diff options
Diffstat (limited to 'win32/regex_internal.c')
-rw-r--r-- | win32/regex_internal.c | 1744 |
1 files changed, 1744 insertions, 0 deletions
diff --git a/win32/regex_internal.c b/win32/regex_internal.c new file mode 100644 index 000000000..c33561743 --- /dev/null +++ b/win32/regex_internal.c | |||
@@ -0,0 +1,1744 @@ | |||
1 | /* Extended regular expression matching and search library. | ||
2 | Copyright (C) 2002-2006, 2010 Free Software Foundation, Inc. | ||
3 | This file is part of the GNU C Library. | ||
4 | Contributed by Isamu Hasegawa <isamu@yamato.ibm.com>. | ||
5 | |||
6 | The GNU C Library is free software; you can redistribute it and/or | ||
7 | modify it under the terms of the GNU Lesser General Public | ||
8 | License as published by the Free Software Foundation; either | ||
9 | version 2.1 of the License, or (at your option) any later version. | ||
10 | |||
11 | The GNU C Library is distributed in the hope that it will be useful, | ||
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | ||
14 | Lesser General Public License for more details. | ||
15 | |||
16 | You should have received a copy of the GNU Lesser General Public | ||
17 | License along with the GNU C Library; if not, write to the Free | ||
18 | Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA | ||
19 | 02110-1301 USA. */ | ||
20 | |||
21 | static void re_string_construct_common (const char *str, int len, | ||
22 | re_string_t *pstr, | ||
23 | RE_TRANSLATE_TYPE trans, int icase, | ||
24 | const re_dfa_t *dfa) internal_function; | ||
25 | static re_dfastate_t *create_ci_newstate (const re_dfa_t *dfa, | ||
26 | const re_node_set *nodes, | ||
27 | unsigned int hash) internal_function; | ||
28 | static re_dfastate_t *create_cd_newstate (const re_dfa_t *dfa, | ||
29 | const re_node_set *nodes, | ||
30 | unsigned int context, | ||
31 | unsigned int hash) internal_function; | ||
32 | |||
33 | #ifdef GAWK | ||
34 | #undef MAX /* safety */ | ||
35 | static int | ||
36 | MAX(size_t a, size_t b) | ||
37 | { | ||
38 | return (a > b ? a : b); | ||
39 | } | ||
40 | #endif | ||
41 | |||
42 | /* Functions for string operation. */ | ||
43 | |||
44 | /* This function allocate the buffers. It is necessary to call | ||
45 | re_string_reconstruct before using the object. */ | ||
46 | |||
47 | static reg_errcode_t | ||
48 | internal_function | ||
49 | re_string_allocate (re_string_t *pstr, const char *str, int len, int init_len, | ||
50 | RE_TRANSLATE_TYPE trans, int icase, const re_dfa_t *dfa) | ||
51 | { | ||
52 | reg_errcode_t ret; | ||
53 | int init_buf_len; | ||
54 | |||
55 | /* Ensure at least one character fits into the buffers. */ | ||
56 | if (init_len < dfa->mb_cur_max) | ||
57 | init_len = dfa->mb_cur_max; | ||
58 | init_buf_len = (len + 1 < init_len) ? len + 1: init_len; | ||
59 | re_string_construct_common (str, len, pstr, trans, icase, dfa); | ||
60 | |||
61 | ret = re_string_realloc_buffers (pstr, init_buf_len); | ||
62 | if (BE (ret != REG_NOERROR, 0)) | ||
63 | return ret; | ||
64 | |||
65 | pstr->word_char = dfa->word_char; | ||
66 | pstr->word_ops_used = dfa->word_ops_used; | ||
67 | pstr->mbs = pstr->mbs_allocated ? pstr->mbs : (unsigned char *) str; | ||
68 | pstr->valid_len = (pstr->mbs_allocated || dfa->mb_cur_max > 1) ? 0 : len; | ||
69 | pstr->valid_raw_len = pstr->valid_len; | ||
70 | return REG_NOERROR; | ||
71 | } | ||
72 | |||
73 | /* This function allocate the buffers, and initialize them. */ | ||
74 | |||
75 | static reg_errcode_t | ||
76 | internal_function | ||
77 | re_string_construct (re_string_t *pstr, const char *str, int len, | ||
78 | RE_TRANSLATE_TYPE trans, int icase, const re_dfa_t *dfa) | ||
79 | { | ||
80 | reg_errcode_t ret; | ||
81 | memset (pstr, '\0', sizeof (re_string_t)); | ||
82 | re_string_construct_common (str, len, pstr, trans, icase, dfa); | ||
83 | |||
84 | if (len > 0) | ||
85 | { | ||
86 | ret = re_string_realloc_buffers (pstr, len + 1); | ||
87 | if (BE (ret != REG_NOERROR, 0)) | ||
88 | return ret; | ||
89 | } | ||
90 | pstr->mbs = pstr->mbs_allocated ? pstr->mbs : (unsigned char *) str; | ||
91 | |||
92 | if (icase) | ||
93 | { | ||
94 | #ifdef RE_ENABLE_I18N | ||
95 | if (dfa->mb_cur_max > 1) | ||
96 | { | ||
97 | while (1) | ||
98 | { | ||
99 | ret = build_wcs_upper_buffer (pstr); | ||
100 | if (BE (ret != REG_NOERROR, 0)) | ||
101 | return ret; | ||
102 | if (pstr->valid_raw_len >= len) | ||
103 | break; | ||
104 | if (pstr->bufs_len > pstr->valid_len + dfa->mb_cur_max) | ||
105 | break; | ||
106 | ret = re_string_realloc_buffers (pstr, pstr->bufs_len * 2); | ||
107 | if (BE (ret != REG_NOERROR, 0)) | ||
108 | return ret; | ||
109 | } | ||
110 | } | ||
111 | else | ||
112 | #endif /* RE_ENABLE_I18N */ | ||
113 | build_upper_buffer (pstr); | ||
114 | } | ||
115 | else | ||
116 | { | ||
117 | #ifdef RE_ENABLE_I18N | ||
118 | if (dfa->mb_cur_max > 1) | ||
119 | build_wcs_buffer (pstr); | ||
120 | else | ||
121 | #endif /* RE_ENABLE_I18N */ | ||
122 | { | ||
123 | if (trans != NULL) | ||
124 | re_string_translate_buffer (pstr); | ||
125 | else | ||
126 | { | ||
127 | pstr->valid_len = pstr->bufs_len; | ||
128 | pstr->valid_raw_len = pstr->bufs_len; | ||
129 | } | ||
130 | } | ||
131 | } | ||
132 | |||
133 | return REG_NOERROR; | ||
134 | } | ||
135 | |||
136 | /* Helper functions for re_string_allocate, and re_string_construct. */ | ||
137 | |||
138 | static reg_errcode_t | ||
139 | internal_function | ||
140 | re_string_realloc_buffers (re_string_t *pstr, int new_buf_len) | ||
141 | { | ||
142 | #ifdef RE_ENABLE_I18N | ||
143 | if (pstr->mb_cur_max > 1) | ||
144 | { | ||
145 | wint_t *new_wcs; | ||
146 | |||
147 | /* Avoid overflow in realloc. */ | ||
148 | const size_t max_object_size = MAX (sizeof (wint_t), sizeof (int)); | ||
149 | if (BE (SIZE_MAX / max_object_size < new_buf_len, 0)) | ||
150 | return REG_ESPACE; | ||
151 | |||
152 | new_wcs = re_realloc (pstr->wcs, wint_t, new_buf_len); | ||
153 | if (BE (new_wcs == NULL, 0)) | ||
154 | return REG_ESPACE; | ||
155 | pstr->wcs = new_wcs; | ||
156 | if (pstr->offsets != NULL) | ||
157 | { | ||
158 | int *new_offsets = re_realloc (pstr->offsets, int, new_buf_len); | ||
159 | if (BE (new_offsets == NULL, 0)) | ||
160 | return REG_ESPACE; | ||
161 | pstr->offsets = new_offsets; | ||
162 | } | ||
163 | } | ||
164 | #endif /* RE_ENABLE_I18N */ | ||
165 | if (pstr->mbs_allocated) | ||
166 | { | ||
167 | unsigned char *new_mbs = re_realloc (pstr->mbs, unsigned char, | ||
168 | new_buf_len); | ||
169 | if (BE (new_mbs == NULL, 0)) | ||
170 | return REG_ESPACE; | ||
171 | pstr->mbs = new_mbs; | ||
172 | } | ||
173 | pstr->bufs_len = new_buf_len; | ||
174 | return REG_NOERROR; | ||
175 | } | ||
176 | |||
177 | |||
178 | static void | ||
179 | internal_function | ||
180 | re_string_construct_common (const char *str, int len, re_string_t *pstr, | ||
181 | RE_TRANSLATE_TYPE trans, int icase, | ||
182 | const re_dfa_t *dfa) | ||
183 | { | ||
184 | pstr->raw_mbs = (const unsigned char *) str; | ||
185 | pstr->len = len; | ||
186 | pstr->raw_len = len; | ||
187 | pstr->trans = trans; | ||
188 | pstr->icase = icase ? 1 : 0; | ||
189 | pstr->mbs_allocated = (trans != NULL || icase); | ||
190 | pstr->mb_cur_max = dfa->mb_cur_max; | ||
191 | pstr->is_utf8 = dfa->is_utf8; | ||
192 | pstr->map_notascii = dfa->map_notascii; | ||
193 | pstr->stop = pstr->len; | ||
194 | pstr->raw_stop = pstr->stop; | ||
195 | } | ||
196 | |||
197 | #ifdef RE_ENABLE_I18N | ||
198 | |||
199 | /* Build wide character buffer PSTR->WCS. | ||
200 | If the byte sequence of the string are: | ||
201 | <mb1>(0), <mb1>(1), <mb2>(0), <mb2>(1), <sb3> | ||
202 | Then wide character buffer will be: | ||
203 | <wc1> , WEOF , <wc2> , WEOF , <wc3> | ||
204 | We use WEOF for padding, they indicate that the position isn't | ||
205 | a first byte of a multibyte character. | ||
206 | |||
207 | Note that this function assumes PSTR->VALID_LEN elements are already | ||
208 | built and starts from PSTR->VALID_LEN. */ | ||
209 | |||
210 | static void | ||
211 | internal_function | ||
212 | build_wcs_buffer (re_string_t *pstr) | ||
213 | { | ||
214 | #ifdef _LIBC | ||
215 | unsigned char buf[MB_LEN_MAX]; | ||
216 | assert (MB_LEN_MAX >= pstr->mb_cur_max); | ||
217 | #else | ||
218 | unsigned char buf[64]; | ||
219 | #endif | ||
220 | mbstate_t prev_st; | ||
221 | int byte_idx, end_idx, remain_len; | ||
222 | size_t mbclen; | ||
223 | |||
224 | /* Build the buffers from pstr->valid_len to either pstr->len or | ||
225 | pstr->bufs_len. */ | ||
226 | end_idx = (pstr->bufs_len > pstr->len) ? pstr->len : pstr->bufs_len; | ||
227 | for (byte_idx = pstr->valid_len; byte_idx < end_idx;) | ||
228 | { | ||
229 | wchar_t wc; | ||
230 | const char *p; | ||
231 | |||
232 | remain_len = end_idx - byte_idx; | ||
233 | prev_st = pstr->cur_state; | ||
234 | /* Apply the translation if we need. */ | ||
235 | if (BE (pstr->trans != NULL, 0)) | ||
236 | { | ||
237 | int i, ch; | ||
238 | |||
239 | for (i = 0; i < pstr->mb_cur_max && i < remain_len; ++i) | ||
240 | { | ||
241 | ch = pstr->raw_mbs [pstr->raw_mbs_idx + byte_idx + i]; | ||
242 | buf[i] = pstr->mbs[byte_idx + i] = pstr->trans[ch]; | ||
243 | } | ||
244 | p = (const char *) buf; | ||
245 | } | ||
246 | else | ||
247 | p = (const char *) pstr->raw_mbs + pstr->raw_mbs_idx + byte_idx; | ||
248 | mbclen = __mbrtowc (&wc, p, remain_len, &pstr->cur_state); | ||
249 | if (BE (mbclen == (size_t) -2, 0)) | ||
250 | { | ||
251 | /* The buffer doesn't have enough space, finish to build. */ | ||
252 | pstr->cur_state = prev_st; | ||
253 | break; | ||
254 | } | ||
255 | else if (BE (mbclen == (size_t) -1 || mbclen == 0, 0)) | ||
256 | { | ||
257 | /* We treat these cases as a singlebyte character. */ | ||
258 | mbclen = 1; | ||
259 | wc = (wchar_t) pstr->raw_mbs[pstr->raw_mbs_idx + byte_idx]; | ||
260 | if (BE (pstr->trans != NULL, 0)) | ||
261 | wc = pstr->trans[wc]; | ||
262 | pstr->cur_state = prev_st; | ||
263 | } | ||
264 | |||
265 | /* Write wide character and padding. */ | ||
266 | pstr->wcs[byte_idx++] = wc; | ||
267 | /* Write paddings. */ | ||
268 | for (remain_len = byte_idx + mbclen - 1; byte_idx < remain_len ;) | ||
269 | pstr->wcs[byte_idx++] = WEOF; | ||
270 | } | ||
271 | pstr->valid_len = byte_idx; | ||
272 | pstr->valid_raw_len = byte_idx; | ||
273 | } | ||
274 | |||
275 | /* Build wide character buffer PSTR->WCS like build_wcs_buffer, | ||
276 | but for REG_ICASE. */ | ||
277 | |||
278 | static reg_errcode_t | ||
279 | internal_function | ||
280 | build_wcs_upper_buffer (re_string_t *pstr) | ||
281 | { | ||
282 | mbstate_t prev_st; | ||
283 | int src_idx, byte_idx, end_idx, remain_len; | ||
284 | size_t mbclen; | ||
285 | #ifdef _LIBC | ||
286 | char buf[MB_LEN_MAX]; | ||
287 | assert (MB_LEN_MAX >= pstr->mb_cur_max); | ||
288 | #else | ||
289 | char buf[64]; | ||
290 | #endif | ||
291 | |||
292 | byte_idx = pstr->valid_len; | ||
293 | end_idx = (pstr->bufs_len > pstr->len) ? pstr->len : pstr->bufs_len; | ||
294 | |||
295 | /* The following optimization assumes that ASCII characters can be | ||
296 | mapped to wide characters with a simple cast. */ | ||
297 | if (! pstr->map_notascii && pstr->trans == NULL && !pstr->offsets_needed) | ||
298 | { | ||
299 | while (byte_idx < end_idx) | ||
300 | { | ||
301 | wchar_t wc; | ||
302 | |||
303 | if (isascii (pstr->raw_mbs[pstr->raw_mbs_idx + byte_idx]) | ||
304 | && mbsinit (&pstr->cur_state)) | ||
305 | { | ||
306 | /* In case of a singlebyte character. */ | ||
307 | pstr->mbs[byte_idx] | ||
308 | = toupper (pstr->raw_mbs[pstr->raw_mbs_idx + byte_idx]); | ||
309 | /* The next step uses the assumption that wchar_t is encoded | ||
310 | ASCII-safe: all ASCII values can be converted like this. */ | ||
311 | pstr->wcs[byte_idx] = (wchar_t) pstr->mbs[byte_idx]; | ||
312 | ++byte_idx; | ||
313 | continue; | ||
314 | } | ||
315 | |||
316 | remain_len = end_idx - byte_idx; | ||
317 | prev_st = pstr->cur_state; | ||
318 | mbclen = __mbrtowc (&wc, | ||
319 | ((const char *) pstr->raw_mbs + pstr->raw_mbs_idx | ||
320 | + byte_idx), remain_len, &pstr->cur_state); | ||
321 | if (BE (mbclen + 2 > 2, 1)) | ||
322 | { | ||
323 | wchar_t wcu = wc; | ||
324 | if (iswlower (wc)) | ||
325 | { | ||
326 | size_t mbcdlen; | ||
327 | |||
328 | wcu = towupper (wc); | ||
329 | mbcdlen = wcrtomb (buf, wcu, &prev_st); | ||
330 | if (BE (mbclen == mbcdlen, 1)) | ||
331 | memcpy (pstr->mbs + byte_idx, buf, mbclen); | ||
332 | else | ||
333 | { | ||
334 | src_idx = byte_idx; | ||
335 | goto offsets_needed; | ||
336 | } | ||
337 | } | ||
338 | else | ||
339 | memcpy (pstr->mbs + byte_idx, | ||
340 | pstr->raw_mbs + pstr->raw_mbs_idx + byte_idx, mbclen); | ||
341 | pstr->wcs[byte_idx++] = wcu; | ||
342 | /* Write paddings. */ | ||
343 | for (remain_len = byte_idx + mbclen - 1; byte_idx < remain_len ;) | ||
344 | pstr->wcs[byte_idx++] = WEOF; | ||
345 | } | ||
346 | else if (mbclen == (size_t) -1 || mbclen == 0) | ||
347 | { | ||
348 | /* It is an invalid character or '\0'. Just use the byte. */ | ||
349 | int ch = pstr->raw_mbs[pstr->raw_mbs_idx + byte_idx]; | ||
350 | pstr->mbs[byte_idx] = ch; | ||
351 | /* And also cast it to wide char. */ | ||
352 | pstr->wcs[byte_idx++] = (wchar_t) ch; | ||
353 | if (BE (mbclen == (size_t) -1, 0)) | ||
354 | pstr->cur_state = prev_st; | ||
355 | } | ||
356 | else | ||
357 | { | ||
358 | /* The buffer doesn't have enough space, finish to build. */ | ||
359 | pstr->cur_state = prev_st; | ||
360 | break; | ||
361 | } | ||
362 | } | ||
363 | pstr->valid_len = byte_idx; | ||
364 | pstr->valid_raw_len = byte_idx; | ||
365 | return REG_NOERROR; | ||
366 | } | ||
367 | else | ||
368 | for (src_idx = pstr->valid_raw_len; byte_idx < end_idx;) | ||
369 | { | ||
370 | wchar_t wc; | ||
371 | const char *p; | ||
372 | offsets_needed: | ||
373 | remain_len = end_idx - byte_idx; | ||
374 | prev_st = pstr->cur_state; | ||
375 | if (BE (pstr->trans != NULL, 0)) | ||
376 | { | ||
377 | int i, ch; | ||
378 | |||
379 | for (i = 0; i < pstr->mb_cur_max && i < remain_len; ++i) | ||
380 | { | ||
381 | ch = pstr->raw_mbs [pstr->raw_mbs_idx + src_idx + i]; | ||
382 | buf[i] = pstr->trans[ch]; | ||
383 | } | ||
384 | p = (const char *) buf; | ||
385 | } | ||
386 | else | ||
387 | p = (const char *) pstr->raw_mbs + pstr->raw_mbs_idx + src_idx; | ||
388 | mbclen = __mbrtowc (&wc, p, remain_len, &pstr->cur_state); | ||
389 | if (BE (mbclen + 2 > 2, 1)) | ||
390 | { | ||
391 | wchar_t wcu = wc; | ||
392 | if (iswlower (wc)) | ||
393 | { | ||
394 | size_t mbcdlen; | ||
395 | |||
396 | wcu = towupper (wc); | ||
397 | mbcdlen = wcrtomb ((char *) buf, wcu, &prev_st); | ||
398 | if (BE (mbclen == mbcdlen, 1)) | ||
399 | memcpy (pstr->mbs + byte_idx, buf, mbclen); | ||
400 | else if (mbcdlen != (size_t) -1) | ||
401 | { | ||
402 | size_t i; | ||
403 | |||
404 | if (byte_idx + mbcdlen > pstr->bufs_len) | ||
405 | { | ||
406 | pstr->cur_state = prev_st; | ||
407 | break; | ||
408 | } | ||
409 | |||
410 | if (pstr->offsets == NULL) | ||
411 | { | ||
412 | pstr->offsets = re_malloc (int, pstr->bufs_len); | ||
413 | |||
414 | if (pstr->offsets == NULL) | ||
415 | return REG_ESPACE; | ||
416 | } | ||
417 | if (!pstr->offsets_needed) | ||
418 | { | ||
419 | for (i = 0; i < (size_t) byte_idx; ++i) | ||
420 | pstr->offsets[i] = i; | ||
421 | pstr->offsets_needed = 1; | ||
422 | } | ||
423 | |||
424 | memcpy (pstr->mbs + byte_idx, buf, mbcdlen); | ||
425 | pstr->wcs[byte_idx] = wcu; | ||
426 | pstr->offsets[byte_idx] = src_idx; | ||
427 | for (i = 1; i < mbcdlen; ++i) | ||
428 | { | ||
429 | pstr->offsets[byte_idx + i] | ||
430 | = src_idx + (i < mbclen ? i : mbclen - 1); | ||
431 | pstr->wcs[byte_idx + i] = WEOF; | ||
432 | } | ||
433 | pstr->len += mbcdlen - mbclen; | ||
434 | if (pstr->raw_stop > src_idx) | ||
435 | pstr->stop += mbcdlen - mbclen; | ||
436 | end_idx = (pstr->bufs_len > pstr->len) | ||
437 | ? pstr->len : pstr->bufs_len; | ||
438 | byte_idx += mbcdlen; | ||
439 | src_idx += mbclen; | ||
440 | continue; | ||
441 | } | ||
442 | else | ||
443 | memcpy (pstr->mbs + byte_idx, p, mbclen); | ||
444 | } | ||
445 | else | ||
446 | memcpy (pstr->mbs + byte_idx, p, mbclen); | ||
447 | |||
448 | if (BE (pstr->offsets_needed != 0, 0)) | ||
449 | { | ||
450 | size_t i; | ||
451 | for (i = 0; i < mbclen; ++i) | ||
452 | pstr->offsets[byte_idx + i] = src_idx + i; | ||
453 | } | ||
454 | src_idx += mbclen; | ||
455 | |||
456 | pstr->wcs[byte_idx++] = wcu; | ||
457 | /* Write paddings. */ | ||
458 | for (remain_len = byte_idx + mbclen - 1; byte_idx < remain_len ;) | ||
459 | pstr->wcs[byte_idx++] = WEOF; | ||
460 | } | ||
461 | else if (mbclen == (size_t) -1 || mbclen == 0) | ||
462 | { | ||
463 | /* It is an invalid character or '\0'. Just use the byte. */ | ||
464 | int ch = pstr->raw_mbs[pstr->raw_mbs_idx + src_idx]; | ||
465 | |||
466 | if (BE (pstr->trans != NULL, 0)) | ||
467 | ch = pstr->trans [ch]; | ||
468 | pstr->mbs[byte_idx] = ch; | ||
469 | |||
470 | if (BE (pstr->offsets_needed != 0, 0)) | ||
471 | pstr->offsets[byte_idx] = src_idx; | ||
472 | ++src_idx; | ||
473 | |||
474 | /* And also cast it to wide char. */ | ||
475 | pstr->wcs[byte_idx++] = (wchar_t) ch; | ||
476 | if (BE (mbclen == (size_t) -1, 0)) | ||
477 | pstr->cur_state = prev_st; | ||
478 | } | ||
479 | else | ||
480 | { | ||
481 | /* The buffer doesn't have enough space, finish to build. */ | ||
482 | pstr->cur_state = prev_st; | ||
483 | break; | ||
484 | } | ||
485 | } | ||
486 | pstr->valid_len = byte_idx; | ||
487 | pstr->valid_raw_len = src_idx; | ||
488 | return REG_NOERROR; | ||
489 | } | ||
490 | |||
491 | /* Skip characters until the index becomes greater than NEW_RAW_IDX. | ||
492 | Return the index. */ | ||
493 | |||
494 | static int | ||
495 | internal_function | ||
496 | re_string_skip_chars (re_string_t *pstr, int new_raw_idx, wint_t *last_wc) | ||
497 | { | ||
498 | mbstate_t prev_st; | ||
499 | int rawbuf_idx; | ||
500 | size_t mbclen; | ||
501 | wint_t wc = WEOF; | ||
502 | |||
503 | /* Skip the characters which are not necessary to check. */ | ||
504 | for (rawbuf_idx = pstr->raw_mbs_idx + pstr->valid_raw_len; | ||
505 | rawbuf_idx < new_raw_idx;) | ||
506 | { | ||
507 | wchar_t wc2; | ||
508 | int remain_len = pstr->len - rawbuf_idx; | ||
509 | prev_st = pstr->cur_state; | ||
510 | mbclen = __mbrtowc (&wc2, (const char *) pstr->raw_mbs + rawbuf_idx, | ||
511 | remain_len, &pstr->cur_state); | ||
512 | if (BE (mbclen == (size_t) -2 || mbclen == (size_t) -1 || mbclen == 0, 0)) | ||
513 | { | ||
514 | /* We treat these cases as a single byte character. */ | ||
515 | if (mbclen == 0 || remain_len == 0) | ||
516 | wc = L'\0'; | ||
517 | else | ||
518 | wc = *(unsigned char *) (pstr->raw_mbs + rawbuf_idx); | ||
519 | mbclen = 1; | ||
520 | pstr->cur_state = prev_st; | ||
521 | } | ||
522 | else | ||
523 | wc = (wint_t) wc2; | ||
524 | /* Then proceed the next character. */ | ||
525 | rawbuf_idx += mbclen; | ||
526 | } | ||
527 | *last_wc = (wint_t) wc; | ||
528 | return rawbuf_idx; | ||
529 | } | ||
530 | #endif /* RE_ENABLE_I18N */ | ||
531 | |||
532 | /* Build the buffer PSTR->MBS, and apply the translation if we need. | ||
533 | This function is used in case of REG_ICASE. */ | ||
534 | |||
535 | static void | ||
536 | internal_function | ||
537 | build_upper_buffer (re_string_t *pstr) | ||
538 | { | ||
539 | int char_idx, end_idx; | ||
540 | end_idx = (pstr->bufs_len > pstr->len) ? pstr->len : pstr->bufs_len; | ||
541 | |||
542 | for (char_idx = pstr->valid_len; char_idx < end_idx; ++char_idx) | ||
543 | { | ||
544 | int ch = pstr->raw_mbs[pstr->raw_mbs_idx + char_idx]; | ||
545 | if (BE (pstr->trans != NULL, 0)) | ||
546 | ch = pstr->trans[ch]; | ||
547 | if (islower (ch)) | ||
548 | pstr->mbs[char_idx] = toupper (ch); | ||
549 | else | ||
550 | pstr->mbs[char_idx] = ch; | ||
551 | } | ||
552 | pstr->valid_len = char_idx; | ||
553 | pstr->valid_raw_len = char_idx; | ||
554 | } | ||
555 | |||
556 | /* Apply TRANS to the buffer in PSTR. */ | ||
557 | |||
558 | static void | ||
559 | internal_function | ||
560 | re_string_translate_buffer (re_string_t *pstr) | ||
561 | { | ||
562 | int buf_idx, end_idx; | ||
563 | end_idx = (pstr->bufs_len > pstr->len) ? pstr->len : pstr->bufs_len; | ||
564 | |||
565 | for (buf_idx = pstr->valid_len; buf_idx < end_idx; ++buf_idx) | ||
566 | { | ||
567 | int ch = pstr->raw_mbs[pstr->raw_mbs_idx + buf_idx]; | ||
568 | pstr->mbs[buf_idx] = pstr->trans[ch]; | ||
569 | } | ||
570 | |||
571 | pstr->valid_len = buf_idx; | ||
572 | pstr->valid_raw_len = buf_idx; | ||
573 | } | ||
574 | |||
575 | /* This function re-construct the buffers. | ||
576 | Concretely, convert to wide character in case of pstr->mb_cur_max > 1, | ||
577 | convert to upper case in case of REG_ICASE, apply translation. */ | ||
578 | |||
579 | static reg_errcode_t | ||
580 | internal_function | ||
581 | re_string_reconstruct (re_string_t *pstr, int idx, int eflags) | ||
582 | { | ||
583 | int offset = idx - pstr->raw_mbs_idx; | ||
584 | if (BE (offset < 0, 0)) | ||
585 | { | ||
586 | /* Reset buffer. */ | ||
587 | #ifdef RE_ENABLE_I18N | ||
588 | if (pstr->mb_cur_max > 1) | ||
589 | memset (&pstr->cur_state, '\0', sizeof (mbstate_t)); | ||
590 | #endif /* RE_ENABLE_I18N */ | ||
591 | pstr->len = pstr->raw_len; | ||
592 | pstr->stop = pstr->raw_stop; | ||
593 | pstr->valid_len = 0; | ||
594 | pstr->raw_mbs_idx = 0; | ||
595 | pstr->valid_raw_len = 0; | ||
596 | pstr->offsets_needed = 0; | ||
597 | pstr->tip_context = ((eflags & REG_NOTBOL) ? CONTEXT_BEGBUF | ||
598 | : CONTEXT_NEWLINE | CONTEXT_BEGBUF); | ||
599 | if (!pstr->mbs_allocated) | ||
600 | pstr->mbs = (unsigned char *) pstr->raw_mbs; | ||
601 | offset = idx; | ||
602 | } | ||
603 | |||
604 | if (BE (offset != 0, 1)) | ||
605 | { | ||
606 | /* Should the already checked characters be kept? */ | ||
607 | if (BE (offset < pstr->valid_raw_len, 1)) | ||
608 | { | ||
609 | /* Yes, move them to the front of the buffer. */ | ||
610 | #ifdef RE_ENABLE_I18N | ||
611 | if (BE (pstr->offsets_needed, 0)) | ||
612 | { | ||
613 | int low = 0, high = pstr->valid_len, mid; | ||
614 | do | ||
615 | { | ||
616 | mid = (high + low) / 2; | ||
617 | if (pstr->offsets[mid] > offset) | ||
618 | high = mid; | ||
619 | else if (pstr->offsets[mid] < offset) | ||
620 | low = mid + 1; | ||
621 | else | ||
622 | break; | ||
623 | } | ||
624 | while (low < high); | ||
625 | if (pstr->offsets[mid] < offset) | ||
626 | ++mid; | ||
627 | pstr->tip_context = re_string_context_at (pstr, mid - 1, | ||
628 | eflags); | ||
629 | /* This can be quite complicated, so handle specially | ||
630 | only the common and easy case where the character with | ||
631 | different length representation of lower and upper | ||
632 | case is present at or after offset. */ | ||
633 | if (pstr->valid_len > offset | ||
634 | && mid == offset && pstr->offsets[mid] == offset) | ||
635 | { | ||
636 | memmove (pstr->wcs, pstr->wcs + offset, | ||
637 | (pstr->valid_len - offset) * sizeof (wint_t)); | ||
638 | memmove (pstr->mbs, pstr->mbs + offset, pstr->valid_len - offset); | ||
639 | pstr->valid_len -= offset; | ||
640 | pstr->valid_raw_len -= offset; | ||
641 | for (low = 0; low < pstr->valid_len; low++) | ||
642 | pstr->offsets[low] = pstr->offsets[low + offset] - offset; | ||
643 | } | ||
644 | else | ||
645 | { | ||
646 | /* Otherwise, just find out how long the partial multibyte | ||
647 | character at offset is and fill it with WEOF/255. */ | ||
648 | pstr->len = pstr->raw_len - idx + offset; | ||
649 | pstr->stop = pstr->raw_stop - idx + offset; | ||
650 | pstr->offsets_needed = 0; | ||
651 | while (mid > 0 && pstr->offsets[mid - 1] == offset) | ||
652 | --mid; | ||
653 | while (mid < pstr->valid_len) | ||
654 | if (pstr->wcs[mid] != WEOF) | ||
655 | break; | ||
656 | else | ||
657 | ++mid; | ||
658 | if (mid == pstr->valid_len) | ||
659 | pstr->valid_len = 0; | ||
660 | else | ||
661 | { | ||
662 | pstr->valid_len = pstr->offsets[mid] - offset; | ||
663 | if (pstr->valid_len) | ||
664 | { | ||
665 | for (low = 0; low < pstr->valid_len; ++low) | ||
666 | pstr->wcs[low] = WEOF; | ||
667 | memset (pstr->mbs, 255, pstr->valid_len); | ||
668 | } | ||
669 | } | ||
670 | pstr->valid_raw_len = pstr->valid_len; | ||
671 | } | ||
672 | } | ||
673 | else | ||
674 | #endif | ||
675 | { | ||
676 | pstr->tip_context = re_string_context_at (pstr, offset - 1, | ||
677 | eflags); | ||
678 | #ifdef RE_ENABLE_I18N | ||
679 | if (pstr->mb_cur_max > 1) | ||
680 | memmove (pstr->wcs, pstr->wcs + offset, | ||
681 | (pstr->valid_len - offset) * sizeof (wint_t)); | ||
682 | #endif /* RE_ENABLE_I18N */ | ||
683 | if (BE (pstr->mbs_allocated, 0)) | ||
684 | memmove (pstr->mbs, pstr->mbs + offset, | ||
685 | pstr->valid_len - offset); | ||
686 | pstr->valid_len -= offset; | ||
687 | pstr->valid_raw_len -= offset; | ||
688 | #ifdef DEBUG | ||
689 | assert (pstr->valid_len > 0); | ||
690 | #endif | ||
691 | } | ||
692 | } | ||
693 | else | ||
694 | { | ||
695 | #ifdef RE_ENABLE_I18N | ||
696 | /* No, skip all characters until IDX. */ | ||
697 | int prev_valid_len = pstr->valid_len; | ||
698 | |||
699 | if (BE (pstr->offsets_needed, 0)) | ||
700 | { | ||
701 | pstr->len = pstr->raw_len - idx + offset; | ||
702 | pstr->stop = pstr->raw_stop - idx + offset; | ||
703 | pstr->offsets_needed = 0; | ||
704 | } | ||
705 | #endif | ||
706 | pstr->valid_len = 0; | ||
707 | #ifdef RE_ENABLE_I18N | ||
708 | if (pstr->mb_cur_max > 1) | ||
709 | { | ||
710 | int wcs_idx; | ||
711 | wint_t wc = WEOF; | ||
712 | |||
713 | if (pstr->is_utf8) | ||
714 | { | ||
715 | const unsigned char *raw, *p, *end; | ||
716 | |||
717 | /* Special case UTF-8. Multi-byte chars start with any | ||
718 | byte other than 0x80 - 0xbf. */ | ||
719 | raw = pstr->raw_mbs + pstr->raw_mbs_idx; | ||
720 | end = raw + (offset - pstr->mb_cur_max); | ||
721 | if (end < pstr->raw_mbs) | ||
722 | end = pstr->raw_mbs; | ||
723 | p = raw + offset - 1; | ||
724 | #ifdef _LIBC | ||
725 | /* We know the wchar_t encoding is UCS4, so for the simple | ||
726 | case, ASCII characters, skip the conversion step. */ | ||
727 | if (isascii (*p) && BE (pstr->trans == NULL, 1)) | ||
728 | { | ||
729 | memset (&pstr->cur_state, '\0', sizeof (mbstate_t)); | ||
730 | /* pstr->valid_len = 0; */ | ||
731 | wc = (wchar_t) *p; | ||
732 | } | ||
733 | else | ||
734 | #endif | ||
735 | for (; p >= end; --p) | ||
736 | if ((*p & 0xc0) != 0x80) | ||
737 | { | ||
738 | mbstate_t cur_state; | ||
739 | wchar_t wc2; | ||
740 | int mlen = raw + pstr->len - p; | ||
741 | unsigned char buf[6]; | ||
742 | size_t mbclen; | ||
743 | |||
744 | if (BE (pstr->trans != NULL, 0)) | ||
745 | { | ||
746 | int i = mlen < 6 ? mlen : 6; | ||
747 | while (--i >= 0) | ||
748 | buf[i] = pstr->trans[p[i]]; | ||
749 | } | ||
750 | /* XXX Don't use mbrtowc, we know which conversion | ||
751 | to use (UTF-8 -> UCS4). */ | ||
752 | memset (&cur_state, 0, sizeof (cur_state)); | ||
753 | mbclen = __mbrtowc (&wc2, (const char *) p, mlen, | ||
754 | &cur_state); | ||
755 | if (raw + offset - p <= mbclen | ||
756 | && mbclen < (size_t) -2) | ||
757 | { | ||
758 | memset (&pstr->cur_state, '\0', | ||
759 | sizeof (mbstate_t)); | ||
760 | pstr->valid_len = mbclen - (raw + offset - p); | ||
761 | wc = wc2; | ||
762 | } | ||
763 | break; | ||
764 | } | ||
765 | } | ||
766 | |||
767 | if (wc == WEOF) | ||
768 | pstr->valid_len = re_string_skip_chars (pstr, idx, &wc) - idx; | ||
769 | if (wc == WEOF) | ||
770 | pstr->tip_context | ||
771 | = re_string_context_at (pstr, prev_valid_len - 1, eflags); | ||
772 | else | ||
773 | pstr->tip_context = ((BE (pstr->word_ops_used != 0, 0) | ||
774 | && IS_WIDE_WORD_CHAR (wc)) | ||
775 | ? CONTEXT_WORD | ||
776 | : ((IS_WIDE_NEWLINE (wc) | ||
777 | && pstr->newline_anchor) | ||
778 | ? CONTEXT_NEWLINE : 0)); | ||
779 | if (BE (pstr->valid_len, 0)) | ||
780 | { | ||
781 | for (wcs_idx = 0; wcs_idx < pstr->valid_len; ++wcs_idx) | ||
782 | pstr->wcs[wcs_idx] = WEOF; | ||
783 | if (pstr->mbs_allocated) | ||
784 | memset (pstr->mbs, 255, pstr->valid_len); | ||
785 | } | ||
786 | pstr->valid_raw_len = pstr->valid_len; | ||
787 | } | ||
788 | else | ||
789 | #endif /* RE_ENABLE_I18N */ | ||
790 | { | ||
791 | int c = pstr->raw_mbs[pstr->raw_mbs_idx + offset - 1]; | ||
792 | pstr->valid_raw_len = 0; | ||
793 | if (pstr->trans) | ||
794 | c = pstr->trans[c]; | ||
795 | pstr->tip_context = (bitset_contain (pstr->word_char, c) | ||
796 | ? CONTEXT_WORD | ||
797 | : ((IS_NEWLINE (c) && pstr->newline_anchor) | ||
798 | ? CONTEXT_NEWLINE : 0)); | ||
799 | } | ||
800 | } | ||
801 | if (!BE (pstr->mbs_allocated, 0)) | ||
802 | pstr->mbs += offset; | ||
803 | } | ||
804 | pstr->raw_mbs_idx = idx; | ||
805 | pstr->len -= offset; | ||
806 | pstr->stop -= offset; | ||
807 | |||
808 | /* Then build the buffers. */ | ||
809 | #ifdef RE_ENABLE_I18N | ||
810 | if (pstr->mb_cur_max > 1) | ||
811 | { | ||
812 | if (pstr->icase) | ||
813 | { | ||
814 | reg_errcode_t ret = build_wcs_upper_buffer (pstr); | ||
815 | if (BE (ret != REG_NOERROR, 0)) | ||
816 | return ret; | ||
817 | } | ||
818 | else | ||
819 | build_wcs_buffer (pstr); | ||
820 | } | ||
821 | else | ||
822 | #endif /* RE_ENABLE_I18N */ | ||
823 | if (BE (pstr->mbs_allocated, 0)) | ||
824 | { | ||
825 | if (pstr->icase) | ||
826 | build_upper_buffer (pstr); | ||
827 | else if (pstr->trans != NULL) | ||
828 | re_string_translate_buffer (pstr); | ||
829 | } | ||
830 | else | ||
831 | pstr->valid_len = pstr->len; | ||
832 | |||
833 | pstr->cur_idx = 0; | ||
834 | return REG_NOERROR; | ||
835 | } | ||
836 | |||
837 | static unsigned char | ||
838 | internal_function __attribute ((pure)) | ||
839 | re_string_peek_byte_case (const re_string_t *pstr, int idx) | ||
840 | { | ||
841 | int ch, off; | ||
842 | |||
843 | /* Handle the common (easiest) cases first. */ | ||
844 | if (BE (!pstr->mbs_allocated, 1)) | ||
845 | return re_string_peek_byte (pstr, idx); | ||
846 | |||
847 | #ifdef RE_ENABLE_I18N | ||
848 | if (pstr->mb_cur_max > 1 | ||
849 | && ! re_string_is_single_byte_char (pstr, pstr->cur_idx + idx)) | ||
850 | return re_string_peek_byte (pstr, idx); | ||
851 | #endif | ||
852 | |||
853 | off = pstr->cur_idx + idx; | ||
854 | #ifdef RE_ENABLE_I18N | ||
855 | if (pstr->offsets_needed) | ||
856 | off = pstr->offsets[off]; | ||
857 | #endif | ||
858 | |||
859 | ch = pstr->raw_mbs[pstr->raw_mbs_idx + off]; | ||
860 | |||
861 | #ifdef RE_ENABLE_I18N | ||
862 | /* Ensure that e.g. for tr_TR.UTF-8 BACKSLASH DOTLESS SMALL LETTER I | ||
863 | this function returns CAPITAL LETTER I instead of first byte of | ||
864 | DOTLESS SMALL LETTER I. The latter would confuse the parser, | ||
865 | since peek_byte_case doesn't advance cur_idx in any way. */ | ||
866 | if (pstr->offsets_needed && !isascii (ch)) | ||
867 | return re_string_peek_byte (pstr, idx); | ||
868 | #endif | ||
869 | |||
870 | return ch; | ||
871 | } | ||
872 | |||
873 | static unsigned char | ||
874 | internal_function __attribute ((pure)) | ||
875 | re_string_fetch_byte_case (re_string_t *pstr) | ||
876 | { | ||
877 | if (BE (!pstr->mbs_allocated, 1)) | ||
878 | return re_string_fetch_byte (pstr); | ||
879 | |||
880 | #ifdef RE_ENABLE_I18N | ||
881 | if (pstr->offsets_needed) | ||
882 | { | ||
883 | int off, ch; | ||
884 | |||
885 | /* For tr_TR.UTF-8 [[:islower:]] there is | ||
886 | [[: CAPITAL LETTER I WITH DOT lower:]] in mbs. Skip | ||
887 | in that case the whole multi-byte character and return | ||
888 | the original letter. On the other side, with | ||
889 | [[: DOTLESS SMALL LETTER I return [[:I, as doing | ||
890 | anything else would complicate things too much. */ | ||
891 | |||
892 | if (!re_string_first_byte (pstr, pstr->cur_idx)) | ||
893 | return re_string_fetch_byte (pstr); | ||
894 | |||
895 | off = pstr->offsets[pstr->cur_idx]; | ||
896 | ch = pstr->raw_mbs[pstr->raw_mbs_idx + off]; | ||
897 | |||
898 | if (! isascii (ch)) | ||
899 | return re_string_fetch_byte (pstr); | ||
900 | |||
901 | re_string_skip_bytes (pstr, | ||
902 | re_string_char_size_at (pstr, pstr->cur_idx)); | ||
903 | return ch; | ||
904 | } | ||
905 | #endif | ||
906 | |||
907 | return pstr->raw_mbs[pstr->raw_mbs_idx + pstr->cur_idx++]; | ||
908 | } | ||
909 | |||
910 | static void | ||
911 | internal_function | ||
912 | re_string_destruct (re_string_t *pstr) | ||
913 | { | ||
914 | #ifdef RE_ENABLE_I18N | ||
915 | re_free (pstr->wcs); | ||
916 | re_free (pstr->offsets); | ||
917 | #endif /* RE_ENABLE_I18N */ | ||
918 | if (pstr->mbs_allocated) | ||
919 | re_free (pstr->mbs); | ||
920 | } | ||
921 | |||
922 | /* Return the context at IDX in INPUT. */ | ||
923 | |||
924 | static unsigned int | ||
925 | internal_function | ||
926 | re_string_context_at (const re_string_t *input, int idx, int eflags) | ||
927 | { | ||
928 | int c; | ||
929 | if (BE (idx < 0, 0)) | ||
930 | /* In this case, we use the value stored in input->tip_context, | ||
931 | since we can't know the character in input->mbs[-1] here. */ | ||
932 | return input->tip_context; | ||
933 | if (BE (idx == input->len, 0)) | ||
934 | return ((eflags & REG_NOTEOL) ? CONTEXT_ENDBUF | ||
935 | : CONTEXT_NEWLINE | CONTEXT_ENDBUF); | ||
936 | #ifdef RE_ENABLE_I18N | ||
937 | if (input->mb_cur_max > 1) | ||
938 | { | ||
939 | wint_t wc; | ||
940 | int wc_idx = idx; | ||
941 | while(input->wcs[wc_idx] == WEOF) | ||
942 | { | ||
943 | #ifdef DEBUG | ||
944 | /* It must not happen. */ | ||
945 | assert (wc_idx >= 0); | ||
946 | #endif | ||
947 | --wc_idx; | ||
948 | if (wc_idx < 0) | ||
949 | return input->tip_context; | ||
950 | } | ||
951 | wc = input->wcs[wc_idx]; | ||
952 | if (BE (input->word_ops_used != 0, 0) && IS_WIDE_WORD_CHAR (wc)) | ||
953 | return CONTEXT_WORD; | ||
954 | return (IS_WIDE_NEWLINE (wc) && input->newline_anchor | ||
955 | ? CONTEXT_NEWLINE : 0); | ||
956 | } | ||
957 | else | ||
958 | #endif | ||
959 | { | ||
960 | c = re_string_byte_at (input, idx); | ||
961 | if (bitset_contain (input->word_char, c)) | ||
962 | return CONTEXT_WORD; | ||
963 | return IS_NEWLINE (c) && input->newline_anchor ? CONTEXT_NEWLINE : 0; | ||
964 | } | ||
965 | } | ||
966 | |||
967 | /* Functions for set operation. */ | ||
968 | |||
969 | static reg_errcode_t | ||
970 | internal_function | ||
971 | re_node_set_alloc (re_node_set *set, int size) | ||
972 | { | ||
973 | /* | ||
974 | * ADR: valgrind says size can be 0, which then doesn't | ||
975 | * free the block of size 0. Harumph. This seems | ||
976 | * to work ok, though. | ||
977 | */ | ||
978 | if (size == 0) | ||
979 | { | ||
980 | memset(set, 0, sizeof(*set)); | ||
981 | return REG_NOERROR; | ||
982 | } | ||
983 | set->alloc = size; | ||
984 | set->nelem = 0; | ||
985 | set->elems = re_malloc (int, size); | ||
986 | if (BE (set->elems == NULL, 0)) | ||
987 | return REG_ESPACE; | ||
988 | return REG_NOERROR; | ||
989 | } | ||
990 | |||
991 | static reg_errcode_t | ||
992 | internal_function | ||
993 | re_node_set_init_1 (re_node_set *set, int elem) | ||
994 | { | ||
995 | set->alloc = 1; | ||
996 | set->nelem = 1; | ||
997 | set->elems = re_malloc (int, 1); | ||
998 | if (BE (set->elems == NULL, 0)) | ||
999 | { | ||
1000 | set->alloc = set->nelem = 0; | ||
1001 | return REG_ESPACE; | ||
1002 | } | ||
1003 | set->elems[0] = elem; | ||
1004 | return REG_NOERROR; | ||
1005 | } | ||
1006 | |||
1007 | static reg_errcode_t | ||
1008 | internal_function | ||
1009 | re_node_set_init_2 (re_node_set *set, int elem1, int elem2) | ||
1010 | { | ||
1011 | set->alloc = 2; | ||
1012 | set->elems = re_malloc (int, 2); | ||
1013 | if (BE (set->elems == NULL, 0)) | ||
1014 | return REG_ESPACE; | ||
1015 | if (elem1 == elem2) | ||
1016 | { | ||
1017 | set->nelem = 1; | ||
1018 | set->elems[0] = elem1; | ||
1019 | } | ||
1020 | else | ||
1021 | { | ||
1022 | set->nelem = 2; | ||
1023 | if (elem1 < elem2) | ||
1024 | { | ||
1025 | set->elems[0] = elem1; | ||
1026 | set->elems[1] = elem2; | ||
1027 | } | ||
1028 | else | ||
1029 | { | ||
1030 | set->elems[0] = elem2; | ||
1031 | set->elems[1] = elem1; | ||
1032 | } | ||
1033 | } | ||
1034 | return REG_NOERROR; | ||
1035 | } | ||
1036 | |||
1037 | static reg_errcode_t | ||
1038 | internal_function | ||
1039 | re_node_set_init_copy (re_node_set *dest, const re_node_set *src) | ||
1040 | { | ||
1041 | dest->nelem = src->nelem; | ||
1042 | if (src->nelem > 0) | ||
1043 | { | ||
1044 | dest->alloc = dest->nelem; | ||
1045 | dest->elems = re_malloc (int, dest->alloc); | ||
1046 | if (BE (dest->elems == NULL, 0)) | ||
1047 | { | ||
1048 | dest->alloc = dest->nelem = 0; | ||
1049 | return REG_ESPACE; | ||
1050 | } | ||
1051 | memcpy (dest->elems, src->elems, src->nelem * sizeof (int)); | ||
1052 | } | ||
1053 | else | ||
1054 | re_node_set_init_empty (dest); | ||
1055 | return REG_NOERROR; | ||
1056 | } | ||
1057 | |||
1058 | /* Calculate the intersection of the sets SRC1 and SRC2. And merge it to | ||
1059 | DEST. Return value indicate the error code or REG_NOERROR if succeeded. | ||
1060 | Note: We assume dest->elems is NULL, when dest->alloc is 0. */ | ||
1061 | |||
1062 | static reg_errcode_t | ||
1063 | internal_function | ||
1064 | re_node_set_add_intersect (re_node_set *dest, const re_node_set *src1, | ||
1065 | const re_node_set *src2) | ||
1066 | { | ||
1067 | int i1, i2, is, id, delta, sbase; | ||
1068 | if (src1->nelem == 0 || src2->nelem == 0) | ||
1069 | return REG_NOERROR; | ||
1070 | |||
1071 | /* We need dest->nelem + 2 * elems_in_intersection; this is a | ||
1072 | conservative estimate. */ | ||
1073 | if (src1->nelem + src2->nelem + dest->nelem > dest->alloc) | ||
1074 | { | ||
1075 | int new_alloc = src1->nelem + src2->nelem + dest->alloc; | ||
1076 | int *new_elems = re_realloc (dest->elems, int, new_alloc); | ||
1077 | if (BE (new_elems == NULL, 0)) | ||
1078 | return REG_ESPACE; | ||
1079 | dest->elems = new_elems; | ||
1080 | dest->alloc = new_alloc; | ||
1081 | } | ||
1082 | |||
1083 | /* Find the items in the intersection of SRC1 and SRC2, and copy | ||
1084 | into the top of DEST those that are not already in DEST itself. */ | ||
1085 | sbase = dest->nelem + src1->nelem + src2->nelem; | ||
1086 | i1 = src1->nelem - 1; | ||
1087 | i2 = src2->nelem - 1; | ||
1088 | id = dest->nelem - 1; | ||
1089 | for (;;) | ||
1090 | { | ||
1091 | if (src1->elems[i1] == src2->elems[i2]) | ||
1092 | { | ||
1093 | /* Try to find the item in DEST. Maybe we could binary search? */ | ||
1094 | while (id >= 0 && dest->elems[id] > src1->elems[i1]) | ||
1095 | --id; | ||
1096 | |||
1097 | if (id < 0 || dest->elems[id] != src1->elems[i1]) | ||
1098 | dest->elems[--sbase] = src1->elems[i1]; | ||
1099 | |||
1100 | if (--i1 < 0 || --i2 < 0) | ||
1101 | break; | ||
1102 | } | ||
1103 | |||
1104 | /* Lower the highest of the two items. */ | ||
1105 | else if (src1->elems[i1] < src2->elems[i2]) | ||
1106 | { | ||
1107 | if (--i2 < 0) | ||
1108 | break; | ||
1109 | } | ||
1110 | else | ||
1111 | { | ||
1112 | if (--i1 < 0) | ||
1113 | break; | ||
1114 | } | ||
1115 | } | ||
1116 | |||
1117 | id = dest->nelem - 1; | ||
1118 | is = dest->nelem + src1->nelem + src2->nelem - 1; | ||
1119 | delta = is - sbase + 1; | ||
1120 | |||
1121 | /* Now copy. When DELTA becomes zero, the remaining | ||
1122 | DEST elements are already in place; this is more or | ||
1123 | less the same loop that is in re_node_set_merge. */ | ||
1124 | dest->nelem += delta; | ||
1125 | if (delta > 0 && id >= 0) | ||
1126 | for (;;) | ||
1127 | { | ||
1128 | if (dest->elems[is] > dest->elems[id]) | ||
1129 | { | ||
1130 | /* Copy from the top. */ | ||
1131 | dest->elems[id + delta--] = dest->elems[is--]; | ||
1132 | if (delta == 0) | ||
1133 | break; | ||
1134 | } | ||
1135 | else | ||
1136 | { | ||
1137 | /* Slide from the bottom. */ | ||
1138 | dest->elems[id + delta] = dest->elems[id]; | ||
1139 | if (--id < 0) | ||
1140 | break; | ||
1141 | } | ||
1142 | } | ||
1143 | |||
1144 | /* Copy remaining SRC elements. */ | ||
1145 | memcpy (dest->elems, dest->elems + sbase, delta * sizeof (int)); | ||
1146 | |||
1147 | return REG_NOERROR; | ||
1148 | } | ||
1149 | |||
1150 | /* Calculate the union set of the sets SRC1 and SRC2. And store it to | ||
1151 | DEST. Return value indicate the error code or REG_NOERROR if succeeded. */ | ||
1152 | |||
1153 | static reg_errcode_t | ||
1154 | internal_function | ||
1155 | re_node_set_init_union (re_node_set *dest, const re_node_set *src1, | ||
1156 | const re_node_set *src2) | ||
1157 | { | ||
1158 | int i1, i2, id; | ||
1159 | if (src1 != NULL && src1->nelem > 0 && src2 != NULL && src2->nelem > 0) | ||
1160 | { | ||
1161 | dest->alloc = src1->nelem + src2->nelem; | ||
1162 | dest->elems = re_malloc (int, dest->alloc); | ||
1163 | if (BE (dest->elems == NULL, 0)) | ||
1164 | return REG_ESPACE; | ||
1165 | } | ||
1166 | else | ||
1167 | { | ||
1168 | if (src1 != NULL && src1->nelem > 0) | ||
1169 | return re_node_set_init_copy (dest, src1); | ||
1170 | else if (src2 != NULL && src2->nelem > 0) | ||
1171 | return re_node_set_init_copy (dest, src2); | ||
1172 | else | ||
1173 | re_node_set_init_empty (dest); | ||
1174 | return REG_NOERROR; | ||
1175 | } | ||
1176 | for (i1 = i2 = id = 0 ; i1 < src1->nelem && i2 < src2->nelem ;) | ||
1177 | { | ||
1178 | if (src1->elems[i1] > src2->elems[i2]) | ||
1179 | { | ||
1180 | dest->elems[id++] = src2->elems[i2++]; | ||
1181 | continue; | ||
1182 | } | ||
1183 | if (src1->elems[i1] == src2->elems[i2]) | ||
1184 | ++i2; | ||
1185 | dest->elems[id++] = src1->elems[i1++]; | ||
1186 | } | ||
1187 | if (i1 < src1->nelem) | ||
1188 | { | ||
1189 | memcpy (dest->elems + id, src1->elems + i1, | ||
1190 | (src1->nelem - i1) * sizeof (int)); | ||
1191 | id += src1->nelem - i1; | ||
1192 | } | ||
1193 | else if (i2 < src2->nelem) | ||
1194 | { | ||
1195 | memcpy (dest->elems + id, src2->elems + i2, | ||
1196 | (src2->nelem - i2) * sizeof (int)); | ||
1197 | id += src2->nelem - i2; | ||
1198 | } | ||
1199 | dest->nelem = id; | ||
1200 | return REG_NOERROR; | ||
1201 | } | ||
1202 | |||
1203 | /* Calculate the union set of the sets DEST and SRC. And store it to | ||
1204 | DEST. Return value indicate the error code or REG_NOERROR if succeeded. */ | ||
1205 | |||
1206 | static reg_errcode_t | ||
1207 | internal_function | ||
1208 | re_node_set_merge (re_node_set *dest, const re_node_set *src) | ||
1209 | { | ||
1210 | int is, id, sbase, delta; | ||
1211 | if (src == NULL || src->nelem == 0) | ||
1212 | return REG_NOERROR; | ||
1213 | if (dest->alloc < 2 * src->nelem + dest->nelem) | ||
1214 | { | ||
1215 | int new_alloc = 2 * (src->nelem + dest->alloc); | ||
1216 | int *new_buffer = re_realloc (dest->elems, int, new_alloc); | ||
1217 | if (BE (new_buffer == NULL, 0)) | ||
1218 | return REG_ESPACE; | ||
1219 | dest->elems = new_buffer; | ||
1220 | dest->alloc = new_alloc; | ||
1221 | } | ||
1222 | |||
1223 | if (BE (dest->nelem == 0, 0)) | ||
1224 | { | ||
1225 | dest->nelem = src->nelem; | ||
1226 | memcpy (dest->elems, src->elems, src->nelem * sizeof (int)); | ||
1227 | return REG_NOERROR; | ||
1228 | } | ||
1229 | |||
1230 | /* Copy into the top of DEST the items of SRC that are not | ||
1231 | found in DEST. Maybe we could binary search in DEST? */ | ||
1232 | for (sbase = dest->nelem + 2 * src->nelem, | ||
1233 | is = src->nelem - 1, id = dest->nelem - 1; is >= 0 && id >= 0; ) | ||
1234 | { | ||
1235 | if (dest->elems[id] == src->elems[is]) | ||
1236 | is--, id--; | ||
1237 | else if (dest->elems[id] < src->elems[is]) | ||
1238 | dest->elems[--sbase] = src->elems[is--]; | ||
1239 | else /* if (dest->elems[id] > src->elems[is]) */ | ||
1240 | --id; | ||
1241 | } | ||
1242 | |||
1243 | if (is >= 0) | ||
1244 | { | ||
1245 | /* If DEST is exhausted, the remaining items of SRC must be unique. */ | ||
1246 | sbase -= is + 1; | ||
1247 | memcpy (dest->elems + sbase, src->elems, (is + 1) * sizeof (int)); | ||
1248 | } | ||
1249 | |||
1250 | id = dest->nelem - 1; | ||
1251 | is = dest->nelem + 2 * src->nelem - 1; | ||
1252 | delta = is - sbase + 1; | ||
1253 | if (delta == 0) | ||
1254 | return REG_NOERROR; | ||
1255 | |||
1256 | /* Now copy. When DELTA becomes zero, the remaining | ||
1257 | DEST elements are already in place. */ | ||
1258 | dest->nelem += delta; | ||
1259 | for (;;) | ||
1260 | { | ||
1261 | if (dest->elems[is] > dest->elems[id]) | ||
1262 | { | ||
1263 | /* Copy from the top. */ | ||
1264 | dest->elems[id + delta--] = dest->elems[is--]; | ||
1265 | if (delta == 0) | ||
1266 | break; | ||
1267 | } | ||
1268 | else | ||
1269 | { | ||
1270 | /* Slide from the bottom. */ | ||
1271 | dest->elems[id + delta] = dest->elems[id]; | ||
1272 | if (--id < 0) | ||
1273 | { | ||
1274 | /* Copy remaining SRC elements. */ | ||
1275 | memcpy (dest->elems, dest->elems + sbase, | ||
1276 | delta * sizeof (int)); | ||
1277 | break; | ||
1278 | } | ||
1279 | } | ||
1280 | } | ||
1281 | |||
1282 | return REG_NOERROR; | ||
1283 | } | ||
1284 | |||
1285 | /* Insert the new element ELEM to the re_node_set* SET. | ||
1286 | SET should not already have ELEM. | ||
1287 | return -1 if an error has occurred, return 1 otherwise. */ | ||
1288 | |||
1289 | static int | ||
1290 | internal_function | ||
1291 | re_node_set_insert (re_node_set *set, int elem) | ||
1292 | { | ||
1293 | int idx; | ||
1294 | /* In case the set is empty. */ | ||
1295 | if (set->alloc == 0) | ||
1296 | { | ||
1297 | if (BE (re_node_set_init_1 (set, elem) == REG_NOERROR, 1)) | ||
1298 | return 1; | ||
1299 | else | ||
1300 | return -1; | ||
1301 | } | ||
1302 | |||
1303 | if (BE (set->nelem, 0) == 0) | ||
1304 | { | ||
1305 | /* We already guaranteed above that set->alloc != 0. */ | ||
1306 | set->elems[0] = elem; | ||
1307 | ++set->nelem; | ||
1308 | return 1; | ||
1309 | } | ||
1310 | |||
1311 | /* Realloc if we need. */ | ||
1312 | if (set->alloc == set->nelem) | ||
1313 | { | ||
1314 | int *new_elems; | ||
1315 | set->alloc = set->alloc * 2; | ||
1316 | new_elems = re_realloc (set->elems, int, set->alloc); | ||
1317 | if (BE (new_elems == NULL, 0)) | ||
1318 | return -1; | ||
1319 | set->elems = new_elems; | ||
1320 | } | ||
1321 | |||
1322 | /* Move the elements which follows the new element. Test the | ||
1323 | first element separately to skip a check in the inner loop. */ | ||
1324 | if (elem < set->elems[0]) | ||
1325 | { | ||
1326 | idx = 0; | ||
1327 | for (idx = set->nelem; idx > 0; idx--) | ||
1328 | set->elems[idx] = set->elems[idx - 1]; | ||
1329 | } | ||
1330 | else | ||
1331 | { | ||
1332 | for (idx = set->nelem; set->elems[idx - 1] > elem; idx--) | ||
1333 | set->elems[idx] = set->elems[idx - 1]; | ||
1334 | } | ||
1335 | |||
1336 | /* Insert the new element. */ | ||
1337 | set->elems[idx] = elem; | ||
1338 | ++set->nelem; | ||
1339 | return 1; | ||
1340 | } | ||
1341 | |||
1342 | /* Insert the new element ELEM to the re_node_set* SET. | ||
1343 | SET should not already have any element greater than or equal to ELEM. | ||
1344 | Return -1 if an error has occurred, return 1 otherwise. */ | ||
1345 | |||
1346 | static int | ||
1347 | internal_function | ||
1348 | re_node_set_insert_last (re_node_set *set, int elem) | ||
1349 | { | ||
1350 | /* Realloc if we need. */ | ||
1351 | if (set->alloc == set->nelem) | ||
1352 | { | ||
1353 | int *new_elems; | ||
1354 | set->alloc = (set->alloc + 1) * 2; | ||
1355 | new_elems = re_realloc (set->elems, int, set->alloc); | ||
1356 | if (BE (new_elems == NULL, 0)) | ||
1357 | return -1; | ||
1358 | set->elems = new_elems; | ||
1359 | } | ||
1360 | |||
1361 | /* Insert the new element. */ | ||
1362 | set->elems[set->nelem++] = elem; | ||
1363 | return 1; | ||
1364 | } | ||
1365 | |||
1366 | /* Compare two node sets SET1 and SET2. | ||
1367 | return 1 if SET1 and SET2 are equivalent, return 0 otherwise. */ | ||
1368 | |||
1369 | static int | ||
1370 | internal_function __attribute ((pure)) | ||
1371 | re_node_set_compare (const re_node_set *set1, const re_node_set *set2) | ||
1372 | { | ||
1373 | int i; | ||
1374 | if (set1 == NULL || set2 == NULL || set1->nelem != set2->nelem) | ||
1375 | return 0; | ||
1376 | for (i = set1->nelem ; --i >= 0 ; ) | ||
1377 | if (set1->elems[i] != set2->elems[i]) | ||
1378 | return 0; | ||
1379 | return 1; | ||
1380 | } | ||
1381 | |||
1382 | /* Return (idx + 1) if SET contains the element ELEM, return 0 otherwise. */ | ||
1383 | |||
1384 | static int | ||
1385 | internal_function __attribute ((pure)) | ||
1386 | re_node_set_contains (const re_node_set *set, int elem) | ||
1387 | { | ||
1388 | unsigned int idx, right, mid; | ||
1389 | if (set->nelem <= 0) | ||
1390 | return 0; | ||
1391 | |||
1392 | /* Binary search the element. */ | ||
1393 | idx = 0; | ||
1394 | right = set->nelem - 1; | ||
1395 | while (idx < right) | ||
1396 | { | ||
1397 | mid = (idx + right) / 2; | ||
1398 | if (set->elems[mid] < elem) | ||
1399 | idx = mid + 1; | ||
1400 | else | ||
1401 | right = mid; | ||
1402 | } | ||
1403 | return set->elems[idx] == elem ? idx + 1 : 0; | ||
1404 | } | ||
1405 | |||
1406 | static void | ||
1407 | internal_function | ||
1408 | re_node_set_remove_at (re_node_set *set, int idx) | ||
1409 | { | ||
1410 | if (idx < 0 || idx >= set->nelem) | ||
1411 | return; | ||
1412 | --set->nelem; | ||
1413 | for (; idx < set->nelem; idx++) | ||
1414 | set->elems[idx] = set->elems[idx + 1]; | ||
1415 | } | ||
1416 | |||
1417 | |||
1418 | /* Add the token TOKEN to dfa->nodes, and return the index of the token. | ||
1419 | Or return -1, if an error has occurred. */ | ||
1420 | |||
1421 | static int | ||
1422 | internal_function | ||
1423 | re_dfa_add_node (re_dfa_t *dfa, re_token_t token) | ||
1424 | { | ||
1425 | if (BE (dfa->nodes_len >= dfa->nodes_alloc, 0)) | ||
1426 | { | ||
1427 | size_t new_nodes_alloc = dfa->nodes_alloc * 2; | ||
1428 | int *new_nexts, *new_indices; | ||
1429 | re_node_set *new_edests, *new_eclosures; | ||
1430 | re_token_t *new_nodes; | ||
1431 | |||
1432 | /* Avoid overflows in realloc. */ | ||
1433 | const size_t max_object_size = MAX (sizeof (re_token_t), | ||
1434 | MAX (sizeof (re_node_set), | ||
1435 | sizeof (int))); | ||
1436 | if (BE (SIZE_MAX / max_object_size < new_nodes_alloc, 0)) | ||
1437 | return -1; | ||
1438 | |||
1439 | new_nodes = re_realloc (dfa->nodes, re_token_t, new_nodes_alloc); | ||
1440 | if (BE (new_nodes == NULL, 0)) | ||
1441 | return -1; | ||
1442 | dfa->nodes = new_nodes; | ||
1443 | new_nexts = re_realloc (dfa->nexts, int, new_nodes_alloc); | ||
1444 | new_indices = re_realloc (dfa->org_indices, int, new_nodes_alloc); | ||
1445 | new_edests = re_realloc (dfa->edests, re_node_set, new_nodes_alloc); | ||
1446 | new_eclosures = re_realloc (dfa->eclosures, re_node_set, new_nodes_alloc); | ||
1447 | if (BE (new_nexts == NULL || new_indices == NULL | ||
1448 | || new_edests == NULL || new_eclosures == NULL, 0)) | ||
1449 | return -1; | ||
1450 | dfa->nexts = new_nexts; | ||
1451 | dfa->org_indices = new_indices; | ||
1452 | dfa->edests = new_edests; | ||
1453 | dfa->eclosures = new_eclosures; | ||
1454 | dfa->nodes_alloc = new_nodes_alloc; | ||
1455 | } | ||
1456 | dfa->nodes[dfa->nodes_len] = token; | ||
1457 | dfa->nodes[dfa->nodes_len].constraint = 0; | ||
1458 | #ifdef RE_ENABLE_I18N | ||
1459 | dfa->nodes[dfa->nodes_len].accept_mb = | ||
1460 | (token.type == OP_PERIOD && dfa->mb_cur_max > 1) || token.type == COMPLEX_BRACKET; | ||
1461 | #endif | ||
1462 | dfa->nexts[dfa->nodes_len] = -1; | ||
1463 | re_node_set_init_empty (dfa->edests + dfa->nodes_len); | ||
1464 | re_node_set_init_empty (dfa->eclosures + dfa->nodes_len); | ||
1465 | return dfa->nodes_len++; | ||
1466 | } | ||
1467 | |||
1468 | static inline unsigned int | ||
1469 | internal_function | ||
1470 | calc_state_hash (const re_node_set *nodes, unsigned int context) | ||
1471 | { | ||
1472 | unsigned int hash = nodes->nelem + context; | ||
1473 | int i; | ||
1474 | for (i = 0 ; i < nodes->nelem ; i++) | ||
1475 | hash += nodes->elems[i]; | ||
1476 | return hash; | ||
1477 | } | ||
1478 | |||
1479 | /* Search for the state whose node_set is equivalent to NODES. | ||
1480 | Return the pointer to the state, if we found it in the DFA. | ||
1481 | Otherwise create the new one and return it. In case of an error | ||
1482 | return NULL and set the error code in ERR. | ||
1483 | Note: - We assume NULL as the invalid state, then it is possible that | ||
1484 | return value is NULL and ERR is REG_NOERROR. | ||
1485 | - We never return non-NULL value in case of any errors, it is for | ||
1486 | optimization. */ | ||
1487 | |||
1488 | static re_dfastate_t * | ||
1489 | internal_function | ||
1490 | re_acquire_state (reg_errcode_t *err, const re_dfa_t *dfa, | ||
1491 | const re_node_set *nodes) | ||
1492 | { | ||
1493 | unsigned int hash; | ||
1494 | re_dfastate_t *new_state; | ||
1495 | struct re_state_table_entry *spot; | ||
1496 | int i; | ||
1497 | if (BE (nodes->nelem == 0, 0)) | ||
1498 | { | ||
1499 | *err = REG_NOERROR; | ||
1500 | return NULL; | ||
1501 | } | ||
1502 | hash = calc_state_hash (nodes, 0); | ||
1503 | spot = dfa->state_table + (hash & dfa->state_hash_mask); | ||
1504 | |||
1505 | for (i = 0 ; i < spot->num ; i++) | ||
1506 | { | ||
1507 | re_dfastate_t *state = spot->array[i]; | ||
1508 | if (hash != state->hash) | ||
1509 | continue; | ||
1510 | if (re_node_set_compare (&state->nodes, nodes)) | ||
1511 | return state; | ||
1512 | } | ||
1513 | |||
1514 | /* There are no appropriate state in the dfa, create the new one. */ | ||
1515 | new_state = create_ci_newstate (dfa, nodes, hash); | ||
1516 | if (BE (new_state == NULL, 0)) | ||
1517 | *err = REG_ESPACE; | ||
1518 | |||
1519 | return new_state; | ||
1520 | } | ||
1521 | |||
1522 | /* Search for the state whose node_set is equivalent to NODES and | ||
1523 | whose context is equivalent to CONTEXT. | ||
1524 | Return the pointer to the state, if we found it in the DFA. | ||
1525 | Otherwise create the new one and return it. In case of an error | ||
1526 | return NULL and set the error code in ERR. | ||
1527 | Note: - We assume NULL as the invalid state, then it is possible that | ||
1528 | return value is NULL and ERR is REG_NOERROR. | ||
1529 | - We never return non-NULL value in case of any errors, it is for | ||
1530 | optimization. */ | ||
1531 | |||
1532 | static re_dfastate_t * | ||
1533 | internal_function | ||
1534 | re_acquire_state_context (reg_errcode_t *err, const re_dfa_t *dfa, | ||
1535 | const re_node_set *nodes, unsigned int context) | ||
1536 | { | ||
1537 | unsigned int hash; | ||
1538 | re_dfastate_t *new_state; | ||
1539 | struct re_state_table_entry *spot; | ||
1540 | int i; | ||
1541 | if (nodes->nelem == 0) | ||
1542 | { | ||
1543 | *err = REG_NOERROR; | ||
1544 | return NULL; | ||
1545 | } | ||
1546 | hash = calc_state_hash (nodes, context); | ||
1547 | spot = dfa->state_table + (hash & dfa->state_hash_mask); | ||
1548 | |||
1549 | for (i = 0 ; i < spot->num ; i++) | ||
1550 | { | ||
1551 | re_dfastate_t *state = spot->array[i]; | ||
1552 | if (state->hash == hash | ||
1553 | && state->context == context | ||
1554 | && re_node_set_compare (state->entrance_nodes, nodes)) | ||
1555 | return state; | ||
1556 | } | ||
1557 | /* There are no appropriate state in `dfa', create the new one. */ | ||
1558 | new_state = create_cd_newstate (dfa, nodes, context, hash); | ||
1559 | if (BE (new_state == NULL, 0)) | ||
1560 | *err = REG_ESPACE; | ||
1561 | |||
1562 | return new_state; | ||
1563 | } | ||
1564 | |||
1565 | /* Finish initialization of the new state NEWSTATE, and using its hash value | ||
1566 | HASH put in the appropriate bucket of DFA's state table. Return value | ||
1567 | indicates the error code if failed. */ | ||
1568 | |||
1569 | static reg_errcode_t | ||
1570 | register_state (const re_dfa_t *dfa, re_dfastate_t *newstate, | ||
1571 | unsigned int hash) | ||
1572 | { | ||
1573 | struct re_state_table_entry *spot; | ||
1574 | reg_errcode_t err; | ||
1575 | int i; | ||
1576 | |||
1577 | newstate->hash = hash; | ||
1578 | err = re_node_set_alloc (&newstate->non_eps_nodes, newstate->nodes.nelem); | ||
1579 | if (BE (err != REG_NOERROR, 0)) | ||
1580 | return REG_ESPACE; | ||
1581 | for (i = 0; i < newstate->nodes.nelem; i++) | ||
1582 | { | ||
1583 | int elem = newstate->nodes.elems[i]; | ||
1584 | if (!IS_EPSILON_NODE (dfa->nodes[elem].type)) | ||
1585 | if (re_node_set_insert_last (&newstate->non_eps_nodes, elem) < 0) | ||
1586 | return REG_ESPACE; | ||
1587 | } | ||
1588 | |||
1589 | spot = dfa->state_table + (hash & dfa->state_hash_mask); | ||
1590 | if (BE (spot->alloc <= spot->num, 0)) | ||
1591 | { | ||
1592 | int new_alloc = 2 * spot->num + 2; | ||
1593 | re_dfastate_t **new_array = re_realloc (spot->array, re_dfastate_t *, | ||
1594 | new_alloc); | ||
1595 | if (BE (new_array == NULL, 0)) | ||
1596 | return REG_ESPACE; | ||
1597 | spot->array = new_array; | ||
1598 | spot->alloc = new_alloc; | ||
1599 | } | ||
1600 | spot->array[spot->num++] = newstate; | ||
1601 | return REG_NOERROR; | ||
1602 | } | ||
1603 | |||
1604 | static void | ||
1605 | free_state (re_dfastate_t *state) | ||
1606 | { | ||
1607 | re_node_set_free (&state->non_eps_nodes); | ||
1608 | re_node_set_free (&state->inveclosure); | ||
1609 | if (state->entrance_nodes != &state->nodes) | ||
1610 | { | ||
1611 | re_node_set_free (state->entrance_nodes); | ||
1612 | re_free (state->entrance_nodes); | ||
1613 | } | ||
1614 | re_node_set_free (&state->nodes); | ||
1615 | re_free (state->word_trtable); | ||
1616 | re_free (state->trtable); | ||
1617 | re_free (state); | ||
1618 | } | ||
1619 | |||
1620 | /* Create the new state which is independ of contexts. | ||
1621 | Return the new state if succeeded, otherwise return NULL. */ | ||
1622 | |||
1623 | static re_dfastate_t * | ||
1624 | internal_function | ||
1625 | create_ci_newstate (const re_dfa_t *dfa, const re_node_set *nodes, | ||
1626 | unsigned int hash) | ||
1627 | { | ||
1628 | int i; | ||
1629 | reg_errcode_t err; | ||
1630 | re_dfastate_t *newstate; | ||
1631 | |||
1632 | newstate = (re_dfastate_t *) calloc (sizeof (re_dfastate_t), 1); | ||
1633 | if (BE (newstate == NULL, 0)) | ||
1634 | return NULL; | ||
1635 | err = re_node_set_init_copy (&newstate->nodes, nodes); | ||
1636 | if (BE (err != REG_NOERROR, 0)) | ||
1637 | { | ||
1638 | re_free (newstate); | ||
1639 | return NULL; | ||
1640 | } | ||
1641 | |||
1642 | newstate->entrance_nodes = &newstate->nodes; | ||
1643 | for (i = 0 ; i < nodes->nelem ; i++) | ||
1644 | { | ||
1645 | re_token_t *node = dfa->nodes + nodes->elems[i]; | ||
1646 | re_token_type_t type = node->type; | ||
1647 | if (type == CHARACTER && !node->constraint) | ||
1648 | continue; | ||
1649 | #ifdef RE_ENABLE_I18N | ||
1650 | newstate->accept_mb |= node->accept_mb; | ||
1651 | #endif /* RE_ENABLE_I18N */ | ||
1652 | |||
1653 | /* If the state has the halt node, the state is a halt state. */ | ||
1654 | if (type == END_OF_RE) | ||
1655 | newstate->halt = 1; | ||
1656 | else if (type == OP_BACK_REF) | ||
1657 | newstate->has_backref = 1; | ||
1658 | else if (type == ANCHOR || node->constraint) | ||
1659 | newstate->has_constraint = 1; | ||
1660 | } | ||
1661 | err = register_state (dfa, newstate, hash); | ||
1662 | if (BE (err != REG_NOERROR, 0)) | ||
1663 | { | ||
1664 | free_state (newstate); | ||
1665 | newstate = NULL; | ||
1666 | } | ||
1667 | return newstate; | ||
1668 | } | ||
1669 | |||
1670 | /* Create the new state which is depend on the context CONTEXT. | ||
1671 | Return the new state if succeeded, otherwise return NULL. */ | ||
1672 | |||
1673 | static re_dfastate_t * | ||
1674 | internal_function | ||
1675 | create_cd_newstate (const re_dfa_t *dfa, const re_node_set *nodes, | ||
1676 | unsigned int context, unsigned int hash) | ||
1677 | { | ||
1678 | int i, nctx_nodes = 0; | ||
1679 | reg_errcode_t err; | ||
1680 | re_dfastate_t *newstate; | ||
1681 | |||
1682 | newstate = (re_dfastate_t *) calloc (sizeof (re_dfastate_t), 1); | ||
1683 | if (BE (newstate == NULL, 0)) | ||
1684 | return NULL; | ||
1685 | err = re_node_set_init_copy (&newstate->nodes, nodes); | ||
1686 | if (BE (err != REG_NOERROR, 0)) | ||
1687 | { | ||
1688 | re_free (newstate); | ||
1689 | return NULL; | ||
1690 | } | ||
1691 | |||
1692 | newstate->context = context; | ||
1693 | newstate->entrance_nodes = &newstate->nodes; | ||
1694 | |||
1695 | for (i = 0 ; i < nodes->nelem ; i++) | ||
1696 | { | ||
1697 | re_token_t *node = dfa->nodes + nodes->elems[i]; | ||
1698 | re_token_type_t type = node->type; | ||
1699 | unsigned int constraint = node->constraint; | ||
1700 | |||
1701 | if (type == CHARACTER && !constraint) | ||
1702 | continue; | ||
1703 | #ifdef RE_ENABLE_I18N | ||
1704 | newstate->accept_mb |= node->accept_mb; | ||
1705 | #endif /* RE_ENABLE_I18N */ | ||
1706 | |||
1707 | /* If the state has the halt node, the state is a halt state. */ | ||
1708 | if (type == END_OF_RE) | ||
1709 | newstate->halt = 1; | ||
1710 | else if (type == OP_BACK_REF) | ||
1711 | newstate->has_backref = 1; | ||
1712 | |||
1713 | if (constraint) | ||
1714 | { | ||
1715 | if (newstate->entrance_nodes == &newstate->nodes) | ||
1716 | { | ||
1717 | newstate->entrance_nodes = re_malloc (re_node_set, 1); | ||
1718 | if (BE (newstate->entrance_nodes == NULL, 0)) | ||
1719 | { | ||
1720 | free_state (newstate); | ||
1721 | return NULL; | ||
1722 | } | ||
1723 | if (re_node_set_init_copy (newstate->entrance_nodes, nodes) | ||
1724 | != REG_NOERROR) | ||
1725 | return NULL; | ||
1726 | nctx_nodes = 0; | ||
1727 | newstate->has_constraint = 1; | ||
1728 | } | ||
1729 | |||
1730 | if (NOT_SATISFY_PREV_CONSTRAINT (constraint,context)) | ||
1731 | { | ||
1732 | re_node_set_remove_at (&newstate->nodes, i - nctx_nodes); | ||
1733 | ++nctx_nodes; | ||
1734 | } | ||
1735 | } | ||
1736 | } | ||
1737 | err = register_state (dfa, newstate, hash); | ||
1738 | if (BE (err != REG_NOERROR, 0)) | ||
1739 | { | ||
1740 | free_state (newstate); | ||
1741 | newstate = NULL; | ||
1742 | } | ||
1743 | return newstate; | ||
1744 | } | ||