diff options
Diffstat (limited to 'ltable.c')
| -rw-r--r-- | ltable.c | 298 |
1 files changed, 100 insertions, 198 deletions
| @@ -41,12 +41,12 @@ | |||
| 41 | 41 | ||
| 42 | 42 | ||
| 43 | /* | 43 | /* |
| 44 | ** Only tables with hash parts larger than 2^LIMFORLAST has a 'lastfree' | 44 | ** Only hash parts with at least 2^LIMFORLAST have a 'lastfree' field |
| 45 | ** field that optimizes finding a free slot. That field is stored just | 45 | ** that optimizes finding a free slot. That field is stored just before |
| 46 | ** before the array of nodes, in the same block. Smaller tables do a | 46 | ** the array of nodes, in the same block. Smaller tables do a complete |
| 47 | ** complete search when looking for a free slot. | 47 | ** search when looking for a free slot. |
| 48 | */ | 48 | */ |
| 49 | #define LIMFORLAST 2 /* log2 of real limit */ | 49 | #define LIMFORLAST 3 /* log2 of real limit (8) */ |
| 50 | 50 | ||
| 51 | /* | 51 | /* |
| 52 | ** The union 'Limbox' stores 'lastfree' and ensures that what follows it | 52 | ** The union 'Limbox' stores 'lastfree' and ensures that what follows it |
| @@ -59,7 +59,7 @@ typedef union { | |||
| 59 | char padding[offsetof(Limbox_aux, follows_pNode)]; | 59 | char padding[offsetof(Limbox_aux, follows_pNode)]; |
| 60 | } Limbox; | 60 | } Limbox; |
| 61 | 61 | ||
| 62 | #define haslastfree(t) ((t)->lsizenode > LIMFORLAST) | 62 | #define haslastfree(t) ((t)->lsizenode >= LIMFORLAST) |
| 63 | #define getlastfree(t) ((cast(Limbox *, (t)->node) - 1)->lastfree) | 63 | #define getlastfree(t) ((cast(Limbox *, (t)->node) - 1)->lastfree) |
| 64 | 64 | ||
| 65 | 65 | ||
| @@ -274,61 +274,6 @@ static int equalkey (const TValue *k1, const Node *n2, int deadok) { | |||
| 274 | 274 | ||
| 275 | 275 | ||
| 276 | /* | 276 | /* |
| 277 | ** True if value of 'alimit' is equal to the real size of the array | ||
| 278 | ** part of table 't'. (Otherwise, the array part must be larger than | ||
| 279 | ** 'alimit'.) | ||
| 280 | */ | ||
| 281 | #define limitequalsasize(t) (isrealasize(t) || ispow2((t)->alimit)) | ||
| 282 | |||
| 283 | |||
| 284 | /* | ||
| 285 | ** Returns the real size of the 'array' array | ||
| 286 | */ | ||
| 287 | unsigned int luaH_realasize (const Table *t) { | ||
| 288 | if (limitequalsasize(t)) | ||
| 289 | return t->alimit; /* this is the size */ | ||
| 290 | else { | ||
| 291 | unsigned int size = t->alimit; | ||
| 292 | /* compute the smallest power of 2 not smaller than 'size' */ | ||
| 293 | size |= (size >> 1); | ||
| 294 | size |= (size >> 2); | ||
| 295 | size |= (size >> 4); | ||
| 296 | size |= (size >> 8); | ||
| 297 | #if (UINT_MAX >> 14) > 3 /* unsigned int has more than 16 bits */ | ||
| 298 | size |= (size >> 16); | ||
| 299 | #if (UINT_MAX >> 30) > 3 | ||
| 300 | size |= (size >> 32); /* unsigned int has more than 32 bits */ | ||
| 301 | #endif | ||
| 302 | #endif | ||
| 303 | size++; | ||
| 304 | lua_assert(ispow2(size) && size/2 < t->alimit && t->alimit < size); | ||
| 305 | return size; | ||
| 306 | } | ||
| 307 | } | ||
| 308 | |||
| 309 | |||
| 310 | /* | ||
| 311 | ** Check whether real size of the array is a power of 2. | ||
| 312 | ** (If it is not, 'alimit' cannot be changed to any other value | ||
| 313 | ** without changing the real size.) | ||
| 314 | */ | ||
| 315 | static int ispow2realasize (const Table *t) { | ||
| 316 | return (!isrealasize(t) || ispow2(t->alimit)); | ||
| 317 | } | ||
| 318 | |||
| 319 | |||
| 320 | static unsigned int setlimittosize (Table *t) { | ||
| 321 | t->alimit = luaH_realasize(t); | ||
| 322 | setrealasize(t); | ||
| 323 | return t->alimit; | ||
| 324 | } | ||
| 325 | |||
| 326 | |||
| 327 | #define limitasasize(t) check_exp(isrealasize(t), t->alimit) | ||
| 328 | |||
| 329 | |||
| 330 | |||
| 331 | /* | ||
| 332 | ** "Generic" get version. (Not that generic: not valid for integers, | 277 | ** "Generic" get version. (Not that generic: not valid for integers, |
| 333 | ** which may be in array part, nor for floats with integral values.) | 278 | ** which may be in array part, nor for floats with integral values.) |
| 334 | ** See explanation about 'deadok' in function 'equalkey'. | 279 | ** See explanation about 'deadok' in function 'equalkey'. |
| @@ -384,7 +329,7 @@ static unsigned findindex (lua_State *L, Table *t, TValue *key, | |||
| 384 | 329 | ||
| 385 | 330 | ||
| 386 | int luaH_next (lua_State *L, Table *t, StkId key) { | 331 | int luaH_next (lua_State *L, Table *t, StkId key) { |
| 387 | unsigned int asize = luaH_realasize(t); | 332 | unsigned int asize = t->asize; |
| 388 | unsigned int i = findindex(L, t, s2v(key), asize); /* find original key */ | 333 | unsigned int i = findindex(L, t, s2v(key), asize); /* find original key */ |
| 389 | for (; i < asize; i++) { /* try first array part */ | 334 | for (; i < asize; i++) { /* try first array part */ |
| 390 | lu_byte tag = *getArrTag(t, i); | 335 | lu_byte tag = *getArrTag(t, i); |
| @@ -425,38 +370,10 @@ static void freehash (lua_State *L, Table *t) { | |||
| 425 | 370 | ||
| 426 | 371 | ||
| 427 | /* | 372 | /* |
| 428 | ** Check whether an integer key is in the array part. If 'alimit' is | 373 | ** Check whether an integer key is in the array part of a table. |
| 429 | ** not the real size of the array, the key still can be in the array | ||
| 430 | ** part. In this case, do the "Xmilia trick" to check whether 'key-1' | ||
| 431 | ** is smaller than the real size. | ||
| 432 | ** The trick works as follow: let 'p' be the integer such that | ||
| 433 | ** '2^(p+1) >= alimit > 2^p', or '2^(p+1) > alimit-1 >= 2^p'. That is, | ||
| 434 | ** 'p' is the highest 1-bit in 'alimit-1', and 2^(p+1) is the real size | ||
| 435 | ** of the array. What we have to check becomes 'key-1 < 2^(p+1)'. We | ||
| 436 | ** compute '(key-1) & ~(alimit-1)', which we call 'res'; it will have | ||
| 437 | ** the 'p' bit cleared. (It may also clear other bits smaller than 'p', | ||
| 438 | ** but no bit higher than 'p'.) If the key is outside the array, that | ||
| 439 | ** is, 'key-1 >= 2^(p+1)', then 'res' will have some 1-bit higher than | ||
| 440 | ** 'p', therefore it will be larger or equal to 'alimit', and the check | ||
| 441 | ** will fail. If 'key-1 < 2^(p+1)', then 'res' has no 1-bit higher than | ||
| 442 | ** 'p', and as the bit 'p' itself was cleared, 'res' will be smaller | ||
| 443 | ** than 2^p, therefore smaller than 'alimit', and the check succeeds. | ||
| 444 | ** As special cases, when 'alimit' is 0 the condition is trivially false, | ||
| 445 | ** and when 'alimit' is 1 the condition simplifies to 'key-1 < alimit'. | ||
| 446 | ** If key is 0 or negative, 'res' will have its higher bit on, so that | ||
| 447 | ** it cannot be smaller than 'alimit'. | ||
| 448 | */ | 374 | */ |
| 449 | static int keyinarray (Table *t, lua_Integer key) { | 375 | l_sinline int keyinarray (Table *t, lua_Integer key) { |
| 450 | lua_Unsigned alimit = t->alimit; | 376 | return (l_castS2U(key) - 1u < t->asize); /* 'key' in [1, t->asize]? */ |
| 451 | if (l_castS2U(key) - 1u < alimit) /* 'key' in [1, t->alimit]? */ | ||
| 452 | return 1; | ||
| 453 | else if (!isrealasize(t) && /* key still may be in the array part? */ | ||
| 454 | (((l_castS2U(key) - 1u) & ~(alimit - 1u)) < alimit)) { | ||
| 455 | t->alimit = cast_uint(key); /* probably '#t' is here now */ | ||
| 456 | return 1; | ||
| 457 | } | ||
| 458 | else | ||
| 459 | return 0; | ||
| 460 | } | 377 | } |
| 461 | 378 | ||
| 462 | 379 | ||
| @@ -466,7 +383,6 @@ static int keyinarray (Table *t, lua_Integer key) { | |||
| 466 | ** ============================================================== | 383 | ** ============================================================== |
| 467 | */ | 384 | */ |
| 468 | 385 | ||
| 469 | |||
| 470 | /* | 386 | /* |
| 471 | ** Structure to count the keys in a table. | 387 | ** Structure to count the keys in a table. |
| 472 | ** 'total' is the total number of keys in the table. | 388 | ** 'total' is the total number of keys in the table. |
| @@ -534,7 +450,7 @@ static void countint (lua_Integer key, Counters *ct) { | |||
| 534 | } | 450 | } |
| 535 | 451 | ||
| 536 | 452 | ||
| 537 | l_sinline int arraykeyisempty (const Table *t, lua_Unsigned key) { | 453 | l_sinline int arraykeyisempty (const Table *t, unsigned key) { |
| 538 | int tag = *getArrTag(t, key - 1); | 454 | int tag = *getArrTag(t, key - 1); |
| 539 | return tagisempty(tag); | 455 | return tagisempty(tag); |
| 540 | } | 456 | } |
| @@ -548,7 +464,7 @@ static void numusearray (const Table *t, Counters *ct) { | |||
| 548 | unsigned int ttlg; /* 2^lg */ | 464 | unsigned int ttlg; /* 2^lg */ |
| 549 | unsigned int ause = 0; /* summation of 'nums' */ | 465 | unsigned int ause = 0; /* summation of 'nums' */ |
| 550 | unsigned int i = 1; /* index to traverse all array keys */ | 466 | unsigned int i = 1; /* index to traverse all array keys */ |
| 551 | unsigned int asize = limitasasize(t); /* real array size */ | 467 | unsigned int asize = t->asize; |
| 552 | /* traverse each slice */ | 468 | /* traverse each slice */ |
| 553 | for (lg = 0, ttlg = 1; lg <= MAXABITS; lg++, ttlg *= 2) { | 469 | for (lg = 0, ttlg = 1; lg <= MAXABITS; lg++, ttlg *= 2) { |
| 554 | unsigned int lc = 0; /* counter */ | 470 | unsigned int lc = 0; /* counter */ |
| @@ -600,7 +516,10 @@ static void numusehash (const Table *t, Counters *ct) { | |||
| 600 | ** "concrete size" (number of bytes in the array). | 516 | ** "concrete size" (number of bytes in the array). |
| 601 | */ | 517 | */ |
| 602 | static size_t concretesize (unsigned int size) { | 518 | static size_t concretesize (unsigned int size) { |
| 603 | return size * sizeof(Value) + size; /* space for the two arrays */ | 519 | if (size == 0) |
| 520 | return 0; | ||
| 521 | else /* space for the two arrays plus an unsigned in between */ | ||
| 522 | return size * (sizeof(Value) + 1) + sizeof(unsigned); | ||
| 604 | } | 523 | } |
| 605 | 524 | ||
| 606 | 525 | ||
| @@ -631,17 +550,18 @@ static Value *resizearray (lua_State *L , Table *t, | |||
| 631 | luaM_reallocvector(L, NULL, 0, newasizeb, lu_byte)); | 550 | luaM_reallocvector(L, NULL, 0, newasizeb, lu_byte)); |
| 632 | if (np == NULL) /* allocation error? */ | 551 | if (np == NULL) /* allocation error? */ |
| 633 | return NULL; | 552 | return NULL; |
| 553 | np += newasize; /* shift pointer to the end of value segment */ | ||
| 634 | if (oldasize > 0) { | 554 | if (oldasize > 0) { |
| 635 | size_t oldasizeb = concretesize(oldasize); | ||
| 636 | /* move common elements to new position */ | 555 | /* move common elements to new position */ |
| 637 | Value *op = t->array - oldasize; /* real original array */ | 556 | size_t oldasizeb = concretesize(oldasize); |
| 557 | Value *op = t->array; /* original array */ | ||
| 638 | unsigned tomove = (oldasize < newasize) ? oldasize : newasize; | 558 | unsigned tomove = (oldasize < newasize) ? oldasize : newasize; |
| 639 | size_t tomoveb = (oldasize < newasize) ? oldasizeb : newasizeb; | 559 | size_t tomoveb = (oldasize < newasize) ? oldasizeb : newasizeb; |
| 640 | lua_assert(tomoveb > 0); | 560 | lua_assert(tomoveb > 0); |
| 641 | memcpy(np + newasize - tomove, op + oldasize - tomove, tomoveb); | 561 | memcpy(np - tomove, op - tomove, tomoveb); |
| 642 | luaM_freemem(L, op, oldasizeb); | 562 | luaM_freemem(L, op - oldasize, oldasizeb); /* free old block */ |
| 643 | } | 563 | } |
| 644 | return np + newasize; /* shift pointer to the end of value segment */ | 564 | return np; |
| 645 | } | 565 | } |
| 646 | } | 566 | } |
| 647 | 567 | ||
| @@ -665,7 +585,7 @@ static void setnodevector (lua_State *L, Table *t, unsigned size) { | |||
| 665 | if (lsize > MAXHBITS || (1u << lsize) > MAXHSIZE) | 585 | if (lsize > MAXHBITS || (1u << lsize) > MAXHSIZE) |
| 666 | luaG_runerror(L, "table overflow"); | 586 | luaG_runerror(L, "table overflow"); |
| 667 | size = twoto(lsize); | 587 | size = twoto(lsize); |
| 668 | if (lsize <= LIMFORLAST) /* no 'lastfree' field? */ | 588 | if (lsize < LIMFORLAST) /* no 'lastfree' field? */ |
| 669 | t->node = luaM_newvector(L, size, Node); | 589 | t->node = luaM_newvector(L, size, Node); |
| 670 | else { | 590 | else { |
| 671 | size_t bsize = size * sizeof(Node) + sizeof(Limbox); | 591 | size_t bsize = size * sizeof(Node) + sizeof(Limbox); |
| @@ -730,7 +650,7 @@ static void exchangehashpart (Table *t1, Table *t2) { | |||
| 730 | static void reinsertOldSlice (lua_State *L, Table *t, unsigned oldasize, | 650 | static void reinsertOldSlice (lua_State *L, Table *t, unsigned oldasize, |
| 731 | unsigned newasize) { | 651 | unsigned newasize) { |
| 732 | unsigned i; | 652 | unsigned i; |
| 733 | t->alimit = newasize; /* pretend array has new size... */ | 653 | t->asize = newasize; /* pretend array has new size... */ |
| 734 | for (i = newasize; i < oldasize; i++) { /* traverse vanishing slice */ | 654 | for (i = newasize; i < oldasize; i++) { /* traverse vanishing slice */ |
| 735 | lu_byte tag = *getArrTag(t, i); | 655 | lu_byte tag = *getArrTag(t, i); |
| 736 | if (!tagisempty(tag)) { /* a non-empty entry? */ | 656 | if (!tagisempty(tag)) { /* a non-empty entry? */ |
| @@ -740,7 +660,7 @@ static void reinsertOldSlice (lua_State *L, Table *t, unsigned oldasize, | |||
| 740 | luaH_setint(L, t, cast_int(i) + 1, &aux); | 660 | luaH_setint(L, t, cast_int(i) + 1, &aux); |
| 741 | } | 661 | } |
| 742 | } | 662 | } |
| 743 | t->alimit = oldasize; /* restore current size... */ | 663 | t->asize = oldasize; /* restore current size... */ |
| 744 | } | 664 | } |
| 745 | 665 | ||
| 746 | 666 | ||
| @@ -772,7 +692,7 @@ static void clearNewSlice (Table *t, unsigned oldasize, unsigned newasize) { | |||
| 772 | void luaH_resize (lua_State *L, Table *t, unsigned newasize, | 692 | void luaH_resize (lua_State *L, Table *t, unsigned newasize, |
| 773 | unsigned nhsize) { | 693 | unsigned nhsize) { |
| 774 | Table newt; /* to keep the new hash part */ | 694 | Table newt; /* to keep the new hash part */ |
| 775 | unsigned int oldasize = setlimittosize(t); | 695 | unsigned oldasize = t->asize; |
| 776 | Value *newarray; | 696 | Value *newarray; |
| 777 | if (newasize > MAXASIZE) | 697 | if (newasize > MAXASIZE) |
| 778 | luaG_runerror(L, "table overflow"); | 698 | luaG_runerror(L, "table overflow"); |
| @@ -794,7 +714,9 @@ void luaH_resize (lua_State *L, Table *t, unsigned newasize, | |||
| 794 | /* allocation ok; initialize new part of the array */ | 714 | /* allocation ok; initialize new part of the array */ |
| 795 | exchangehashpart(t, &newt); /* 't' has the new hash ('newt' has the old) */ | 715 | exchangehashpart(t, &newt); /* 't' has the new hash ('newt' has the old) */ |
| 796 | t->array = newarray; /* set new array part */ | 716 | t->array = newarray; /* set new array part */ |
| 797 | t->alimit = newasize; | 717 | t->asize = newasize; |
| 718 | if (newarray != NULL) | ||
| 719 | *lenhint(t) = newasize / 2u; /* set an initial hint */ | ||
| 798 | clearNewSlice(t, oldasize, newasize); | 720 | clearNewSlice(t, oldasize, newasize); |
| 799 | /* re-insert elements from old hash part into new parts */ | 721 | /* re-insert elements from old hash part into new parts */ |
| 800 | reinsert(L, &newt, t); /* 'newt' now has the old hash */ | 722 | reinsert(L, &newt, t); /* 'newt' now has the old hash */ |
| @@ -818,7 +740,6 @@ static void rehash (lua_State *L, Table *t, const TValue *ek) { | |||
| 818 | Counters ct; | 740 | Counters ct; |
| 819 | unsigned i; | 741 | unsigned i; |
| 820 | unsigned nsize; /* size for the hash part */ | 742 | unsigned nsize; /* size for the hash part */ |
| 821 | setlimittosize(t); | ||
| 822 | /* reset counts */ | 743 | /* reset counts */ |
| 823 | for (i = 0; i <= MAXABITS; i++) ct.nums[i] = 0; | 744 | for (i = 0; i <= MAXABITS; i++) ct.nums[i] = 0; |
| 824 | ct.na = 0; | 745 | ct.na = 0; |
| @@ -829,7 +750,7 @@ static void rehash (lua_State *L, Table *t, const TValue *ek) { | |||
| 829 | numusehash(t, &ct); /* count keys in hash part */ | 750 | numusehash(t, &ct); /* count keys in hash part */ |
| 830 | if (ct.na == 0) { | 751 | if (ct.na == 0) { |
| 831 | /* no new keys to enter array part; keep it with the same size */ | 752 | /* no new keys to enter array part; keep it with the same size */ |
| 832 | asize = luaH_realasize(t); | 753 | asize = t->asize; |
| 833 | } | 754 | } |
| 834 | else { /* compute best size for array part */ | 755 | else { /* compute best size for array part */ |
| 835 | numusearray(t, &ct); /* count keys in array part */ | 756 | numusearray(t, &ct); /* count keys in array part */ |
| @@ -857,15 +778,14 @@ Table *luaH_new (lua_State *L) { | |||
| 857 | t->metatable = NULL; | 778 | t->metatable = NULL; |
| 858 | t->flags = maskflags; /* table has no metamethod fields */ | 779 | t->flags = maskflags; /* table has no metamethod fields */ |
| 859 | t->array = NULL; | 780 | t->array = NULL; |
| 860 | t->alimit = 0; | 781 | t->asize = 0; |
| 861 | setnodevector(L, t, 0); | 782 | setnodevector(L, t, 0); |
| 862 | return t; | 783 | return t; |
| 863 | } | 784 | } |
| 864 | 785 | ||
| 865 | 786 | ||
| 866 | lu_mem luaH_size (Table *t) { | 787 | lu_mem luaH_size (Table *t) { |
| 867 | lu_mem sz = cast(lu_mem, sizeof(Table)) | 788 | lu_mem sz = cast(lu_mem, sizeof(Table)) + concretesize(t->asize); |
| 868 | + luaH_realasize(t) * (sizeof(Value) + 1); | ||
| 869 | if (!isdummy(t)) | 789 | if (!isdummy(t)) |
| 870 | sz += sizehash(t); | 790 | sz += sizehash(t); |
| 871 | return sz; | 791 | return sz; |
| @@ -876,9 +796,8 @@ lu_mem luaH_size (Table *t) { | |||
| 876 | ** Frees a table. | 796 | ** Frees a table. |
| 877 | */ | 797 | */ |
| 878 | void luaH_free (lua_State *L, Table *t) { | 798 | void luaH_free (lua_State *L, Table *t) { |
| 879 | unsigned int realsize = luaH_realasize(t); | ||
| 880 | freehash(L, t); | 799 | freehash(L, t); |
| 881 | resizearray(L, t, realsize, 0); | 800 | resizearray(L, t, t->asize, 0); |
| 882 | luaM_free(L, t); | 801 | luaM_free(L, t); |
| 883 | } | 802 | } |
| 884 | 803 | ||
| @@ -972,7 +891,7 @@ static void luaH_newkey (lua_State *L, Table *t, const TValue *key, | |||
| 972 | 891 | ||
| 973 | static const TValue *getintfromhash (Table *t, lua_Integer key) { | 892 | static const TValue *getintfromhash (Table *t, lua_Integer key) { |
| 974 | Node *n = hashint(t, key); | 893 | Node *n = hashint(t, key); |
| 975 | lua_assert(l_castS2U(key) - 1u >= luaH_realasize(t)); | 894 | lua_assert(!keyinarray(t, key)); |
| 976 | for (;;) { /* check whether 'key' is somewhere in the chain */ | 895 | for (;;) { /* check whether 'key' is somewhere in the chain */ |
| 977 | if (keyisinteger(n) && keyival(n) == key) | 896 | if (keyisinteger(n) && keyival(n) == key) |
| 978 | return gval(n); /* that's it */ | 897 | return gval(n); /* that's it */ |
| @@ -1112,17 +1031,15 @@ static int rawfinishnodeset (const TValue *slot, TValue *val) { | |||
| 1112 | 1031 | ||
| 1113 | 1032 | ||
| 1114 | int luaH_psetint (Table *t, lua_Integer key, TValue *val) { | 1033 | int luaH_psetint (Table *t, lua_Integer key, TValue *val) { |
| 1115 | if (keyinarray(t, key)) { | 1034 | lua_assert(!keyinarray(t, key)); |
| 1116 | lu_byte *tag = getArrTag(t, key - 1); | 1035 | return finishnodeset(t, getintfromhash(t, key), val); |
| 1117 | if (!tagisempty(*tag) || checknoTM(t->metatable, TM_NEWINDEX)) { | 1036 | } |
| 1118 | fval2arr(t, cast_uint(key) - 1, tag, val); | 1037 | |
| 1119 | return HOK; /* success */ | 1038 | |
| 1120 | } | 1039 | static int psetint (Table *t, lua_Integer key, TValue *val) { |
| 1121 | else | 1040 | int hres; |
| 1122 | return ~cast_int(key - 1); /* empty slot in the array part */ | 1041 | luaH_fastseti(t, key, val, hres); |
| 1123 | } | 1042 | return hres; |
| 1124 | else | ||
| 1125 | return finishnodeset(t, getintfromhash(t, key), val); | ||
| 1126 | } | 1043 | } |
| 1127 | 1044 | ||
| 1128 | 1045 | ||
| @@ -1139,12 +1056,12 @@ int luaH_psetstr (Table *t, TString *key, TValue *val) { | |||
| 1139 | int luaH_pset (Table *t, const TValue *key, TValue *val) { | 1056 | int luaH_pset (Table *t, const TValue *key, TValue *val) { |
| 1140 | switch (ttypetag(key)) { | 1057 | switch (ttypetag(key)) { |
| 1141 | case LUA_VSHRSTR: return luaH_psetshortstr(t, tsvalue(key), val); | 1058 | case LUA_VSHRSTR: return luaH_psetshortstr(t, tsvalue(key), val); |
| 1142 | case LUA_VNUMINT: return luaH_psetint(t, ivalue(key), val); | 1059 | case LUA_VNUMINT: return psetint(t, ivalue(key), val); |
| 1143 | case LUA_VNIL: return HNOTFOUND; | 1060 | case LUA_VNIL: return HNOTFOUND; |
| 1144 | case LUA_VNUMFLT: { | 1061 | case LUA_VNUMFLT: { |
| 1145 | lua_Integer k; | 1062 | lua_Integer k; |
| 1146 | if (luaV_flttointeger(fltvalue(key), &k, F2Ieq)) /* integral index? */ | 1063 | if (luaV_flttointeger(fltvalue(key), &k, F2Ieq)) /* integral index? */ |
| 1147 | return luaH_psetint(t, k, val); /* use specialized version */ | 1064 | return psetint(t, k, val); /* use specialized version */ |
| 1148 | /* else... */ | 1065 | /* else... */ |
| 1149 | } /* FALLTHROUGH */ | 1066 | } /* FALLTHROUGH */ |
| 1150 | default: | 1067 | default: |
| @@ -1244,6 +1161,7 @@ static lua_Unsigned hash_search (Table *t, lua_Unsigned j) { | |||
| 1244 | 1161 | ||
| 1245 | 1162 | ||
| 1246 | static unsigned int binsearch (Table *array, unsigned int i, unsigned int j) { | 1163 | static unsigned int binsearch (Table *array, unsigned int i, unsigned int j) { |
| 1164 | lua_assert(i <= j); | ||
| 1247 | while (j - i > 1u) { /* binary search */ | 1165 | while (j - i > 1u) { /* binary search */ |
| 1248 | unsigned int m = (i + j) / 2; | 1166 | unsigned int m = (i + j) / 2; |
| 1249 | if (arraykeyisempty(array, m)) j = m; | 1167 | if (arraykeyisempty(array, m)) j = m; |
| @@ -1253,90 +1171,74 @@ static unsigned int binsearch (Table *array, unsigned int i, unsigned int j) { | |||
| 1253 | } | 1171 | } |
| 1254 | 1172 | ||
| 1255 | 1173 | ||
| 1174 | /* return a border, saving it as a hint for next call */ | ||
| 1175 | static lua_Unsigned newhint (Table *t, unsigned hint) { | ||
| 1176 | lua_assert(hint <= t->asize); | ||
| 1177 | *lenhint(t) = hint; | ||
| 1178 | return hint; | ||
| 1179 | } | ||
| 1180 | |||
| 1181 | |||
| 1256 | /* | 1182 | /* |
| 1257 | ** Try to find a boundary in table 't'. (A 'boundary' is an integer index | 1183 | ** Try to find a border in table 't'. (A 'border' is an integer index |
| 1258 | ** such that t[i] is present and t[i+1] is absent, or 0 if t[1] is absent | 1184 | ** such that t[i] is present and t[i+1] is absent, or 0 if t[1] is absent, |
| 1259 | ** and 'maxinteger' if t[maxinteger] is present.) | 1185 | ** or 'maxinteger' if t[maxinteger] is present.) |
| 1260 | ** (In the next explanation, we use Lua indices, that is, with base 1. | 1186 | ** If there is an array part, try to find a border there. First try |
| 1261 | ** The code itself uses base 0 when indexing the array part of the table.) | 1187 | ** to find it in the vicinity of the previous result (hint), to handle |
| 1262 | ** The code starts with 'limit = t->alimit', a position in the array | 1188 | ** cases like 't[#t + 1] = val' or 't[#t] = nil', that move the border |
| 1263 | ** part that may be a boundary. | 1189 | ** by one entry. Otherwise, do a binary search to find the border. |
| 1264 | ** | 1190 | ** If there is no array part, or its last element is non empty, the |
| 1265 | ** (1) If 't[limit]' is empty, there must be a boundary before it. | 1191 | ** border may be in the hash part. |
| 1266 | ** As a common case (e.g., after 't[#t]=nil'), check whether 'limit-1' | ||
| 1267 | ** is present. If so, it is a boundary. Otherwise, do a binary search | ||
| 1268 | ** between 0 and limit to find a boundary. In both cases, try to | ||
| 1269 | ** use this boundary as the new 'alimit', as a hint for the next call. | ||
| 1270 | ** | ||
| 1271 | ** (2) If 't[limit]' is not empty and the array has more elements | ||
| 1272 | ** after 'limit', try to find a boundary there. Again, try first | ||
| 1273 | ** the special case (which should be quite frequent) where 'limit+1' | ||
| 1274 | ** is empty, so that 'limit' is a boundary. Otherwise, check the | ||
| 1275 | ** last element of the array part. If it is empty, there must be a | ||
| 1276 | ** boundary between the old limit (present) and the last element | ||
| 1277 | ** (absent), which is found with a binary search. (This boundary always | ||
| 1278 | ** can be a new limit.) | ||
| 1279 | ** | ||
| 1280 | ** (3) The last case is when there are no elements in the array part | ||
| 1281 | ** (limit == 0) or its last element (the new limit) is present. | ||
| 1282 | ** In this case, must check the hash part. If there is no hash part | ||
| 1283 | ** or 'limit+1' is absent, 'limit' is a boundary. Otherwise, call | ||
| 1284 | ** 'hash_search' to find a boundary in the hash part of the table. | ||
| 1285 | ** (In those cases, the boundary is not inside the array part, and | ||
| 1286 | ** therefore cannot be used as a new limit.) | ||
| 1287 | */ | 1192 | */ |
| 1288 | lua_Unsigned luaH_getn (Table *t) { | 1193 | lua_Unsigned luaH_getn (Table *t) { |
| 1289 | unsigned int limit = t->alimit; | 1194 | unsigned asize = t->asize; |
| 1290 | if (limit > 0 && arraykeyisempty(t, limit)) { /* (1)? */ | 1195 | if (asize > 0) { /* is there an array part? */ |
| 1291 | /* there must be a boundary before 'limit' */ | 1196 | const unsigned maxvicinity = 4; |
| 1292 | if (limit >= 2 && !arraykeyisempty(t, limit - 1)) { | 1197 | unsigned limit = *lenhint(t); /* start with the hint */ |
| 1293 | /* 'limit - 1' is a boundary; can it be a new limit? */ | 1198 | if (limit == 0) |
| 1294 | if (ispow2realasize(t) && !ispow2(limit - 1)) { | 1199 | limit = 1; /* make limit a valid index in the array */ |
| 1295 | t->alimit = limit - 1; | 1200 | if (arraykeyisempty(t, limit)) { /* t[limit] empty? */ |
| 1296 | setnorealasize(t); /* now 'alimit' is not the real size */ | 1201 | /* there must be a border before 'limit' */ |
| 1202 | unsigned i; | ||
| 1203 | /* look for a border in the vicinity of the hint */ | ||
| 1204 | for (i = 0; i < maxvicinity && limit > 1; i++) { | ||
| 1205 | limit--; | ||
| 1206 | if (!arraykeyisempty(t, limit)) | ||
| 1207 | return newhint(t, limit); /* 'limit' is a border */ | ||
| 1297 | } | 1208 | } |
| 1298 | return limit - 1; | 1209 | /* t[limit] still empty; search for a border in [0, limit) */ |
| 1210 | return newhint(t, binsearch(t, 0, limit)); | ||
| 1299 | } | 1211 | } |
| 1300 | else { /* must search for a boundary in [0, limit] */ | 1212 | else { /* 'limit' is present in table; look for a border after it */ |
| 1301 | unsigned int boundary = binsearch(t, 0, limit); | 1213 | unsigned i; |
| 1302 | /* can this boundary represent the real size of the array? */ | 1214 | /* look for a border in the vicinity of the hint */ |
| 1303 | if (ispow2realasize(t) && boundary > luaH_realasize(t) / 2) { | 1215 | for (i = 0; i < maxvicinity && limit < asize; i++) { |
| 1304 | t->alimit = boundary; /* use it as the new limit */ | 1216 | limit++; |
| 1305 | setnorealasize(t); | 1217 | if (arraykeyisempty(t, limit)) |
| 1218 | return newhint(t, limit - 1); /* 'limit - 1' is a border */ | ||
| 1219 | } | ||
| 1220 | if (arraykeyisempty(t, asize)) { /* last element empty? */ | ||
| 1221 | /* t[limit] not empty; search for a border in [limit, asize) */ | ||
| 1222 | return newhint(t, binsearch(t, limit, asize)); | ||
| 1306 | } | 1223 | } |
| 1307 | return boundary; | ||
| 1308 | } | ||
| 1309 | } | ||
| 1310 | /* 'limit' is zero or present in table */ | ||
| 1311 | if (!limitequalsasize(t)) { /* (2)? */ | ||
| 1312 | /* 'limit' > 0 and array has more elements after 'limit' */ | ||
| 1313 | if (arraykeyisempty(t, limit + 1)) /* 'limit + 1' is empty? */ | ||
| 1314 | return limit; /* this is the boundary */ | ||
| 1315 | /* else, try last element in the array */ | ||
| 1316 | limit = luaH_realasize(t); | ||
| 1317 | if (arraykeyisempty(t, limit)) { /* empty? */ | ||
| 1318 | /* there must be a boundary in the array after old limit, | ||
| 1319 | and it must be a valid new limit */ | ||
| 1320 | unsigned int boundary = binsearch(t, t->alimit, limit); | ||
| 1321 | t->alimit = boundary; | ||
| 1322 | return boundary; | ||
| 1323 | } | 1224 | } |
| 1324 | /* else, new limit is present in the table; check the hash part */ | 1225 | /* last element non empty; set a hint to speed up findind that again */ |
| 1226 | /* (keys in the hash part cannot be hints) */ | ||
| 1227 | *lenhint(t) = asize; | ||
| 1325 | } | 1228 | } |
| 1326 | /* (3) 'limit' is the last element and either is zero or present in table */ | 1229 | /* no array part or t[asize] is not empty; check the hash part */ |
| 1327 | lua_assert(limit == luaH_realasize(t) && | 1230 | lua_assert(asize == 0 || !arraykeyisempty(t, asize)); |
| 1328 | (limit == 0 || !arraykeyisempty(t, limit))); | 1231 | if (isdummy(t) || hashkeyisempty(t, asize + 1)) |
| 1329 | if (isdummy(t) || hashkeyisempty(t, limit + 1)) | 1232 | return asize; /* 'asize + 1' is empty */ |
| 1330 | return limit; /* 'limit + 1' is absent */ | 1233 | else /* 'asize + 1' is also non empty */ |
| 1331 | else /* 'limit + 1' is also present */ | 1234 | return hash_search(t, asize); |
| 1332 | return hash_search(t, limit); | ||
| 1333 | } | 1235 | } |
| 1334 | 1236 | ||
| 1335 | 1237 | ||
| 1336 | 1238 | ||
| 1337 | #if defined(LUA_DEBUG) | 1239 | #if defined(LUA_DEBUG) |
| 1338 | 1240 | ||
| 1339 | /* export these functions for the test library */ | 1241 | /* export this function for the test library */ |
| 1340 | 1242 | ||
| 1341 | Node *luaH_mainposition (const Table *t, const TValue *key) { | 1243 | Node *luaH_mainposition (const Table *t, const TValue *key) { |
| 1342 | return mainpositionTV(t, key); | 1244 | return mainpositionTV(t, key); |
