diff options
author | cvs2svn <admin@example.com> | 2025-04-14 17:32:06 +0000 |
---|---|---|
committer | cvs2svn <admin@example.com> | 2025-04-14 17:32:06 +0000 |
commit | eb8dd9dca1228af0cd132f515509051ecfabf6f6 (patch) | |
tree | edb6da6af7e865d488dc1a29309f1e1ec226e603 /src/lib/libcrypto/bn/bn_mont.c | |
parent | 247f0352e0ed72a4f476db9dc91f4d982bc83eb2 (diff) | |
download | openbsd-tb_20250414.tar.gz openbsd-tb_20250414.tar.bz2 openbsd-tb_20250414.zip |
This commit was manufactured by cvs2git to create tag 'tb_20250414'.tb_20250414
Diffstat (limited to '')
-rw-r--r-- | src/lib/libcrypto/bn/bn_mont.c | 621 |
1 files changed, 0 insertions, 621 deletions
diff --git a/src/lib/libcrypto/bn/bn_mont.c b/src/lib/libcrypto/bn/bn_mont.c deleted file mode 100644 index edd7bcd0c8..0000000000 --- a/src/lib/libcrypto/bn/bn_mont.c +++ /dev/null | |||
@@ -1,621 +0,0 @@ | |||
1 | /* $OpenBSD: bn_mont.c,v 1.66 2025/03/09 15:22:40 tb Exp $ */ | ||
2 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) | ||
3 | * All rights reserved. | ||
4 | * | ||
5 | * This package is an SSL implementation written | ||
6 | * by Eric Young (eay@cryptsoft.com). | ||
7 | * The implementation was written so as to conform with Netscapes SSL. | ||
8 | * | ||
9 | * This library is free for commercial and non-commercial use as long as | ||
10 | * the following conditions are aheared to. The following conditions | ||
11 | * apply to all code found in this distribution, be it the RC4, RSA, | ||
12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation | ||
13 | * included with this distribution is covered by the same copyright terms | ||
14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | ||
15 | * | ||
16 | * Copyright remains Eric Young's, and as such any Copyright notices in | ||
17 | * the code are not to be removed. | ||
18 | * If this package is used in a product, Eric Young should be given attribution | ||
19 | * as the author of the parts of the library used. | ||
20 | * This can be in the form of a textual message at program startup or | ||
21 | * in documentation (online or textual) provided with the package. | ||
22 | * | ||
23 | * Redistribution and use in source and binary forms, with or without | ||
24 | * modification, are permitted provided that the following conditions | ||
25 | * are met: | ||
26 | * 1. Redistributions of source code must retain the copyright | ||
27 | * notice, this list of conditions and the following disclaimer. | ||
28 | * 2. Redistributions in binary form must reproduce the above copyright | ||
29 | * notice, this list of conditions and the following disclaimer in the | ||
30 | * documentation and/or other materials provided with the distribution. | ||
31 | * 3. All advertising materials mentioning features or use of this software | ||
32 | * must display the following acknowledgement: | ||
33 | * "This product includes cryptographic software written by | ||
34 | * Eric Young (eay@cryptsoft.com)" | ||
35 | * The word 'cryptographic' can be left out if the rouines from the library | ||
36 | * being used are not cryptographic related :-). | ||
37 | * 4. If you include any Windows specific code (or a derivative thereof) from | ||
38 | * the apps directory (application code) you must include an acknowledgement: | ||
39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | ||
40 | * | ||
41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | ||
42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | ||
44 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | ||
45 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | ||
46 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | ||
47 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
48 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | ||
49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | ||
50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | ||
51 | * SUCH DAMAGE. | ||
52 | * | ||
53 | * The licence and distribution terms for any publically available version or | ||
54 | * derivative of this code cannot be changed. i.e. this code cannot simply be | ||
55 | * copied and put under another distribution licence | ||
56 | * [including the GNU Public Licence.] | ||
57 | */ | ||
58 | /* ==================================================================== | ||
59 | * Copyright (c) 1998-2006 The OpenSSL Project. All rights reserved. | ||
60 | * | ||
61 | * Redistribution and use in source and binary forms, with or without | ||
62 | * modification, are permitted provided that the following conditions | ||
63 | * are met: | ||
64 | * | ||
65 | * 1. Redistributions of source code must retain the above copyright | ||
66 | * notice, this list of conditions and the following disclaimer. | ||
67 | * | ||
68 | * 2. Redistributions in binary form must reproduce the above copyright | ||
69 | * notice, this list of conditions and the following disclaimer in | ||
70 | * the documentation and/or other materials provided with the | ||
71 | * distribution. | ||
72 | * | ||
73 | * 3. All advertising materials mentioning features or use of this | ||
74 | * software must display the following acknowledgment: | ||
75 | * "This product includes software developed by the OpenSSL Project | ||
76 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | ||
77 | * | ||
78 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
79 | * endorse or promote products derived from this software without | ||
80 | * prior written permission. For written permission, please contact | ||
81 | * openssl-core@openssl.org. | ||
82 | * | ||
83 | * 5. Products derived from this software may not be called "OpenSSL" | ||
84 | * nor may "OpenSSL" appear in their names without prior written | ||
85 | * permission of the OpenSSL Project. | ||
86 | * | ||
87 | * 6. Redistributions of any form whatsoever must retain the following | ||
88 | * acknowledgment: | ||
89 | * "This product includes software developed by the OpenSSL Project | ||
90 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" | ||
91 | * | ||
92 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
93 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
94 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
95 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
96 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
97 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
98 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
99 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
100 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
101 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
102 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
103 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
104 | * ==================================================================== | ||
105 | * | ||
106 | * This product includes cryptographic software written by Eric Young | ||
107 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
108 | * Hudson (tjh@cryptsoft.com). | ||
109 | * | ||
110 | */ | ||
111 | |||
112 | /* | ||
113 | * Details about Montgomery multiplication algorithms can be found at | ||
114 | * http://security.ece.orst.edu/publications.html, e.g. | ||
115 | * http://security.ece.orst.edu/koc/papers/j37acmon.pdf and | ||
116 | * sections 3.8 and 4.2 in http://security.ece.orst.edu/koc/papers/r01rsasw.pdf | ||
117 | */ | ||
118 | |||
119 | #include <stdio.h> | ||
120 | #include <stdint.h> | ||
121 | #include <string.h> | ||
122 | |||
123 | #include "bn_internal.h" | ||
124 | #include "bn_local.h" | ||
125 | |||
126 | BN_MONT_CTX * | ||
127 | BN_MONT_CTX_new(void) | ||
128 | { | ||
129 | BN_MONT_CTX *mctx; | ||
130 | |||
131 | if ((mctx = calloc(1, sizeof(BN_MONT_CTX))) == NULL) | ||
132 | return NULL; | ||
133 | mctx->flags = BN_FLG_MALLOCED; | ||
134 | |||
135 | BN_init(&mctx->RR); | ||
136 | BN_init(&mctx->N); | ||
137 | |||
138 | return mctx; | ||
139 | } | ||
140 | LCRYPTO_ALIAS(BN_MONT_CTX_new); | ||
141 | |||
142 | void | ||
143 | BN_MONT_CTX_free(BN_MONT_CTX *mctx) | ||
144 | { | ||
145 | if (mctx == NULL) | ||
146 | return; | ||
147 | |||
148 | BN_free(&mctx->RR); | ||
149 | BN_free(&mctx->N); | ||
150 | |||
151 | if (mctx->flags & BN_FLG_MALLOCED) | ||
152 | free(mctx); | ||
153 | } | ||
154 | LCRYPTO_ALIAS(BN_MONT_CTX_free); | ||
155 | |||
156 | BN_MONT_CTX * | ||
157 | BN_MONT_CTX_create(const BIGNUM *bn, BN_CTX *bn_ctx) | ||
158 | { | ||
159 | BN_MONT_CTX *mctx; | ||
160 | |||
161 | if ((mctx = BN_MONT_CTX_new()) == NULL) | ||
162 | goto err; | ||
163 | if (!BN_MONT_CTX_set(mctx, bn, bn_ctx)) | ||
164 | goto err; | ||
165 | |||
166 | return mctx; | ||
167 | |||
168 | err: | ||
169 | BN_MONT_CTX_free(mctx); | ||
170 | |||
171 | return NULL; | ||
172 | } | ||
173 | |||
174 | BN_MONT_CTX * | ||
175 | BN_MONT_CTX_copy(BN_MONT_CTX *dst, const BN_MONT_CTX *src) | ||
176 | { | ||
177 | if (dst == src) | ||
178 | return dst; | ||
179 | |||
180 | if (!bn_copy(&dst->RR, &src->RR)) | ||
181 | return NULL; | ||
182 | if (!bn_copy(&dst->N, &src->N)) | ||
183 | return NULL; | ||
184 | |||
185 | dst->ri = src->ri; | ||
186 | dst->n0[0] = src->n0[0]; | ||
187 | dst->n0[1] = src->n0[1]; | ||
188 | |||
189 | return dst; | ||
190 | } | ||
191 | LCRYPTO_ALIAS(BN_MONT_CTX_copy); | ||
192 | |||
193 | int | ||
194 | BN_MONT_CTX_set(BN_MONT_CTX *mont, const BIGNUM *mod, BN_CTX *ctx) | ||
195 | { | ||
196 | BIGNUM *N, *Ninv, *Rinv, *R; | ||
197 | int ret = 0; | ||
198 | |||
199 | BN_CTX_start(ctx); | ||
200 | |||
201 | if ((N = BN_CTX_get(ctx)) == NULL) | ||
202 | goto err; | ||
203 | if ((Ninv = BN_CTX_get(ctx)) == NULL) | ||
204 | goto err; | ||
205 | if ((R = BN_CTX_get(ctx)) == NULL) | ||
206 | goto err; | ||
207 | if ((Rinv = BN_CTX_get(ctx)) == NULL) | ||
208 | goto err; | ||
209 | |||
210 | /* Save modulus and determine length of R. */ | ||
211 | if (BN_is_zero(mod)) | ||
212 | goto err; | ||
213 | if (!bn_copy(&mont->N, mod)) | ||
214 | goto err; | ||
215 | mont->N.neg = 0; | ||
216 | mont->ri = ((BN_num_bits(mod) + BN_BITS2 - 1) / BN_BITS2) * BN_BITS2; | ||
217 | if (mont->ri * 2 < mont->ri) | ||
218 | goto err; | ||
219 | |||
220 | /* | ||
221 | * Compute Ninv = (R * Rinv - 1)/N mod R, for R = 2^64. This provides | ||
222 | * a single or double word result (dependent on BN word size), that is | ||
223 | * later used to implement Montgomery reduction. | ||
224 | */ | ||
225 | BN_zero(R); | ||
226 | if (!BN_set_bit(R, 64)) | ||
227 | goto err; | ||
228 | |||
229 | /* N = N mod R. */ | ||
230 | if (!bn_wexpand(N, 2)) | ||
231 | goto err; | ||
232 | if (!BN_set_word(N, mod->d[0])) | ||
233 | goto err; | ||
234 | #if BN_BITS2 == 32 | ||
235 | if (mod->top > 1) { | ||
236 | N->d[1] = mod->d[1]; | ||
237 | N->top += bn_ct_ne_zero(N->d[1]); | ||
238 | } | ||
239 | #endif | ||
240 | |||
241 | /* Rinv = R^-1 mod N */ | ||
242 | if ((BN_mod_inverse_ct(Rinv, R, N, ctx)) == NULL) | ||
243 | goto err; | ||
244 | |||
245 | /* Ninv = (R * Rinv - 1) / N */ | ||
246 | if (!BN_lshift(Ninv, Rinv, 64)) | ||
247 | goto err; | ||
248 | if (BN_is_zero(Ninv)) { | ||
249 | /* R * Rinv == 0, set to R so that R * Rinv - 1 is mod R. */ | ||
250 | if (!BN_set_bit(Ninv, 64)) | ||
251 | goto err; | ||
252 | } | ||
253 | if (!BN_sub_word(Ninv, 1)) | ||
254 | goto err; | ||
255 | if (!BN_div_ct(Ninv, NULL, Ninv, N, ctx)) | ||
256 | goto err; | ||
257 | |||
258 | /* Store least significant word(s) of Ninv. */ | ||
259 | mont->n0[0] = mont->n0[1] = 0; | ||
260 | if (Ninv->top > 0) | ||
261 | mont->n0[0] = Ninv->d[0]; | ||
262 | #if BN_BITS2 == 32 | ||
263 | /* Some BN_BITS2 == 32 platforms (namely parisc) use two words of Ninv. */ | ||
264 | if (Ninv->top > 1) | ||
265 | mont->n0[1] = Ninv->d[1]; | ||
266 | #endif | ||
267 | |||
268 | /* Compute RR = R * R mod N, for use when converting to Montgomery form. */ | ||
269 | BN_zero(&mont->RR); | ||
270 | if (!BN_set_bit(&mont->RR, mont->ri * 2)) | ||
271 | goto err; | ||
272 | if (!BN_mod_ct(&mont->RR, &mont->RR, &mont->N, ctx)) | ||
273 | goto err; | ||
274 | |||
275 | ret = 1; | ||
276 | err: | ||
277 | BN_CTX_end(ctx); | ||
278 | |||
279 | return ret; | ||
280 | } | ||
281 | LCRYPTO_ALIAS(BN_MONT_CTX_set); | ||
282 | |||
283 | BN_MONT_CTX * | ||
284 | BN_MONT_CTX_set_locked(BN_MONT_CTX **pmctx, int lock, const BIGNUM *mod, | ||
285 | BN_CTX *ctx) | ||
286 | { | ||
287 | BN_MONT_CTX *mctx = NULL; | ||
288 | |||
289 | CRYPTO_r_lock(lock); | ||
290 | mctx = *pmctx; | ||
291 | CRYPTO_r_unlock(lock); | ||
292 | |||
293 | if (mctx != NULL) | ||
294 | goto done; | ||
295 | |||
296 | if ((mctx = BN_MONT_CTX_create(mod, ctx)) == NULL) | ||
297 | goto err; | ||
298 | |||
299 | CRYPTO_w_lock(lock); | ||
300 | if (*pmctx != NULL) { | ||
301 | /* Someone else raced us... */ | ||
302 | BN_MONT_CTX_free(mctx); | ||
303 | mctx = *pmctx; | ||
304 | } else { | ||
305 | *pmctx = mctx; | ||
306 | } | ||
307 | CRYPTO_w_unlock(lock); | ||
308 | |||
309 | goto done; | ||
310 | err: | ||
311 | BN_MONT_CTX_free(mctx); | ||
312 | mctx = NULL; | ||
313 | done: | ||
314 | return mctx; | ||
315 | } | ||
316 | LCRYPTO_ALIAS(BN_MONT_CTX_set_locked); | ||
317 | |||
318 | /* | ||
319 | * bn_montgomery_reduce() performs Montgomery reduction, reducing the input | ||
320 | * from its Montgomery form aR to a, returning the result in r. Note that the | ||
321 | * input is mutated in the process of performing the reduction, destroying its | ||
322 | * original value. | ||
323 | */ | ||
324 | static int | ||
325 | bn_montgomery_reduce(BIGNUM *r, BIGNUM *a, BN_MONT_CTX *mctx) | ||
326 | { | ||
327 | BIGNUM *n; | ||
328 | BN_ULONG *ap, *rp, n0, v, carry, mask; | ||
329 | int i, max, n_len; | ||
330 | |||
331 | n = &mctx->N; | ||
332 | n_len = mctx->N.top; | ||
333 | |||
334 | if (n_len == 0) { | ||
335 | BN_zero(r); | ||
336 | return 1; | ||
337 | } | ||
338 | |||
339 | if (!bn_wexpand(r, n_len)) | ||
340 | return 0; | ||
341 | |||
342 | /* | ||
343 | * Expand a to twice the length of the modulus, zero if necessary. | ||
344 | * XXX - make this a requirement of the caller. | ||
345 | */ | ||
346 | if ((max = 2 * n_len) < n_len) | ||
347 | return 0; | ||
348 | if (!bn_wexpand(a, max)) | ||
349 | return 0; | ||
350 | for (i = a->top; i < max; i++) | ||
351 | a->d[i] = 0; | ||
352 | |||
353 | carry = 0; | ||
354 | n0 = mctx->n0[0]; | ||
355 | |||
356 | /* Add multiples of the modulus, so that it becomes divisible by R. */ | ||
357 | for (i = 0; i < n_len; i++) { | ||
358 | v = bn_mul_add_words(&a->d[i], n->d, n_len, a->d[i] * n0); | ||
359 | bn_addw_addw(v, a->d[i + n_len], carry, &carry, | ||
360 | &a->d[i + n_len]); | ||
361 | } | ||
362 | |||
363 | /* Divide by R (this is the equivalent of right shifting by n_len). */ | ||
364 | ap = &a->d[n_len]; | ||
365 | |||
366 | /* | ||
367 | * The output is now in the range of [0, 2N). Attempt to reduce once by | ||
368 | * subtracting the modulus. If the reduction was necessary then the | ||
369 | * result is already in r, otherwise copy the value prior to reduction | ||
370 | * from the top half of a. | ||
371 | */ | ||
372 | mask = carry - bn_sub_words(r->d, ap, n->d, n_len); | ||
373 | |||
374 | rp = r->d; | ||
375 | for (i = 0; i < n_len; i++) { | ||
376 | *rp = (*rp & ~mask) | (*ap & mask); | ||
377 | rp++; | ||
378 | ap++; | ||
379 | } | ||
380 | r->top = n_len; | ||
381 | |||
382 | bn_correct_top(r); | ||
383 | |||
384 | BN_set_negative(r, a->neg ^ n->neg); | ||
385 | |||
386 | return 1; | ||
387 | } | ||
388 | |||
389 | static int | ||
390 | bn_mod_mul_montgomery_simple(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, | ||
391 | BN_MONT_CTX *mctx, BN_CTX *ctx) | ||
392 | { | ||
393 | BIGNUM *tmp; | ||
394 | int ret = 0; | ||
395 | |||
396 | BN_CTX_start(ctx); | ||
397 | |||
398 | if ((tmp = BN_CTX_get(ctx)) == NULL) | ||
399 | goto err; | ||
400 | |||
401 | if (a == b) { | ||
402 | if (!BN_sqr(tmp, a, ctx)) | ||
403 | goto err; | ||
404 | } else { | ||
405 | if (!BN_mul(tmp, a, b, ctx)) | ||
406 | goto err; | ||
407 | } | ||
408 | |||
409 | /* Reduce from aRR to aR. */ | ||
410 | if (!bn_montgomery_reduce(r, tmp, mctx)) | ||
411 | goto err; | ||
412 | |||
413 | ret = 1; | ||
414 | err: | ||
415 | BN_CTX_end(ctx); | ||
416 | |||
417 | return ret; | ||
418 | } | ||
419 | |||
420 | static void | ||
421 | bn_montgomery_multiply_word(const BN_ULONG *ap, BN_ULONG b, const BN_ULONG *np, | ||
422 | BN_ULONG *tp, BN_ULONG w, BN_ULONG *carry_a, BN_ULONG *carry_n, int n_len) | ||
423 | { | ||
424 | BN_ULONG x3, x2, x1, x0; | ||
425 | |||
426 | *carry_a = *carry_n = 0; | ||
427 | |||
428 | while (n_len & ~3) { | ||
429 | bn_qwmulw_addqw_addw(ap[3], ap[2], ap[1], ap[0], b, | ||
430 | tp[3], tp[2], tp[1], tp[0], *carry_a, carry_a, | ||
431 | &x3, &x2, &x1, &x0); | ||
432 | bn_qwmulw_addqw_addw(np[3], np[2], np[1], np[0], w, | ||
433 | x3, x2, x1, x0, *carry_n, carry_n, | ||
434 | &tp[3], &tp[2], &tp[1], &tp[0]); | ||
435 | ap += 4; | ||
436 | np += 4; | ||
437 | tp += 4; | ||
438 | n_len -= 4; | ||
439 | } | ||
440 | while (n_len > 0) { | ||
441 | bn_mulw_addw_addw(ap[0], b, tp[0], *carry_a, carry_a, &x0); | ||
442 | bn_mulw_addw_addw(np[0], w, x0, *carry_n, carry_n, &tp[0]); | ||
443 | ap++; | ||
444 | np++; | ||
445 | tp++; | ||
446 | n_len--; | ||
447 | } | ||
448 | } | ||
449 | |||
450 | /* | ||
451 | * bn_montgomery_multiply_words() computes r = aR * bR * R^-1 = abR for the | ||
452 | * given word arrays. The caller must ensure that rp, ap, bp and np are all | ||
453 | * n_len words in length, while tp must be n_len * 2 + 2 words in length. | ||
454 | */ | ||
455 | static void | ||
456 | bn_montgomery_multiply_words(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, | ||
457 | const BN_ULONG *np, BN_ULONG *tp, BN_ULONG n0, int n_len) | ||
458 | { | ||
459 | BN_ULONG a0, b, carry_a, carry_n, carry, mask, w; | ||
460 | int i; | ||
461 | |||
462 | carry = 0; | ||
463 | |||
464 | for (i = 0; i < n_len; i++) | ||
465 | tp[i] = 0; | ||
466 | |||
467 | a0 = ap[0]; | ||
468 | |||
469 | for (i = 0; i < n_len; i++) { | ||
470 | b = bp[i]; | ||
471 | |||
472 | /* Compute new t[0] * n0, as we need it for this iteration. */ | ||
473 | w = (a0 * b + tp[0]) * n0; | ||
474 | |||
475 | bn_montgomery_multiply_word(ap, b, np, tp, w, &carry_a, | ||
476 | &carry_n, n_len); | ||
477 | bn_addw_addw(carry_a, carry_n, carry, &carry, &tp[n_len]); | ||
478 | |||
479 | tp++; | ||
480 | } | ||
481 | tp[n_len] = carry; | ||
482 | |||
483 | /* | ||
484 | * The output is now in the range of [0, 2N). Attempt to reduce once by | ||
485 | * subtracting the modulus. If the reduction was necessary then the | ||
486 | * result is already in r, otherwise copy the value prior to reduction | ||
487 | * from tp. | ||
488 | */ | ||
489 | mask = bn_ct_ne_zero(tp[n_len]) - bn_sub_words(rp, tp, np, n_len); | ||
490 | |||
491 | for (i = 0; i < n_len; i++) { | ||
492 | *rp = (*rp & ~mask) | (*tp & mask); | ||
493 | rp++; | ||
494 | tp++; | ||
495 | } | ||
496 | } | ||
497 | |||
498 | /* | ||
499 | * bn_montgomery_multiply() computes r = aR * bR * R^-1 = abR for the given | ||
500 | * BIGNUMs. The caller must ensure that the modulus is two or more words in | ||
501 | * length and that a and b have the same number of words as the modulus. | ||
502 | */ | ||
503 | static int | ||
504 | bn_montgomery_multiply(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, | ||
505 | BN_MONT_CTX *mctx, BN_CTX *ctx) | ||
506 | { | ||
507 | BIGNUM *t; | ||
508 | int ret = 0; | ||
509 | |||
510 | BN_CTX_start(ctx); | ||
511 | |||
512 | if (mctx->N.top <= 1 || a->top != mctx->N.top || b->top != mctx->N.top) | ||
513 | goto err; | ||
514 | if (!bn_wexpand(r, mctx->N.top)) | ||
515 | goto err; | ||
516 | |||
517 | if ((t = BN_CTX_get(ctx)) == NULL) | ||
518 | goto err; | ||
519 | if (!bn_wexpand(t, mctx->N.top * 2 + 2)) | ||
520 | goto err; | ||
521 | |||
522 | bn_montgomery_multiply_words(r->d, a->d, b->d, mctx->N.d, t->d, | ||
523 | mctx->n0[0], mctx->N.top); | ||
524 | |||
525 | r->top = mctx->N.top; | ||
526 | bn_correct_top(r); | ||
527 | |||
528 | BN_set_negative(r, a->neg ^ b->neg); | ||
529 | |||
530 | ret = 1; | ||
531 | err: | ||
532 | BN_CTX_end(ctx); | ||
533 | |||
534 | return ret; | ||
535 | } | ||
536 | |||
537 | #ifndef OPENSSL_BN_ASM_MONT | ||
538 | static int | ||
539 | bn_mod_mul_montgomery(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, | ||
540 | BN_MONT_CTX *mctx, BN_CTX *ctx) | ||
541 | { | ||
542 | if (mctx->N.top <= 1 || a->top != mctx->N.top || b->top != mctx->N.top) | ||
543 | return bn_mod_mul_montgomery_simple(r, a, b, mctx, ctx); | ||
544 | |||
545 | return bn_montgomery_multiply(r, a, b, mctx, ctx); | ||
546 | } | ||
547 | #else | ||
548 | |||
549 | static int | ||
550 | bn_mod_mul_montgomery(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, | ||
551 | BN_MONT_CTX *mctx, BN_CTX *ctx) | ||
552 | { | ||
553 | if (mctx->N.top <= 1 || a->top != mctx->N.top || b->top != mctx->N.top) | ||
554 | return bn_mod_mul_montgomery_simple(r, a, b, mctx, ctx); | ||
555 | |||
556 | /* | ||
557 | * Legacy bn_mul_mont() performs stack based allocation, without | ||
558 | * size limitation. Allowing a large size results in the stack | ||
559 | * being blown. | ||
560 | */ | ||
561 | if (mctx->N.top > (8 * 1024 / sizeof(BN_ULONG))) | ||
562 | return bn_montgomery_multiply(r, a, b, mctx, ctx); | ||
563 | |||
564 | if (!bn_wexpand(r, mctx->N.top)) | ||
565 | return 0; | ||
566 | |||
567 | /* | ||
568 | * Legacy bn_mul_mont() can indicate that we should "fallback" to | ||
569 | * another implementation. | ||
570 | */ | ||
571 | if (!bn_mul_mont(r->d, a->d, b->d, mctx->N.d, mctx->n0, mctx->N.top)) | ||
572 | return bn_montgomery_multiply(r, a, b, mctx, ctx); | ||
573 | |||
574 | r->top = mctx->N.top; | ||
575 | bn_correct_top(r); | ||
576 | |||
577 | BN_set_negative(r, a->neg ^ b->neg); | ||
578 | |||
579 | return (1); | ||
580 | } | ||
581 | #endif | ||
582 | |||
583 | int | ||
584 | BN_mod_mul_montgomery(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, | ||
585 | BN_MONT_CTX *mctx, BN_CTX *ctx) | ||
586 | { | ||
587 | /* Compute r = aR * bR * R^-1 mod N = abR mod N */ | ||
588 | return bn_mod_mul_montgomery(r, a, b, mctx, ctx); | ||
589 | } | ||
590 | LCRYPTO_ALIAS(BN_mod_mul_montgomery); | ||
591 | |||
592 | int | ||
593 | BN_to_montgomery(BIGNUM *r, const BIGNUM *a, BN_MONT_CTX *mctx, BN_CTX *ctx) | ||
594 | { | ||
595 | /* Compute r = a * R * R * R^-1 mod N = aR mod N */ | ||
596 | return bn_mod_mul_montgomery(r, a, &mctx->RR, mctx, ctx); | ||
597 | } | ||
598 | LCRYPTO_ALIAS(BN_to_montgomery); | ||
599 | |||
600 | int | ||
601 | BN_from_montgomery(BIGNUM *r, const BIGNUM *a, BN_MONT_CTX *mctx, BN_CTX *ctx) | ||
602 | { | ||
603 | BIGNUM *tmp; | ||
604 | int ret = 0; | ||
605 | |||
606 | BN_CTX_start(ctx); | ||
607 | |||
608 | if ((tmp = BN_CTX_get(ctx)) == NULL) | ||
609 | goto err; | ||
610 | if (!bn_copy(tmp, a)) | ||
611 | goto err; | ||
612 | if (!bn_montgomery_reduce(r, tmp, mctx)) | ||
613 | goto err; | ||
614 | |||
615 | ret = 1; | ||
616 | err: | ||
617 | BN_CTX_end(ctx); | ||
618 | |||
619 | return ret; | ||
620 | } | ||
621 | LCRYPTO_ALIAS(BN_from_montgomery); | ||