approximately | ||
17 | 20% faster than bzcat on x86 and about 10% faster on arm. | ||
18 | |||
19 | Note that about 2/3 of the time is spent in read_bunzip() reversing | ||
20 | the Burrows-Wheeler transformation. Much of that time is delay | ||
21 | resulting from cache misses. | ||
22 | |||
23 | (2010 update by vda: profiled "bzcat <84mbyte.bz2 >/dev/null" | ||
24 | on x86-64 CPU with L2 > 1M: get_next_block is hotter than read_bunzip: | ||
25 | %time seconds calls function | ||
26 | 71.01 12.69 444 get_next_block | ||
27 | 28.65 5.12 93065 read_bunzip | ||
28 | 00.22 0.04 7736490 get_bits | ||
29 | 00.11 0.02 47 dealloc_bunzip | ||
30 | 00.00 0.00 93018 full_write | ||
31 | ...) | ||
32 | |||
33 | |||
34 | I would ask that anyone benefiting from this work, especially those | ||
35 | using it in commercial products, consider making a donation to my local | ||
36 | non-profit hospice organization (www.hospiceacadiana.com) in the name of | ||
37 | the woman I loved, Toni W. Hagan, who passed away Feb. 12, 2003. | ||
38 | |||
39 | Manuel | ||
40 | */ | ||
41 | |||
42 | #include "libbb.h" | ||
43 | #include "archive.h" | ||
44 | |||
45 | /* Constants for Huffman coding */ | ||
46 | #define MAX_GROUPS 6 | ||
47 | #define GROUP_SIZE 50 /* 64 would have been more efficient */ | ||
48 | #define MAX_HUFCODE_BITS 20 /* Longest Huffman code allowed */ | ||
49 | #define MAX_SYMBOLS 258 /* 256 literals + RUNA + RUNB */ | ||
50 | #define SYMBOL_RUNA 0 | ||
51 | #define SYMBOL_RUNB 1 | ||
52 | |||
53 | /* Status return values */ | ||
54 | #define RETVAL_OK 0 | ||
55 | #define RETVAL_LAST_BLOCK (-1) | ||
56 | #define RETVAL_NOT_BZIP_DATA (-2) | ||
57 | #define RETVAL_UNEXPECTED_INPUT_EOF (-3) | ||
58 | #define RETVAL_SHORT_WRITE (-4) | ||
59 | #define RETVAL_DATA_ERROR (-5) | ||
60 | #define RETVAL_OUT_OF_MEMORY (-6) | ||
61 | #define RETVAL_OBSOLETE_INPUT (-7) | ||
62 | |||
63 | /* Other housekeeping constants */ | ||
64 | #define IOBUF_SIZE 4096 | ||
65 | |||
66 | /* This is what we know about each Huffman coding group */ | ||
67 | struct group_data { | ||
68 | /* We have an extra slot at the end of limit[] for a sentinel value. */ | ||
69 | int limit[MAX_HUFCODE_BITS+1], base[MAX_HUFCODE_BITS], permute[MAX_SYMBOLS]; | ||
70 | int minLen, maxLen; | ||
71 | }; | ||
72 | |||
73 | /* Structure holding all the housekeeping data, including IO buffers and | ||
74 | * memory that persists between calls to bunzip | ||
75 | * Found the most used member: | ||
76 | * cat this_file.c | sed -e 's/"/ /g' -e "s/'/ /g" | xargs -n1 \ | ||
77 | * | grep 'bd->' | sed 's/^.*bd->/bd->/' | sort | $PAGER | ||
78 | * and moved it (inbufBitCount) to offset 0. | ||
79 | */ | ||
80 | struct bunzip_data { | ||
81 | /* I/O tracking data (file handles, buffers, positions, etc.) */ | ||
82 | unsigned inbufBitCount, inbufBits; | ||
83 | int in_fd, out_fd, inbufCount, inbufPos /*, outbufPos*/; | ||
84 | uint8_t *inbuf /*,*outbuf*/; | ||
85 | |||
86 | /* State for interrupting output loop */ | ||
87 | int writeCopies, writePos, writeRunCountdown, writeCount; | ||
88 | int writeCurrent; /* actually a uint8_t */ | ||
89 | |||
90 | /* The CRC values stored in the block header and calculated from the data */ | ||
91 | uint32_t headerCRC, totalCRC, writeCRC; | ||
92 | |||
93 | /* Intermediate buffer and its size (in bytes) */ | ||
94 | uint32_t *dbuf; | ||
95 | unsigned dbufSize; | ||
96 | |||
97 | /* For I/O error handling */ | ||
98 | jmp_buf jmpbuf; | ||
99 | |||
100 | /* Big things go last (register-relative addressing can be larger for big offsets) */ | ||
101 | uint32_t crc32Table[256]; | ||
102 | uint8_t selectors[32768]; /* nSelectors=15 bits */ | ||
103 | struct group_data groups[MAX_GROUPS]; /* Huffman coding tables */ | ||
104 | }; | ||
105 | /* typedef struct bunzip_data bunzip_data; -- done in .h file */ | ||
106 | |||
107 | |||
108 | /* Return the next nnn bits of input. All reads from the compressed input | ||
109 | are done through this function. All reads are big endian */ | ||
110 | static unsigned get_bits(bunzip_data *bd, int bits_wanted) | ||
111 | { | ||
112 | unsigned bits = 0; | ||
113 | /* Cache bd->inbufBitCount in a CPU register (hopefully): */ | ||
114 | int bit_count = bd->inbufBitCount; | ||
115 | |||
116 | /* If we need to get more data from the byte buffer, do so. (Loop getting | ||
117 | one byte at a time to enforce endianness and avoid unaligned access.) */ | ||
118 | while (bit_count < bits_wanted) { | ||
119 | |||
120 | /* If we need to read more data from file into byte buffer, do so */ | ||
121 | if (bd->inbufPos == bd->inbufCount) { | ||
122 | /* if "no input fd" case: in_fd == -1, read fails, we jump */ | ||
123 | bd->inbufCount = read(bd->in_fd, bd->inbuf, IOBUF_SIZE); | ||
124 | if (bd->inbufCount <= 0) | ||
125 | longjmp(bd->jmpbuf, RETVAL_UNEXPECTED_INPUT_EOF); | ||
126 | bd->inbufPos = 0; | ||
127 | } | ||
128 | |||
129 | /* Avoid 32-bit overflow (dump bit buffer to top of output) */ | ||
130 | if (bit_count >= 24) { | ||
131 | bits = bd->inbufBits & ((1 << bit_count) - 1); | ||
132 | bits_wanted -= bit_count; | ||
133 | bits <<= bits_wanted; | ||
134 | bit_count = 0; | ||
135 | } | ||
136 | |||
137 | /* Grab next 8 bits of input from buffer. */ | ||
138 | bd->inbufBits = (bd->inbufBits << 8) | bd->inbuf[bd->inbufPos++]; | ||
139 | bit_count += 8; | ||
140 | } | ||
141 | |||
142 | /* Calculate result */ | ||
143 | bit_count -= bits_wanted; | ||
144 | bd->inbufBitCount = bit_count; | ||
145 | bits |= (bd->inbufBits >> bit_count) & ((1 << bits_wanted) - 1); | ||
146 | |||
147 | return bits; | ||
148 | } | ||
149 | |||
150 | /* Unpacks the next block and sets up for the inverse Burrows-Wheeler step. */ | ||
151 | static int get_next_block(bunzip_data *bd) | ||
152 | { | ||
153 | struct group_data *hufGroup; | ||
154 | int dbufCount, dbufSize, groupCount, *base, *limit, selector, | ||
155 | i, j, t, runPos, symCount, symTotal, nSelectors, byteCount[256]; | ||
156 | int runCnt = runCnt; /* for compiler */ | ||
157 | uint8_t uc, symToByte[256], mtfSymbol[256], *selectors; | ||
158 | uint32_t *dbuf; | ||
159 | unsigned origPtr; | ||
160 | |||
161 | dbuf = bd->dbuf; | ||
162 | dbufSize = bd->dbufSize; | ||
163 | selectors = bd->selectors; | ||
164 | |||
165 | /* In bbox, we are ok with aborting through setjmp which is set up in start_bunzip */ | ||
166 | #if 0 | ||
167 | /* Reset longjmp I/O error handling */ | ||
168 | i = setjmp(bd->jmpbuf); | ||
169 | if (i) return i; | ||
170 | #endif | ||
171 | |||
172 | /* Read in header signature and CRC, then validate signature. | ||
173 | (last block signature means CRC is for whole file, return now) */ | ||
174 | i = get_bits(bd, 24); | ||
175 | j = get_bits(bd, 24); | ||
176 | bd->headerCRC = get_bits(bd, 32); | ||
177 | if ((i == 0x177245) && (j == 0x385090)) return RETVAL_LAST_BLOCK; | ||
178 | if ((i != 0x314159) || (j != 0x265359)) return RETVAL_NOT_BZIP_DATA; | ||
179 | |||
180 | /* We can add support for blockRandomised if anybody complains. There was | ||
181 | some code for this in busybox 1.0.0-pre3, but nobody ever noticed that | ||
182 | it didn't actually work. */ | ||
183 | if (get_bits(bd, 1)) return RETVAL_OBSOLETE_INPUT; | ||
184 | origPtr = get_bits(bd, 24); | ||
185 | if ((int)origPtr > dbufSize) return RETVAL_DATA_ERROR; | ||
186 | |||
187 | /* mapping table: if some byte values are never used (encoding things | ||
188 | like ascii text), the compression code removes the gaps to have fewer | ||
189 | symbols to deal with, and writes a sparse bitfield indicating which | ||
190 | values were present. We make a translation table to convert the symbols | ||
191 | back to the corresponding bytes. */ | ||
192 | symTotal = 0; | ||
193 | i = 0; | ||
194 | t = get_bits(bd, 16); | ||
195 | do { | ||
196 | if (t & (1 << 15)) { | ||
197 | unsigned inner_map = get_bits(bd, 16); | ||
198 | do { | ||
199 | if (inner_map & (1 << 15)) | ||
200 | symToByte[symTotal++] = i; | ||
201 | inner_map <<= 1; | ||
202 | i++; | ||
203 | } while (i & 15); | ||
204 | i -= 16; | ||
205 | } | ||
206 | t <<= 1; | ||
207 | i += 16; | ||
208 | } while (i < 256); | ||
209 | |||
210 | /* How many different Huffman coding groups does this block use? */ | ||
211 | groupCount = get_bits(bd, 3); | ||
212 | if (groupCount < 2 || groupCount > MAX_GROUPS) | ||
213 | return RETVAL_DATA_ERROR; | ||
214 | |||
215 | /* nSelectors: Every GROUP_SIZE many symbols we select a new Huffman coding | ||
216 | group. Read in the group selector list, which is stored as MTF encoded | ||
217 | bit runs. (MTF=Move To Front, as each value is used it's moved to the | ||
218 | start of the list.) */ | ||
219 | for (i = 0; i < groupCount; i++) | ||
220 | mtfSymbol[i] = i; | ||
221 | nSelectors = get_bits(bd, 15); | ||
222 | if (!nSelectors) | ||
223 | return RETVAL_DATA_ERROR; | ||
224 | for (i = 0; i < nSelectors; i++) { | ||
225 | uint8_t tmp_byte; | ||
226 | /* Get next value */ | ||
227 | int n = 0; | ||
228 | while (get_bits(bd, 1)) { | ||
229 | if (n >= groupCount) return RETVAL_DATA_ERROR; | ||
230 | n++; | ||
231 | } | ||
232 | /* Decode MTF to get the next selector */ | ||
233 | tmp_byte = mtfSymbol[n]; | ||
234 | while (--n >= 0) | ||
235 | mtfSymbol[n + 1] = mtfSymbol[n]; | ||
236 | mtfSymbol[0] = selectors[i] = tmp_byte; | ||
237 | } | ||
238 | |||
239 | /* Read the Huffman coding tables for each group, which code for symTotal | ||
240 | literal symbols, plus two run symbols (RUNA, RUNB) */ | ||
241 | symCount = symTotal + 2; | ||
242 | for (j = 0; j < groupCount; j++) { | ||
243 | uint8_t length[MAX_SYMBOLS]; | ||
244 | /* 8 bits is ALMOST enough for temp[], see below */ | ||
245 | unsigned temp[MAX_HUFCODE_BITS+1]; | ||
246 | int minLen, maxLen, pp, len_m1; | ||
247 | |||
248 | /* Read Huffman code lengths for each symbol. They're stored in | ||
249 | a way similar to mtf; record a starting value for the first symbol, | ||
250 | and an offset from the previous value for every symbol after that. | ||
251 | (Subtracting 1 before the loop and then adding it back at the end is | ||
252 | an optimization that makes the test inside the loop simpler: symbol | ||
253 | length 0 becomes negative, so an unsigned inequality catches it.) */ | ||
254 | len_m1 = get_bits(bd, 5) - 1; | ||
255 | for (i = 0; i < symCount; i++) { | ||
256 | for (;;) { | ||
257 | int two_bits; | ||
258 | if ((unsigned)len_m1 > (MAX_HUFCODE_BITS-1)) | ||
259 | return RETVAL_DATA_ERROR; | ||
260 | |||
261 | /* If first bit is 0, stop. Else second bit indicates whether | ||
262 | to increment or decrement the value. Optimization: grab 2 | ||
263 | bits and unget the second if the first was 0. */ | ||
264 | two_bits = get_bits(bd, 2); | ||
265 | if (two_bits < 2) { | ||
266 | bd->inbufBitCount++; | ||
267 | break; | ||
268 | } | ||
269 | |||
270 | /* Add one if second bit 1, else subtract 1. Avoids if/else */ | ||
271 | len_m1 += (((two_bits+1) & 2) - 1); | ||
272 | } | ||
273 | |||
274 | /* Correct for the initial -1, to get the final symbol length */ | ||
275 | length[i] = len_m1 + 1; | ||
276 | } | ||
277 | |||
278 | /* Find largest and smallest lengths in this group */ | ||
279 | minLen = maxLen = length[0]; | ||
280 | for (i = 1; i < symCount; i++) { | ||
281 | if (length[i] > maxLen) maxLen = length[i]; | ||
282 | else if (length[i] < minLen) minLen = length[i]; | ||
283 | } | ||
284 | |||
285 | /* Calculate permute[], base[], and limit[] tables from length[]. | ||
286 | * | ||
287 | * permute[] is the lookup table for converting Huffman coded symbols | ||
288 | * into decoded symbols. base[] is the amount to subtract from the | ||
289 | * value of a Huffman symbol of a given length when using permute[]. | ||
290 | * | ||
291 | * limit[] indicates the largest numerical value a symbol with a given | ||
292 | * number of bits can have. This is how the Huffman codes can vary in | ||
293 | * length: each code with a value>limit[length] needs another bit. | ||
294 | */ | ||
295 | hufGroup = bd->groups + j; | ||
296 | hufGroup->minLen = minLen; | ||
297 | hufGroup->maxLen = maxLen; | ||
298 | |||
299 | /* Note that minLen can't be smaller than 1, so we adjust the base | ||
300 | and limit array pointers so we're not always wasting the first | ||
301 | entry. We do this again when using them (during symbol decoding). */ | ||
302 | base = hufGroup->base - 1; | ||
303 | limit = hufGroup->limit - 1; | ||
304 | |||
305 | /* Calculate permute[]. Concurently, initialize temp[] and limit[]. */ | ||
306 | pp = 0; | ||
307 | for (i = minLen; i <= maxLen; i++) { | ||
308 | int k; | ||
309 | temp[i] = limit[i] = 0; | ||
310 | for (k = 0; k < symCount; k++) | ||
311 | if (length[k] == i) | ||
312 | hufGroup->permute[pp++] = k; | ||
313 | } | ||
314 | |||
315 | /* Count symbols coded for at each bit length */ | ||
316 | /* NB: in pathological cases, temp[8] can end ip being 256. | ||
317 | * That's why uint8_t is too small for temp[]. */ | ||
318 | for (i = 0; i < symCount; i++) temp[length[i]]++; | ||
319 | |||
320 | /* Calculate limit[] (the largest symbol-coding value at each bit | ||
321 | * length, which is (previous limit<<1)+symbols at this level), and | ||
322 | * base[] (number of symbols to ignore at each bit length, which is | ||
323 | * limit minus the cumulative count of symbols coded for already). */ | ||
324 | pp = t = 0; | ||
325 | for (i = minLen; i < maxLen;) { | ||
326 | unsigned temp_i = temp[i]; | ||
327 | |||
328 | pp += temp_i; | ||
329 | |||
330 | /* We read the largest possible symbol size and then unget bits | ||
331 | after determining how many we need, and those extra bits could | ||
332 | be set to anything. (They're noise from future symbols.) At | ||
333 | each level we're really only interested in the first few bits, | ||
334 | so here we set all the trailing to-be-ignored bits to 1 so they | ||
335 | don't affect the value>limit[length] comparison. */ | ||
336 | limit[i] = (pp << (maxLen - i)) - 1; | ||
337 | pp <<= 1; | ||
338 | t += temp_i; | ||
339 | base[++i] = pp - t; | ||
340 | } | ||
341 | limit[maxLen] = pp + temp[maxLen] - 1; | ||
342 | limit[maxLen+1] = INT_MAX; /* Sentinel value for reading next sym. */ | ||
343 | base[minLen] = 0; | ||
344 | } | ||
345 | |||
346 | /* We've finished reading and digesting the block header. Now read this | ||
347 | block's Huffman coded symbols from the file and undo the Huffman coding | ||
348 | and run length encoding, saving the result into dbuf[dbufCount++] = uc */ | ||
349 | |||
350 | /* Initialize symbol occurrence counters and symbol Move To Front table */ | ||
351 | /*memset(byteCount, 0, sizeof(byteCount)); - smaller, but slower */ | ||
352 | for (i = 0; i < 256; i++) { | ||
353 | byteCount[i] = 0; | ||
354 | mtfSymbol[i] = (uint8_t)i; | ||
355 | } | ||
356 | |||
357 | /* Loop through compressed symbols. */ | ||
358 | |||
359 | runPos = dbufCount = selector = 0; | ||
360 | for (;;) { | ||
361 | int nextSym; | ||
362 | |||
363 | /* Fetch next Huffman coding group from list. */ | ||
364 | symCount = GROUP_SIZE - 1; | ||
365 | if (selector >= nSelectors) return RETVAL_DATA_ERROR; | ||
366 | hufGroup = bd->groups + selectors[selector++]; | ||
367 | base = hufGroup->base - 1; | ||
368 | limit = hufGroup->limit - 1; | ||
369 | |||
370 | continue_this_group: | ||
371 | /* Read next Huffman-coded symbol. */ | ||
372 | |||
373 | /* Note: It is far cheaper to read maxLen bits and back up than it is | ||
374 | to read minLen bits and then add additional bit at a time, testing | ||
375 | as we go. Because there is a trailing last block (with file CRC), | ||
376 | there is no danger of the overread causing an unexpected EOF for a | ||
377 | valid compressed file. | ||
378 | */ | ||
379 | if (1) { | ||
380 | /* As a further optimization, we do the read inline | ||
381 | (falling back to a call to get_bits if the buffer runs dry). | ||
382 | */ | ||
383 | int new_cnt; | ||
384 | while ((new_cnt = bd->inbufBitCount - hufGroup->maxLen) < 0) { | ||
385 | /* bd->inbufBitCount < hufGroup->maxLen */ | ||
386 | if (bd->inbufPos == bd->inbufCount) { | ||
387 | nextSym = get_bits(bd, hufGroup->maxLen); | ||
388 | goto got_huff_bits; | ||
389 | } | ||
390 | bd->inbufBits = (bd->inbufBits << 8) | bd->inbuf[bd->inbufPos++]; | ||
391 | bd->inbufBitCount += 8; | ||
392 | }; | ||
393 | bd->inbufBitCount = new_cnt; /* "bd->inbufBitCount -= hufGroup->maxLen;" */ | ||
394 | nextSym = (bd->inbufBits >> new_cnt) & ((1 << hufGroup->maxLen) - 1); | ||
395 | got_huff_bits: ; | ||
396 | } else { /* unoptimized equivalent */ | ||
397 | nextSym = get_bits(bd, hufGroup->maxLen); | ||
398 | } | ||
399 | /* Figure how many bits are in next symbol and unget extras */ | ||
400 | i = hufGroup->minLen; | ||
401 | while (nextSym > limit[i]) ++i; | ||
402 | j = hufGroup->maxLen - i; | ||
403 | if (j < 0) | ||
404 | return RETVAL_DATA_ERROR; | ||
405 | bd->inbufBitCount += j; | ||
406 | |||
407 | /* Huffman decode value to get nextSym (with bounds checking) */ | ||
408 | nextSym = (nextSym >> j) - base[i]; | ||
409 | if ((unsigned)nextSym >= MAX_SYMBOLS) | ||
410 | return RETVAL_DATA_ERROR; | ||
411 | nextSym = hufGroup->permute[nextSym]; | ||
412 | |||
413 | /* We have now decoded the symbol, which indicates either a new literal | ||
414 | byte, or a repeated run of the most recent literal byte. First, | ||
415 | check if nextSym indicates a repeated run, and if so loop collecting | ||
416 | how many times to repeat the last literal. */ | ||
417 | if ((unsigned)nextSym <= SYMBOL_RUNB) { /* RUNA or RUNB */ | ||
418 | |||
419 | /* If this is the start of a new run, zero out counter */ | ||
420 | if (runPos == 0) { | ||
421 | runPos = 1; | ||
422 | runCnt = 0; | ||
423 | } | ||
424 | |||
425 | /* Neat trick that saves 1 symbol: instead of or-ing 0 or 1 at | ||
426 | each bit position, add 1 or 2 instead. For example, | ||
427 | 1011 is 1<<0 + 1<<1 + 2<<2. 1010 is 2<<0 + 2<<1 + 1<<2. | ||
428 | You can make any bit pattern that way using 1 less symbol than | ||
429 | the basic or 0/1 method (except all bits 0, which would use no | ||
430 | symbols, but a run of length 0 doesn't mean anything in this | ||
431 | context). Thus space is saved. */ | ||
432 | runCnt += (runPos << nextSym); /* +runPos if RUNA; +2*runPos if RUNB */ | ||
433 | if (runPos < dbufSize) runPos <<= 1; | ||
434 | goto end_of_huffman_loop; | ||
435 | } | ||
436 | |||
437 | /* When we hit the first non-run symbol after a run, we now know | ||
438 | how many times to repeat the last literal, so append that many | ||
439 | copies to our buffer of decoded symbols (dbuf) now. (The last | ||
440 | literal used is the one at the head of the mtfSymbol array.) */ | ||
441 | if (runPos != 0) { | ||
442 | uint8_t tmp_byte; | ||
443 | if (dbufCount + runCnt >= dbufSize) return RETVAL_DATA_ERROR; | ||
444 | tmp_byte = symToByte[mtfSymbol[0]]; | ||
445 | byteCount[tmp_byte] += runCnt; | ||
446 | while (--runCnt >= 0) dbuf[dbufCount++] = (uint32_t)tmp_byte; | ||
447 | runPos = 0; | ||
448 | } | ||
449 | |||
450 | /* Is this the terminating symbol? */ | ||
451 | if (nextSym > symTotal) break; | ||
452 | |||
453 | /* At this point, nextSym indicates a new literal character. Subtract | ||
454 | one to get the position in the MTF array at which this literal is | ||
455 | currently to be found. (Note that the result can't be -1 or 0, | ||
456 | because 0 and 1 are RUNA and RUNB. But another instance of the | ||
457 | first symbol in the mtf array, position 0, would have been handled | ||
458 | as part of a run above. Therefore 1 unused mtf position minus | ||
459 | 2 non-literal nextSym values equals -1.) */ | ||
460 | if (dbufCount >= dbufSize) return RETVAL_DATA_ERROR; | ||
461 | i = nextSym - 1; | ||
462 | uc = mtfSymbol[i]; | ||
463 | |||
464 | /* Adjust the MTF array. Since we typically expect to move only a | ||
465 | * small number of symbols, and are bound by 256 in any case, using | ||
466 | * memmove here would typically be bigger and slower due to function | ||
467 | * call overhead and other assorted setup costs. */ | ||
468 | do { | ||
469 | mtfSymbol[i] = mtfSymbol[i-1]; | ||
470 | } while (--i); | ||
471 | mtfSymbol[0] = uc; | ||
472 | uc = symToByte[uc]; | ||
473 | |||
474 | /* We have our literal byte. Save it into dbuf. */ | ||
475 | byteCount[uc]++; | ||
476 | dbuf[dbufCount++] = (uint32_t)uc; | ||
477 | |||
478 | /* Skip group initialization if we're not done with this group. Done | ||
479 | * this way to avoid compiler warning. */ | ||
480 | end_of_huffman_loop: | ||
481 | if (--symCount >= 0) goto continue_this_group; | ||
482 | } | ||
483 | |||
484 | /* At this point, we've read all the Huffman-coded symbols (and repeated | ||
485 | runs) for this block from the input stream, and decoded them into the | ||
486 | intermediate buffer. There are dbufCount many decoded bytes in dbuf[]. | ||
487 | Now undo the Burrows-Wheeler transform on dbuf. | ||
488 | See http://dogma.net/markn/articles/bwt/bwt.htm | ||
489 | */ | ||
490 | |||
491 | /* Turn byteCount into cumulative occurrence counts of 0 to n-1. */ | ||
492 | j = 0; | ||
493 | for (i = 0; i < 256; i++) { | ||
494 | int tmp_count = j + byteCount[i]; | ||
495 | byteCount[i] = j; | ||
496 | j = tmp_count; | ||
497 | } | ||
498 | |||
499 | /* Figure out what order dbuf would be in if we sorted it. */ | ||
500 | for (i = 0; i < dbufCount; i++) { | ||
501 | uint8_t tmp_byte = (uint8_t)dbuf[i]; | ||
502 | int tmp_count = byteCount[tmp_byte]; | ||
503 | dbuf[tmp_count] |= (i << 8); | ||
504 | byteCount[tmp_byte] = tmp_count + 1; | ||
505 | } | ||
506 | |||
507 | /* Decode first byte by hand to initialize "previous" byte. Note that it | ||
508 | doesn't get output, and if the first three characters are identical | ||
509 | it doesn't qualify as a run (hence writeRunCountdown=5). */ | ||
510 | if (dbufCount) { | ||
511 | uint32_t tmp; | ||
512 | if ((int)origPtr >= dbufCount) return RETVAL_DATA_ERROR; | ||
513 | tmp = dbuf[origPtr]; | ||
514 | bd->writeCurrent = (uint8_t)tmp; | ||
515 | bd->writePos = (tmp >> 8); | ||
516 | bd->writeRunCountdown = 5; | ||
517 | } | ||
518 | bd->writeCount = dbufCount; | ||
519 | |||
520 | return RETVAL_OK; | ||
521 | } | ||
522 | |||
523 | /* Undo Burrows-Wheeler transform on intermediate buffer to produce output. | ||
524 | If start_bunzip was initialized with out_fd=-1, then up to len bytes of | ||
525 | data are written to outbuf. Return value is number of bytes written or | ||
526 | error (all errors are negative numbers). If out_fd!=-1, outbuf and len | ||
527 | are ignored, data is written to out_fd and return is RETVAL_OK or error. | ||
528 | |||
529 | NB: read_bunzip returns < 0 on error, or the number of *unfilled* bytes | ||
530 | in outbuf. IOW: on EOF returns len ("all bytes are not filled"), not 0. | ||
531 | (Why? This allows to get rid of one local variable) | ||
532 | */ | ||
533 | int FAST_FUNC read_bunzip(bunzip_data *bd, char *outbuf, int len) | ||
534 | { | ||
535 | const uint32_t *dbuf; | ||
536 | int pos, current, previous; | ||
537 | uint32_t CRC; | ||
538 | |||
539 | /* If we already have error/end indicator, return it */ | ||
540 | if (bd->writeCount < 0) | ||
541 | return bd->writeCount; | ||
542 | |||
543 | dbuf = bd->dbuf; | ||
544 | |||
545 | /* Register-cached state (hopefully): */ | ||
546 | pos = bd->writePos; | ||
547 | current = bd->writeCurrent; | ||
548 | CRC = bd->writeCRC; /* small loss on x86-32 (not enough regs), win on x86-64 */ | ||
549 | |||
550 | /* We will always have pending decoded data to write into the output | ||
551 | buffer unless this is the very first call (in which case we haven't | ||
552 | Huffman-decoded a block into the intermediate buffer yet). */ | ||
553 | if (bd->writeCopies) { | ||
554 | |||
555 | dec_writeCopies: | ||
556 | /* Inside the loop, writeCopies means extra copies (beyond 1) */ | ||
557 | --bd->writeCopies; | ||
558 | |||
559 | /* Loop outputting bytes */ | ||
560 | for (;;) { | ||
561 | |||
562 | /* If the output buffer is full, save cached state and return */ | ||
563 | if (--len < 0) { | ||
564 | /* Unlikely branch. | ||
565 | * Use of "goto" instead of keeping code here | ||
566 | * helps compiler to realize this. */ | ||
567 | goto outbuf_full; | ||
568 | } | ||
569 | |||
570 | /* Write next byte into output buffer, updating CRC */ | ||
571 | *outbuf++ = current; | ||
572 | CRC = (CRC << 8) ^ bd->crc32Table[(CRC >> 24) ^ current]; | ||
573 | |||
574 | /* Loop now if we're outputting multiple copies of this byte */ | ||
575 | if (bd->writeCopies) { | ||
576 | /* Unlikely branch */ | ||
577 | /*--bd->writeCopies;*/ | ||
578 | /*continue;*/ | ||
579 | /* Same, but (ab)using other existing --writeCopies operation | ||
580 | * (and this if() compiles into just test+branch pair): */ | ||
581 | goto dec_writeCopies; | ||
582 | } | ||
583 | decode_next_byte: | ||
584 | if (--bd->writeCount < 0) | ||
585 | break; /* input block is fully consumed, need next one */ | ||
586 | |||
587 | /* Follow sequence vector to undo Burrows-Wheeler transform */ | ||
588 | previous = current; | ||
589 | pos = dbuf[pos]; | ||
590 | current = (uint8_t)pos; | ||
591 | pos >>= 8; | ||
592 | |||
593 | /* After 3 consecutive copies of the same byte, the 4th | ||
594 | * is a repeat count. We count down from 4 instead | ||
595 | * of counting up because testing for non-zero is faster */ | ||
596 | if (--bd->writeRunCountdown != 0) { | ||
597 | if (current != previous) | ||
598 | bd->writeRunCountdown = 4; | ||
599 | } else { | ||
600 | /* Unlikely branch */ | ||
601 | /* We have a repeated run, this byte indicates the count */ | ||
602 | bd->writeCopies = current; | ||
603 | current = previous; | ||
604 | bd->writeRunCountdown = 5; | ||
605 | |||
606 | /* Sometimes there are just 3 bytes (run length 0) */ | ||
607 | if (!bd->writeCopies) goto decode_next_byte; | ||
608 | |||
609 | /* Subtract the 1 copy we'd output anyway to get extras */ | ||
610 | --bd->writeCopies; | ||
611 | } | ||
612 | } /* for(;;) */ | ||
613 | |||
614 | /* Decompression of this input block completed successfully */ | ||
615 | bd->writeCRC = CRC = ~CRC; | ||
616 | bd->totalCRC = ((bd->totalCRC << 1) | (bd->totalCRC >> 31)) ^ CRC; | ||
617 | |||
618 | /* If this block had a CRC error, force file level CRC error */ | ||
619 | if (CRC != bd->headerCRC) { | ||
620 | bd->totalCRC = bd->headerCRC + 1; | ||
621 | return RETVAL_LAST_BLOCK; | ||
622 | } | ||
623 | } | ||
624 | |||
625 | /* Refill the intermediate buffer by Huffman-decoding next block of input */ | ||
626 | { | ||
627 | int r = get_next_block(bd); | ||
628 | if (r) { /* error/end */ | ||
629 | bd->writeCount = r; | ||
630 | return (r != RETVAL_LAST_BLOCK) ? r : len; | ||
631 | } | ||
632 | } | ||
633 | |||
634 | CRC = ~0; | ||
635 | pos = bd->writePos; | ||
636 | current = bd->writeCurrent; | ||
637 | goto decode_next_byte; | ||
638 | |||
639 | outbuf_full: | ||
640 | /* Output buffer is full, save cached state and return */ | ||
641 | bd->writePos = pos; | ||
642 | bd->writeCurrent = current; | ||
643 | bd->writeCRC = CRC; | ||
644 | |||
645 | bd->writeCopies++; | ||
646 | |||
647 | return 0; | ||
648 | } | ||
649 | |||
650 | /* Allocate the structure, read file header. If in_fd==-1, inbuf must contain | ||
651 | a complete bunzip file (len bytes long). If in_fd!=-1, inbuf and len are | ||
652 | ignored, and data is read from file handle into temporary buffer. */ | ||
653 | |||
654 | /* Because bunzip2 is used for help text unpacking, and because bb_show_usage() | ||
655 | should work for NOFORK applets too, we must be extremely careful to not leak | ||
656 | any allocations! */ | ||
657 | int FAST_FUNC start_bunzip(bunzip_data **bdp, int in_fd, | ||
658 | const void *inbuf, int len) | ||
659 | { | ||
660 | bunzip_data *bd; | ||
661 | unsigned i; | ||
662 | enum { | ||
663 | BZh0 = ('B' << 24) + ('Z' << 16) + ('h' << 8) + '0', | ||
664 | h0 = ('h' << 8) + '0', | ||
665 | }; | ||
666 | |||
667 | /* Figure out how much data to allocate */ | ||
668 | i = sizeof(bunzip_data); | ||
669 | if (in_fd != -1) i += IOBUF_SIZE; | ||
670 | |||
671 | /* Allocate bunzip_data. Most fields initialize to zero. */ | ||
672 | bd = *bdp = xzalloc(i); | ||
673 | |||
674 | /* Setup input buffer */ | ||
675 | bd->in_fd = in_fd; | ||
676 | if (-1 == in_fd) { | ||
677 | /* in this case, bd->inbuf is read-only */ | ||
678 | bd->inbuf = (void*)inbuf; /* cast away const-ness */ | ||
679 | } else { | ||
680 | bd->inbuf = (uint8_t*)(bd + 1); | ||
681 | memcpy(bd->inbuf, inbuf, len); | ||
682 | } | ||
683 | bd->inbufCount = len; | ||
684 | |||
685 | /* Init the CRC32 table (big endian) */ | ||
686 | crc32_filltable(bd->crc32Table, 1); | ||
687 | |||
688 | /* Setup for I/O error handling via longjmp */ | ||
689 | i = setjmp(bd->jmpbuf); | ||
690 | if (i) return i; | ||
691 | |||
692 | /* Ensure that file starts with "BZh['1'-'9']." */ | ||
693 | /* Update: now caller verifies 1st two bytes, makes .gz/.bz2 | ||
694 | * integration easier */ | ||
695 | /* was: */ | ||
696 | /* i = get_bits(bd, 32); */ | ||
697 | /* if ((unsigned)(i - BZh0 - 1) >= 9) return RETVAL_NOT_BZIP_DATA; */ | ||
698 | i = get_bits(bd, 16); | ||
699 | if ((unsigned)(i - h0 - 1) >= 9) return RETVAL_NOT_BZIP_DATA; | ||
700 | |||
701 | /* Fourth byte (ascii '1'-'9') indicates block size in units of 100k of | ||
702 | uncompressed data. Allocate intermediate buffer for block. */ | ||
703 | /* bd->dbufSize = 100000 * (i - BZh0); */ | ||
704 | bd->dbufSize = 100000 * (i - h0); | ||
705 | |||
706 | /* Cannot use xmalloc - may leak bd in NOFORK case! */ | ||
707 | bd->dbuf = malloc_or_warn(bd->dbufSize * sizeof(bd->dbuf[0])); | ||
708 | if (!bd->dbuf) { | ||
709 | free(bd); | ||
710 | xfunc_die(); | ||
711 | } | ||
712 | return RETVAL_OK; | ||
713 | } | ||
714 | |||
715 | void FAST_FUNC dealloc_bunzip(bunzip_data *bd) | ||
716 | { | ||
717 | free(bd->dbuf); | ||
718 | free(bd); | ||
719 | } | ||
720 | |||
721 | |||
722 | /* Decompress src_fd to dst_fd. Stops at end of bzip data, not end of file. */ | ||
723 | IF_DESKTOP(long long) int FAST_FUNC | ||
724 | unpack_bz2_stream(int src_fd, int dst_fd) | ||
725 | { | ||
726 | IF_DESKTOP(long long total_written = 0;) | ||
727 | bunzip_data *bd; | ||
728 | char *outbuf; | ||
729 | int i; | ||
730 | unsigned len; | ||
731 | |||
732 | outbuf = xmalloc(IOBUF_SIZE); | ||
733 | len = 0; | ||
734 | while (1) { /* "Process one BZ... stream" loop */ | ||
735 | |||
736 | i = start_bunzip(&bd, src_fd, outbuf + 2, len); | ||
737 | |||
738 | if (i == 0) { | ||
739 | while (1) { /* "Produce some output bytes" loop */ | ||
740 | i = read_bunzip(bd, outbuf, IOBUF_SIZE); | ||
741 | if (i < 0) /* error? */ | ||
742 | break; | ||
743 | i = IOBUF_SIZE - i; /* number of bytes produced */ | ||
744 | if (i == 0) /* EOF? */ | ||
745 | break; | ||
746 | if (i != full_write(dst_fd, outbuf, i)) { | ||
747 | bb_error_msg("short write"); | ||
748 | i = RETVAL_SHORT_WRITE; | ||
749 | goto release_mem; | ||
750 | } | ||
751 | IF_DESKTOP(total_written += i;) | ||
752 | } | ||
753 | } | ||
754 | |||
755 | if (i != RETVAL_LAST_BLOCK) { | ||
756 | bb_error_msg("bunzip error %d", i); | ||
757 | break; | ||
758 | } | ||
759 | if (bd->headerCRC != bd->totalCRC) { | ||
760 | bb_error_msg("CRC error"); | ||
761 | break; | ||
762 | } | ||
763 | |||
764 | /* Successfully unpacked one BZ stream */ | ||
765 | i = RETVAL_OK; | ||
766 | |||
767 | /* Do we have "BZ..." after last processed byte? | ||
768 | * pbzip2 (parallelized bzip2) produces such files. | ||
769 | */ | ||
770 | len = bd->inbufCount - bd->inbufPos; | ||
771 | memcpy(outbuf, &bd->inbuf[bd->inbufPos], len); | ||
772 | if (len < 2) { | ||
773 | if (safe_read(src_fd, outbuf + len, 2 - len) != 2 - len) | ||
774 | break; | ||
775 | len = 2; | ||
776 | } | ||
777 | if (*(uint16_t*)outbuf != BZIP2_MAGIC) /* "BZ"? */ | ||
778 | break; | ||
779 | dealloc_bunzip(bd); | ||
780 | len -= 2; | ||
781 | } | ||
782 | |||
783 | release_mem: | ||
784 | dealloc_bunzip(bd); | ||
785 | free(outbuf); | ||
786 | |||
787 | return i ? i : IF_DESKTOP(total_written) + 0; | ||
788 | } | ||
789 | |||
790 | IF_DESKTOP(long long) int FAST_FUNC | ||
791 | unpack_bz2_stream_prime(int src_fd, int dst_fd) | ||
792 | { | ||
793 | uint16_t magic2; | ||
794 | xread(src_fd, &magic2, 2); | ||
795 | if (magic2 != BZIP2_MAGIC) { | ||
796 | bb_error_msg_and_die("invalid magic"); | ||
797 | } | ||
798 | return unpack_bz2_stream(src_fd, dst_fd); | ||
799 | } | ||
800 | |||
801 | #ifdef TESTING | ||
802 | |||
803 | static char *const bunzip_errors[] = { | ||
804 | NULL, "Bad file checksum", "Not bzip data", | ||
805 | "Unexpected input EOF", "Unexpected output EOF", "Data error", | ||
806 | "Out of memory", "Obsolete (pre 0.9.5) bzip format not supported" | ||
807 | }; | ||
808 | |||
809 | /* Dumb little test thing, decompress stdin to stdout */ | ||
810 | int main(int argc, char **argv) | ||
811 | { | ||
812 | int i; | ||
813 | char c; | ||
814 | |||
815 | int i = unpack_bz2_stream_prime(0, 1); | ||
816 | if (i < 0) | ||
817 | fprintf(stderr, "%s\n", bunzip_errors[-i]); | ||
818 | else if (read(STDIN_FILENO, &c, 1)) | ||
819 | fprintf(stderr, "Trailing garbage ignored\n"); | ||
820 | return -i; | ||
821 | } | ||
822 | #endif | ||