/* * LINDA.CPP Copyright (c) 2018-2024, Benoit Germain * * Linda deep userdata. */ /* =============================================================================== Copyright (C) 2018 benoit Germain <bnt.germain@gmail.com> Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. =============================================================================== */ #include "compat.h" #include "deep.h" #include "keeper.h" #include "lanes_private.h" #include "threading.h" #include "tools.h" #include "universe.h" #include <array> #include <functional> #include <variant> // xxh64 of string "CANCEL_ERROR" generated at https://www.pelock.com/products/hash-calculator static constexpr UniqueKey BATCH_SENTINEL{ 0x2DDFEE0968C62AA7ull, "linda.batched" }; class LindaFactory : public DeepFactory { private: DeepPrelude* newDeepObjectInternal(lua_State* L) const override; void deleteDeepObjectInternal(lua_State* L, DeepPrelude* o_) const override; void createMetatable(lua_State* L) const override; char const* moduleName() const override; }; // I'm not totally happy with having a global variable. But since it's stateless, it will do for the time being. static LindaFactory g_LindaFactory; // ################################################################################################# /* * Actual data is kept within a keeper state, which is hashed by the 'Linda' * pointer (which is same to all userdatas pointing to it). */ class Linda : public DeepPrelude // Deep userdata MUST start with this header { private: static constexpr size_t kEmbeddedNameLength = 24; using EmbeddedName = std::array<char, kEmbeddedNameLength>; struct AllocatedName { size_t len{ 0 }; char* name{ nullptr }; }; // depending on the name length, it is either embedded inside the Linda, or allocated separately std::variant<AllocatedName, EmbeddedName> m_name; public: std::condition_variable m_read_happened; std::condition_variable m_write_happened; Universe* const U; // the universe this linda belongs to uintptr_t const group; // a group to control keeper allocation between lindas CancelRequest simulate_cancel{ CancelRequest::None }; public: // a fifo full userdata has one uservalue, the table that holds the actual fifo contents [[nodiscard]] static void* operator new(size_t size_, Universe* U_) noexcept { return U_->internal_allocator.alloc(size_); } // always embedded somewhere else or "in-place constructed" as a full userdata // can't actually delete the operator because the compiler generates stack unwinding code that could call it in case of exception static void operator delete(void* p_, Universe* U_) { U_->internal_allocator.free(p_, sizeof(Linda)); } // this one is for us, to make sure memory is freed by the correct allocator static void operator delete(void* p_) { static_cast<Linda*>(p_)->U->internal_allocator.free(p_, sizeof(Linda)); } Linda(Universe* U_, uintptr_t group_, char const* name_, size_t len_) : DeepPrelude{ g_LindaFactory } , U{ U_ } , group{ group_ << KEEPER_MAGIC_SHIFT } { setName(name_, len_); } ~Linda() { if (std::holds_alternative<AllocatedName>(m_name)) { AllocatedName& name = std::get<AllocatedName>(m_name); U->internal_allocator.free(name.name, name.len); } } static int ProtectedCall(lua_State* L, lua_CFunction f_); private : void setName(char const* name_, size_t len_) { // keep default if (!name_ || len_ == 0) { return; } ++len_; // don't forget terminating 0 if (len_ < kEmbeddedNameLength) { m_name.emplace<EmbeddedName>(); char* const name{ std::get<EmbeddedName>(m_name).data() }; memcpy(name, name_, len_); } else { AllocatedName& name = std::get<AllocatedName>(m_name); name.name = static_cast<char*>(U->internal_allocator.alloc(len_)); name.len = len_; memcpy(name.name, name_, len_); } } public: uintptr_t hashSeed() const { return group ? group : std::bit_cast<uintptr_t>(this); } char const* getName() const { if (std::holds_alternative<AllocatedName>(m_name)) { AllocatedName const& name = std::get<AllocatedName>(m_name); return name.name; } if (std::holds_alternative<EmbeddedName>(m_name)) { char const* const name{ std::get<EmbeddedName>(m_name).data() }; return name; } return nullptr; } }; // ################################################################################################# template <bool OPT> [[nodiscard]] static inline Linda* ToLinda(lua_State* L, int idx_) { Linda* const linda{ static_cast<Linda*>(g_LindaFactory.toDeep(L, idx_)) }; if constexpr (!OPT) { luaL_argcheck(L, linda != nullptr, idx_, "expecting a linda object"); ASSERT_L(linda->U == universe_get(L)); } return linda; } // ################################################################################################# static void check_key_types(lua_State* L, int start_, int end_) { for (int i{ start_ }; i <= end_; ++i) { LuaType const t{ lua_type_as_enum(L, i) }; switch (t) { case LuaType::BOOLEAN: case LuaType::NUMBER: case LuaType::STRING: continue; case LuaType::LIGHTUSERDATA: { static constexpr std::array<std::reference_wrapper<UniqueKey const>, 3> to_check{ BATCH_SENTINEL, CANCEL_ERROR, NIL_SENTINEL }; for (UniqueKey const& key : to_check) { if (key.equals(L, i)) { luaL_error(L, "argument #%d: can't use %s as a key", i, key.m_debugName); // doesn't return break; } } } break; } luaL_error(L, "argument #%d: invalid key type (not a boolean, string, number or light userdata)", i); // doesn't return } } // ################################################################################################# // used to perform all linda operations that access keepers int Linda::ProtectedCall(lua_State* L, lua_CFunction f_) { Linda* const linda{ ToLinda<false>(L, 1) }; // acquire the keeper Keeper* const K{ keeper_acquire(linda->U->keepers, linda->hashSeed()) }; lua_State* const KL{ K ? K->L : nullptr }; if (KL == nullptr) return 0; // if we didn't do anything wrong, the keeper stack should be clean ASSERT_L(lua_gettop(KL) == 0); // push the function to be called and move it before the arguments lua_pushcfunction(L, f_); lua_insert(L, 1); // do a protected call int const rc{ lua_pcall(L, lua_gettop(L) - 1, LUA_MULTRET, 0) }; // whatever happens, the keeper state stack must be empty when we are done lua_settop(KL, 0); // release the keeper keeper_release(K); // if there was an error, forward it if (rc != LUA_OK) { raise_lua_error(L); } // return whatever the actual operation provided return lua_gettop(L); } // ################################################################################################# /* * bool= linda_send( linda_ud, [timeout_secs=-1,] [linda.null,] key_num|str|bool|lightuserdata, ... ) * * Send one or more values to a Linda. If there is a limit, all values must fit. * * Returns: 'true' if the value was queued * 'false' for timeout (only happens when the queue size is limited) * nil, CANCEL_ERROR if cancelled */ LUAG_FUNC(linda_send) { auto send = [](lua_State* L) { Linda* const linda{ ToLinda<false>(L, 1) }; std::chrono::time_point<std::chrono::steady_clock> until{ std::chrono::time_point<std::chrono::steady_clock>::max() }; int key_i{ 2 }; // index of first key, if timeout not there if (lua_type(L, 2) == LUA_TNUMBER) // we don't want to use lua_isnumber() because of autocoercion { lua_Duration const duration{ lua_tonumber(L, 2) }; if (duration.count() >= 0.0) { until = std::chrono::steady_clock::now() + std::chrono::duration_cast<std::chrono::steady_clock::duration>(duration); } ++key_i; } else if (lua_isnil(L, 2)) // alternate explicit "infinite timeout" by passing nil before the key { ++key_i; } bool const as_nil_sentinel{ NIL_SENTINEL.equals(L, key_i) }; // if not nullptr, send() will silently send a single nil if nothing is provided if (as_nil_sentinel) { // the real key to send data to is after the NIL_SENTINEL marker ++key_i; } // make sure the key is of a valid type check_key_types(L, key_i, key_i); STACK_GROW(L, 1); // make sure there is something to send if (lua_gettop(L) == key_i) { if (as_nil_sentinel) { // send a single nil if nothing is provided NIL_SENTINEL.pushKey(L); } else { return luaL_error(L, "no data to send"); } } // convert nils to some special non-nil sentinel in sent values keeper_toggle_nil_sentinels(L, key_i + 1, LookupMode::ToKeeper); bool ret{ false }; CancelRequest cancel{ CancelRequest::None }; KeeperCallResult pushed; { Lane* const lane{ LANE_POINTER_REGKEY.readLightUserDataValue<Lane>(L) }; Keeper* const K{ which_keeper(linda->U->keepers, linda->hashSeed()) }; lua_State* const KL{ K ? K->L : nullptr }; if (KL == nullptr) return 0; STACK_CHECK_START_REL(KL, 0); for (bool try_again{ true };;) { if (lane != nullptr) { cancel = lane->cancel_request; } cancel = (cancel != CancelRequest::None) ? cancel : linda->simulate_cancel; // if user wants to cancel, or looped because of a timeout, the call returns without sending anything if (!try_again || cancel != CancelRequest::None) { pushed.emplace(0); break; } STACK_CHECK(KL, 0); pushed = keeper_call(linda->U, KL, KEEPER_API(send), L, linda, key_i); if (!pushed.has_value()) { break; } ASSERT_L(pushed.value() == 1); ret = lua_toboolean(L, -1) ? true : false; lua_pop(L, 1); if (ret) { // Wake up ALL waiting threads linda->m_write_happened.notify_all(); break; } // instant timout to bypass the wait syscall if (std::chrono::steady_clock::now() >= until) { break; /* no wait; instant timeout */ } // storage limit hit, wait until timeout or signalled that we should try again { Lane::Status prev_status{ Lane::Error }; // prevent 'might be used uninitialized' warnings if (lane != nullptr) { // change status of lane to "waiting" prev_status = lane->m_status; // Running, most likely ASSERT_L(prev_status == Lane::Running); // but check, just in case lane->m_status = Lane::Waiting; ASSERT_L(lane->m_waiting_on == nullptr); lane->m_waiting_on = &linda->m_read_happened; } // could not send because no room: wait until some data was read before trying again, or until timeout is reached std::unique_lock<std::mutex> keeper_lock{ K->m_mutex, std::adopt_lock }; std::cv_status const status{ linda->m_read_happened.wait_until(keeper_lock, until) }; keeper_lock.release(); // we don't want to release the lock! try_again = (status == std::cv_status::no_timeout); // detect spurious wakeups if (lane != nullptr) { lane->m_waiting_on = nullptr; lane->m_status = prev_status; } } } STACK_CHECK(KL, 0); } if (!pushed.has_value()) { luaL_error(L, "tried to copy unsupported types"); // doesn't return } switch (cancel) { case CancelRequest::Soft: // if user wants to soft-cancel, the call returns lanes.cancel_error CANCEL_ERROR.pushKey(L); return 1; case CancelRequest::Hard: // raise an error interrupting execution only in case of hard cancel raise_cancel_error(L); // raises an error and doesn't return default: lua_pushboolean(L, ret); // true (success) or false (timeout) return 1; } }; return Linda::ProtectedCall(L, send); } // ################################################################################################# /* * 2 modes of operation * [val, key]= linda_receive( linda_ud, [timeout_secs_num=-1], key_num|str|bool|lightuserdata [, ...] ) * Consumes a single value from the Linda, in any key. * Returns: received value (which is consumed from the slot), and the key which had it * [val1, ... valCOUNT]= linda_receive( linda_ud, [timeout_secs_num=-1], linda.batched, key_num|str|bool|lightuserdata, min_COUNT[, max_COUNT]) * Consumes between min_COUNT and max_COUNT values from the linda, from a single key. * returns the actual consumed values, or nil if there weren't enough values to consume * */ LUAG_FUNC(linda_receive) { auto receive = [](lua_State* L) { Linda* const linda{ ToLinda<false>(L, 1) }; std::chrono::time_point<std::chrono::steady_clock> until{ std::chrono::time_point<std::chrono::steady_clock>::max() }; int key_i{ 2 }; // index of first key, if timeout not there if (lua_type(L, 2) == LUA_TNUMBER) // we don't want to use lua_isnumber() because of autocoercion { lua_Duration const duration{ lua_tonumber(L, 2) }; if (duration.count() >= 0.0) { until = std::chrono::steady_clock::now() + std::chrono::duration_cast<std::chrono::steady_clock::duration>(duration); } ++key_i; } else if (lua_isnil(L, 2)) // alternate explicit "infinite timeout" by passing nil before the key { ++key_i; } keeper_api_t selected_keeper_receive{ nullptr }; int expected_pushed_min{ 0 }, expected_pushed_max{ 0 }; // are we in batched mode? BATCH_SENTINEL.pushKey(L); int const is_batched{ lua501_equal(L, key_i, -1) }; lua_pop(L, 1); if (is_batched) { // no need to pass linda.batched in the keeper state ++key_i; // make sure the keys are of a valid type check_key_types(L, key_i, key_i); // receive multiple values from a single slot selected_keeper_receive = KEEPER_API(receive_batched); // we expect a user-defined amount of return value expected_pushed_min = (int) luaL_checkinteger(L, key_i + 1); expected_pushed_max = (int) luaL_optinteger(L, key_i + 2, expected_pushed_min); // don't forget to count the key in addition to the values ++expected_pushed_min; ++expected_pushed_max; if (expected_pushed_min > expected_pushed_max) { return luaL_error(L, "batched min/max error"); } } else { // make sure the keys are of a valid type check_key_types(L, key_i, lua_gettop(L)); // receive a single value, checking multiple slots selected_keeper_receive = KEEPER_API(receive); // we expect a single (value, key) pair of returned values expected_pushed_min = expected_pushed_max = 2; } Lane* const lane{ LANE_POINTER_REGKEY.readLightUserDataValue<Lane>(L) }; Keeper* const K{ which_keeper(linda->U->keepers, linda->hashSeed()) }; lua_State* const KL{ K ? K->L : nullptr }; if (KL == nullptr) return 0; CancelRequest cancel{ CancelRequest::None }; KeeperCallResult pushed; STACK_CHECK_START_REL(KL, 0); for (bool try_again{ true };;) { if (lane != nullptr) { cancel = lane->cancel_request; } cancel = (cancel != CancelRequest::None) ? cancel : linda->simulate_cancel; // if user wants to cancel, or looped because of a timeout, the call returns without sending anything if (!try_again || cancel != CancelRequest::None) { pushed.emplace(0); break; } // all arguments of receive() but the first are passed to the keeper's receive function pushed = keeper_call(linda->U, KL, selected_keeper_receive, L, linda, key_i); if (!pushed.has_value()) { break; } if (pushed.value() > 0) { ASSERT_L(pushed.value() >= expected_pushed_min && pushed.value() <= expected_pushed_max); // replace sentinels with real nils keeper_toggle_nil_sentinels(L, lua_gettop(L) - pushed.value(), LookupMode::FromKeeper); // To be done from within the 'K' locking area // linda->m_read_happened.notify_all(); break; } if (std::chrono::steady_clock::now() >= until) { break; /* instant timeout */ } // nothing received, wait until timeout or signalled that we should try again { Lane::Status prev_status{ Lane::Error }; // prevent 'might be used uninitialized' warnings if (lane != nullptr) { // change status of lane to "waiting" prev_status = lane->m_status; // Running, most likely ASSERT_L(prev_status == Lane::Running); // but check, just in case lane->m_status = Lane::Waiting; ASSERT_L(lane->m_waiting_on == nullptr); lane->m_waiting_on = &linda->m_write_happened; } // not enough data to read: wakeup when data was sent, or when timeout is reached std::unique_lock<std::mutex> keeper_lock{ K->m_mutex, std::adopt_lock }; std::cv_status const status{ linda->m_write_happened.wait_until(keeper_lock, until) }; keeper_lock.release(); // we don't want to release the lock! try_again = (status == std::cv_status::no_timeout); // detect spurious wakeups if (lane != nullptr) { lane->m_waiting_on = nullptr; lane->m_status = prev_status; } } } STACK_CHECK(KL, 0); if (!pushed.has_value()) { return luaL_error(L, "tried to copy unsupported types"); } switch (cancel) { case CancelRequest::Soft: // if user wants to soft-cancel, the call returns CANCEL_ERROR CANCEL_ERROR.pushKey(L); return 1; case CancelRequest::Hard: // raise an error interrupting execution only in case of hard cancel raise_cancel_error(L); // raises an error and doesn't return default: return pushed.value(); } }; return Linda::ProtectedCall(L, receive); } // ################################################################################################# /* * [true|lanes.cancel_error] = linda_set( linda_ud, key_num|str|bool|lightuserdata [, value [, ...]]) * * Set one or more value to Linda. * TODO: what do we do if we set to non-nil and limit is 0? * * Existing slot value is replaced, and possible queued entries removed. */ LUAG_FUNC(linda_set) { auto set = [](lua_State* L) { Linda* const linda{ ToLinda<false>(L, 1) }; bool const has_value{ lua_gettop(L) > 2 }; // make sure the key is of a valid type (throws an error if not the case) check_key_types(L, 2, 2); Keeper* const K{ which_keeper(linda->U->keepers, linda->hashSeed()) }; KeeperCallResult pushed; if (linda->simulate_cancel == CancelRequest::None) { if (has_value) { // convert nils to some special non-nil sentinel in sent values keeper_toggle_nil_sentinels(L, 3, LookupMode::ToKeeper); } pushed = keeper_call(linda->U, K->L, KEEPER_API(set), L, linda, 2); if (pushed.has_value()) // no error? { ASSERT_L(pushed.value() == 0 || pushed.value() == 1); if (has_value) { // we put some data in the slot, tell readers that they should wake linda->m_write_happened.notify_all(); // To be done from within the 'K' locking area } if (pushed.value() == 1) { // the key was full, but it is no longer the case, tell writers they should wake ASSERT_L(lua_type(L, -1) == LUA_TBOOLEAN && lua_toboolean(L, -1) == 1); linda->m_read_happened.notify_all(); // To be done from within the 'K' locking area } } } else // linda is cancelled { // do nothing and return lanes.cancel_error CANCEL_ERROR.pushKey(L); pushed.emplace(1); } // must trigger any error after keeper state has been released return OptionalValue(pushed, L, "tried to copy unsupported types"); }; return Linda::ProtectedCall(L, set); } // ################################################################################################# /* * [val] = linda_count( linda_ud, [key [, ...]]) * * Get a count of the pending elements in the specified keys */ LUAG_FUNC(linda_count) { auto count = [](lua_State* L) { Linda* const linda{ ToLinda<false>(L, 1) }; // make sure the keys are of a valid type check_key_types(L, 2, lua_gettop(L)); Keeper* const K{ which_keeper(linda->U->keepers, linda->hashSeed()) }; KeeperCallResult const pushed{ keeper_call(linda->U, K->L, KEEPER_API(count), L, linda, 2) }; return OptionalValue(pushed, L, "tried to count an invalid key"); }; return Linda::ProtectedCall(L, count); } // ################################################################################################# /* * [val [, ...]] = linda_get( linda_ud, key_num|str|bool|lightuserdata [, count = 1]) * * Get one or more values from Linda. */ LUAG_FUNC(linda_get) { auto get = [](lua_State* L) { Linda* const linda{ ToLinda<false>(L, 1) }; lua_Integer const count{ luaL_optinteger(L, 3, 1) }; luaL_argcheck(L, count >= 1, 3, "count should be >= 1"); luaL_argcheck(L, lua_gettop(L) <= 3, 4, "too many arguments"); // make sure the key is of a valid type (throws an error if not the case) check_key_types(L, 2, 2); KeeperCallResult pushed; if (linda->simulate_cancel == CancelRequest::None) { Keeper* const K{ which_keeper(linda->U->keepers, linda->hashSeed()) }; pushed = keeper_call(linda->U, K->L, KEEPER_API(get), L, linda, 2); if (pushed.value_or(0) > 0) { keeper_toggle_nil_sentinels(L, lua_gettop(L) - pushed.value(), LookupMode::FromKeeper); } } else // linda is cancelled { // do nothing and return lanes.cancel_error CANCEL_ERROR.pushKey(L); pushed.emplace(1); } // an error can be raised if we attempt to read an unregistered function return OptionalValue(pushed, L, "tried to copy unsupported types"); }; return Linda::ProtectedCall(L, get); } // ################################################################################################# /* * [true] = linda_limit( linda_ud, key_num|str|bool|lightuserdata, int) * * Set limit to 1 Linda keys. * Optionally wake threads waiting to write on the linda, in case the limit enables them to do so */ LUAG_FUNC(linda_limit) { auto limit = [](lua_State* L) { Linda* const linda{ ToLinda<false>(L, 1) }; // make sure we got 3 arguments: the linda, a key and a limit luaL_argcheck( L, lua_gettop( L) == 3, 2, "wrong number of arguments"); // make sure we got a numeric limit luaL_checknumber( L, 3); // make sure the key is of a valid type check_key_types( L, 2, 2); KeeperCallResult pushed; if (linda->simulate_cancel == CancelRequest::None) { Keeper* const K{ which_keeper(linda->U->keepers, linda->hashSeed()) }; pushed = keeper_call(linda->U, K->L, KEEPER_API(limit), L, linda, 2); ASSERT_L( pushed.has_value() && (pushed.value() == 0 || pushed.value() == 1)); // no error, optional boolean value saying if we should wake blocked writer threads if (pushed.value() == 1) { ASSERT_L( lua_type( L, -1) == LUA_TBOOLEAN && lua_toboolean( L, -1) == 1); linda->m_read_happened.notify_all(); // To be done from within the 'K' locking area } } else // linda is cancelled { // do nothing and return lanes.cancel_error CANCEL_ERROR.pushKey(L); pushed.emplace(1); } // propagate pushed boolean if any return pushed.value(); }; return Linda::ProtectedCall(L, limit); } // ################################################################################################# /* * (void) = linda_cancel( linda_ud, "read"|"write"|"both"|"none") * * Signal linda so that waiting threads wake up as if their own lane was cancelled */ LUAG_FUNC(linda_cancel) { Linda* const linda{ ToLinda<false>(L, 1) }; char const* who = luaL_optstring(L, 2, "both"); // make sure we got 3 arguments: the linda, a key and a limit luaL_argcheck(L, lua_gettop(L) <= 2, 2, "wrong number of arguments"); linda->simulate_cancel = CancelRequest::Soft; if (strcmp(who, "both") == 0) // tell everyone writers to wake up { linda->m_write_happened.notify_all(); linda->m_read_happened.notify_all(); } else if (strcmp(who, "none") == 0) // reset flag { linda->simulate_cancel = CancelRequest::None; } else if (strcmp(who, "read") == 0) // tell blocked readers to wake up { linda->m_write_happened.notify_all(); } else if (strcmp(who, "write") == 0) // tell blocked writers to wake up { linda->m_read_happened.notify_all(); } else { return luaL_error(L, "unknown wake hint '%s'", who); } return 0; } // ################################################################################################# /* * lightuserdata= linda_deep( linda_ud ) * * Return the 'deep' userdata pointer, identifying the Linda. * * This is needed for using Lindas as key indices (timer system needs it); * separately created proxies of the same underlying deep object will have * different userdata and won't be known to be essentially the same deep one * without this. */ LUAG_FUNC(linda_deep) { Linda* const linda{ ToLinda<false>(L, 1) }; lua_pushlightuserdata(L, linda); // just the address return 1; } // ################################################################################################# /* * string = linda:__tostring( linda_ud) * * Return the stringification of a linda * * Useful for concatenation or debugging purposes */ template <bool OPT> [[nodiscard]] static int LindaToString(lua_State* L, int idx_) { Linda* const linda{ ToLinda<OPT>(L, idx_) }; if (linda != nullptr) { char text[128]; int len; if (linda->getName()) len = sprintf(text, "Linda: %.*s", (int) sizeof(text) - 8, linda->getName()); else len = sprintf(text, "Linda: %p", linda); lua_pushlstring(L, text, len); return 1; } return 0; } LUAG_FUNC(linda_tostring) { return LindaToString<false>(L, 1); } // ################################################################################################# /* * string = linda:__concat( a, b) * * Return the concatenation of a pair of items, one of them being a linda * * Useful for concatenation or debugging purposes */ LUAG_FUNC(linda_concat) { // linda1? linda2? bool atLeastOneLinda{ false }; // Lua semantics enforce that one of the 2 arguments is a Linda, but not necessarily both. if (LindaToString<true>(L, 1)) { atLeastOneLinda = true; lua_replace(L, 1); } if (LindaToString<true>(L, 2)) { atLeastOneLinda = true; lua_replace(L, 2); } if (!atLeastOneLinda) // should not be possible { return luaL_error(L, "internal error: linda_concat called on non-Linda"); } lua_concat(L, 2); return 1; } // ################################################################################################# /* * table = linda:dump() * return a table listing all pending data inside the linda */ LUAG_FUNC(linda_dump) { auto dump = [](lua_State* L) { Linda* const linda{ ToLinda<false>(L, 1) }; return keeper_push_linda_storage(linda->U, Dest{ L }, linda, linda->hashSeed()); }; return Linda::ProtectedCall(L, dump); } // ################################################################################################# /* * table = linda:dump() * return a table listing all pending data inside the linda */ LUAG_FUNC(linda_towatch) { Linda* const linda{ ToLinda<false>(L, 1) }; int pushed{ keeper_push_linda_storage(linda->U, Dest{ L }, linda, linda->hashSeed()) }; if (pushed == 0) { // if the linda is empty, don't return nil pushed = LindaToString<false>(L, 1); } return pushed; } // ################################################################################################# DeepPrelude* LindaFactory::newDeepObjectInternal(lua_State* L) const { size_t name_len = 0; char const* linda_name = nullptr; unsigned long linda_group = 0; // should have a string and/or a number of the stack as parameters (name and group) switch (lua_gettop(L)) { default: // 0 break; case 1: // 1 parameter, either a name or a group if (lua_type(L, -1) == LUA_TSTRING) { linda_name = lua_tolstring(L, -1, &name_len); } else { linda_group = (unsigned long) lua_tointeger(L, -1); } break; case 2: // 2 parameters, a name and group, in that order linda_name = lua_tolstring(L, -2, &name_len); linda_group = (unsigned long) lua_tointeger(L, -1); break; } /* The deep data is allocated separately of Lua stack; we might no * longer be around when last reference to it is being released. * One can use any memory allocation scheme. * just don't use L's allocF because we don't know which state will get the honor of GCing the linda */ Universe* const U{ universe_get(L) }; Linda* linda{ new (U) Linda{ U, linda_group, linda_name, name_len } }; return linda; } // ################################################################################################# void LindaFactory::deleteDeepObjectInternal(lua_State* L, DeepPrelude* o_) const { Linda* const linda{ static_cast<Linda*>(o_) }; ASSERT_L(linda); Keeper* const myK{ which_keeper(linda->U->keepers, linda->hashSeed()) }; // if collected after the universe, keepers are already destroyed, and there is nothing to clear if (myK) { // if collected from my own keeper, we can't acquire/release it // because we are already inside a protected area, and trying to do so would deadlock! bool const need_acquire_release{ myK->L != L }; // Clean associated structures in the keeper state. Keeper* const K{ need_acquire_release ? keeper_acquire(linda->U->keepers, linda->hashSeed()) : myK }; // hopefully this won't ever raise an error as we would jump to the closest pcall site while forgetting to release the keeper mutex... [[maybe_unused]] KeeperCallResult const result{ keeper_call(linda->U, K->L, KEEPER_API(clear), L, linda, 0) }; ASSERT_L(result.has_value() && result.value() == 0); if (need_acquire_release) { keeper_release(K); } } delete linda; // operator delete overload ensures things go as expected } // ################################################################################################# static luaL_Reg const s_LindaMT[] = { { "__concat", LG_linda_concat }, { "__tostring", LG_linda_tostring }, { "__towatch", LG_linda_towatch }, // Decoda __towatch support { "cancel", LG_linda_cancel }, { "count", LG_linda_count }, { "deep", LG_linda_deep }, { "dump", LG_linda_dump }, { "get", LG_linda_get }, { "limit", LG_linda_limit }, { "receive", LG_linda_receive }, { "send", LG_linda_send }, { "set", LG_linda_set }, { nullptr, nullptr } }; void LindaFactory::createMetatable(lua_State* L) const { STACK_CHECK_START_REL(L, 0); lua_newtable(L); // metatable is its own index lua_pushvalue(L, -1); lua_setfield(L, -2, "__index"); // protect metatable from external access lua_pushliteral(L, "Linda"); lua_setfield(L, -2, "__metatable"); // the linda functions luaL_setfuncs(L, s_LindaMT, 0); // some constants BATCH_SENTINEL.pushKey(L); lua_setfield(L, -2, "batched"); NIL_SENTINEL.pushKey(L); lua_setfield(L, -2, "null"); STACK_CHECK(L, 1); } // ################################################################################################# char const* LindaFactory::moduleName() const { // linda is a special case because we know lanes must be loaded from the main lua state // to be able to ever get here, so we know it will remain loaded as long a the main state is around // in other words, forever. return nullptr; } // ################################################################################################# /* * ud = lanes.linda( [name[,group]]) * * returns a linda object, or raises an error if creation failed */ LUAG_FUNC(linda) { int const top{ lua_gettop(L) }; luaL_argcheck(L, top <= 2, top, "too many arguments"); if (top == 1) { LuaType const t{ lua_type_as_enum(L, 1) }; luaL_argcheck(L, t == LuaType::STRING || t == LuaType::NUMBER, 1, "wrong parameter (should be a string or a number)"); } else if (top == 2) { luaL_checktype(L, 1, LUA_TSTRING); luaL_checktype(L, 2, LUA_TNUMBER); } return g_LindaFactory.pushDeepUserdata(Dest{ L }, 0); }