aboutsummaryrefslogtreecommitdiff
path: root/src/lj_emit_arm64.h
diff options
context:
space:
mode:
Diffstat (limited to 'src/lj_emit_arm64.h')
-rw-r--r--src/lj_emit_arm64.h419
1 files changed, 419 insertions, 0 deletions
diff --git a/src/lj_emit_arm64.h b/src/lj_emit_arm64.h
new file mode 100644
index 00000000..f09c0f3a
--- /dev/null
+++ b/src/lj_emit_arm64.h
@@ -0,0 +1,419 @@
1/*
2** ARM64 instruction emitter.
3** Copyright (C) 2005-2020 Mike Pall. See Copyright Notice in luajit.h
4**
5** Contributed by Djordje Kovacevic and Stefan Pejic from RT-RK.com.
6** Sponsored by Cisco Systems, Inc.
7*/
8
9/* -- Constant encoding --------------------------------------------------- */
10
11static uint64_t get_k64val(IRIns *ir)
12{
13 if (ir->o == IR_KINT64) {
14 return ir_kint64(ir)->u64;
15 } else if (ir->o == IR_KGC) {
16 return (uint64_t)ir_kgc(ir);
17 } else if (ir->o == IR_KPTR || ir->o == IR_KKPTR) {
18 return (uint64_t)ir_kptr(ir);
19 } else {
20 lua_assert(ir->o == IR_KINT || ir->o == IR_KNULL);
21 return ir->i; /* Sign-extended. */
22 }
23}
24
25/* Encode constant in K12 format for data processing instructions. */
26static uint32_t emit_isk12(int64_t n)
27{
28 uint64_t k = (n < 0) ? -n : n;
29 uint32_t m = (n < 0) ? 0x40000000 : 0;
30 if (k < 0x1000) {
31 return A64I_K12|m|A64F_U12(k);
32 } else if ((k & 0xfff000) == k) {
33 return A64I_K12|m|0x400000|A64F_U12(k>>12);
34 }
35 return 0;
36}
37
38#define emit_clz64(n) __builtin_clzll(n)
39#define emit_ctz64(n) __builtin_ctzll(n)
40
41/* Encode constant in K13 format for logical data processing instructions. */
42static uint32_t emit_isk13(uint64_t n, int is64)
43{
44 int inv = 0, w = 128, lz, tz;
45 if (n & 1) { n = ~n; w = 64; inv = 1; } /* Avoid wrap-around of ones. */
46 if (!n) return 0; /* Neither all-zero nor all-ones are allowed. */
47 do { /* Find the repeat width. */
48 if (is64 && (uint32_t)(n^(n>>32))) break;
49 n = (uint32_t)n;
50 if (!n) return 0; /* Ditto when passing n=0xffffffff and is64=0. */
51 w = 32; if ((n^(n>>16)) & 0xffff) break;
52 n = n & 0xffff; w = 16; if ((n^(n>>8)) & 0xff) break;
53 n = n & 0xff; w = 8; if ((n^(n>>4)) & 0xf) break;
54 n = n & 0xf; w = 4; if ((n^(n>>2)) & 0x3) break;
55 n = n & 0x3; w = 2;
56 } while (0);
57 lz = emit_clz64(n);
58 tz = emit_ctz64(n);
59 if ((int64_t)(n << lz) >> (lz+tz) != -1ll) return 0; /* Non-contiguous? */
60 if (inv)
61 return A64I_K13 | (((lz-w) & 127) << 16) | (((lz+tz-w-1) & 63) << 10);
62 else
63 return A64I_K13 | ((w-tz) << 16) | (((63-lz-tz-w-w) & 63) << 10);
64}
65
66static uint32_t emit_isfpk64(uint64_t n)
67{
68 uint64_t etop9 = ((n >> 54) & 0x1ff);
69 if ((n << 16) == 0 && (etop9 == 0x100 || etop9 == 0x0ff)) {
70 return (uint32_t)(((n >> 48) & 0x7f) | ((n >> 56) & 0x80));
71 }
72 return ~0u;
73}
74
75/* -- Emit basic instructions --------------------------------------------- */
76
77static void emit_dnma(ASMState *as, A64Ins ai, Reg rd, Reg rn, Reg rm, Reg ra)
78{
79 *--as->mcp = ai | A64F_D(rd) | A64F_N(rn) | A64F_M(rm) | A64F_A(ra);
80}
81
82static void emit_dnm(ASMState *as, A64Ins ai, Reg rd, Reg rn, Reg rm)
83{
84 *--as->mcp = ai | A64F_D(rd) | A64F_N(rn) | A64F_M(rm);
85}
86
87static void emit_dm(ASMState *as, A64Ins ai, Reg rd, Reg rm)
88{
89 *--as->mcp = ai | A64F_D(rd) | A64F_M(rm);
90}
91
92static void emit_dn(ASMState *as, A64Ins ai, Reg rd, Reg rn)
93{
94 *--as->mcp = ai | A64F_D(rd) | A64F_N(rn);
95}
96
97static void emit_nm(ASMState *as, A64Ins ai, Reg rn, Reg rm)
98{
99 *--as->mcp = ai | A64F_N(rn) | A64F_M(rm);
100}
101
102static void emit_d(ASMState *as, A64Ins ai, Reg rd)
103{
104 *--as->mcp = ai | A64F_D(rd);
105}
106
107static void emit_n(ASMState *as, A64Ins ai, Reg rn)
108{
109 *--as->mcp = ai | A64F_N(rn);
110}
111
112static int emit_checkofs(A64Ins ai, int64_t ofs)
113{
114 int scale = (ai >> 30) & 3;
115 if (ofs < 0 || (ofs & ((1<<scale)-1))) {
116 return (ofs >= -256 && ofs <= 255) ? -1 : 0;
117 } else {
118 return (ofs < (4096<<scale)) ? 1 : 0;
119 }
120}
121
122static void emit_lso(ASMState *as, A64Ins ai, Reg rd, Reg rn, int64_t ofs)
123{
124 int ot = emit_checkofs(ai, ofs), sc = (ai >> 30) & 3;
125 lua_assert(ot);
126 /* Combine LDR/STR pairs to LDP/STP. */
127 if ((sc == 2 || sc == 3) &&
128 (!(ai & 0x400000) || rd != rn) &&
129 as->mcp != as->mcloop) {
130 uint32_t prev = *as->mcp & ~A64F_D(31);
131 int ofsm = ofs - (1<<sc), ofsp = ofs + (1<<sc);
132 A64Ins aip;
133 if (prev == (ai | A64F_N(rn) | A64F_U12(ofsm>>sc)) ||
134 prev == ((ai^A64I_LS_U) | A64F_N(rn) | A64F_S9(ofsm&0x1ff))) {
135 aip = (A64F_A(rd) | A64F_D(*as->mcp & 31));
136 } else if (prev == (ai | A64F_N(rn) | A64F_U12(ofsp>>sc)) ||
137 prev == ((ai^A64I_LS_U) | A64F_N(rn) | A64F_S9(ofsp&0x1ff))) {
138 aip = (A64F_D(rd) | A64F_A(*as->mcp & 31));
139 ofsm = ofs;
140 } else {
141 goto nopair;
142 }
143 if (ofsm >= (int)((unsigned int)-64<<sc) && ofsm <= (63<<sc)) {
144 *as->mcp = aip | A64F_N(rn) | ((ofsm >> sc) << 15) |
145 (ai ^ ((ai == A64I_LDRx || ai == A64I_STRx) ? 0x50000000 : 0x90000000));
146 return;
147 }
148 }
149nopair:
150 if (ot == 1)
151 *--as->mcp = ai | A64F_D(rd) | A64F_N(rn) | A64F_U12(ofs >> sc);
152 else
153 *--as->mcp = (ai^A64I_LS_U) | A64F_D(rd) | A64F_N(rn) | A64F_S9(ofs & 0x1ff);
154}
155
156/* -- Emit loads/stores --------------------------------------------------- */
157
158/* Prefer rematerialization of BASE/L from global_State over spills. */
159#define emit_canremat(ref) ((ref) <= ASMREF_L)
160
161/* Try to find an N-step delta relative to other consts with N < lim. */
162static int emit_kdelta(ASMState *as, Reg rd, uint64_t k, int lim)
163{
164 RegSet work = ~as->freeset & RSET_GPR;
165 if (lim <= 1) return 0; /* Can't beat that. */
166 while (work) {
167 Reg r = rset_picktop(work);
168 IRRef ref = regcost_ref(as->cost[r]);
169 lua_assert(r != rd);
170 if (ref < REF_TRUE) {
171 uint64_t kx = ra_iskref(ref) ? (uint64_t)ra_krefk(as, ref) :
172 get_k64val(IR(ref));
173 int64_t delta = (int64_t)(k - kx);
174 if (delta == 0) {
175 emit_dm(as, A64I_MOVx, rd, r);
176 return 1;
177 } else {
178 uint32_t k12 = emit_isk12(delta < 0 ? -delta : delta);
179 if (k12) {
180 emit_dn(as, (delta < 0 ? A64I_SUBx : A64I_ADDx)^k12, rd, r);
181 return 1;
182 }
183 /* Do other ops or multi-step deltas pay off? Probably not.
184 ** E.g. XOR rarely helps with pointer consts.
185 */
186 }
187 }
188 rset_clear(work, r);
189 }
190 return 0; /* Failed. */
191}
192
193static void emit_loadk(ASMState *as, Reg rd, uint64_t u64, int is64)
194{
195 uint32_t k13 = emit_isk13(u64, is64);
196 if (k13) { /* Can the constant be represented as a bitmask immediate? */
197 emit_dn(as, (is64|A64I_ORRw)^k13, rd, RID_ZERO);
198 } else {
199 int i, zeros = 0, ones = 0, neg;
200 if (!is64) u64 = (int64_t)(int32_t)u64; /* Sign-extend. */
201 /* Count homogeneous 16 bit fragments. */
202 for (i = 0; i < 4; i++) {
203 uint64_t frag = (u64 >> i*16) & 0xffff;
204 zeros += (frag == 0);
205 ones += (frag == 0xffff);
206 }
207 neg = ones > zeros; /* Use MOVN if it pays off. */
208 if (!emit_kdelta(as, rd, u64, 4 - (neg ? ones : zeros))) {
209 int shift = 0, lshift = 0;
210 uint64_t n64 = neg ? ~u64 : u64;
211 if (n64 != 0) {
212 /* Find first/last fragment to be filled. */
213 shift = (63-emit_clz64(n64)) & ~15;
214 lshift = emit_ctz64(n64) & ~15;
215 }
216 /* MOVK requires the original value (u64). */
217 while (shift > lshift) {
218 uint32_t u16 = (u64 >> shift) & 0xffff;
219 /* Skip fragments that are correctly filled by MOVN/MOVZ. */
220 if (u16 != (neg ? 0xffff : 0))
221 emit_d(as, is64 | A64I_MOVKw | A64F_U16(u16) | A64F_LSL16(shift), rd);
222 shift -= 16;
223 }
224 /* But MOVN needs an inverted value (n64). */
225 emit_d(as, (neg ? A64I_MOVNx : A64I_MOVZx) |
226 A64F_U16((n64 >> lshift) & 0xffff) | A64F_LSL16(lshift), rd);
227 }
228 }
229}
230
231/* Load a 32 bit constant into a GPR. */
232#define emit_loadi(as, rd, i) emit_loadk(as, rd, i, 0)
233
234/* Load a 64 bit constant into a GPR. */
235#define emit_loadu64(as, rd, i) emit_loadk(as, rd, i, A64I_X)
236
237#define emit_loada(as, r, addr) emit_loadu64(as, (r), (uintptr_t)(addr))
238
239#define glofs(as, k) \
240 ((intptr_t)((uintptr_t)(k) - (uintptr_t)&J2GG(as->J)->g))
241#define mcpofs(as, k) \
242 ((intptr_t)((uintptr_t)(k) - (uintptr_t)(as->mcp - 1)))
243#define checkmcpofs(as, k) \
244 (A64F_S_OK(mcpofs(as, k)>>2, 19))
245
246static Reg ra_allock(ASMState *as, intptr_t k, RegSet allow);
247
248/* Get/set from constant pointer. */
249static void emit_lsptr(ASMState *as, A64Ins ai, Reg r, void *p)
250{
251 /* First, check if ip + offset is in range. */
252 if ((ai & 0x00400000) && checkmcpofs(as, p)) {
253 emit_d(as, A64I_LDRLx | A64F_S19(mcpofs(as, p)>>2), r);
254 } else {
255 Reg base = RID_GL; /* Next, try GL + offset. */
256 int64_t ofs = glofs(as, p);
257 if (!emit_checkofs(ai, ofs)) { /* Else split up into base reg + offset. */
258 int64_t i64 = i64ptr(p);
259 base = ra_allock(as, (i64 & ~0x7fffull), rset_exclude(RSET_GPR, r));
260 ofs = i64 & 0x7fffull;
261 }
262 emit_lso(as, ai, r, base, ofs);
263 }
264}
265
266/* Load 64 bit IR constant into register. */
267static void emit_loadk64(ASMState *as, Reg r, IRIns *ir)
268{
269 const uint64_t *k = &ir_k64(ir)->u64;
270 int64_t ofs;
271 if (r >= RID_MAX_GPR) {
272 uint32_t fpk = emit_isfpk64(*k);
273 if (fpk != ~0u) {
274 emit_d(as, A64I_FMOV_DI | A64F_FP8(fpk), (r & 31));
275 return;
276 }
277 }
278 ofs = glofs(as, k);
279 if (emit_checkofs(A64I_LDRx, ofs)) {
280 emit_lso(as, r >= RID_MAX_GPR ? A64I_LDRd : A64I_LDRx,
281 (r & 31), RID_GL, ofs);
282 } else {
283 if (r >= RID_MAX_GPR) {
284 emit_dn(as, A64I_FMOV_D_R, (r & 31), RID_TMP);
285 r = RID_TMP;
286 }
287 if (checkmcpofs(as, k))
288 emit_d(as, A64I_LDRLx | A64F_S19(mcpofs(as, k)>>2), r);
289 else
290 emit_loadu64(as, r, *k);
291 }
292}
293
294/* Get/set global_State fields. */
295#define emit_getgl(as, r, field) \
296 emit_lsptr(as, A64I_LDRx, (r), (void *)&J2G(as->J)->field)
297#define emit_setgl(as, r, field) \
298 emit_lsptr(as, A64I_STRx, (r), (void *)&J2G(as->J)->field)
299
300/* Trace number is determined from pc of exit instruction. */
301#define emit_setvmstate(as, i) UNUSED(i)
302
303/* -- Emit control-flow instructions -------------------------------------- */
304
305/* Label for internal jumps. */
306typedef MCode *MCLabel;
307
308/* Return label pointing to current PC. */
309#define emit_label(as) ((as)->mcp)
310
311static void emit_cond_branch(ASMState *as, A64CC cond, MCode *target)
312{
313 MCode *p = --as->mcp;
314 ptrdiff_t delta = target - p;
315 lua_assert(A64F_S_OK(delta, 19));
316 *p = A64I_BCC | A64F_S19(delta) | cond;
317}
318
319static void emit_branch(ASMState *as, A64Ins ai, MCode *target)
320{
321 MCode *p = --as->mcp;
322 ptrdiff_t delta = target - p;
323 lua_assert(A64F_S_OK(delta, 26));
324 *p = ai | A64F_S26(delta);
325}
326
327static void emit_tnb(ASMState *as, A64Ins ai, Reg r, uint32_t bit, MCode *target)
328{
329 MCode *p = --as->mcp;
330 ptrdiff_t delta = target - p;
331 lua_assert(bit < 63 && A64F_S_OK(delta, 14));
332 if (bit > 31) ai |= A64I_X;
333 *p = ai | A64F_BIT(bit & 31) | A64F_S14(delta) | r;
334}
335
336static void emit_cnb(ASMState *as, A64Ins ai, Reg r, MCode *target)
337{
338 MCode *p = --as->mcp;
339 ptrdiff_t delta = target - p;
340 lua_assert(A64F_S_OK(delta, 19));
341 *p = ai | A64F_S19(delta) | r;
342}
343
344#define emit_jmp(as, target) emit_branch(as, A64I_B, (target))
345
346static void emit_call(ASMState *as, void *target)
347{
348 MCode *p = --as->mcp;
349 ptrdiff_t delta = (char *)target - (char *)p;
350 if (A64F_S_OK(delta>>2, 26)) {
351 *p = A64I_BL | A64F_S26(delta>>2);
352 } else { /* Target out of range: need indirect call. But don't use R0-R7. */
353 Reg r = ra_allock(as, i64ptr(target),
354 RSET_RANGE(RID_X8, RID_MAX_GPR)-RSET_FIXED);
355 *p = A64I_BLR | A64F_N(r);
356 }
357}
358
359/* -- Emit generic operations --------------------------------------------- */
360
361/* Generic move between two regs. */
362static void emit_movrr(ASMState *as, IRIns *ir, Reg dst, Reg src)
363{
364 if (dst >= RID_MAX_GPR) {
365 emit_dn(as, irt_isnum(ir->t) ? A64I_FMOV_D : A64I_FMOV_S,
366 (dst & 31), (src & 31));
367 return;
368 }
369 if (as->mcp != as->mcloop) { /* Swap early registers for loads/stores. */
370 MCode ins = *as->mcp, swp = (src^dst);
371 if ((ins & 0xbf800000) == 0xb9000000) {
372 if (!((ins ^ (dst << 5)) & 0x000003e0))
373 *as->mcp = ins ^ (swp << 5); /* Swap N in load/store. */
374 if (!(ins & 0x00400000) && !((ins ^ dst) & 0x0000001f))
375 *as->mcp = ins ^ swp; /* Swap D in store. */
376 }
377 }
378 emit_dm(as, A64I_MOVx, dst, src);
379}
380
381/* Generic load of register with base and (small) offset address. */
382static void emit_loadofs(ASMState *as, IRIns *ir, Reg r, Reg base, int32_t ofs)
383{
384 if (r >= RID_MAX_GPR)
385 emit_lso(as, irt_isnum(ir->t) ? A64I_LDRd : A64I_LDRs, (r & 31), base, ofs);
386 else
387 emit_lso(as, irt_is64(ir->t) ? A64I_LDRx : A64I_LDRw, r, base, ofs);
388}
389
390/* Generic store of register with base and (small) offset address. */
391static void emit_storeofs(ASMState *as, IRIns *ir, Reg r, Reg base, int32_t ofs)
392{
393 if (r >= RID_MAX_GPR)
394 emit_lso(as, irt_isnum(ir->t) ? A64I_STRd : A64I_STRs, (r & 31), base, ofs);
395 else
396 emit_lso(as, irt_is64(ir->t) ? A64I_STRx : A64I_STRw, r, base, ofs);
397}
398
399/* Emit an arithmetic operation with a constant operand. */
400static void emit_opk(ASMState *as, A64Ins ai, Reg dest, Reg src,
401 int32_t i, RegSet allow)
402{
403 uint32_t k = emit_isk12(i);
404 if (k)
405 emit_dn(as, ai^k, dest, src);
406 else
407 emit_dnm(as, ai, dest, src, ra_allock(as, i, allow));
408}
409
410/* Add offset to pointer. */
411static void emit_addptr(ASMState *as, Reg r, int32_t ofs)
412{
413 if (ofs)
414 emit_opk(as, ofs < 0 ? A64I_SUBx : A64I_ADDx, r, r,
415 ofs < 0 ? -ofs : ofs, rset_exclude(RSET_GPR, r));
416}
417
418#define emit_spsub(as, ofs) emit_addptr(as, RID_SP, -(ofs))
419