diff options
Diffstat (limited to 'lgc.c')
-rw-r--r-- | lgc.c | 416 |
1 files changed, 175 insertions, 241 deletions
@@ -9,7 +9,6 @@ | |||
9 | 9 | ||
10 | #include "lprefix.h" | 10 | #include "lprefix.h" |
11 | 11 | ||
12 | #include <stdio.h> | ||
13 | #include <string.h> | 12 | #include <string.h> |
14 | 13 | ||
15 | 14 | ||
@@ -19,6 +18,7 @@ | |||
19 | #include "ldo.h" | 18 | #include "ldo.h" |
20 | #include "lfunc.h" | 19 | #include "lfunc.h" |
21 | #include "lgc.h" | 20 | #include "lgc.h" |
21 | #include "llex.h" | ||
22 | #include "lmem.h" | 22 | #include "lmem.h" |
23 | #include "lobject.h" | 23 | #include "lobject.h" |
24 | #include "lstate.h" | 24 | #include "lstate.h" |
@@ -28,36 +28,18 @@ | |||
28 | 28 | ||
29 | 29 | ||
30 | /* | 30 | /* |
31 | ** Maximum number of elements to sweep in each single step. | 31 | ** Number of fixed (luaC_fix) objects in a Lua state: metafield names, |
32 | ** (Large enough to dissipate fixed overheads but small enough | 32 | ** plus reserved words, plus "_ENV", plus the memory-error message. |
33 | ** to allow small steps for the collector.) | ||
34 | */ | ||
35 | #define GCSWEEPMAX 100 | ||
36 | |||
37 | /* | ||
38 | ** Maximum number of finalizers to call in each single step. | ||
39 | */ | ||
40 | #define GCFINMAX 10 | ||
41 | |||
42 | |||
43 | /* | ||
44 | ** Cost of calling one finalizer. | ||
45 | */ | ||
46 | #define GCFINALIZECOST 50 | ||
47 | |||
48 | |||
49 | /* | ||
50 | ** The equivalent, in bytes, of one unit of "work" (visiting a slot, | ||
51 | ** sweeping an object, etc.) | ||
52 | */ | 33 | */ |
53 | #define WORK2MEM sizeof(TValue) | 34 | #define NFIXED (TM_N + NUM_RESERVED + 2) |
54 | 35 | ||
55 | 36 | ||
56 | /* | 37 | /* |
57 | ** macro to adjust 'pause': 'pause' is actually used like | 38 | ** Maximum number of elements to sweep in each single step. |
58 | ** 'pause / PAUSEADJ' (value chosen by tests) | 39 | ** (Large enough to dissipate fixed overheads but small enough |
40 | ** to allow small steps for the collector.) | ||
59 | */ | 41 | */ |
60 | #define PAUSEADJ 100 | 42 | #define GCSWEEPMAX 20 |
61 | 43 | ||
62 | 44 | ||
63 | /* mask with all color bits */ | 45 | /* mask with all color bits */ |
@@ -105,7 +87,7 @@ | |||
105 | #define markobjectN(g,t) { if (t) markobject(g,t); } | 87 | #define markobjectN(g,t) { if (t) markobject(g,t); } |
106 | 88 | ||
107 | static void reallymarkobject (global_State *g, GCObject *o); | 89 | static void reallymarkobject (global_State *g, GCObject *o); |
108 | static lu_mem atomic (lua_State *L); | 90 | static l_obj atomic (lua_State *L); |
109 | static void entersweep (lua_State *L); | 91 | static void entersweep (lua_State *L); |
110 | 92 | ||
111 | 93 | ||
@@ -217,7 +199,7 @@ void luaC_barrier_ (lua_State *L, GCObject *o, GCObject *v) { | |||
217 | } | 199 | } |
218 | else { /* sweep phase */ | 200 | else { /* sweep phase */ |
219 | lua_assert(issweepphase(g)); | 201 | lua_assert(issweepphase(g)); |
220 | if (g->gckind == KGC_INC) /* incremental mode? */ | 202 | if (g->gckind != KGC_GEN) /* incremental mode? */ |
221 | makewhite(g, o); /* mark 'o' as white to avoid other barriers */ | 203 | makewhite(g, o); /* mark 'o' as white to avoid other barriers */ |
222 | } | 204 | } |
223 | } | 205 | } |
@@ -259,6 +241,7 @@ GCObject *luaC_newobjdt (lua_State *L, int tt, size_t sz, size_t offset) { | |||
259 | global_State *g = G(L); | 241 | global_State *g = G(L); |
260 | char *p = cast_charp(luaM_newobject(L, novariant(tt), sz)); | 242 | char *p = cast_charp(luaM_newobject(L, novariant(tt), sz)); |
261 | GCObject *o = cast(GCObject *, p + offset); | 243 | GCObject *o = cast(GCObject *, p + offset); |
244 | g->GCdebt--; | ||
262 | o->marked = luaC_white(g); | 245 | o->marked = luaC_white(g); |
263 | o->tt = tt; | 246 | o->tt = tt; |
264 | o->next = g->allgc; | 247 | o->next = g->allgc; |
@@ -267,6 +250,9 @@ GCObject *luaC_newobjdt (lua_State *L, int tt, size_t sz, size_t offset) { | |||
267 | } | 250 | } |
268 | 251 | ||
269 | 252 | ||
253 | /* | ||
254 | ** create a new collectable object with no offset. | ||
255 | */ | ||
270 | GCObject *luaC_newobj (lua_State *L, int tt, size_t sz) { | 256 | GCObject *luaC_newobj (lua_State *L, int tt, size_t sz) { |
271 | return luaC_newobjdt(L, tt, sz, 0); | 257 | return luaC_newobjdt(L, tt, sz, 0); |
272 | } | 258 | } |
@@ -295,6 +281,7 @@ GCObject *luaC_newobj (lua_State *L, int tt, size_t sz) { | |||
295 | ** (only closures can), and a userdata's metatable must be a table. | 281 | ** (only closures can), and a userdata's metatable must be a table. |
296 | */ | 282 | */ |
297 | static void reallymarkobject (global_State *g, GCObject *o) { | 283 | static void reallymarkobject (global_State *g, GCObject *o) { |
284 | g->marked++; | ||
298 | switch (o->tt) { | 285 | switch (o->tt) { |
299 | case LUA_VSHRSTR: | 286 | case LUA_VSHRSTR: |
300 | case LUA_VLNGSTR: { | 287 | case LUA_VLNGSTR: { |
@@ -342,9 +329,9 @@ static void markmt (global_State *g) { | |||
342 | /* | 329 | /* |
343 | ** mark all objects in list of being-finalized | 330 | ** mark all objects in list of being-finalized |
344 | */ | 331 | */ |
345 | static lu_mem markbeingfnz (global_State *g) { | 332 | static l_obj markbeingfnz (global_State *g) { |
346 | GCObject *o; | 333 | GCObject *o; |
347 | lu_mem count = 0; | 334 | l_obj count = 0; |
348 | for (o = g->tobefnz; o != NULL; o = o->next) { | 335 | for (o = g->tobefnz; o != NULL; o = o->next) { |
349 | count++; | 336 | count++; |
350 | markobject(g, o); | 337 | markobject(g, o); |
@@ -364,12 +351,11 @@ static lu_mem markbeingfnz (global_State *g) { | |||
364 | ** upvalues, as they have nothing to be checked. (If the thread gets an | 351 | ** upvalues, as they have nothing to be checked. (If the thread gets an |
365 | ** upvalue later, it will be linked in the list again.) | 352 | ** upvalue later, it will be linked in the list again.) |
366 | */ | 353 | */ |
367 | static int remarkupvals (global_State *g) { | 354 | static l_obj remarkupvals (global_State *g) { |
355 | l_obj work = 0; | ||
368 | lua_State *thread; | 356 | lua_State *thread; |
369 | lua_State **p = &g->twups; | 357 | lua_State **p = &g->twups; |
370 | int work = 0; /* estimate of how much work was done here */ | ||
371 | while ((thread = *p) != NULL) { | 358 | while ((thread = *p) != NULL) { |
372 | work++; | ||
373 | if (!iswhite(thread) && thread->openupval != NULL) | 359 | if (!iswhite(thread) && thread->openupval != NULL) |
374 | p = &thread->twups; /* keep marked thread with upvalues in the list */ | 360 | p = &thread->twups; /* keep marked thread with upvalues in the list */ |
375 | else { /* thread is not marked or without upvalues */ | 361 | else { /* thread is not marked or without upvalues */ |
@@ -379,13 +365,13 @@ static int remarkupvals (global_State *g) { | |||
379 | thread->twups = thread; /* mark that it is out of list */ | 365 | thread->twups = thread; /* mark that it is out of list */ |
380 | for (uv = thread->openupval; uv != NULL; uv = uv->u.open.next) { | 366 | for (uv = thread->openupval; uv != NULL; uv = uv->u.open.next) { |
381 | lua_assert(getage(uv) <= getage(thread)); | 367 | lua_assert(getage(uv) <= getage(thread)); |
382 | work++; | ||
383 | if (!iswhite(uv)) { /* upvalue already visited? */ | 368 | if (!iswhite(uv)) { /* upvalue already visited? */ |
384 | lua_assert(upisopen(uv) && isgray(uv)); | 369 | lua_assert(upisopen(uv) && isgray(uv)); |
385 | markvalue(g, uv->v.p); /* mark its value */ | 370 | markvalue(g, uv->v.p); /* mark its value */ |
386 | } | 371 | } |
387 | } | 372 | } |
388 | } | 373 | } |
374 | work++; | ||
389 | } | 375 | } |
390 | return work; | 376 | return work; |
391 | } | 377 | } |
@@ -398,10 +384,15 @@ static void cleargraylists (global_State *g) { | |||
398 | 384 | ||
399 | 385 | ||
400 | /* | 386 | /* |
401 | ** mark root set and reset all gray lists, to start a new collection | 387 | ** mark root set and reset all gray lists, to start a new collection. |
388 | ** 'marked' is initialized with the number of fixed objects in the state, | ||
389 | ** to count the total number of live objects during a cycle. (That is | ||
390 | ** the metafield names, plus the reserved words, plus "_ENV" plus the | ||
391 | ** memory-error message.) | ||
402 | */ | 392 | */ |
403 | static void restartcollection (global_State *g) { | 393 | static void restartcollection (global_State *g) { |
404 | cleargraylists(g); | 394 | cleargraylists(g); |
395 | g->marked = NFIXED; | ||
405 | markobject(g, g->mainthread); | 396 | markobject(g, g->mainthread); |
406 | markvalue(g, &g->l_registry); | 397 | markvalue(g, &g->l_registry); |
407 | markmt(g); | 398 | markmt(g); |
@@ -539,7 +530,7 @@ static void traversestrongtable (global_State *g, Table *h) { | |||
539 | } | 530 | } |
540 | 531 | ||
541 | 532 | ||
542 | static lu_mem traversetable (global_State *g, Table *h) { | 533 | static void traversetable (global_State *g, Table *h) { |
543 | const char *weakkey, *weakvalue; | 534 | const char *weakkey, *weakvalue; |
544 | const TValue *mode = gfasttm(g, h->metatable, TM_MODE); | 535 | const TValue *mode = gfasttm(g, h->metatable, TM_MODE); |
545 | TString *smode; | 536 | TString *smode; |
@@ -558,17 +549,15 @@ static lu_mem traversetable (global_State *g, Table *h) { | |||
558 | } | 549 | } |
559 | else /* not weak */ | 550 | else /* not weak */ |
560 | traversestrongtable(g, h); | 551 | traversestrongtable(g, h); |
561 | return 1 + h->alimit + 2 * allocsizenode(h); | ||
562 | } | 552 | } |
563 | 553 | ||
564 | 554 | ||
565 | static int traverseudata (global_State *g, Udata *u) { | 555 | static void traverseudata (global_State *g, Udata *u) { |
566 | int i; | 556 | int i; |
567 | markobjectN(g, u->metatable); /* mark its metatable */ | 557 | markobjectN(g, u->metatable); /* mark its metatable */ |
568 | for (i = 0; i < u->nuvalue; i++) | 558 | for (i = 0; i < u->nuvalue; i++) |
569 | markvalue(g, &u->uv[i].uv); | 559 | markvalue(g, &u->uv[i].uv); |
570 | genlink(g, obj2gco(u)); | 560 | genlink(g, obj2gco(u)); |
571 | return 1 + u->nuvalue; | ||
572 | } | 561 | } |
573 | 562 | ||
574 | 563 | ||
@@ -577,7 +566,7 @@ static int traverseudata (global_State *g, Udata *u) { | |||
577 | ** arrays can be larger than needed; the extra slots are filled with | 566 | ** arrays can be larger than needed; the extra slots are filled with |
578 | ** NULL, so the use of 'markobjectN') | 567 | ** NULL, so the use of 'markobjectN') |
579 | */ | 568 | */ |
580 | static int traverseproto (global_State *g, Proto *f) { | 569 | static void traverseproto (global_State *g, Proto *f) { |
581 | int i; | 570 | int i; |
582 | markobjectN(g, f->source); | 571 | markobjectN(g, f->source); |
583 | for (i = 0; i < f->sizek; i++) /* mark literals */ | 572 | for (i = 0; i < f->sizek; i++) /* mark literals */ |
@@ -588,29 +577,26 @@ static int traverseproto (global_State *g, Proto *f) { | |||
588 | markobjectN(g, f->p[i]); | 577 | markobjectN(g, f->p[i]); |
589 | for (i = 0; i < f->sizelocvars; i++) /* mark local-variable names */ | 578 | for (i = 0; i < f->sizelocvars; i++) /* mark local-variable names */ |
590 | markobjectN(g, f->locvars[i].varname); | 579 | markobjectN(g, f->locvars[i].varname); |
591 | return 1 + f->sizek + f->sizeupvalues + f->sizep + f->sizelocvars; | ||
592 | } | 580 | } |
593 | 581 | ||
594 | 582 | ||
595 | static int traverseCclosure (global_State *g, CClosure *cl) { | 583 | static void traverseCclosure (global_State *g, CClosure *cl) { |
596 | int i; | 584 | int i; |
597 | for (i = 0; i < cl->nupvalues; i++) /* mark its upvalues */ | 585 | for (i = 0; i < cl->nupvalues; i++) /* mark its upvalues */ |
598 | markvalue(g, &cl->upvalue[i]); | 586 | markvalue(g, &cl->upvalue[i]); |
599 | return 1 + cl->nupvalues; | ||
600 | } | 587 | } |
601 | 588 | ||
602 | /* | 589 | /* |
603 | ** Traverse a Lua closure, marking its prototype and its upvalues. | 590 | ** Traverse a Lua closure, marking its prototype and its upvalues. |
604 | ** (Both can be NULL while closure is being created.) | 591 | ** (Both can be NULL while closure is being created.) |
605 | */ | 592 | */ |
606 | static int traverseLclosure (global_State *g, LClosure *cl) { | 593 | static void traverseLclosure (global_State *g, LClosure *cl) { |
607 | int i; | 594 | int i; |
608 | markobjectN(g, cl->p); /* mark its prototype */ | 595 | markobjectN(g, cl->p); /* mark its prototype */ |
609 | for (i = 0; i < cl->nupvalues; i++) { /* visit its upvalues */ | 596 | for (i = 0; i < cl->nupvalues; i++) { /* visit its upvalues */ |
610 | UpVal *uv = cl->upvals[i]; | 597 | UpVal *uv = cl->upvals[i]; |
611 | markobjectN(g, uv); /* mark upvalue */ | 598 | markobjectN(g, uv); /* mark upvalue */ |
612 | } | 599 | } |
613 | return 1 + cl->nupvalues; | ||
614 | } | 600 | } |
615 | 601 | ||
616 | 602 | ||
@@ -626,13 +612,13 @@ static int traverseLclosure (global_State *g, LClosure *cl) { | |||
626 | ** (which can only happen in generational mode) or if the traverse is in | 612 | ** (which can only happen in generational mode) or if the traverse is in |
627 | ** the propagate phase (which can only happen in incremental mode). | 613 | ** the propagate phase (which can only happen in incremental mode). |
628 | */ | 614 | */ |
629 | static int traversethread (global_State *g, lua_State *th) { | 615 | static void traversethread (global_State *g, lua_State *th) { |
630 | UpVal *uv; | 616 | UpVal *uv; |
631 | StkId o = th->stack.p; | 617 | StkId o = th->stack.p; |
632 | if (isold(th) || g->gcstate == GCSpropagate) | 618 | if (isold(th) || g->gcstate == GCSpropagate) |
633 | linkgclist(th, g->grayagain); /* insert into 'grayagain' list */ | 619 | linkgclist(th, g->grayagain); /* insert into 'grayagain' list */ |
634 | if (o == NULL) | 620 | if (o == NULL) |
635 | return 1; /* stack not completely built yet */ | 621 | return; /* stack not completely built yet */ |
636 | lua_assert(g->gcstate == GCSatomic || | 622 | lua_assert(g->gcstate == GCSatomic || |
637 | th->openupval == NULL || isintwups(th)); | 623 | th->openupval == NULL || isintwups(th)); |
638 | for (; o < th->top.p; o++) /* mark live elements in the stack */ | 624 | for (; o < th->top.p; o++) /* mark live elements in the stack */ |
@@ -650,34 +636,35 @@ static int traversethread (global_State *g, lua_State *th) { | |||
650 | g->twups = th; | 636 | g->twups = th; |
651 | } | 637 | } |
652 | } | 638 | } |
653 | return 1 + stacksize(th); | ||
654 | } | 639 | } |
655 | 640 | ||
656 | 641 | ||
657 | /* | 642 | /* |
658 | ** traverse one gray object, turning it to black. | 643 | ** traverse one gray object, turning it to black. |
659 | */ | 644 | */ |
660 | static lu_mem propagatemark (global_State *g) { | 645 | static void propagatemark (global_State *g) { |
661 | GCObject *o = g->gray; | 646 | GCObject *o = g->gray; |
662 | nw2black(o); | 647 | nw2black(o); |
663 | g->gray = *getgclist(o); /* remove from 'gray' list */ | 648 | g->gray = *getgclist(o); /* remove from 'gray' list */ |
664 | switch (o->tt) { | 649 | switch (o->tt) { |
665 | case LUA_VTABLE: return traversetable(g, gco2t(o)); | 650 | case LUA_VTABLE: traversetable(g, gco2t(o)); break; |
666 | case LUA_VUSERDATA: return traverseudata(g, gco2u(o)); | 651 | case LUA_VUSERDATA: traverseudata(g, gco2u(o)); break; |
667 | case LUA_VLCL: return traverseLclosure(g, gco2lcl(o)); | 652 | case LUA_VLCL: traverseLclosure(g, gco2lcl(o)); break; |
668 | case LUA_VCCL: return traverseCclosure(g, gco2ccl(o)); | 653 | case LUA_VCCL: traverseCclosure(g, gco2ccl(o)); break; |
669 | case LUA_VPROTO: return traverseproto(g, gco2p(o)); | 654 | case LUA_VPROTO: traverseproto(g, gco2p(o)); break; |
670 | case LUA_VTHREAD: return traversethread(g, gco2th(o)); | 655 | case LUA_VTHREAD: traversethread(g, gco2th(o)); break; |
671 | default: lua_assert(0); return 0; | 656 | default: lua_assert(0); |
672 | } | 657 | } |
673 | } | 658 | } |
674 | 659 | ||
675 | 660 | ||
676 | static lu_mem propagateall (global_State *g) { | 661 | static l_obj propagateall (global_State *g) { |
677 | lu_mem tot = 0; | 662 | l_obj work = 0; |
678 | while (g->gray) | 663 | while (g->gray) { |
679 | tot += propagatemark(g); | 664 | propagatemark(g); |
680 | return tot; | 665 | work++; |
666 | } | ||
667 | return work; | ||
681 | } | 668 | } |
682 | 669 | ||
683 | 670 | ||
@@ -686,10 +673,10 @@ static lu_mem propagateall (global_State *g) { | |||
686 | ** Repeat until it converges, that is, nothing new is marked. 'dir' | 673 | ** Repeat until it converges, that is, nothing new is marked. 'dir' |
687 | ** inverts the direction of the traversals, trying to speed up | 674 | ** inverts the direction of the traversals, trying to speed up |
688 | ** convergence on chains in the same table. | 675 | ** convergence on chains in the same table. |
689 | ** | ||
690 | */ | 676 | */ |
691 | static void convergeephemerons (global_State *g) { | 677 | static l_obj convergeephemerons (global_State *g) { |
692 | int changed; | 678 | int changed; |
679 | l_obj work = 0; | ||
693 | int dir = 0; | 680 | int dir = 0; |
694 | do { | 681 | do { |
695 | GCObject *w; | 682 | GCObject *w; |
@@ -704,9 +691,11 @@ static void convergeephemerons (global_State *g) { | |||
704 | propagateall(g); /* propagate changes */ | 691 | propagateall(g); /* propagate changes */ |
705 | changed = 1; /* will have to revisit all ephemeron tables */ | 692 | changed = 1; /* will have to revisit all ephemeron tables */ |
706 | } | 693 | } |
694 | work++; | ||
707 | } | 695 | } |
708 | dir = !dir; /* invert direction next time */ | 696 | dir = !dir; /* invert direction next time */ |
709 | } while (changed); /* repeat until no more changes */ | 697 | } while (changed); /* repeat until no more changes */ |
698 | return work; | ||
710 | } | 699 | } |
711 | 700 | ||
712 | /* }====================================================== */ | 701 | /* }====================================================== */ |
@@ -722,7 +711,8 @@ static void convergeephemerons (global_State *g) { | |||
722 | /* | 711 | /* |
723 | ** clear entries with unmarked keys from all weaktables in list 'l' | 712 | ** clear entries with unmarked keys from all weaktables in list 'l' |
724 | */ | 713 | */ |
725 | static void clearbykeys (global_State *g, GCObject *l) { | 714 | static l_obj clearbykeys (global_State *g, GCObject *l) { |
715 | l_obj work = 0; | ||
726 | for (; l; l = gco2t(l)->gclist) { | 716 | for (; l; l = gco2t(l)->gclist) { |
727 | Table *h = gco2t(l); | 717 | Table *h = gco2t(l); |
728 | Node *limit = gnodelast(h); | 718 | Node *limit = gnodelast(h); |
@@ -733,7 +723,9 @@ static void clearbykeys (global_State *g, GCObject *l) { | |||
733 | if (isempty(gval(n))) /* is entry empty? */ | 723 | if (isempty(gval(n))) /* is entry empty? */ |
734 | clearkey(n); /* clear its key */ | 724 | clearkey(n); /* clear its key */ |
735 | } | 725 | } |
726 | work++; | ||
736 | } | 727 | } |
728 | return work; | ||
737 | } | 729 | } |
738 | 730 | ||
739 | 731 | ||
@@ -741,7 +733,8 @@ static void clearbykeys (global_State *g, GCObject *l) { | |||
741 | ** clear entries with unmarked values from all weaktables in list 'l' up | 733 | ** clear entries with unmarked values from all weaktables in list 'l' up |
742 | ** to element 'f' | 734 | ** to element 'f' |
743 | */ | 735 | */ |
744 | static void clearbyvalues (global_State *g, GCObject *l, GCObject *f) { | 736 | static l_obj clearbyvalues (global_State *g, GCObject *l, GCObject *f) { |
737 | l_obj work = 0; | ||
745 | for (; l != f; l = gco2t(l)->gclist) { | 738 | for (; l != f; l = gco2t(l)->gclist) { |
746 | Table *h = gco2t(l); | 739 | Table *h = gco2t(l); |
747 | Node *n, *limit = gnodelast(h); | 740 | Node *n, *limit = gnodelast(h); |
@@ -758,7 +751,9 @@ static void clearbyvalues (global_State *g, GCObject *l, GCObject *f) { | |||
758 | if (isempty(gval(n))) /* is entry empty? */ | 751 | if (isempty(gval(n))) /* is entry empty? */ |
759 | clearkey(n); /* clear its key */ | 752 | clearkey(n); /* clear its key */ |
760 | } | 753 | } |
754 | work++; | ||
761 | } | 755 | } |
756 | return work; | ||
762 | } | 757 | } |
763 | 758 | ||
764 | 759 | ||
@@ -770,6 +765,7 @@ static void freeupval (lua_State *L, UpVal *uv) { | |||
770 | 765 | ||
771 | 766 | ||
772 | static void freeobj (lua_State *L, GCObject *o) { | 767 | static void freeobj (lua_State *L, GCObject *o) { |
768 | G(L)->totalobjs--; | ||
773 | switch (o->tt) { | 769 | switch (o->tt) { |
774 | case LUA_VPROTO: | 770 | case LUA_VPROTO: |
775 | luaF_freeproto(L, gco2p(o)); | 771 | luaF_freeproto(L, gco2p(o)); |
@@ -819,10 +815,9 @@ static void freeobj (lua_State *L, GCObject *o) { | |||
819 | ** objects, where a dead object is one marked with the old (non current) | 815 | ** objects, where a dead object is one marked with the old (non current) |
820 | ** white; change all non-dead objects back to white, preparing for next | 816 | ** white; change all non-dead objects back to white, preparing for next |
821 | ** collection cycle. Return where to continue the traversal or NULL if | 817 | ** collection cycle. Return where to continue the traversal or NULL if |
822 | ** list is finished. ('*countout' gets the number of elements traversed.) | 818 | ** list is finished. |
823 | */ | 819 | */ |
824 | static GCObject **sweeplist (lua_State *L, GCObject **p, int countin, | 820 | static GCObject **sweeplist (lua_State *L, GCObject **p, int countin) { |
825 | int *countout) { | ||
826 | global_State *g = G(L); | 821 | global_State *g = G(L); |
827 | int ow = otherwhite(g); | 822 | int ow = otherwhite(g); |
828 | int i; | 823 | int i; |
@@ -839,8 +834,6 @@ static GCObject **sweeplist (lua_State *L, GCObject **p, int countin, | |||
839 | p = &curr->next; /* go to next element */ | 834 | p = &curr->next; /* go to next element */ |
840 | } | 835 | } |
841 | } | 836 | } |
842 | if (countout) | ||
843 | *countout = i; /* number of elements traversed */ | ||
844 | return (*p == NULL) ? NULL : p; | 837 | return (*p == NULL) ? NULL : p; |
845 | } | 838 | } |
846 | 839 | ||
@@ -851,7 +844,7 @@ static GCObject **sweeplist (lua_State *L, GCObject **p, int countin, | |||
851 | static GCObject **sweeptolive (lua_State *L, GCObject **p) { | 844 | static GCObject **sweeptolive (lua_State *L, GCObject **p) { |
852 | GCObject **old = p; | 845 | GCObject **old = p; |
853 | do { | 846 | do { |
854 | p = sweeplist(L, p, 1, NULL); | 847 | p = sweeplist(L, p, 1); |
855 | } while (p == old); | 848 | } while (p == old); |
856 | return p; | 849 | return p; |
857 | } | 850 | } |
@@ -870,11 +863,8 @@ static GCObject **sweeptolive (lua_State *L, GCObject **p) { | |||
870 | */ | 863 | */ |
871 | static void checkSizes (lua_State *L, global_State *g) { | 864 | static void checkSizes (lua_State *L, global_State *g) { |
872 | if (!g->gcemergency) { | 865 | if (!g->gcemergency) { |
873 | if (g->strt.nuse < g->strt.size / 4) { /* string table too big? */ | 866 | if (g->strt.nuse < g->strt.size / 4) /* string table too big? */ |
874 | l_mem olddebt = g->GCdebt; | ||
875 | luaS_resize(L, g->strt.size / 2); | 867 | luaS_resize(L, g->strt.size / 2); |
876 | g->GCestimate += g->GCdebt - olddebt; /* correct estimate */ | ||
877 | } | ||
878 | } | 868 | } |
879 | } | 869 | } |
880 | 870 | ||
@@ -933,18 +923,6 @@ static void GCTM (lua_State *L) { | |||
933 | 923 | ||
934 | 924 | ||
935 | /* | 925 | /* |
936 | ** Call a few finalizers | ||
937 | */ | ||
938 | static int runafewfinalizers (lua_State *L, int n) { | ||
939 | global_State *g = G(L); | ||
940 | int i; | ||
941 | for (i = 0; i < n && g->tobefnz; i++) | ||
942 | GCTM(L); /* call one finalizer */ | ||
943 | return i; | ||
944 | } | ||
945 | |||
946 | |||
947 | /* | ||
948 | ** call all pending finalizers | 926 | ** call all pending finalizers |
949 | */ | 927 | */ |
950 | static void callallpendingfinalizers (lua_State *L) { | 928 | static void callallpendingfinalizers (lua_State *L) { |
@@ -1052,20 +1030,13 @@ void luaC_checkfinalizer (lua_State *L, GCObject *o, Table *mt) { | |||
1052 | 1030 | ||
1053 | /* | 1031 | /* |
1054 | ** Set the "time" to wait before starting a new GC cycle; cycle will | 1032 | ** Set the "time" to wait before starting a new GC cycle; cycle will |
1055 | ** start when memory use hits the threshold of ('estimate' * pause / | 1033 | ** start when number of objects in use hits the threshold of |
1056 | ** PAUSEADJ). (Division by 'estimate' should be OK: it cannot be zero, | 1034 | ** approximately (marked * pause / 100). |
1057 | ** because Lua cannot even start with less than PAUSEADJ bytes). | ||
1058 | */ | 1035 | */ |
1059 | static void setpause (global_State *g) { | 1036 | static void setpause (global_State *g) { |
1060 | l_mem threshold, debt; | 1037 | l_obj threshold = applygcparam(g, gcpause, g->marked); |
1061 | int pause = getgcparam(g->gcpause); | 1038 | l_obj debt = threshold - gettotalobjs(g); |
1062 | l_mem estimate = g->GCestimate / PAUSEADJ; /* adjust 'estimate' */ | 1039 | if (debt < 0) debt = 0; |
1063 | lua_assert(estimate > 0); | ||
1064 | threshold = (pause < MAX_LMEM / estimate) /* overflow? */ | ||
1065 | ? estimate * pause /* no overflow */ | ||
1066 | : MAX_LMEM; /* overflow; truncate to maximum */ | ||
1067 | debt = gettotalbytes(g) - threshold; | ||
1068 | if (debt > 0) debt = 0; | ||
1069 | luaE_setdebt(g, debt); | 1040 | luaE_setdebt(g, debt); |
1070 | } | 1041 | } |
1071 | 1042 | ||
@@ -1305,18 +1276,17 @@ static void atomic2gen (lua_State *L, global_State *g) { | |||
1305 | sweep2old(L, &g->tobefnz); | 1276 | sweep2old(L, &g->tobefnz); |
1306 | 1277 | ||
1307 | g->gckind = KGC_GEN; | 1278 | g->gckind = KGC_GEN; |
1308 | g->lastatomic = 0; | 1279 | g->GClastmajor = gettotalobjs(g); /* base for memory control */ |
1309 | g->GCestimate = gettotalbytes(g); /* base for memory control */ | ||
1310 | finishgencycle(L, g); | 1280 | finishgencycle(L, g); |
1311 | } | 1281 | } |
1312 | 1282 | ||
1313 | 1283 | ||
1314 | /* | 1284 | /* |
1315 | ** Set debt for the next minor collection, which will happen when | 1285 | ** Set debt for the next minor collection, which will happen when |
1316 | ** memory grows 'genminormul'%. | 1286 | ** total number of objects grows 'genminormul'%. |
1317 | */ | 1287 | */ |
1318 | static void setminordebt (global_State *g) { | 1288 | static void setminordebt (global_State *g) { |
1319 | luaE_setdebt(g, -(cast(l_mem, (gettotalbytes(g) / 100)) * g->genminormul)); | 1289 | luaE_setdebt(g, applygcparam(g, genminormul, gettotalobjs(g))); |
1320 | } | 1290 | } |
1321 | 1291 | ||
1322 | 1292 | ||
@@ -1326,14 +1296,12 @@ static void setminordebt (global_State *g) { | |||
1326 | ** are cleared. Then, turn all objects into old and finishes the | 1296 | ** are cleared. Then, turn all objects into old and finishes the |
1327 | ** collection. | 1297 | ** collection. |
1328 | */ | 1298 | */ |
1329 | static lu_mem entergen (lua_State *L, global_State *g) { | 1299 | static void entergen (lua_State *L, global_State *g) { |
1330 | lu_mem numobjs; | ||
1331 | luaC_runtilstate(L, bitmask(GCSpause)); /* prepare to start a new cycle */ | 1300 | luaC_runtilstate(L, bitmask(GCSpause)); /* prepare to start a new cycle */ |
1332 | luaC_runtilstate(L, bitmask(GCSpropagate)); /* start new cycle */ | 1301 | luaC_runtilstate(L, bitmask(GCSpropagate)); /* start new cycle */ |
1333 | numobjs = atomic(L); /* propagates all and then do the atomic stuff */ | 1302 | atomic(L); /* propagates all and then do the atomic stuff */ |
1334 | atomic2gen(L, g); | 1303 | atomic2gen(L, g); |
1335 | setminordebt(g); /* set debt assuming next cycle will be minor */ | 1304 | setminordebt(g); /* set debt assuming next cycle will be minor */ |
1336 | return numobjs; | ||
1337 | } | 1305 | } |
1338 | 1306 | ||
1339 | 1307 | ||
@@ -1350,7 +1318,6 @@ static void enterinc (global_State *g) { | |||
1350 | g->finobjrold = g->finobjold1 = g->finobjsur = NULL; | 1318 | g->finobjrold = g->finobjold1 = g->finobjsur = NULL; |
1351 | g->gcstate = GCSpause; | 1319 | g->gcstate = GCSpause; |
1352 | g->gckind = KGC_INC; | 1320 | g->gckind = KGC_INC; |
1353 | g->lastatomic = 0; | ||
1354 | } | 1321 | } |
1355 | 1322 | ||
1356 | 1323 | ||
@@ -1359,111 +1326,75 @@ static void enterinc (global_State *g) { | |||
1359 | */ | 1326 | */ |
1360 | void luaC_changemode (lua_State *L, int newmode) { | 1327 | void luaC_changemode (lua_State *L, int newmode) { |
1361 | global_State *g = G(L); | 1328 | global_State *g = G(L); |
1362 | if (newmode != g->gckind) { | 1329 | if (newmode != g->gckind) { /* does it need to change? */ |
1363 | if (newmode == KGC_GEN) /* entering generational mode? */ | 1330 | if (newmode == KGC_INC) { /* entering incremental mode? */ |
1331 | if (g->gckind == KGC_GENMAJOR) | ||
1332 | g->gckind = KGC_INC; /* already incremental but in name */ | ||
1333 | else | ||
1334 | enterinc(g); /* entering incremental mode */ | ||
1335 | } | ||
1336 | else { | ||
1337 | lua_assert(newmode == KGC_GEN); | ||
1364 | entergen(L, g); | 1338 | entergen(L, g); |
1365 | else | 1339 | } |
1366 | enterinc(g); /* entering incremental mode */ | ||
1367 | } | 1340 | } |
1368 | g->lastatomic = 0; | ||
1369 | } | 1341 | } |
1370 | 1342 | ||
1371 | 1343 | ||
1372 | /* | 1344 | /* |
1373 | ** Does a full collection in generational mode. | 1345 | ** Does a full collection in generational mode. |
1374 | */ | 1346 | */ |
1375 | static lu_mem fullgen (lua_State *L, global_State *g) { | 1347 | static void fullgen (lua_State *L, global_State *g) { |
1376 | enterinc(g); | 1348 | enterinc(g); |
1377 | return entergen(L, g); | 1349 | entergen(L, g); |
1378 | } | 1350 | } |
1379 | 1351 | ||
1380 | 1352 | ||
1381 | /* | 1353 | /* |
1382 | ** Does a major collection after last collection was a "bad collection". | 1354 | ** Does a major collector up to the atomic phase and then either |
1383 | ** | 1355 | ** returns to minor collections or stays doing major ones. If the |
1384 | ** When the program is building a big structure, it allocates lots of | 1356 | ** number of objects collected this time (numobjs - marked) is more than |
1385 | ** memory but generates very little garbage. In those scenarios, | 1357 | ** half the number of objects created since the last major collection |
1386 | ** the generational mode just wastes time doing small collections, and | 1358 | ** (numobjs - lastmajor), it goes back to minor collections. |
1387 | ** major collections are frequently what we call a "bad collection", a | 1359 | */ |
1388 | ** collection that frees too few objects. To avoid the cost of switching | 1360 | static void genmajorstep (lua_State *L, global_State *g) { |
1389 | ** between generational mode and the incremental mode needed for full | 1361 | l_obj lastmajor = g->GClastmajor; /* count from last collection */ |
1390 | ** (major) collections, the collector tries to stay in incremental mode | 1362 | l_obj numobjs = gettotalobjs(g); /* current count */ |
1391 | ** after a bad collection, and to switch back to generational mode only | ||
1392 | ** after a "good" collection (one that traverses less than 9/8 objects | ||
1393 | ** of the previous one). | ||
1394 | ** The collector must choose whether to stay in incremental mode or to | ||
1395 | ** switch back to generational mode before sweeping. At this point, it | ||
1396 | ** does not know the real memory in use, so it cannot use memory to | ||
1397 | ** decide whether to return to generational mode. Instead, it uses the | ||
1398 | ** number of objects traversed (returned by 'atomic') as a proxy. The | ||
1399 | ** field 'g->lastatomic' keeps this count from the last collection. | ||
1400 | ** ('g->lastatomic != 0' also means that the last collection was bad.) | ||
1401 | */ | ||
1402 | static void stepgenfull (lua_State *L, global_State *g) { | ||
1403 | lu_mem newatomic; /* count of traversed objects */ | ||
1404 | lu_mem lastatomic = g->lastatomic; /* count from last collection */ | ||
1405 | if (g->gckind == KGC_GEN) /* still in generational mode? */ | ||
1406 | enterinc(g); /* enter incremental mode */ | ||
1407 | luaC_runtilstate(L, bitmask(GCSpropagate)); /* start new cycle */ | 1363 | luaC_runtilstate(L, bitmask(GCSpropagate)); /* start new cycle */ |
1408 | newatomic = atomic(L); /* mark everybody */ | 1364 | atomic(L); /* mark everybody */ |
1409 | if (newatomic < lastatomic + (lastatomic >> 3)) { /* good collection? */ | 1365 | if ((numobjs - g->marked) > ((numobjs - lastmajor) >> 1)) { |
1410 | atomic2gen(L, g); /* return to generational mode */ | 1366 | atomic2gen(L, g); /* return to generational mode */ |
1411 | setminordebt(g); | 1367 | setminordebt(g); |
1412 | } | 1368 | } |
1413 | else { /* another bad collection; stay in incremental mode */ | 1369 | else { /* bad collection; stay in major mode */ |
1414 | g->GCestimate = gettotalbytes(g); /* first estimate */ | ||
1415 | entersweep(L); | 1370 | entersweep(L); |
1416 | luaC_runtilstate(L, bitmask(GCSpause)); /* finish collection */ | 1371 | luaC_runtilstate(L, bitmask(GCSpause)); /* finish collection */ |
1417 | setpause(g); | 1372 | setpause(g); |
1418 | g->lastatomic = newatomic; | 1373 | g->GClastmajor = gettotalobjs(g); |
1419 | } | 1374 | } |
1420 | } | 1375 | } |
1421 | 1376 | ||
1422 | 1377 | ||
1423 | /* | 1378 | /* |
1424 | ** Does a generational "step". | 1379 | ** Does a generational "step". If the total number of objects grew |
1425 | ** Usually, this means doing a minor collection and setting the debt to | 1380 | ** more than 'majormul'% since the last major collection, does a |
1426 | ** make another collection when memory grows 'genminormul'% larger. | 1381 | ** major collection. Otherwise, does a minor collection. |
1427 | ** | ||
1428 | ** However, there are exceptions. If memory grows 'genmajormul'% | ||
1429 | ** larger than it was at the end of the last major collection (kept | ||
1430 | ** in 'g->GCestimate'), the function does a major collection. At the | ||
1431 | ** end, it checks whether the major collection was able to free a | ||
1432 | ** decent amount of memory (at least half the growth in memory since | ||
1433 | ** previous major collection). If so, the collector keeps its state, | ||
1434 | ** and the next collection will probably be minor again. Otherwise, | ||
1435 | ** we have what we call a "bad collection". In that case, set the field | ||
1436 | ** 'g->lastatomic' to signal that fact, so that the next collection will | ||
1437 | ** go to 'stepgenfull'. | ||
1438 | ** | ||
1439 | ** 'GCdebt <= 0' means an explicit call to GC step with "size" zero; | ||
1440 | ** in that case, do a minor collection. | ||
1441 | */ | 1382 | */ |
1442 | static void genstep (lua_State *L, global_State *g) { | 1383 | static void genstep (lua_State *L, global_State *g) { |
1443 | if (g->lastatomic != 0) /* last collection was a bad one? */ | 1384 | l_obj majorbase = g->GClastmajor; /* count after last major collection */ |
1444 | stepgenfull(L, g); /* do a full step */ | 1385 | l_obj majorinc = applygcparam(g, genmajormul, majorbase); |
1445 | else { | 1386 | if (gettotalobjs(g) > majorbase + majorinc && 0) { |
1446 | lu_mem majorbase = g->GCestimate; /* memory after last major collection */ | 1387 | /* do a major collection */ |
1447 | lu_mem majorinc = (majorbase / 100) * getgcparam(g->genmajormul); | 1388 | enterinc(g); |
1448 | if (g->GCdebt > 0 && gettotalbytes(g) > majorbase + majorinc) { | 1389 | g->gckind = KGC_GENMAJOR; |
1449 | lu_mem numobjs = fullgen(L, g); /* do a major collection */ | 1390 | genmajorstep(L, g); |
1450 | if (gettotalbytes(g) < majorbase + (majorinc / 2)) { | 1391 | } |
1451 | /* collected at least half of memory growth since last major | 1392 | else { /* regular case; do a minor collection */ |
1452 | collection; keep doing minor collections. */ | 1393 | g->marked = 0; |
1453 | lua_assert(g->lastatomic == 0); | 1394 | youngcollection(L, g); |
1454 | } | 1395 | setminordebt(g); |
1455 | else { /* bad collection */ | 1396 | lua_assert(g->GClastmajor == majorbase); |
1456 | g->lastatomic = numobjs; /* signal that last collection was bad */ | ||
1457 | setpause(g); /* do a long wait for next (major) collection */ | ||
1458 | } | ||
1459 | } | ||
1460 | else { /* regular case; do a minor collection */ | ||
1461 | youngcollection(L, g); | ||
1462 | setminordebt(g); | ||
1463 | g->GCestimate = majorbase; /* preserve base value */ | ||
1464 | } | ||
1465 | } | 1397 | } |
1466 | lua_assert(isdecGCmodegen(g)); | ||
1467 | } | 1398 | } |
1468 | 1399 | ||
1469 | /* }====================================================== */ | 1400 | /* }====================================================== */ |
@@ -1522,9 +1453,9 @@ void luaC_freeallobjects (lua_State *L) { | |||
1522 | } | 1453 | } |
1523 | 1454 | ||
1524 | 1455 | ||
1525 | static lu_mem atomic (lua_State *L) { | 1456 | static l_obj atomic (lua_State *L) { |
1457 | l_obj work = 0; | ||
1526 | global_State *g = G(L); | 1458 | global_State *g = G(L); |
1527 | lu_mem work = 0; | ||
1528 | GCObject *origweak, *origall; | 1459 | GCObject *origweak, *origall; |
1529 | GCObject *grayagain = g->grayagain; /* save original list */ | 1460 | GCObject *grayagain = g->grayagain; /* save original list */ |
1530 | g->grayagain = NULL; | 1461 | g->grayagain = NULL; |
@@ -1541,50 +1472,44 @@ static lu_mem atomic (lua_State *L) { | |||
1541 | work += propagateall(g); /* propagate changes */ | 1472 | work += propagateall(g); /* propagate changes */ |
1542 | g->gray = grayagain; | 1473 | g->gray = grayagain; |
1543 | work += propagateall(g); /* traverse 'grayagain' list */ | 1474 | work += propagateall(g); /* traverse 'grayagain' list */ |
1544 | convergeephemerons(g); | 1475 | work += convergeephemerons(g); |
1545 | /* at this point, all strongly accessible objects are marked. */ | 1476 | /* at this point, all strongly accessible objects are marked. */ |
1546 | /* Clear values from weak tables, before checking finalizers */ | 1477 | /* Clear values from weak tables, before checking finalizers */ |
1547 | clearbyvalues(g, g->weak, NULL); | 1478 | work += clearbyvalues(g, g->weak, NULL); |
1548 | clearbyvalues(g, g->allweak, NULL); | 1479 | work += clearbyvalues(g, g->allweak, NULL); |
1549 | origweak = g->weak; origall = g->allweak; | 1480 | origweak = g->weak; origall = g->allweak; |
1550 | separatetobefnz(g, 0); /* separate objects to be finalized */ | 1481 | separatetobefnz(g, 0); /* separate objects to be finalized */ |
1551 | work += markbeingfnz(g); /* mark objects that will be finalized */ | 1482 | work += markbeingfnz(g); /* mark objects that will be finalized */ |
1552 | work += propagateall(g); /* remark, to propagate 'resurrection' */ | 1483 | work += propagateall(g); /* remark, to propagate 'resurrection' */ |
1553 | convergeephemerons(g); | 1484 | work += convergeephemerons(g); |
1554 | /* at this point, all resurrected objects are marked. */ | 1485 | /* at this point, all resurrected objects are marked. */ |
1555 | /* remove dead objects from weak tables */ | 1486 | /* remove dead objects from weak tables */ |
1556 | clearbykeys(g, g->ephemeron); /* clear keys from all ephemeron tables */ | 1487 | work += clearbykeys(g, g->ephemeron); /* clear keys from all ephemeron */ |
1557 | clearbykeys(g, g->allweak); /* clear keys from all 'allweak' tables */ | 1488 | work += clearbykeys(g, g->allweak); /* clear keys from all 'allweak' */ |
1558 | /* clear values from resurrected weak tables */ | 1489 | /* clear values from resurrected weak tables */ |
1559 | clearbyvalues(g, g->weak, origweak); | 1490 | work += clearbyvalues(g, g->weak, origweak); |
1560 | clearbyvalues(g, g->allweak, origall); | 1491 | work += clearbyvalues(g, g->allweak, origall); |
1561 | luaS_clearcache(g); | 1492 | luaS_clearcache(g); |
1562 | g->currentwhite = cast_byte(otherwhite(g)); /* flip current white */ | 1493 | g->currentwhite = cast_byte(otherwhite(g)); /* flip current white */ |
1563 | lua_assert(g->gray == NULL); | 1494 | lua_assert(g->gray == NULL); |
1564 | return work; /* estimate of slots marked by 'atomic' */ | 1495 | return work; |
1565 | } | 1496 | } |
1566 | 1497 | ||
1567 | 1498 | ||
1568 | static int sweepstep (lua_State *L, global_State *g, | 1499 | static void sweepstep (lua_State *L, global_State *g, |
1569 | int nextstate, GCObject **nextlist) { | 1500 | int nextstate, GCObject **nextlist) { |
1570 | if (g->sweepgc) { | 1501 | if (g->sweepgc) |
1571 | l_mem olddebt = g->GCdebt; | 1502 | g->sweepgc = sweeplist(L, g->sweepgc, GCSWEEPMAX); |
1572 | int count; | ||
1573 | g->sweepgc = sweeplist(L, g->sweepgc, GCSWEEPMAX, &count); | ||
1574 | g->GCestimate += g->GCdebt - olddebt; /* update estimate */ | ||
1575 | return count; | ||
1576 | } | ||
1577 | else { /* enter next state */ | 1503 | else { /* enter next state */ |
1578 | g->gcstate = nextstate; | 1504 | g->gcstate = nextstate; |
1579 | g->sweepgc = nextlist; | 1505 | g->sweepgc = nextlist; |
1580 | return 0; /* no work done */ | ||
1581 | } | 1506 | } |
1582 | } | 1507 | } |
1583 | 1508 | ||
1584 | 1509 | ||
1585 | static lu_mem singlestep (lua_State *L) { | 1510 | static l_obj singlestep (lua_State *L) { |
1586 | global_State *g = G(L); | 1511 | global_State *g = G(L); |
1587 | lu_mem work; | 1512 | l_obj work; |
1588 | lua_assert(!g->gcstopem); /* collector is not reentrant */ | 1513 | lua_assert(!g->gcstopem); /* collector is not reentrant */ |
1589 | g->gcstopem = 1; /* no emergency collections while collecting */ | 1514 | g->gcstopem = 1; /* no emergency collections while collecting */ |
1590 | switch (g->gcstate) { | 1515 | switch (g->gcstate) { |
@@ -1599,26 +1524,30 @@ static lu_mem singlestep (lua_State *L) { | |||
1599 | g->gcstate = GCSenteratomic; /* finish propagate phase */ | 1524 | g->gcstate = GCSenteratomic; /* finish propagate phase */ |
1600 | work = 0; | 1525 | work = 0; |
1601 | } | 1526 | } |
1602 | else | 1527 | else { |
1603 | work = propagatemark(g); /* traverse one gray object */ | 1528 | propagatemark(g); /* traverse one gray object */ |
1529 | work = 1; | ||
1530 | } | ||
1604 | break; | 1531 | break; |
1605 | } | 1532 | } |
1606 | case GCSenteratomic: { | 1533 | case GCSenteratomic: { |
1607 | work = atomic(L); /* work is what was traversed by 'atomic' */ | 1534 | work = atomic(L); |
1608 | entersweep(L); | 1535 | entersweep(L); |
1609 | g->GCestimate = gettotalbytes(g); /* first estimate */ | ||
1610 | break; | 1536 | break; |
1611 | } | 1537 | } |
1612 | case GCSswpallgc: { /* sweep "regular" objects */ | 1538 | case GCSswpallgc: { /* sweep "regular" objects */ |
1613 | work = sweepstep(L, g, GCSswpfinobj, &g->finobj); | 1539 | sweepstep(L, g, GCSswpfinobj, &g->finobj); |
1540 | work = GCSWEEPMAX; | ||
1614 | break; | 1541 | break; |
1615 | } | 1542 | } |
1616 | case GCSswpfinobj: { /* sweep objects with finalizers */ | 1543 | case GCSswpfinobj: { /* sweep objects with finalizers */ |
1617 | work = sweepstep(L, g, GCSswptobefnz, &g->tobefnz); | 1544 | sweepstep(L, g, GCSswptobefnz, &g->tobefnz); |
1545 | work = GCSWEEPMAX; | ||
1618 | break; | 1546 | break; |
1619 | } | 1547 | } |
1620 | case GCSswptobefnz: { /* sweep objects to be finalized */ | 1548 | case GCSswptobefnz: { /* sweep objects to be finalized */ |
1621 | work = sweepstep(L, g, GCSswpend, NULL); | 1549 | sweepstep(L, g, GCSswpend, NULL); |
1550 | work = GCSWEEPMAX; | ||
1622 | break; | 1551 | break; |
1623 | } | 1552 | } |
1624 | case GCSswpend: { /* finish sweeps */ | 1553 | case GCSswpend: { /* finish sweeps */ |
@@ -1627,10 +1556,11 @@ static lu_mem singlestep (lua_State *L) { | |||
1627 | work = 0; | 1556 | work = 0; |
1628 | break; | 1557 | break; |
1629 | } | 1558 | } |
1630 | case GCScallfin: { /* call remaining finalizers */ | 1559 | case GCScallfin: { /* call finalizers */ |
1631 | if (g->tobefnz && !g->gcemergency) { | 1560 | if (g->tobefnz && !g->gcemergency) { |
1632 | g->gcstopem = 0; /* ok collections during finalizers */ | 1561 | g->gcstopem = 0; /* ok collections during finalizers */ |
1633 | work = runafewfinalizers(L, GCFINMAX) * GCFINALIZECOST; | 1562 | GCTM(L); /* call one finalizer */ |
1563 | work = 1; | ||
1634 | } | 1564 | } |
1635 | else { /* emergency mode or no more finalizers */ | 1565 | else { /* emergency mode or no more finalizers */ |
1636 | g->gcstate = GCSpause; /* finish collection */ | 1566 | g->gcstate = GCSpause; /* finish collection */ |
@@ -1665,20 +1595,16 @@ void luaC_runtilstate (lua_State *L, int statesmask) { | |||
1665 | ** controls when next step will be performed. | 1595 | ** controls when next step will be performed. |
1666 | */ | 1596 | */ |
1667 | static void incstep (lua_State *L, global_State *g) { | 1597 | static void incstep (lua_State *L, global_State *g) { |
1668 | int stepmul = (getgcparam(g->gcstepmul) | 1); /* avoid division by 0 */ | 1598 | l_obj stepsize = cast(l_obj, 1) << g->gcstepsize; |
1669 | l_mem debt = (g->GCdebt / WORK2MEM) * stepmul; | 1599 | l_obj work2do = applygcparam(g, gcstepmul, stepsize); |
1670 | l_mem stepsize = (g->gcstepsize <= log2maxs(l_mem)) | ||
1671 | ? ((cast(l_mem, 1) << g->gcstepsize) / WORK2MEM) * stepmul | ||
1672 | : MAX_LMEM; /* overflow; keep maximum value */ | ||
1673 | do { /* repeat until pause or enough "credit" (negative debt) */ | 1600 | do { /* repeat until pause or enough "credit" (negative debt) */ |
1674 | lu_mem work = singlestep(L); /* perform one single step */ | 1601 | l_obj work = singlestep(L); /* perform one single step */ |
1675 | debt -= work; | 1602 | work2do -= work; |
1676 | } while (debt > -stepsize && g->gcstate != GCSpause); | 1603 | } while (work2do > 0 && g->gcstate != GCSpause); |
1677 | if (g->gcstate == GCSpause) | 1604 | if (g->gcstate == GCSpause) |
1678 | setpause(g); /* pause until next cycle */ | 1605 | setpause(g); /* pause until next cycle */ |
1679 | else { | 1606 | else { |
1680 | debt = (debt / stepmul) * WORK2MEM; /* convert 'work units' to bytes */ | 1607 | luaE_setdebt(g, stepsize); |
1681 | luaE_setdebt(g, debt); | ||
1682 | } | 1608 | } |
1683 | } | 1609 | } |
1684 | 1610 | ||
@@ -1689,13 +1615,21 @@ static void incstep (lua_State *L, global_State *g) { | |||
1689 | */ | 1615 | */ |
1690 | void luaC_step (lua_State *L) { | 1616 | void luaC_step (lua_State *L) { |
1691 | global_State *g = G(L); | 1617 | global_State *g = G(L); |
1618 | lua_assert(!g->gcemergency); | ||
1692 | if (!gcrunning(g)) /* not running? */ | 1619 | if (!gcrunning(g)) /* not running? */ |
1693 | luaE_setdebt(g, -2000); | 1620 | luaE_setdebt(g, 2000); |
1694 | else { | 1621 | else { |
1695 | if(isdecGCmodegen(g)) | 1622 | switch (g->gckind) { |
1696 | genstep(L, g); | 1623 | case KGC_INC: |
1697 | else | 1624 | incstep(L, g); |
1698 | incstep(L, g); | 1625 | break; |
1626 | case KGC_GEN: | ||
1627 | genstep(L, g); | ||
1628 | break; | ||
1629 | case KGC_GENMAJOR: | ||
1630 | genmajorstep(L, g); | ||
1631 | break; | ||
1632 | } | ||
1699 | } | 1633 | } |
1700 | } | 1634 | } |
1701 | 1635 | ||
@@ -1715,8 +1649,8 @@ static void fullinc (lua_State *L, global_State *g) { | |||
1715 | luaC_runtilstate(L, bitmask(GCSpropagate)); /* start new cycle */ | 1649 | luaC_runtilstate(L, bitmask(GCSpropagate)); /* start new cycle */ |
1716 | g->gcstate = GCSenteratomic; /* go straight to atomic phase ??? */ | 1650 | g->gcstate = GCSenteratomic; /* go straight to atomic phase ??? */ |
1717 | luaC_runtilstate(L, bitmask(GCScallfin)); /* run up to finalizers */ | 1651 | luaC_runtilstate(L, bitmask(GCScallfin)); /* run up to finalizers */ |
1718 | /* estimate must be correct after a full GC cycle */ | 1652 | /* 'marked' must be correct after a full GC cycle */ |
1719 | lua_assert(g->GCestimate == gettotalbytes(g)); | 1653 | lua_assert(g->marked == gettotalobjs(g)); |
1720 | luaC_runtilstate(L, bitmask(GCSpause)); /* finish collection */ | 1654 | luaC_runtilstate(L, bitmask(GCSpause)); /* finish collection */ |
1721 | setpause(g); | 1655 | setpause(g); |
1722 | } | 1656 | } |
@@ -1731,10 +1665,10 @@ void luaC_fullgc (lua_State *L, int isemergency) { | |||
1731 | global_State *g = G(L); | 1665 | global_State *g = G(L); |
1732 | lua_assert(!g->gcemergency); | 1666 | lua_assert(!g->gcemergency); |
1733 | g->gcemergency = isemergency; /* set flag */ | 1667 | g->gcemergency = isemergency; /* set flag */ |
1734 | if (g->gckind == KGC_INC) | 1668 | if (g->gckind == KGC_GEN) |
1735 | fullinc(L, g); | ||
1736 | else | ||
1737 | fullgen(L, g); | 1669 | fullgen(L, g); |
1670 | else | ||
1671 | fullinc(L, g); | ||
1738 | g->gcemergency = 0; | 1672 | g->gcemergency = 0; |
1739 | } | 1673 | } |
1740 | 1674 | ||