/* * LANES.CPP Copyright (c) 2007-08, Asko Kauppi * Copyright (C) 2009-24, Benoit Germain * * Multithreading in Lua. * * History: * See CHANGES * * Platforms (tested internally): * OS X (10.5.7 PowerPC/Intel) * Linux x86 (Ubuntu 8.04) * Win32 (Windows XP Home SP2, Visual C++ 2005/2008 Express) * * Platforms (tested externally): * Win32 (MSYS) by Ross Berteig. * * Platforms (testers appreciated): * Win64 - should work??? * Linux x64 - should work * FreeBSD - should work * QNX - porting shouldn't be hard * Sun Solaris - porting shouldn't be hard * * References: * "Porting multithreaded applications from Win32 to Mac OS X": * * * Pthreads: * * * MSDN: * * * * Defines: * -DLINUX_SCHED_RR: all threads are lifted to SCHED_RR category, to * allow negative priorities [-3,-1] be used. Even without this, * using priorities will require 'sudo' privileges on Linux. * * -DUSE_PTHREAD_TIMEDJOIN: use 'pthread_timedjoin_np()' for waiting * for threads with a timeout. This changes the thread cleanup * mechanism slightly (cleans up at the join, not once the thread * has finished). May or may not be a good idea to use it. * Available only in selected operating systems (Linux). * * Bugs: * * To-do: * * Make waiting threads cancellable. * ... */ /* =============================================================================== Copyright (C) 2007-10 Asko Kauppi 2011-24 Benoit Germain Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. =============================================================================== */ #include "_pch.hpp" #include "lanes.hpp" #include "deep.hpp" #include "intercopycontext.hpp" #include "keeper.hpp" #include "lane.hpp" #include "linda.hpp" #include "nameof.hpp" #include "state.hpp" #include "threading.hpp" #include "tools.hpp" #if !(defined(PLATFORM_XBOX) || defined(PLATFORM_WIN32) || defined(PLATFORM_POCKETPC)) #include #endif /* geteuid() */ #ifdef PLATFORM_LINUX #include #include #endif // ################################################################################################# // ########################################### Threads ############################################# // ################################################################################################# //--- // = _single( [cores_uint=1] ) // // Limits the process to use only 'cores' CPU cores. To be used for performance // testing on multicore devices. DEBUGGING ONLY! // LUAG_FUNC(set_singlethreaded) { [[maybe_unused]] lua_Integer const _cores{ luaL_optinteger(L_, 1, 1) }; #ifdef PLATFORM_OSX #ifdef _UTILBINDTHREADTOCPU if (_cores > 1) { raise_luaL_error(L_, "Limiting to N>1 cores not possible"); } // requires 'chudInitialize()' utilBindThreadToCPU(0); // # of CPU to run on (we cannot limit to 2..N CPUs?) return 0; #else raise_luaL_error(L_, "Not available: compile with _UTILBINDTHREADTOCPU"); #endif #else raise_luaL_error(L_, "not implemented"); #endif } // ################################################################################################# LUAG_FUNC(set_thread_priority) { lua_Integer const _prio{ luaL_checkinteger(L_, 1) }; // public Lanes API accepts a generic range -3/+3 // that will be remapped into the platform-specific scheduler priority scheme // On some platforms, -3 is equivalent to -2 and +3 to +2 if (_prio < kThreadPrioMin || _prio > kThreadPrioMax) { raise_luaL_error(L_, "priority out of range: %d..+%d (%d)", kThreadPrioMin, kThreadPrioMax, _prio); } THREAD_SET_PRIORITY(static_cast(_prio), Universe::Get(L_)->sudo); return 0; } // ################################################################################################# LUAG_FUNC(set_thread_affinity) { lua_Integer const _affinity{ luaL_checkinteger(L_, 1) }; if (_affinity <= 0) { raise_luaL_error(L_, "invalid affinity (%d)", _affinity); } THREAD_SET_AFFINITY(static_cast(_affinity)); return 0; } // ################################################################################################# LUAG_FUNC(sleep) { extern LUAG_FUNC(linda_receive); Universe* const _U{ Universe::Get(L_) }; lua_settop(L_, 1); lua_pushcfunction(L_, LG_linda_receive); // L_: duration|nil receive() STACK_CHECK_START_REL(L_, 0); // we pushed the function we intend to call, now prepare the arguments _U->timerLinda->push(L_); // L_: duration|nil receive() timerLinda if (luaG_tostring(L_, StackIndex{ 1 }) == "indefinitely") { lua_pushnil(L_); // L_: duration? receive() timerLinda nil } else if (lua_isnoneornil(L_, 1)) { lua_pushnumber(L_, 0); // L_: duration? receive() timerLinda 0 } else if (!lua_isnumber(L_, 1)) { raise_luaL_argerror(L_, StackIndex{ 1 }, "invalid duration"); } else { lua_pushnumber(L_, lua_tonumber(L_, 1)); // L_: duration? receive() timerLinda duration } luaG_pushstring(L_, "ac100de1-a696-4619-b2f0-a26de9d58ab8"); // L_: duration? receive() timerLinda duration key STACK_CHECK(L_, 3); // 3 arguments ready lua_call(L_, 3, LUA_MULTRET); // timerLinda:receive(duration,key) // L_: duration? result... return lua_gettop(L_) - 1; } // ################################################################################################# // --- If a client wants to transfer stuff of a given module from the current state to another Lane, the module must be required // with lanes.require, that will call the regular 'require', then populate the lookup database in the source lane // module = lanes.require( "modname") // upvalue[1]: _G.require LUAG_FUNC(require) { std::string_view const _name{ luaG_tostring(L_, StackIndex{ 1 }) }; // L_: "name" ... int const _nargs{ lua_gettop(L_) }; DEBUGSPEW_CODE(Universe * _U{ Universe::Get(L_) }); STACK_CHECK_START_REL(L_, 0); DEBUGSPEW_CODE(DebugSpew(_U) << "lanes.require '" << _name << "' BEGIN" << std::endl); DEBUGSPEW_CODE(DebugSpewIndentScope _scope{ _U }); lua_pushvalue(L_, lua_upvalueindex(1)); // L_: "name" ... require lua_insert(L_, 1); // L_: require "name" ... lua_call(L_, _nargs, 1); // L_: module tools::PopulateFuncLookupTable(L_, kIdxTop, _name); DEBUGSPEW_CODE(DebugSpew(_U) << "lanes.require '" << _name << "' END" << std::endl); STACK_CHECK(L_, 0); return 1; } // ################################################################################################# // --- If a client wants to transfer stuff of a previously required module from the current state to another Lane, the module must be registered // to populate the lookup database in the source lane (and in the destination too, of course) // lanes.register( "modname", module) int lanes_register(lua_State* const L_) { Universe* const _U{ Universe::Get(L_) }; if (!_U) { raise_luaL_error(L_, "Lanes is not ready"); } std::string_view const _name{ luaG_checkstring(L_, StackIndex{ 1 }) }; LuaType const _mod_type{ luaG_type(L_, StackIndex{ 2 }) }; // ignore extra arguments, just in case lua_settop(L_, 2); luaL_argcheck(L_, (_mod_type == LuaType::TABLE) || (_mod_type == LuaType::FUNCTION), 2, "unexpected module type"); STACK_CHECK_START_REL(L_, 0); // "name" mod_table DEBUGSPEW_CODE(DebugSpew(_U) << "lanes.register '" << _name << "' BEGIN" << std::endl); DEBUGSPEW_CODE(DebugSpewIndentScope _scope{ _U }); tools::PopulateFuncLookupTable(L_, kIdxTop, _name); DEBUGSPEW_CODE(DebugSpew(_U) << "lanes.register '" << _name << "' END" << std::endl); STACK_CHECK(L_, 0); return 0; } // ################################################################################################# //--- [] means can be nil // lane_ud = lane_new( function // , [libs_str] // , [priority_int] // , [globals_tbl] // , [package_tbl] // , [required_tbl] // , [gc_cb_func] // , [name] // , error_trace_level // , as_coroutine // [, ... args ...]) // // Upvalues: metatable to use for 'lane_ud' // LUAG_FUNC(lane_new) { static constexpr StackIndex kFuncIdx{ 1 }; static constexpr StackIndex kLibsIdx{ 2 }; static constexpr StackIndex kPrioIdx{ 3 }; static constexpr StackIndex kGlobIdx{ 4 }; static constexpr StackIndex kPackIdx{ 5 }; static constexpr StackIndex kRequIdx{ 6 }; static constexpr StackIndex kGcCbIdx{ 7 }; static constexpr StackIndex kNameIdx{ 8 }; static constexpr StackIndex kErTlIdx{ 9 }; static constexpr StackIndex kAsCoro{ 10 }; static constexpr StackIndex kFixedArgsIdx{ 10 }; int const _nargs{ lua_gettop(L_) - kFixedArgsIdx }; LUA_ASSERT(L_, _nargs >= 0); Universe* const _U{ Universe::Get(L_) }; DEBUGSPEW_CODE(DebugSpew(_U) << "lane_new: setup" << std::endl); std::optional _libs_str{ lua_isnil(L_, kLibsIdx) ? std::nullopt : std::make_optional(luaG_tostring(L_, kLibsIdx)) }; lua_State* const _S{ state::NewLaneState(_U, SourceState{ L_ }, _libs_str) }; // L_: [fixed] ... L2: STACK_CHECK_START_REL(_S, 0); // 'lane' is allocated from heap, not Lua, since its life span may surpass the handle's (if free running thread) Lane::ErrorTraceLevel const _errorTraceLevel{ static_cast(lua_tointeger(L_, kErTlIdx)) }; bool const _asCoroutine{ lua_toboolean(L_, kAsCoro) ? true : false }; Lane* const _lane{ new (_U) Lane{ _U, _S, _errorTraceLevel, _asCoroutine } }; STACK_CHECK(_S, _asCoroutine ? 1 : 0); // the Lane's thread is on the Lane's state stack lua_State* const _L2{ _lane->L }; STACK_CHECK_START_REL(_L2, 0); if (_lane == nullptr) { raise_luaL_error(L_, "could not create lane: out of memory"); } class OnExit final { private: lua_State* const L; Lane* lane{ nullptr }; DEBUGSPEW_CODE(DebugSpewIndentScope scope); public: OnExit(lua_State* L_, Lane* lane_) : L{ L_ } , lane{ lane_ } DEBUGSPEW_COMMA_PARAM(scope{ lane_->U }) { } ~OnExit() { if (lane) { STACK_CHECK_START_REL(L, 0); // we still need a full userdata so that garbage collection can do its thing prepareUserData(); // remove it immediately from the stack so that the error that landed us here is at the top lua_pop(L, 1); STACK_CHECK(L, 0); // leave a single cancel_error on the stack for the caller lua_settop(lane->L, 0); kCancelError.pushKey(lane->L); { std::lock_guard _guard{ lane->doneMutex }; // this will cause lane_main to skip actual running (because we are not Pending anymore) lane->status.store(Lane::Running, std::memory_order_release); } // unblock the thread so that it can terminate gracefully #ifndef __PROSPERO__ lane->ready.count_down(); #else // __PROSPERO__ lane->ready.test_and_set(); #endif // __PROSPERO__ } } private: void prepareUserData() { DEBUGSPEW_CODE(DebugSpew(lane->U) << "lane_new: preparing lane userdata" << std::endl); STACK_CHECK_START_REL(L, 0); // a Lane full userdata needs a single uservalue Lane** const _ud{ luaG_newuserdatauv(L, UserValueCount{ 1 }) }; // L: ... lane *_ud = lane; // don't forget to store the pointer in the userdata! // Set metatable for the userdata lua_pushvalue(L, lua_upvalueindex(1)); // L: ... lane mt lua_setmetatable(L, -2); // L: ... lane STACK_CHECK(L, 1); // Create uservalue for the userdata. There can be only one that must be a table, due to Lua 5.1 compatibility. // (this is where lane body return values will be stored when the handle is indexed by a numeric key) lua_newtable(L); // L: ... lane {uv} // Store the gc_cb callback in the uservalue StackIndex const _gc_cb_idx{ lua_isnoneornil(L, kGcCbIdx) ? kIdxNone : kGcCbIdx }; if (_gc_cb_idx > 0) { kLaneGC.pushKey(L); // L: ... lane {uv} k lua_pushvalue(L, _gc_cb_idx); // L: ... lane {uv} k gc_cb lua_rawset(L, -3); // L: ... lane {uv} } STACK_CHECK(L, 2); // store the uservalue in the Lane full userdata lua_setiuservalue(L, StackIndex{ -2 }, UserValueIndex{ 1 }); // L: ... lane StackIndex const _name_idx{ lua_isnoneornil(L, kNameIdx) ? kIdxNone : kNameIdx }; std::string_view _debugName{ (_name_idx > 0) ? luaG_tostring(L, _name_idx) : std::string_view{} }; if (!_debugName.empty()) { if (_debugName == "auto") { if (luaG_type(L, kFuncIdx) == LuaType::STRING) { lua_Debug _ar; lua_getstack(L, 2, &_ar); // 0 is here, 1 is lanes.gen, 2 is its caller lua_getinfo(L, "Sl", &_ar); luaG_pushstring(L, "%s:%d", _ar.short_src, _ar.currentline); // L: ... lane "" } else { lua_Debug _ar; lua_pushvalue(L, kFuncIdx); // L: ... lane func lua_getinfo(L, ">S", &_ar); // L: ... lane luaG_pushstring(L, "%s:%d", _ar.short_src, _ar.linedefined); // L: ... lane "" } lua_replace(L, _name_idx); // L: ... lane _debugName = luaG_tostring(L, _name_idx); } lane->storeDebugName(_debugName); } STACK_CHECK(L, 1); } public: void success() { prepareUserData(); // unblock the thread so that it can terminate gracefully #ifndef __PROSPERO__ lane->ready.count_down(); #else // __PROSPERO__ lane->ready.test_and_set(); #endif // __PROSPERO__ lane = nullptr; } } _onExit{ L_, _lane}; // launch the thread early, it will sync with a std::latch to parallelize OS thread warmup and L2 preparation DEBUGSPEW_CODE(DebugSpew(_U) << "lane_new: launching thread" << std::endl); // public Lanes API accepts a generic range -3/+3 // that will be remapped into the platform-specific scheduler priority scheme // On some platforms, -3 is equivalent to -2 and +3 to +2 int const _priority{ std::invoke([L = L_]() { StackIndex const _prio_idx{ lua_isnoneornil(L, kPrioIdx) ? kIdxNone : kPrioIdx }; if (_prio_idx == 0) { return kThreadPrioDefault; } int const _priority{ static_cast(lua_tointeger(L, _prio_idx)) }; if ((_priority < kThreadPrioMin || _priority > kThreadPrioMax)) { raise_luaL_error(L, "Priority out of range: %d..+%d (%d)", kThreadPrioMin, kThreadPrioMax, _priority); } return _priority; }) }; _lane->startThread(_priority); STACK_GROW(_L2, _nargs + 3); STACK_GROW(L_, 3); STACK_CHECK_START_REL(L_, 0); // package StackIndex const _package_idx{ lua_isnoneornil(L_, kPackIdx) ? kIdxNone : kPackIdx }; if (_package_idx != 0) { DEBUGSPEW_CODE(DebugSpew(_U) << "lane_new: update 'package'" << std::endl); // when copying with mode LookupMode::LaneBody, should raise an error in case of problem, not leave it one the stack InterCopyContext _c{ _U, DestState{ _L2 }, SourceState{ L_ }, {}, SourceIndex{ _package_idx }, {}, {}, {} }; [[maybe_unused]] InterCopyResult const _ret{ _c.interCopyPackage() }; LUA_ASSERT(L_, _ret == InterCopyResult::Success); // either all went well, or we should not even get here } STACK_CHECK(L_, 0); STACK_CHECK(_L2, 0); // modules to require in the target lane *before* the function is transfered! StackIndex const _required_idx{ lua_isnoneornil(L_, kRequIdx) ? kIdxNone : kRequIdx }; if (_required_idx != 0) { int _nbRequired{ 1 }; DEBUGSPEW_CODE(DebugSpew(_U) << "lane_new: process 'required' list" << std::endl); DEBUGSPEW_CODE(DebugSpewIndentScope _scope{ _U }); // should not happen, was checked in lanes.lua before calling lane_new() if (luaG_type(L_, _required_idx) != LuaType::TABLE) { raise_luaL_error(L_, "expected required module list as a table, got %s", luaL_typename(L_, _required_idx)); } lua_pushnil(L_); // L_: [fixed] args... nil L2: while (lua_next(L_, _required_idx) != 0) { // L_: [fixed] args... n "modname" L2: if (luaG_type(L_, kIdxTop) != LuaType::STRING || luaG_type(L_, StackIndex{ -2 }) != LuaType::NUMBER || lua_tonumber(L_, -2) != _nbRequired) { raise_luaL_error(L_, "required module list should be a list of strings"); } else { // require the module in the target state, and populate the lookup table there too std::string_view const _name{ luaG_tostring(L_, kIdxTop) }; DEBUGSPEW_CODE(DebugSpew(_U) << "lane_new: require '" << _name << "'" << std::endl); // require the module in the target lane lua_getglobal(_L2, "require"); // L_: [fixed] args... n "modname" L2: require()? if (lua_isnil(_L2, -1)) { lua_pop(_L2, 1); // L_: [fixed] args... n "modname" L2: raise_luaL_error(L_, "cannot pre-require modules without loading 'package' library first"); } else { luaG_pushstring(_L2, _name); // L_: [fixed] args... n "modname" L2: require() name LuaError const _rc{ lua_pcall(_L2, 1, 1, 0) }; // L_: [fixed] args... n "modname" L2: ret/errcode if (_rc != LuaError::OK) { // propagate error to main state if any InterCopyContext _c{ _U, DestState{ L_ }, SourceState{ _L2 }, {}, {}, {}, {}, {} }; std::ignore = _c.interMove(1); // L_: [fixed] args... n "modname" error L2: raise_lua_error(L_); } // here the module was successfully required // L_: [fixed] args... n "modname" L2: ret // after requiring the module, register the functions it exported in our name<->function database tools::PopulateFuncLookupTable(_L2, kIdxTop, _name); lua_pop(_L2, 1); // L_: [fixed] args... n "modname" L2: } } lua_pop(L_, 1); // L_: [fixed] args... n L2: ++_nbRequired; } // L_: [fixed] args... } STACK_CHECK(L_, 0); STACK_CHECK(_L2, 0); // L_: [fixed] args... L2: // Appending the specified globals to the global environment // *after* stdlibs have been loaded and modules required, in case we transfer references to native functions they exposed... // StackIndex const _globals_idx{ lua_isnoneornil(L_, kGlobIdx) ? kIdxNone : kGlobIdx }; if (_globals_idx != 0) { DEBUGSPEW_CODE(DebugSpew(_U) << "lane_new: transfer globals" << std::endl); if (!lua_istable(L_, _globals_idx)) { raise_luaL_error(L_, "Expected table, got %s", luaL_typename(L_, _globals_idx)); } DEBUGSPEW_CODE(DebugSpewIndentScope _scope{ _U }); lua_pushnil(L_); // L_: [fixed] args... nil L2: // Lua 5.2 wants us to push the globals table on the stack InterCopyContext _c{ _U, DestState{ _L2 }, SourceState{ L_ }, {}, {}, {}, {}, {} }; luaG_pushglobaltable(_L2); // L_: [fixed] args... nil L2: _G while (lua_next(L_, _globals_idx)) { // L_: [fixed] args... k v L2: _G std::ignore = _c.interCopy(2); // L_: [fixed] args... k v L2: _G k v // assign it in L2's globals table lua_rawset(_L2, -3); // L_: [fixed] args... k v L2: _G lua_pop(L_, 1); // L_: [fixed] args... k } // L_: [fixed] args... lua_pop(_L2, 1); // L_: [fixed] args... L2: } STACK_CHECK(L_, 0); STACK_CHECK(_L2, 0); // Lane main function [[maybe_unused]] int const _errorHandlerCount{ _lane->pushErrorHandler() }; // L_: [fixed] args... L2: eh? LuaType const _func_type{ luaG_type(L_, kFuncIdx) }; if (_func_type == LuaType::FUNCTION) { DEBUGSPEW_CODE(DebugSpew(_U) << "lane_new: transfer lane body" << std::endl); DEBUGSPEW_CODE(DebugSpewIndentScope _scope{ _U }); lua_pushvalue(L_, kFuncIdx); // L_: [fixed] args... func L2: eh? InterCopyContext _c{ _U, DestState{ _L2 }, SourceState{ L_ }, {}, {}, {}, {}, {} }; InterCopyResult const _res{ _c.interMove(1) }; // L_: [fixed] args... L2: eh? func if (_res != InterCopyResult::Success) { raise_luaL_error(L_, "tried to copy unsupported types"); } } else if (_func_type == LuaType::STRING) { DEBUGSPEW_CODE(DebugSpew(_U) << "lane_new: compile lane body" << std::endl); // compile the string if (luaL_loadstring(_L2, lua_tostring(L_, kFuncIdx)) != 0) { // L_: [fixed] args... L2: eh? func raise_luaL_error(L_, "error when parsing lane function code"); } } else { raise_luaL_error(L_, "Expected function, got %s", luaG_typename(L_, _func_type).data()); } STACK_CHECK(L_, 0); STACK_CHECK(_L2, _errorHandlerCount + 1); LUA_ASSERT(L_, lua_isfunction(_L2, _errorHandlerCount + 1)); // revive arguments if (_nargs > 0) { DEBUGSPEW_CODE(DebugSpew(_U) << "lane_new: transfer lane arguments" << std::endl); DEBUGSPEW_CODE(DebugSpewIndentScope _scope{ _U }); InterCopyContext _c{ _U, DestState{ _L2 }, SourceState{ L_ }, {}, {}, {}, {}, {} }; InterCopyResult const res{ _c.interMove(_nargs) }; // L_: [fixed] L2: eh? func args... if (res != InterCopyResult::Success) { raise_luaL_error(L_, "tried to copy unsupported types"); } } STACK_CHECK(L_, -_nargs); LUA_ASSERT(L_, lua_gettop(L_) == kFixedArgsIdx); STACK_CHECK(_L2, _errorHandlerCount + 1 + _nargs); // Store 'lane' in the lane's registry, for 'cancel_test()' (we do cancel tests at pending send/receive). kLanePointerRegKey.setValue( _L2, [lane = _lane](lua_State* L_) { lua_pushlightuserdata(L_, lane); } // L_: [fixed] L2: eh? func args... ); STACK_CHECK(_L2, _errorHandlerCount + 1 + _nargs); // if in coroutine mode, the Lane's master state stack should contain the thread if (_asCoroutine) { LUA_ASSERT(L_, _S != _L2); STACK_CHECK(_S, 1); } // and the thread's stack has whatever is needed to run STACK_CHECK(_L2, _errorHandlerCount + 1 + _nargs); STACK_CHECK_RESET_REL(L_, 0); // all went well, the lane's thread can start working _onExit.success(); // L_: [fixed] lane L2: // we should have the lane userdata on top of the stack STACK_CHECK(L_, 1); return 1; } // ################################################################################################# // threads() -> {}|nil // Return a list of all known lanes LUAG_FUNC(threads) { LaneTracker const& _tracker = Universe::Get(L_)->tracker; return _tracker.pushThreadsTable(L_); } // ################################################################################################# // ######################################## Timer support ########################################## // ################################################################################################# /* * secs = now_secs() * * Returns the current time, as seconds. Resolution depends on std::system_clock implementation * Can't use std::chrono::steady_clock because we need the same baseline as std::mktime */ LUAG_FUNC(now_secs) { auto const _now{ std::chrono::system_clock::now() }; lua_Duration duration{ _now.time_since_epoch() }; lua_pushnumber(L_, duration.count()); return 1; } // ################################################################################################# // wakeup_at_secs= wakeup_conv(date_tbl) LUAG_FUNC(wakeup_conv) { // date_tbl // .year (four digits) // .month (1..12) // .day (1..31) // .hour (0..23) // .min (0..59) // .sec (0..61) // .yday (day of the year) // .isdst (daylight saving on/off) STACK_CHECK_START_REL(L_, 0); auto _readInteger = [L = L_](std::string_view const& name_) { std::ignore = luaG_getfield(L, StackIndex{ 1 }, name_); lua_Integer const val{ lua_tointeger(L, -1) }; lua_pop(L, 1); return static_cast(val); }; int const _year{ _readInteger("year") }; int const _month{ _readInteger("month") }; int const _day{ _readInteger("day") }; int const _hour{ _readInteger("hour") }; int const _min{ _readInteger("min") }; int const _sec{ _readInteger("sec") }; STACK_CHECK(L_, 0); // If Lua table has '.isdst' we trust that. If it does not, we'll let // 'mktime' decide on whether the time is within DST or not (value -1). // int const _isdst{ (luaG_getfield(L_, StackIndex{ 1 }, "isdst") == LuaType::BOOLEAN) ? lua_toboolean(L_, -1) : -1 }; lua_pop(L_, 1); STACK_CHECK(L_, 0); std::tm _t{}; _t.tm_year = _year - 1900; _t.tm_mon = _month - 1; // 0..11 _t.tm_mday = _day; // 1..31 _t.tm_hour = _hour; // 0..23 _t.tm_min = _min; // 0..59 _t.tm_sec = _sec; // 0..60 _t.tm_isdst = _isdst; // 0/1/negative lua_pushnumber(L_, static_cast(std::mktime(&_t))); // resolution: 1 second return 1; } // ################################################################################################# // ######################################## Module linkage ######################################### // ################################################################################################# extern LUAG_FUNC(linda); namespace { namespace local { static struct luaL_Reg const sLanesFunctions[] = { { "collectgarbage", LG_collectgarbage }, { Universe::kFinally, Universe::InitializeFinalizer }, { "linda", LG_linda }, { "nameof", LG_nameof }, { "now_secs", LG_now_secs }, { "register", lanes_register }, { "set_singlethreaded", LG_set_singlethreaded }, { "set_thread_priority", LG_set_thread_priority }, { "set_thread_affinity", LG_set_thread_affinity }, { "sleep", LG_sleep }, { "supported_libs", state::LG_supported_libs }, { "wakeup_conv", LG_wakeup_conv }, { nullptr, nullptr } }; } // namespace local } // namespace // ################################################################################################# // upvalue 1: module name // upvalue 2: module table // param 1: settings table LUAG_FUNC(configure) { // start with one-time initializations. { // C++ guarantees that the static variable initialization is threadsafe. [[maybe_unused]] static auto _ = std::invoke( []() { #if (defined PLATFORM_OSX) && (defined _UTILBINDTHREADTOCPU) chudInitialize(); #endif return false; }); } Universe* _U{ Universe::Get(L_) }; bool const _from_master_state{ _U == nullptr }; std::string_view const _name{ luaG_checkstring(L_, StackIndex{ lua_upvalueindex(1) }) }; LUA_ASSERT(L_, luaG_type(L_, StackIndex{ 1 }) == LuaType::TABLE); STACK_GROW(L_, 4); STACK_CHECK_START_ABS(L_, 1); // L_: settings DEBUGSPEW_CODE(DebugSpew(_U) << L_ << ": lanes.configure() BEGIN" << std::endl); DEBUGSPEW_CODE(DebugSpewIndentScope _scope{ _U }); if (_U == nullptr) { // store a hidden reference in the registry to make sure the string is kept around even if a lane decides to manually change the "decoda_name" global... kLaneNameRegKey.setValue(L_, [](lua_State* L_) { luaG_pushstring(L_, "main"); }); // create the universe _U = Universe::Create(L_); // L_: settings universe } STACK_CHECK(L_, 1); // Serialize calls to 'require' from now on, also in the primary state tools::SerializeRequire(L_); // Retrieve main module interface table lua_pushvalue(L_, lua_upvalueindex(2)); // L_: settings M // remove configure() (this function) from the module interface lua_pushnil(L_); // L_: settings M nil lua_setfield(L_, -2, "configure"); // L_: settings M // add functions to the module's table luaG_registerlibfuncs(L_, local::sLanesFunctions); // register core.threads() only if settings say it should be available if (_U->tracker.isActive()) { lua_pushcfunction(L_, LG_threads); // L_: settings M LG_threads() lua_setfield(L_, -2, "threads"); // L_: settings M } STACK_CHECK(L_, 2); UserValueCount const _nuv{ 0 }; // no uservalue in the linda DeepFactory::PushDeepProxy(DestState{ L_ }, _U->timerLinda, _nuv, LookupMode::LaneBody, L_); // L_: settings M timerLinda lua_setfield(L_, -2, "timerLinda"); // L_: settings M STACK_CHECK(L_, 2); // prepare the metatable for threads // contains keys: { __gc, __index, cancel, join, get_threadname } Lane::PushMetatable(L_); // L_: settings M {lane_mt} lua_pushcclosure(L_, LG_lane_new, 1); // L_: settings M lane_new lua_setfield(L_, -2, "lane_new"); // L_: settings M // we can't register 'lanes.require' normally because we want to create an upvalued closure lua_getglobal(L_, "require"); // L_: settings M require lua_pushcclosure(L_, LG_require, 1); // L_: settings M lanes.require lua_setfield(L_, -2, "require"); // L_: settings M luaG_pushstring( L_, "%d.%d.%d", LANES_VERSION_MAJOR, LANES_VERSION_MINOR, LANES_VERSION_PATCH ); // L_: settings M VERSION lua_setfield(L_, -2, "version"); // L_: settings M lua_pushinteger(L_, kThreadPrioMax); // L_: settings M kThreadPrioMax lua_setfield(L_, -2, "max_prio"); // L_: settings M kCancelError.pushKey(L_); // L_: settings M kCancelError lua_setfield(L_, -2, "cancel_error"); // L_: settings M kNilSentinel.pushKey(L_); // L_: settings M kNilSentinel lua_setfield(L_, -2, "null"); // L_: settings M STACK_CHECK(L_, 2); // reference stack contains only the function argument 'settings' // we'll need this every time we transfer some C function from/to this state kLookupRegKey.setValue(L_, [](lua_State* L_) { lua_newtable(L_); }); // L_: settings M STACK_CHECK(L_, 2); // register all native functions found in that module in the transferable functions database // we process it before _G because we don't want to find the module when scanning _G (this would generate longer names) // for example in package.loaded["lanes_core"].* tools::PopulateFuncLookupTable(L_, kIdxTop, _name); STACK_CHECK(L_, 2); // record all existing C/JIT-fast functions // Lua 5.2 no longer has LUA_GLOBALSINDEX: we must push globals table on the stack if (_from_master_state) { // don't do this when called during the initialization of a new lane, // because we will do it after on_state_create() is called, // and we don't want to skip _G because of caching in case globals are created then luaG_pushglobaltable(L_); // L_: settings M _G tools::PopulateFuncLookupTable(L_, kIdxTop, {}); lua_pop(L_, 1); // L_: settings M } lua_pop(L_, 1); // L_: settings // set _R[kConfigRegKey] = settings kConfigRegKey.setValue(L_, [](lua_State* L_) { lua_pushvalue(L_, -2); }); STACK_CHECK(L_, 1); DEBUGSPEW_CODE(DebugSpew(_U) << L_ << ": lanes.configure() END" << std::endl); // Return the settings table return 1; } // ################################################################################################# #if defined PLATFORM_WIN32 && !defined NDEBUG #include #include void signal_handler(int signal_) { if (signal_ == SIGABRT) { _cprintf("caught abnormal termination!"); abort(); } } // ################################################################################################# // helper to have correct callstacks when crashing a Win32 running on 64 bits Windows // don't forget to toggle Debug/Exceptions/Win32 in visual Studio too! static std::atomic_flag s_ecoc_initDone; static std::atomic_flag s_ecoc_go_ahead; static void EnableCrashingOnCrashes(void) { if (!s_ecoc_initDone.test_and_set(std::memory_order_acquire)) { using GetPolicy_t = BOOL(WINAPI *)(LPDWORD lpFlags); using SetPolicy_t = BOOL(WINAPI *)(DWORD dwFlags); const DWORD EXCEPTION_SWALLOWING = 0x1; HMODULE _kernel32 = LoadLibraryA("kernel32.dll"); if (_kernel32) { auto pGetPolicy{ (GetPolicy_t) (void*) GetProcAddress(_kernel32, "GetProcessUserModeExceptionPolicy") }; auto pSetPolicy{ (SetPolicy_t) (void*) GetProcAddress(_kernel32, "SetProcessUserModeExceptionPolicy") }; if (pGetPolicy && pSetPolicy) { DWORD _dwFlags; if (pGetPolicy(&_dwFlags)) { // Turn off the filter pSetPolicy(_dwFlags & ~EXCEPTION_SWALLOWING); } } FreeLibrary(_kernel32); } // typedef void (* SignalHandlerPointer)( int); /*SignalHandlerPointer previousHandler =*/signal(SIGABRT, signal_handler); // we are done, other threads waiting to initialize lanes can proceed std::ignore = s_ecoc_go_ahead.test_and_set(std::memory_order_relaxed); s_ecoc_go_ahead.notify_all(); } else { // wait until flag becomes true s_ecoc_go_ahead.wait(false, std::memory_order_relaxed); } } #endif // PLATFORM_WIN32 && !defined NDEBUG // ################################################################################################# LANES_API int luaopen_lanes_core(lua_State* const L_) { #if defined PLATFORM_WIN32 && !defined NDEBUG EnableCrashingOnCrashes(); #endif // defined PLATFORM_WIN32 && !defined NDEBUG STACK_GROW(L_, 4); STACK_CHECK_START_REL(L_, 0); // Prevent PUC-Lua/LuaJIT mismatch. Hopefully this works for MoonJIT too if constexpr (LUAJIT_FLAVOR() == 0) { if (luaG_getmodule(L_, LUA_JITLIBNAME) != LuaType::NIL) raise_luaL_error(L_, "Lanes is built for PUC-Lua, don't run from LuaJIT"); } else { if (luaG_getmodule(L_, LUA_JITLIBNAME) == LuaType::NIL) raise_luaL_error(L_, "Lanes is built for LuaJIT, don't run from PUC-Lua"); } lua_pop(L_, 1); // L_: STACK_CHECK(L_, 0); // Create main module interface table // we only have 1 closure, which must be called to configure Lanes lua_newtable(L_); // L_: M lua_pushvalue(L_, 1); // L_: M "lanes_core" lua_pushvalue(L_, -2); // L_: M "lanes_core" M lua_pushcclosure(L_, LG_configure, 2); // L_: M LG_configure() kConfigRegKey.pushValue(L_); // L_: M LG_configure() settings if (!lua_isnil(L_, -1)) { // this is not the first require "lanes_core": call configure() immediately lua_pushvalue(L_, -1); // L_: M LG_configure() settings settings lua_setfield(L_, -4, "settings"); // L_: M LG_configure() settings lua_call(L_, 1, 0); // L_: M } else { // will do nothing on first invocation, as we haven't stored settings in the registry yet lua_setfield(L_, -3, "settings"); // L_: M LG_configure() lua_setfield(L_, -2, "configure"); // L_: M } STACK_CHECK(L_, 1); return 1; } // ################################################################################################# [[nodiscard]] static int default_luaopen_lanes(lua_State* const L_) { LuaError const _rc{ luaL_loadfile(L_, "lanes.lua") || lua_pcall(L_, 0, 1, 0) }; if (_rc != LuaError::OK) { raise_luaL_error(L_, "failed to initialize embedded Lanes"); } return 1; } // ################################################################################################# // call this instead of luaopen_lanes_core() when embedding Lua and Lanes in a custom application LANES_API void luaopen_lanes_embedded(lua_State* const L_, lua_CFunction const luaopen_lanes_) { STACK_CHECK_START_REL(L_, 0); // pre-require lanes_core so that when lanes.lua calls require "lanes_core" it finds it is already loaded luaL_requiref(L_, kLanesCoreLibName, luaopen_lanes_core, 0); // L_: ... lanes_core lua_pop(L_, 1); // L_: ... STACK_CHECK(L_, 0); // call user-provided function that runs the chunk "lanes.lua" from wherever they stored it luaL_requiref(L_, kLanesLibName, luaopen_lanes_ ? luaopen_lanes_ : default_luaopen_lanes, 0); // L_: ... lanes STACK_CHECK(L_, 1); }