/* ** $Id: lcode.c,v 1.21 2000/04/06 17:36:52 roberto Exp roberto $ ** Code generator for Lua ** See Copyright Notice in lua.h */ #include "stdlib.h" #define LUA_REENTRANT #include "lcode.h" #include "ldo.h" #include "llex.h" #include "lmem.h" #include "lobject.h" #include "lopcodes.h" #include "lparser.h" #include "lstring.h" void luaK_error (LexState *ls, const char *msg) { luaX_error(ls, msg, ls->token); } /* ** Returns the the previous instruction, for optimizations. ** If there is a jump target between this and the current instruction, ** returns a dummy instruction to avoid wrong optimizations. */ static Instruction previous_instruction (FuncState *fs) { if (fs->pc > fs->lasttarget) /* no jumps to current position? */ return fs->f->code[fs->pc-1]; /* returns previous instruction */ else return CREATE_0(OP_END); /* no optimizations after an `END' */ } int luaK_code (FuncState *fs, Instruction i, int delta) { luaK_deltastack(fs, delta); luaM_growvector(fs->L, fs->f->code, fs->pc, 1, Instruction, codeEM, MAX_INT); fs->f->code[fs->pc] = i; return fs->pc++; } int luaK_0(FuncState *fs, OpCode o, int d) { return luaK_code(fs, CREATE_0(o), d); } int luaK_U(FuncState *fs, OpCode o, int u, int d) { return luaK_code(fs, CREATE_U(o,u), d); } int luaK_S(FuncState *fs, OpCode o, int s, int d) { return luaK_code(fs, CREATE_S(o,s), d); } int luaK_AB(FuncState *fs, OpCode o, int a, int b, int d) { return luaK_code(fs, CREATE_AB(o,a,b), d); } static Instruction prepare (FuncState *fs, Instruction i, int delta) { Instruction previous = previous_instruction(fs); luaK_code(fs, i, delta); return previous; } static void setprevious (FuncState *fs, Instruction i) { fs->pc--; /* remove last instruction */ fs->f->code[fs->pc-1] = i; /* change previous instruction */ } static void luaK_minus (FuncState *fs) { /* PUSHINT s; MINUS -> PUSHINT -s (-k) */ /* PUSHNUM u; MINUS -> PUSHNEGNUM u (-k) */ Instruction previous = prepare(fs, CREATE_0(OP_MINUS), 0); switch(GET_OPCODE(previous)) { case OP_PUSHINT: SETARG_S(previous, -GETARG_S(previous)); break; case OP_PUSHNUM: SET_OPCODE(previous, OP_PUSHNEGNUM); break; default: return; } setprevious(fs, previous); } static void luaK_gettable (FuncState *fs) { /* PUSHSTRING u; GETTABLE -> GETDOTTED u (t.x) */ /* GETLOCAL u; GETTABLE -> GETINDEXED u (t[i]) */ Instruction previous = prepare(fs, CREATE_0(OP_GETTABLE), -1); switch(GET_OPCODE(previous)) { case OP_PUSHSTRING: SET_OPCODE(previous, OP_GETDOTTED); break; case OP_GETLOCAL: SET_OPCODE(previous, OP_GETINDEXED); break; default: return; } setprevious(fs, previous); } static void luaK_add (FuncState *fs) { /* PUSHINT s; ADD -> ADDI s (a+k) */ Instruction previous = prepare(fs, CREATE_0(OP_ADD), -1); switch(GET_OPCODE(previous)) { case OP_PUSHINT: SET_OPCODE(previous, OP_ADDI); break; default: return; } setprevious(fs, previous); } static void luaK_sub (FuncState *fs) { /* PUSHINT s; SUB -> ADDI -s (a-k) */ Instruction previous = prepare(fs, CREATE_0(OP_SUB), -1); switch(GET_OPCODE(previous)) { case OP_PUSHINT: SET_OPCODE(previous, OP_ADDI); SETARG_S(previous, -GETARG_S(previous)); break; default: return; } setprevious(fs, previous); } static void luaK_conc (FuncState *fs) { /* CONCAT u; CONCAT 2 -> CONCAT u+1 (a..b..c) */ Instruction previous = prepare(fs, CREATE_U(OP_CONCAT, 2), -1); switch(GET_OPCODE(previous)) { case OP_CONCAT: SETARG_U(previous, GETARG_U(previous)+1); break; default: return; } setprevious(fs, previous); } static void luaK_getlocal (FuncState *fs, int l) { /* SETLOCAL l 1; GETLOCAL l -> SETLOCAL l 0 */ Instruction previous = prepare(fs, CREATE_U(OP_GETLOCAL, l), 1); if (previous == CREATE_AB(OP_SETLOCAL, l, 1)) { SETARG_B(previous, 0); setprevious(fs, previous); } } static void luaK_setlocal (FuncState *fs, int l) { /* GETLOCAL l; ADDI k, SETLOCAL l -> INCLOCAL k, l ((local)a=a+k) */ Instruction *code = fs->f->code; int pc = fs->pc; if (pc-1 > fs->lasttarget && /* no jumps in-between instructions? */ code[pc-2] == CREATE_U(OP_GETLOCAL, l) && GET_OPCODE(code[pc-1]) == OP_ADDI && abs(GETARG_S(code[pc-1])) <= MAXARG_sA) { int inc = GETARG_S(code[pc-1]); fs->pc = pc-1; code[pc-2] = CREATE_sAB(OP_INCLOCAL, inc, l); luaK_deltastack(fs, -1); } else luaK_AB(fs, OP_SETLOCAL, l, 1, -1); } static void luaK_eq (FuncState *fs) { /* PUSHNIL 1; JMPEQ -> NOT (a==nil) */ Instruction previous = prepare(fs, CREATE_S(OP_JMPEQ, NO_JUMP), -2); if (previous == CREATE_U(OP_PUSHNIL, 1)) { setprevious(fs, CREATE_0(OP_NOT)); luaK_deltastack(fs, 1); /* undo delta from `prepare' */ } } static void luaK_neq (FuncState *fs) { /* PUSHNIL 1; JMPNE -> JMPT (a~=nil) */ Instruction previous = prepare(fs, CREATE_S(OP_JMPNE, NO_JUMP), -2); if (previous == CREATE_U(OP_PUSHNIL, 1)) { setprevious(fs, CREATE_S(OP_JMPT, NO_JUMP)); } } int luaK_jump (FuncState *fs) { int j = luaK_S(fs, OP_JMP, NO_JUMP, 0); if (j == fs->lasttarget) { /* possible jumps to this jump? */ luaK_concat(fs, &j, fs->jlt); /* keep them on hold */ fs->jlt = NO_JUMP; } return j; } void luaK_retcode (FuncState *fs, int nlocals, int nexps) { Instruction previous = prepare(fs, CREATE_U(OP_RETURN, nlocals), 0); if (nexps > 0 && GET_OPCODE(previous) == OP_CALL) { LUA_ASSERT(fs->L, GETARG_B(previous) == MULT_RET, "call should be open"); SET_OPCODE(previous, OP_TAILCALL); SETARG_B(previous, nlocals); setprevious(fs, previous); } } static void luaK_pushnil (FuncState *fs, int n) { Instruction previous = prepare(fs, CREATE_U(OP_PUSHNIL, n), n); switch(GET_OPCODE(previous)) { case OP_PUSHNIL: SETARG_U(previous, GETARG_U(previous)+n); break; default: return; } setprevious(fs, previous); } static void luaK_pop (FuncState *fs, int n) { Instruction previous = prepare(fs, CREATE_U(OP_POP, n), -n); switch(GET_OPCODE(previous)) { case OP_SETTABLE: SETARG_B(previous, GETARG_B(previous)+n); break; case OP_SETLOCAL: SETARG_B(previous, GETARG_B(previous)+n); break; default: return; } setprevious(fs, previous); } static void luaK_fixjump (FuncState *fs, int pc, int dest) { Instruction *jmp = &fs->f->code[pc]; if (dest == NO_JUMP) SETARG_S(*jmp, NO_JUMP); /* point to itself to represent end of list */ else { /* jump is relative to position following jump instruction */ int offset = dest-(pc+1); LUA_ASSERT(L, offset != NO_JUMP, "cannot link to itself"); if (abs(offset) > MAXARG_S) luaK_error(fs->ls, "control structure too long"); SETARG_S(*jmp, offset); } } static int luaK_getjump (FuncState *fs, int pc) { int offset = GETARG_S(fs->f->code[pc]); if (offset == NO_JUMP) /* point to itself represents end of list */ return NO_JUMP; /* end of list */ else return (pc+1)+offset; /* turn offset into absolute position */ } /* ** discharge list of jumps to last target. ** returns current `pc' and marks it as a jump target (to avoid wrong ** optimizations with consecutive instructions not in the same basic block). */ int luaK_getlabel (FuncState *fs) { if (fs->pc != fs->lasttarget) { int lasttarget = fs->lasttarget; fs->lasttarget = fs->pc; luaK_patchlist(fs, fs->jlt, lasttarget); /* discharge old list `jlt' */ fs->jlt = NO_JUMP; /* nobody jumps to this new label (till now) */ } return fs->pc; } void luaK_deltastack (FuncState *fs, int delta) { fs->stacklevel += delta; if (delta > 0 && fs->stacklevel > fs->f->maxstacksize) { if (fs->stacklevel > MAXSTACK) luaK_error(fs->ls, "function or expression too complex"); fs->f->maxstacksize = fs->stacklevel; } } void luaK_kstr (LexState *ls, int c) { luaK_U(ls->fs, OP_PUSHSTRING, c, 1); } static int real_constant (FuncState *fs, Number r) { /* check whether `r' has appeared within the last LOOKBACKNUMS entries */ Proto *f = fs->f; int c = f->nknum; int lim = c < LOOKBACKNUMS ? 0 : c-LOOKBACKNUMS; while (--c >= lim) if (f->knum[c] == r) return c; /* not found; create a new entry */ luaM_growvector(fs->L, f->knum, f->nknum, 1, Number, constantEM, MAXARG_U); c = f->nknum++; f->knum[c] = r; return c; } void luaK_number (FuncState *fs, Number f) { if (f <= (Number)MAXARG_S && (int)f == f) luaK_S(fs, OP_PUSHINT, (int)f, 1); /* f has a short integer value */ else luaK_U(fs, OP_PUSHNUM, real_constant(fs, f), 1); } void luaK_adjuststack (FuncState *fs, int n) { if (n > 0) luaK_pop(fs, n); else if (n < 0) luaK_pushnil(fs, -n); } int luaK_lastisopen (FuncState *fs) { /* check whether last instruction is an open function call */ Instruction i = previous_instruction(fs); if (GET_OPCODE(i) == OP_CALL && GETARG_B(i) == MULT_RET) return 1; else return 0; } void luaK_setcallreturns (FuncState *fs, int nresults) { if (luaK_lastisopen(fs)) { /* expression is an open function call? */ SETARG_B(fs->f->code[fs->pc-1], nresults); /* set number of results */ luaK_deltastack(fs, nresults); /* push results */ } } static void assertglobal (FuncState *fs, int index) { luaS_assertglobal(fs->L, fs->f->kstr[index]); } static int discharge (FuncState *fs, expdesc *var) { switch (var->k) { case VLOCAL: luaK_getlocal(fs, var->u.index); break; case VGLOBAL: luaK_U(fs, OP_GETGLOBAL, var->u.index, 1); assertglobal(fs, var->u.index); /* make sure that there is a global */ break; case VINDEXED: luaK_gettable(fs); break; case VEXP: return 0; /* nothing to do */ } var->k = VEXP; var->u.l.t = var->u.l.f = NO_JUMP; return 1; } static void discharge1 (FuncState *fs, expdesc *var) { discharge(fs, var); /* if it has jumps it is already discharged */ if (var->u.l.t == NO_JUMP && var->u.l.f == NO_JUMP) luaK_setcallreturns(fs, 1); /* call must return 1 value */ } void luaK_storevar (LexState *ls, const expdesc *var) { FuncState *fs = ls->fs; switch (var->k) { case VLOCAL: luaK_setlocal(fs, var->u.index); break; case VGLOBAL: luaK_U(fs, OP_SETGLOBAL, var->u.index, -1); assertglobal(fs, var->u.index); /* make sure that there is a global */ break; case VINDEXED: /* table is at top-3; pop 3 elements after operation */ luaK_AB(fs, OP_SETTABLE, 3, 3, -3); break; default: LUA_INTERNALERROR(ls->L, "invalid var kind to store"); } } static OpCode invertjump (OpCode op) { switch (op) { case OP_JMPNE: return OP_JMPEQ; case OP_JMPEQ: return OP_JMPNE; case OP_JMPLT: return OP_JMPGE; case OP_JMPLE: return OP_JMPGT; case OP_JMPGT: return OP_JMPLE; case OP_JMPGE: return OP_JMPLT; case OP_JMPT: case OP_JMPONT: return OP_JMPF; case OP_JMPF: case OP_JMPONF: return OP_JMPT; default: LUA_INTERNALERROR(NULL, "invalid jump instruction"); return OP_END; /* to avoid warnings */ } } static void luaK_condjump (FuncState *fs, OpCode jump) { Instruction previous = prepare(fs, CREATE_S(jump, NO_JUMP), -1); switch (GET_OPCODE(previous)) { case OP_NOT: previous = CREATE_S(invertjump(jump), NO_JUMP); break; default: return; } setprevious(fs, previous); } static void luaK_patchlistaux (FuncState *fs, int list, int target, OpCode special, int special_target) { Instruction *code = fs->f->code; while (list != NO_JUMP) { int next = luaK_getjump(fs, list); Instruction *i = &code[list]; OpCode op = GET_OPCODE(*i); if (op == special) /* this `op' already has a value */ luaK_fixjump(fs, list, special_target); else { luaK_fixjump(fs, list, target); /* do the patch */ if (op == OP_JMPONT) /* remove eventual values */ SET_OPCODE(*i, OP_JMPT); else if (op == OP_JMPONF) SET_OPCODE(*i, OP_JMPF); } list = next; } } void luaK_patchlist (FuncState *fs, int list, int target) { if (target == fs->lasttarget) /* same target that list `jlt'? */ luaK_concat(fs, &fs->jlt, list); /* delay fixing */ else luaK_patchlistaux(fs, list, target, OP_END, 0); } static int need_value (FuncState *fs, int list, OpCode hasvalue) { /* check whether list has a jump without a value */ for (; list != NO_JUMP; list = luaK_getjump(fs, list)) if (GET_OPCODE(fs->f->code[list]) != hasvalue) return 1; return 0; /* not found */ } void luaK_concat (FuncState *fs, int *l1, int l2) { if (*l1 == NO_JUMP) *l1 = l2; else { int list = *l1; for (;;) { /* traverse `l1' */ int next = luaK_getjump(fs, list); if (next == NO_JUMP) { /* end of list? */ luaK_fixjump(fs, list, l2); return; } list = next; } } } static void luaK_testgo (FuncState *fs, expdesc *v, int invert, OpCode jump) { Instruction *previous; int *golist = &v->u.l.f; int *exitlist = &v->u.l.t; if (invert) { /* interchange `golist' and `exitlist' */ int *temp = golist; golist = exitlist; exitlist = temp; } discharge1(fs, v); previous = &fs->f->code[fs->pc-1]; LUA_ASSERT(L, GET_OPCODE(*previous) != OP_SETLINE, "bad place to set line"); if (ISJUMP(GET_OPCODE(*previous))) { if (invert) SET_OPCODE(*previous, invertjump(GET_OPCODE(*previous))); } else luaK_condjump(fs, jump); luaK_concat(fs, exitlist, fs->pc-1); /* insert last jump in `exitlist' */ luaK_patchlist(fs, *golist, luaK_getlabel(fs)); *golist = NO_JUMP; } void luaK_goiftrue (FuncState *fs, expdesc *v, int keepvalue) { luaK_testgo(fs, v, 1, keepvalue ? OP_JMPONF : OP_JMPF); } void luaK_goiffalse (FuncState *fs, expdesc *v, int keepvalue) { luaK_testgo(fs, v, 0, keepvalue ? OP_JMPONT : OP_JMPT); } void luaK_tostack (LexState *ls, expdesc *v, int onlyone) { FuncState *fs = ls->fs; if (!discharge(fs, v)) { /* `v' is an expression? */ OpCode previous = GET_OPCODE(fs->f->code[fs->pc-1]); LUA_ASSERT(L, previous != OP_SETLINE, "bad place to set line"); if (!ISJUMP(previous) && v->u.l.f == NO_JUMP && v->u.l.t == NO_JUMP) { /* it is an expression without jumps */ if (onlyone) luaK_setcallreturns(fs, 1); /* call must return 1 value */ } else { /* expression has jumps... */ int p_nil = 0; /* position of an eventual PUSHNIL */ int p_1 = 0; /* position of an eventual PUSHINT */ int final; /* position after whole expression */ if (ISJUMP(previous)) { luaK_concat(fs, &v->u.l.t, fs->pc-1); /* put `previous' in true list */ p_nil = luaK_0(fs, OP_PUSHNILJMP, 0); p_1 = luaK_S(fs, OP_PUSHINT, 1, 1); } else { /* still may need a PUSHNIL or a PUSHINT */ int need_nil = need_value(fs, v->u.l.f, OP_JMPONF); int need_1 = need_value(fs, v->u.l.t, OP_JMPONT); if (need_nil && need_1) { luaK_S(fs, OP_JMP, 2, 0); /* skip both pushes */ p_nil = luaK_0(fs, OP_PUSHNILJMP, 0); p_1 = luaK_S(fs, OP_PUSHINT, 1, 0); } else if (need_nil || need_1) { luaK_S(fs, OP_JMP, 1, 0); /* skip one push */ if (need_nil) p_nil = luaK_U(fs, OP_PUSHNIL, 1, 0); else /* need_1 */ p_1 = luaK_S(fs, OP_PUSHINT, 1, 0); } } final = luaK_getlabel(fs); luaK_patchlistaux(fs, v->u.l.f, p_nil, OP_JMPONF, final); luaK_patchlistaux(fs, v->u.l.t, p_1, OP_JMPONT, final); v->u.l.f = v->u.l.t = NO_JUMP; } } } void luaK_prefix (LexState *ls, int op, expdesc *v) { FuncState *fs = ls->fs; if (op == '-') { luaK_tostack(ls, v, 1); luaK_minus(fs); } else { /* op == NOT */ Instruction *previous; discharge1(fs, v); previous = &fs->f->code[fs->pc-1]; if (ISJUMP(GET_OPCODE(*previous))) SET_OPCODE(*previous, invertjump(GET_OPCODE(*previous))); else luaK_0(fs, OP_NOT, 0); /* interchange true and false lists */ { int temp = v->u.l.f; v->u.l.f = v->u.l.t; v->u.l.t = temp; } } } void luaK_infix (LexState *ls, int op, expdesc *v) { FuncState *fs = ls->fs; if (op == TK_AND) luaK_goiftrue(fs, v, 1); else if (op == TK_OR) luaK_goiffalse(fs, v, 1); else luaK_tostack(ls, v, 1); /* all other binary operators need a value */ } void luaK_posfix (LexState *ls, int op, expdesc *v1, expdesc *v2) { FuncState *fs = ls->fs; if (op == TK_AND) { LUA_ASSERT(ls->L, v1->u.l.t == NO_JUMP, "list must be closed"); discharge1(fs, v2); v1->u.l.t = v2->u.l.t; luaK_concat(fs, &v1->u.l.f, v2->u.l.f); } else if (op == TK_OR) { LUA_ASSERT(ls->L, v1->u.l.f == NO_JUMP, "list must be closed"); discharge1(fs, v2); v1->u.l.f = v2->u.l.f; luaK_concat(fs, &v1->u.l.t, v2->u.l.t); } else { luaK_tostack(ls, v2, 1); /* `v2' must be a value */ switch (op) { case '+': luaK_add(fs); break; case '-': luaK_sub(fs); break; case '*': luaK_0(fs, OP_MULT, -1); break; case '/': luaK_0(fs, OP_DIV, -1); break; case '^': luaK_0(fs, OP_POW, -1); break; case TK_CONCAT: luaK_conc(fs); break; case TK_EQ: luaK_eq(fs); break; case TK_NE: luaK_neq(fs); break; case '>': luaK_S(fs, OP_JMPGT, NO_JUMP, -2); break; case '<': luaK_S(fs, OP_JMPLT, NO_JUMP, -2); break; case TK_GE: luaK_S(fs, OP_JMPGE, NO_JUMP, -2); break; case TK_LE: luaK_S(fs, OP_JMPLE, NO_JUMP, -2); break; } } }