diff options
author | cvs2svn <admin@example.com> | 2015-08-02 21:54:22 +0000 |
---|---|---|
committer | cvs2svn <admin@example.com> | 2015-08-02 21:54:22 +0000 |
commit | ed3760bf4be4a96a89233fb8f8b84a0d44725862 (patch) | |
tree | 5609c82060f75c53af0a7641d9b33a88574876cd /src/lib/libcrypto/bn | |
parent | f8b563fb5ba1524c821d37308f4e6abfc866bc3f (diff) | |
download | openbsd-OPENBSD_5_8_BASE.tar.gz openbsd-OPENBSD_5_8_BASE.tar.bz2 openbsd-OPENBSD_5_8_BASE.zip |
This commit was manufactured by cvs2git to create tag 'OPENBSD_5_8_BASE'.OPENBSD_5_8_BASE
Diffstat (limited to '')
70 files changed, 0 insertions, 42877 deletions
diff --git a/src/lib/libcrypto/bn/asm/alpha-mont.pl b/src/lib/libcrypto/bn/asm/alpha-mont.pl deleted file mode 100644 index 41700d5bd5..0000000000 --- a/src/lib/libcrypto/bn/asm/alpha-mont.pl +++ /dev/null | |||
@@ -1,316 +0,0 @@ | |||
1 | #!/usr/bin/env perl | ||
2 | # | ||
3 | # ==================================================================== | ||
4 | # Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL | ||
5 | # project. The module is, however, dual licensed under OpenSSL and | ||
6 | # CRYPTOGAMS licenses depending on where you obtain it. For further | ||
7 | # details see http://www.openssl.org/~appro/cryptogams/. | ||
8 | # ==================================================================== | ||
9 | # | ||
10 | # On 21264 RSA sign performance improves by 70/35/20/15 percent for | ||
11 | # 512/1024/2048/4096 bit key lengths. This is against vendor compiler | ||
12 | # instructed to '-tune host' code with in-line assembler. Other | ||
13 | # benchmarks improve by 15-20%. To anchor it to something else, the | ||
14 | # code provides approximately the same performance per GHz as AMD64. | ||
15 | # I.e. if you compare 1GHz 21264 and 2GHz Opteron, you'll observe ~2x | ||
16 | # difference. | ||
17 | |||
18 | # int bn_mul_mont( | ||
19 | $rp="a0"; # BN_ULONG *rp, | ||
20 | $ap="a1"; # const BN_ULONG *ap, | ||
21 | $bp="a2"; # const BN_ULONG *bp, | ||
22 | $np="a3"; # const BN_ULONG *np, | ||
23 | $n0="a4"; # const BN_ULONG *n0, | ||
24 | $num="a5"; # int num); | ||
25 | |||
26 | $lo0="t0"; | ||
27 | $hi0="t1"; | ||
28 | $lo1="t2"; | ||
29 | $hi1="t3"; | ||
30 | $aj="t4"; | ||
31 | $bi="t5"; | ||
32 | $nj="t6"; | ||
33 | $tp="t7"; | ||
34 | $alo="t8"; | ||
35 | $ahi="t9"; | ||
36 | $nlo="t10"; | ||
37 | $nhi="t11"; | ||
38 | $tj="t12"; | ||
39 | $i="s3"; | ||
40 | $j="s4"; | ||
41 | $m1="s5"; | ||
42 | |||
43 | $code=<<___; | ||
44 | #include <machine/asm.h> | ||
45 | |||
46 | .text | ||
47 | |||
48 | .set noat | ||
49 | .set noreorder | ||
50 | |||
51 | .globl bn_mul_mont | ||
52 | .align 5 | ||
53 | .ent bn_mul_mont | ||
54 | bn_mul_mont: | ||
55 | lda sp,-48(sp) | ||
56 | stq ra,0(sp) | ||
57 | stq s3,8(sp) | ||
58 | stq s4,16(sp) | ||
59 | stq s5,24(sp) | ||
60 | stq fp,32(sp) | ||
61 | mov sp,fp | ||
62 | .mask 0x0400f000,-48 | ||
63 | .frame fp,48,ra | ||
64 | .prologue 0 | ||
65 | |||
66 | .align 4 | ||
67 | .set reorder | ||
68 | sextl $num,$num | ||
69 | mov 0,v0 | ||
70 | cmplt $num,4,AT | ||
71 | bne AT,.Lexit | ||
72 | |||
73 | ldq $hi0,0($ap) # ap[0] | ||
74 | s8addq $num,16,AT | ||
75 | ldq $aj,8($ap) | ||
76 | subq sp,AT,sp | ||
77 | ldq $bi,0($bp) # bp[0] | ||
78 | lda AT,-4096(zero) # mov -4096,AT | ||
79 | ldq $n0,0($n0) | ||
80 | and sp,AT,sp | ||
81 | |||
82 | mulq $hi0,$bi,$lo0 | ||
83 | ldq $hi1,0($np) # np[0] | ||
84 | umulh $hi0,$bi,$hi0 | ||
85 | ldq $nj,8($np) | ||
86 | |||
87 | mulq $lo0,$n0,$m1 | ||
88 | |||
89 | mulq $hi1,$m1,$lo1 | ||
90 | umulh $hi1,$m1,$hi1 | ||
91 | |||
92 | addq $lo1,$lo0,$lo1 | ||
93 | cmpult $lo1,$lo0,AT | ||
94 | addq $hi1,AT,$hi1 | ||
95 | |||
96 | mulq $aj,$bi,$alo | ||
97 | mov 2,$j | ||
98 | umulh $aj,$bi,$ahi | ||
99 | mov sp,$tp | ||
100 | |||
101 | mulq $nj,$m1,$nlo | ||
102 | s8addq $j,$ap,$aj | ||
103 | umulh $nj,$m1,$nhi | ||
104 | s8addq $j,$np,$nj | ||
105 | .align 4 | ||
106 | .L1st: | ||
107 | .set noreorder | ||
108 | ldq $aj,0($aj) | ||
109 | addl $j,1,$j | ||
110 | ldq $nj,0($nj) | ||
111 | lda $tp,8($tp) | ||
112 | |||
113 | addq $alo,$hi0,$lo0 | ||
114 | mulq $aj,$bi,$alo | ||
115 | cmpult $lo0,$hi0,AT | ||
116 | addq $nlo,$hi1,$lo1 | ||
117 | |||
118 | mulq $nj,$m1,$nlo | ||
119 | addq $ahi,AT,$hi0 | ||
120 | cmpult $lo1,$hi1,v0 | ||
121 | cmplt $j,$num,$tj | ||
122 | |||
123 | umulh $aj,$bi,$ahi | ||
124 | addq $nhi,v0,$hi1 | ||
125 | addq $lo1,$lo0,$lo1 | ||
126 | s8addq $j,$ap,$aj | ||
127 | |||
128 | umulh $nj,$m1,$nhi | ||
129 | cmpult $lo1,$lo0,v0 | ||
130 | addq $hi1,v0,$hi1 | ||
131 | s8addq $j,$np,$nj | ||
132 | |||
133 | stq $lo1,-8($tp) | ||
134 | nop | ||
135 | unop | ||
136 | bne $tj,.L1st | ||
137 | .set reorder | ||
138 | |||
139 | addq $alo,$hi0,$lo0 | ||
140 | addq $nlo,$hi1,$lo1 | ||
141 | cmpult $lo0,$hi0,AT | ||
142 | cmpult $lo1,$hi1,v0 | ||
143 | addq $ahi,AT,$hi0 | ||
144 | addq $nhi,v0,$hi1 | ||
145 | |||
146 | addq $lo1,$lo0,$lo1 | ||
147 | cmpult $lo1,$lo0,v0 | ||
148 | addq $hi1,v0,$hi1 | ||
149 | |||
150 | stq $lo1,0($tp) | ||
151 | |||
152 | addq $hi1,$hi0,$hi1 | ||
153 | cmpult $hi1,$hi0,AT | ||
154 | stq $hi1,8($tp) | ||
155 | stq AT,16($tp) | ||
156 | |||
157 | mov 1,$i | ||
158 | .align 4 | ||
159 | .Louter: | ||
160 | s8addq $i,$bp,$bi | ||
161 | ldq $hi0,0($ap) | ||
162 | ldq $aj,8($ap) | ||
163 | ldq $bi,0($bi) | ||
164 | ldq $hi1,0($np) | ||
165 | ldq $nj,8($np) | ||
166 | ldq $tj,0(sp) | ||
167 | |||
168 | mulq $hi0,$bi,$lo0 | ||
169 | umulh $hi0,$bi,$hi0 | ||
170 | |||
171 | addq $lo0,$tj,$lo0 | ||
172 | cmpult $lo0,$tj,AT | ||
173 | addq $hi0,AT,$hi0 | ||
174 | |||
175 | mulq $lo0,$n0,$m1 | ||
176 | |||
177 | mulq $hi1,$m1,$lo1 | ||
178 | umulh $hi1,$m1,$hi1 | ||
179 | |||
180 | addq $lo1,$lo0,$lo1 | ||
181 | cmpult $lo1,$lo0,AT | ||
182 | mov 2,$j | ||
183 | addq $hi1,AT,$hi1 | ||
184 | |||
185 | mulq $aj,$bi,$alo | ||
186 | mov sp,$tp | ||
187 | umulh $aj,$bi,$ahi | ||
188 | |||
189 | mulq $nj,$m1,$nlo | ||
190 | s8addq $j,$ap,$aj | ||
191 | umulh $nj,$m1,$nhi | ||
192 | .align 4 | ||
193 | .Linner: | ||
194 | .set noreorder | ||
195 | ldq $tj,8($tp) #L0 | ||
196 | nop #U1 | ||
197 | ldq $aj,0($aj) #L1 | ||
198 | s8addq $j,$np,$nj #U0 | ||
199 | |||
200 | ldq $nj,0($nj) #L0 | ||
201 | nop #U1 | ||
202 | addq $alo,$hi0,$lo0 #L1 | ||
203 | lda $tp,8($tp) | ||
204 | |||
205 | mulq $aj,$bi,$alo #U1 | ||
206 | cmpult $lo0,$hi0,AT #L0 | ||
207 | addq $nlo,$hi1,$lo1 #L1 | ||
208 | addl $j,1,$j | ||
209 | |||
210 | mulq $nj,$m1,$nlo #U1 | ||
211 | addq $ahi,AT,$hi0 #L0 | ||
212 | addq $lo0,$tj,$lo0 #L1 | ||
213 | cmpult $lo1,$hi1,v0 #U0 | ||
214 | |||
215 | umulh $aj,$bi,$ahi #U1 | ||
216 | cmpult $lo0,$tj,AT #L0 | ||
217 | addq $lo1,$lo0,$lo1 #L1 | ||
218 | addq $nhi,v0,$hi1 #U0 | ||
219 | |||
220 | umulh $nj,$m1,$nhi #U1 | ||
221 | s8addq $j,$ap,$aj #L0 | ||
222 | cmpult $lo1,$lo0,v0 #L1 | ||
223 | cmplt $j,$num,$tj #U0 # borrow $tj | ||
224 | |||
225 | addq $hi0,AT,$hi0 #L0 | ||
226 | addq $hi1,v0,$hi1 #U1 | ||
227 | stq $lo1,-8($tp) #L1 | ||
228 | bne $tj,.Linner #U0 | ||
229 | .set reorder | ||
230 | |||
231 | ldq $tj,8($tp) | ||
232 | addq $alo,$hi0,$lo0 | ||
233 | addq $nlo,$hi1,$lo1 | ||
234 | cmpult $lo0,$hi0,AT | ||
235 | cmpult $lo1,$hi1,v0 | ||
236 | addq $ahi,AT,$hi0 | ||
237 | addq $nhi,v0,$hi1 | ||
238 | |||
239 | addq $lo0,$tj,$lo0 | ||
240 | cmpult $lo0,$tj,AT | ||
241 | addq $hi0,AT,$hi0 | ||
242 | |||
243 | ldq $tj,16($tp) | ||
244 | addq $lo1,$lo0,$j | ||
245 | cmpult $j,$lo0,v0 | ||
246 | addq $hi1,v0,$hi1 | ||
247 | |||
248 | addq $hi1,$hi0,$lo1 | ||
249 | stq $j,0($tp) | ||
250 | cmpult $lo1,$hi0,$hi1 | ||
251 | addq $lo1,$tj,$lo1 | ||
252 | cmpult $lo1,$tj,AT | ||
253 | addl $i,1,$i | ||
254 | addq $hi1,AT,$hi1 | ||
255 | stq $lo1,8($tp) | ||
256 | cmplt $i,$num,$tj # borrow $tj | ||
257 | stq $hi1,16($tp) | ||
258 | bne $tj,.Louter | ||
259 | |||
260 | s8addq $num,sp,$tj # &tp[num] | ||
261 | mov $rp,$bp # put rp aside | ||
262 | mov sp,$tp | ||
263 | mov sp,$ap | ||
264 | mov 0,$hi0 # clear borrow bit | ||
265 | |||
266 | .align 4 | ||
267 | .Lsub: ldq $lo0,0($tp) | ||
268 | ldq $lo1,0($np) | ||
269 | lda $tp,8($tp) | ||
270 | lda $np,8($np) | ||
271 | subq $lo0,$lo1,$lo1 # tp[i]-np[i] | ||
272 | cmpult $lo0,$lo1,AT | ||
273 | subq $lo1,$hi0,$lo0 | ||
274 | cmpult $lo1,$lo0,$hi0 | ||
275 | or $hi0,AT,$hi0 | ||
276 | stq $lo0,0($rp) | ||
277 | cmpult $tp,$tj,v0 | ||
278 | lda $rp,8($rp) | ||
279 | bne v0,.Lsub | ||
280 | |||
281 | subq $hi1,$hi0,$hi0 # handle upmost overflow bit | ||
282 | mov sp,$tp | ||
283 | mov $bp,$rp # restore rp | ||
284 | |||
285 | and sp,$hi0,$ap | ||
286 | bic $bp,$hi0,$bp | ||
287 | bis $bp,$ap,$ap # ap=borrow?tp:rp | ||
288 | |||
289 | .align 4 | ||
290 | .Lcopy: ldq $aj,0($ap) # copy or in-place refresh | ||
291 | lda $tp,8($tp) | ||
292 | lda $rp,8($rp) | ||
293 | lda $ap,8($ap) | ||
294 | stq zero,-8($tp) # zap tp | ||
295 | cmpult $tp,$tj,AT | ||
296 | stq $aj,-8($rp) | ||
297 | bne AT,.Lcopy | ||
298 | mov 1,v0 | ||
299 | |||
300 | .Lexit: | ||
301 | .set noreorder | ||
302 | mov fp,sp | ||
303 | /*ldq ra,0(sp)*/ | ||
304 | ldq s3,8(sp) | ||
305 | ldq s4,16(sp) | ||
306 | ldq s5,24(sp) | ||
307 | ldq fp,32(sp) | ||
308 | lda sp,48(sp) | ||
309 | ret (ra) | ||
310 | .end bn_mul_mont | ||
311 | .ascii "Montgomery Multiplication for Alpha, CRYPTOGAMS by <appro\@openssl.org>" | ||
312 | .align 2 | ||
313 | ___ | ||
314 | |||
315 | print $code; | ||
316 | close STDOUT; | ||
diff --git a/src/lib/libcrypto/bn/asm/armv4-gf2m.pl b/src/lib/libcrypto/bn/asm/armv4-gf2m.pl deleted file mode 100644 index c52e0b75b5..0000000000 --- a/src/lib/libcrypto/bn/asm/armv4-gf2m.pl +++ /dev/null | |||
@@ -1,278 +0,0 @@ | |||
1 | #!/usr/bin/env perl | ||
2 | # | ||
3 | # ==================================================================== | ||
4 | # Written by Andy Polyakov <appro@openssl.org> for the OpenSSL | ||
5 | # project. The module is, however, dual licensed under OpenSSL and | ||
6 | # CRYPTOGAMS licenses depending on where you obtain it. For further | ||
7 | # details see http://www.openssl.org/~appro/cryptogams/. | ||
8 | # ==================================================================== | ||
9 | # | ||
10 | # May 2011 | ||
11 | # | ||
12 | # The module implements bn_GF2m_mul_2x2 polynomial multiplication | ||
13 | # used in bn_gf2m.c. It's kind of low-hanging mechanical port from | ||
14 | # C for the time being... Except that it has two code paths: pure | ||
15 | # integer code suitable for any ARMv4 and later CPU and NEON code | ||
16 | # suitable for ARMv7. Pure integer 1x1 multiplication subroutine runs | ||
17 | # in ~45 cycles on dual-issue core such as Cortex A8, which is ~50% | ||
18 | # faster than compiler-generated code. For ECDH and ECDSA verify (but | ||
19 | # not for ECDSA sign) it means 25%-45% improvement depending on key | ||
20 | # length, more for longer keys. Even though NEON 1x1 multiplication | ||
21 | # runs in even less cycles, ~30, improvement is measurable only on | ||
22 | # longer keys. One has to optimize code elsewhere to get NEON glow... | ||
23 | |||
24 | while (($output=shift) && ($output!~/^\w[\w\-]*\.\w+$/)) {} | ||
25 | open STDOUT,">$output"; | ||
26 | |||
27 | sub Dlo() { shift=~m|q([1]?[0-9])|?"d".($1*2):""; } | ||
28 | sub Dhi() { shift=~m|q([1]?[0-9])|?"d".($1*2+1):""; } | ||
29 | sub Q() { shift=~m|d([1-3]?[02468])|?"q".($1/2):""; } | ||
30 | |||
31 | $code=<<___; | ||
32 | #include "arm_arch.h" | ||
33 | |||
34 | .text | ||
35 | .code 32 | ||
36 | |||
37 | #if __ARM_ARCH__>=7 | ||
38 | .fpu neon | ||
39 | |||
40 | .type mul_1x1_neon,%function | ||
41 | .align 5 | ||
42 | mul_1x1_neon: | ||
43 | vshl.u64 `&Dlo("q1")`,d16,#8 @ q1-q3 are slided $a | ||
44 | vmull.p8 `&Q("d0")`,d16,d17 @ a·bb | ||
45 | vshl.u64 `&Dlo("q2")`,d16,#16 | ||
46 | vmull.p8 q1,`&Dlo("q1")`,d17 @ a<<8·bb | ||
47 | vshl.u64 `&Dlo("q3")`,d16,#24 | ||
48 | vmull.p8 q2,`&Dlo("q2")`,d17 @ a<<16·bb | ||
49 | vshr.u64 `&Dlo("q1")`,#8 | ||
50 | vmull.p8 q3,`&Dlo("q3")`,d17 @ a<<24·bb | ||
51 | vshl.u64 `&Dhi("q1")`,#24 | ||
52 | veor d0,`&Dlo("q1")` | ||
53 | vshr.u64 `&Dlo("q2")`,#16 | ||
54 | veor d0,`&Dhi("q1")` | ||
55 | vshl.u64 `&Dhi("q2")`,#16 | ||
56 | veor d0,`&Dlo("q2")` | ||
57 | vshr.u64 `&Dlo("q3")`,#24 | ||
58 | veor d0,`&Dhi("q2")` | ||
59 | vshl.u64 `&Dhi("q3")`,#8 | ||
60 | veor d0,`&Dlo("q3")` | ||
61 | veor d0,`&Dhi("q3")` | ||
62 | bx lr | ||
63 | .size mul_1x1_neon,.-mul_1x1_neon | ||
64 | #endif | ||
65 | ___ | ||
66 | ################ | ||
67 | # private interface to mul_1x1_ialu | ||
68 | # | ||
69 | $a="r1"; | ||
70 | $b="r0"; | ||
71 | |||
72 | ($a0,$a1,$a2,$a12,$a4,$a14)= | ||
73 | ($hi,$lo,$t0,$t1, $i0,$i1 )=map("r$_",(4..9),12); | ||
74 | |||
75 | $mask="r12"; | ||
76 | |||
77 | $code.=<<___; | ||
78 | .type mul_1x1_ialu,%function | ||
79 | .align 5 | ||
80 | mul_1x1_ialu: | ||
81 | mov $a0,#0 | ||
82 | bic $a1,$a,#3<<30 @ a1=a&0x3fffffff | ||
83 | str $a0,[sp,#0] @ tab[0]=0 | ||
84 | add $a2,$a1,$a1 @ a2=a1<<1 | ||
85 | str $a1,[sp,#4] @ tab[1]=a1 | ||
86 | eor $a12,$a1,$a2 @ a1^a2 | ||
87 | str $a2,[sp,#8] @ tab[2]=a2 | ||
88 | mov $a4,$a1,lsl#2 @ a4=a1<<2 | ||
89 | str $a12,[sp,#12] @ tab[3]=a1^a2 | ||
90 | eor $a14,$a1,$a4 @ a1^a4 | ||
91 | str $a4,[sp,#16] @ tab[4]=a4 | ||
92 | eor $a0,$a2,$a4 @ a2^a4 | ||
93 | str $a14,[sp,#20] @ tab[5]=a1^a4 | ||
94 | eor $a12,$a12,$a4 @ a1^a2^a4 | ||
95 | str $a0,[sp,#24] @ tab[6]=a2^a4 | ||
96 | and $i0,$mask,$b,lsl#2 | ||
97 | str $a12,[sp,#28] @ tab[7]=a1^a2^a4 | ||
98 | |||
99 | and $i1,$mask,$b,lsr#1 | ||
100 | ldr $lo,[sp,$i0] @ tab[b & 0x7] | ||
101 | and $i0,$mask,$b,lsr#4 | ||
102 | ldr $t1,[sp,$i1] @ tab[b >> 3 & 0x7] | ||
103 | and $i1,$mask,$b,lsr#7 | ||
104 | ldr $t0,[sp,$i0] @ tab[b >> 6 & 0x7] | ||
105 | eor $lo,$lo,$t1,lsl#3 @ stall | ||
106 | mov $hi,$t1,lsr#29 | ||
107 | ldr $t1,[sp,$i1] @ tab[b >> 9 & 0x7] | ||
108 | |||
109 | and $i0,$mask,$b,lsr#10 | ||
110 | eor $lo,$lo,$t0,lsl#6 | ||
111 | eor $hi,$hi,$t0,lsr#26 | ||
112 | ldr $t0,[sp,$i0] @ tab[b >> 12 & 0x7] | ||
113 | |||
114 | and $i1,$mask,$b,lsr#13 | ||
115 | eor $lo,$lo,$t1,lsl#9 | ||
116 | eor $hi,$hi,$t1,lsr#23 | ||
117 | ldr $t1,[sp,$i1] @ tab[b >> 15 & 0x7] | ||
118 | |||
119 | and $i0,$mask,$b,lsr#16 | ||
120 | eor $lo,$lo,$t0,lsl#12 | ||
121 | eor $hi,$hi,$t0,lsr#20 | ||
122 | ldr $t0,[sp,$i0] @ tab[b >> 18 & 0x7] | ||
123 | |||
124 | and $i1,$mask,$b,lsr#19 | ||
125 | eor $lo,$lo,$t1,lsl#15 | ||
126 | eor $hi,$hi,$t1,lsr#17 | ||
127 | ldr $t1,[sp,$i1] @ tab[b >> 21 & 0x7] | ||
128 | |||
129 | and $i0,$mask,$b,lsr#22 | ||
130 | eor $lo,$lo,$t0,lsl#18 | ||
131 | eor $hi,$hi,$t0,lsr#14 | ||
132 | ldr $t0,[sp,$i0] @ tab[b >> 24 & 0x7] | ||
133 | |||
134 | and $i1,$mask,$b,lsr#25 | ||
135 | eor $lo,$lo,$t1,lsl#21 | ||
136 | eor $hi,$hi,$t1,lsr#11 | ||
137 | ldr $t1,[sp,$i1] @ tab[b >> 27 & 0x7] | ||
138 | |||
139 | tst $a,#1<<30 | ||
140 | and $i0,$mask,$b,lsr#28 | ||
141 | eor $lo,$lo,$t0,lsl#24 | ||
142 | eor $hi,$hi,$t0,lsr#8 | ||
143 | ldr $t0,[sp,$i0] @ tab[b >> 30 ] | ||
144 | |||
145 | eorne $lo,$lo,$b,lsl#30 | ||
146 | eorne $hi,$hi,$b,lsr#2 | ||
147 | tst $a,#1<<31 | ||
148 | eor $lo,$lo,$t1,lsl#27 | ||
149 | eor $hi,$hi,$t1,lsr#5 | ||
150 | eorne $lo,$lo,$b,lsl#31 | ||
151 | eorne $hi,$hi,$b,lsr#1 | ||
152 | eor $lo,$lo,$t0,lsl#30 | ||
153 | eor $hi,$hi,$t0,lsr#2 | ||
154 | |||
155 | mov pc,lr | ||
156 | .size mul_1x1_ialu,.-mul_1x1_ialu | ||
157 | ___ | ||
158 | ################ | ||
159 | # void bn_GF2m_mul_2x2(BN_ULONG *r, | ||
160 | # BN_ULONG a1,BN_ULONG a0, | ||
161 | # BN_ULONG b1,BN_ULONG b0); # r[3..0]=a1a0·b1b0 | ||
162 | |||
163 | ($A1,$B1,$A0,$B0,$A1B1,$A0B0)=map("d$_",(18..23)); | ||
164 | |||
165 | $code.=<<___; | ||
166 | .global bn_GF2m_mul_2x2 | ||
167 | .type bn_GF2m_mul_2x2,%function | ||
168 | .align 5 | ||
169 | bn_GF2m_mul_2x2: | ||
170 | #if __ARM_ARCH__>=7 | ||
171 | ldr r12,.LOPENSSL_armcap | ||
172 | .Lpic: ldr r12,[pc,r12] | ||
173 | tst r12,#1 | ||
174 | beq .Lialu | ||
175 | |||
176 | veor $A1,$A1 | ||
177 | vmov.32 $B1,r3,r3 @ two copies of b1 | ||
178 | vmov.32 ${A1}[0],r1 @ a1 | ||
179 | |||
180 | veor $A0,$A0 | ||
181 | vld1.32 ${B0}[],[sp,:32] @ two copies of b0 | ||
182 | vmov.32 ${A0}[0],r2 @ a0 | ||
183 | mov r12,lr | ||
184 | |||
185 | vmov d16,$A1 | ||
186 | vmov d17,$B1 | ||
187 | bl mul_1x1_neon @ a1·b1 | ||
188 | vmov $A1B1,d0 | ||
189 | |||
190 | vmov d16,$A0 | ||
191 | vmov d17,$B0 | ||
192 | bl mul_1x1_neon @ a0·b0 | ||
193 | vmov $A0B0,d0 | ||
194 | |||
195 | veor d16,$A0,$A1 | ||
196 | veor d17,$B0,$B1 | ||
197 | veor $A0,$A0B0,$A1B1 | ||
198 | bl mul_1x1_neon @ (a0+a1)·(b0+b1) | ||
199 | |||
200 | veor d0,$A0 @ (a0+a1)·(b0+b1)-a0·b0-a1·b1 | ||
201 | vshl.u64 d1,d0,#32 | ||
202 | vshr.u64 d0,d0,#32 | ||
203 | veor $A0B0,d1 | ||
204 | veor $A1B1,d0 | ||
205 | vst1.32 {${A0B0}[0]},[r0,:32]! | ||
206 | vst1.32 {${A0B0}[1]},[r0,:32]! | ||
207 | vst1.32 {${A1B1}[0]},[r0,:32]! | ||
208 | vst1.32 {${A1B1}[1]},[r0,:32] | ||
209 | bx r12 | ||
210 | .align 4 | ||
211 | .Lialu: | ||
212 | #endif | ||
213 | ___ | ||
214 | $ret="r10"; # reassigned 1st argument | ||
215 | $code.=<<___; | ||
216 | stmdb sp!,{r4-r10,lr} | ||
217 | mov $ret,r0 @ reassign 1st argument | ||
218 | mov $b,r3 @ $b=b1 | ||
219 | ldr r3,[sp,#32] @ load b0 | ||
220 | mov $mask,#7<<2 | ||
221 | sub sp,sp,#32 @ allocate tab[8] | ||
222 | |||
223 | bl mul_1x1_ialu @ a1·b1 | ||
224 | str $lo,[$ret,#8] | ||
225 | str $hi,[$ret,#12] | ||
226 | |||
227 | eor $b,$b,r3 @ flip b0 and b1 | ||
228 | eor $a,$a,r2 @ flip a0 and a1 | ||
229 | eor r3,r3,$b | ||
230 | eor r2,r2,$a | ||
231 | eor $b,$b,r3 | ||
232 | eor $a,$a,r2 | ||
233 | bl mul_1x1_ialu @ a0·b0 | ||
234 | str $lo,[$ret] | ||
235 | str $hi,[$ret,#4] | ||
236 | |||
237 | eor $a,$a,r2 | ||
238 | eor $b,$b,r3 | ||
239 | bl mul_1x1_ialu @ (a1+a0)·(b1+b0) | ||
240 | ___ | ||
241 | @r=map("r$_",(6..9)); | ||
242 | $code.=<<___; | ||
243 | ldmia $ret,{@r[0]-@r[3]} | ||
244 | eor $lo,$lo,$hi | ||
245 | eor $hi,$hi,@r[1] | ||
246 | eor $lo,$lo,@r[0] | ||
247 | eor $hi,$hi,@r[2] | ||
248 | eor $lo,$lo,@r[3] | ||
249 | eor $hi,$hi,@r[3] | ||
250 | str $hi,[$ret,#8] | ||
251 | eor $lo,$lo,$hi | ||
252 | add sp,sp,#32 @ destroy tab[8] | ||
253 | str $lo,[$ret,#4] | ||
254 | |||
255 | #if __ARM_ARCH__>=5 | ||
256 | ldmia sp!,{r4-r10,pc} | ||
257 | #else | ||
258 | ldmia sp!,{r4-r10,lr} | ||
259 | tst lr,#1 | ||
260 | moveq pc,lr @ be binary compatible with V4, yet | ||
261 | bx lr @ interoperable with Thumb ISA:-) | ||
262 | #endif | ||
263 | .size bn_GF2m_mul_2x2,.-bn_GF2m_mul_2x2 | ||
264 | #if __ARM_ARCH__>=7 | ||
265 | .align 5 | ||
266 | .LOPENSSL_armcap: | ||
267 | .word OPENSSL_armcap_P-(.Lpic+8) | ||
268 | #endif | ||
269 | .asciz "GF(2^m) Multiplication for ARMv4/NEON, CRYPTOGAMS by <appro\@openssl.org>" | ||
270 | .align 5 | ||
271 | |||
272 | .comm OPENSSL_armcap_P,4,4 | ||
273 | ___ | ||
274 | |||
275 | $code =~ s/\`([^\`]*)\`/eval $1/gem; | ||
276 | $code =~ s/\bbx\s+lr\b/.word\t0xe12fff1e/gm; # make it possible to compile with -march=armv4 | ||
277 | print $code; | ||
278 | close STDOUT; # enforce flush | ||
diff --git a/src/lib/libcrypto/bn/asm/armv4-mont.pl b/src/lib/libcrypto/bn/asm/armv4-mont.pl deleted file mode 100644 index f78a8b5f0f..0000000000 --- a/src/lib/libcrypto/bn/asm/armv4-mont.pl +++ /dev/null | |||
@@ -1,204 +0,0 @@ | |||
1 | #!/usr/bin/env perl | ||
2 | |||
3 | # ==================================================================== | ||
4 | # Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL | ||
5 | # project. The module is, however, dual licensed under OpenSSL and | ||
6 | # CRYPTOGAMS licenses depending on where you obtain it. For further | ||
7 | # details see http://www.openssl.org/~appro/cryptogams/. | ||
8 | # ==================================================================== | ||
9 | |||
10 | # January 2007. | ||
11 | |||
12 | # Montgomery multiplication for ARMv4. | ||
13 | # | ||
14 | # Performance improvement naturally varies among CPU implementations | ||
15 | # and compilers. The code was observed to provide +65-35% improvement | ||
16 | # [depending on key length, less for longer keys] on ARM920T, and | ||
17 | # +115-80% on Intel IXP425. This is compared to pre-bn_mul_mont code | ||
18 | # base and compiler generated code with in-lined umull and even umlal | ||
19 | # instructions. The latter means that this code didn't really have an | ||
20 | # "advantage" of utilizing some "secret" instruction. | ||
21 | # | ||
22 | # The code is interoperable with Thumb ISA and is rather compact, less | ||
23 | # than 1/2KB. Windows CE port would be trivial, as it's exclusively | ||
24 | # about decorations, ABI and instruction syntax are identical. | ||
25 | |||
26 | while (($output=shift) && ($output!~/^\w[\w\-]*\.\w+$/)) {} | ||
27 | open STDOUT,">$output"; | ||
28 | |||
29 | $num="r0"; # starts as num argument, but holds &tp[num-1] | ||
30 | $ap="r1"; | ||
31 | $bp="r2"; $bi="r2"; $rp="r2"; | ||
32 | $np="r3"; | ||
33 | $tp="r4"; | ||
34 | $aj="r5"; | ||
35 | $nj="r6"; | ||
36 | $tj="r7"; | ||
37 | $n0="r8"; | ||
38 | ########### # r9 is reserved by ELF as platform specific, e.g. TLS pointer | ||
39 | $alo="r10"; # sl, gcc uses it to keep @GOT | ||
40 | $ahi="r11"; # fp | ||
41 | $nlo="r12"; # ip | ||
42 | ########### # r13 is stack pointer | ||
43 | $nhi="r14"; # lr | ||
44 | ########### # r15 is program counter | ||
45 | |||
46 | #### argument block layout relative to &tp[num-1], a.k.a. $num | ||
47 | $_rp="$num,#12*4"; | ||
48 | # ap permanently resides in r1 | ||
49 | $_bp="$num,#13*4"; | ||
50 | # np permanently resides in r3 | ||
51 | $_n0="$num,#14*4"; | ||
52 | $_num="$num,#15*4"; $_bpend=$_num; | ||
53 | |||
54 | $code=<<___; | ||
55 | .text | ||
56 | |||
57 | .global bn_mul_mont | ||
58 | .type bn_mul_mont,%function | ||
59 | |||
60 | .align 2 | ||
61 | bn_mul_mont: | ||
62 | stmdb sp!,{r0,r2} @ sp points at argument block | ||
63 | ldr $num,[sp,#3*4] @ load num | ||
64 | cmp $num,#2 | ||
65 | movlt r0,#0 | ||
66 | addlt sp,sp,#2*4 | ||
67 | blt .Labrt | ||
68 | |||
69 | stmdb sp!,{r4-r12,lr} @ save 10 registers | ||
70 | |||
71 | mov $num,$num,lsl#2 @ rescale $num for byte count | ||
72 | sub sp,sp,$num @ alloca(4*num) | ||
73 | sub sp,sp,#4 @ +extra dword | ||
74 | sub $num,$num,#4 @ "num=num-1" | ||
75 | add $tp,$bp,$num @ &bp[num-1] | ||
76 | |||
77 | add $num,sp,$num @ $num to point at &tp[num-1] | ||
78 | ldr $n0,[$_n0] @ &n0 | ||
79 | ldr $bi,[$bp] @ bp[0] | ||
80 | ldr $aj,[$ap],#4 @ ap[0],ap++ | ||
81 | ldr $nj,[$np],#4 @ np[0],np++ | ||
82 | ldr $n0,[$n0] @ *n0 | ||
83 | str $tp,[$_bpend] @ save &bp[num] | ||
84 | |||
85 | umull $alo,$ahi,$aj,$bi @ ap[0]*bp[0] | ||
86 | str $n0,[$_n0] @ save n0 value | ||
87 | mul $n0,$alo,$n0 @ "tp[0]"*n0 | ||
88 | mov $nlo,#0 | ||
89 | umlal $alo,$nlo,$nj,$n0 @ np[0]*n0+"t[0]" | ||
90 | mov $tp,sp | ||
91 | |||
92 | .L1st: | ||
93 | ldr $aj,[$ap],#4 @ ap[j],ap++ | ||
94 | mov $alo,$ahi | ||
95 | ldr $nj,[$np],#4 @ np[j],np++ | ||
96 | mov $ahi,#0 | ||
97 | umlal $alo,$ahi,$aj,$bi @ ap[j]*bp[0] | ||
98 | mov $nhi,#0 | ||
99 | umlal $nlo,$nhi,$nj,$n0 @ np[j]*n0 | ||
100 | adds $nlo,$nlo,$alo | ||
101 | str $nlo,[$tp],#4 @ tp[j-1]=,tp++ | ||
102 | adc $nlo,$nhi,#0 | ||
103 | cmp $tp,$num | ||
104 | bne .L1st | ||
105 | |||
106 | adds $nlo,$nlo,$ahi | ||
107 | ldr $tp,[$_bp] @ restore bp | ||
108 | mov $nhi,#0 | ||
109 | ldr $n0,[$_n0] @ restore n0 | ||
110 | adc $nhi,$nhi,#0 | ||
111 | str $nlo,[$num] @ tp[num-1]= | ||
112 | str $nhi,[$num,#4] @ tp[num]= | ||
113 | |||
114 | .Louter: | ||
115 | sub $tj,$num,sp @ "original" $num-1 value | ||
116 | sub $ap,$ap,$tj @ "rewind" ap to &ap[1] | ||
117 | ldr $bi,[$tp,#4]! @ *(++bp) | ||
118 | sub $np,$np,$tj @ "rewind" np to &np[1] | ||
119 | ldr $aj,[$ap,#-4] @ ap[0] | ||
120 | ldr $alo,[sp] @ tp[0] | ||
121 | ldr $nj,[$np,#-4] @ np[0] | ||
122 | ldr $tj,[sp,#4] @ tp[1] | ||
123 | |||
124 | mov $ahi,#0 | ||
125 | umlal $alo,$ahi,$aj,$bi @ ap[0]*bp[i]+tp[0] | ||
126 | str $tp,[$_bp] @ save bp | ||
127 | mul $n0,$alo,$n0 | ||
128 | mov $nlo,#0 | ||
129 | umlal $alo,$nlo,$nj,$n0 @ np[0]*n0+"tp[0]" | ||
130 | mov $tp,sp | ||
131 | |||
132 | .Linner: | ||
133 | ldr $aj,[$ap],#4 @ ap[j],ap++ | ||
134 | adds $alo,$ahi,$tj @ +=tp[j] | ||
135 | ldr $nj,[$np],#4 @ np[j],np++ | ||
136 | mov $ahi,#0 | ||
137 | umlal $alo,$ahi,$aj,$bi @ ap[j]*bp[i] | ||
138 | mov $nhi,#0 | ||
139 | umlal $nlo,$nhi,$nj,$n0 @ np[j]*n0 | ||
140 | adc $ahi,$ahi,#0 | ||
141 | ldr $tj,[$tp,#8] @ tp[j+1] | ||
142 | adds $nlo,$nlo,$alo | ||
143 | str $nlo,[$tp],#4 @ tp[j-1]=,tp++ | ||
144 | adc $nlo,$nhi,#0 | ||
145 | cmp $tp,$num | ||
146 | bne .Linner | ||
147 | |||
148 | adds $nlo,$nlo,$ahi | ||
149 | mov $nhi,#0 | ||
150 | ldr $tp,[$_bp] @ restore bp | ||
151 | adc $nhi,$nhi,#0 | ||
152 | ldr $n0,[$_n0] @ restore n0 | ||
153 | adds $nlo,$nlo,$tj | ||
154 | ldr $tj,[$_bpend] @ restore &bp[num] | ||
155 | adc $nhi,$nhi,#0 | ||
156 | str $nlo,[$num] @ tp[num-1]= | ||
157 | str $nhi,[$num,#4] @ tp[num]= | ||
158 | |||
159 | cmp $tp,$tj | ||
160 | bne .Louter | ||
161 | |||
162 | ldr $rp,[$_rp] @ pull rp | ||
163 | add $num,$num,#4 @ $num to point at &tp[num] | ||
164 | sub $aj,$num,sp @ "original" num value | ||
165 | mov $tp,sp @ "rewind" $tp | ||
166 | mov $ap,$tp @ "borrow" $ap | ||
167 | sub $np,$np,$aj @ "rewind" $np to &np[0] | ||
168 | |||
169 | subs $tj,$tj,$tj @ "clear" carry flag | ||
170 | .Lsub: ldr $tj,[$tp],#4 | ||
171 | ldr $nj,[$np],#4 | ||
172 | sbcs $tj,$tj,$nj @ tp[j]-np[j] | ||
173 | str $tj,[$rp],#4 @ rp[j]= | ||
174 | teq $tp,$num @ preserve carry | ||
175 | bne .Lsub | ||
176 | sbcs $nhi,$nhi,#0 @ upmost carry | ||
177 | mov $tp,sp @ "rewind" $tp | ||
178 | sub $rp,$rp,$aj @ "rewind" $rp | ||
179 | |||
180 | and $ap,$tp,$nhi | ||
181 | bic $np,$rp,$nhi | ||
182 | orr $ap,$ap,$np @ ap=borrow?tp:rp | ||
183 | |||
184 | .Lcopy: ldr $tj,[$ap],#4 @ copy or in-place refresh | ||
185 | str sp,[$tp],#4 @ zap tp | ||
186 | str $tj,[$rp],#4 | ||
187 | cmp $tp,$num | ||
188 | bne .Lcopy | ||
189 | |||
190 | add sp,$num,#4 @ skip over tp[num+1] | ||
191 | ldmia sp!,{r4-r12,lr} @ restore registers | ||
192 | add sp,sp,#2*4 @ skip over {r0,r2} | ||
193 | mov r0,#1 | ||
194 | .Labrt: tst lr,#1 | ||
195 | moveq pc,lr @ be binary compatible with V4, yet | ||
196 | bx lr @ interoperable with Thumb ISA:-) | ||
197 | .size bn_mul_mont,.-bn_mul_mont | ||
198 | .asciz "Montgomery multiplication for ARMv4, CRYPTOGAMS by <appro\@openssl.org>" | ||
199 | .align 2 | ||
200 | ___ | ||
201 | |||
202 | $code =~ s/\bbx\s+lr\b/.word\t0xe12fff1e/gm; # make it possible to compile with -march=armv4 | ||
203 | print $code; | ||
204 | close STDOUT; | ||
diff --git a/src/lib/libcrypto/bn/asm/bn-586.pl b/src/lib/libcrypto/bn/asm/bn-586.pl deleted file mode 100644 index 332ef3e91d..0000000000 --- a/src/lib/libcrypto/bn/asm/bn-586.pl +++ /dev/null | |||
@@ -1,774 +0,0 @@ | |||
1 | #!/usr/local/bin/perl | ||
2 | |||
3 | $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; | ||
4 | push(@INC,"${dir}","${dir}../../perlasm"); | ||
5 | require "x86asm.pl"; | ||
6 | |||
7 | &asm_init($ARGV[0],$0); | ||
8 | |||
9 | $sse2=0; | ||
10 | for (@ARGV) { $sse2=1 if (/-DOPENSSL_IA32_SSE2/); } | ||
11 | |||
12 | &external_label("OPENSSL_ia32cap_P") if ($sse2); | ||
13 | |||
14 | &bn_mul_add_words("bn_mul_add_words"); | ||
15 | &bn_mul_words("bn_mul_words"); | ||
16 | &bn_sqr_words("bn_sqr_words"); | ||
17 | &bn_div_words("bn_div_words"); | ||
18 | &bn_add_words("bn_add_words"); | ||
19 | &bn_sub_words("bn_sub_words"); | ||
20 | &bn_sub_part_words("bn_sub_part_words"); | ||
21 | |||
22 | &asm_finish(); | ||
23 | |||
24 | sub bn_mul_add_words | ||
25 | { | ||
26 | local($name)=@_; | ||
27 | |||
28 | &function_begin_B($name,$sse2?"EXTRN\t_OPENSSL_ia32cap_P:DWORD":""); | ||
29 | |||
30 | $r="eax"; | ||
31 | $a="edx"; | ||
32 | $c="ecx"; | ||
33 | |||
34 | if ($sse2) { | ||
35 | &picmeup("eax","OPENSSL_ia32cap_P"); | ||
36 | &bt(&DWP(0,"eax"),26); | ||
37 | &jnc(&label("maw_non_sse2")); | ||
38 | |||
39 | &mov($r,&wparam(0)); | ||
40 | &mov($a,&wparam(1)); | ||
41 | &mov($c,&wparam(2)); | ||
42 | &movd("mm0",&wparam(3)); # mm0 = w | ||
43 | &pxor("mm1","mm1"); # mm1 = carry_in | ||
44 | &jmp(&label("maw_sse2_entry")); | ||
45 | |||
46 | &set_label("maw_sse2_unrolled",16); | ||
47 | &movd("mm3",&DWP(0,$r,"",0)); # mm3 = r[0] | ||
48 | &paddq("mm1","mm3"); # mm1 = carry_in + r[0] | ||
49 | &movd("mm2",&DWP(0,$a,"",0)); # mm2 = a[0] | ||
50 | &pmuludq("mm2","mm0"); # mm2 = w*a[0] | ||
51 | &movd("mm4",&DWP(4,$a,"",0)); # mm4 = a[1] | ||
52 | &pmuludq("mm4","mm0"); # mm4 = w*a[1] | ||
53 | &movd("mm6",&DWP(8,$a,"",0)); # mm6 = a[2] | ||
54 | &pmuludq("mm6","mm0"); # mm6 = w*a[2] | ||
55 | &movd("mm7",&DWP(12,$a,"",0)); # mm7 = a[3] | ||
56 | &pmuludq("mm7","mm0"); # mm7 = w*a[3] | ||
57 | &paddq("mm1","mm2"); # mm1 = carry_in + r[0] + w*a[0] | ||
58 | &movd("mm3",&DWP(4,$r,"",0)); # mm3 = r[1] | ||
59 | &paddq("mm3","mm4"); # mm3 = r[1] + w*a[1] | ||
60 | &movd("mm5",&DWP(8,$r,"",0)); # mm5 = r[2] | ||
61 | &paddq("mm5","mm6"); # mm5 = r[2] + w*a[2] | ||
62 | &movd("mm4",&DWP(12,$r,"",0)); # mm4 = r[3] | ||
63 | &paddq("mm7","mm4"); # mm7 = r[3] + w*a[3] | ||
64 | &movd(&DWP(0,$r,"",0),"mm1"); | ||
65 | &movd("mm2",&DWP(16,$a,"",0)); # mm2 = a[4] | ||
66 | &pmuludq("mm2","mm0"); # mm2 = w*a[4] | ||
67 | &psrlq("mm1",32); # mm1 = carry0 | ||
68 | &movd("mm4",&DWP(20,$a,"",0)); # mm4 = a[5] | ||
69 | &pmuludq("mm4","mm0"); # mm4 = w*a[5] | ||
70 | &paddq("mm1","mm3"); # mm1 = carry0 + r[1] + w*a[1] | ||
71 | &movd("mm6",&DWP(24,$a,"",0)); # mm6 = a[6] | ||
72 | &pmuludq("mm6","mm0"); # mm6 = w*a[6] | ||
73 | &movd(&DWP(4,$r,"",0),"mm1"); | ||
74 | &psrlq("mm1",32); # mm1 = carry1 | ||
75 | &movd("mm3",&DWP(28,$a,"",0)); # mm3 = a[7] | ||
76 | &add($a,32); | ||
77 | &pmuludq("mm3","mm0"); # mm3 = w*a[7] | ||
78 | &paddq("mm1","mm5"); # mm1 = carry1 + r[2] + w*a[2] | ||
79 | &movd("mm5",&DWP(16,$r,"",0)); # mm5 = r[4] | ||
80 | &paddq("mm2","mm5"); # mm2 = r[4] + w*a[4] | ||
81 | &movd(&DWP(8,$r,"",0),"mm1"); | ||
82 | &psrlq("mm1",32); # mm1 = carry2 | ||
83 | &paddq("mm1","mm7"); # mm1 = carry2 + r[3] + w*a[3] | ||
84 | &movd("mm5",&DWP(20,$r,"",0)); # mm5 = r[5] | ||
85 | &paddq("mm4","mm5"); # mm4 = r[5] + w*a[5] | ||
86 | &movd(&DWP(12,$r,"",0),"mm1"); | ||
87 | &psrlq("mm1",32); # mm1 = carry3 | ||
88 | &paddq("mm1","mm2"); # mm1 = carry3 + r[4] + w*a[4] | ||
89 | &movd("mm5",&DWP(24,$r,"",0)); # mm5 = r[6] | ||
90 | &paddq("mm6","mm5"); # mm6 = r[6] + w*a[6] | ||
91 | &movd(&DWP(16,$r,"",0),"mm1"); | ||
92 | &psrlq("mm1",32); # mm1 = carry4 | ||
93 | &paddq("mm1","mm4"); # mm1 = carry4 + r[5] + w*a[5] | ||
94 | &movd("mm5",&DWP(28,$r,"",0)); # mm5 = r[7] | ||
95 | &paddq("mm3","mm5"); # mm3 = r[7] + w*a[7] | ||
96 | &movd(&DWP(20,$r,"",0),"mm1"); | ||
97 | &psrlq("mm1",32); # mm1 = carry5 | ||
98 | &paddq("mm1","mm6"); # mm1 = carry5 + r[6] + w*a[6] | ||
99 | &movd(&DWP(24,$r,"",0),"mm1"); | ||
100 | &psrlq("mm1",32); # mm1 = carry6 | ||
101 | &paddq("mm1","mm3"); # mm1 = carry6 + r[7] + w*a[7] | ||
102 | &movd(&DWP(28,$r,"",0),"mm1"); | ||
103 | &lea($r,&DWP(32,$r)); | ||
104 | &psrlq("mm1",32); # mm1 = carry_out | ||
105 | |||
106 | &sub($c,8); | ||
107 | &jz(&label("maw_sse2_exit")); | ||
108 | &set_label("maw_sse2_entry"); | ||
109 | &test($c,0xfffffff8); | ||
110 | &jnz(&label("maw_sse2_unrolled")); | ||
111 | |||
112 | &set_label("maw_sse2_loop",4); | ||
113 | &movd("mm2",&DWP(0,$a)); # mm2 = a[i] | ||
114 | &movd("mm3",&DWP(0,$r)); # mm3 = r[i] | ||
115 | &pmuludq("mm2","mm0"); # a[i] *= w | ||
116 | &lea($a,&DWP(4,$a)); | ||
117 | &paddq("mm1","mm3"); # carry += r[i] | ||
118 | &paddq("mm1","mm2"); # carry += a[i]*w | ||
119 | &movd(&DWP(0,$r),"mm1"); # r[i] = carry_low | ||
120 | &sub($c,1); | ||
121 | &psrlq("mm1",32); # carry = carry_high | ||
122 | &lea($r,&DWP(4,$r)); | ||
123 | &jnz(&label("maw_sse2_loop")); | ||
124 | &set_label("maw_sse2_exit"); | ||
125 | &movd("eax","mm1"); # c = carry_out | ||
126 | &emms(); | ||
127 | &ret(); | ||
128 | |||
129 | &set_label("maw_non_sse2",16); | ||
130 | } | ||
131 | |||
132 | # function_begin prologue | ||
133 | &push("ebp"); | ||
134 | &push("ebx"); | ||
135 | &push("esi"); | ||
136 | &push("edi"); | ||
137 | |||
138 | &comment(""); | ||
139 | $Low="eax"; | ||
140 | $High="edx"; | ||
141 | $a="ebx"; | ||
142 | $w="ebp"; | ||
143 | $r="edi"; | ||
144 | $c="esi"; | ||
145 | |||
146 | &xor($c,$c); # clear carry | ||
147 | &mov($r,&wparam(0)); # | ||
148 | |||
149 | &mov("ecx",&wparam(2)); # | ||
150 | &mov($a,&wparam(1)); # | ||
151 | |||
152 | &and("ecx",0xfffffff8); # num / 8 | ||
153 | &mov($w,&wparam(3)); # | ||
154 | |||
155 | &push("ecx"); # Up the stack for a tmp variable | ||
156 | |||
157 | &jz(&label("maw_finish")); | ||
158 | |||
159 | &set_label("maw_loop",16); | ||
160 | |||
161 | for ($i=0; $i<32; $i+=4) | ||
162 | { | ||
163 | &comment("Round $i"); | ||
164 | |||
165 | &mov("eax",&DWP($i,$a)); # *a | ||
166 | &mul($w); # *a * w | ||
167 | &add("eax",$c); # L(t)+= c | ||
168 | &adc("edx",0); # H(t)+=carry | ||
169 | &add("eax",&DWP($i,$r)); # L(t)+= *r | ||
170 | &adc("edx",0); # H(t)+=carry | ||
171 | &mov(&DWP($i,$r),"eax"); # *r= L(t); | ||
172 | &mov($c,"edx"); # c= H(t); | ||
173 | } | ||
174 | |||
175 | &comment(""); | ||
176 | &sub("ecx",8); | ||
177 | &lea($a,&DWP(32,$a)); | ||
178 | &lea($r,&DWP(32,$r)); | ||
179 | &jnz(&label("maw_loop")); | ||
180 | |||
181 | &set_label("maw_finish",0); | ||
182 | &mov("ecx",&wparam(2)); # get num | ||
183 | &and("ecx",7); | ||
184 | &jnz(&label("maw_finish2")); # helps branch prediction | ||
185 | &jmp(&label("maw_end")); | ||
186 | |||
187 | &set_label("maw_finish2",1); | ||
188 | for ($i=0; $i<7; $i++) | ||
189 | { | ||
190 | &comment("Tail Round $i"); | ||
191 | &mov("eax",&DWP($i*4,$a)); # *a | ||
192 | &mul($w); # *a * w | ||
193 | &add("eax",$c); # L(t)+=c | ||
194 | &adc("edx",0); # H(t)+=carry | ||
195 | &add("eax",&DWP($i*4,$r)); # L(t)+= *r | ||
196 | &adc("edx",0); # H(t)+=carry | ||
197 | &dec("ecx") if ($i != 7-1); | ||
198 | &mov(&DWP($i*4,$r),"eax"); # *r= L(t); | ||
199 | &mov($c,"edx"); # c= H(t); | ||
200 | &jz(&label("maw_end")) if ($i != 7-1); | ||
201 | } | ||
202 | &set_label("maw_end",0); | ||
203 | &mov("eax",$c); | ||
204 | |||
205 | &pop("ecx"); # clear variable from | ||
206 | |||
207 | &function_end($name); | ||
208 | } | ||
209 | |||
210 | sub bn_mul_words | ||
211 | { | ||
212 | local($name)=@_; | ||
213 | |||
214 | &function_begin_B($name,$sse2?"EXTRN\t_OPENSSL_ia32cap_P:DWORD":""); | ||
215 | |||
216 | $r="eax"; | ||
217 | $a="edx"; | ||
218 | $c="ecx"; | ||
219 | |||
220 | if ($sse2) { | ||
221 | &picmeup("eax","OPENSSL_ia32cap_P"); | ||
222 | &bt(&DWP(0,"eax"),26); | ||
223 | &jnc(&label("mw_non_sse2")); | ||
224 | |||
225 | &mov($r,&wparam(0)); | ||
226 | &mov($a,&wparam(1)); | ||
227 | &mov($c,&wparam(2)); | ||
228 | &movd("mm0",&wparam(3)); # mm0 = w | ||
229 | &pxor("mm1","mm1"); # mm1 = carry = 0 | ||
230 | |||
231 | &set_label("mw_sse2_loop",16); | ||
232 | &movd("mm2",&DWP(0,$a)); # mm2 = a[i] | ||
233 | &pmuludq("mm2","mm0"); # a[i] *= w | ||
234 | &lea($a,&DWP(4,$a)); | ||
235 | &paddq("mm1","mm2"); # carry += a[i]*w | ||
236 | &movd(&DWP(0,$r),"mm1"); # r[i] = carry_low | ||
237 | &sub($c,1); | ||
238 | &psrlq("mm1",32); # carry = carry_high | ||
239 | &lea($r,&DWP(4,$r)); | ||
240 | &jnz(&label("mw_sse2_loop")); | ||
241 | |||
242 | &movd("eax","mm1"); # return carry | ||
243 | &emms(); | ||
244 | &ret(); | ||
245 | &set_label("mw_non_sse2",16); | ||
246 | } | ||
247 | |||
248 | # function_begin prologue | ||
249 | &push("ebp"); | ||
250 | &push("ebx"); | ||
251 | &push("esi"); | ||
252 | &push("edi"); | ||
253 | |||
254 | &comment(""); | ||
255 | $Low="eax"; | ||
256 | $High="edx"; | ||
257 | $a="ebx"; | ||
258 | $w="ecx"; | ||
259 | $r="edi"; | ||
260 | $c="esi"; | ||
261 | $num="ebp"; | ||
262 | |||
263 | &xor($c,$c); # clear carry | ||
264 | &mov($r,&wparam(0)); # | ||
265 | &mov($a,&wparam(1)); # | ||
266 | &mov($num,&wparam(2)); # | ||
267 | &mov($w,&wparam(3)); # | ||
268 | |||
269 | &and($num,0xfffffff8); # num / 8 | ||
270 | &jz(&label("mw_finish")); | ||
271 | |||
272 | &set_label("mw_loop",0); | ||
273 | for ($i=0; $i<32; $i+=4) | ||
274 | { | ||
275 | &comment("Round $i"); | ||
276 | |||
277 | &mov("eax",&DWP($i,$a,"",0)); # *a | ||
278 | &mul($w); # *a * w | ||
279 | &add("eax",$c); # L(t)+=c | ||
280 | # XXX | ||
281 | |||
282 | &adc("edx",0); # H(t)+=carry | ||
283 | &mov(&DWP($i,$r,"",0),"eax"); # *r= L(t); | ||
284 | |||
285 | &mov($c,"edx"); # c= H(t); | ||
286 | } | ||
287 | |||
288 | &comment(""); | ||
289 | &add($a,32); | ||
290 | &add($r,32); | ||
291 | &sub($num,8); | ||
292 | &jz(&label("mw_finish")); | ||
293 | &jmp(&label("mw_loop")); | ||
294 | |||
295 | &set_label("mw_finish",0); | ||
296 | &mov($num,&wparam(2)); # get num | ||
297 | &and($num,7); | ||
298 | &jnz(&label("mw_finish2")); | ||
299 | &jmp(&label("mw_end")); | ||
300 | |||
301 | &set_label("mw_finish2",1); | ||
302 | for ($i=0; $i<7; $i++) | ||
303 | { | ||
304 | &comment("Tail Round $i"); | ||
305 | &mov("eax",&DWP($i*4,$a,"",0));# *a | ||
306 | &mul($w); # *a * w | ||
307 | &add("eax",$c); # L(t)+=c | ||
308 | # XXX | ||
309 | &adc("edx",0); # H(t)+=carry | ||
310 | &mov(&DWP($i*4,$r,"",0),"eax");# *r= L(t); | ||
311 | &mov($c,"edx"); # c= H(t); | ||
312 | &dec($num) if ($i != 7-1); | ||
313 | &jz(&label("mw_end")) if ($i != 7-1); | ||
314 | } | ||
315 | &set_label("mw_end",0); | ||
316 | &mov("eax",$c); | ||
317 | |||
318 | &function_end($name); | ||
319 | } | ||
320 | |||
321 | sub bn_sqr_words | ||
322 | { | ||
323 | local($name)=@_; | ||
324 | |||
325 | &function_begin_B($name,$sse2?"EXTRN\t_OPENSSL_ia32cap_P:DWORD":""); | ||
326 | |||
327 | $r="eax"; | ||
328 | $a="edx"; | ||
329 | $c="ecx"; | ||
330 | |||
331 | if ($sse2) { | ||
332 | &picmeup("eax","OPENSSL_ia32cap_P"); | ||
333 | &bt(&DWP(0,"eax"),26); | ||
334 | &jnc(&label("sqr_non_sse2")); | ||
335 | |||
336 | &mov($r,&wparam(0)); | ||
337 | &mov($a,&wparam(1)); | ||
338 | &mov($c,&wparam(2)); | ||
339 | |||
340 | &set_label("sqr_sse2_loop",16); | ||
341 | &movd("mm0",&DWP(0,$a)); # mm0 = a[i] | ||
342 | &pmuludq("mm0","mm0"); # a[i] *= a[i] | ||
343 | &lea($a,&DWP(4,$a)); # a++ | ||
344 | &movq(&QWP(0,$r),"mm0"); # r[i] = a[i]*a[i] | ||
345 | &sub($c,1); | ||
346 | &lea($r,&DWP(8,$r)); # r += 2 | ||
347 | &jnz(&label("sqr_sse2_loop")); | ||
348 | |||
349 | &emms(); | ||
350 | &ret(); | ||
351 | &set_label("sqr_non_sse2",16); | ||
352 | } | ||
353 | |||
354 | # function_begin prologue | ||
355 | &push("ebp"); | ||
356 | &push("ebx"); | ||
357 | &push("esi"); | ||
358 | &push("edi"); | ||
359 | |||
360 | &comment(""); | ||
361 | $r="esi"; | ||
362 | $a="edi"; | ||
363 | $num="ebx"; | ||
364 | |||
365 | &mov($r,&wparam(0)); # | ||
366 | &mov($a,&wparam(1)); # | ||
367 | &mov($num,&wparam(2)); # | ||
368 | |||
369 | &and($num,0xfffffff8); # num / 8 | ||
370 | &jz(&label("sw_finish")); | ||
371 | |||
372 | &set_label("sw_loop",0); | ||
373 | for ($i=0; $i<32; $i+=4) | ||
374 | { | ||
375 | &comment("Round $i"); | ||
376 | &mov("eax",&DWP($i,$a,"",0)); # *a | ||
377 | # XXX | ||
378 | &mul("eax"); # *a * *a | ||
379 | &mov(&DWP($i*2,$r,"",0),"eax"); # | ||
380 | &mov(&DWP($i*2+4,$r,"",0),"edx");# | ||
381 | } | ||
382 | |||
383 | &comment(""); | ||
384 | &add($a,32); | ||
385 | &add($r,64); | ||
386 | &sub($num,8); | ||
387 | &jnz(&label("sw_loop")); | ||
388 | |||
389 | &set_label("sw_finish",0); | ||
390 | &mov($num,&wparam(2)); # get num | ||
391 | &and($num,7); | ||
392 | &jz(&label("sw_end")); | ||
393 | |||
394 | for ($i=0; $i<7; $i++) | ||
395 | { | ||
396 | &comment("Tail Round $i"); | ||
397 | &mov("eax",&DWP($i*4,$a,"",0)); # *a | ||
398 | # XXX | ||
399 | &mul("eax"); # *a * *a | ||
400 | &mov(&DWP($i*8,$r,"",0),"eax"); # | ||
401 | &dec($num) if ($i != 7-1); | ||
402 | &mov(&DWP($i*8+4,$r,"",0),"edx"); | ||
403 | &jz(&label("sw_end")) if ($i != 7-1); | ||
404 | } | ||
405 | &set_label("sw_end",0); | ||
406 | |||
407 | &function_end($name); | ||
408 | } | ||
409 | |||
410 | sub bn_div_words | ||
411 | { | ||
412 | local($name)=@_; | ||
413 | |||
414 | &function_begin_B($name,""); | ||
415 | &mov("edx",&wparam(0)); # | ||
416 | &mov("eax",&wparam(1)); # | ||
417 | &mov("ecx",&wparam(2)); # | ||
418 | &div("ecx"); | ||
419 | &ret(); | ||
420 | &function_end_B($name); | ||
421 | } | ||
422 | |||
423 | sub bn_add_words | ||
424 | { | ||
425 | local($name)=@_; | ||
426 | |||
427 | &function_begin($name,""); | ||
428 | |||
429 | &comment(""); | ||
430 | $a="esi"; | ||
431 | $b="edi"; | ||
432 | $c="eax"; | ||
433 | $r="ebx"; | ||
434 | $tmp1="ecx"; | ||
435 | $tmp2="edx"; | ||
436 | $num="ebp"; | ||
437 | |||
438 | &mov($r,&wparam(0)); # get r | ||
439 | &mov($a,&wparam(1)); # get a | ||
440 | &mov($b,&wparam(2)); # get b | ||
441 | &mov($num,&wparam(3)); # get num | ||
442 | &xor($c,$c); # clear carry | ||
443 | &and($num,0xfffffff8); # num / 8 | ||
444 | |||
445 | &jz(&label("aw_finish")); | ||
446 | |||
447 | &set_label("aw_loop",0); | ||
448 | for ($i=0; $i<8; $i++) | ||
449 | { | ||
450 | &comment("Round $i"); | ||
451 | |||
452 | &mov($tmp1,&DWP($i*4,$a,"",0)); # *a | ||
453 | &mov($tmp2,&DWP($i*4,$b,"",0)); # *b | ||
454 | &add($tmp1,$c); | ||
455 | &mov($c,0); | ||
456 | &adc($c,$c); | ||
457 | &add($tmp1,$tmp2); | ||
458 | &adc($c,0); | ||
459 | &mov(&DWP($i*4,$r,"",0),$tmp1); # *r | ||
460 | } | ||
461 | |||
462 | &comment(""); | ||
463 | &add($a,32); | ||
464 | &add($b,32); | ||
465 | &add($r,32); | ||
466 | &sub($num,8); | ||
467 | &jnz(&label("aw_loop")); | ||
468 | |||
469 | &set_label("aw_finish",0); | ||
470 | &mov($num,&wparam(3)); # get num | ||
471 | &and($num,7); | ||
472 | &jz(&label("aw_end")); | ||
473 | |||
474 | for ($i=0; $i<7; $i++) | ||
475 | { | ||
476 | &comment("Tail Round $i"); | ||
477 | &mov($tmp1,&DWP($i*4,$a,"",0)); # *a | ||
478 | &mov($tmp2,&DWP($i*4,$b,"",0));# *b | ||
479 | &add($tmp1,$c); | ||
480 | &mov($c,0); | ||
481 | &adc($c,$c); | ||
482 | &add($tmp1,$tmp2); | ||
483 | &adc($c,0); | ||
484 | &dec($num) if ($i != 6); | ||
485 | &mov(&DWP($i*4,$r,"",0),$tmp1); # *r | ||
486 | &jz(&label("aw_end")) if ($i != 6); | ||
487 | } | ||
488 | &set_label("aw_end",0); | ||
489 | |||
490 | # &mov("eax",$c); # $c is "eax" | ||
491 | |||
492 | &function_end($name); | ||
493 | } | ||
494 | |||
495 | sub bn_sub_words | ||
496 | { | ||
497 | local($name)=@_; | ||
498 | |||
499 | &function_begin($name,""); | ||
500 | |||
501 | &comment(""); | ||
502 | $a="esi"; | ||
503 | $b="edi"; | ||
504 | $c="eax"; | ||
505 | $r="ebx"; | ||
506 | $tmp1="ecx"; | ||
507 | $tmp2="edx"; | ||
508 | $num="ebp"; | ||
509 | |||
510 | &mov($r,&wparam(0)); # get r | ||
511 | &mov($a,&wparam(1)); # get a | ||
512 | &mov($b,&wparam(2)); # get b | ||
513 | &mov($num,&wparam(3)); # get num | ||
514 | &xor($c,$c); # clear carry | ||
515 | &and($num,0xfffffff8); # num / 8 | ||
516 | |||
517 | &jz(&label("aw_finish")); | ||
518 | |||
519 | &set_label("aw_loop",0); | ||
520 | for ($i=0; $i<8; $i++) | ||
521 | { | ||
522 | &comment("Round $i"); | ||
523 | |||
524 | &mov($tmp1,&DWP($i*4,$a,"",0)); # *a | ||
525 | &mov($tmp2,&DWP($i*4,$b,"",0)); # *b | ||
526 | &sub($tmp1,$c); | ||
527 | &mov($c,0); | ||
528 | &adc($c,$c); | ||
529 | &sub($tmp1,$tmp2); | ||
530 | &adc($c,0); | ||
531 | &mov(&DWP($i*4,$r,"",0),$tmp1); # *r | ||
532 | } | ||
533 | |||
534 | &comment(""); | ||
535 | &add($a,32); | ||
536 | &add($b,32); | ||
537 | &add($r,32); | ||
538 | &sub($num,8); | ||
539 | &jnz(&label("aw_loop")); | ||
540 | |||
541 | &set_label("aw_finish",0); | ||
542 | &mov($num,&wparam(3)); # get num | ||
543 | &and($num,7); | ||
544 | &jz(&label("aw_end")); | ||
545 | |||
546 | for ($i=0; $i<7; $i++) | ||
547 | { | ||
548 | &comment("Tail Round $i"); | ||
549 | &mov($tmp1,&DWP($i*4,$a,"",0)); # *a | ||
550 | &mov($tmp2,&DWP($i*4,$b,"",0));# *b | ||
551 | &sub($tmp1,$c); | ||
552 | &mov($c,0); | ||
553 | &adc($c,$c); | ||
554 | &sub($tmp1,$tmp2); | ||
555 | &adc($c,0); | ||
556 | &dec($num) if ($i != 6); | ||
557 | &mov(&DWP($i*4,$r,"",0),$tmp1); # *r | ||
558 | &jz(&label("aw_end")) if ($i != 6); | ||
559 | } | ||
560 | &set_label("aw_end",0); | ||
561 | |||
562 | # &mov("eax",$c); # $c is "eax" | ||
563 | |||
564 | &function_end($name); | ||
565 | } | ||
566 | |||
567 | sub bn_sub_part_words | ||
568 | { | ||
569 | local($name)=@_; | ||
570 | |||
571 | &function_begin($name,""); | ||
572 | |||
573 | &comment(""); | ||
574 | $a="esi"; | ||
575 | $b="edi"; | ||
576 | $c="eax"; | ||
577 | $r="ebx"; | ||
578 | $tmp1="ecx"; | ||
579 | $tmp2="edx"; | ||
580 | $num="ebp"; | ||
581 | |||
582 | &mov($r,&wparam(0)); # get r | ||
583 | &mov($a,&wparam(1)); # get a | ||
584 | &mov($b,&wparam(2)); # get b | ||
585 | &mov($num,&wparam(3)); # get num | ||
586 | &xor($c,$c); # clear carry | ||
587 | &and($num,0xfffffff8); # num / 8 | ||
588 | |||
589 | &jz(&label("aw_finish")); | ||
590 | |||
591 | &set_label("aw_loop",0); | ||
592 | for ($i=0; $i<8; $i++) | ||
593 | { | ||
594 | &comment("Round $i"); | ||
595 | |||
596 | &mov($tmp1,&DWP($i*4,$a,"",0)); # *a | ||
597 | &mov($tmp2,&DWP($i*4,$b,"",0)); # *b | ||
598 | &sub($tmp1,$c); | ||
599 | &mov($c,0); | ||
600 | &adc($c,$c); | ||
601 | &sub($tmp1,$tmp2); | ||
602 | &adc($c,0); | ||
603 | &mov(&DWP($i*4,$r,"",0),$tmp1); # *r | ||
604 | } | ||
605 | |||
606 | &comment(""); | ||
607 | &add($a,32); | ||
608 | &add($b,32); | ||
609 | &add($r,32); | ||
610 | &sub($num,8); | ||
611 | &jnz(&label("aw_loop")); | ||
612 | |||
613 | &set_label("aw_finish",0); | ||
614 | &mov($num,&wparam(3)); # get num | ||
615 | &and($num,7); | ||
616 | &jz(&label("aw_end")); | ||
617 | |||
618 | for ($i=0; $i<7; $i++) | ||
619 | { | ||
620 | &comment("Tail Round $i"); | ||
621 | &mov($tmp1,&DWP(0,$a,"",0)); # *a | ||
622 | &mov($tmp2,&DWP(0,$b,"",0));# *b | ||
623 | &sub($tmp1,$c); | ||
624 | &mov($c,0); | ||
625 | &adc($c,$c); | ||
626 | &sub($tmp1,$tmp2); | ||
627 | &adc($c,0); | ||
628 | &mov(&DWP(0,$r,"",0),$tmp1); # *r | ||
629 | &add($a, 4); | ||
630 | &add($b, 4); | ||
631 | &add($r, 4); | ||
632 | &dec($num) if ($i != 6); | ||
633 | &jz(&label("aw_end")) if ($i != 6); | ||
634 | } | ||
635 | &set_label("aw_end",0); | ||
636 | |||
637 | &cmp(&wparam(4),0); | ||
638 | &je(&label("pw_end")); | ||
639 | |||
640 | &mov($num,&wparam(4)); # get dl | ||
641 | &cmp($num,0); | ||
642 | &je(&label("pw_end")); | ||
643 | &jge(&label("pw_pos")); | ||
644 | |||
645 | &comment("pw_neg"); | ||
646 | &mov($tmp2,0); | ||
647 | &sub($tmp2,$num); | ||
648 | &mov($num,$tmp2); | ||
649 | &and($num,0xfffffff8); # num / 8 | ||
650 | &jz(&label("pw_neg_finish")); | ||
651 | |||
652 | &set_label("pw_neg_loop",0); | ||
653 | for ($i=0; $i<8; $i++) | ||
654 | { | ||
655 | &comment("dl<0 Round $i"); | ||
656 | |||
657 | &mov($tmp1,0); | ||
658 | &mov($tmp2,&DWP($i*4,$b,"",0)); # *b | ||
659 | &sub($tmp1,$c); | ||
660 | &mov($c,0); | ||
661 | &adc($c,$c); | ||
662 | &sub($tmp1,$tmp2); | ||
663 | &adc($c,0); | ||
664 | &mov(&DWP($i*4,$r,"",0),$tmp1); # *r | ||
665 | } | ||
666 | |||
667 | &comment(""); | ||
668 | &add($b,32); | ||
669 | &add($r,32); | ||
670 | &sub($num,8); | ||
671 | &jnz(&label("pw_neg_loop")); | ||
672 | |||
673 | &set_label("pw_neg_finish",0); | ||
674 | &mov($tmp2,&wparam(4)); # get dl | ||
675 | &mov($num,0); | ||
676 | &sub($num,$tmp2); | ||
677 | &and($num,7); | ||
678 | &jz(&label("pw_end")); | ||
679 | |||
680 | for ($i=0; $i<7; $i++) | ||
681 | { | ||
682 | &comment("dl<0 Tail Round $i"); | ||
683 | &mov($tmp1,0); | ||
684 | &mov($tmp2,&DWP($i*4,$b,"",0));# *b | ||
685 | &sub($tmp1,$c); | ||
686 | &mov($c,0); | ||
687 | &adc($c,$c); | ||
688 | &sub($tmp1,$tmp2); | ||
689 | &adc($c,0); | ||
690 | &dec($num) if ($i != 6); | ||
691 | &mov(&DWP($i*4,$r,"",0),$tmp1); # *r | ||
692 | &jz(&label("pw_end")) if ($i != 6); | ||
693 | } | ||
694 | |||
695 | &jmp(&label("pw_end")); | ||
696 | |||
697 | &set_label("pw_pos",0); | ||
698 | |||
699 | &and($num,0xfffffff8); # num / 8 | ||
700 | &jz(&label("pw_pos_finish")); | ||
701 | |||
702 | &set_label("pw_pos_loop",0); | ||
703 | |||
704 | for ($i=0; $i<8; $i++) | ||
705 | { | ||
706 | &comment("dl>0 Round $i"); | ||
707 | |||
708 | &mov($tmp1,&DWP($i*4,$a,"",0)); # *a | ||
709 | &sub($tmp1,$c); | ||
710 | &mov(&DWP($i*4,$r,"",0),$tmp1); # *r | ||
711 | &jnc(&label("pw_nc".$i)); | ||
712 | } | ||
713 | |||
714 | &comment(""); | ||
715 | &add($a,32); | ||
716 | &add($r,32); | ||
717 | &sub($num,8); | ||
718 | &jnz(&label("pw_pos_loop")); | ||
719 | |||
720 | &set_label("pw_pos_finish",0); | ||
721 | &mov($num,&wparam(4)); # get dl | ||
722 | &and($num,7); | ||
723 | &jz(&label("pw_end")); | ||
724 | |||
725 | for ($i=0; $i<7; $i++) | ||
726 | { | ||
727 | &comment("dl>0 Tail Round $i"); | ||
728 | &mov($tmp1,&DWP($i*4,$a,"",0)); # *a | ||
729 | &sub($tmp1,$c); | ||
730 | &mov(&DWP($i*4,$r,"",0),$tmp1); # *r | ||
731 | &jnc(&label("pw_tail_nc".$i)); | ||
732 | &dec($num) if ($i != 6); | ||
733 | &jz(&label("pw_end")) if ($i != 6); | ||
734 | } | ||
735 | &mov($c,1); | ||
736 | &jmp(&label("pw_end")); | ||
737 | |||
738 | &set_label("pw_nc_loop",0); | ||
739 | for ($i=0; $i<8; $i++) | ||
740 | { | ||
741 | &mov($tmp1,&DWP($i*4,$a,"",0)); # *a | ||
742 | &mov(&DWP($i*4,$r,"",0),$tmp1); # *r | ||
743 | &set_label("pw_nc".$i,0); | ||
744 | } | ||
745 | |||
746 | &comment(""); | ||
747 | &add($a,32); | ||
748 | &add($r,32); | ||
749 | &sub($num,8); | ||
750 | &jnz(&label("pw_nc_loop")); | ||
751 | |||
752 | &mov($num,&wparam(4)); # get dl | ||
753 | &and($num,7); | ||
754 | &jz(&label("pw_nc_end")); | ||
755 | |||
756 | for ($i=0; $i<7; $i++) | ||
757 | { | ||
758 | &mov($tmp1,&DWP($i*4,$a,"",0)); # *a | ||
759 | &mov(&DWP($i*4,$r,"",0),$tmp1); # *r | ||
760 | &set_label("pw_tail_nc".$i,0); | ||
761 | &dec($num) if ($i != 6); | ||
762 | &jz(&label("pw_nc_end")) if ($i != 6); | ||
763 | } | ||
764 | |||
765 | &set_label("pw_nc_end",0); | ||
766 | &mov($c,0); | ||
767 | |||
768 | &set_label("pw_end",0); | ||
769 | |||
770 | # &mov("eax",$c); # $c is "eax" | ||
771 | |||
772 | &function_end($name); | ||
773 | } | ||
774 | |||
diff --git a/src/lib/libcrypto/bn/asm/co-586.pl b/src/lib/libcrypto/bn/asm/co-586.pl deleted file mode 100644 index 57101a6bd7..0000000000 --- a/src/lib/libcrypto/bn/asm/co-586.pl +++ /dev/null | |||
@@ -1,287 +0,0 @@ | |||
1 | #!/usr/local/bin/perl | ||
2 | |||
3 | $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; | ||
4 | push(@INC,"${dir}","${dir}../../perlasm"); | ||
5 | require "x86asm.pl"; | ||
6 | |||
7 | &asm_init($ARGV[0],$0); | ||
8 | |||
9 | &bn_mul_comba("bn_mul_comba8",8); | ||
10 | &bn_mul_comba("bn_mul_comba4",4); | ||
11 | &bn_sqr_comba("bn_sqr_comba8",8); | ||
12 | &bn_sqr_comba("bn_sqr_comba4",4); | ||
13 | |||
14 | &asm_finish(); | ||
15 | |||
16 | sub mul_add_c | ||
17 | { | ||
18 | local($a,$ai,$b,$bi,$c0,$c1,$c2,$pos,$i,$na,$nb)=@_; | ||
19 | |||
20 | # pos == -1 if eax and edx are pre-loaded, 0 to load from next | ||
21 | # words, and 1 if load return value | ||
22 | |||
23 | &comment("mul a[$ai]*b[$bi]"); | ||
24 | |||
25 | # "eax" and "edx" will always be pre-loaded. | ||
26 | # &mov("eax",&DWP($ai*4,$a,"",0)) ; | ||
27 | # &mov("edx",&DWP($bi*4,$b,"",0)); | ||
28 | |||
29 | &mul("edx"); | ||
30 | &add($c0,"eax"); | ||
31 | &mov("eax",&DWP(($na)*4,$a,"",0)) if $pos == 0; # laod next a | ||
32 | &mov("eax",&wparam(0)) if $pos > 0; # load r[] | ||
33 | ### | ||
34 | &adc($c1,"edx"); | ||
35 | &mov("edx",&DWP(($nb)*4,$b,"",0)) if $pos == 0; # laod next b | ||
36 | &mov("edx",&DWP(($nb)*4,$b,"",0)) if $pos == 1; # laod next b | ||
37 | ### | ||
38 | &adc($c2,0); | ||
39 | # is pos > 1, it means it is the last loop | ||
40 | &mov(&DWP($i*4,"eax","",0),$c0) if $pos > 0; # save r[]; | ||
41 | &mov("eax",&DWP(($na)*4,$a,"",0)) if $pos == 1; # laod next a | ||
42 | } | ||
43 | |||
44 | sub sqr_add_c | ||
45 | { | ||
46 | local($r,$a,$ai,$bi,$c0,$c1,$c2,$pos,$i,$na,$nb)=@_; | ||
47 | |||
48 | # pos == -1 if eax and edx are pre-loaded, 0 to load from next | ||
49 | # words, and 1 if load return value | ||
50 | |||
51 | &comment("sqr a[$ai]*a[$bi]"); | ||
52 | |||
53 | # "eax" and "edx" will always be pre-loaded. | ||
54 | # &mov("eax",&DWP($ai*4,$a,"",0)) ; | ||
55 | # &mov("edx",&DWP($bi*4,$b,"",0)); | ||
56 | |||
57 | if ($ai == $bi) | ||
58 | { &mul("eax");} | ||
59 | else | ||
60 | { &mul("edx");} | ||
61 | &add($c0,"eax"); | ||
62 | &mov("eax",&DWP(($na)*4,$a,"",0)) if $pos == 0; # load next a | ||
63 | ### | ||
64 | &adc($c1,"edx"); | ||
65 | &mov("edx",&DWP(($nb)*4,$a,"",0)) if ($pos == 1) && ($na != $nb); | ||
66 | ### | ||
67 | &adc($c2,0); | ||
68 | # is pos > 1, it means it is the last loop | ||
69 | &mov(&DWP($i*4,$r,"",0),$c0) if $pos > 0; # save r[]; | ||
70 | &mov("eax",&DWP(($na)*4,$a,"",0)) if $pos == 1; # load next b | ||
71 | } | ||
72 | |||
73 | sub sqr_add_c2 | ||
74 | { | ||
75 | local($r,$a,$ai,$bi,$c0,$c1,$c2,$pos,$i,$na,$nb)=@_; | ||
76 | |||
77 | # pos == -1 if eax and edx are pre-loaded, 0 to load from next | ||
78 | # words, and 1 if load return value | ||
79 | |||
80 | &comment("sqr a[$ai]*a[$bi]"); | ||
81 | |||
82 | # "eax" and "edx" will always be pre-loaded. | ||
83 | # &mov("eax",&DWP($ai*4,$a,"",0)) ; | ||
84 | # &mov("edx",&DWP($bi*4,$a,"",0)); | ||
85 | |||
86 | if ($ai == $bi) | ||
87 | { &mul("eax");} | ||
88 | else | ||
89 | { &mul("edx");} | ||
90 | &add("eax","eax"); | ||
91 | ### | ||
92 | &adc("edx","edx"); | ||
93 | ### | ||
94 | &adc($c2,0); | ||
95 | &add($c0,"eax"); | ||
96 | &adc($c1,"edx"); | ||
97 | &mov("eax",&DWP(($na)*4,$a,"",0)) if $pos == 0; # load next a | ||
98 | &mov("eax",&DWP(($na)*4,$a,"",0)) if $pos == 1; # load next b | ||
99 | &adc($c2,0); | ||
100 | &mov(&DWP($i*4,$r,"",0),$c0) if $pos > 0; # save r[]; | ||
101 | &mov("edx",&DWP(($nb)*4,$a,"",0)) if ($pos <= 1) && ($na != $nb); | ||
102 | ### | ||
103 | } | ||
104 | |||
105 | sub bn_mul_comba | ||
106 | { | ||
107 | local($name,$num)=@_; | ||
108 | local($a,$b,$c0,$c1,$c2); | ||
109 | local($i,$as,$ae,$bs,$be,$ai,$bi); | ||
110 | local($tot,$end); | ||
111 | |||
112 | &function_begin_B($name,""); | ||
113 | |||
114 | $c0="ebx"; | ||
115 | $c1="ecx"; | ||
116 | $c2="ebp"; | ||
117 | $a="esi"; | ||
118 | $b="edi"; | ||
119 | |||
120 | $as=0; | ||
121 | $ae=0; | ||
122 | $bs=0; | ||
123 | $be=0; | ||
124 | $tot=$num+$num-1; | ||
125 | |||
126 | &push("esi"); | ||
127 | &mov($a,&wparam(1)); | ||
128 | &push("edi"); | ||
129 | &mov($b,&wparam(2)); | ||
130 | &push("ebp"); | ||
131 | &push("ebx"); | ||
132 | |||
133 | &xor($c0,$c0); | ||
134 | &mov("eax",&DWP(0,$a,"",0)); # load the first word | ||
135 | &xor($c1,$c1); | ||
136 | &mov("edx",&DWP(0,$b,"",0)); # load the first second | ||
137 | |||
138 | for ($i=0; $i<$tot; $i++) | ||
139 | { | ||
140 | $ai=$as; | ||
141 | $bi=$bs; | ||
142 | $end=$be+1; | ||
143 | |||
144 | &comment("################## Calculate word $i"); | ||
145 | |||
146 | for ($j=$bs; $j<$end; $j++) | ||
147 | { | ||
148 | &xor($c2,$c2) if ($j == $bs); | ||
149 | if (($j+1) == $end) | ||
150 | { | ||
151 | $v=1; | ||
152 | $v=2 if (($i+1) == $tot); | ||
153 | } | ||
154 | else | ||
155 | { $v=0; } | ||
156 | if (($j+1) != $end) | ||
157 | { | ||
158 | $na=($ai-1); | ||
159 | $nb=($bi+1); | ||
160 | } | ||
161 | else | ||
162 | { | ||
163 | $na=$as+($i < ($num-1)); | ||
164 | $nb=$bs+($i >= ($num-1)); | ||
165 | } | ||
166 | #printf STDERR "[$ai,$bi] -> [$na,$nb]\n"; | ||
167 | &mul_add_c($a,$ai,$b,$bi,$c0,$c1,$c2,$v,$i,$na,$nb); | ||
168 | if ($v) | ||
169 | { | ||
170 | &comment("saved r[$i]"); | ||
171 | # &mov("eax",&wparam(0)); | ||
172 | # &mov(&DWP($i*4,"eax","",0),$c0); | ||
173 | ($c0,$c1,$c2)=($c1,$c2,$c0); | ||
174 | } | ||
175 | $ai--; | ||
176 | $bi++; | ||
177 | } | ||
178 | $as++ if ($i < ($num-1)); | ||
179 | $ae++ if ($i >= ($num-1)); | ||
180 | |||
181 | $bs++ if ($i >= ($num-1)); | ||
182 | $be++ if ($i < ($num-1)); | ||
183 | } | ||
184 | &comment("save r[$i]"); | ||
185 | # &mov("eax",&wparam(0)); | ||
186 | &mov(&DWP($i*4,"eax","",0),$c0); | ||
187 | |||
188 | &pop("ebx"); | ||
189 | &pop("ebp"); | ||
190 | &pop("edi"); | ||
191 | &pop("esi"); | ||
192 | &ret(); | ||
193 | &function_end_B($name); | ||
194 | } | ||
195 | |||
196 | sub bn_sqr_comba | ||
197 | { | ||
198 | local($name,$num)=@_; | ||
199 | local($r,$a,$c0,$c1,$c2)=@_; | ||
200 | local($i,$as,$ae,$bs,$be,$ai,$bi); | ||
201 | local($b,$tot,$end,$half); | ||
202 | |||
203 | &function_begin_B($name,""); | ||
204 | |||
205 | $c0="ebx"; | ||
206 | $c1="ecx"; | ||
207 | $c2="ebp"; | ||
208 | $a="esi"; | ||
209 | $r="edi"; | ||
210 | |||
211 | &push("esi"); | ||
212 | &push("edi"); | ||
213 | &push("ebp"); | ||
214 | &push("ebx"); | ||
215 | &mov($r,&wparam(0)); | ||
216 | &mov($a,&wparam(1)); | ||
217 | &xor($c0,$c0); | ||
218 | &xor($c1,$c1); | ||
219 | &mov("eax",&DWP(0,$a,"",0)); # load the first word | ||
220 | |||
221 | $as=0; | ||
222 | $ae=0; | ||
223 | $bs=0; | ||
224 | $be=0; | ||
225 | $tot=$num+$num-1; | ||
226 | |||
227 | for ($i=0; $i<$tot; $i++) | ||
228 | { | ||
229 | $ai=$as; | ||
230 | $bi=$bs; | ||
231 | $end=$be+1; | ||
232 | |||
233 | &comment("############### Calculate word $i"); | ||
234 | for ($j=$bs; $j<$end; $j++) | ||
235 | { | ||
236 | &xor($c2,$c2) if ($j == $bs); | ||
237 | if (($ai-1) < ($bi+1)) | ||
238 | { | ||
239 | $v=1; | ||
240 | $v=2 if ($i+1) == $tot; | ||
241 | } | ||
242 | else | ||
243 | { $v=0; } | ||
244 | if (!$v) | ||
245 | { | ||
246 | $na=$ai-1; | ||
247 | $nb=$bi+1; | ||
248 | } | ||
249 | else | ||
250 | { | ||
251 | $na=$as+($i < ($num-1)); | ||
252 | $nb=$bs+($i >= ($num-1)); | ||
253 | } | ||
254 | if ($ai == $bi) | ||
255 | { | ||
256 | &sqr_add_c($r,$a,$ai,$bi, | ||
257 | $c0,$c1,$c2,$v,$i,$na,$nb); | ||
258 | } | ||
259 | else | ||
260 | { | ||
261 | &sqr_add_c2($r,$a,$ai,$bi, | ||
262 | $c0,$c1,$c2,$v,$i,$na,$nb); | ||
263 | } | ||
264 | if ($v) | ||
265 | { | ||
266 | &comment("saved r[$i]"); | ||
267 | #&mov(&DWP($i*4,$r,"",0),$c0); | ||
268 | ($c0,$c1,$c2)=($c1,$c2,$c0); | ||
269 | last; | ||
270 | } | ||
271 | $ai--; | ||
272 | $bi++; | ||
273 | } | ||
274 | $as++ if ($i < ($num-1)); | ||
275 | $ae++ if ($i >= ($num-1)); | ||
276 | |||
277 | $bs++ if ($i >= ($num-1)); | ||
278 | $be++ if ($i < ($num-1)); | ||
279 | } | ||
280 | &mov(&DWP($i*4,$r,"",0),$c0); | ||
281 | &pop("ebx"); | ||
282 | &pop("ebp"); | ||
283 | &pop("edi"); | ||
284 | &pop("esi"); | ||
285 | &ret(); | ||
286 | &function_end_B($name); | ||
287 | } | ||
diff --git a/src/lib/libcrypto/bn/asm/ia64-mont.pl b/src/lib/libcrypto/bn/asm/ia64-mont.pl deleted file mode 100644 index e258658428..0000000000 --- a/src/lib/libcrypto/bn/asm/ia64-mont.pl +++ /dev/null | |||
@@ -1,851 +0,0 @@ | |||
1 | #!/usr/bin/env perl | ||
2 | # | ||
3 | # ==================================================================== | ||
4 | # Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL | ||
5 | # project. The module is, however, dual licensed under OpenSSL and | ||
6 | # CRYPTOGAMS licenses depending on where you obtain it. For further | ||
7 | # details see http://www.openssl.org/~appro/cryptogams/. | ||
8 | # ==================================================================== | ||
9 | |||
10 | # January 2010 | ||
11 | # | ||
12 | # "Teaser" Montgomery multiplication module for IA-64. There are | ||
13 | # several possibilities for improvement: | ||
14 | # | ||
15 | # - modulo-scheduling outer loop would eliminate quite a number of | ||
16 | # stalls after ldf8, xma and getf.sig outside inner loop and | ||
17 | # improve shorter key performance; | ||
18 | # - shorter vector support [with input vectors being fetched only | ||
19 | # once] should be added; | ||
20 | # - 2x unroll with help of n0[1] would make the code scalable on | ||
21 | # "wider" IA-64, "wider" than Itanium 2 that is, which is not of | ||
22 | # acute interest, because upcoming Tukwila's individual cores are | ||
23 | # reportedly based on Itanium 2 design; | ||
24 | # - dedicated squaring procedure(?); | ||
25 | # | ||
26 | # January 2010 | ||
27 | # | ||
28 | # Shorter vector support is implemented by zero-padding ap and np | ||
29 | # vectors up to 8 elements, or 512 bits. This means that 256-bit | ||
30 | # inputs will be processed only 2 times faster than 512-bit inputs, | ||
31 | # not 4 [as one would expect, because algorithm complexity is n^2]. | ||
32 | # The reason for padding is that inputs shorter than 512 bits won't | ||
33 | # be processed faster anyway, because minimal critical path of the | ||
34 | # core loop happens to match 512-bit timing. Either way, it resulted | ||
35 | # in >100% improvement of 512-bit RSA sign benchmark and 50% - of | ||
36 | # 1024-bit one [in comparison to original version of *this* module]. | ||
37 | # | ||
38 | # So far 'openssl speed rsa dsa' output on 900MHz Itanium 2 *with* | ||
39 | # this module is: | ||
40 | # sign verify sign/s verify/s | ||
41 | # rsa 512 bits 0.000290s 0.000024s 3452.8 42031.4 | ||
42 | # rsa 1024 bits 0.000793s 0.000058s 1261.7 17172.0 | ||
43 | # rsa 2048 bits 0.005908s 0.000148s 169.3 6754.0 | ||
44 | # rsa 4096 bits 0.033456s 0.000469s 29.9 2133.6 | ||
45 | # dsa 512 bits 0.000253s 0.000198s 3949.9 5057.0 | ||
46 | # dsa 1024 bits 0.000585s 0.000607s 1708.4 1647.4 | ||
47 | # dsa 2048 bits 0.001453s 0.001703s 688.1 587.4 | ||
48 | # | ||
49 | # ... and *without* (but still with ia64.S): | ||
50 | # | ||
51 | # rsa 512 bits 0.000670s 0.000041s 1491.8 24145.5 | ||
52 | # rsa 1024 bits 0.001988s 0.000080s 502.9 12499.3 | ||
53 | # rsa 2048 bits 0.008702s 0.000189s 114.9 5293.9 | ||
54 | # rsa 4096 bits 0.043860s 0.000533s 22.8 1875.9 | ||
55 | # dsa 512 bits 0.000441s 0.000427s 2265.3 2340.6 | ||
56 | # dsa 1024 bits 0.000823s 0.000867s 1215.6 1153.2 | ||
57 | # dsa 2048 bits 0.001894s 0.002179s 528.1 458.9 | ||
58 | # | ||
59 | # As it can be seen, RSA sign performance improves by 130-30%, | ||
60 | # hereafter less for longer keys, while verify - by 74-13%. | ||
61 | # DSA performance improves by 115-30%. | ||
62 | |||
63 | if ($^O eq "hpux") { | ||
64 | $ADDP="addp4"; | ||
65 | for (@ARGV) { $ADDP="add" if (/[\+DD|\-mlp]64/); } | ||
66 | } else { $ADDP="add"; } | ||
67 | |||
68 | $code=<<___; | ||
69 | .explicit | ||
70 | .text | ||
71 | |||
72 | // int bn_mul_mont (BN_ULONG *rp,const BN_ULONG *ap, | ||
73 | // const BN_ULONG *bp,const BN_ULONG *np, | ||
74 | // const BN_ULONG *n0p,int num); | ||
75 | .align 64 | ||
76 | .global bn_mul_mont# | ||
77 | .proc bn_mul_mont# | ||
78 | bn_mul_mont: | ||
79 | .prologue | ||
80 | .body | ||
81 | { .mmi; cmp4.le p6,p7=2,r37;; | ||
82 | (p6) cmp4.lt.unc p8,p9=8,r37 | ||
83 | mov ret0=r0 };; | ||
84 | { .bbb; | ||
85 | (p9) br.cond.dptk.many bn_mul_mont_8 | ||
86 | (p8) br.cond.dpnt.many bn_mul_mont_general | ||
87 | (p7) br.ret.spnt.many b0 };; | ||
88 | .endp bn_mul_mont# | ||
89 | |||
90 | prevfs=r2; prevpr=r3; prevlc=r10; prevsp=r11; | ||
91 | |||
92 | rptr=r8; aptr=r9; bptr=r14; nptr=r15; | ||
93 | tptr=r16; // &tp[0] | ||
94 | tp_1=r17; // &tp[-1] | ||
95 | num=r18; len=r19; lc=r20; | ||
96 | topbit=r21; // carry bit from tmp[num] | ||
97 | |||
98 | n0=f6; | ||
99 | m0=f7; | ||
100 | bi=f8; | ||
101 | |||
102 | .align 64 | ||
103 | .local bn_mul_mont_general# | ||
104 | .proc bn_mul_mont_general# | ||
105 | bn_mul_mont_general: | ||
106 | .prologue | ||
107 | { .mmi; .save ar.pfs,prevfs | ||
108 | alloc prevfs=ar.pfs,6,2,0,8 | ||
109 | $ADDP aptr=0,in1 | ||
110 | .save ar.lc,prevlc | ||
111 | mov prevlc=ar.lc } | ||
112 | { .mmi; .vframe prevsp | ||
113 | mov prevsp=sp | ||
114 | $ADDP bptr=0,in2 | ||
115 | .save pr,prevpr | ||
116 | mov prevpr=pr };; | ||
117 | |||
118 | .body | ||
119 | .rotf alo[6],nlo[4],ahi[8],nhi[6] | ||
120 | .rotr a[3],n[3],t[2] | ||
121 | |||
122 | { .mmi; ldf8 bi=[bptr],8 // (*bp++) | ||
123 | ldf8 alo[4]=[aptr],16 // ap[0] | ||
124 | $ADDP r30=8,in1 };; | ||
125 | { .mmi; ldf8 alo[3]=[r30],16 // ap[1] | ||
126 | ldf8 alo[2]=[aptr],16 // ap[2] | ||
127 | $ADDP in4=0,in4 };; | ||
128 | { .mmi; ldf8 alo[1]=[r30] // ap[3] | ||
129 | ldf8 n0=[in4] // n0 | ||
130 | $ADDP rptr=0,in0 } | ||
131 | { .mmi; $ADDP nptr=0,in3 | ||
132 | mov r31=16 | ||
133 | zxt4 num=in5 };; | ||
134 | { .mmi; ldf8 nlo[2]=[nptr],8 // np[0] | ||
135 | shladd len=num,3,r0 | ||
136 | shladd r31=num,3,r31 };; | ||
137 | { .mmi; ldf8 nlo[1]=[nptr],8 // np[1] | ||
138 | add lc=-5,num | ||
139 | sub r31=sp,r31 };; | ||
140 | { .mfb; and sp=-16,r31 // alloca | ||
141 | xmpy.hu ahi[2]=alo[4],bi // ap[0]*bp[0] | ||
142 | nop.b 0 } | ||
143 | { .mfb; nop.m 0 | ||
144 | xmpy.lu alo[4]=alo[4],bi | ||
145 | brp.loop.imp .L1st_ctop,.L1st_cend-16 | ||
146 | };; | ||
147 | { .mfi; nop.m 0 | ||
148 | xma.hu ahi[1]=alo[3],bi,ahi[2] // ap[1]*bp[0] | ||
149 | add tp_1=8,sp } | ||
150 | { .mfi; nop.m 0 | ||
151 | xma.lu alo[3]=alo[3],bi,ahi[2] | ||
152 | mov pr.rot=0x20001f<<16 | ||
153 | // ------^----- (p40) at first (p23) | ||
154 | // ----------^^ p[16:20]=1 | ||
155 | };; | ||
156 | { .mfi; nop.m 0 | ||
157 | xmpy.lu m0=alo[4],n0 // (ap[0]*bp[0])*n0 | ||
158 | mov ar.lc=lc } | ||
159 | { .mfi; nop.m 0 | ||
160 | fcvt.fxu.s1 nhi[1]=f0 | ||
161 | mov ar.ec=8 };; | ||
162 | |||
163 | .align 32 | ||
164 | .L1st_ctop: | ||
165 | .pred.rel "mutex",p40,p42 | ||
166 | { .mfi; (p16) ldf8 alo[0]=[aptr],8 // *(aptr++) | ||
167 | (p18) xma.hu ahi[0]=alo[2],bi,ahi[1] | ||
168 | (p40) add n[2]=n[2],a[2] } // (p23) } | ||
169 | { .mfi; (p18) ldf8 nlo[0]=[nptr],8 // *(nptr++)(p16) | ||
170 | (p18) xma.lu alo[2]=alo[2],bi,ahi[1] | ||
171 | (p42) add n[2]=n[2],a[2],1 };; // (p23) | ||
172 | { .mfi; (p21) getf.sig a[0]=alo[5] | ||
173 | (p20) xma.hu nhi[0]=nlo[2],m0,nhi[1] | ||
174 | (p42) cmp.leu p41,p39=n[2],a[2] } // (p23) | ||
175 | { .mfi; (p23) st8 [tp_1]=n[2],8 | ||
176 | (p20) xma.lu nlo[2]=nlo[2],m0,nhi[1] | ||
177 | (p40) cmp.ltu p41,p39=n[2],a[2] } // (p23) | ||
178 | { .mmb; (p21) getf.sig n[0]=nlo[3] | ||
179 | (p16) nop.m 0 | ||
180 | br.ctop.sptk .L1st_ctop };; | ||
181 | .L1st_cend: | ||
182 | |||
183 | { .mmi; getf.sig a[0]=ahi[6] // (p24) | ||
184 | getf.sig n[0]=nhi[4] | ||
185 | add num=-1,num };; // num-- | ||
186 | { .mmi; .pred.rel "mutex",p40,p42 | ||
187 | (p40) add n[0]=n[0],a[0] | ||
188 | (p42) add n[0]=n[0],a[0],1 | ||
189 | sub aptr=aptr,len };; // rewind | ||
190 | { .mmi; .pred.rel "mutex",p40,p42 | ||
191 | (p40) cmp.ltu p41,p39=n[0],a[0] | ||
192 | (p42) cmp.leu p41,p39=n[0],a[0] | ||
193 | sub nptr=nptr,len };; | ||
194 | { .mmi; .pred.rel "mutex",p39,p41 | ||
195 | (p39) add topbit=r0,r0 | ||
196 | (p41) add topbit=r0,r0,1 | ||
197 | nop.i 0 } | ||
198 | { .mmi; st8 [tp_1]=n[0] | ||
199 | add tptr=16,sp | ||
200 | add tp_1=8,sp };; | ||
201 | |||
202 | .Louter: | ||
203 | { .mmi; ldf8 bi=[bptr],8 // (*bp++) | ||
204 | ldf8 ahi[3]=[tptr] // tp[0] | ||
205 | add r30=8,aptr };; | ||
206 | { .mmi; ldf8 alo[4]=[aptr],16 // ap[0] | ||
207 | ldf8 alo[3]=[r30],16 // ap[1] | ||
208 | add r31=8,nptr };; | ||
209 | { .mfb; ldf8 alo[2]=[aptr],16 // ap[2] | ||
210 | xma.hu ahi[2]=alo[4],bi,ahi[3] // ap[0]*bp[i]+tp[0] | ||
211 | brp.loop.imp .Linner_ctop,.Linner_cend-16 | ||
212 | } | ||
213 | { .mfb; ldf8 alo[1]=[r30] // ap[3] | ||
214 | xma.lu alo[4]=alo[4],bi,ahi[3] | ||
215 | clrrrb.pr };; | ||
216 | { .mfi; ldf8 nlo[2]=[nptr],16 // np[0] | ||
217 | xma.hu ahi[1]=alo[3],bi,ahi[2] // ap[1]*bp[i] | ||
218 | nop.i 0 } | ||
219 | { .mfi; ldf8 nlo[1]=[r31] // np[1] | ||
220 | xma.lu alo[3]=alo[3],bi,ahi[2] | ||
221 | mov pr.rot=0x20101f<<16 | ||
222 | // ------^----- (p40) at first (p23) | ||
223 | // --------^--- (p30) at first (p22) | ||
224 | // ----------^^ p[16:20]=1 | ||
225 | };; | ||
226 | { .mfi; st8 [tptr]=r0 // tp[0] is already accounted | ||
227 | xmpy.lu m0=alo[4],n0 // (ap[0]*bp[i]+tp[0])*n0 | ||
228 | mov ar.lc=lc } | ||
229 | { .mfi; | ||
230 | fcvt.fxu.s1 nhi[1]=f0 | ||
231 | mov ar.ec=8 };; | ||
232 | |||
233 | // This loop spins in 4*(n+7) ticks on Itanium 2 and should spin in | ||
234 | // 7*(n+7) ticks on Itanium (the one codenamed Merced). Factor of 7 | ||
235 | // in latter case accounts for two-tick pipeline stall, which means | ||
236 | // that its performance would be ~20% lower than optimal one. No | ||
237 | // attempt was made to address this, because original Itanium is | ||
238 | // hardly represented out in the wild... | ||
239 | .align 32 | ||
240 | .Linner_ctop: | ||
241 | .pred.rel "mutex",p40,p42 | ||
242 | .pred.rel "mutex",p30,p32 | ||
243 | { .mfi; (p16) ldf8 alo[0]=[aptr],8 // *(aptr++) | ||
244 | (p18) xma.hu ahi[0]=alo[2],bi,ahi[1] | ||
245 | (p40) add n[2]=n[2],a[2] } // (p23) | ||
246 | { .mfi; (p16) nop.m 0 | ||
247 | (p18) xma.lu alo[2]=alo[2],bi,ahi[1] | ||
248 | (p42) add n[2]=n[2],a[2],1 };; // (p23) | ||
249 | { .mfi; (p21) getf.sig a[0]=alo[5] | ||
250 | (p16) nop.f 0 | ||
251 | (p40) cmp.ltu p41,p39=n[2],a[2] } // (p23) | ||
252 | { .mfi; (p21) ld8 t[0]=[tptr],8 | ||
253 | (p16) nop.f 0 | ||
254 | (p42) cmp.leu p41,p39=n[2],a[2] };; // (p23) | ||
255 | { .mfi; (p18) ldf8 nlo[0]=[nptr],8 // *(nptr++) | ||
256 | (p20) xma.hu nhi[0]=nlo[2],m0,nhi[1] | ||
257 | (p30) add a[1]=a[1],t[1] } // (p22) | ||
258 | { .mfi; (p16) nop.m 0 | ||
259 | (p20) xma.lu nlo[2]=nlo[2],m0,nhi[1] | ||
260 | (p32) add a[1]=a[1],t[1],1 };; // (p22) | ||
261 | { .mmi; (p21) getf.sig n[0]=nlo[3] | ||
262 | (p16) nop.m 0 | ||
263 | (p30) cmp.ltu p31,p29=a[1],t[1] } // (p22) | ||
264 | { .mmb; (p23) st8 [tp_1]=n[2],8 | ||
265 | (p32) cmp.leu p31,p29=a[1],t[1] // (p22) | ||
266 | br.ctop.sptk .Linner_ctop };; | ||
267 | .Linner_cend: | ||
268 | |||
269 | { .mmi; getf.sig a[0]=ahi[6] // (p24) | ||
270 | getf.sig n[0]=nhi[4] | ||
271 | nop.i 0 };; | ||
272 | |||
273 | { .mmi; .pred.rel "mutex",p31,p33 | ||
274 | (p31) add a[0]=a[0],topbit | ||
275 | (p33) add a[0]=a[0],topbit,1 | ||
276 | mov topbit=r0 };; | ||
277 | { .mfi; .pred.rel "mutex",p31,p33 | ||
278 | (p31) cmp.ltu p32,p30=a[0],topbit | ||
279 | (p33) cmp.leu p32,p30=a[0],topbit | ||
280 | } | ||
281 | { .mfi; .pred.rel "mutex",p40,p42 | ||
282 | (p40) add n[0]=n[0],a[0] | ||
283 | (p42) add n[0]=n[0],a[0],1 | ||
284 | };; | ||
285 | { .mmi; .pred.rel "mutex",p44,p46 | ||
286 | (p40) cmp.ltu p41,p39=n[0],a[0] | ||
287 | (p42) cmp.leu p41,p39=n[0],a[0] | ||
288 | (p32) add topbit=r0,r0,1 } | ||
289 | |||
290 | { .mmi; st8 [tp_1]=n[0],8 | ||
291 | cmp4.ne p6,p0=1,num | ||
292 | sub aptr=aptr,len };; // rewind | ||
293 | { .mmi; sub nptr=nptr,len | ||
294 | (p41) add topbit=r0,r0,1 | ||
295 | add tptr=16,sp } | ||
296 | { .mmb; add tp_1=8,sp | ||
297 | add num=-1,num // num-- | ||
298 | (p6) br.cond.sptk.many .Louter };; | ||
299 | |||
300 | { .mbb; add lc=4,lc | ||
301 | brp.loop.imp .Lsub_ctop,.Lsub_cend-16 | ||
302 | clrrrb.pr };; | ||
303 | { .mii; nop.m 0 | ||
304 | mov pr.rot=0x10001<<16 | ||
305 | // ------^---- (p33) at first (p17) | ||
306 | mov ar.lc=lc } | ||
307 | { .mii; nop.m 0 | ||
308 | mov ar.ec=3 | ||
309 | nop.i 0 };; | ||
310 | |||
311 | .Lsub_ctop: | ||
312 | .pred.rel "mutex",p33,p35 | ||
313 | { .mfi; (p16) ld8 t[0]=[tptr],8 // t=*(tp++) | ||
314 | (p16) nop.f 0 | ||
315 | (p33) sub n[1]=t[1],n[1] } // (p17) | ||
316 | { .mfi; (p16) ld8 n[0]=[nptr],8 // n=*(np++) | ||
317 | (p16) nop.f 0 | ||
318 | (p35) sub n[1]=t[1],n[1],1 };; // (p17) | ||
319 | { .mib; (p18) st8 [rptr]=n[2],8 // *(rp++)=r | ||
320 | (p33) cmp.gtu p34,p32=n[1],t[1] // (p17) | ||
321 | (p18) nop.b 0 } | ||
322 | { .mib; (p18) nop.m 0 | ||
323 | (p35) cmp.geu p34,p32=n[1],t[1] // (p17) | ||
324 | br.ctop.sptk .Lsub_ctop };; | ||
325 | .Lsub_cend: | ||
326 | |||
327 | { .mmb; .pred.rel "mutex",p34,p36 | ||
328 | (p34) sub topbit=topbit,r0 // (p19) | ||
329 | (p36) sub topbit=topbit,r0,1 | ||
330 | brp.loop.imp .Lcopy_ctop,.Lcopy_cend-16 | ||
331 | } | ||
332 | { .mmb; sub rptr=rptr,len // rewind | ||
333 | sub tptr=tptr,len | ||
334 | clrrrb.pr };; | ||
335 | { .mmi; and aptr=tptr,topbit | ||
336 | andcm bptr=rptr,topbit | ||
337 | mov pr.rot=1<<16 };; | ||
338 | { .mii; or nptr=aptr,bptr | ||
339 | mov ar.lc=lc | ||
340 | mov ar.ec=3 };; | ||
341 | |||
342 | .Lcopy_ctop: | ||
343 | { .mmb; (p16) ld8 n[0]=[nptr],8 | ||
344 | (p18) st8 [tptr]=r0,8 | ||
345 | (p16) nop.b 0 } | ||
346 | { .mmb; (p16) nop.m 0 | ||
347 | (p18) st8 [rptr]=n[2],8 | ||
348 | br.ctop.sptk .Lcopy_ctop };; | ||
349 | .Lcopy_cend: | ||
350 | |||
351 | { .mmi; mov ret0=1 // signal "handled" | ||
352 | rum 1<<5 // clear um.mfh | ||
353 | mov ar.lc=prevlc } | ||
354 | { .mib; .restore sp | ||
355 | mov sp=prevsp | ||
356 | mov pr=prevpr,0x1ffff | ||
357 | br.ret.sptk.many b0 };; | ||
358 | .endp bn_mul_mont_general# | ||
359 | |||
360 | a1=r16; a2=r17; a3=r18; a4=r19; a5=r20; a6=r21; a7=r22; a8=r23; | ||
361 | n1=r24; n2=r25; n3=r26; n4=r27; n5=r28; n6=r29; n7=r30; n8=r31; | ||
362 | t0=r15; | ||
363 | |||
364 | ai0=f8; ai1=f9; ai2=f10; ai3=f11; ai4=f12; ai5=f13; ai6=f14; ai7=f15; | ||
365 | ni0=f16; ni1=f17; ni2=f18; ni3=f19; ni4=f20; ni5=f21; ni6=f22; ni7=f23; | ||
366 | |||
367 | .align 64 | ||
368 | .skip 48 // aligns loop body | ||
369 | .local bn_mul_mont_8# | ||
370 | .proc bn_mul_mont_8# | ||
371 | bn_mul_mont_8: | ||
372 | .prologue | ||
373 | { .mmi; .save ar.pfs,prevfs | ||
374 | alloc prevfs=ar.pfs,6,2,0,8 | ||
375 | .vframe prevsp | ||
376 | mov prevsp=sp | ||
377 | .save ar.lc,prevlc | ||
378 | mov prevlc=ar.lc } | ||
379 | { .mmi; add r17=-6*16,sp | ||
380 | add sp=-7*16,sp | ||
381 | .save pr,prevpr | ||
382 | mov prevpr=pr };; | ||
383 | |||
384 | { .mmi; .save.gf 0,0x10 | ||
385 | stf.spill [sp]=f16,-16 | ||
386 | .save.gf 0,0x20 | ||
387 | stf.spill [r17]=f17,32 | ||
388 | add r16=-5*16,prevsp};; | ||
389 | { .mmi; .save.gf 0,0x40 | ||
390 | stf.spill [r16]=f18,32 | ||
391 | .save.gf 0,0x80 | ||
392 | stf.spill [r17]=f19,32 | ||
393 | $ADDP aptr=0,in1 };; | ||
394 | { .mmi; .save.gf 0,0x100 | ||
395 | stf.spill [r16]=f20,32 | ||
396 | .save.gf 0,0x200 | ||
397 | stf.spill [r17]=f21,32 | ||
398 | $ADDP r29=8,in1 };; | ||
399 | { .mmi; .save.gf 0,0x400 | ||
400 | stf.spill [r16]=f22 | ||
401 | .save.gf 0,0x800 | ||
402 | stf.spill [r17]=f23 | ||
403 | $ADDP rptr=0,in0 };; | ||
404 | |||
405 | .body | ||
406 | .rotf bj[8],mj[2],tf[2],alo[10],ahi[10],nlo[10],nhi[10] | ||
407 | .rotr t[8] | ||
408 | |||
409 | // load input vectors padding them to 8 elements | ||
410 | { .mmi; ldf8 ai0=[aptr],16 // ap[0] | ||
411 | ldf8 ai1=[r29],16 // ap[1] | ||
412 | $ADDP bptr=0,in2 } | ||
413 | { .mmi; $ADDP r30=8,in2 | ||
414 | $ADDP nptr=0,in3 | ||
415 | $ADDP r31=8,in3 };; | ||
416 | { .mmi; ldf8 bj[7]=[bptr],16 // bp[0] | ||
417 | ldf8 bj[6]=[r30],16 // bp[1] | ||
418 | cmp4.le p4,p5=3,in5 } | ||
419 | { .mmi; ldf8 ni0=[nptr],16 // np[0] | ||
420 | ldf8 ni1=[r31],16 // np[1] | ||
421 | cmp4.le p6,p7=4,in5 };; | ||
422 | |||
423 | { .mfi; (p4)ldf8 ai2=[aptr],16 // ap[2] | ||
424 | (p5)fcvt.fxu ai2=f0 | ||
425 | cmp4.le p8,p9=5,in5 } | ||
426 | { .mfi; (p6)ldf8 ai3=[r29],16 // ap[3] | ||
427 | (p7)fcvt.fxu ai3=f0 | ||
428 | cmp4.le p10,p11=6,in5 } | ||
429 | { .mfi; (p4)ldf8 bj[5]=[bptr],16 // bp[2] | ||
430 | (p5)fcvt.fxu bj[5]=f0 | ||
431 | cmp4.le p12,p13=7,in5 } | ||
432 | { .mfi; (p6)ldf8 bj[4]=[r30],16 // bp[3] | ||
433 | (p7)fcvt.fxu bj[4]=f0 | ||
434 | cmp4.le p14,p15=8,in5 } | ||
435 | { .mfi; (p4)ldf8 ni2=[nptr],16 // np[2] | ||
436 | (p5)fcvt.fxu ni2=f0 | ||
437 | addp4 r28=-1,in5 } | ||
438 | { .mfi; (p6)ldf8 ni3=[r31],16 // np[3] | ||
439 | (p7)fcvt.fxu ni3=f0 | ||
440 | $ADDP in4=0,in4 };; | ||
441 | |||
442 | { .mfi; ldf8 n0=[in4] | ||
443 | fcvt.fxu tf[1]=f0 | ||
444 | nop.i 0 } | ||
445 | |||
446 | { .mfi; (p8)ldf8 ai4=[aptr],16 // ap[4] | ||
447 | (p9)fcvt.fxu ai4=f0 | ||
448 | mov t[0]=r0 } | ||
449 | { .mfi; (p10)ldf8 ai5=[r29],16 // ap[5] | ||
450 | (p11)fcvt.fxu ai5=f0 | ||
451 | mov t[1]=r0 } | ||
452 | { .mfi; (p8)ldf8 bj[3]=[bptr],16 // bp[4] | ||
453 | (p9)fcvt.fxu bj[3]=f0 | ||
454 | mov t[2]=r0 } | ||
455 | { .mfi; (p10)ldf8 bj[2]=[r30],16 // bp[5] | ||
456 | (p11)fcvt.fxu bj[2]=f0 | ||
457 | mov t[3]=r0 } | ||
458 | { .mfi; (p8)ldf8 ni4=[nptr],16 // np[4] | ||
459 | (p9)fcvt.fxu ni4=f0 | ||
460 | mov t[4]=r0 } | ||
461 | { .mfi; (p10)ldf8 ni5=[r31],16 // np[5] | ||
462 | (p11)fcvt.fxu ni5=f0 | ||
463 | mov t[5]=r0 };; | ||
464 | |||
465 | { .mfi; (p12)ldf8 ai6=[aptr],16 // ap[6] | ||
466 | (p13)fcvt.fxu ai6=f0 | ||
467 | mov t[6]=r0 } | ||
468 | { .mfi; (p14)ldf8 ai7=[r29],16 // ap[7] | ||
469 | (p15)fcvt.fxu ai7=f0 | ||
470 | mov t[7]=r0 } | ||
471 | { .mfi; (p12)ldf8 bj[1]=[bptr],16 // bp[6] | ||
472 | (p13)fcvt.fxu bj[1]=f0 | ||
473 | mov ar.lc=r28 } | ||
474 | { .mfi; (p14)ldf8 bj[0]=[r30],16 // bp[7] | ||
475 | (p15)fcvt.fxu bj[0]=f0 | ||
476 | mov ar.ec=1 } | ||
477 | { .mfi; (p12)ldf8 ni6=[nptr],16 // np[6] | ||
478 | (p13)fcvt.fxu ni6=f0 | ||
479 | mov pr.rot=1<<16 } | ||
480 | { .mfb; (p14)ldf8 ni7=[r31],16 // np[7] | ||
481 | (p15)fcvt.fxu ni7=f0 | ||
482 | brp.loop.imp .Louter_8_ctop,.Louter_8_cend-16 | ||
483 | };; | ||
484 | |||
485 | // The loop is scheduled for 32*n ticks on Itanium 2. Actual attempt | ||
486 | // to measure with help of Interval Time Counter indicated that the | ||
487 | // factor is a tad higher: 33 or 34, if not 35. Exact measurement and | ||
488 | // addressing the issue is problematic, because I don't have access | ||
489 | // to platform-specific instruction-level profiler. On Itanium it | ||
490 | // should run in 56*n ticks, because of higher xma latency... | ||
491 | .Louter_8_ctop: | ||
492 | .pred.rel "mutex",p40,p42 | ||
493 | .pred.rel "mutex",p48,p50 | ||
494 | { .mfi; (p16) nop.m 0 // 0: | ||
495 | (p16) xma.hu ahi[0]=ai0,bj[7],tf[1] // ap[0]*b[i]+t[0] | ||
496 | (p40) add a3=a3,n3 } // (p17) a3+=n3 | ||
497 | { .mfi; (p42) add a3=a3,n3,1 | ||
498 | (p16) xma.lu alo[0]=ai0,bj[7],tf[1] | ||
499 | (p16) nop.i 0 };; | ||
500 | { .mii; (p17) getf.sig a7=alo[8] // 1: | ||
501 | (p48) add t[6]=t[6],a3 // (p17) t[6]+=a3 | ||
502 | (p50) add t[6]=t[6],a3,1 };; | ||
503 | { .mfi; (p17) getf.sig a8=ahi[8] // 2: | ||
504 | (p17) xma.hu nhi[7]=ni6,mj[1],nhi[6] // np[6]*m0 | ||
505 | (p40) cmp.ltu p43,p41=a3,n3 } | ||
506 | { .mfi; (p42) cmp.leu p43,p41=a3,n3 | ||
507 | (p17) xma.lu nlo[7]=ni6,mj[1],nhi[6] | ||
508 | (p16) nop.i 0 };; | ||
509 | { .mii; (p17) getf.sig n5=nlo[6] // 3: | ||
510 | (p48) cmp.ltu p51,p49=t[6],a3 | ||
511 | (p50) cmp.leu p51,p49=t[6],a3 };; | ||
512 | .pred.rel "mutex",p41,p43 | ||
513 | .pred.rel "mutex",p49,p51 | ||
514 | { .mfi; (p16) nop.m 0 // 4: | ||
515 | (p16) xma.hu ahi[1]=ai1,bj[7],ahi[0] // ap[1]*b[i] | ||
516 | (p41) add a4=a4,n4 } // (p17) a4+=n4 | ||
517 | { .mfi; (p43) add a4=a4,n4,1 | ||
518 | (p16) xma.lu alo[1]=ai1,bj[7],ahi[0] | ||
519 | (p16) nop.i 0 };; | ||
520 | { .mfi; (p49) add t[5]=t[5],a4 // 5: (p17) t[5]+=a4 | ||
521 | (p16) xmpy.lu mj[0]=alo[0],n0 // (ap[0]*b[i]+t[0])*n0 | ||
522 | (p51) add t[5]=t[5],a4,1 };; | ||
523 | { .mfi; (p16) nop.m 0 // 6: | ||
524 | (p17) xma.hu nhi[8]=ni7,mj[1],nhi[7] // np[7]*m0 | ||
525 | (p41) cmp.ltu p42,p40=a4,n4 } | ||
526 | { .mfi; (p43) cmp.leu p42,p40=a4,n4 | ||
527 | (p17) xma.lu nlo[8]=ni7,mj[1],nhi[7] | ||
528 | (p16) nop.i 0 };; | ||
529 | { .mii; (p17) getf.sig n6=nlo[7] // 7: | ||
530 | (p49) cmp.ltu p50,p48=t[5],a4 | ||
531 | (p51) cmp.leu p50,p48=t[5],a4 };; | ||
532 | .pred.rel "mutex",p40,p42 | ||
533 | .pred.rel "mutex",p48,p50 | ||
534 | { .mfi; (p16) nop.m 0 // 8: | ||
535 | (p16) xma.hu ahi[2]=ai2,bj[7],ahi[1] // ap[2]*b[i] | ||
536 | (p40) add a5=a5,n5 } // (p17) a5+=n5 | ||
537 | { .mfi; (p42) add a5=a5,n5,1 | ||
538 | (p16) xma.lu alo[2]=ai2,bj[7],ahi[1] | ||
539 | (p16) nop.i 0 };; | ||
540 | { .mii; (p16) getf.sig a1=alo[1] // 9: | ||
541 | (p48) add t[4]=t[4],a5 // p(17) t[4]+=a5 | ||
542 | (p50) add t[4]=t[4],a5,1 };; | ||
543 | { .mfi; (p16) nop.m 0 // 10: | ||
544 | (p16) xma.hu nhi[0]=ni0,mj[0],alo[0] // np[0]*m0 | ||
545 | (p40) cmp.ltu p43,p41=a5,n5 } | ||
546 | { .mfi; (p42) cmp.leu p43,p41=a5,n5 | ||
547 | (p16) xma.lu nlo[0]=ni0,mj[0],alo[0] | ||
548 | (p16) nop.i 0 };; | ||
549 | { .mii; (p17) getf.sig n7=nlo[8] // 11: | ||
550 | (p48) cmp.ltu p51,p49=t[4],a5 | ||
551 | (p50) cmp.leu p51,p49=t[4],a5 };; | ||
552 | .pred.rel "mutex",p41,p43 | ||
553 | .pred.rel "mutex",p49,p51 | ||
554 | { .mfi; (p17) getf.sig n8=nhi[8] // 12: | ||
555 | (p16) xma.hu ahi[3]=ai3,bj[7],ahi[2] // ap[3]*b[i] | ||
556 | (p41) add a6=a6,n6 } // (p17) a6+=n6 | ||
557 | { .mfi; (p43) add a6=a6,n6,1 | ||
558 | (p16) xma.lu alo[3]=ai3,bj[7],ahi[2] | ||
559 | (p16) nop.i 0 };; | ||
560 | { .mii; (p16) getf.sig a2=alo[2] // 13: | ||
561 | (p49) add t[3]=t[3],a6 // (p17) t[3]+=a6 | ||
562 | (p51) add t[3]=t[3],a6,1 };; | ||
563 | { .mfi; (p16) nop.m 0 // 14: | ||
564 | (p16) xma.hu nhi[1]=ni1,mj[0],nhi[0] // np[1]*m0 | ||
565 | (p41) cmp.ltu p42,p40=a6,n6 } | ||
566 | { .mfi; (p43) cmp.leu p42,p40=a6,n6 | ||
567 | (p16) xma.lu nlo[1]=ni1,mj[0],nhi[0] | ||
568 | (p16) nop.i 0 };; | ||
569 | { .mii; (p16) nop.m 0 // 15: | ||
570 | (p49) cmp.ltu p50,p48=t[3],a6 | ||
571 | (p51) cmp.leu p50,p48=t[3],a6 };; | ||
572 | .pred.rel "mutex",p40,p42 | ||
573 | .pred.rel "mutex",p48,p50 | ||
574 | { .mfi; (p16) nop.m 0 // 16: | ||
575 | (p16) xma.hu ahi[4]=ai4,bj[7],ahi[3] // ap[4]*b[i] | ||
576 | (p40) add a7=a7,n7 } // (p17) a7+=n7 | ||
577 | { .mfi; (p42) add a7=a7,n7,1 | ||
578 | (p16) xma.lu alo[4]=ai4,bj[7],ahi[3] | ||
579 | (p16) nop.i 0 };; | ||
580 | { .mii; (p16) getf.sig a3=alo[3] // 17: | ||
581 | (p48) add t[2]=t[2],a7 // (p17) t[2]+=a7 | ||
582 | (p50) add t[2]=t[2],a7,1 };; | ||
583 | { .mfi; (p16) nop.m 0 // 18: | ||
584 | (p16) xma.hu nhi[2]=ni2,mj[0],nhi[1] // np[2]*m0 | ||
585 | (p40) cmp.ltu p43,p41=a7,n7 } | ||
586 | { .mfi; (p42) cmp.leu p43,p41=a7,n7 | ||
587 | (p16) xma.lu nlo[2]=ni2,mj[0],nhi[1] | ||
588 | (p16) nop.i 0 };; | ||
589 | { .mii; (p16) getf.sig n1=nlo[1] // 19: | ||
590 | (p48) cmp.ltu p51,p49=t[2],a7 | ||
591 | (p50) cmp.leu p51,p49=t[2],a7 };; | ||
592 | .pred.rel "mutex",p41,p43 | ||
593 | .pred.rel "mutex",p49,p51 | ||
594 | { .mfi; (p16) nop.m 0 // 20: | ||
595 | (p16) xma.hu ahi[5]=ai5,bj[7],ahi[4] // ap[5]*b[i] | ||
596 | (p41) add a8=a8,n8 } // (p17) a8+=n8 | ||
597 | { .mfi; (p43) add a8=a8,n8,1 | ||
598 | (p16) xma.lu alo[5]=ai5,bj[7],ahi[4] | ||
599 | (p16) nop.i 0 };; | ||
600 | { .mii; (p16) getf.sig a4=alo[4] // 21: | ||
601 | (p49) add t[1]=t[1],a8 // (p17) t[1]+=a8 | ||
602 | (p51) add t[1]=t[1],a8,1 };; | ||
603 | { .mfi; (p16) nop.m 0 // 22: | ||
604 | (p16) xma.hu nhi[3]=ni3,mj[0],nhi[2] // np[3]*m0 | ||
605 | (p41) cmp.ltu p42,p40=a8,n8 } | ||
606 | { .mfi; (p43) cmp.leu p42,p40=a8,n8 | ||
607 | (p16) xma.lu nlo[3]=ni3,mj[0],nhi[2] | ||
608 | (p16) nop.i 0 };; | ||
609 | { .mii; (p16) getf.sig n2=nlo[2] // 23: | ||
610 | (p49) cmp.ltu p50,p48=t[1],a8 | ||
611 | (p51) cmp.leu p50,p48=t[1],a8 };; | ||
612 | { .mfi; (p16) nop.m 0 // 24: | ||
613 | (p16) xma.hu ahi[6]=ai6,bj[7],ahi[5] // ap[6]*b[i] | ||
614 | (p16) add a1=a1,n1 } // (p16) a1+=n1 | ||
615 | { .mfi; (p16) nop.m 0 | ||
616 | (p16) xma.lu alo[6]=ai6,bj[7],ahi[5] | ||
617 | (p17) mov t[0]=r0 };; | ||
618 | { .mii; (p16) getf.sig a5=alo[5] // 25: | ||
619 | (p16) add t0=t[7],a1 // (p16) t[7]+=a1 | ||
620 | (p42) add t[0]=t[0],r0,1 };; | ||
621 | { .mfi; (p16) setf.sig tf[0]=t0 // 26: | ||
622 | (p16) xma.hu nhi[4]=ni4,mj[0],nhi[3] // np[4]*m0 | ||
623 | (p50) add t[0]=t[0],r0,1 } | ||
624 | { .mfi; (p16) cmp.ltu.unc p42,p40=a1,n1 | ||
625 | (p16) xma.lu nlo[4]=ni4,mj[0],nhi[3] | ||
626 | (p16) nop.i 0 };; | ||
627 | { .mii; (p16) getf.sig n3=nlo[3] // 27: | ||
628 | (p16) cmp.ltu.unc p50,p48=t0,a1 | ||
629 | (p16) nop.i 0 };; | ||
630 | .pred.rel "mutex",p40,p42 | ||
631 | .pred.rel "mutex",p48,p50 | ||
632 | { .mfi; (p16) nop.m 0 // 28: | ||
633 | (p16) xma.hu ahi[7]=ai7,bj[7],ahi[6] // ap[7]*b[i] | ||
634 | (p40) add a2=a2,n2 } // (p16) a2+=n2 | ||
635 | { .mfi; (p42) add a2=a2,n2,1 | ||
636 | (p16) xma.lu alo[7]=ai7,bj[7],ahi[6] | ||
637 | (p16) nop.i 0 };; | ||
638 | { .mii; (p16) getf.sig a6=alo[6] // 29: | ||
639 | (p48) add t[6]=t[6],a2 // (p16) t[6]+=a2 | ||
640 | (p50) add t[6]=t[6],a2,1 };; | ||
641 | { .mfi; (p16) nop.m 0 // 30: | ||
642 | (p16) xma.hu nhi[5]=ni5,mj[0],nhi[4] // np[5]*m0 | ||
643 | (p40) cmp.ltu p41,p39=a2,n2 } | ||
644 | { .mfi; (p42) cmp.leu p41,p39=a2,n2 | ||
645 | (p16) xma.lu nlo[5]=ni5,mj[0],nhi[4] | ||
646 | (p16) nop.i 0 };; | ||
647 | { .mfi; (p16) getf.sig n4=nlo[4] // 31: | ||
648 | (p16) nop.f 0 | ||
649 | (p48) cmp.ltu p49,p47=t[6],a2 } | ||
650 | { .mfb; (p50) cmp.leu p49,p47=t[6],a2 | ||
651 | (p16) nop.f 0 | ||
652 | br.ctop.sptk.many .Louter_8_ctop };; | ||
653 | .Louter_8_cend: | ||
654 | |||
655 | // above loop has to execute one more time, without (p16), which is | ||
656 | // replaced with merged move of np[8] to GPR bank | ||
657 | .pred.rel "mutex",p40,p42 | ||
658 | .pred.rel "mutex",p48,p50 | ||
659 | { .mmi; (p0) getf.sig n1=ni0 // 0: | ||
660 | (p40) add a3=a3,n3 // (p17) a3+=n3 | ||
661 | (p42) add a3=a3,n3,1 };; | ||
662 | { .mii; (p17) getf.sig a7=alo[8] // 1: | ||
663 | (p48) add t[6]=t[6],a3 // (p17) t[6]+=a3 | ||
664 | (p50) add t[6]=t[6],a3,1 };; | ||
665 | { .mfi; (p17) getf.sig a8=ahi[8] // 2: | ||
666 | (p17) xma.hu nhi[7]=ni6,mj[1],nhi[6] // np[6]*m0 | ||
667 | (p40) cmp.ltu p43,p41=a3,n3 } | ||
668 | { .mfi; (p42) cmp.leu p43,p41=a3,n3 | ||
669 | (p17) xma.lu nlo[7]=ni6,mj[1],nhi[6] | ||
670 | (p0) nop.i 0 };; | ||
671 | { .mii; (p17) getf.sig n5=nlo[6] // 3: | ||
672 | (p48) cmp.ltu p51,p49=t[6],a3 | ||
673 | (p50) cmp.leu p51,p49=t[6],a3 };; | ||
674 | .pred.rel "mutex",p41,p43 | ||
675 | .pred.rel "mutex",p49,p51 | ||
676 | { .mmi; (p0) getf.sig n2=ni1 // 4: | ||
677 | (p41) add a4=a4,n4 // (p17) a4+=n4 | ||
678 | (p43) add a4=a4,n4,1 };; | ||
679 | { .mfi; (p49) add t[5]=t[5],a4 // 5: (p17) t[5]+=a4 | ||
680 | (p0) nop.f 0 | ||
681 | (p51) add t[5]=t[5],a4,1 };; | ||
682 | { .mfi; (p0) getf.sig n3=ni2 // 6: | ||
683 | (p17) xma.hu nhi[8]=ni7,mj[1],nhi[7] // np[7]*m0 | ||
684 | (p41) cmp.ltu p42,p40=a4,n4 } | ||
685 | { .mfi; (p43) cmp.leu p42,p40=a4,n4 | ||
686 | (p17) xma.lu nlo[8]=ni7,mj[1],nhi[7] | ||
687 | (p0) nop.i 0 };; | ||
688 | { .mii; (p17) getf.sig n6=nlo[7] // 7: | ||
689 | (p49) cmp.ltu p50,p48=t[5],a4 | ||
690 | (p51) cmp.leu p50,p48=t[5],a4 };; | ||
691 | .pred.rel "mutex",p40,p42 | ||
692 | .pred.rel "mutex",p48,p50 | ||
693 | { .mii; (p0) getf.sig n4=ni3 // 8: | ||
694 | (p40) add a5=a5,n5 // (p17) a5+=n5 | ||
695 | (p42) add a5=a5,n5,1 };; | ||
696 | { .mii; (p0) nop.m 0 // 9: | ||
697 | (p48) add t[4]=t[4],a5 // p(17) t[4]+=a5 | ||
698 | (p50) add t[4]=t[4],a5,1 };; | ||
699 | { .mii; (p0) nop.m 0 // 10: | ||
700 | (p40) cmp.ltu p43,p41=a5,n5 | ||
701 | (p42) cmp.leu p43,p41=a5,n5 };; | ||
702 | { .mii; (p17) getf.sig n7=nlo[8] // 11: | ||
703 | (p48) cmp.ltu p51,p49=t[4],a5 | ||
704 | (p50) cmp.leu p51,p49=t[4],a5 };; | ||
705 | .pred.rel "mutex",p41,p43 | ||
706 | .pred.rel "mutex",p49,p51 | ||
707 | { .mii; (p17) getf.sig n8=nhi[8] // 12: | ||
708 | (p41) add a6=a6,n6 // (p17) a6+=n6 | ||
709 | (p43) add a6=a6,n6,1 };; | ||
710 | { .mii; (p0) getf.sig n5=ni4 // 13: | ||
711 | (p49) add t[3]=t[3],a6 // (p17) t[3]+=a6 | ||
712 | (p51) add t[3]=t[3],a6,1 };; | ||
713 | { .mii; (p0) nop.m 0 // 14: | ||
714 | (p41) cmp.ltu p42,p40=a6,n6 | ||
715 | (p43) cmp.leu p42,p40=a6,n6 };; | ||
716 | { .mii; (p0) getf.sig n6=ni5 // 15: | ||
717 | (p49) cmp.ltu p50,p48=t[3],a6 | ||
718 | (p51) cmp.leu p50,p48=t[3],a6 };; | ||
719 | .pred.rel "mutex",p40,p42 | ||
720 | .pred.rel "mutex",p48,p50 | ||
721 | { .mii; (p0) nop.m 0 // 16: | ||
722 | (p40) add a7=a7,n7 // (p17) a7+=n7 | ||
723 | (p42) add a7=a7,n7,1 };; | ||
724 | { .mii; (p0) nop.m 0 // 17: | ||
725 | (p48) add t[2]=t[2],a7 // (p17) t[2]+=a7 | ||
726 | (p50) add t[2]=t[2],a7,1 };; | ||
727 | { .mii; (p0) nop.m 0 // 18: | ||
728 | (p40) cmp.ltu p43,p41=a7,n7 | ||
729 | (p42) cmp.leu p43,p41=a7,n7 };; | ||
730 | { .mii; (p0) getf.sig n7=ni6 // 19: | ||
731 | (p48) cmp.ltu p51,p49=t[2],a7 | ||
732 | (p50) cmp.leu p51,p49=t[2],a7 };; | ||
733 | .pred.rel "mutex",p41,p43 | ||
734 | .pred.rel "mutex",p49,p51 | ||
735 | { .mii; (p0) nop.m 0 // 20: | ||
736 | (p41) add a8=a8,n8 // (p17) a8+=n8 | ||
737 | (p43) add a8=a8,n8,1 };; | ||
738 | { .mmi; (p0) nop.m 0 // 21: | ||
739 | (p49) add t[1]=t[1],a8 // (p17) t[1]+=a8 | ||
740 | (p51) add t[1]=t[1],a8,1 } | ||
741 | { .mmi; (p17) mov t[0]=r0 | ||
742 | (p41) cmp.ltu p42,p40=a8,n8 | ||
743 | (p43) cmp.leu p42,p40=a8,n8 };; | ||
744 | { .mmi; (p0) getf.sig n8=ni7 // 22: | ||
745 | (p49) cmp.ltu p50,p48=t[1],a8 | ||
746 | (p51) cmp.leu p50,p48=t[1],a8 } | ||
747 | { .mmi; (p42) add t[0]=t[0],r0,1 | ||
748 | (p0) add r16=-7*16,prevsp | ||
749 | (p0) add r17=-6*16,prevsp };; | ||
750 | |||
751 | // subtract np[8] from carrybit|tmp[8] | ||
752 | // carrybit|tmp[8] layout upon exit from above loop is: | ||
753 | // t[0]|t[1]|t[2]|t[3]|t[4]|t[5]|t[6]|t[7]|t0 (least significant) | ||
754 | { .mmi; (p50)add t[0]=t[0],r0,1 | ||
755 | add r18=-5*16,prevsp | ||
756 | sub n1=t0,n1 };; | ||
757 | { .mmi; cmp.gtu p34,p32=n1,t0;; | ||
758 | .pred.rel "mutex",p32,p34 | ||
759 | (p32)sub n2=t[7],n2 | ||
760 | (p34)sub n2=t[7],n2,1 };; | ||
761 | { .mii; (p32)cmp.gtu p35,p33=n2,t[7] | ||
762 | (p34)cmp.geu p35,p33=n2,t[7];; | ||
763 | .pred.rel "mutex",p33,p35 | ||
764 | (p33)sub n3=t[6],n3 } | ||
765 | { .mmi; (p35)sub n3=t[6],n3,1;; | ||
766 | (p33)cmp.gtu p34,p32=n3,t[6] | ||
767 | (p35)cmp.geu p34,p32=n3,t[6] };; | ||
768 | .pred.rel "mutex",p32,p34 | ||
769 | { .mii; (p32)sub n4=t[5],n4 | ||
770 | (p34)sub n4=t[5],n4,1;; | ||
771 | (p32)cmp.gtu p35,p33=n4,t[5] } | ||
772 | { .mmi; (p34)cmp.geu p35,p33=n4,t[5];; | ||
773 | .pred.rel "mutex",p33,p35 | ||
774 | (p33)sub n5=t[4],n5 | ||
775 | (p35)sub n5=t[4],n5,1 };; | ||
776 | { .mii; (p33)cmp.gtu p34,p32=n5,t[4] | ||
777 | (p35)cmp.geu p34,p32=n5,t[4];; | ||
778 | .pred.rel "mutex",p32,p34 | ||
779 | (p32)sub n6=t[3],n6 } | ||
780 | { .mmi; (p34)sub n6=t[3],n6,1;; | ||
781 | (p32)cmp.gtu p35,p33=n6,t[3] | ||
782 | (p34)cmp.geu p35,p33=n6,t[3] };; | ||
783 | .pred.rel "mutex",p33,p35 | ||
784 | { .mii; (p33)sub n7=t[2],n7 | ||
785 | (p35)sub n7=t[2],n7,1;; | ||
786 | (p33)cmp.gtu p34,p32=n7,t[2] } | ||
787 | { .mmi; (p35)cmp.geu p34,p32=n7,t[2];; | ||
788 | .pred.rel "mutex",p32,p34 | ||
789 | (p32)sub n8=t[1],n8 | ||
790 | (p34)sub n8=t[1],n8,1 };; | ||
791 | { .mii; (p32)cmp.gtu p35,p33=n8,t[1] | ||
792 | (p34)cmp.geu p35,p33=n8,t[1];; | ||
793 | .pred.rel "mutex",p33,p35 | ||
794 | (p33)sub a8=t[0],r0 } | ||
795 | { .mmi; (p35)sub a8=t[0],r0,1;; | ||
796 | (p33)cmp.gtu p34,p32=a8,t[0] | ||
797 | (p35)cmp.geu p34,p32=a8,t[0] };; | ||
798 | |||
799 | // save the result, either tmp[num] or tmp[num]-np[num] | ||
800 | .pred.rel "mutex",p32,p34 | ||
801 | { .mmi; (p32)st8 [rptr]=n1,8 | ||
802 | (p34)st8 [rptr]=t0,8 | ||
803 | add r19=-4*16,prevsp};; | ||
804 | { .mmb; (p32)st8 [rptr]=n2,8 | ||
805 | (p34)st8 [rptr]=t[7],8 | ||
806 | (p5)br.cond.dpnt.few .Ldone };; | ||
807 | { .mmb; (p32)st8 [rptr]=n3,8 | ||
808 | (p34)st8 [rptr]=t[6],8 | ||
809 | (p7)br.cond.dpnt.few .Ldone };; | ||
810 | { .mmb; (p32)st8 [rptr]=n4,8 | ||
811 | (p34)st8 [rptr]=t[5],8 | ||
812 | (p9)br.cond.dpnt.few .Ldone };; | ||
813 | { .mmb; (p32)st8 [rptr]=n5,8 | ||
814 | (p34)st8 [rptr]=t[4],8 | ||
815 | (p11)br.cond.dpnt.few .Ldone };; | ||
816 | { .mmb; (p32)st8 [rptr]=n6,8 | ||
817 | (p34)st8 [rptr]=t[3],8 | ||
818 | (p13)br.cond.dpnt.few .Ldone };; | ||
819 | { .mmb; (p32)st8 [rptr]=n7,8 | ||
820 | (p34)st8 [rptr]=t[2],8 | ||
821 | (p15)br.cond.dpnt.few .Ldone };; | ||
822 | { .mmb; (p32)st8 [rptr]=n8,8 | ||
823 | (p34)st8 [rptr]=t[1],8 | ||
824 | nop.b 0 };; | ||
825 | .Ldone: // epilogue | ||
826 | { .mmi; ldf.fill f16=[r16],64 | ||
827 | ldf.fill f17=[r17],64 | ||
828 | nop.i 0 } | ||
829 | { .mmi; ldf.fill f18=[r18],64 | ||
830 | ldf.fill f19=[r19],64 | ||
831 | mov pr=prevpr,0x1ffff };; | ||
832 | { .mmi; ldf.fill f20=[r16] | ||
833 | ldf.fill f21=[r17] | ||
834 | mov ar.lc=prevlc } | ||
835 | { .mmi; ldf.fill f22=[r18] | ||
836 | ldf.fill f23=[r19] | ||
837 | mov ret0=1 } // signal "handled" | ||
838 | { .mib; rum 1<<5 | ||
839 | .restore sp | ||
840 | mov sp=prevsp | ||
841 | br.ret.sptk.many b0 };; | ||
842 | .endp bn_mul_mont_8# | ||
843 | |||
844 | .type copyright#,\@object | ||
845 | copyright: | ||
846 | stringz "Montgomery multiplication for IA-64, CRYPTOGAMS by <appro\@openssl.org>" | ||
847 | ___ | ||
848 | |||
849 | $output=shift and open STDOUT,">$output"; | ||
850 | print $code; | ||
851 | close STDOUT; | ||
diff --git a/src/lib/libcrypto/bn/asm/ia64.S b/src/lib/libcrypto/bn/asm/ia64.S deleted file mode 100644 index 7c4fbd3118..0000000000 --- a/src/lib/libcrypto/bn/asm/ia64.S +++ /dev/null | |||
@@ -1,1555 +0,0 @@ | |||
1 | .explicit | ||
2 | .text | ||
3 | .ident "ia64.S, Version 2.1" | ||
4 | .ident "IA-64 ISA artwork by Andy Polyakov <appro@fy.chalmers.se>" | ||
5 | |||
6 | // | ||
7 | // ==================================================================== | ||
8 | // Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL | ||
9 | // project. | ||
10 | // | ||
11 | // Rights for redistribution and usage in source and binary forms are | ||
12 | // granted according to the OpenSSL license. Warranty of any kind is | ||
13 | // disclaimed. | ||
14 | // ==================================================================== | ||
15 | // | ||
16 | // Version 2.x is Itanium2 re-tune. Few words about how Itanum2 is | ||
17 | // different from Itanium to this module viewpoint. Most notably, is it | ||
18 | // "wider" than Itanium? Can you experience loop scalability as | ||
19 | // discussed in commentary sections? Not really:-( Itanium2 has 6 | ||
20 | // integer ALU ports, i.e. it's 2 ports wider, but it's not enough to | ||
21 | // spin twice as fast, as I need 8 IALU ports. Amount of floating point | ||
22 | // ports is the same, i.e. 2, while I need 4. In other words, to this | ||
23 | // module Itanium2 remains effectively as "wide" as Itanium. Yet it's | ||
24 | // essentially different in respect to this module, and a re-tune was | ||
25 | // required. Well, because some intruction latencies has changed. Most | ||
26 | // noticeably those intensively used: | ||
27 | // | ||
28 | // Itanium Itanium2 | ||
29 | // ldf8 9 6 L2 hit | ||
30 | // ld8 2 1 L1 hit | ||
31 | // getf 2 5 | ||
32 | // xma[->getf] 7[+1] 4[+0] | ||
33 | // add[->st8] 1[+1] 1[+0] | ||
34 | // | ||
35 | // What does it mean? You might ratiocinate that the original code | ||
36 | // should run just faster... Because sum of latencies is smaller... | ||
37 | // Wrong! Note that getf latency increased. This means that if a loop is | ||
38 | // scheduled for lower latency (as they were), then it will suffer from | ||
39 | // stall condition and the code will therefore turn anti-scalable, e.g. | ||
40 | // original bn_mul_words spun at 5*n or 2.5 times slower than expected | ||
41 | // on Itanium2! What to do? Reschedule loops for Itanium2? But then | ||
42 | // Itanium would exhibit anti-scalability. So I've chosen to reschedule | ||
43 | // for worst latency for every instruction aiming for best *all-round* | ||
44 | // performance. | ||
45 | |||
46 | // Q. How much faster does it get? | ||
47 | // A. Here is the output from 'openssl speed rsa dsa' for vanilla | ||
48 | // 0.9.6a compiled with gcc version 2.96 20000731 (Red Hat | ||
49 | // Linux 7.1 2.96-81): | ||
50 | // | ||
51 | // sign verify sign/s verify/s | ||
52 | // rsa 512 bits 0.0036s 0.0003s 275.3 2999.2 | ||
53 | // rsa 1024 bits 0.0203s 0.0011s 49.3 894.1 | ||
54 | // rsa 2048 bits 0.1331s 0.0040s 7.5 250.9 | ||
55 | // rsa 4096 bits 0.9270s 0.0147s 1.1 68.1 | ||
56 | // sign verify sign/s verify/s | ||
57 | // dsa 512 bits 0.0035s 0.0043s 288.3 234.8 | ||
58 | // dsa 1024 bits 0.0111s 0.0135s 90.0 74.2 | ||
59 | // | ||
60 | // And here is similar output but for this assembler | ||
61 | // implementation:-) | ||
62 | // | ||
63 | // sign verify sign/s verify/s | ||
64 | // rsa 512 bits 0.0021s 0.0001s 549.4 9638.5 | ||
65 | // rsa 1024 bits 0.0055s 0.0002s 183.8 4481.1 | ||
66 | // rsa 2048 bits 0.0244s 0.0006s 41.4 1726.3 | ||
67 | // rsa 4096 bits 0.1295s 0.0018s 7.7 561.5 | ||
68 | // sign verify sign/s verify/s | ||
69 | // dsa 512 bits 0.0012s 0.0013s 891.9 756.6 | ||
70 | // dsa 1024 bits 0.0023s 0.0028s 440.4 376.2 | ||
71 | // | ||
72 | // Yes, you may argue that it's not fair comparison as it's | ||
73 | // possible to craft the C implementation with BN_UMULT_HIGH | ||
74 | // inline assembler macro. But of course! Here is the output | ||
75 | // with the macro: | ||
76 | // | ||
77 | // sign verify sign/s verify/s | ||
78 | // rsa 512 bits 0.0020s 0.0002s 495.0 6561.0 | ||
79 | // rsa 1024 bits 0.0086s 0.0004s 116.2 2235.7 | ||
80 | // rsa 2048 bits 0.0519s 0.0015s 19.3 667.3 | ||
81 | // rsa 4096 bits 0.3464s 0.0053s 2.9 187.7 | ||
82 | // sign verify sign/s verify/s | ||
83 | // dsa 512 bits 0.0016s 0.0020s 613.1 510.5 | ||
84 | // dsa 1024 bits 0.0045s 0.0054s 221.0 183.9 | ||
85 | // | ||
86 | // My code is still way faster, huh:-) And I believe that even | ||
87 | // higher performance can be achieved. Note that as keys get | ||
88 | // longer, performance gain is larger. Why? According to the | ||
89 | // profiler there is another player in the field, namely | ||
90 | // BN_from_montgomery consuming larger and larger portion of CPU | ||
91 | // time as keysize decreases. I therefore consider putting effort | ||
92 | // to assembler implementation of the following routine: | ||
93 | // | ||
94 | // void bn_mul_add_mont (BN_ULONG *rp,BN_ULONG *np,int nl,BN_ULONG n0) | ||
95 | // { | ||
96 | // int i,j; | ||
97 | // BN_ULONG v; | ||
98 | // | ||
99 | // for (i=0; i<nl; i++) | ||
100 | // { | ||
101 | // v=bn_mul_add_words(rp,np,nl,(rp[0]*n0)&BN_MASK2); | ||
102 | // nrp++; | ||
103 | // rp++; | ||
104 | // if (((nrp[-1]+=v)&BN_MASK2) < v) | ||
105 | // for (j=0; ((++nrp[j])&BN_MASK2) == 0; j++) ; | ||
106 | // } | ||
107 | // } | ||
108 | // | ||
109 | // It might as well be beneficial to implement even combaX | ||
110 | // variants, as it appears as it can literally unleash the | ||
111 | // performance (see comment section to bn_mul_comba8 below). | ||
112 | // | ||
113 | // And finally for your reference the output for 0.9.6a compiled | ||
114 | // with SGIcc version 0.01.0-12 (keep in mind that for the moment | ||
115 | // of this writing it's not possible to convince SGIcc to use | ||
116 | // BN_UMULT_HIGH inline assembler macro, yet the code is fast, | ||
117 | // i.e. for a compiler generated one:-): | ||
118 | // | ||
119 | // sign verify sign/s verify/s | ||
120 | // rsa 512 bits 0.0022s 0.0002s 452.7 5894.3 | ||
121 | // rsa 1024 bits 0.0097s 0.0005s 102.7 2002.9 | ||
122 | // rsa 2048 bits 0.0578s 0.0017s 17.3 600.2 | ||
123 | // rsa 4096 bits 0.3838s 0.0061s 2.6 164.5 | ||
124 | // sign verify sign/s verify/s | ||
125 | // dsa 512 bits 0.0018s 0.0022s 547.3 459.6 | ||
126 | // dsa 1024 bits 0.0051s 0.0062s 196.6 161.3 | ||
127 | // | ||
128 | // Oh! Benchmarks were performed on 733MHz Lion-class Itanium | ||
129 | // system running Redhat Linux 7.1 (very special thanks to Ray | ||
130 | // McCaffity of Williams Communications for providing an account). | ||
131 | // | ||
132 | // Q. What's the heck with 'rum 1<<5' at the end of every function? | ||
133 | // A. Well, by clearing the "upper FP registers written" bit of the | ||
134 | // User Mask I want to excuse the kernel from preserving upper | ||
135 | // (f32-f128) FP register bank over process context switch, thus | ||
136 | // minimizing bus bandwidth consumption during the switch (i.e. | ||
137 | // after PKI opration completes and the program is off doing | ||
138 | // something else like bulk symmetric encryption). Having said | ||
139 | // this, I also want to point out that it might be good idea | ||
140 | // to compile the whole toolkit (as well as majority of the | ||
141 | // programs for that matter) with -mfixed-range=f32-f127 command | ||
142 | // line option. No, it doesn't prevent the compiler from writing | ||
143 | // to upper bank, but at least discourages to do so. If you don't | ||
144 | // like the idea you have the option to compile the module with | ||
145 | // -Drum=nop.m in command line. | ||
146 | // | ||
147 | |||
148 | #if defined(_HPUX_SOURCE) && !defined(_LP64) | ||
149 | #define ADDP addp4 | ||
150 | #else | ||
151 | #define ADDP add | ||
152 | #endif | ||
153 | |||
154 | #if 1 | ||
155 | // | ||
156 | // bn_[add|sub]_words routines. | ||
157 | // | ||
158 | // Loops are spinning in 2*(n+5) ticks on Itanuim (provided that the | ||
159 | // data reside in L1 cache, i.e. 2 ticks away). It's possible to | ||
160 | // compress the epilogue and get down to 2*n+6, but at the cost of | ||
161 | // scalability (the neat feature of this implementation is that it | ||
162 | // shall automagically spin in n+5 on "wider" IA-64 implementations:-) | ||
163 | // I consider that the epilogue is short enough as it is to trade tiny | ||
164 | // performance loss on Itanium for scalability. | ||
165 | // | ||
166 | // BN_ULONG bn_add_words(BN_ULONG *rp, BN_ULONG *ap, BN_ULONG *bp,int num) | ||
167 | // | ||
168 | .global bn_add_words# | ||
169 | .proc bn_add_words# | ||
170 | .align 64 | ||
171 | .skip 32 // makes the loop body aligned at 64-byte boundary | ||
172 | bn_add_words: | ||
173 | .prologue | ||
174 | .save ar.pfs,r2 | ||
175 | { .mii; alloc r2=ar.pfs,4,12,0,16 | ||
176 | cmp4.le p6,p0=r35,r0 };; | ||
177 | { .mfb; mov r8=r0 // return value | ||
178 | (p6) br.ret.spnt.many b0 };; | ||
179 | |||
180 | { .mib; sub r10=r35,r0,1 | ||
181 | .save ar.lc,r3 | ||
182 | mov r3=ar.lc | ||
183 | brp.loop.imp .L_bn_add_words_ctop,.L_bn_add_words_cend-16 | ||
184 | } | ||
185 | { .mib; ADDP r14=0,r32 // rp | ||
186 | .save pr,r9 | ||
187 | mov r9=pr };; | ||
188 | .body | ||
189 | { .mii; ADDP r15=0,r33 // ap | ||
190 | mov ar.lc=r10 | ||
191 | mov ar.ec=6 } | ||
192 | { .mib; ADDP r16=0,r34 // bp | ||
193 | mov pr.rot=1<<16 };; | ||
194 | |||
195 | .L_bn_add_words_ctop: | ||
196 | { .mii; (p16) ld8 r32=[r16],8 // b=*(bp++) | ||
197 | (p18) add r39=r37,r34 | ||
198 | (p19) cmp.ltu.unc p56,p0=r40,r38 } | ||
199 | { .mfb; (p0) nop.m 0x0 | ||
200 | (p0) nop.f 0x0 | ||
201 | (p0) nop.b 0x0 } | ||
202 | { .mii; (p16) ld8 r35=[r15],8 // a=*(ap++) | ||
203 | (p58) cmp.eq.or p57,p0=-1,r41 // (p20) | ||
204 | (p58) add r41=1,r41 } // (p20) | ||
205 | { .mfb; (p21) st8 [r14]=r42,8 // *(rp++)=r | ||
206 | (p0) nop.f 0x0 | ||
207 | br.ctop.sptk .L_bn_add_words_ctop };; | ||
208 | .L_bn_add_words_cend: | ||
209 | |||
210 | { .mii; | ||
211 | (p59) add r8=1,r8 // return value | ||
212 | mov pr=r9,0x1ffff | ||
213 | mov ar.lc=r3 } | ||
214 | { .mbb; nop.b 0x0 | ||
215 | br.ret.sptk.many b0 };; | ||
216 | .endp bn_add_words# | ||
217 | |||
218 | // | ||
219 | // BN_ULONG bn_sub_words(BN_ULONG *rp, BN_ULONG *ap, BN_ULONG *bp,int num) | ||
220 | // | ||
221 | .global bn_sub_words# | ||
222 | .proc bn_sub_words# | ||
223 | .align 64 | ||
224 | .skip 32 // makes the loop body aligned at 64-byte boundary | ||
225 | bn_sub_words: | ||
226 | .prologue | ||
227 | .save ar.pfs,r2 | ||
228 | { .mii; alloc r2=ar.pfs,4,12,0,16 | ||
229 | cmp4.le p6,p0=r35,r0 };; | ||
230 | { .mfb; mov r8=r0 // return value | ||
231 | (p6) br.ret.spnt.many b0 };; | ||
232 | |||
233 | { .mib; sub r10=r35,r0,1 | ||
234 | .save ar.lc,r3 | ||
235 | mov r3=ar.lc | ||
236 | brp.loop.imp .L_bn_sub_words_ctop,.L_bn_sub_words_cend-16 | ||
237 | } | ||
238 | { .mib; ADDP r14=0,r32 // rp | ||
239 | .save pr,r9 | ||
240 | mov r9=pr };; | ||
241 | .body | ||
242 | { .mii; ADDP r15=0,r33 // ap | ||
243 | mov ar.lc=r10 | ||
244 | mov ar.ec=6 } | ||
245 | { .mib; ADDP r16=0,r34 // bp | ||
246 | mov pr.rot=1<<16 };; | ||
247 | |||
248 | .L_bn_sub_words_ctop: | ||
249 | { .mii; (p16) ld8 r32=[r16],8 // b=*(bp++) | ||
250 | (p18) sub r39=r37,r34 | ||
251 | (p19) cmp.gtu.unc p56,p0=r40,r38 } | ||
252 | { .mfb; (p0) nop.m 0x0 | ||
253 | (p0) nop.f 0x0 | ||
254 | (p0) nop.b 0x0 } | ||
255 | { .mii; (p16) ld8 r35=[r15],8 // a=*(ap++) | ||
256 | (p58) cmp.eq.or p57,p0=0,r41 // (p20) | ||
257 | (p58) add r41=-1,r41 } // (p20) | ||
258 | { .mbb; (p21) st8 [r14]=r42,8 // *(rp++)=r | ||
259 | (p0) nop.b 0x0 | ||
260 | br.ctop.sptk .L_bn_sub_words_ctop };; | ||
261 | .L_bn_sub_words_cend: | ||
262 | |||
263 | { .mii; | ||
264 | (p59) add r8=1,r8 // return value | ||
265 | mov pr=r9,0x1ffff | ||
266 | mov ar.lc=r3 } | ||
267 | { .mbb; nop.b 0x0 | ||
268 | br.ret.sptk.many b0 };; | ||
269 | .endp bn_sub_words# | ||
270 | #endif | ||
271 | |||
272 | #if 0 | ||
273 | #define XMA_TEMPTATION | ||
274 | #endif | ||
275 | |||
276 | #if 1 | ||
277 | // | ||
278 | // BN_ULONG bn_mul_words(BN_ULONG *rp, BN_ULONG *ap, int num, BN_ULONG w) | ||
279 | // | ||
280 | .global bn_mul_words# | ||
281 | .proc bn_mul_words# | ||
282 | .align 64 | ||
283 | .skip 32 // makes the loop body aligned at 64-byte boundary | ||
284 | bn_mul_words: | ||
285 | .prologue | ||
286 | .save ar.pfs,r2 | ||
287 | #ifdef XMA_TEMPTATION | ||
288 | { .mfi; alloc r2=ar.pfs,4,0,0,0 };; | ||
289 | #else | ||
290 | { .mfi; alloc r2=ar.pfs,4,12,0,16 };; | ||
291 | #endif | ||
292 | { .mib; mov r8=r0 // return value | ||
293 | cmp4.le p6,p0=r34,r0 | ||
294 | (p6) br.ret.spnt.many b0 };; | ||
295 | |||
296 | { .mii; sub r10=r34,r0,1 | ||
297 | .save ar.lc,r3 | ||
298 | mov r3=ar.lc | ||
299 | .save pr,r9 | ||
300 | mov r9=pr };; | ||
301 | |||
302 | .body | ||
303 | { .mib; setf.sig f8=r35 // w | ||
304 | mov pr.rot=0x800001<<16 | ||
305 | // ------^----- serves as (p50) at first (p27) | ||
306 | brp.loop.imp .L_bn_mul_words_ctop,.L_bn_mul_words_cend-16 | ||
307 | } | ||
308 | |||
309 | #ifndef XMA_TEMPTATION | ||
310 | |||
311 | { .mmi; ADDP r14=0,r32 // rp | ||
312 | ADDP r15=0,r33 // ap | ||
313 | mov ar.lc=r10 } | ||
314 | { .mmi; mov r40=0 // serves as r35 at first (p27) | ||
315 | mov ar.ec=13 };; | ||
316 | |||
317 | // This loop spins in 2*(n+12) ticks. It's scheduled for data in Itanium | ||
318 | // L2 cache (i.e. 9 ticks away) as floating point load/store instructions | ||
319 | // bypass L1 cache and L2 latency is actually best-case scenario for | ||
320 | // ldf8. The loop is not scalable and shall run in 2*(n+12) even on | ||
321 | // "wider" IA-64 implementations. It's a trade-off here. n+24 loop | ||
322 | // would give us ~5% in *overall* performance improvement on "wider" | ||
323 | // IA-64, but would hurt Itanium for about same because of longer | ||
324 | // epilogue. As it's a matter of few percents in either case I've | ||
325 | // chosen to trade the scalability for development time (you can see | ||
326 | // this very instruction sequence in bn_mul_add_words loop which in | ||
327 | // turn is scalable). | ||
328 | .L_bn_mul_words_ctop: | ||
329 | { .mfi; (p25) getf.sig r36=f52 // low | ||
330 | (p21) xmpy.lu f48=f37,f8 | ||
331 | (p28) cmp.ltu p54,p50=r41,r39 } | ||
332 | { .mfi; (p16) ldf8 f32=[r15],8 | ||
333 | (p21) xmpy.hu f40=f37,f8 | ||
334 | (p0) nop.i 0x0 };; | ||
335 | { .mii; (p25) getf.sig r32=f44 // high | ||
336 | .pred.rel "mutex",p50,p54 | ||
337 | (p50) add r40=r38,r35 // (p27) | ||
338 | (p54) add r40=r38,r35,1 } // (p27) | ||
339 | { .mfb; (p28) st8 [r14]=r41,8 | ||
340 | (p0) nop.f 0x0 | ||
341 | br.ctop.sptk .L_bn_mul_words_ctop };; | ||
342 | .L_bn_mul_words_cend: | ||
343 | |||
344 | { .mii; nop.m 0x0 | ||
345 | .pred.rel "mutex",p51,p55 | ||
346 | (p51) add r8=r36,r0 | ||
347 | (p55) add r8=r36,r0,1 } | ||
348 | { .mfb; nop.m 0x0 | ||
349 | nop.f 0x0 | ||
350 | nop.b 0x0 } | ||
351 | |||
352 | #else // XMA_TEMPTATION | ||
353 | |||
354 | setf.sig f37=r0 // serves as carry at (p18) tick | ||
355 | mov ar.lc=r10 | ||
356 | mov ar.ec=5;; | ||
357 | |||
358 | // Most of you examining this code very likely wonder why in the name | ||
359 | // of Intel the following loop is commented out? Indeed, it looks so | ||
360 | // neat that you find it hard to believe that it's something wrong | ||
361 | // with it, right? The catch is that every iteration depends on the | ||
362 | // result from previous one and the latter isn't available instantly. | ||
363 | // The loop therefore spins at the latency of xma minus 1, or in other | ||
364 | // words at 6*(n+4) ticks:-( Compare to the "production" loop above | ||
365 | // that runs in 2*(n+11) where the low latency problem is worked around | ||
366 | // by moving the dependency to one-tick latent interger ALU. Note that | ||
367 | // "distance" between ldf8 and xma is not latency of ldf8, but the | ||
368 | // *difference* between xma and ldf8 latencies. | ||
369 | .L_bn_mul_words_ctop: | ||
370 | { .mfi; (p16) ldf8 f32=[r33],8 | ||
371 | (p18) xma.hu f38=f34,f8,f39 } | ||
372 | { .mfb; (p20) stf8 [r32]=f37,8 | ||
373 | (p18) xma.lu f35=f34,f8,f39 | ||
374 | br.ctop.sptk .L_bn_mul_words_ctop };; | ||
375 | .L_bn_mul_words_cend: | ||
376 | |||
377 | getf.sig r8=f41 // the return value | ||
378 | |||
379 | #endif // XMA_TEMPTATION | ||
380 | |||
381 | { .mii; nop.m 0x0 | ||
382 | mov pr=r9,0x1ffff | ||
383 | mov ar.lc=r3 } | ||
384 | { .mfb; rum 1<<5 // clear um.mfh | ||
385 | nop.f 0x0 | ||
386 | br.ret.sptk.many b0 };; | ||
387 | .endp bn_mul_words# | ||
388 | #endif | ||
389 | |||
390 | #if 1 | ||
391 | // | ||
392 | // BN_ULONG bn_mul_add_words(BN_ULONG *rp, BN_ULONG *ap, int num, BN_ULONG w) | ||
393 | // | ||
394 | .global bn_mul_add_words# | ||
395 | .proc bn_mul_add_words# | ||
396 | .align 64 | ||
397 | .skip 48 // makes the loop body aligned at 64-byte boundary | ||
398 | bn_mul_add_words: | ||
399 | .prologue | ||
400 | .save ar.pfs,r2 | ||
401 | { .mmi; alloc r2=ar.pfs,4,4,0,8 | ||
402 | cmp4.le p6,p0=r34,r0 | ||
403 | .save ar.lc,r3 | ||
404 | mov r3=ar.lc };; | ||
405 | { .mib; mov r8=r0 // return value | ||
406 | sub r10=r34,r0,1 | ||
407 | (p6) br.ret.spnt.many b0 };; | ||
408 | |||
409 | { .mib; setf.sig f8=r35 // w | ||
410 | .save pr,r9 | ||
411 | mov r9=pr | ||
412 | brp.loop.imp .L_bn_mul_add_words_ctop,.L_bn_mul_add_words_cend-16 | ||
413 | } | ||
414 | .body | ||
415 | { .mmi; ADDP r14=0,r32 // rp | ||
416 | ADDP r15=0,r33 // ap | ||
417 | mov ar.lc=r10 } | ||
418 | { .mii; ADDP r16=0,r32 // rp copy | ||
419 | mov pr.rot=0x2001<<16 | ||
420 | // ------^----- serves as (p40) at first (p27) | ||
421 | mov ar.ec=11 };; | ||
422 | |||
423 | // This loop spins in 3*(n+10) ticks on Itanium and in 2*(n+10) on | ||
424 | // Itanium 2. Yes, unlike previous versions it scales:-) Previous | ||
425 | // version was peforming *all* additions in IALU and was starving | ||
426 | // for those even on Itanium 2. In this version one addition is | ||
427 | // moved to FPU and is folded with multiplication. This is at cost | ||
428 | // of propogating the result from previous call to this subroutine | ||
429 | // to L2 cache... In other words negligible even for shorter keys. | ||
430 | // *Overall* performance improvement [over previous version] varies | ||
431 | // from 11 to 22 percent depending on key length. | ||
432 | .L_bn_mul_add_words_ctop: | ||
433 | .pred.rel "mutex",p40,p42 | ||
434 | { .mfi; (p23) getf.sig r36=f45 // low | ||
435 | (p20) xma.lu f42=f36,f8,f50 // low | ||
436 | (p40) add r39=r39,r35 } // (p27) | ||
437 | { .mfi; (p16) ldf8 f32=[r15],8 // *(ap++) | ||
438 | (p20) xma.hu f36=f36,f8,f50 // high | ||
439 | (p42) add r39=r39,r35,1 };; // (p27) | ||
440 | { .mmi; (p24) getf.sig r32=f40 // high | ||
441 | (p16) ldf8 f46=[r16],8 // *(rp1++) | ||
442 | (p40) cmp.ltu p41,p39=r39,r35 } // (p27) | ||
443 | { .mib; (p26) st8 [r14]=r39,8 // *(rp2++) | ||
444 | (p42) cmp.leu p41,p39=r39,r35 // (p27) | ||
445 | br.ctop.sptk .L_bn_mul_add_words_ctop};; | ||
446 | .L_bn_mul_add_words_cend: | ||
447 | |||
448 | { .mmi; .pred.rel "mutex",p40,p42 | ||
449 | (p40) add r8=r35,r0 | ||
450 | (p42) add r8=r35,r0,1 | ||
451 | mov pr=r9,0x1ffff } | ||
452 | { .mib; rum 1<<5 // clear um.mfh | ||
453 | mov ar.lc=r3 | ||
454 | br.ret.sptk.many b0 };; | ||
455 | .endp bn_mul_add_words# | ||
456 | #endif | ||
457 | |||
458 | #if 1 | ||
459 | // | ||
460 | // void bn_sqr_words(BN_ULONG *rp, BN_ULONG *ap, int num) | ||
461 | // | ||
462 | .global bn_sqr_words# | ||
463 | .proc bn_sqr_words# | ||
464 | .align 64 | ||
465 | .skip 32 // makes the loop body aligned at 64-byte boundary | ||
466 | bn_sqr_words: | ||
467 | .prologue | ||
468 | .save ar.pfs,r2 | ||
469 | { .mii; alloc r2=ar.pfs,3,0,0,0 | ||
470 | sxt4 r34=r34 };; | ||
471 | { .mii; cmp.le p6,p0=r34,r0 | ||
472 | mov r8=r0 } // return value | ||
473 | { .mfb; ADDP r32=0,r32 | ||
474 | nop.f 0x0 | ||
475 | (p6) br.ret.spnt.many b0 };; | ||
476 | |||
477 | { .mii; sub r10=r34,r0,1 | ||
478 | .save ar.lc,r3 | ||
479 | mov r3=ar.lc | ||
480 | .save pr,r9 | ||
481 | mov r9=pr };; | ||
482 | |||
483 | .body | ||
484 | { .mib; ADDP r33=0,r33 | ||
485 | mov pr.rot=1<<16 | ||
486 | brp.loop.imp .L_bn_sqr_words_ctop,.L_bn_sqr_words_cend-16 | ||
487 | } | ||
488 | { .mii; add r34=8,r32 | ||
489 | mov ar.lc=r10 | ||
490 | mov ar.ec=18 };; | ||
491 | |||
492 | // 2*(n+17) on Itanium, (n+17) on "wider" IA-64 implementations. It's | ||
493 | // possible to compress the epilogue (I'm getting tired to write this | ||
494 | // comment over and over) and get down to 2*n+16 at the cost of | ||
495 | // scalability. The decision will very likely be reconsidered after the | ||
496 | // benchmark program is profiled. I.e. if performance gain on Itanium | ||
497 | // will appear larger than loss on "wider" IA-64, then the loop should | ||
498 | // be explicitely split and the epilogue compressed. | ||
499 | .L_bn_sqr_words_ctop: | ||
500 | { .mfi; (p16) ldf8 f32=[r33],8 | ||
501 | (p25) xmpy.lu f42=f41,f41 | ||
502 | (p0) nop.i 0x0 } | ||
503 | { .mib; (p33) stf8 [r32]=f50,16 | ||
504 | (p0) nop.i 0x0 | ||
505 | (p0) nop.b 0x0 } | ||
506 | { .mfi; (p0) nop.m 0x0 | ||
507 | (p25) xmpy.hu f52=f41,f41 | ||
508 | (p0) nop.i 0x0 } | ||
509 | { .mib; (p33) stf8 [r34]=f60,16 | ||
510 | (p0) nop.i 0x0 | ||
511 | br.ctop.sptk .L_bn_sqr_words_ctop };; | ||
512 | .L_bn_sqr_words_cend: | ||
513 | |||
514 | { .mii; nop.m 0x0 | ||
515 | mov pr=r9,0x1ffff | ||
516 | mov ar.lc=r3 } | ||
517 | { .mfb; rum 1<<5 // clear um.mfh | ||
518 | nop.f 0x0 | ||
519 | br.ret.sptk.many b0 };; | ||
520 | .endp bn_sqr_words# | ||
521 | #endif | ||
522 | |||
523 | #if 1 | ||
524 | // Apparently we win nothing by implementing special bn_sqr_comba8. | ||
525 | // Yes, it is possible to reduce the number of multiplications by | ||
526 | // almost factor of two, but then the amount of additions would | ||
527 | // increase by factor of two (as we would have to perform those | ||
528 | // otherwise performed by xma ourselves). Normally we would trade | ||
529 | // anyway as multiplications are way more expensive, but not this | ||
530 | // time... Multiplication kernel is fully pipelined and as we drain | ||
531 | // one 128-bit multiplication result per clock cycle multiplications | ||
532 | // are effectively as inexpensive as additions. Special implementation | ||
533 | // might become of interest for "wider" IA-64 implementation as you'll | ||
534 | // be able to get through the multiplication phase faster (there won't | ||
535 | // be any stall issues as discussed in the commentary section below and | ||
536 | // you therefore will be able to employ all 4 FP units)... But these | ||
537 | // Itanium days it's simply too hard to justify the effort so I just | ||
538 | // drop down to bn_mul_comba8 code:-) | ||
539 | // | ||
540 | // void bn_sqr_comba8(BN_ULONG *r, BN_ULONG *a) | ||
541 | // | ||
542 | .global bn_sqr_comba8# | ||
543 | .proc bn_sqr_comba8# | ||
544 | .align 64 | ||
545 | bn_sqr_comba8: | ||
546 | .prologue | ||
547 | .save ar.pfs,r2 | ||
548 | #if defined(_HPUX_SOURCE) && !defined(_LP64) | ||
549 | { .mii; alloc r2=ar.pfs,2,1,0,0 | ||
550 | addp4 r33=0,r33 | ||
551 | addp4 r32=0,r32 };; | ||
552 | { .mii; | ||
553 | #else | ||
554 | { .mii; alloc r2=ar.pfs,2,1,0,0 | ||
555 | #endif | ||
556 | mov r34=r33 | ||
557 | add r14=8,r33 };; | ||
558 | .body | ||
559 | { .mii; add r17=8,r34 | ||
560 | add r15=16,r33 | ||
561 | add r18=16,r34 } | ||
562 | { .mfb; add r16=24,r33 | ||
563 | br .L_cheat_entry_point8 };; | ||
564 | .endp bn_sqr_comba8# | ||
565 | #endif | ||
566 | |||
567 | #if 1 | ||
568 | // I've estimated this routine to run in ~120 ticks, but in reality | ||
569 | // (i.e. according to ar.itc) it takes ~160 ticks. Are those extra | ||
570 | // cycles consumed for instructions fetch? Or did I misinterpret some | ||
571 | // clause in Itanium µ-architecture manual? Comments are welcomed and | ||
572 | // highly appreciated. | ||
573 | // | ||
574 | // On Itanium 2 it takes ~190 ticks. This is because of stalls on | ||
575 | // result from getf.sig. I do nothing about it at this point for | ||
576 | // reasons depicted below. | ||
577 | // | ||
578 | // However! It should be noted that even 160 ticks is darn good result | ||
579 | // as it's over 10 (yes, ten, spelled as t-e-n) times faster than the | ||
580 | // C version (compiled with gcc with inline assembler). I really | ||
581 | // kicked compiler's butt here, didn't I? Yeah! This brings us to the | ||
582 | // following statement. It's damn shame that this routine isn't called | ||
583 | // very often nowadays! According to the profiler most CPU time is | ||
584 | // consumed by bn_mul_add_words called from BN_from_montgomery. In | ||
585 | // order to estimate what we're missing, I've compared the performance | ||
586 | // of this routine against "traditional" implementation, i.e. against | ||
587 | // following routine: | ||
588 | // | ||
589 | // void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b) | ||
590 | // { r[ 8]=bn_mul_words( &(r[0]),a,8,b[0]); | ||
591 | // r[ 9]=bn_mul_add_words(&(r[1]),a,8,b[1]); | ||
592 | // r[10]=bn_mul_add_words(&(r[2]),a,8,b[2]); | ||
593 | // r[11]=bn_mul_add_words(&(r[3]),a,8,b[3]); | ||
594 | // r[12]=bn_mul_add_words(&(r[4]),a,8,b[4]); | ||
595 | // r[13]=bn_mul_add_words(&(r[5]),a,8,b[5]); | ||
596 | // r[14]=bn_mul_add_words(&(r[6]),a,8,b[6]); | ||
597 | // r[15]=bn_mul_add_words(&(r[7]),a,8,b[7]); | ||
598 | // } | ||
599 | // | ||
600 | // The one below is over 8 times faster than the one above:-( Even | ||
601 | // more reasons to "combafy" bn_mul_add_mont... | ||
602 | // | ||
603 | // And yes, this routine really made me wish there were an optimizing | ||
604 | // assembler! It also feels like it deserves a dedication. | ||
605 | // | ||
606 | // To my wife for being there and to my kids... | ||
607 | // | ||
608 | // void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b) | ||
609 | // | ||
610 | #define carry1 r14 | ||
611 | #define carry2 r15 | ||
612 | #define carry3 r34 | ||
613 | .global bn_mul_comba8# | ||
614 | .proc bn_mul_comba8# | ||
615 | .align 64 | ||
616 | bn_mul_comba8: | ||
617 | .prologue | ||
618 | .save ar.pfs,r2 | ||
619 | #if defined(_HPUX_SOURCE) && !defined(_LP64) | ||
620 | { .mii; alloc r2=ar.pfs,3,0,0,0 | ||
621 | addp4 r33=0,r33 | ||
622 | addp4 r34=0,r34 };; | ||
623 | { .mii; addp4 r32=0,r32 | ||
624 | #else | ||
625 | { .mii; alloc r2=ar.pfs,3,0,0,0 | ||
626 | #endif | ||
627 | add r14=8,r33 | ||
628 | add r17=8,r34 } | ||
629 | .body | ||
630 | { .mii; add r15=16,r33 | ||
631 | add r18=16,r34 | ||
632 | add r16=24,r33 } | ||
633 | .L_cheat_entry_point8: | ||
634 | { .mmi; add r19=24,r34 | ||
635 | |||
636 | ldf8 f32=[r33],32 };; | ||
637 | |||
638 | { .mmi; ldf8 f120=[r34],32 | ||
639 | ldf8 f121=[r17],32 } | ||
640 | { .mmi; ldf8 f122=[r18],32 | ||
641 | ldf8 f123=[r19],32 };; | ||
642 | { .mmi; ldf8 f124=[r34] | ||
643 | ldf8 f125=[r17] } | ||
644 | { .mmi; ldf8 f126=[r18] | ||
645 | ldf8 f127=[r19] } | ||
646 | |||
647 | { .mmi; ldf8 f33=[r14],32 | ||
648 | ldf8 f34=[r15],32 } | ||
649 | { .mmi; ldf8 f35=[r16],32;; | ||
650 | ldf8 f36=[r33] } | ||
651 | { .mmi; ldf8 f37=[r14] | ||
652 | ldf8 f38=[r15] } | ||
653 | { .mfi; ldf8 f39=[r16] | ||
654 | // -------\ Entering multiplier's heaven /------- | ||
655 | // ------------\ /------------ | ||
656 | // -----------------\ /----------------- | ||
657 | // ----------------------\/---------------------- | ||
658 | xma.hu f41=f32,f120,f0 } | ||
659 | { .mfi; xma.lu f40=f32,f120,f0 };; // (*) | ||
660 | { .mfi; xma.hu f51=f32,f121,f0 } | ||
661 | { .mfi; xma.lu f50=f32,f121,f0 };; | ||
662 | { .mfi; xma.hu f61=f32,f122,f0 } | ||
663 | { .mfi; xma.lu f60=f32,f122,f0 };; | ||
664 | { .mfi; xma.hu f71=f32,f123,f0 } | ||
665 | { .mfi; xma.lu f70=f32,f123,f0 };; | ||
666 | { .mfi; xma.hu f81=f32,f124,f0 } | ||
667 | { .mfi; xma.lu f80=f32,f124,f0 };; | ||
668 | { .mfi; xma.hu f91=f32,f125,f0 } | ||
669 | { .mfi; xma.lu f90=f32,f125,f0 };; | ||
670 | { .mfi; xma.hu f101=f32,f126,f0 } | ||
671 | { .mfi; xma.lu f100=f32,f126,f0 };; | ||
672 | { .mfi; xma.hu f111=f32,f127,f0 } | ||
673 | { .mfi; xma.lu f110=f32,f127,f0 };;// | ||
674 | // (*) You can argue that splitting at every second bundle would | ||
675 | // prevent "wider" IA-64 implementations from achieving the peak | ||
676 | // performance. Well, not really... The catch is that if you | ||
677 | // intend to keep 4 FP units busy by splitting at every fourth | ||
678 | // bundle and thus perform these 16 multiplications in 4 ticks, | ||
679 | // the first bundle *below* would stall because the result from | ||
680 | // the first xma bundle *above* won't be available for another 3 | ||
681 | // ticks (if not more, being an optimist, I assume that "wider" | ||
682 | // implementation will have same latency:-). This stall will hold | ||
683 | // you back and the performance would be as if every second bundle | ||
684 | // were split *anyway*... | ||
685 | { .mfi; getf.sig r16=f40 | ||
686 | xma.hu f42=f33,f120,f41 | ||
687 | add r33=8,r32 } | ||
688 | { .mfi; xma.lu f41=f33,f120,f41 };; | ||
689 | { .mfi; getf.sig r24=f50 | ||
690 | xma.hu f52=f33,f121,f51 } | ||
691 | { .mfi; xma.lu f51=f33,f121,f51 };; | ||
692 | { .mfi; st8 [r32]=r16,16 | ||
693 | xma.hu f62=f33,f122,f61 } | ||
694 | { .mfi; xma.lu f61=f33,f122,f61 };; | ||
695 | { .mfi; xma.hu f72=f33,f123,f71 } | ||
696 | { .mfi; xma.lu f71=f33,f123,f71 };; | ||
697 | { .mfi; xma.hu f82=f33,f124,f81 } | ||
698 | { .mfi; xma.lu f81=f33,f124,f81 };; | ||
699 | { .mfi; xma.hu f92=f33,f125,f91 } | ||
700 | { .mfi; xma.lu f91=f33,f125,f91 };; | ||
701 | { .mfi; xma.hu f102=f33,f126,f101 } | ||
702 | { .mfi; xma.lu f101=f33,f126,f101 };; | ||
703 | { .mfi; xma.hu f112=f33,f127,f111 } | ||
704 | { .mfi; xma.lu f111=f33,f127,f111 };;// | ||
705 | //-------------------------------------------------// | ||
706 | { .mfi; getf.sig r25=f41 | ||
707 | xma.hu f43=f34,f120,f42 } | ||
708 | { .mfi; xma.lu f42=f34,f120,f42 };; | ||
709 | { .mfi; getf.sig r16=f60 | ||
710 | xma.hu f53=f34,f121,f52 } | ||
711 | { .mfi; xma.lu f52=f34,f121,f52 };; | ||
712 | { .mfi; getf.sig r17=f51 | ||
713 | xma.hu f63=f34,f122,f62 | ||
714 | add r25=r25,r24 } | ||
715 | { .mfi; xma.lu f62=f34,f122,f62 | ||
716 | mov carry1=0 };; | ||
717 | { .mfi; cmp.ltu p6,p0=r25,r24 | ||
718 | xma.hu f73=f34,f123,f72 } | ||
719 | { .mfi; xma.lu f72=f34,f123,f72 };; | ||
720 | { .mfi; st8 [r33]=r25,16 | ||
721 | xma.hu f83=f34,f124,f82 | ||
722 | (p6) add carry1=1,carry1 } | ||
723 | { .mfi; xma.lu f82=f34,f124,f82 };; | ||
724 | { .mfi; xma.hu f93=f34,f125,f92 } | ||
725 | { .mfi; xma.lu f92=f34,f125,f92 };; | ||
726 | { .mfi; xma.hu f103=f34,f126,f102 } | ||
727 | { .mfi; xma.lu f102=f34,f126,f102 };; | ||
728 | { .mfi; xma.hu f113=f34,f127,f112 } | ||
729 | { .mfi; xma.lu f112=f34,f127,f112 };;// | ||
730 | //-------------------------------------------------// | ||
731 | { .mfi; getf.sig r18=f42 | ||
732 | xma.hu f44=f35,f120,f43 | ||
733 | add r17=r17,r16 } | ||
734 | { .mfi; xma.lu f43=f35,f120,f43 };; | ||
735 | { .mfi; getf.sig r24=f70 | ||
736 | xma.hu f54=f35,f121,f53 } | ||
737 | { .mfi; mov carry2=0 | ||
738 | xma.lu f53=f35,f121,f53 };; | ||
739 | { .mfi; getf.sig r25=f61 | ||
740 | xma.hu f64=f35,f122,f63 | ||
741 | cmp.ltu p7,p0=r17,r16 } | ||
742 | { .mfi; add r18=r18,r17 | ||
743 | xma.lu f63=f35,f122,f63 };; | ||
744 | { .mfi; getf.sig r26=f52 | ||
745 | xma.hu f74=f35,f123,f73 | ||
746 | (p7) add carry2=1,carry2 } | ||
747 | { .mfi; cmp.ltu p7,p0=r18,r17 | ||
748 | xma.lu f73=f35,f123,f73 | ||
749 | add r18=r18,carry1 };; | ||
750 | { .mfi; | ||
751 | xma.hu f84=f35,f124,f83 | ||
752 | (p7) add carry2=1,carry2 } | ||
753 | { .mfi; cmp.ltu p7,p0=r18,carry1 | ||
754 | xma.lu f83=f35,f124,f83 };; | ||
755 | { .mfi; st8 [r32]=r18,16 | ||
756 | xma.hu f94=f35,f125,f93 | ||
757 | (p7) add carry2=1,carry2 } | ||
758 | { .mfi; xma.lu f93=f35,f125,f93 };; | ||
759 | { .mfi; xma.hu f104=f35,f126,f103 } | ||
760 | { .mfi; xma.lu f103=f35,f126,f103 };; | ||
761 | { .mfi; xma.hu f114=f35,f127,f113 } | ||
762 | { .mfi; mov carry1=0 | ||
763 | xma.lu f113=f35,f127,f113 | ||
764 | add r25=r25,r24 };;// | ||
765 | //-------------------------------------------------// | ||
766 | { .mfi; getf.sig r27=f43 | ||
767 | xma.hu f45=f36,f120,f44 | ||
768 | cmp.ltu p6,p0=r25,r24 } | ||
769 | { .mfi; xma.lu f44=f36,f120,f44 | ||
770 | add r26=r26,r25 };; | ||
771 | { .mfi; getf.sig r16=f80 | ||
772 | xma.hu f55=f36,f121,f54 | ||
773 | (p6) add carry1=1,carry1 } | ||
774 | { .mfi; xma.lu f54=f36,f121,f54 };; | ||
775 | { .mfi; getf.sig r17=f71 | ||
776 | xma.hu f65=f36,f122,f64 | ||
777 | cmp.ltu p6,p0=r26,r25 } | ||
778 | { .mfi; xma.lu f64=f36,f122,f64 | ||
779 | add r27=r27,r26 };; | ||
780 | { .mfi; getf.sig r18=f62 | ||
781 | xma.hu f75=f36,f123,f74 | ||
782 | (p6) add carry1=1,carry1 } | ||
783 | { .mfi; cmp.ltu p6,p0=r27,r26 | ||
784 | xma.lu f74=f36,f123,f74 | ||
785 | add r27=r27,carry2 };; | ||
786 | { .mfi; getf.sig r19=f53 | ||
787 | xma.hu f85=f36,f124,f84 | ||
788 | (p6) add carry1=1,carry1 } | ||
789 | { .mfi; xma.lu f84=f36,f124,f84 | ||
790 | cmp.ltu p6,p0=r27,carry2 };; | ||
791 | { .mfi; st8 [r33]=r27,16 | ||
792 | xma.hu f95=f36,f125,f94 | ||
793 | (p6) add carry1=1,carry1 } | ||
794 | { .mfi; xma.lu f94=f36,f125,f94 };; | ||
795 | { .mfi; xma.hu f105=f36,f126,f104 } | ||
796 | { .mfi; mov carry2=0 | ||
797 | xma.lu f104=f36,f126,f104 | ||
798 | add r17=r17,r16 };; | ||
799 | { .mfi; xma.hu f115=f36,f127,f114 | ||
800 | cmp.ltu p7,p0=r17,r16 } | ||
801 | { .mfi; xma.lu f114=f36,f127,f114 | ||
802 | add r18=r18,r17 };;// | ||
803 | //-------------------------------------------------// | ||
804 | { .mfi; getf.sig r20=f44 | ||
805 | xma.hu f46=f37,f120,f45 | ||
806 | (p7) add carry2=1,carry2 } | ||
807 | { .mfi; cmp.ltu p7,p0=r18,r17 | ||
808 | xma.lu f45=f37,f120,f45 | ||
809 | add r19=r19,r18 };; | ||
810 | { .mfi; getf.sig r24=f90 | ||
811 | xma.hu f56=f37,f121,f55 } | ||
812 | { .mfi; xma.lu f55=f37,f121,f55 };; | ||
813 | { .mfi; getf.sig r25=f81 | ||
814 | xma.hu f66=f37,f122,f65 | ||
815 | (p7) add carry2=1,carry2 } | ||
816 | { .mfi; cmp.ltu p7,p0=r19,r18 | ||
817 | xma.lu f65=f37,f122,f65 | ||
818 | add r20=r20,r19 };; | ||
819 | { .mfi; getf.sig r26=f72 | ||
820 | xma.hu f76=f37,f123,f75 | ||
821 | (p7) add carry2=1,carry2 } | ||
822 | { .mfi; cmp.ltu p7,p0=r20,r19 | ||
823 | xma.lu f75=f37,f123,f75 | ||
824 | add r20=r20,carry1 };; | ||
825 | { .mfi; getf.sig r27=f63 | ||
826 | xma.hu f86=f37,f124,f85 | ||
827 | (p7) add carry2=1,carry2 } | ||
828 | { .mfi; xma.lu f85=f37,f124,f85 | ||
829 | cmp.ltu p7,p0=r20,carry1 };; | ||
830 | { .mfi; getf.sig r28=f54 | ||
831 | xma.hu f96=f37,f125,f95 | ||
832 | (p7) add carry2=1,carry2 } | ||
833 | { .mfi; st8 [r32]=r20,16 | ||
834 | xma.lu f95=f37,f125,f95 };; | ||
835 | { .mfi; xma.hu f106=f37,f126,f105 } | ||
836 | { .mfi; mov carry1=0 | ||
837 | xma.lu f105=f37,f126,f105 | ||
838 | add r25=r25,r24 };; | ||
839 | { .mfi; xma.hu f116=f37,f127,f115 | ||
840 | cmp.ltu p6,p0=r25,r24 } | ||
841 | { .mfi; xma.lu f115=f37,f127,f115 | ||
842 | add r26=r26,r25 };;// | ||
843 | //-------------------------------------------------// | ||
844 | { .mfi; getf.sig r29=f45 | ||
845 | xma.hu f47=f38,f120,f46 | ||
846 | (p6) add carry1=1,carry1 } | ||
847 | { .mfi; cmp.ltu p6,p0=r26,r25 | ||
848 | xma.lu f46=f38,f120,f46 | ||
849 | add r27=r27,r26 };; | ||
850 | { .mfi; getf.sig r16=f100 | ||
851 | xma.hu f57=f38,f121,f56 | ||
852 | (p6) add carry1=1,carry1 } | ||
853 | { .mfi; cmp.ltu p6,p0=r27,r26 | ||
854 | xma.lu f56=f38,f121,f56 | ||
855 | add r28=r28,r27 };; | ||
856 | { .mfi; getf.sig r17=f91 | ||
857 | xma.hu f67=f38,f122,f66 | ||
858 | (p6) add carry1=1,carry1 } | ||
859 | { .mfi; cmp.ltu p6,p0=r28,r27 | ||
860 | xma.lu f66=f38,f122,f66 | ||
861 | add r29=r29,r28 };; | ||
862 | { .mfi; getf.sig r18=f82 | ||
863 | xma.hu f77=f38,f123,f76 | ||
864 | (p6) add carry1=1,carry1 } | ||
865 | { .mfi; cmp.ltu p6,p0=r29,r28 | ||
866 | xma.lu f76=f38,f123,f76 | ||
867 | add r29=r29,carry2 };; | ||
868 | { .mfi; getf.sig r19=f73 | ||
869 | xma.hu f87=f38,f124,f86 | ||
870 | (p6) add carry1=1,carry1 } | ||
871 | { .mfi; xma.lu f86=f38,f124,f86 | ||
872 | cmp.ltu p6,p0=r29,carry2 };; | ||
873 | { .mfi; getf.sig r20=f64 | ||
874 | xma.hu f97=f38,f125,f96 | ||
875 | (p6) add carry1=1,carry1 } | ||
876 | { .mfi; st8 [r33]=r29,16 | ||
877 | xma.lu f96=f38,f125,f96 };; | ||
878 | { .mfi; getf.sig r21=f55 | ||
879 | xma.hu f107=f38,f126,f106 } | ||
880 | { .mfi; mov carry2=0 | ||
881 | xma.lu f106=f38,f126,f106 | ||
882 | add r17=r17,r16 };; | ||
883 | { .mfi; xma.hu f117=f38,f127,f116 | ||
884 | cmp.ltu p7,p0=r17,r16 } | ||
885 | { .mfi; xma.lu f116=f38,f127,f116 | ||
886 | add r18=r18,r17 };;// | ||
887 | //-------------------------------------------------// | ||
888 | { .mfi; getf.sig r22=f46 | ||
889 | xma.hu f48=f39,f120,f47 | ||
890 | (p7) add carry2=1,carry2 } | ||
891 | { .mfi; cmp.ltu p7,p0=r18,r17 | ||
892 | xma.lu f47=f39,f120,f47 | ||
893 | add r19=r19,r18 };; | ||
894 | { .mfi; getf.sig r24=f110 | ||
895 | xma.hu f58=f39,f121,f57 | ||
896 | (p7) add carry2=1,carry2 } | ||
897 | { .mfi; cmp.ltu p7,p0=r19,r18 | ||
898 | xma.lu f57=f39,f121,f57 | ||
899 | add r20=r20,r19 };; | ||
900 | { .mfi; getf.sig r25=f101 | ||
901 | xma.hu f68=f39,f122,f67 | ||
902 | (p7) add carry2=1,carry2 } | ||
903 | { .mfi; cmp.ltu p7,p0=r20,r19 | ||
904 | xma.lu f67=f39,f122,f67 | ||
905 | add r21=r21,r20 };; | ||
906 | { .mfi; getf.sig r26=f92 | ||
907 | xma.hu f78=f39,f123,f77 | ||
908 | (p7) add carry2=1,carry2 } | ||
909 | { .mfi; cmp.ltu p7,p0=r21,r20 | ||
910 | xma.lu f77=f39,f123,f77 | ||
911 | add r22=r22,r21 };; | ||
912 | { .mfi; getf.sig r27=f83 | ||
913 | xma.hu f88=f39,f124,f87 | ||
914 | (p7) add carry2=1,carry2 } | ||
915 | { .mfi; cmp.ltu p7,p0=r22,r21 | ||
916 | xma.lu f87=f39,f124,f87 | ||
917 | add r22=r22,carry1 };; | ||
918 | { .mfi; getf.sig r28=f74 | ||
919 | xma.hu f98=f39,f125,f97 | ||
920 | (p7) add carry2=1,carry2 } | ||
921 | { .mfi; xma.lu f97=f39,f125,f97 | ||
922 | cmp.ltu p7,p0=r22,carry1 };; | ||
923 | { .mfi; getf.sig r29=f65 | ||
924 | xma.hu f108=f39,f126,f107 | ||
925 | (p7) add carry2=1,carry2 } | ||
926 | { .mfi; st8 [r32]=r22,16 | ||
927 | xma.lu f107=f39,f126,f107 };; | ||
928 | { .mfi; getf.sig r30=f56 | ||
929 | xma.hu f118=f39,f127,f117 } | ||
930 | { .mfi; xma.lu f117=f39,f127,f117 };;// | ||
931 | //-------------------------------------------------// | ||
932 | // Leaving muliplier's heaven... Quite a ride, huh? | ||
933 | |||
934 | { .mii; getf.sig r31=f47 | ||
935 | add r25=r25,r24 | ||
936 | mov carry1=0 };; | ||
937 | { .mii; getf.sig r16=f111 | ||
938 | cmp.ltu p6,p0=r25,r24 | ||
939 | add r26=r26,r25 };; | ||
940 | { .mfb; getf.sig r17=f102 } | ||
941 | { .mii; | ||
942 | (p6) add carry1=1,carry1 | ||
943 | cmp.ltu p6,p0=r26,r25 | ||
944 | add r27=r27,r26 };; | ||
945 | { .mfb; nop.m 0x0 } | ||
946 | { .mii; | ||
947 | (p6) add carry1=1,carry1 | ||
948 | cmp.ltu p6,p0=r27,r26 | ||
949 | add r28=r28,r27 };; | ||
950 | { .mii; getf.sig r18=f93 | ||
951 | add r17=r17,r16 | ||
952 | mov carry3=0 } | ||
953 | { .mii; | ||
954 | (p6) add carry1=1,carry1 | ||
955 | cmp.ltu p6,p0=r28,r27 | ||
956 | add r29=r29,r28 };; | ||
957 | { .mii; getf.sig r19=f84 | ||
958 | cmp.ltu p7,p0=r17,r16 } | ||
959 | { .mii; | ||
960 | (p6) add carry1=1,carry1 | ||
961 | cmp.ltu p6,p0=r29,r28 | ||
962 | add r30=r30,r29 };; | ||
963 | { .mii; getf.sig r20=f75 | ||
964 | add r18=r18,r17 } | ||
965 | { .mii; | ||
966 | (p6) add carry1=1,carry1 | ||
967 | cmp.ltu p6,p0=r30,r29 | ||
968 | add r31=r31,r30 };; | ||
969 | { .mfb; getf.sig r21=f66 } | ||
970 | { .mii; (p7) add carry3=1,carry3 | ||
971 | cmp.ltu p7,p0=r18,r17 | ||
972 | add r19=r19,r18 } | ||
973 | { .mfb; nop.m 0x0 } | ||
974 | { .mii; | ||
975 | (p6) add carry1=1,carry1 | ||
976 | cmp.ltu p6,p0=r31,r30 | ||
977 | add r31=r31,carry2 };; | ||
978 | { .mfb; getf.sig r22=f57 } | ||
979 | { .mii; (p7) add carry3=1,carry3 | ||
980 | cmp.ltu p7,p0=r19,r18 | ||
981 | add r20=r20,r19 } | ||
982 | { .mfb; nop.m 0x0 } | ||
983 | { .mii; | ||
984 | (p6) add carry1=1,carry1 | ||
985 | cmp.ltu p6,p0=r31,carry2 };; | ||
986 | { .mfb; getf.sig r23=f48 } | ||
987 | { .mii; (p7) add carry3=1,carry3 | ||
988 | cmp.ltu p7,p0=r20,r19 | ||
989 | add r21=r21,r20 } | ||
990 | { .mii; | ||
991 | (p6) add carry1=1,carry1 } | ||
992 | { .mfb; st8 [r33]=r31,16 };; | ||
993 | |||
994 | { .mfb; getf.sig r24=f112 } | ||
995 | { .mii; (p7) add carry3=1,carry3 | ||
996 | cmp.ltu p7,p0=r21,r20 | ||
997 | add r22=r22,r21 };; | ||
998 | { .mfb; getf.sig r25=f103 } | ||
999 | { .mii; (p7) add carry3=1,carry3 | ||
1000 | cmp.ltu p7,p0=r22,r21 | ||
1001 | add r23=r23,r22 };; | ||
1002 | { .mfb; getf.sig r26=f94 } | ||
1003 | { .mii; (p7) add carry3=1,carry3 | ||
1004 | cmp.ltu p7,p0=r23,r22 | ||
1005 | add r23=r23,carry1 };; | ||
1006 | { .mfb; getf.sig r27=f85 } | ||
1007 | { .mii; (p7) add carry3=1,carry3 | ||
1008 | cmp.ltu p7,p8=r23,carry1};; | ||
1009 | { .mii; getf.sig r28=f76 | ||
1010 | add r25=r25,r24 | ||
1011 | mov carry1=0 } | ||
1012 | { .mii; st8 [r32]=r23,16 | ||
1013 | (p7) add carry2=1,carry3 | ||
1014 | (p8) add carry2=0,carry3 };; | ||
1015 | |||
1016 | { .mfb; nop.m 0x0 } | ||
1017 | { .mii; getf.sig r29=f67 | ||
1018 | cmp.ltu p6,p0=r25,r24 | ||
1019 | add r26=r26,r25 };; | ||
1020 | { .mfb; getf.sig r30=f58 } | ||
1021 | { .mii; | ||
1022 | (p6) add carry1=1,carry1 | ||
1023 | cmp.ltu p6,p0=r26,r25 | ||
1024 | add r27=r27,r26 };; | ||
1025 | { .mfb; getf.sig r16=f113 } | ||
1026 | { .mii; | ||
1027 | (p6) add carry1=1,carry1 | ||
1028 | cmp.ltu p6,p0=r27,r26 | ||
1029 | add r28=r28,r27 };; | ||
1030 | { .mfb; getf.sig r17=f104 } | ||
1031 | { .mii; | ||
1032 | (p6) add carry1=1,carry1 | ||
1033 | cmp.ltu p6,p0=r28,r27 | ||
1034 | add r29=r29,r28 };; | ||
1035 | { .mfb; getf.sig r18=f95 } | ||
1036 | { .mii; | ||
1037 | (p6) add carry1=1,carry1 | ||
1038 | cmp.ltu p6,p0=r29,r28 | ||
1039 | add r30=r30,r29 };; | ||
1040 | { .mii; getf.sig r19=f86 | ||
1041 | add r17=r17,r16 | ||
1042 | mov carry3=0 } | ||
1043 | { .mii; | ||
1044 | (p6) add carry1=1,carry1 | ||
1045 | cmp.ltu p6,p0=r30,r29 | ||
1046 | add r30=r30,carry2 };; | ||
1047 | { .mii; getf.sig r20=f77 | ||
1048 | cmp.ltu p7,p0=r17,r16 | ||
1049 | add r18=r18,r17 } | ||
1050 | { .mii; | ||
1051 | (p6) add carry1=1,carry1 | ||
1052 | cmp.ltu p6,p0=r30,carry2 };; | ||
1053 | { .mfb; getf.sig r21=f68 } | ||
1054 | { .mii; st8 [r33]=r30,16 | ||
1055 | (p6) add carry1=1,carry1 };; | ||
1056 | |||
1057 | { .mfb; getf.sig r24=f114 } | ||
1058 | { .mii; (p7) add carry3=1,carry3 | ||
1059 | cmp.ltu p7,p0=r18,r17 | ||
1060 | add r19=r19,r18 };; | ||
1061 | { .mfb; getf.sig r25=f105 } | ||
1062 | { .mii; (p7) add carry3=1,carry3 | ||
1063 | cmp.ltu p7,p0=r19,r18 | ||
1064 | add r20=r20,r19 };; | ||
1065 | { .mfb; getf.sig r26=f96 } | ||
1066 | { .mii; (p7) add carry3=1,carry3 | ||
1067 | cmp.ltu p7,p0=r20,r19 | ||
1068 | add r21=r21,r20 };; | ||
1069 | { .mfb; getf.sig r27=f87 } | ||
1070 | { .mii; (p7) add carry3=1,carry3 | ||
1071 | cmp.ltu p7,p0=r21,r20 | ||
1072 | add r21=r21,carry1 };; | ||
1073 | { .mib; getf.sig r28=f78 | ||
1074 | add r25=r25,r24 } | ||
1075 | { .mib; (p7) add carry3=1,carry3 | ||
1076 | cmp.ltu p7,p8=r21,carry1};; | ||
1077 | { .mii; st8 [r32]=r21,16 | ||
1078 | (p7) add carry2=1,carry3 | ||
1079 | (p8) add carry2=0,carry3 } | ||
1080 | |||
1081 | { .mii; mov carry1=0 | ||
1082 | cmp.ltu p6,p0=r25,r24 | ||
1083 | add r26=r26,r25 };; | ||
1084 | { .mfb; getf.sig r16=f115 } | ||
1085 | { .mii; | ||
1086 | (p6) add carry1=1,carry1 | ||
1087 | cmp.ltu p6,p0=r26,r25 | ||
1088 | add r27=r27,r26 };; | ||
1089 | { .mfb; getf.sig r17=f106 } | ||
1090 | { .mii; | ||
1091 | (p6) add carry1=1,carry1 | ||
1092 | cmp.ltu p6,p0=r27,r26 | ||
1093 | add r28=r28,r27 };; | ||
1094 | { .mfb; getf.sig r18=f97 } | ||
1095 | { .mii; | ||
1096 | (p6) add carry1=1,carry1 | ||
1097 | cmp.ltu p6,p0=r28,r27 | ||
1098 | add r28=r28,carry2 };; | ||
1099 | { .mib; getf.sig r19=f88 | ||
1100 | add r17=r17,r16 } | ||
1101 | { .mib; | ||
1102 | (p6) add carry1=1,carry1 | ||
1103 | cmp.ltu p6,p0=r28,carry2 };; | ||
1104 | { .mii; st8 [r33]=r28,16 | ||
1105 | (p6) add carry1=1,carry1 } | ||
1106 | |||
1107 | { .mii; mov carry2=0 | ||
1108 | cmp.ltu p7,p0=r17,r16 | ||
1109 | add r18=r18,r17 };; | ||
1110 | { .mfb; getf.sig r24=f116 } | ||
1111 | { .mii; (p7) add carry2=1,carry2 | ||
1112 | cmp.ltu p7,p0=r18,r17 | ||
1113 | add r19=r19,r18 };; | ||
1114 | { .mfb; getf.sig r25=f107 } | ||
1115 | { .mii; (p7) add carry2=1,carry2 | ||
1116 | cmp.ltu p7,p0=r19,r18 | ||
1117 | add r19=r19,carry1 };; | ||
1118 | { .mfb; getf.sig r26=f98 } | ||
1119 | { .mii; (p7) add carry2=1,carry2 | ||
1120 | cmp.ltu p7,p0=r19,carry1};; | ||
1121 | { .mii; st8 [r32]=r19,16 | ||
1122 | (p7) add carry2=1,carry2 } | ||
1123 | |||
1124 | { .mfb; add r25=r25,r24 };; | ||
1125 | |||
1126 | { .mfb; getf.sig r16=f117 } | ||
1127 | { .mii; mov carry1=0 | ||
1128 | cmp.ltu p6,p0=r25,r24 | ||
1129 | add r26=r26,r25 };; | ||
1130 | { .mfb; getf.sig r17=f108 } | ||
1131 | { .mii; | ||
1132 | (p6) add carry1=1,carry1 | ||
1133 | cmp.ltu p6,p0=r26,r25 | ||
1134 | add r26=r26,carry2 };; | ||
1135 | { .mfb; nop.m 0x0 } | ||
1136 | { .mii; | ||
1137 | (p6) add carry1=1,carry1 | ||
1138 | cmp.ltu p6,p0=r26,carry2 };; | ||
1139 | { .mii; st8 [r33]=r26,16 | ||
1140 | (p6) add carry1=1,carry1 } | ||
1141 | |||
1142 | { .mfb; add r17=r17,r16 };; | ||
1143 | { .mfb; getf.sig r24=f118 } | ||
1144 | { .mii; mov carry2=0 | ||
1145 | cmp.ltu p7,p0=r17,r16 | ||
1146 | add r17=r17,carry1 };; | ||
1147 | { .mii; (p7) add carry2=1,carry2 | ||
1148 | cmp.ltu p7,p0=r17,carry1};; | ||
1149 | { .mii; st8 [r32]=r17 | ||
1150 | (p7) add carry2=1,carry2 };; | ||
1151 | { .mfb; add r24=r24,carry2 };; | ||
1152 | { .mib; st8 [r33]=r24 } | ||
1153 | |||
1154 | { .mib; rum 1<<5 // clear um.mfh | ||
1155 | br.ret.sptk.many b0 };; | ||
1156 | .endp bn_mul_comba8# | ||
1157 | #undef carry3 | ||
1158 | #undef carry2 | ||
1159 | #undef carry1 | ||
1160 | #endif | ||
1161 | |||
1162 | #if 1 | ||
1163 | // It's possible to make it faster (see comment to bn_sqr_comba8), but | ||
1164 | // I reckon it doesn't worth the effort. Basically because the routine | ||
1165 | // (actually both of them) practically never called... So I just play | ||
1166 | // same trick as with bn_sqr_comba8. | ||
1167 | // | ||
1168 | // void bn_sqr_comba4(BN_ULONG *r, BN_ULONG *a) | ||
1169 | // | ||
1170 | .global bn_sqr_comba4# | ||
1171 | .proc bn_sqr_comba4# | ||
1172 | .align 64 | ||
1173 | bn_sqr_comba4: | ||
1174 | .prologue | ||
1175 | .save ar.pfs,r2 | ||
1176 | #if defined(_HPUX_SOURCE) && !defined(_LP64) | ||
1177 | { .mii; alloc r2=ar.pfs,2,1,0,0 | ||
1178 | addp4 r32=0,r32 | ||
1179 | addp4 r33=0,r33 };; | ||
1180 | { .mii; | ||
1181 | #else | ||
1182 | { .mii; alloc r2=ar.pfs,2,1,0,0 | ||
1183 | #endif | ||
1184 | mov r34=r33 | ||
1185 | add r14=8,r33 };; | ||
1186 | .body | ||
1187 | { .mii; add r17=8,r34 | ||
1188 | add r15=16,r33 | ||
1189 | add r18=16,r34 } | ||
1190 | { .mfb; add r16=24,r33 | ||
1191 | br .L_cheat_entry_point4 };; | ||
1192 | .endp bn_sqr_comba4# | ||
1193 | #endif | ||
1194 | |||
1195 | #if 1 | ||
1196 | // Runs in ~115 cycles and ~4.5 times faster than C. Well, whatever... | ||
1197 | // | ||
1198 | // void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b) | ||
1199 | // | ||
1200 | #define carry1 r14 | ||
1201 | #define carry2 r15 | ||
1202 | .global bn_mul_comba4# | ||
1203 | .proc bn_mul_comba4# | ||
1204 | .align 64 | ||
1205 | bn_mul_comba4: | ||
1206 | .prologue | ||
1207 | .save ar.pfs,r2 | ||
1208 | #if defined(_HPUX_SOURCE) && !defined(_LP64) | ||
1209 | { .mii; alloc r2=ar.pfs,3,0,0,0 | ||
1210 | addp4 r33=0,r33 | ||
1211 | addp4 r34=0,r34 };; | ||
1212 | { .mii; addp4 r32=0,r32 | ||
1213 | #else | ||
1214 | { .mii; alloc r2=ar.pfs,3,0,0,0 | ||
1215 | #endif | ||
1216 | add r14=8,r33 | ||
1217 | add r17=8,r34 } | ||
1218 | .body | ||
1219 | { .mii; add r15=16,r33 | ||
1220 | add r18=16,r34 | ||
1221 | add r16=24,r33 };; | ||
1222 | .L_cheat_entry_point4: | ||
1223 | { .mmi; add r19=24,r34 | ||
1224 | |||
1225 | ldf8 f32=[r33] } | ||
1226 | |||
1227 | { .mmi; ldf8 f120=[r34] | ||
1228 | ldf8 f121=[r17] };; | ||
1229 | { .mmi; ldf8 f122=[r18] | ||
1230 | ldf8 f123=[r19] } | ||
1231 | |||
1232 | { .mmi; ldf8 f33=[r14] | ||
1233 | ldf8 f34=[r15] } | ||
1234 | { .mfi; ldf8 f35=[r16] | ||
1235 | |||
1236 | xma.hu f41=f32,f120,f0 } | ||
1237 | { .mfi; xma.lu f40=f32,f120,f0 };; | ||
1238 | { .mfi; xma.hu f51=f32,f121,f0 } | ||
1239 | { .mfi; xma.lu f50=f32,f121,f0 };; | ||
1240 | { .mfi; xma.hu f61=f32,f122,f0 } | ||
1241 | { .mfi; xma.lu f60=f32,f122,f0 };; | ||
1242 | { .mfi; xma.hu f71=f32,f123,f0 } | ||
1243 | { .mfi; xma.lu f70=f32,f123,f0 };;// | ||
1244 | // Major stall takes place here, and 3 more places below. Result from | ||
1245 | // first xma is not available for another 3 ticks. | ||
1246 | { .mfi; getf.sig r16=f40 | ||
1247 | xma.hu f42=f33,f120,f41 | ||
1248 | add r33=8,r32 } | ||
1249 | { .mfi; xma.lu f41=f33,f120,f41 };; | ||
1250 | { .mfi; getf.sig r24=f50 | ||
1251 | xma.hu f52=f33,f121,f51 } | ||
1252 | { .mfi; xma.lu f51=f33,f121,f51 };; | ||
1253 | { .mfi; st8 [r32]=r16,16 | ||
1254 | xma.hu f62=f33,f122,f61 } | ||
1255 | { .mfi; xma.lu f61=f33,f122,f61 };; | ||
1256 | { .mfi; xma.hu f72=f33,f123,f71 } | ||
1257 | { .mfi; xma.lu f71=f33,f123,f71 };;// | ||
1258 | //-------------------------------------------------// | ||
1259 | { .mfi; getf.sig r25=f41 | ||
1260 | xma.hu f43=f34,f120,f42 } | ||
1261 | { .mfi; xma.lu f42=f34,f120,f42 };; | ||
1262 | { .mfi; getf.sig r16=f60 | ||
1263 | xma.hu f53=f34,f121,f52 } | ||
1264 | { .mfi; xma.lu f52=f34,f121,f52 };; | ||
1265 | { .mfi; getf.sig r17=f51 | ||
1266 | xma.hu f63=f34,f122,f62 | ||
1267 | add r25=r25,r24 } | ||
1268 | { .mfi; mov carry1=0 | ||
1269 | xma.lu f62=f34,f122,f62 };; | ||
1270 | { .mfi; st8 [r33]=r25,16 | ||
1271 | xma.hu f73=f34,f123,f72 | ||
1272 | cmp.ltu p6,p0=r25,r24 } | ||
1273 | { .mfi; xma.lu f72=f34,f123,f72 };;// | ||
1274 | //-------------------------------------------------// | ||
1275 | { .mfi; getf.sig r18=f42 | ||
1276 | xma.hu f44=f35,f120,f43 | ||
1277 | (p6) add carry1=1,carry1 } | ||
1278 | { .mfi; add r17=r17,r16 | ||
1279 | xma.lu f43=f35,f120,f43 | ||
1280 | mov carry2=0 };; | ||
1281 | { .mfi; getf.sig r24=f70 | ||
1282 | xma.hu f54=f35,f121,f53 | ||
1283 | cmp.ltu p7,p0=r17,r16 } | ||
1284 | { .mfi; xma.lu f53=f35,f121,f53 };; | ||
1285 | { .mfi; getf.sig r25=f61 | ||
1286 | xma.hu f64=f35,f122,f63 | ||
1287 | add r18=r18,r17 } | ||
1288 | { .mfi; xma.lu f63=f35,f122,f63 | ||
1289 | (p7) add carry2=1,carry2 };; | ||
1290 | { .mfi; getf.sig r26=f52 | ||
1291 | xma.hu f74=f35,f123,f73 | ||
1292 | cmp.ltu p7,p0=r18,r17 } | ||
1293 | { .mfi; xma.lu f73=f35,f123,f73 | ||
1294 | add r18=r18,carry1 };; | ||
1295 | //-------------------------------------------------// | ||
1296 | { .mii; st8 [r32]=r18,16 | ||
1297 | (p7) add carry2=1,carry2 | ||
1298 | cmp.ltu p7,p0=r18,carry1 };; | ||
1299 | |||
1300 | { .mfi; getf.sig r27=f43 // last major stall | ||
1301 | (p7) add carry2=1,carry2 };; | ||
1302 | { .mii; getf.sig r16=f71 | ||
1303 | add r25=r25,r24 | ||
1304 | mov carry1=0 };; | ||
1305 | { .mii; getf.sig r17=f62 | ||
1306 | cmp.ltu p6,p0=r25,r24 | ||
1307 | add r26=r26,r25 };; | ||
1308 | { .mii; | ||
1309 | (p6) add carry1=1,carry1 | ||
1310 | cmp.ltu p6,p0=r26,r25 | ||
1311 | add r27=r27,r26 };; | ||
1312 | { .mii; | ||
1313 | (p6) add carry1=1,carry1 | ||
1314 | cmp.ltu p6,p0=r27,r26 | ||
1315 | add r27=r27,carry2 };; | ||
1316 | { .mii; getf.sig r18=f53 | ||
1317 | (p6) add carry1=1,carry1 | ||
1318 | cmp.ltu p6,p0=r27,carry2 };; | ||
1319 | { .mfi; st8 [r33]=r27,16 | ||
1320 | (p6) add carry1=1,carry1 } | ||
1321 | |||
1322 | { .mii; getf.sig r19=f44 | ||
1323 | add r17=r17,r16 | ||
1324 | mov carry2=0 };; | ||
1325 | { .mii; getf.sig r24=f72 | ||
1326 | cmp.ltu p7,p0=r17,r16 | ||
1327 | add r18=r18,r17 };; | ||
1328 | { .mii; (p7) add carry2=1,carry2 | ||
1329 | cmp.ltu p7,p0=r18,r17 | ||
1330 | add r19=r19,r18 };; | ||
1331 | { .mii; (p7) add carry2=1,carry2 | ||
1332 | cmp.ltu p7,p0=r19,r18 | ||
1333 | add r19=r19,carry1 };; | ||
1334 | { .mii; getf.sig r25=f63 | ||
1335 | (p7) add carry2=1,carry2 | ||
1336 | cmp.ltu p7,p0=r19,carry1};; | ||
1337 | { .mii; st8 [r32]=r19,16 | ||
1338 | (p7) add carry2=1,carry2 } | ||
1339 | |||
1340 | { .mii; getf.sig r26=f54 | ||
1341 | add r25=r25,r24 | ||
1342 | mov carry1=0 };; | ||
1343 | { .mii; getf.sig r16=f73 | ||
1344 | cmp.ltu p6,p0=r25,r24 | ||
1345 | add r26=r26,r25 };; | ||
1346 | { .mii; | ||
1347 | (p6) add carry1=1,carry1 | ||
1348 | cmp.ltu p6,p0=r26,r25 | ||
1349 | add r26=r26,carry2 };; | ||
1350 | { .mii; getf.sig r17=f64 | ||
1351 | (p6) add carry1=1,carry1 | ||
1352 | cmp.ltu p6,p0=r26,carry2 };; | ||
1353 | { .mii; st8 [r33]=r26,16 | ||
1354 | (p6) add carry1=1,carry1 } | ||
1355 | |||
1356 | { .mii; getf.sig r24=f74 | ||
1357 | add r17=r17,r16 | ||
1358 | mov carry2=0 };; | ||
1359 | { .mii; cmp.ltu p7,p0=r17,r16 | ||
1360 | add r17=r17,carry1 };; | ||
1361 | |||
1362 | { .mii; (p7) add carry2=1,carry2 | ||
1363 | cmp.ltu p7,p0=r17,carry1};; | ||
1364 | { .mii; st8 [r32]=r17,16 | ||
1365 | (p7) add carry2=1,carry2 };; | ||
1366 | |||
1367 | { .mii; add r24=r24,carry2 };; | ||
1368 | { .mii; st8 [r33]=r24 } | ||
1369 | |||
1370 | { .mib; rum 1<<5 // clear um.mfh | ||
1371 | br.ret.sptk.many b0 };; | ||
1372 | .endp bn_mul_comba4# | ||
1373 | #undef carry2 | ||
1374 | #undef carry1 | ||
1375 | #endif | ||
1376 | |||
1377 | #if 1 | ||
1378 | // | ||
1379 | // BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d) | ||
1380 | // | ||
1381 | // In the nutshell it's a port of my MIPS III/IV implementation. | ||
1382 | // | ||
1383 | #define AT r14 | ||
1384 | #define H r16 | ||
1385 | #define HH r20 | ||
1386 | #define L r17 | ||
1387 | #define D r18 | ||
1388 | #define DH r22 | ||
1389 | #define I r21 | ||
1390 | |||
1391 | #if 0 | ||
1392 | // Some preprocessors (most notably HP-UX) appear to be allergic to | ||
1393 | // macros enclosed to parenthesis [as these three were]. | ||
1394 | #define cont p16 | ||
1395 | #define break p0 // p20 | ||
1396 | #define equ p24 | ||
1397 | #else | ||
1398 | cont=p16 | ||
1399 | break=p0 | ||
1400 | equ=p24 | ||
1401 | #endif | ||
1402 | |||
1403 | .global abort# | ||
1404 | .global bn_div_words# | ||
1405 | .proc bn_div_words# | ||
1406 | .align 64 | ||
1407 | bn_div_words: | ||
1408 | .prologue | ||
1409 | .save ar.pfs,r2 | ||
1410 | { .mii; alloc r2=ar.pfs,3,5,0,8 | ||
1411 | .save b0,r3 | ||
1412 | mov r3=b0 | ||
1413 | .save pr,r10 | ||
1414 | mov r10=pr };; | ||
1415 | { .mmb; cmp.eq p6,p0=r34,r0 | ||
1416 | mov r8=-1 | ||
1417 | (p6) br.ret.spnt.many b0 };; | ||
1418 | |||
1419 | .body | ||
1420 | { .mii; mov H=r32 // save h | ||
1421 | mov ar.ec=0 // don't rotate at exit | ||
1422 | mov pr.rot=0 } | ||
1423 | { .mii; mov L=r33 // save l | ||
1424 | mov r36=r0 };; | ||
1425 | |||
1426 | .L_divw_shift: // -vv- note signed comparison | ||
1427 | { .mfi; (p0) cmp.lt p16,p0=r0,r34 // d | ||
1428 | (p0) shladd r33=r34,1,r0 } | ||
1429 | { .mfb; (p0) add r35=1,r36 | ||
1430 | (p0) nop.f 0x0 | ||
1431 | (p16) br.wtop.dpnt .L_divw_shift };; | ||
1432 | |||
1433 | { .mii; mov D=r34 | ||
1434 | shr.u DH=r34,32 | ||
1435 | sub r35=64,r36 };; | ||
1436 | { .mii; setf.sig f7=DH | ||
1437 | shr.u AT=H,r35 | ||
1438 | mov I=r36 };; | ||
1439 | { .mib; cmp.ne p6,p0=r0,AT | ||
1440 | shl H=H,r36 | ||
1441 | (p6) br.call.spnt.clr b0=abort };; // overflow, die... | ||
1442 | |||
1443 | { .mfi; fcvt.xuf.s1 f7=f7 | ||
1444 | shr.u AT=L,r35 };; | ||
1445 | { .mii; shl L=L,r36 | ||
1446 | or H=H,AT };; | ||
1447 | |||
1448 | { .mii; nop.m 0x0 | ||
1449 | cmp.leu p6,p0=D,H;; | ||
1450 | (p6) sub H=H,D } | ||
1451 | |||
1452 | { .mlx; setf.sig f14=D | ||
1453 | movl AT=0xffffffff };; | ||
1454 | /////////////////////////////////////////////////////////// | ||
1455 | { .mii; setf.sig f6=H | ||
1456 | shr.u HH=H,32;; | ||
1457 | cmp.eq p6,p7=HH,DH };; | ||
1458 | { .mfb; | ||
1459 | (p6) setf.sig f8=AT | ||
1460 | (p7) fcvt.xuf.s1 f6=f6 | ||
1461 | (p7) br.call.sptk b6=.L_udiv64_32_b6 };; | ||
1462 | |||
1463 | { .mfi; getf.sig r33=f8 // q | ||
1464 | xmpy.lu f9=f8,f14 } | ||
1465 | { .mfi; xmpy.hu f10=f8,f14 | ||
1466 | shrp H=H,L,32 };; | ||
1467 | |||
1468 | { .mmi; getf.sig r35=f9 // tl | ||
1469 | getf.sig r31=f10 };; // th | ||
1470 | |||
1471 | .L_divw_1st_iter: | ||
1472 | { .mii; (p0) add r32=-1,r33 | ||
1473 | (p0) cmp.eq equ,cont=HH,r31 };; | ||
1474 | { .mii; (p0) cmp.ltu p8,p0=r35,D | ||
1475 | (p0) sub r34=r35,D | ||
1476 | (equ) cmp.leu break,cont=r35,H };; | ||
1477 | { .mib; (cont) cmp.leu cont,break=HH,r31 | ||
1478 | (p8) add r31=-1,r31 | ||
1479 | (cont) br.wtop.spnt .L_divw_1st_iter };; | ||
1480 | /////////////////////////////////////////////////////////// | ||
1481 | { .mii; sub H=H,r35 | ||
1482 | shl r8=r33,32 | ||
1483 | shl L=L,32 };; | ||
1484 | /////////////////////////////////////////////////////////// | ||
1485 | { .mii; setf.sig f6=H | ||
1486 | shr.u HH=H,32;; | ||
1487 | cmp.eq p6,p7=HH,DH };; | ||
1488 | { .mfb; | ||
1489 | (p6) setf.sig f8=AT | ||
1490 | (p7) fcvt.xuf.s1 f6=f6 | ||
1491 | (p7) br.call.sptk b6=.L_udiv64_32_b6 };; | ||
1492 | |||
1493 | { .mfi; getf.sig r33=f8 // q | ||
1494 | xmpy.lu f9=f8,f14 } | ||
1495 | { .mfi; xmpy.hu f10=f8,f14 | ||
1496 | shrp H=H,L,32 };; | ||
1497 | |||
1498 | { .mmi; getf.sig r35=f9 // tl | ||
1499 | getf.sig r31=f10 };; // th | ||
1500 | |||
1501 | .L_divw_2nd_iter: | ||
1502 | { .mii; (p0) add r32=-1,r33 | ||
1503 | (p0) cmp.eq equ,cont=HH,r31 };; | ||
1504 | { .mii; (p0) cmp.ltu p8,p0=r35,D | ||
1505 | (p0) sub r34=r35,D | ||
1506 | (equ) cmp.leu break,cont=r35,H };; | ||
1507 | { .mib; (cont) cmp.leu cont,break=HH,r31 | ||
1508 | (p8) add r31=-1,r31 | ||
1509 | (cont) br.wtop.spnt .L_divw_2nd_iter };; | ||
1510 | /////////////////////////////////////////////////////////// | ||
1511 | { .mii; sub H=H,r35 | ||
1512 | or r8=r8,r33 | ||
1513 | mov ar.pfs=r2 };; | ||
1514 | { .mii; shr.u r9=H,I // remainder if anybody wants it | ||
1515 | mov pr=r10,0x1ffff } | ||
1516 | { .mfb; br.ret.sptk.many b0 };; | ||
1517 | |||
1518 | // Unsigned 64 by 32 (well, by 64 for the moment) bit integer division | ||
1519 | // procedure. | ||
1520 | // | ||
1521 | // inputs: f6 = (double)a, f7 = (double)b | ||
1522 | // output: f8 = (int)(a/b) | ||
1523 | // clobbered: f8,f9,f10,f11,pred | ||
1524 | pred=p15 | ||
1525 | // One can argue that this snippet is copyrighted to Intel | ||
1526 | // Corporation, as it's essentially identical to one of those | ||
1527 | // found in "Divide, Square Root and Remainder" section at | ||
1528 | // http://www.intel.com/software/products/opensource/libraries/num.htm. | ||
1529 | // Yes, I admit that the referred code was used as template, | ||
1530 | // but after I realized that there hardly is any other instruction | ||
1531 | // sequence which would perform this operation. I mean I figure that | ||
1532 | // any independent attempt to implement high-performance division | ||
1533 | // will result in code virtually identical to the Intel code. It | ||
1534 | // should be noted though that below division kernel is 1 cycle | ||
1535 | // faster than Intel one (note commented splits:-), not to mention | ||
1536 | // original prologue (rather lack of one) and epilogue. | ||
1537 | .align 32 | ||
1538 | .skip 16 | ||
1539 | .L_udiv64_32_b6: | ||
1540 | frcpa.s1 f8,pred=f6,f7;; // [0] y0 = 1 / b | ||
1541 | |||
1542 | (pred) fnma.s1 f9=f7,f8,f1 // [5] e0 = 1 - b * y0 | ||
1543 | (pred) fmpy.s1 f10=f6,f8;; // [5] q0 = a * y0 | ||
1544 | (pred) fmpy.s1 f11=f9,f9 // [10] e1 = e0 * e0 | ||
1545 | (pred) fma.s1 f10=f9,f10,f10;; // [10] q1 = q0 + e0 * q0 | ||
1546 | (pred) fma.s1 f8=f9,f8,f8 //;; // [15] y1 = y0 + e0 * y0 | ||
1547 | (pred) fma.s1 f9=f11,f10,f10;; // [15] q2 = q1 + e1 * q1 | ||
1548 | (pred) fma.s1 f8=f11,f8,f8 //;; // [20] y2 = y1 + e1 * y1 | ||
1549 | (pred) fnma.s1 f10=f7,f9,f6;; // [20] r2 = a - b * q2 | ||
1550 | (pred) fma.s1 f8=f10,f8,f9;; // [25] q3 = q2 + r2 * y2 | ||
1551 | |||
1552 | fcvt.fxu.trunc.s1 f8=f8 // [30] q = trunc(q3) | ||
1553 | br.ret.sptk.many b6;; | ||
1554 | .endp bn_div_words# | ||
1555 | #endif | ||
diff --git a/src/lib/libcrypto/bn/asm/mips-mont.pl b/src/lib/libcrypto/bn/asm/mips-mont.pl deleted file mode 100644 index caae04ed3a..0000000000 --- a/src/lib/libcrypto/bn/asm/mips-mont.pl +++ /dev/null | |||
@@ -1,426 +0,0 @@ | |||
1 | #!/usr/bin/env perl | ||
2 | # | ||
3 | # ==================================================================== | ||
4 | # Written by Andy Polyakov <appro@openssl.org> for the OpenSSL | ||
5 | # project. The module is, however, dual licensed under OpenSSL and | ||
6 | # CRYPTOGAMS licenses depending on where you obtain it. For further | ||
7 | # details see http://www.openssl.org/~appro/cryptogams/. | ||
8 | # ==================================================================== | ||
9 | |||
10 | # This module doesn't present direct interest for OpenSSL, because it | ||
11 | # doesn't provide better performance for longer keys, at least not on | ||
12 | # in-order-execution cores. While 512-bit RSA sign operations can be | ||
13 | # 65% faster in 64-bit mode, 1024-bit ones are only 15% faster, and | ||
14 | # 4096-bit ones are up to 15% slower. In 32-bit mode it varies from | ||
15 | # 16% improvement for 512-bit RSA sign to -33% for 4096-bit RSA | ||
16 | # verify:-( All comparisons are against bn_mul_mont-free assembler. | ||
17 | # The module might be of interest to embedded system developers, as | ||
18 | # the code is smaller than 1KB, yet offers >3x improvement on MIPS64 | ||
19 | # and 75-30% [less for longer keys] on MIPS32 over compiler-generated | ||
20 | # code. | ||
21 | |||
22 | ###################################################################### | ||
23 | # There is a number of MIPS ABI in use, O32 and N32/64 are most | ||
24 | # widely used. Then there is a new contender: NUBI. It appears that if | ||
25 | # one picks the latter, it's possible to arrange code in ABI neutral | ||
26 | # manner. Therefore let's stick to NUBI register layout: | ||
27 | # | ||
28 | ($zero,$at,$t0,$t1,$t2)=map("\$$_",(0..2,24,25)); | ||
29 | ($a0,$a1,$a2,$a3,$a4,$a5,$a6,$a7)=map("\$$_",(4..11)); | ||
30 | ($s0,$s1,$s2,$s3,$s4,$s5,$s6,$s7,$s8,$s9,$s10,$s11)=map("\$$_",(12..23)); | ||
31 | ($gp,$tp,$sp,$fp,$ra)=map("\$$_",(3,28..31)); | ||
32 | # | ||
33 | # The return value is placed in $a0. Following coding rules facilitate | ||
34 | # interoperability: | ||
35 | # | ||
36 | # - never ever touch $tp, "thread pointer", former $gp; | ||
37 | # - copy return value to $t0, former $v0 [or to $a0 if you're adapting | ||
38 | # old code]; | ||
39 | # - on O32 populate $a4-$a7 with 'lw $aN,4*N($sp)' if necessary; | ||
40 | # | ||
41 | # For reference here is register layout for N32/64 MIPS ABIs: | ||
42 | # | ||
43 | # ($zero,$at,$v0,$v1)=map("\$$_",(0..3)); | ||
44 | # ($a0,$a1,$a2,$a3,$a4,$a5,$a6,$a7)=map("\$$_",(4..11)); | ||
45 | # ($t0,$t1,$t2,$t3,$t8,$t9)=map("\$$_",(12..15,24,25)); | ||
46 | # ($s0,$s1,$s2,$s3,$s4,$s5,$s6,$s7)=map("\$$_",(16..23)); | ||
47 | # ($gp,$sp,$fp,$ra)=map("\$$_",(28..31)); | ||
48 | # | ||
49 | $flavour = shift; # supported flavours are o32,n32,64,nubi32,nubi64 | ||
50 | |||
51 | if ($flavour =~ /64|n32/i) { | ||
52 | $PTR_ADD="dadd"; # incidentally works even on n32 | ||
53 | $PTR_SUB="dsub"; # incidentally works even on n32 | ||
54 | $REG_S="sd"; | ||
55 | $REG_L="ld"; | ||
56 | $SZREG=8; | ||
57 | } else { | ||
58 | $PTR_ADD="add"; | ||
59 | $PTR_SUB="sub"; | ||
60 | $REG_S="sw"; | ||
61 | $REG_L="lw"; | ||
62 | $SZREG=4; | ||
63 | } | ||
64 | $SAVED_REGS_MASK = ($flavour =~ /nubi/i) ? 0x00fff000 : 0x00ff0000; | ||
65 | # | ||
66 | # <appro@openssl.org> | ||
67 | # | ||
68 | ###################################################################### | ||
69 | |||
70 | while (($output=shift) && ($output!~/^\w[\w\-]*\.\w+$/)) {} | ||
71 | open STDOUT,">$output"; | ||
72 | |||
73 | if ($flavour =~ /64|n32/i) { | ||
74 | $LD="ld"; | ||
75 | $ST="sd"; | ||
76 | $MULTU="dmultu"; | ||
77 | $ADDU="daddu"; | ||
78 | $SUBU="dsubu"; | ||
79 | $BNSZ=8; | ||
80 | } else { | ||
81 | $LD="lw"; | ||
82 | $ST="sw"; | ||
83 | $MULTU="multu"; | ||
84 | $ADDU="addu"; | ||
85 | $SUBU="subu"; | ||
86 | $BNSZ=4; | ||
87 | } | ||
88 | |||
89 | # int bn_mul_mont( | ||
90 | $rp=$a0; # BN_ULONG *rp, | ||
91 | $ap=$a1; # const BN_ULONG *ap, | ||
92 | $bp=$a2; # const BN_ULONG *bp, | ||
93 | $np=$a3; # const BN_ULONG *np, | ||
94 | $n0=$a4; # const BN_ULONG *n0, | ||
95 | $num=$a5; # int num); | ||
96 | |||
97 | $lo0=$a6; | ||
98 | $hi0=$a7; | ||
99 | $lo1=$t1; | ||
100 | $hi1=$t2; | ||
101 | $aj=$s0; | ||
102 | $bi=$s1; | ||
103 | $nj=$s2; | ||
104 | $tp=$s3; | ||
105 | $alo=$s4; | ||
106 | $ahi=$s5; | ||
107 | $nlo=$s6; | ||
108 | $nhi=$s7; | ||
109 | $tj=$s8; | ||
110 | $i=$s9; | ||
111 | $j=$s10; | ||
112 | $m1=$s11; | ||
113 | |||
114 | $FRAMESIZE=14; | ||
115 | |||
116 | $code=<<___; | ||
117 | .text | ||
118 | |||
119 | .set noat | ||
120 | .set noreorder | ||
121 | |||
122 | .align 5 | ||
123 | .globl bn_mul_mont | ||
124 | .ent bn_mul_mont | ||
125 | bn_mul_mont: | ||
126 | ___ | ||
127 | $code.=<<___ if ($flavour =~ /o32/i); | ||
128 | lw $n0,16($sp) | ||
129 | lw $num,20($sp) | ||
130 | ___ | ||
131 | $code.=<<___; | ||
132 | slt $at,$num,4 | ||
133 | bnez $at,1f | ||
134 | li $t0,0 | ||
135 | slt $at,$num,17 # on in-order CPU | ||
136 | bnez $at,bn_mul_mont_internal | ||
137 | nop | ||
138 | 1: jr $ra | ||
139 | li $a0,0 | ||
140 | .end bn_mul_mont | ||
141 | |||
142 | .align 5 | ||
143 | .ent bn_mul_mont_internal | ||
144 | bn_mul_mont_internal: | ||
145 | .frame $fp,$FRAMESIZE*$SZREG,$ra | ||
146 | .mask 0x40000000|$SAVED_REGS_MASK,-$SZREG | ||
147 | $PTR_SUB $sp,$FRAMESIZE*$SZREG | ||
148 | $REG_S $fp,($FRAMESIZE-1)*$SZREG($sp) | ||
149 | $REG_S $s11,($FRAMESIZE-2)*$SZREG($sp) | ||
150 | $REG_S $s10,($FRAMESIZE-3)*$SZREG($sp) | ||
151 | $REG_S $s9,($FRAMESIZE-4)*$SZREG($sp) | ||
152 | $REG_S $s8,($FRAMESIZE-5)*$SZREG($sp) | ||
153 | $REG_S $s7,($FRAMESIZE-6)*$SZREG($sp) | ||
154 | $REG_S $s6,($FRAMESIZE-7)*$SZREG($sp) | ||
155 | $REG_S $s5,($FRAMESIZE-8)*$SZREG($sp) | ||
156 | $REG_S $s4,($FRAMESIZE-9)*$SZREG($sp) | ||
157 | ___ | ||
158 | $code.=<<___ if ($flavour =~ /nubi/i); | ||
159 | $REG_S $s3,($FRAMESIZE-10)*$SZREG($sp) | ||
160 | $REG_S $s2,($FRAMESIZE-11)*$SZREG($sp) | ||
161 | $REG_S $s1,($FRAMESIZE-12)*$SZREG($sp) | ||
162 | $REG_S $s0,($FRAMESIZE-13)*$SZREG($sp) | ||
163 | ___ | ||
164 | $code.=<<___; | ||
165 | move $fp,$sp | ||
166 | |||
167 | .set reorder | ||
168 | $LD $n0,0($n0) | ||
169 | $LD $bi,0($bp) # bp[0] | ||
170 | $LD $aj,0($ap) # ap[0] | ||
171 | $LD $nj,0($np) # np[0] | ||
172 | |||
173 | $PTR_SUB $sp,2*$BNSZ # place for two extra words | ||
174 | sll $num,`log($BNSZ)/log(2)` | ||
175 | li $at,-4096 | ||
176 | $PTR_SUB $sp,$num | ||
177 | and $sp,$at | ||
178 | |||
179 | $MULTU $aj,$bi | ||
180 | $LD $alo,$BNSZ($ap) | ||
181 | $LD $nlo,$BNSZ($np) | ||
182 | mflo $lo0 | ||
183 | mfhi $hi0 | ||
184 | $MULTU $lo0,$n0 | ||
185 | mflo $m1 | ||
186 | |||
187 | $MULTU $alo,$bi | ||
188 | mflo $alo | ||
189 | mfhi $ahi | ||
190 | |||
191 | $MULTU $nj,$m1 | ||
192 | mflo $lo1 | ||
193 | mfhi $hi1 | ||
194 | $MULTU $nlo,$m1 | ||
195 | $ADDU $lo1,$lo0 | ||
196 | sltu $at,$lo1,$lo0 | ||
197 | $ADDU $hi1,$at | ||
198 | mflo $nlo | ||
199 | mfhi $nhi | ||
200 | |||
201 | move $tp,$sp | ||
202 | li $j,2*$BNSZ | ||
203 | .align 4 | ||
204 | .L1st: | ||
205 | .set noreorder | ||
206 | $PTR_ADD $aj,$ap,$j | ||
207 | $PTR_ADD $nj,$np,$j | ||
208 | $LD $aj,($aj) | ||
209 | $LD $nj,($nj) | ||
210 | |||
211 | $MULTU $aj,$bi | ||
212 | $ADDU $lo0,$alo,$hi0 | ||
213 | $ADDU $lo1,$nlo,$hi1 | ||
214 | sltu $at,$lo0,$hi0 | ||
215 | sltu $t0,$lo1,$hi1 | ||
216 | $ADDU $hi0,$ahi,$at | ||
217 | $ADDU $hi1,$nhi,$t0 | ||
218 | mflo $alo | ||
219 | mfhi $ahi | ||
220 | |||
221 | $ADDU $lo1,$lo0 | ||
222 | sltu $at,$lo1,$lo0 | ||
223 | $MULTU $nj,$m1 | ||
224 | $ADDU $hi1,$at | ||
225 | addu $j,$BNSZ | ||
226 | $ST $lo1,($tp) | ||
227 | sltu $t0,$j,$num | ||
228 | mflo $nlo | ||
229 | mfhi $nhi | ||
230 | |||
231 | bnez $t0,.L1st | ||
232 | $PTR_ADD $tp,$BNSZ | ||
233 | .set reorder | ||
234 | |||
235 | $ADDU $lo0,$alo,$hi0 | ||
236 | sltu $at,$lo0,$hi0 | ||
237 | $ADDU $hi0,$ahi,$at | ||
238 | |||
239 | $ADDU $lo1,$nlo,$hi1 | ||
240 | sltu $t0,$lo1,$hi1 | ||
241 | $ADDU $hi1,$nhi,$t0 | ||
242 | $ADDU $lo1,$lo0 | ||
243 | sltu $at,$lo1,$lo0 | ||
244 | $ADDU $hi1,$at | ||
245 | |||
246 | $ST $lo1,($tp) | ||
247 | |||
248 | $ADDU $hi1,$hi0 | ||
249 | sltu $at,$hi1,$hi0 | ||
250 | $ST $hi1,$BNSZ($tp) | ||
251 | $ST $at,2*$BNSZ($tp) | ||
252 | |||
253 | li $i,$BNSZ | ||
254 | .align 4 | ||
255 | .Louter: | ||
256 | $PTR_ADD $bi,$bp,$i | ||
257 | $LD $bi,($bi) | ||
258 | $LD $aj,($ap) | ||
259 | $LD $alo,$BNSZ($ap) | ||
260 | $LD $tj,($sp) | ||
261 | |||
262 | $MULTU $aj,$bi | ||
263 | $LD $nj,($np) | ||
264 | $LD $nlo,$BNSZ($np) | ||
265 | mflo $lo0 | ||
266 | mfhi $hi0 | ||
267 | $ADDU $lo0,$tj | ||
268 | $MULTU $lo0,$n0 | ||
269 | sltu $at,$lo0,$tj | ||
270 | $ADDU $hi0,$at | ||
271 | mflo $m1 | ||
272 | |||
273 | $MULTU $alo,$bi | ||
274 | mflo $alo | ||
275 | mfhi $ahi | ||
276 | |||
277 | $MULTU $nj,$m1 | ||
278 | mflo $lo1 | ||
279 | mfhi $hi1 | ||
280 | |||
281 | $MULTU $nlo,$m1 | ||
282 | $ADDU $lo1,$lo0 | ||
283 | sltu $at,$lo1,$lo0 | ||
284 | $ADDU $hi1,$at | ||
285 | mflo $nlo | ||
286 | mfhi $nhi | ||
287 | |||
288 | move $tp,$sp | ||
289 | li $j,2*$BNSZ | ||
290 | $LD $tj,$BNSZ($tp) | ||
291 | .align 4 | ||
292 | .Linner: | ||
293 | .set noreorder | ||
294 | $PTR_ADD $aj,$ap,$j | ||
295 | $PTR_ADD $nj,$np,$j | ||
296 | $LD $aj,($aj) | ||
297 | $LD $nj,($nj) | ||
298 | |||
299 | $MULTU $aj,$bi | ||
300 | $ADDU $lo0,$alo,$hi0 | ||
301 | $ADDU $lo1,$nlo,$hi1 | ||
302 | sltu $at,$lo0,$hi0 | ||
303 | sltu $t0,$lo1,$hi1 | ||
304 | $ADDU $hi0,$ahi,$at | ||
305 | $ADDU $hi1,$nhi,$t0 | ||
306 | mflo $alo | ||
307 | mfhi $ahi | ||
308 | |||
309 | $ADDU $lo0,$tj | ||
310 | addu $j,$BNSZ | ||
311 | $MULTU $nj,$m1 | ||
312 | sltu $at,$lo0,$tj | ||
313 | $ADDU $lo1,$lo0 | ||
314 | $ADDU $hi0,$at | ||
315 | sltu $t0,$lo1,$lo0 | ||
316 | $LD $tj,2*$BNSZ($tp) | ||
317 | $ADDU $hi1,$t0 | ||
318 | sltu $at,$j,$num | ||
319 | mflo $nlo | ||
320 | mfhi $nhi | ||
321 | $ST $lo1,($tp) | ||
322 | bnez $at,.Linner | ||
323 | $PTR_ADD $tp,$BNSZ | ||
324 | .set reorder | ||
325 | |||
326 | $ADDU $lo0,$alo,$hi0 | ||
327 | sltu $at,$lo0,$hi0 | ||
328 | $ADDU $hi0,$ahi,$at | ||
329 | $ADDU $lo0,$tj | ||
330 | sltu $t0,$lo0,$tj | ||
331 | $ADDU $hi0,$t0 | ||
332 | |||
333 | $LD $tj,2*$BNSZ($tp) | ||
334 | $ADDU $lo1,$nlo,$hi1 | ||
335 | sltu $at,$lo1,$hi1 | ||
336 | $ADDU $hi1,$nhi,$at | ||
337 | $ADDU $lo1,$lo0 | ||
338 | sltu $t0,$lo1,$lo0 | ||
339 | $ADDU $hi1,$t0 | ||
340 | $ST $lo1,($tp) | ||
341 | |||
342 | $ADDU $lo1,$hi1,$hi0 | ||
343 | sltu $hi1,$lo1,$hi0 | ||
344 | $ADDU $lo1,$tj | ||
345 | sltu $at,$lo1,$tj | ||
346 | $ADDU $hi1,$at | ||
347 | $ST $lo1,$BNSZ($tp) | ||
348 | $ST $hi1,2*$BNSZ($tp) | ||
349 | |||
350 | addu $i,$BNSZ | ||
351 | sltu $t0,$i,$num | ||
352 | bnez $t0,.Louter | ||
353 | |||
354 | .set noreorder | ||
355 | $PTR_ADD $tj,$sp,$num # &tp[num] | ||
356 | move $tp,$sp | ||
357 | move $ap,$sp | ||
358 | li $hi0,0 # clear borrow bit | ||
359 | |||
360 | .align 4 | ||
361 | .Lsub: $LD $lo0,($tp) | ||
362 | $LD $lo1,($np) | ||
363 | $PTR_ADD $tp,$BNSZ | ||
364 | $PTR_ADD $np,$BNSZ | ||
365 | $SUBU $lo1,$lo0,$lo1 # tp[i]-np[i] | ||
366 | sgtu $at,$lo1,$lo0 | ||
367 | $SUBU $lo0,$lo1,$hi0 | ||
368 | sgtu $hi0,$lo0,$lo1 | ||
369 | $ST $lo0,($rp) | ||
370 | or $hi0,$at | ||
371 | sltu $at,$tp,$tj | ||
372 | bnez $at,.Lsub | ||
373 | $PTR_ADD $rp,$BNSZ | ||
374 | |||
375 | $SUBU $hi0,$hi1,$hi0 # handle upmost overflow bit | ||
376 | move $tp,$sp | ||
377 | $PTR_SUB $rp,$num # restore rp | ||
378 | not $hi1,$hi0 | ||
379 | |||
380 | and $ap,$hi0,$sp | ||
381 | and $bp,$hi1,$rp | ||
382 | or $ap,$ap,$bp # ap=borrow?tp:rp | ||
383 | |||
384 | .align 4 | ||
385 | .Lcopy: $LD $aj,($ap) | ||
386 | $PTR_ADD $ap,$BNSZ | ||
387 | $ST $zero,($tp) | ||
388 | $PTR_ADD $tp,$BNSZ | ||
389 | sltu $at,$tp,$tj | ||
390 | $ST $aj,($rp) | ||
391 | bnez $at,.Lcopy | ||
392 | $PTR_ADD $rp,$BNSZ | ||
393 | |||
394 | li $a0,1 | ||
395 | li $t0,1 | ||
396 | |||
397 | .set noreorder | ||
398 | move $sp,$fp | ||
399 | $REG_L $fp,($FRAMESIZE-1)*$SZREG($sp) | ||
400 | $REG_L $s11,($FRAMESIZE-2)*$SZREG($sp) | ||
401 | $REG_L $s10,($FRAMESIZE-3)*$SZREG($sp) | ||
402 | $REG_L $s9,($FRAMESIZE-4)*$SZREG($sp) | ||
403 | $REG_L $s8,($FRAMESIZE-5)*$SZREG($sp) | ||
404 | $REG_L $s7,($FRAMESIZE-6)*$SZREG($sp) | ||
405 | $REG_L $s6,($FRAMESIZE-7)*$SZREG($sp) | ||
406 | $REG_L $s5,($FRAMESIZE-8)*$SZREG($sp) | ||
407 | $REG_L $s4,($FRAMESIZE-9)*$SZREG($sp) | ||
408 | ___ | ||
409 | $code.=<<___ if ($flavour =~ /nubi/i); | ||
410 | $REG_L $s3,($FRAMESIZE-10)*$SZREG($sp) | ||
411 | $REG_L $s2,($FRAMESIZE-11)*$SZREG($sp) | ||
412 | $REG_L $s1,($FRAMESIZE-12)*$SZREG($sp) | ||
413 | $REG_L $s0,($FRAMESIZE-13)*$SZREG($sp) | ||
414 | ___ | ||
415 | $code.=<<___; | ||
416 | jr $ra | ||
417 | $PTR_ADD $sp,$FRAMESIZE*$SZREG | ||
418 | .end bn_mul_mont_internal | ||
419 | .rdata | ||
420 | .asciiz "Montgomery Multiplication for MIPS, CRYPTOGAMS by <appro\@openssl.org>" | ||
421 | ___ | ||
422 | |||
423 | $code =~ s/\`([^\`]*)\`/eval $1/gem; | ||
424 | |||
425 | print $code; | ||
426 | close STDOUT; | ||
diff --git a/src/lib/libcrypto/bn/asm/mips.pl b/src/lib/libcrypto/bn/asm/mips.pl deleted file mode 100644 index 215c9a7483..0000000000 --- a/src/lib/libcrypto/bn/asm/mips.pl +++ /dev/null | |||
@@ -1,2234 +0,0 @@ | |||
1 | #!/usr/bin/env perl | ||
2 | # | ||
3 | # ==================================================================== | ||
4 | # Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL | ||
5 | # project. | ||
6 | # | ||
7 | # Rights for redistribution and usage in source and binary forms are | ||
8 | # granted according to the OpenSSL license. Warranty of any kind is | ||
9 | # disclaimed. | ||
10 | # ==================================================================== | ||
11 | |||
12 | |||
13 | # July 1999 | ||
14 | # | ||
15 | # This is drop-in MIPS III/IV ISA replacement for crypto/bn/bn_asm.c. | ||
16 | # | ||
17 | # The module is designed to work with either of the "new" MIPS ABI(5), | ||
18 | # namely N32 or N64, offered by IRIX 6.x. It's not ment to work under | ||
19 | # IRIX 5.x not only because it doesn't support new ABIs but also | ||
20 | # because 5.x kernels put R4x00 CPU into 32-bit mode and all those | ||
21 | # 64-bit instructions (daddu, dmultu, etc.) found below gonna only | ||
22 | # cause illegal instruction exception:-( | ||
23 | # | ||
24 | # In addition the code depends on preprocessor flags set up by MIPSpro | ||
25 | # compiler driver (either as or cc) and therefore (probably?) can't be | ||
26 | # compiled by the GNU assembler. GNU C driver manages fine though... | ||
27 | # I mean as long as -mmips-as is specified or is the default option, | ||
28 | # because then it simply invokes /usr/bin/as which in turn takes | ||
29 | # perfect care of the preprocessor definitions. Another neat feature | ||
30 | # offered by the MIPSpro assembler is an optimization pass. This gave | ||
31 | # me the opportunity to have the code looking more regular as all those | ||
32 | # architecture dependent instruction rescheduling details were left to | ||
33 | # the assembler. Cool, huh? | ||
34 | # | ||
35 | # Performance improvement is astonishing! 'apps/openssl speed rsa dsa' | ||
36 | # goes way over 3 times faster! | ||
37 | # | ||
38 | # <appro@fy.chalmers.se> | ||
39 | |||
40 | # October 2010 | ||
41 | # | ||
42 | # Adapt the module even for 32-bit ABIs and other OSes. The former was | ||
43 | # achieved by mechanical replacement of 64-bit arithmetic instructions | ||
44 | # such as dmultu, daddu, etc. with their 32-bit counterparts and | ||
45 | # adjusting offsets denoting multiples of BN_ULONG. Above mentioned | ||
46 | # >3x performance improvement naturally does not apply to 32-bit code | ||
47 | # [because there is no instruction 32-bit compiler can't use], one | ||
48 | # has to content with 40-85% improvement depending on benchmark and | ||
49 | # key length, more for longer keys. | ||
50 | |||
51 | $flavour = shift; | ||
52 | while (($output=shift) && ($output!~/^\w[\w\-]*\.\w+$/)) {} | ||
53 | open STDOUT,">$output"; | ||
54 | |||
55 | if ($flavour =~ /64|n32/i) { | ||
56 | $LD="ld"; | ||
57 | $ST="sd"; | ||
58 | $MULTU="dmultu"; | ||
59 | $DIVU="ddivu"; | ||
60 | $ADDU="daddu"; | ||
61 | $SUBU="dsubu"; | ||
62 | $SRL="dsrl"; | ||
63 | $SLL="dsll"; | ||
64 | $BNSZ=8; | ||
65 | $PTR_ADD="daddu"; | ||
66 | $PTR_SUB="dsubu"; | ||
67 | $SZREG=8; | ||
68 | $REG_S="sd"; | ||
69 | $REG_L="ld"; | ||
70 | } else { | ||
71 | $LD="lw"; | ||
72 | $ST="sw"; | ||
73 | $MULTU="multu"; | ||
74 | $DIVU="divu"; | ||
75 | $ADDU="addu"; | ||
76 | $SUBU="subu"; | ||
77 | $SRL="srl"; | ||
78 | $SLL="sll"; | ||
79 | $BNSZ=4; | ||
80 | $PTR_ADD="addu"; | ||
81 | $PTR_SUB="subu"; | ||
82 | $SZREG=4; | ||
83 | $REG_S="sw"; | ||
84 | $REG_L="lw"; | ||
85 | $code=".set mips2\n"; | ||
86 | } | ||
87 | |||
88 | # Below is N32/64 register layout used in the original module. | ||
89 | # | ||
90 | ($zero,$at,$v0,$v1)=map("\$$_",(0..3)); | ||
91 | ($a0,$a1,$a2,$a3,$a4,$a5,$a6,$a7)=map("\$$_",(4..11)); | ||
92 | ($t0,$t1,$t2,$t3,$t8,$t9)=map("\$$_",(12..15,24,25)); | ||
93 | ($s0,$s1,$s2,$s3,$s4,$s5,$s6,$s7)=map("\$$_",(16..23)); | ||
94 | ($gp,$sp,$fp,$ra)=map("\$$_",(28..31)); | ||
95 | ($ta0,$ta1,$ta2,$ta3)=($a4,$a5,$a6,$a7); | ||
96 | # | ||
97 | # No special adaptation is required for O32. NUBI on the other hand | ||
98 | # is treated by saving/restoring ($v1,$t0..$t3). | ||
99 | |||
100 | $gp=$v1 if ($flavour =~ /nubi/i); | ||
101 | |||
102 | $minus4=$v1; | ||
103 | |||
104 | $code.=<<___; | ||
105 | .rdata | ||
106 | .asciiz "mips3.s, Version 1.2" | ||
107 | .asciiz "MIPS II/III/IV ISA artwork by Andy Polyakov <appro\@fy.chalmers.se>" | ||
108 | |||
109 | .text | ||
110 | .set noat | ||
111 | |||
112 | .align 5 | ||
113 | .globl bn_mul_add_words | ||
114 | .ent bn_mul_add_words | ||
115 | bn_mul_add_words: | ||
116 | .set noreorder | ||
117 | bgtz $a2,bn_mul_add_words_internal | ||
118 | move $v0,$zero | ||
119 | jr $ra | ||
120 | move $a0,$v0 | ||
121 | .end bn_mul_add_words | ||
122 | |||
123 | .align 5 | ||
124 | .ent bn_mul_add_words_internal | ||
125 | bn_mul_add_words_internal: | ||
126 | ___ | ||
127 | $code.=<<___ if ($flavour =~ /nubi/i); | ||
128 | .frame $sp,6*$SZREG,$ra | ||
129 | .mask 0x8000f008,-$SZREG | ||
130 | .set noreorder | ||
131 | $PTR_SUB $sp,6*$SZREG | ||
132 | $REG_S $ra,5*$SZREG($sp) | ||
133 | $REG_S $t3,4*$SZREG($sp) | ||
134 | $REG_S $t2,3*$SZREG($sp) | ||
135 | $REG_S $t1,2*$SZREG($sp) | ||
136 | $REG_S $t0,1*$SZREG($sp) | ||
137 | $REG_S $gp,0*$SZREG($sp) | ||
138 | ___ | ||
139 | $code.=<<___; | ||
140 | .set reorder | ||
141 | li $minus4,-4 | ||
142 | and $ta0,$a2,$minus4 | ||
143 | beqz $ta0,.L_bn_mul_add_words_tail | ||
144 | |||
145 | .L_bn_mul_add_words_loop: | ||
146 | $LD $t0,0($a1) | ||
147 | $MULTU $t0,$a3 | ||
148 | $LD $t1,0($a0) | ||
149 | $LD $t2,$BNSZ($a1) | ||
150 | $LD $t3,$BNSZ($a0) | ||
151 | $LD $ta0,2*$BNSZ($a1) | ||
152 | $LD $ta1,2*$BNSZ($a0) | ||
153 | $ADDU $t1,$v0 | ||
154 | sltu $v0,$t1,$v0 # All manuals say it "compares 32-bit | ||
155 | # values", but it seems to work fine | ||
156 | # even on 64-bit registers. | ||
157 | mflo $at | ||
158 | mfhi $t0 | ||
159 | $ADDU $t1,$at | ||
160 | $ADDU $v0,$t0 | ||
161 | $MULTU $t2,$a3 | ||
162 | sltu $at,$t1,$at | ||
163 | $ST $t1,0($a0) | ||
164 | $ADDU $v0,$at | ||
165 | |||
166 | $LD $ta2,3*$BNSZ($a1) | ||
167 | $LD $ta3,3*$BNSZ($a0) | ||
168 | $ADDU $t3,$v0 | ||
169 | sltu $v0,$t3,$v0 | ||
170 | mflo $at | ||
171 | mfhi $t2 | ||
172 | $ADDU $t3,$at | ||
173 | $ADDU $v0,$t2 | ||
174 | $MULTU $ta0,$a3 | ||
175 | sltu $at,$t3,$at | ||
176 | $ST $t3,$BNSZ($a0) | ||
177 | $ADDU $v0,$at | ||
178 | |||
179 | subu $a2,4 | ||
180 | $PTR_ADD $a0,4*$BNSZ | ||
181 | $PTR_ADD $a1,4*$BNSZ | ||
182 | $ADDU $ta1,$v0 | ||
183 | sltu $v0,$ta1,$v0 | ||
184 | mflo $at | ||
185 | mfhi $ta0 | ||
186 | $ADDU $ta1,$at | ||
187 | $ADDU $v0,$ta0 | ||
188 | $MULTU $ta2,$a3 | ||
189 | sltu $at,$ta1,$at | ||
190 | $ST $ta1,-2*$BNSZ($a0) | ||
191 | $ADDU $v0,$at | ||
192 | |||
193 | |||
194 | and $ta0,$a2,$minus4 | ||
195 | $ADDU $ta3,$v0 | ||
196 | sltu $v0,$ta3,$v0 | ||
197 | mflo $at | ||
198 | mfhi $ta2 | ||
199 | $ADDU $ta3,$at | ||
200 | $ADDU $v0,$ta2 | ||
201 | sltu $at,$ta3,$at | ||
202 | $ST $ta3,-$BNSZ($a0) | ||
203 | .set noreorder | ||
204 | bgtz $ta0,.L_bn_mul_add_words_loop | ||
205 | $ADDU $v0,$at | ||
206 | |||
207 | beqz $a2,.L_bn_mul_add_words_return | ||
208 | nop | ||
209 | |||
210 | .L_bn_mul_add_words_tail: | ||
211 | .set reorder | ||
212 | $LD $t0,0($a1) | ||
213 | $MULTU $t0,$a3 | ||
214 | $LD $t1,0($a0) | ||
215 | subu $a2,1 | ||
216 | $ADDU $t1,$v0 | ||
217 | sltu $v0,$t1,$v0 | ||
218 | mflo $at | ||
219 | mfhi $t0 | ||
220 | $ADDU $t1,$at | ||
221 | $ADDU $v0,$t0 | ||
222 | sltu $at,$t1,$at | ||
223 | $ST $t1,0($a0) | ||
224 | $ADDU $v0,$at | ||
225 | beqz $a2,.L_bn_mul_add_words_return | ||
226 | |||
227 | $LD $t0,$BNSZ($a1) | ||
228 | $MULTU $t0,$a3 | ||
229 | $LD $t1,$BNSZ($a0) | ||
230 | subu $a2,1 | ||
231 | $ADDU $t1,$v0 | ||
232 | sltu $v0,$t1,$v0 | ||
233 | mflo $at | ||
234 | mfhi $t0 | ||
235 | $ADDU $t1,$at | ||
236 | $ADDU $v0,$t0 | ||
237 | sltu $at,$t1,$at | ||
238 | $ST $t1,$BNSZ($a0) | ||
239 | $ADDU $v0,$at | ||
240 | beqz $a2,.L_bn_mul_add_words_return | ||
241 | |||
242 | $LD $t0,2*$BNSZ($a1) | ||
243 | $MULTU $t0,$a3 | ||
244 | $LD $t1,2*$BNSZ($a0) | ||
245 | $ADDU $t1,$v0 | ||
246 | sltu $v0,$t1,$v0 | ||
247 | mflo $at | ||
248 | mfhi $t0 | ||
249 | $ADDU $t1,$at | ||
250 | $ADDU $v0,$t0 | ||
251 | sltu $at,$t1,$at | ||
252 | $ST $t1,2*$BNSZ($a0) | ||
253 | $ADDU $v0,$at | ||
254 | |||
255 | .L_bn_mul_add_words_return: | ||
256 | .set noreorder | ||
257 | ___ | ||
258 | $code.=<<___ if ($flavour =~ /nubi/i); | ||
259 | $REG_L $t3,4*$SZREG($sp) | ||
260 | $REG_L $t2,3*$SZREG($sp) | ||
261 | $REG_L $t1,2*$SZREG($sp) | ||
262 | $REG_L $t0,1*$SZREG($sp) | ||
263 | $REG_L $gp,0*$SZREG($sp) | ||
264 | $PTR_ADD $sp,6*$SZREG | ||
265 | ___ | ||
266 | $code.=<<___; | ||
267 | jr $ra | ||
268 | move $a0,$v0 | ||
269 | .end bn_mul_add_words_internal | ||
270 | |||
271 | .align 5 | ||
272 | .globl bn_mul_words | ||
273 | .ent bn_mul_words | ||
274 | bn_mul_words: | ||
275 | .set noreorder | ||
276 | bgtz $a2,bn_mul_words_internal | ||
277 | move $v0,$zero | ||
278 | jr $ra | ||
279 | move $a0,$v0 | ||
280 | .end bn_mul_words | ||
281 | |||
282 | .align 5 | ||
283 | .ent bn_mul_words_internal | ||
284 | bn_mul_words_internal: | ||
285 | ___ | ||
286 | $code.=<<___ if ($flavour =~ /nubi/i); | ||
287 | .frame $sp,6*$SZREG,$ra | ||
288 | .mask 0x8000f008,-$SZREG | ||
289 | .set noreorder | ||
290 | $PTR_SUB $sp,6*$SZREG | ||
291 | $REG_S $ra,5*$SZREG($sp) | ||
292 | $REG_S $t3,4*$SZREG($sp) | ||
293 | $REG_S $t2,3*$SZREG($sp) | ||
294 | $REG_S $t1,2*$SZREG($sp) | ||
295 | $REG_S $t0,1*$SZREG($sp) | ||
296 | $REG_S $gp,0*$SZREG($sp) | ||
297 | ___ | ||
298 | $code.=<<___; | ||
299 | .set reorder | ||
300 | li $minus4,-4 | ||
301 | and $ta0,$a2,$minus4 | ||
302 | beqz $ta0,.L_bn_mul_words_tail | ||
303 | |||
304 | .L_bn_mul_words_loop: | ||
305 | $LD $t0,0($a1) | ||
306 | $MULTU $t0,$a3 | ||
307 | $LD $t2,$BNSZ($a1) | ||
308 | $LD $ta0,2*$BNSZ($a1) | ||
309 | $LD $ta2,3*$BNSZ($a1) | ||
310 | mflo $at | ||
311 | mfhi $t0 | ||
312 | $ADDU $v0,$at | ||
313 | sltu $t1,$v0,$at | ||
314 | $MULTU $t2,$a3 | ||
315 | $ST $v0,0($a0) | ||
316 | $ADDU $v0,$t1,$t0 | ||
317 | |||
318 | subu $a2,4 | ||
319 | $PTR_ADD $a0,4*$BNSZ | ||
320 | $PTR_ADD $a1,4*$BNSZ | ||
321 | mflo $at | ||
322 | mfhi $t2 | ||
323 | $ADDU $v0,$at | ||
324 | sltu $t3,$v0,$at | ||
325 | $MULTU $ta0,$a3 | ||
326 | $ST $v0,-3*$BNSZ($a0) | ||
327 | $ADDU $v0,$t3,$t2 | ||
328 | |||
329 | mflo $at | ||
330 | mfhi $ta0 | ||
331 | $ADDU $v0,$at | ||
332 | sltu $ta1,$v0,$at | ||
333 | $MULTU $ta2,$a3 | ||
334 | $ST $v0,-2*$BNSZ($a0) | ||
335 | $ADDU $v0,$ta1,$ta0 | ||
336 | |||
337 | and $ta0,$a2,$minus4 | ||
338 | mflo $at | ||
339 | mfhi $ta2 | ||
340 | $ADDU $v0,$at | ||
341 | sltu $ta3,$v0,$at | ||
342 | $ST $v0,-$BNSZ($a0) | ||
343 | .set noreorder | ||
344 | bgtz $ta0,.L_bn_mul_words_loop | ||
345 | $ADDU $v0,$ta3,$ta2 | ||
346 | |||
347 | beqz $a2,.L_bn_mul_words_return | ||
348 | nop | ||
349 | |||
350 | .L_bn_mul_words_tail: | ||
351 | .set reorder | ||
352 | $LD $t0,0($a1) | ||
353 | $MULTU $t0,$a3 | ||
354 | subu $a2,1 | ||
355 | mflo $at | ||
356 | mfhi $t0 | ||
357 | $ADDU $v0,$at | ||
358 | sltu $t1,$v0,$at | ||
359 | $ST $v0,0($a0) | ||
360 | $ADDU $v0,$t1,$t0 | ||
361 | beqz $a2,.L_bn_mul_words_return | ||
362 | |||
363 | $LD $t0,$BNSZ($a1) | ||
364 | $MULTU $t0,$a3 | ||
365 | subu $a2,1 | ||
366 | mflo $at | ||
367 | mfhi $t0 | ||
368 | $ADDU $v0,$at | ||
369 | sltu $t1,$v0,$at | ||
370 | $ST $v0,$BNSZ($a0) | ||
371 | $ADDU $v0,$t1,$t0 | ||
372 | beqz $a2,.L_bn_mul_words_return | ||
373 | |||
374 | $LD $t0,2*$BNSZ($a1) | ||
375 | $MULTU $t0,$a3 | ||
376 | mflo $at | ||
377 | mfhi $t0 | ||
378 | $ADDU $v0,$at | ||
379 | sltu $t1,$v0,$at | ||
380 | $ST $v0,2*$BNSZ($a0) | ||
381 | $ADDU $v0,$t1,$t0 | ||
382 | |||
383 | .L_bn_mul_words_return: | ||
384 | .set noreorder | ||
385 | ___ | ||
386 | $code.=<<___ if ($flavour =~ /nubi/i); | ||
387 | $REG_L $t3,4*$SZREG($sp) | ||
388 | $REG_L $t2,3*$SZREG($sp) | ||
389 | $REG_L $t1,2*$SZREG($sp) | ||
390 | $REG_L $t0,1*$SZREG($sp) | ||
391 | $REG_L $gp,0*$SZREG($sp) | ||
392 | $PTR_ADD $sp,6*$SZREG | ||
393 | ___ | ||
394 | $code.=<<___; | ||
395 | jr $ra | ||
396 | move $a0,$v0 | ||
397 | .end bn_mul_words_internal | ||
398 | |||
399 | .align 5 | ||
400 | .globl bn_sqr_words | ||
401 | .ent bn_sqr_words | ||
402 | bn_sqr_words: | ||
403 | .set noreorder | ||
404 | bgtz $a2,bn_sqr_words_internal | ||
405 | move $v0,$zero | ||
406 | jr $ra | ||
407 | move $a0,$v0 | ||
408 | .end bn_sqr_words | ||
409 | |||
410 | .align 5 | ||
411 | .ent bn_sqr_words_internal | ||
412 | bn_sqr_words_internal: | ||
413 | ___ | ||
414 | $code.=<<___ if ($flavour =~ /nubi/i); | ||
415 | .frame $sp,6*$SZREG,$ra | ||
416 | .mask 0x8000f008,-$SZREG | ||
417 | .set noreorder | ||
418 | $PTR_SUB $sp,6*$SZREG | ||
419 | $REG_S $ra,5*$SZREG($sp) | ||
420 | $REG_S $t3,4*$SZREG($sp) | ||
421 | $REG_S $t2,3*$SZREG($sp) | ||
422 | $REG_S $t1,2*$SZREG($sp) | ||
423 | $REG_S $t0,1*$SZREG($sp) | ||
424 | $REG_S $gp,0*$SZREG($sp) | ||
425 | ___ | ||
426 | $code.=<<___; | ||
427 | .set reorder | ||
428 | li $minus4,-4 | ||
429 | and $ta0,$a2,$minus4 | ||
430 | beqz $ta0,.L_bn_sqr_words_tail | ||
431 | |||
432 | .L_bn_sqr_words_loop: | ||
433 | $LD $t0,0($a1) | ||
434 | $MULTU $t0,$t0 | ||
435 | $LD $t2,$BNSZ($a1) | ||
436 | $LD $ta0,2*$BNSZ($a1) | ||
437 | $LD $ta2,3*$BNSZ($a1) | ||
438 | mflo $t1 | ||
439 | mfhi $t0 | ||
440 | $ST $t1,0($a0) | ||
441 | $ST $t0,$BNSZ($a0) | ||
442 | |||
443 | $MULTU $t2,$t2 | ||
444 | subu $a2,4 | ||
445 | $PTR_ADD $a0,8*$BNSZ | ||
446 | $PTR_ADD $a1,4*$BNSZ | ||
447 | mflo $t3 | ||
448 | mfhi $t2 | ||
449 | $ST $t3,-6*$BNSZ($a0) | ||
450 | $ST $t2,-5*$BNSZ($a0) | ||
451 | |||
452 | $MULTU $ta0,$ta0 | ||
453 | mflo $ta1 | ||
454 | mfhi $ta0 | ||
455 | $ST $ta1,-4*$BNSZ($a0) | ||
456 | $ST $ta0,-3*$BNSZ($a0) | ||
457 | |||
458 | |||
459 | $MULTU $ta2,$ta2 | ||
460 | and $ta0,$a2,$minus4 | ||
461 | mflo $ta3 | ||
462 | mfhi $ta2 | ||
463 | $ST $ta3,-2*$BNSZ($a0) | ||
464 | |||
465 | .set noreorder | ||
466 | bgtz $ta0,.L_bn_sqr_words_loop | ||
467 | $ST $ta2,-$BNSZ($a0) | ||
468 | |||
469 | beqz $a2,.L_bn_sqr_words_return | ||
470 | nop | ||
471 | |||
472 | .L_bn_sqr_words_tail: | ||
473 | .set reorder | ||
474 | $LD $t0,0($a1) | ||
475 | $MULTU $t0,$t0 | ||
476 | subu $a2,1 | ||
477 | mflo $t1 | ||
478 | mfhi $t0 | ||
479 | $ST $t1,0($a0) | ||
480 | $ST $t0,$BNSZ($a0) | ||
481 | beqz $a2,.L_bn_sqr_words_return | ||
482 | |||
483 | $LD $t0,$BNSZ($a1) | ||
484 | $MULTU $t0,$t0 | ||
485 | subu $a2,1 | ||
486 | mflo $t1 | ||
487 | mfhi $t0 | ||
488 | $ST $t1,2*$BNSZ($a0) | ||
489 | $ST $t0,3*$BNSZ($a0) | ||
490 | beqz $a2,.L_bn_sqr_words_return | ||
491 | |||
492 | $LD $t0,2*$BNSZ($a1) | ||
493 | $MULTU $t0,$t0 | ||
494 | mflo $t1 | ||
495 | mfhi $t0 | ||
496 | $ST $t1,4*$BNSZ($a0) | ||
497 | $ST $t0,5*$BNSZ($a0) | ||
498 | |||
499 | .L_bn_sqr_words_return: | ||
500 | .set noreorder | ||
501 | ___ | ||
502 | $code.=<<___ if ($flavour =~ /nubi/i); | ||
503 | $REG_L $t3,4*$SZREG($sp) | ||
504 | $REG_L $t2,3*$SZREG($sp) | ||
505 | $REG_L $t1,2*$SZREG($sp) | ||
506 | $REG_L $t0,1*$SZREG($sp) | ||
507 | $REG_L $gp,0*$SZREG($sp) | ||
508 | $PTR_ADD $sp,6*$SZREG | ||
509 | ___ | ||
510 | $code.=<<___; | ||
511 | jr $ra | ||
512 | move $a0,$v0 | ||
513 | |||
514 | .end bn_sqr_words_internal | ||
515 | |||
516 | .align 5 | ||
517 | .globl bn_add_words | ||
518 | .ent bn_add_words | ||
519 | bn_add_words: | ||
520 | .set noreorder | ||
521 | bgtz $a3,bn_add_words_internal | ||
522 | move $v0,$zero | ||
523 | jr $ra | ||
524 | move $a0,$v0 | ||
525 | .end bn_add_words | ||
526 | |||
527 | .align 5 | ||
528 | .ent bn_add_words_internal | ||
529 | bn_add_words_internal: | ||
530 | ___ | ||
531 | $code.=<<___ if ($flavour =~ /nubi/i); | ||
532 | .frame $sp,6*$SZREG,$ra | ||
533 | .mask 0x8000f008,-$SZREG | ||
534 | .set noreorder | ||
535 | $PTR_SUB $sp,6*$SZREG | ||
536 | $REG_S $ra,5*$SZREG($sp) | ||
537 | $REG_S $t3,4*$SZREG($sp) | ||
538 | $REG_S $t2,3*$SZREG($sp) | ||
539 | $REG_S $t1,2*$SZREG($sp) | ||
540 | $REG_S $t0,1*$SZREG($sp) | ||
541 | $REG_S $gp,0*$SZREG($sp) | ||
542 | ___ | ||
543 | $code.=<<___; | ||
544 | .set reorder | ||
545 | li $minus4,-4 | ||
546 | and $at,$a3,$minus4 | ||
547 | beqz $at,.L_bn_add_words_tail | ||
548 | |||
549 | .L_bn_add_words_loop: | ||
550 | $LD $t0,0($a1) | ||
551 | $LD $ta0,0($a2) | ||
552 | subu $a3,4 | ||
553 | $LD $t1,$BNSZ($a1) | ||
554 | and $at,$a3,$minus4 | ||
555 | $LD $t2,2*$BNSZ($a1) | ||
556 | $PTR_ADD $a2,4*$BNSZ | ||
557 | $LD $t3,3*$BNSZ($a1) | ||
558 | $PTR_ADD $a0,4*$BNSZ | ||
559 | $LD $ta1,-3*$BNSZ($a2) | ||
560 | $PTR_ADD $a1,4*$BNSZ | ||
561 | $LD $ta2,-2*$BNSZ($a2) | ||
562 | $LD $ta3,-$BNSZ($a2) | ||
563 | $ADDU $ta0,$t0 | ||
564 | sltu $t8,$ta0,$t0 | ||
565 | $ADDU $t0,$ta0,$v0 | ||
566 | sltu $v0,$t0,$ta0 | ||
567 | $ST $t0,-4*$BNSZ($a0) | ||
568 | $ADDU $v0,$t8 | ||
569 | |||
570 | $ADDU $ta1,$t1 | ||
571 | sltu $t9,$ta1,$t1 | ||
572 | $ADDU $t1,$ta1,$v0 | ||
573 | sltu $v0,$t1,$ta1 | ||
574 | $ST $t1,-3*$BNSZ($a0) | ||
575 | $ADDU $v0,$t9 | ||
576 | |||
577 | $ADDU $ta2,$t2 | ||
578 | sltu $t8,$ta2,$t2 | ||
579 | $ADDU $t2,$ta2,$v0 | ||
580 | sltu $v0,$t2,$ta2 | ||
581 | $ST $t2,-2*$BNSZ($a0) | ||
582 | $ADDU $v0,$t8 | ||
583 | |||
584 | $ADDU $ta3,$t3 | ||
585 | sltu $t9,$ta3,$t3 | ||
586 | $ADDU $t3,$ta3,$v0 | ||
587 | sltu $v0,$t3,$ta3 | ||
588 | $ST $t3,-$BNSZ($a0) | ||
589 | |||
590 | .set noreorder | ||
591 | bgtz $at,.L_bn_add_words_loop | ||
592 | $ADDU $v0,$t9 | ||
593 | |||
594 | beqz $a3,.L_bn_add_words_return | ||
595 | nop | ||
596 | |||
597 | .L_bn_add_words_tail: | ||
598 | .set reorder | ||
599 | $LD $t0,0($a1) | ||
600 | $LD $ta0,0($a2) | ||
601 | $ADDU $ta0,$t0 | ||
602 | subu $a3,1 | ||
603 | sltu $t8,$ta0,$t0 | ||
604 | $ADDU $t0,$ta0,$v0 | ||
605 | sltu $v0,$t0,$ta0 | ||
606 | $ST $t0,0($a0) | ||
607 | $ADDU $v0,$t8 | ||
608 | beqz $a3,.L_bn_add_words_return | ||
609 | |||
610 | $LD $t1,$BNSZ($a1) | ||
611 | $LD $ta1,$BNSZ($a2) | ||
612 | $ADDU $ta1,$t1 | ||
613 | subu $a3,1 | ||
614 | sltu $t9,$ta1,$t1 | ||
615 | $ADDU $t1,$ta1,$v0 | ||
616 | sltu $v0,$t1,$ta1 | ||
617 | $ST $t1,$BNSZ($a0) | ||
618 | $ADDU $v0,$t9 | ||
619 | beqz $a3,.L_bn_add_words_return | ||
620 | |||
621 | $LD $t2,2*$BNSZ($a1) | ||
622 | $LD $ta2,2*$BNSZ($a2) | ||
623 | $ADDU $ta2,$t2 | ||
624 | sltu $t8,$ta2,$t2 | ||
625 | $ADDU $t2,$ta2,$v0 | ||
626 | sltu $v0,$t2,$ta2 | ||
627 | $ST $t2,2*$BNSZ($a0) | ||
628 | $ADDU $v0,$t8 | ||
629 | |||
630 | .L_bn_add_words_return: | ||
631 | .set noreorder | ||
632 | ___ | ||
633 | $code.=<<___ if ($flavour =~ /nubi/i); | ||
634 | $REG_L $t3,4*$SZREG($sp) | ||
635 | $REG_L $t2,3*$SZREG($sp) | ||
636 | $REG_L $t1,2*$SZREG($sp) | ||
637 | $REG_L $t0,1*$SZREG($sp) | ||
638 | $REG_L $gp,0*$SZREG($sp) | ||
639 | $PTR_ADD $sp,6*$SZREG | ||
640 | ___ | ||
641 | $code.=<<___; | ||
642 | jr $ra | ||
643 | move $a0,$v0 | ||
644 | |||
645 | .end bn_add_words_internal | ||
646 | |||
647 | .align 5 | ||
648 | .globl bn_sub_words | ||
649 | .ent bn_sub_words | ||
650 | bn_sub_words: | ||
651 | .set noreorder | ||
652 | bgtz $a3,bn_sub_words_internal | ||
653 | move $v0,$zero | ||
654 | jr $ra | ||
655 | move $a0,$zero | ||
656 | .end bn_sub_words | ||
657 | |||
658 | .align 5 | ||
659 | .ent bn_sub_words_internal | ||
660 | bn_sub_words_internal: | ||
661 | ___ | ||
662 | $code.=<<___ if ($flavour =~ /nubi/i); | ||
663 | .frame $sp,6*$SZREG,$ra | ||
664 | .mask 0x8000f008,-$SZREG | ||
665 | .set noreorder | ||
666 | $PTR_SUB $sp,6*$SZREG | ||
667 | $REG_S $ra,5*$SZREG($sp) | ||
668 | $REG_S $t3,4*$SZREG($sp) | ||
669 | $REG_S $t2,3*$SZREG($sp) | ||
670 | $REG_S $t1,2*$SZREG($sp) | ||
671 | $REG_S $t0,1*$SZREG($sp) | ||
672 | $REG_S $gp,0*$SZREG($sp) | ||
673 | ___ | ||
674 | $code.=<<___; | ||
675 | .set reorder | ||
676 | li $minus4,-4 | ||
677 | and $at,$a3,$minus4 | ||
678 | beqz $at,.L_bn_sub_words_tail | ||
679 | |||
680 | .L_bn_sub_words_loop: | ||
681 | $LD $t0,0($a1) | ||
682 | $LD $ta0,0($a2) | ||
683 | subu $a3,4 | ||
684 | $LD $t1,$BNSZ($a1) | ||
685 | and $at,$a3,$minus4 | ||
686 | $LD $t2,2*$BNSZ($a1) | ||
687 | $PTR_ADD $a2,4*$BNSZ | ||
688 | $LD $t3,3*$BNSZ($a1) | ||
689 | $PTR_ADD $a0,4*$BNSZ | ||
690 | $LD $ta1,-3*$BNSZ($a2) | ||
691 | $PTR_ADD $a1,4*$BNSZ | ||
692 | $LD $ta2,-2*$BNSZ($a2) | ||
693 | $LD $ta3,-$BNSZ($a2) | ||
694 | sltu $t8,$t0,$ta0 | ||
695 | $SUBU $ta0,$t0,$ta0 | ||
696 | $SUBU $t0,$ta0,$v0 | ||
697 | sgtu $v0,$t0,$ta0 | ||
698 | $ST $t0,-4*$BNSZ($a0) | ||
699 | $ADDU $v0,$t8 | ||
700 | |||
701 | sltu $t9,$t1,$ta1 | ||
702 | $SUBU $ta1,$t1,$ta1 | ||
703 | $SUBU $t1,$ta1,$v0 | ||
704 | sgtu $v0,$t1,$ta1 | ||
705 | $ST $t1,-3*$BNSZ($a0) | ||
706 | $ADDU $v0,$t9 | ||
707 | |||
708 | |||
709 | sltu $t8,$t2,$ta2 | ||
710 | $SUBU $ta2,$t2,$ta2 | ||
711 | $SUBU $t2,$ta2,$v0 | ||
712 | sgtu $v0,$t2,$ta2 | ||
713 | $ST $t2,-2*$BNSZ($a0) | ||
714 | $ADDU $v0,$t8 | ||
715 | |||
716 | sltu $t9,$t3,$ta3 | ||
717 | $SUBU $ta3,$t3,$ta3 | ||
718 | $SUBU $t3,$ta3,$v0 | ||
719 | sgtu $v0,$t3,$ta3 | ||
720 | $ST $t3,-$BNSZ($a0) | ||
721 | |||
722 | .set noreorder | ||
723 | bgtz $at,.L_bn_sub_words_loop | ||
724 | $ADDU $v0,$t9 | ||
725 | |||
726 | beqz $a3,.L_bn_sub_words_return | ||
727 | nop | ||
728 | |||
729 | .L_bn_sub_words_tail: | ||
730 | .set reorder | ||
731 | $LD $t0,0($a1) | ||
732 | $LD $ta0,0($a2) | ||
733 | subu $a3,1 | ||
734 | sltu $t8,$t0,$ta0 | ||
735 | $SUBU $ta0,$t0,$ta0 | ||
736 | $SUBU $t0,$ta0,$v0 | ||
737 | sgtu $v0,$t0,$ta0 | ||
738 | $ST $t0,0($a0) | ||
739 | $ADDU $v0,$t8 | ||
740 | beqz $a3,.L_bn_sub_words_return | ||
741 | |||
742 | $LD $t1,$BNSZ($a1) | ||
743 | subu $a3,1 | ||
744 | $LD $ta1,$BNSZ($a2) | ||
745 | sltu $t9,$t1,$ta1 | ||
746 | $SUBU $ta1,$t1,$ta1 | ||
747 | $SUBU $t1,$ta1,$v0 | ||
748 | sgtu $v0,$t1,$ta1 | ||
749 | $ST $t1,$BNSZ($a0) | ||
750 | $ADDU $v0,$t9 | ||
751 | beqz $a3,.L_bn_sub_words_return | ||
752 | |||
753 | $LD $t2,2*$BNSZ($a1) | ||
754 | $LD $ta2,2*$BNSZ($a2) | ||
755 | sltu $t8,$t2,$ta2 | ||
756 | $SUBU $ta2,$t2,$ta2 | ||
757 | $SUBU $t2,$ta2,$v0 | ||
758 | sgtu $v0,$t2,$ta2 | ||
759 | $ST $t2,2*$BNSZ($a0) | ||
760 | $ADDU $v0,$t8 | ||
761 | |||
762 | .L_bn_sub_words_return: | ||
763 | .set noreorder | ||
764 | ___ | ||
765 | $code.=<<___ if ($flavour =~ /nubi/i); | ||
766 | $REG_L $t3,4*$SZREG($sp) | ||
767 | $REG_L $t2,3*$SZREG($sp) | ||
768 | $REG_L $t1,2*$SZREG($sp) | ||
769 | $REG_L $t0,1*$SZREG($sp) | ||
770 | $REG_L $gp,0*$SZREG($sp) | ||
771 | $PTR_ADD $sp,6*$SZREG | ||
772 | ___ | ||
773 | $code.=<<___; | ||
774 | jr $ra | ||
775 | move $a0,$v0 | ||
776 | .end bn_sub_words_internal | ||
777 | |||
778 | .align 5 | ||
779 | .globl bn_div_3_words | ||
780 | .ent bn_div_3_words | ||
781 | bn_div_3_words: | ||
782 | .set noreorder | ||
783 | move $a3,$a0 # we know that bn_div_words does not | ||
784 | # touch $a3, $ta2, $ta3 and preserves $a2 | ||
785 | # so that we can save two arguments | ||
786 | # and return address in registers | ||
787 | # instead of stack:-) | ||
788 | |||
789 | $LD $a0,($a3) | ||
790 | move $ta2,$a1 | ||
791 | bne $a0,$a2,bn_div_3_words_internal | ||
792 | $LD $a1,-$BNSZ($a3) | ||
793 | li $v0,-1 | ||
794 | jr $ra | ||
795 | move $a0,$v0 | ||
796 | .end bn_div_3_words | ||
797 | |||
798 | .align 5 | ||
799 | .ent bn_div_3_words_internal | ||
800 | bn_div_3_words_internal: | ||
801 | ___ | ||
802 | $code.=<<___ if ($flavour =~ /nubi/i); | ||
803 | .frame $sp,6*$SZREG,$ra | ||
804 | .mask 0x8000f008,-$SZREG | ||
805 | .set noreorder | ||
806 | $PTR_SUB $sp,6*$SZREG | ||
807 | $REG_S $ra,5*$SZREG($sp) | ||
808 | $REG_S $t3,4*$SZREG($sp) | ||
809 | $REG_S $t2,3*$SZREG($sp) | ||
810 | $REG_S $t1,2*$SZREG($sp) | ||
811 | $REG_S $t0,1*$SZREG($sp) | ||
812 | $REG_S $gp,0*$SZREG($sp) | ||
813 | ___ | ||
814 | $code.=<<___; | ||
815 | .set reorder | ||
816 | move $ta3,$ra | ||
817 | bal bn_div_words_internal | ||
818 | move $ra,$ta3 | ||
819 | $MULTU $ta2,$v0 | ||
820 | $LD $t2,-2*$BNSZ($a3) | ||
821 | move $ta0,$zero | ||
822 | mfhi $t1 | ||
823 | mflo $t0 | ||
824 | sltu $t8,$t1,$a1 | ||
825 | .L_bn_div_3_words_inner_loop: | ||
826 | bnez $t8,.L_bn_div_3_words_inner_loop_done | ||
827 | sgeu $at,$t2,$t0 | ||
828 | seq $t9,$t1,$a1 | ||
829 | and $at,$t9 | ||
830 | sltu $t3,$t0,$ta2 | ||
831 | $ADDU $a1,$a2 | ||
832 | $SUBU $t1,$t3 | ||
833 | $SUBU $t0,$ta2 | ||
834 | sltu $t8,$t1,$a1 | ||
835 | sltu $ta0,$a1,$a2 | ||
836 | or $t8,$ta0 | ||
837 | .set noreorder | ||
838 | beqz $at,.L_bn_div_3_words_inner_loop | ||
839 | $SUBU $v0,1 | ||
840 | $ADDU $v0,1 | ||
841 | .set reorder | ||
842 | .L_bn_div_3_words_inner_loop_done: | ||
843 | .set noreorder | ||
844 | ___ | ||
845 | $code.=<<___ if ($flavour =~ /nubi/i); | ||
846 | $REG_L $t3,4*$SZREG($sp) | ||
847 | $REG_L $t2,3*$SZREG($sp) | ||
848 | $REG_L $t1,2*$SZREG($sp) | ||
849 | $REG_L $t0,1*$SZREG($sp) | ||
850 | $REG_L $gp,0*$SZREG($sp) | ||
851 | $PTR_ADD $sp,6*$SZREG | ||
852 | ___ | ||
853 | $code.=<<___; | ||
854 | jr $ra | ||
855 | move $a0,$v0 | ||
856 | .end bn_div_3_words_internal | ||
857 | |||
858 | .align 5 | ||
859 | .globl bn_div_words | ||
860 | .ent bn_div_words | ||
861 | bn_div_words: | ||
862 | .set noreorder | ||
863 | bnez $a2,bn_div_words_internal | ||
864 | li $v0,-1 # I would rather signal div-by-zero | ||
865 | # which can be done with 'break 7' | ||
866 | jr $ra | ||
867 | move $a0,$v0 | ||
868 | .end bn_div_words | ||
869 | |||
870 | .align 5 | ||
871 | .ent bn_div_words_internal | ||
872 | bn_div_words_internal: | ||
873 | ___ | ||
874 | $code.=<<___ if ($flavour =~ /nubi/i); | ||
875 | .frame $sp,6*$SZREG,$ra | ||
876 | .mask 0x8000f008,-$SZREG | ||
877 | .set noreorder | ||
878 | $PTR_SUB $sp,6*$SZREG | ||
879 | $REG_S $ra,5*$SZREG($sp) | ||
880 | $REG_S $t3,4*$SZREG($sp) | ||
881 | $REG_S $t2,3*$SZREG($sp) | ||
882 | $REG_S $t1,2*$SZREG($sp) | ||
883 | $REG_S $t0,1*$SZREG($sp) | ||
884 | $REG_S $gp,0*$SZREG($sp) | ||
885 | ___ | ||
886 | $code.=<<___; | ||
887 | move $v1,$zero | ||
888 | bltz $a2,.L_bn_div_words_body | ||
889 | move $t9,$v1 | ||
890 | $SLL $a2,1 | ||
891 | bgtz $a2,.-4 | ||
892 | addu $t9,1 | ||
893 | |||
894 | .set reorder | ||
895 | negu $t1,$t9 | ||
896 | li $t2,-1 | ||
897 | $SLL $t2,$t1 | ||
898 | and $t2,$a0 | ||
899 | $SRL $at,$a1,$t1 | ||
900 | .set noreorder | ||
901 | beqz $t2,.+12 | ||
902 | nop | ||
903 | break 6 # signal overflow | ||
904 | .set reorder | ||
905 | $SLL $a0,$t9 | ||
906 | $SLL $a1,$t9 | ||
907 | or $a0,$at | ||
908 | ___ | ||
909 | $QT=$ta0; | ||
910 | $HH=$ta1; | ||
911 | $DH=$v1; | ||
912 | $code.=<<___; | ||
913 | .L_bn_div_words_body: | ||
914 | $SRL $DH,$a2,4*$BNSZ # bits | ||
915 | sgeu $at,$a0,$a2 | ||
916 | .set noreorder | ||
917 | beqz $at,.+12 | ||
918 | nop | ||
919 | $SUBU $a0,$a2 | ||
920 | .set reorder | ||
921 | |||
922 | li $QT,-1 | ||
923 | $SRL $HH,$a0,4*$BNSZ # bits | ||
924 | $SRL $QT,4*$BNSZ # q=0xffffffff | ||
925 | beq $DH,$HH,.L_bn_div_words_skip_div1 | ||
926 | $DIVU $zero,$a0,$DH | ||
927 | mflo $QT | ||
928 | .L_bn_div_words_skip_div1: | ||
929 | $MULTU $a2,$QT | ||
930 | $SLL $t3,$a0,4*$BNSZ # bits | ||
931 | $SRL $at,$a1,4*$BNSZ # bits | ||
932 | or $t3,$at | ||
933 | mflo $t0 | ||
934 | mfhi $t1 | ||
935 | .L_bn_div_words_inner_loop1: | ||
936 | sltu $t2,$t3,$t0 | ||
937 | seq $t8,$HH,$t1 | ||
938 | sltu $at,$HH,$t1 | ||
939 | and $t2,$t8 | ||
940 | sltu $v0,$t0,$a2 | ||
941 | or $at,$t2 | ||
942 | .set noreorder | ||
943 | beqz $at,.L_bn_div_words_inner_loop1_done | ||
944 | $SUBU $t1,$v0 | ||
945 | $SUBU $t0,$a2 | ||
946 | b .L_bn_div_words_inner_loop1 | ||
947 | $SUBU $QT,1 | ||
948 | .set reorder | ||
949 | .L_bn_div_words_inner_loop1_done: | ||
950 | |||
951 | $SLL $a1,4*$BNSZ # bits | ||
952 | $SUBU $a0,$t3,$t0 | ||
953 | $SLL $v0,$QT,4*$BNSZ # bits | ||
954 | |||
955 | li $QT,-1 | ||
956 | $SRL $HH,$a0,4*$BNSZ # bits | ||
957 | $SRL $QT,4*$BNSZ # q=0xffffffff | ||
958 | beq $DH,$HH,.L_bn_div_words_skip_div2 | ||
959 | $DIVU $zero,$a0,$DH | ||
960 | mflo $QT | ||
961 | .L_bn_div_words_skip_div2: | ||
962 | $MULTU $a2,$QT | ||
963 | $SLL $t3,$a0,4*$BNSZ # bits | ||
964 | $SRL $at,$a1,4*$BNSZ # bits | ||
965 | or $t3,$at | ||
966 | mflo $t0 | ||
967 | mfhi $t1 | ||
968 | .L_bn_div_words_inner_loop2: | ||
969 | sltu $t2,$t3,$t0 | ||
970 | seq $t8,$HH,$t1 | ||
971 | sltu $at,$HH,$t1 | ||
972 | and $t2,$t8 | ||
973 | sltu $v1,$t0,$a2 | ||
974 | or $at,$t2 | ||
975 | .set noreorder | ||
976 | beqz $at,.L_bn_div_words_inner_loop2_done | ||
977 | $SUBU $t1,$v1 | ||
978 | $SUBU $t0,$a2 | ||
979 | b .L_bn_div_words_inner_loop2 | ||
980 | $SUBU $QT,1 | ||
981 | .set reorder | ||
982 | .L_bn_div_words_inner_loop2_done: | ||
983 | |||
984 | $SUBU $a0,$t3,$t0 | ||
985 | or $v0,$QT | ||
986 | $SRL $v1,$a0,$t9 # $v1 contains remainder if anybody wants it | ||
987 | $SRL $a2,$t9 # restore $a2 | ||
988 | |||
989 | .set noreorder | ||
990 | move $a1,$v1 | ||
991 | ___ | ||
992 | $code.=<<___ if ($flavour =~ /nubi/i); | ||
993 | $REG_L $t3,4*$SZREG($sp) | ||
994 | $REG_L $t2,3*$SZREG($sp) | ||
995 | $REG_L $t1,2*$SZREG($sp) | ||
996 | $REG_L $t0,1*$SZREG($sp) | ||
997 | $REG_L $gp,0*$SZREG($sp) | ||
998 | $PTR_ADD $sp,6*$SZREG | ||
999 | ___ | ||
1000 | $code.=<<___; | ||
1001 | jr $ra | ||
1002 | move $a0,$v0 | ||
1003 | .end bn_div_words_internal | ||
1004 | ___ | ||
1005 | undef $HH; undef $QT; undef $DH; | ||
1006 | |||
1007 | ($a_0,$a_1,$a_2,$a_3)=($t0,$t1,$t2,$t3); | ||
1008 | ($b_0,$b_1,$b_2,$b_3)=($ta0,$ta1,$ta2,$ta3); | ||
1009 | |||
1010 | ($a_4,$a_5,$a_6,$a_7)=($s0,$s2,$s4,$a1); # once we load a[7], no use for $a1 | ||
1011 | ($b_4,$b_5,$b_6,$b_7)=($s1,$s3,$s5,$a2); # once we load b[7], no use for $a2 | ||
1012 | |||
1013 | ($t_1,$t_2,$c_1,$c_2,$c_3)=($t8,$t9,$v0,$v1,$a3); | ||
1014 | |||
1015 | $code.=<<___; | ||
1016 | |||
1017 | .align 5 | ||
1018 | .globl bn_mul_comba8 | ||
1019 | .ent bn_mul_comba8 | ||
1020 | bn_mul_comba8: | ||
1021 | .set noreorder | ||
1022 | ___ | ||
1023 | $code.=<<___ if ($flavour =~ /nubi/i); | ||
1024 | .frame $sp,12*$SZREG,$ra | ||
1025 | .mask 0x803ff008,-$SZREG | ||
1026 | $PTR_SUB $sp,12*$SZREG | ||
1027 | $REG_S $ra,11*$SZREG($sp) | ||
1028 | $REG_S $s5,10*$SZREG($sp) | ||
1029 | $REG_S $s4,9*$SZREG($sp) | ||
1030 | $REG_S $s3,8*$SZREG($sp) | ||
1031 | $REG_S $s2,7*$SZREG($sp) | ||
1032 | $REG_S $s1,6*$SZREG($sp) | ||
1033 | $REG_S $s0,5*$SZREG($sp) | ||
1034 | $REG_S $t3,4*$SZREG($sp) | ||
1035 | $REG_S $t2,3*$SZREG($sp) | ||
1036 | $REG_S $t1,2*$SZREG($sp) | ||
1037 | $REG_S $t0,1*$SZREG($sp) | ||
1038 | $REG_S $gp,0*$SZREG($sp) | ||
1039 | ___ | ||
1040 | $code.=<<___ if ($flavour !~ /nubi/i); | ||
1041 | .frame $sp,6*$SZREG,$ra | ||
1042 | .mask 0x003f0000,-$SZREG | ||
1043 | $PTR_SUB $sp,6*$SZREG | ||
1044 | $REG_S $s5,5*$SZREG($sp) | ||
1045 | $REG_S $s4,4*$SZREG($sp) | ||
1046 | $REG_S $s3,3*$SZREG($sp) | ||
1047 | $REG_S $s2,2*$SZREG($sp) | ||
1048 | $REG_S $s1,1*$SZREG($sp) | ||
1049 | $REG_S $s0,0*$SZREG($sp) | ||
1050 | ___ | ||
1051 | $code.=<<___; | ||
1052 | |||
1053 | .set reorder | ||
1054 | $LD $a_0,0($a1) # If compiled with -mips3 option on | ||
1055 | # R5000 box assembler barks on this | ||
1056 | # 1ine with "should not have mult/div | ||
1057 | # as last instruction in bb (R10K | ||
1058 | # bug)" warning. If anybody out there | ||
1059 | # has a clue about how to circumvent | ||
1060 | # this do send me a note. | ||
1061 | # <appro\@fy.chalmers.se> | ||
1062 | |||
1063 | $LD $b_0,0($a2) | ||
1064 | $LD $a_1,$BNSZ($a1) | ||
1065 | $LD $a_2,2*$BNSZ($a1) | ||
1066 | $MULTU $a_0,$b_0 # mul_add_c(a[0],b[0],c1,c2,c3); | ||
1067 | $LD $a_3,3*$BNSZ($a1) | ||
1068 | $LD $b_1,$BNSZ($a2) | ||
1069 | $LD $b_2,2*$BNSZ($a2) | ||
1070 | $LD $b_3,3*$BNSZ($a2) | ||
1071 | mflo $c_1 | ||
1072 | mfhi $c_2 | ||
1073 | |||
1074 | $LD $a_4,4*$BNSZ($a1) | ||
1075 | $LD $a_5,5*$BNSZ($a1) | ||
1076 | $MULTU $a_0,$b_1 # mul_add_c(a[0],b[1],c2,c3,c1); | ||
1077 | $LD $a_6,6*$BNSZ($a1) | ||
1078 | $LD $a_7,7*$BNSZ($a1) | ||
1079 | $LD $b_4,4*$BNSZ($a2) | ||
1080 | $LD $b_5,5*$BNSZ($a2) | ||
1081 | mflo $t_1 | ||
1082 | mfhi $t_2 | ||
1083 | $ADDU $c_2,$t_1 | ||
1084 | sltu $at,$c_2,$t_1 | ||
1085 | $MULTU $a_1,$b_0 # mul_add_c(a[1],b[0],c2,c3,c1); | ||
1086 | $ADDU $c_3,$t_2,$at | ||
1087 | $LD $b_6,6*$BNSZ($a2) | ||
1088 | $LD $b_7,7*$BNSZ($a2) | ||
1089 | $ST $c_1,0($a0) # r[0]=c1; | ||
1090 | mflo $t_1 | ||
1091 | mfhi $t_2 | ||
1092 | $ADDU $c_2,$t_1 | ||
1093 | sltu $at,$c_2,$t_1 | ||
1094 | $MULTU $a_2,$b_0 # mul_add_c(a[2],b[0],c3,c1,c2); | ||
1095 | $ADDU $t_2,$at | ||
1096 | $ADDU $c_3,$t_2 | ||
1097 | sltu $c_1,$c_3,$t_2 | ||
1098 | $ST $c_2,$BNSZ($a0) # r[1]=c2; | ||
1099 | |||
1100 | mflo $t_1 | ||
1101 | mfhi $t_2 | ||
1102 | $ADDU $c_3,$t_1 | ||
1103 | sltu $at,$c_3,$t_1 | ||
1104 | $MULTU $a_1,$b_1 # mul_add_c(a[1],b[1],c3,c1,c2); | ||
1105 | $ADDU $t_2,$at | ||
1106 | $ADDU $c_1,$t_2 | ||
1107 | mflo $t_1 | ||
1108 | mfhi $t_2 | ||
1109 | $ADDU $c_3,$t_1 | ||
1110 | sltu $at,$c_3,$t_1 | ||
1111 | $MULTU $a_0,$b_2 # mul_add_c(a[0],b[2],c3,c1,c2); | ||
1112 | $ADDU $t_2,$at | ||
1113 | $ADDU $c_1,$t_2 | ||
1114 | sltu $c_2,$c_1,$t_2 | ||
1115 | mflo $t_1 | ||
1116 | mfhi $t_2 | ||
1117 | $ADDU $c_3,$t_1 | ||
1118 | sltu $at,$c_3,$t_1 | ||
1119 | $MULTU $a_0,$b_3 # mul_add_c(a[0],b[3],c1,c2,c3); | ||
1120 | $ADDU $t_2,$at | ||
1121 | $ADDU $c_1,$t_2 | ||
1122 | sltu $at,$c_1,$t_2 | ||
1123 | $ADDU $c_2,$at | ||
1124 | $ST $c_3,2*$BNSZ($a0) # r[2]=c3; | ||
1125 | |||
1126 | mflo $t_1 | ||
1127 | mfhi $t_2 | ||
1128 | $ADDU $c_1,$t_1 | ||
1129 | sltu $at,$c_1,$t_1 | ||
1130 | $MULTU $a_1,$b_2 # mul_add_c(a[1],b[2],c1,c2,c3); | ||
1131 | $ADDU $t_2,$at | ||
1132 | $ADDU $c_2,$t_2 | ||
1133 | sltu $c_3,$c_2,$t_2 | ||
1134 | mflo $t_1 | ||
1135 | mfhi $t_2 | ||
1136 | $ADDU $c_1,$t_1 | ||
1137 | sltu $at,$c_1,$t_1 | ||
1138 | $MULTU $a_2,$b_1 # mul_add_c(a[2],b[1],c1,c2,c3); | ||
1139 | $ADDU $t_2,$at | ||
1140 | $ADDU $c_2,$t_2 | ||
1141 | sltu $at,$c_2,$t_2 | ||
1142 | $ADDU $c_3,$at | ||
1143 | mflo $t_1 | ||
1144 | mfhi $t_2 | ||
1145 | $ADDU $c_1,$t_1 | ||
1146 | sltu $at,$c_1,$t_1 | ||
1147 | $MULTU $a_3,$b_0 # mul_add_c(a[3],b[0],c1,c2,c3); | ||
1148 | $ADDU $t_2,$at | ||
1149 | $ADDU $c_2,$t_2 | ||
1150 | sltu $at,$c_2,$t_2 | ||
1151 | $ADDU $c_3,$at | ||
1152 | mflo $t_1 | ||
1153 | mfhi $t_2 | ||
1154 | $ADDU $c_1,$t_1 | ||
1155 | sltu $at,$c_1,$t_1 | ||
1156 | $MULTU $a_4,$b_0 # mul_add_c(a[4],b[0],c2,c3,c1); | ||
1157 | $ADDU $t_2,$at | ||
1158 | $ADDU $c_2,$t_2 | ||
1159 | sltu $at,$c_2,$t_2 | ||
1160 | $ADDU $c_3,$at | ||
1161 | $ST $c_1,3*$BNSZ($a0) # r[3]=c1; | ||
1162 | |||
1163 | mflo $t_1 | ||
1164 | mfhi $t_2 | ||
1165 | $ADDU $c_2,$t_1 | ||
1166 | sltu $at,$c_2,$t_1 | ||
1167 | $MULTU $a_3,$b_1 # mul_add_c(a[3],b[1],c2,c3,c1); | ||
1168 | $ADDU $t_2,$at | ||
1169 | $ADDU $c_3,$t_2 | ||
1170 | sltu $c_1,$c_3,$t_2 | ||
1171 | mflo $t_1 | ||
1172 | mfhi $t_2 | ||
1173 | $ADDU $c_2,$t_1 | ||
1174 | sltu $at,$c_2,$t_1 | ||
1175 | $MULTU $a_2,$b_2 # mul_add_c(a[2],b[2],c2,c3,c1); | ||
1176 | $ADDU $t_2,$at | ||
1177 | $ADDU $c_3,$t_2 | ||
1178 | sltu $at,$c_3,$t_2 | ||
1179 | $ADDU $c_1,$at | ||
1180 | mflo $t_1 | ||
1181 | mfhi $t_2 | ||
1182 | $ADDU $c_2,$t_1 | ||
1183 | sltu $at,$c_2,$t_1 | ||
1184 | $MULTU $a_1,$b_3 # mul_add_c(a[1],b[3],c2,c3,c1); | ||
1185 | $ADDU $t_2,$at | ||
1186 | $ADDU $c_3,$t_2 | ||
1187 | sltu $at,$c_3,$t_2 | ||
1188 | $ADDU $c_1,$at | ||
1189 | mflo $t_1 | ||
1190 | mfhi $t_2 | ||
1191 | $ADDU $c_2,$t_1 | ||
1192 | sltu $at,$c_2,$t_1 | ||
1193 | $MULTU $a_0,$b_4 # mul_add_c(a[0],b[4],c2,c3,c1); | ||
1194 | $ADDU $t_2,$at | ||
1195 | $ADDU $c_3,$t_2 | ||
1196 | sltu $at,$c_3,$t_2 | ||
1197 | $ADDU $c_1,$at | ||
1198 | mflo $t_1 | ||
1199 | mfhi $t_2 | ||
1200 | $ADDU $c_2,$t_1 | ||
1201 | sltu $at,$c_2,$t_1 | ||
1202 | $MULTU $a_0,$b_5 # mul_add_c(a[0],b[5],c3,c1,c2); | ||
1203 | $ADDU $t_2,$at | ||
1204 | $ADDU $c_3,$t_2 | ||
1205 | sltu $at,$c_3,$t_2 | ||
1206 | $ADDU $c_1,$at | ||
1207 | $ST $c_2,4*$BNSZ($a0) # r[4]=c2; | ||
1208 | |||
1209 | mflo $t_1 | ||
1210 | mfhi $t_2 | ||
1211 | $ADDU $c_3,$t_1 | ||
1212 | sltu $at,$c_3,$t_1 | ||
1213 | $MULTU $a_1,$b_4 # mul_add_c(a[1],b[4],c3,c1,c2); | ||
1214 | $ADDU $t_2,$at | ||
1215 | $ADDU $c_1,$t_2 | ||
1216 | sltu $c_2,$c_1,$t_2 | ||
1217 | mflo $t_1 | ||
1218 | mfhi $t_2 | ||
1219 | $ADDU $c_3,$t_1 | ||
1220 | sltu $at,$c_3,$t_1 | ||
1221 | $MULTU $a_2,$b_3 # mul_add_c(a[2],b[3],c3,c1,c2); | ||
1222 | $ADDU $t_2,$at | ||
1223 | $ADDU $c_1,$t_2 | ||
1224 | sltu $at,$c_1,$t_2 | ||
1225 | $ADDU $c_2,$at | ||
1226 | mflo $t_1 | ||
1227 | mfhi $t_2 | ||
1228 | $ADDU $c_3,$t_1 | ||
1229 | sltu $at,$c_3,$t_1 | ||
1230 | $MULTU $a_3,$b_2 # mul_add_c(a[3],b[2],c3,c1,c2); | ||
1231 | $ADDU $t_2,$at | ||
1232 | $ADDU $c_1,$t_2 | ||
1233 | sltu $at,$c_1,$t_2 | ||
1234 | $ADDU $c_2,$at | ||
1235 | mflo $t_1 | ||
1236 | mfhi $t_2 | ||
1237 | $ADDU $c_3,$t_1 | ||
1238 | sltu $at,$c_3,$t_1 | ||
1239 | $MULTU $a_4,$b_1 # mul_add_c(a[4],b[1],c3,c1,c2); | ||
1240 | $ADDU $t_2,$at | ||
1241 | $ADDU $c_1,$t_2 | ||
1242 | sltu $at,$c_1,$t_2 | ||
1243 | $ADDU $c_2,$at | ||
1244 | mflo $t_1 | ||
1245 | mfhi $t_2 | ||
1246 | $ADDU $c_3,$t_1 | ||
1247 | sltu $at,$c_3,$t_1 | ||
1248 | $MULTU $a_5,$b_0 # mul_add_c(a[5],b[0],c3,c1,c2); | ||
1249 | $ADDU $t_2,$at | ||
1250 | $ADDU $c_1,$t_2 | ||
1251 | sltu $at,$c_1,$t_2 | ||
1252 | $ADDU $c_2,$at | ||
1253 | mflo $t_1 | ||
1254 | mfhi $t_2 | ||
1255 | $ADDU $c_3,$t_1 | ||
1256 | sltu $at,$c_3,$t_1 | ||
1257 | $MULTU $a_6,$b_0 # mul_add_c(a[6],b[0],c1,c2,c3); | ||
1258 | $ADDU $t_2,$at | ||
1259 | $ADDU $c_1,$t_2 | ||
1260 | sltu $at,$c_1,$t_2 | ||
1261 | $ADDU $c_2,$at | ||
1262 | $ST $c_3,5*$BNSZ($a0) # r[5]=c3; | ||
1263 | |||
1264 | mflo $t_1 | ||
1265 | mfhi $t_2 | ||
1266 | $ADDU $c_1,$t_1 | ||
1267 | sltu $at,$c_1,$t_1 | ||
1268 | $MULTU $a_5,$b_1 # mul_add_c(a[5],b[1],c1,c2,c3); | ||
1269 | $ADDU $t_2,$at | ||
1270 | $ADDU $c_2,$t_2 | ||
1271 | sltu $c_3,$c_2,$t_2 | ||
1272 | mflo $t_1 | ||
1273 | mfhi $t_2 | ||
1274 | $ADDU $c_1,$t_1 | ||
1275 | sltu $at,$c_1,$t_1 | ||
1276 | $MULTU $a_4,$b_2 # mul_add_c(a[4],b[2],c1,c2,c3); | ||
1277 | $ADDU $t_2,$at | ||
1278 | $ADDU $c_2,$t_2 | ||
1279 | sltu $at,$c_2,$t_2 | ||
1280 | $ADDU $c_3,$at | ||
1281 | mflo $t_1 | ||
1282 | mfhi $t_2 | ||
1283 | $ADDU $c_1,$t_1 | ||
1284 | sltu $at,$c_1,$t_1 | ||
1285 | $MULTU $a_3,$b_3 # mul_add_c(a[3],b[3],c1,c2,c3); | ||
1286 | $ADDU $t_2,$at | ||
1287 | $ADDU $c_2,$t_2 | ||
1288 | sltu $at,$c_2,$t_2 | ||
1289 | $ADDU $c_3,$at | ||
1290 | mflo $t_1 | ||
1291 | mfhi $t_2 | ||
1292 | $ADDU $c_1,$t_1 | ||
1293 | sltu $at,$c_1,$t_1 | ||
1294 | $MULTU $a_2,$b_4 # mul_add_c(a[2],b[4],c1,c2,c3); | ||
1295 | $ADDU $t_2,$at | ||
1296 | $ADDU $c_2,$t_2 | ||
1297 | sltu $at,$c_2,$t_2 | ||
1298 | $ADDU $c_3,$at | ||
1299 | mflo $t_1 | ||
1300 | mfhi $t_2 | ||
1301 | $ADDU $c_1,$t_1 | ||
1302 | sltu $at,$c_1,$t_1 | ||
1303 | $MULTU $a_1,$b_5 # mul_add_c(a[1],b[5],c1,c2,c3); | ||
1304 | $ADDU $t_2,$at | ||
1305 | $ADDU $c_2,$t_2 | ||
1306 | sltu $at,$c_2,$t_2 | ||
1307 | $ADDU $c_3,$at | ||
1308 | mflo $t_1 | ||
1309 | mfhi $t_2 | ||
1310 | $ADDU $c_1,$t_1 | ||
1311 | sltu $at,$c_1,$t_1 | ||
1312 | $MULTU $a_0,$b_6 # mul_add_c(a[0],b[6],c1,c2,c3); | ||
1313 | $ADDU $t_2,$at | ||
1314 | $ADDU $c_2,$t_2 | ||
1315 | sltu $at,$c_2,$t_2 | ||
1316 | $ADDU $c_3,$at | ||
1317 | mflo $t_1 | ||
1318 | mfhi $t_2 | ||
1319 | $ADDU $c_1,$t_1 | ||
1320 | sltu $at,$c_1,$t_1 | ||
1321 | $MULTU $a_0,$b_7 # mul_add_c(a[0],b[7],c2,c3,c1); | ||
1322 | $ADDU $t_2,$at | ||
1323 | $ADDU $c_2,$t_2 | ||
1324 | sltu $at,$c_2,$t_2 | ||
1325 | $ADDU $c_3,$at | ||
1326 | $ST $c_1,6*$BNSZ($a0) # r[6]=c1; | ||
1327 | |||
1328 | mflo $t_1 | ||
1329 | mfhi $t_2 | ||
1330 | $ADDU $c_2,$t_1 | ||
1331 | sltu $at,$c_2,$t_1 | ||
1332 | $MULTU $a_1,$b_6 # mul_add_c(a[1],b[6],c2,c3,c1); | ||
1333 | $ADDU $t_2,$at | ||
1334 | $ADDU $c_3,$t_2 | ||
1335 | sltu $c_1,$c_3,$t_2 | ||
1336 | mflo $t_1 | ||
1337 | mfhi $t_2 | ||
1338 | $ADDU $c_2,$t_1 | ||
1339 | sltu $at,$c_2,$t_1 | ||
1340 | $MULTU $a_2,$b_5 # mul_add_c(a[2],b[5],c2,c3,c1); | ||
1341 | $ADDU $t_2,$at | ||
1342 | $ADDU $c_3,$t_2 | ||
1343 | sltu $at,$c_3,$t_2 | ||
1344 | $ADDU $c_1,$at | ||
1345 | mflo $t_1 | ||
1346 | mfhi $t_2 | ||
1347 | $ADDU $c_2,$t_1 | ||
1348 | sltu $at,$c_2,$t_1 | ||
1349 | $MULTU $a_3,$b_4 # mul_add_c(a[3],b[4],c2,c3,c1); | ||
1350 | $ADDU $t_2,$at | ||
1351 | $ADDU $c_3,$t_2 | ||
1352 | sltu $at,$c_3,$t_2 | ||
1353 | $ADDU $c_1,$at | ||
1354 | mflo $t_1 | ||
1355 | mfhi $t_2 | ||
1356 | $ADDU $c_2,$t_1 | ||
1357 | sltu $at,$c_2,$t_1 | ||
1358 | $MULTU $a_4,$b_3 # mul_add_c(a[4],b[3],c2,c3,c1); | ||
1359 | $ADDU $t_2,$at | ||
1360 | $ADDU $c_3,$t_2 | ||
1361 | sltu $at,$c_3,$t_2 | ||
1362 | $ADDU $c_1,$at | ||
1363 | mflo $t_1 | ||
1364 | mfhi $t_2 | ||
1365 | $ADDU $c_2,$t_1 | ||
1366 | sltu $at,$c_2,$t_1 | ||
1367 | $MULTU $a_5,$b_2 # mul_add_c(a[5],b[2],c2,c3,c1); | ||
1368 | $ADDU $t_2,$at | ||
1369 | $ADDU $c_3,$t_2 | ||
1370 | sltu $at,$c_3,$t_2 | ||
1371 | $ADDU $c_1,$at | ||
1372 | mflo $t_1 | ||
1373 | mfhi $t_2 | ||
1374 | $ADDU $c_2,$t_1 | ||
1375 | sltu $at,$c_2,$t_1 | ||
1376 | $MULTU $a_6,$b_1 # mul_add_c(a[6],b[1],c2,c3,c1); | ||
1377 | $ADDU $t_2,$at | ||
1378 | $ADDU $c_3,$t_2 | ||
1379 | sltu $at,$c_3,$t_2 | ||
1380 | $ADDU $c_1,$at | ||
1381 | mflo $t_1 | ||
1382 | mfhi $t_2 | ||
1383 | $ADDU $c_2,$t_1 | ||
1384 | sltu $at,$c_2,$t_1 | ||
1385 | $MULTU $a_7,$b_0 # mul_add_c(a[7],b[0],c2,c3,c1); | ||
1386 | $ADDU $t_2,$at | ||
1387 | $ADDU $c_3,$t_2 | ||
1388 | sltu $at,$c_3,$t_2 | ||
1389 | $ADDU $c_1,$at | ||
1390 | mflo $t_1 | ||
1391 | mfhi $t_2 | ||
1392 | $ADDU $c_2,$t_1 | ||
1393 | sltu $at,$c_2,$t_1 | ||
1394 | $MULTU $a_7,$b_1 # mul_add_c(a[7],b[1],c3,c1,c2); | ||
1395 | $ADDU $t_2,$at | ||
1396 | $ADDU $c_3,$t_2 | ||
1397 | sltu $at,$c_3,$t_2 | ||
1398 | $ADDU $c_1,$at | ||
1399 | $ST $c_2,7*$BNSZ($a0) # r[7]=c2; | ||
1400 | |||
1401 | mflo $t_1 | ||
1402 | mfhi $t_2 | ||
1403 | $ADDU $c_3,$t_1 | ||
1404 | sltu $at,$c_3,$t_1 | ||
1405 | $MULTU $a_6,$b_2 # mul_add_c(a[6],b[2],c3,c1,c2); | ||
1406 | $ADDU $t_2,$at | ||
1407 | $ADDU $c_1,$t_2 | ||
1408 | sltu $c_2,$c_1,$t_2 | ||
1409 | mflo $t_1 | ||
1410 | mfhi $t_2 | ||
1411 | $ADDU $c_3,$t_1 | ||
1412 | sltu $at,$c_3,$t_1 | ||
1413 | $MULTU $a_5,$b_3 # mul_add_c(a[5],b[3],c3,c1,c2); | ||
1414 | $ADDU $t_2,$at | ||
1415 | $ADDU $c_1,$t_2 | ||
1416 | sltu $at,$c_1,$t_2 | ||
1417 | $ADDU $c_2,$at | ||
1418 | mflo $t_1 | ||
1419 | mfhi $t_2 | ||
1420 | $ADDU $c_3,$t_1 | ||
1421 | sltu $at,$c_3,$t_1 | ||
1422 | $MULTU $a_4,$b_4 # mul_add_c(a[4],b[4],c3,c1,c2); | ||
1423 | $ADDU $t_2,$at | ||
1424 | $ADDU $c_1,$t_2 | ||
1425 | sltu $at,$c_1,$t_2 | ||
1426 | $ADDU $c_2,$at | ||
1427 | mflo $t_1 | ||
1428 | mfhi $t_2 | ||
1429 | $ADDU $c_3,$t_1 | ||
1430 | sltu $at,$c_3,$t_1 | ||
1431 | $MULTU $a_3,$b_5 # mul_add_c(a[3],b[5],c3,c1,c2); | ||
1432 | $ADDU $t_2,$at | ||
1433 | $ADDU $c_1,$t_2 | ||
1434 | sltu $at,$c_1,$t_2 | ||
1435 | $ADDU $c_2,$at | ||
1436 | mflo $t_1 | ||
1437 | mfhi $t_2 | ||
1438 | $ADDU $c_3,$t_1 | ||
1439 | sltu $at,$c_3,$t_1 | ||
1440 | $MULTU $a_2,$b_6 # mul_add_c(a[2],b[6],c3,c1,c2); | ||
1441 | $ADDU $t_2,$at | ||
1442 | $ADDU $c_1,$t_2 | ||
1443 | sltu $at,$c_1,$t_2 | ||
1444 | $ADDU $c_2,$at | ||
1445 | mflo $t_1 | ||
1446 | mfhi $t_2 | ||
1447 | $ADDU $c_3,$t_1 | ||
1448 | sltu $at,$c_3,$t_1 | ||
1449 | $MULTU $a_1,$b_7 # mul_add_c(a[1],b[7],c3,c1,c2); | ||
1450 | $ADDU $t_2,$at | ||
1451 | $ADDU $c_1,$t_2 | ||
1452 | sltu $at,$c_1,$t_2 | ||
1453 | $ADDU $c_2,$at | ||
1454 | mflo $t_1 | ||
1455 | mfhi $t_2 | ||
1456 | $ADDU $c_3,$t_1 | ||
1457 | sltu $at,$c_3,$t_1 | ||
1458 | $MULTU $a_2,$b_7 # mul_add_c(a[2],b[7],c1,c2,c3); | ||
1459 | $ADDU $t_2,$at | ||
1460 | $ADDU $c_1,$t_2 | ||
1461 | sltu $at,$c_1,$t_2 | ||
1462 | $ADDU $c_2,$at | ||
1463 | $ST $c_3,8*$BNSZ($a0) # r[8]=c3; | ||
1464 | |||
1465 | mflo $t_1 | ||
1466 | mfhi $t_2 | ||
1467 | $ADDU $c_1,$t_1 | ||
1468 | sltu $at,$c_1,$t_1 | ||
1469 | $MULTU $a_3,$b_6 # mul_add_c(a[3],b[6],c1,c2,c3); | ||
1470 | $ADDU $t_2,$at | ||
1471 | $ADDU $c_2,$t_2 | ||
1472 | sltu $c_3,$c_2,$t_2 | ||
1473 | mflo $t_1 | ||
1474 | mfhi $t_2 | ||
1475 | $ADDU $c_1,$t_1 | ||
1476 | sltu $at,$c_1,$t_1 | ||
1477 | $MULTU $a_4,$b_5 # mul_add_c(a[4],b[5],c1,c2,c3); | ||
1478 | $ADDU $t_2,$at | ||
1479 | $ADDU $c_2,$t_2 | ||
1480 | sltu $at,$c_2,$t_2 | ||
1481 | $ADDU $c_3,$at | ||
1482 | mflo $t_1 | ||
1483 | mfhi $t_2 | ||
1484 | $ADDU $c_1,$t_1 | ||
1485 | sltu $at,$c_1,$t_1 | ||
1486 | $MULTU $a_5,$b_4 # mul_add_c(a[5],b[4],c1,c2,c3); | ||
1487 | $ADDU $t_2,$at | ||
1488 | $ADDU $c_2,$t_2 | ||
1489 | sltu $at,$c_2,$t_2 | ||
1490 | $ADDU $c_3,$at | ||
1491 | mflo $t_1 | ||
1492 | mfhi $t_2 | ||
1493 | $ADDU $c_1,$t_1 | ||
1494 | sltu $at,$c_1,$t_1 | ||
1495 | $MULTU $a_6,$b_3 # mul_add_c(a[6],b[3],c1,c2,c3); | ||
1496 | $ADDU $t_2,$at | ||
1497 | $ADDU $c_2,$t_2 | ||
1498 | sltu $at,$c_2,$t_2 | ||
1499 | $ADDU $c_3,$at | ||
1500 | mflo $t_1 | ||
1501 | mfhi $t_2 | ||
1502 | $ADDU $c_1,$t_1 | ||
1503 | sltu $at,$c_1,$t_1 | ||
1504 | $MULTU $a_7,$b_2 # mul_add_c(a[7],b[2],c1,c2,c3); | ||
1505 | $ADDU $t_2,$at | ||
1506 | $ADDU $c_2,$t_2 | ||
1507 | sltu $at,$c_2,$t_2 | ||
1508 | $ADDU $c_3,$at | ||
1509 | mflo $t_1 | ||
1510 | mfhi $t_2 | ||
1511 | $ADDU $c_1,$t_1 | ||
1512 | sltu $at,$c_1,$t_1 | ||
1513 | $MULTU $a_7,$b_3 # mul_add_c(a[7],b[3],c2,c3,c1); | ||
1514 | $ADDU $t_2,$at | ||
1515 | $ADDU $c_2,$t_2 | ||
1516 | sltu $at,$c_2,$t_2 | ||
1517 | $ADDU $c_3,$at | ||
1518 | $ST $c_1,9*$BNSZ($a0) # r[9]=c1; | ||
1519 | |||
1520 | mflo $t_1 | ||
1521 | mfhi $t_2 | ||
1522 | $ADDU $c_2,$t_1 | ||
1523 | sltu $at,$c_2,$t_1 | ||
1524 | $MULTU $a_6,$b_4 # mul_add_c(a[6],b[4],c2,c3,c1); | ||
1525 | $ADDU $t_2,$at | ||
1526 | $ADDU $c_3,$t_2 | ||
1527 | sltu $c_1,$c_3,$t_2 | ||
1528 | mflo $t_1 | ||
1529 | mfhi $t_2 | ||
1530 | $ADDU $c_2,$t_1 | ||
1531 | sltu $at,$c_2,$t_1 | ||
1532 | $MULTU $a_5,$b_5 # mul_add_c(a[5],b[5],c2,c3,c1); | ||
1533 | $ADDU $t_2,$at | ||
1534 | $ADDU $c_3,$t_2 | ||
1535 | sltu $at,$c_3,$t_2 | ||
1536 | $ADDU $c_1,$at | ||
1537 | mflo $t_1 | ||
1538 | mfhi $t_2 | ||
1539 | $ADDU $c_2,$t_1 | ||
1540 | sltu $at,$c_2,$t_1 | ||
1541 | $MULTU $a_4,$b_6 # mul_add_c(a[4],b[6],c2,c3,c1); | ||
1542 | $ADDU $t_2,$at | ||
1543 | $ADDU $c_3,$t_2 | ||
1544 | sltu $at,$c_3,$t_2 | ||
1545 | $ADDU $c_1,$at | ||
1546 | mflo $t_1 | ||
1547 | mfhi $t_2 | ||
1548 | $ADDU $c_2,$t_1 | ||
1549 | sltu $at,$c_2,$t_1 | ||
1550 | $MULTU $a_3,$b_7 # mul_add_c(a[3],b[7],c2,c3,c1); | ||
1551 | $ADDU $t_2,$at | ||
1552 | $ADDU $c_3,$t_2 | ||
1553 | sltu $at,$c_3,$t_2 | ||
1554 | $ADDU $c_1,$at | ||
1555 | mflo $t_1 | ||
1556 | mfhi $t_2 | ||
1557 | $ADDU $c_2,$t_1 | ||
1558 | sltu $at,$c_2,$t_1 | ||
1559 | $MULTU $a_4,$b_7 # mul_add_c(a[4],b[7],c3,c1,c2); | ||
1560 | $ADDU $t_2,$at | ||
1561 | $ADDU $c_3,$t_2 | ||
1562 | sltu $at,$c_3,$t_2 | ||
1563 | $ADDU $c_1,$at | ||
1564 | $ST $c_2,10*$BNSZ($a0) # r[10]=c2; | ||
1565 | |||
1566 | mflo $t_1 | ||
1567 | mfhi $t_2 | ||
1568 | $ADDU $c_3,$t_1 | ||
1569 | sltu $at,$c_3,$t_1 | ||
1570 | $MULTU $a_5,$b_6 # mul_add_c(a[5],b[6],c3,c1,c2); | ||
1571 | $ADDU $t_2,$at | ||
1572 | $ADDU $c_1,$t_2 | ||
1573 | sltu $c_2,$c_1,$t_2 | ||
1574 | mflo $t_1 | ||
1575 | mfhi $t_2 | ||
1576 | $ADDU $c_3,$t_1 | ||
1577 | sltu $at,$c_3,$t_1 | ||
1578 | $MULTU $a_6,$b_5 # mul_add_c(a[6],b[5],c3,c1,c2); | ||
1579 | $ADDU $t_2,$at | ||
1580 | $ADDU $c_1,$t_2 | ||
1581 | sltu $at,$c_1,$t_2 | ||
1582 | $ADDU $c_2,$at | ||
1583 | mflo $t_1 | ||
1584 | mfhi $t_2 | ||
1585 | $ADDU $c_3,$t_1 | ||
1586 | sltu $at,$c_3,$t_1 | ||
1587 | $MULTU $a_7,$b_4 # mul_add_c(a[7],b[4],c3,c1,c2); | ||
1588 | $ADDU $t_2,$at | ||
1589 | $ADDU $c_1,$t_2 | ||
1590 | sltu $at,$c_1,$t_2 | ||
1591 | $ADDU $c_2,$at | ||
1592 | mflo $t_1 | ||
1593 | mfhi $t_2 | ||
1594 | $ADDU $c_3,$t_1 | ||
1595 | sltu $at,$c_3,$t_1 | ||
1596 | $MULTU $a_7,$b_5 # mul_add_c(a[7],b[5],c1,c2,c3); | ||
1597 | $ADDU $t_2,$at | ||
1598 | $ADDU $c_1,$t_2 | ||
1599 | sltu $at,$c_1,$t_2 | ||
1600 | $ADDU $c_2,$at | ||
1601 | $ST $c_3,11*$BNSZ($a0) # r[11]=c3; | ||
1602 | |||
1603 | mflo $t_1 | ||
1604 | mfhi $t_2 | ||
1605 | $ADDU $c_1,$t_1 | ||
1606 | sltu $at,$c_1,$t_1 | ||
1607 | $MULTU $a_6,$b_6 # mul_add_c(a[6],b[6],c1,c2,c3); | ||
1608 | $ADDU $t_2,$at | ||
1609 | $ADDU $c_2,$t_2 | ||
1610 | sltu $c_3,$c_2,$t_2 | ||
1611 | mflo $t_1 | ||
1612 | mfhi $t_2 | ||
1613 | $ADDU $c_1,$t_1 | ||
1614 | sltu $at,$c_1,$t_1 | ||
1615 | $MULTU $a_5,$b_7 # mul_add_c(a[5],b[7],c1,c2,c3); | ||
1616 | $ADDU $t_2,$at | ||
1617 | $ADDU $c_2,$t_2 | ||
1618 | sltu $at,$c_2,$t_2 | ||
1619 | $ADDU $c_3,$at | ||
1620 | mflo $t_1 | ||
1621 | mfhi $t_2 | ||
1622 | $ADDU $c_1,$t_1 | ||
1623 | sltu $at,$c_1,$t_1 | ||
1624 | $MULTU $a_6,$b_7 # mul_add_c(a[6],b[7],c2,c3,c1); | ||
1625 | $ADDU $t_2,$at | ||
1626 | $ADDU $c_2,$t_2 | ||
1627 | sltu $at,$c_2,$t_2 | ||
1628 | $ADDU $c_3,$at | ||
1629 | $ST $c_1,12*$BNSZ($a0) # r[12]=c1; | ||
1630 | |||
1631 | mflo $t_1 | ||
1632 | mfhi $t_2 | ||
1633 | $ADDU $c_2,$t_1 | ||
1634 | sltu $at,$c_2,$t_1 | ||
1635 | $MULTU $a_7,$b_6 # mul_add_c(a[7],b[6],c2,c3,c1); | ||
1636 | $ADDU $t_2,$at | ||
1637 | $ADDU $c_3,$t_2 | ||
1638 | sltu $c_1,$c_3,$t_2 | ||
1639 | mflo $t_1 | ||
1640 | mfhi $t_2 | ||
1641 | $ADDU $c_2,$t_1 | ||
1642 | sltu $at,$c_2,$t_1 | ||
1643 | $MULTU $a_7,$b_7 # mul_add_c(a[7],b[7],c3,c1,c2); | ||
1644 | $ADDU $t_2,$at | ||
1645 | $ADDU $c_3,$t_2 | ||
1646 | sltu $at,$c_3,$t_2 | ||
1647 | $ADDU $c_1,$at | ||
1648 | $ST $c_2,13*$BNSZ($a0) # r[13]=c2; | ||
1649 | |||
1650 | mflo $t_1 | ||
1651 | mfhi $t_2 | ||
1652 | $ADDU $c_3,$t_1 | ||
1653 | sltu $at,$c_3,$t_1 | ||
1654 | $ADDU $t_2,$at | ||
1655 | $ADDU $c_1,$t_2 | ||
1656 | $ST $c_3,14*$BNSZ($a0) # r[14]=c3; | ||
1657 | $ST $c_1,15*$BNSZ($a0) # r[15]=c1; | ||
1658 | |||
1659 | .set noreorder | ||
1660 | ___ | ||
1661 | $code.=<<___ if ($flavour =~ /nubi/i); | ||
1662 | $REG_L $s5,10*$SZREG($sp) | ||
1663 | $REG_L $s4,9*$SZREG($sp) | ||
1664 | $REG_L $s3,8*$SZREG($sp) | ||
1665 | $REG_L $s2,7*$SZREG($sp) | ||
1666 | $REG_L $s1,6*$SZREG($sp) | ||
1667 | $REG_L $s0,5*$SZREG($sp) | ||
1668 | $REG_L $t3,4*$SZREG($sp) | ||
1669 | $REG_L $t2,3*$SZREG($sp) | ||
1670 | $REG_L $t1,2*$SZREG($sp) | ||
1671 | $REG_L $t0,1*$SZREG($sp) | ||
1672 | $REG_L $gp,0*$SZREG($sp) | ||
1673 | jr $ra | ||
1674 | $PTR_ADD $sp,12*$SZREG | ||
1675 | ___ | ||
1676 | $code.=<<___ if ($flavour !~ /nubi/i); | ||
1677 | $REG_L $s5,5*$SZREG($sp) | ||
1678 | $REG_L $s4,4*$SZREG($sp) | ||
1679 | $REG_L $s3,3*$SZREG($sp) | ||
1680 | $REG_L $s2,2*$SZREG($sp) | ||
1681 | $REG_L $s1,1*$SZREG($sp) | ||
1682 | $REG_L $s0,0*$SZREG($sp) | ||
1683 | jr $ra | ||
1684 | $PTR_ADD $sp,6*$SZREG | ||
1685 | ___ | ||
1686 | $code.=<<___; | ||
1687 | .end bn_mul_comba8 | ||
1688 | |||
1689 | .align 5 | ||
1690 | .globl bn_mul_comba4 | ||
1691 | .ent bn_mul_comba4 | ||
1692 | bn_mul_comba4: | ||
1693 | ___ | ||
1694 | $code.=<<___ if ($flavour =~ /nubi/i); | ||
1695 | .frame $sp,6*$SZREG,$ra | ||
1696 | .mask 0x8000f008,-$SZREG | ||
1697 | .set noreorder | ||
1698 | $PTR_SUB $sp,6*$SZREG | ||
1699 | $REG_S $ra,5*$SZREG($sp) | ||
1700 | $REG_S $t3,4*$SZREG($sp) | ||
1701 | $REG_S $t2,3*$SZREG($sp) | ||
1702 | $REG_S $t1,2*$SZREG($sp) | ||
1703 | $REG_S $t0,1*$SZREG($sp) | ||
1704 | $REG_S $gp,0*$SZREG($sp) | ||
1705 | ___ | ||
1706 | $code.=<<___; | ||
1707 | .set reorder | ||
1708 | $LD $a_0,0($a1) | ||
1709 | $LD $b_0,0($a2) | ||
1710 | $LD $a_1,$BNSZ($a1) | ||
1711 | $LD $a_2,2*$BNSZ($a1) | ||
1712 | $MULTU $a_0,$b_0 # mul_add_c(a[0],b[0],c1,c2,c3); | ||
1713 | $LD $a_3,3*$BNSZ($a1) | ||
1714 | $LD $b_1,$BNSZ($a2) | ||
1715 | $LD $b_2,2*$BNSZ($a2) | ||
1716 | $LD $b_3,3*$BNSZ($a2) | ||
1717 | mflo $c_1 | ||
1718 | mfhi $c_2 | ||
1719 | $ST $c_1,0($a0) | ||
1720 | |||
1721 | $MULTU $a_0,$b_1 # mul_add_c(a[0],b[1],c2,c3,c1); | ||
1722 | mflo $t_1 | ||
1723 | mfhi $t_2 | ||
1724 | $ADDU $c_2,$t_1 | ||
1725 | sltu $at,$c_2,$t_1 | ||
1726 | $MULTU $a_1,$b_0 # mul_add_c(a[1],b[0],c2,c3,c1); | ||
1727 | $ADDU $c_3,$t_2,$at | ||
1728 | mflo $t_1 | ||
1729 | mfhi $t_2 | ||
1730 | $ADDU $c_2,$t_1 | ||
1731 | sltu $at,$c_2,$t_1 | ||
1732 | $MULTU $a_2,$b_0 # mul_add_c(a[2],b[0],c3,c1,c2); | ||
1733 | $ADDU $t_2,$at | ||
1734 | $ADDU $c_3,$t_2 | ||
1735 | sltu $c_1,$c_3,$t_2 | ||
1736 | $ST $c_2,$BNSZ($a0) | ||
1737 | |||
1738 | mflo $t_1 | ||
1739 | mfhi $t_2 | ||
1740 | $ADDU $c_3,$t_1 | ||
1741 | sltu $at,$c_3,$t_1 | ||
1742 | $MULTU $a_1,$b_1 # mul_add_c(a[1],b[1],c3,c1,c2); | ||
1743 | $ADDU $t_2,$at | ||
1744 | $ADDU $c_1,$t_2 | ||
1745 | mflo $t_1 | ||
1746 | mfhi $t_2 | ||
1747 | $ADDU $c_3,$t_1 | ||
1748 | sltu $at,$c_3,$t_1 | ||
1749 | $MULTU $a_0,$b_2 # mul_add_c(a[0],b[2],c3,c1,c2); | ||
1750 | $ADDU $t_2,$at | ||
1751 | $ADDU $c_1,$t_2 | ||
1752 | sltu $c_2,$c_1,$t_2 | ||
1753 | mflo $t_1 | ||
1754 | mfhi $t_2 | ||
1755 | $ADDU $c_3,$t_1 | ||
1756 | sltu $at,$c_3,$t_1 | ||
1757 | $MULTU $a_0,$b_3 # mul_add_c(a[0],b[3],c1,c2,c3); | ||
1758 | $ADDU $t_2,$at | ||
1759 | $ADDU $c_1,$t_2 | ||
1760 | sltu $at,$c_1,$t_2 | ||
1761 | $ADDU $c_2,$at | ||
1762 | $ST $c_3,2*$BNSZ($a0) | ||
1763 | |||
1764 | mflo $t_1 | ||
1765 | mfhi $t_2 | ||
1766 | $ADDU $c_1,$t_1 | ||
1767 | sltu $at,$c_1,$t_1 | ||
1768 | $MULTU $a_1,$b_2 # mul_add_c(a[1],b[2],c1,c2,c3); | ||
1769 | $ADDU $t_2,$at | ||
1770 | $ADDU $c_2,$t_2 | ||
1771 | sltu $c_3,$c_2,$t_2 | ||
1772 | mflo $t_1 | ||
1773 | mfhi $t_2 | ||
1774 | $ADDU $c_1,$t_1 | ||
1775 | sltu $at,$c_1,$t_1 | ||
1776 | $MULTU $a_2,$b_1 # mul_add_c(a[2],b[1],c1,c2,c3); | ||
1777 | $ADDU $t_2,$at | ||
1778 | $ADDU $c_2,$t_2 | ||
1779 | sltu $at,$c_2,$t_2 | ||
1780 | $ADDU $c_3,$at | ||
1781 | mflo $t_1 | ||
1782 | mfhi $t_2 | ||
1783 | $ADDU $c_1,$t_1 | ||
1784 | sltu $at,$c_1,$t_1 | ||
1785 | $MULTU $a_3,$b_0 # mul_add_c(a[3],b[0],c1,c2,c3); | ||
1786 | $ADDU $t_2,$at | ||
1787 | $ADDU $c_2,$t_2 | ||
1788 | sltu $at,$c_2,$t_2 | ||
1789 | $ADDU $c_3,$at | ||
1790 | mflo $t_1 | ||
1791 | mfhi $t_2 | ||
1792 | $ADDU $c_1,$t_1 | ||
1793 | sltu $at,$c_1,$t_1 | ||
1794 | $MULTU $a_3,$b_1 # mul_add_c(a[3],b[1],c2,c3,c1); | ||
1795 | $ADDU $t_2,$at | ||
1796 | $ADDU $c_2,$t_2 | ||
1797 | sltu $at,$c_2,$t_2 | ||
1798 | $ADDU $c_3,$at | ||
1799 | $ST $c_1,3*$BNSZ($a0) | ||
1800 | |||
1801 | mflo $t_1 | ||
1802 | mfhi $t_2 | ||
1803 | $ADDU $c_2,$t_1 | ||
1804 | sltu $at,$c_2,$t_1 | ||
1805 | $MULTU $a_2,$b_2 # mul_add_c(a[2],b[2],c2,c3,c1); | ||
1806 | $ADDU $t_2,$at | ||
1807 | $ADDU $c_3,$t_2 | ||
1808 | sltu $c_1,$c_3,$t_2 | ||
1809 | mflo $t_1 | ||
1810 | mfhi $t_2 | ||
1811 | $ADDU $c_2,$t_1 | ||
1812 | sltu $at,$c_2,$t_1 | ||
1813 | $MULTU $a_1,$b_3 # mul_add_c(a[1],b[3],c2,c3,c1); | ||
1814 | $ADDU $t_2,$at | ||
1815 | $ADDU $c_3,$t_2 | ||
1816 | sltu $at,$c_3,$t_2 | ||
1817 | $ADDU $c_1,$at | ||
1818 | mflo $t_1 | ||
1819 | mfhi $t_2 | ||
1820 | $ADDU $c_2,$t_1 | ||
1821 | sltu $at,$c_2,$t_1 | ||
1822 | $MULTU $a_2,$b_3 # mul_add_c(a[2],b[3],c3,c1,c2); | ||
1823 | $ADDU $t_2,$at | ||
1824 | $ADDU $c_3,$t_2 | ||
1825 | sltu $at,$c_3,$t_2 | ||
1826 | $ADDU $c_1,$at | ||
1827 | $ST $c_2,4*$BNSZ($a0) | ||
1828 | |||
1829 | mflo $t_1 | ||
1830 | mfhi $t_2 | ||
1831 | $ADDU $c_3,$t_1 | ||
1832 | sltu $at,$c_3,$t_1 | ||
1833 | $MULTU $a_3,$b_2 # mul_add_c(a[3],b[2],c3,c1,c2); | ||
1834 | $ADDU $t_2,$at | ||
1835 | $ADDU $c_1,$t_2 | ||
1836 | sltu $c_2,$c_1,$t_2 | ||
1837 | mflo $t_1 | ||
1838 | mfhi $t_2 | ||
1839 | $ADDU $c_3,$t_1 | ||
1840 | sltu $at,$c_3,$t_1 | ||
1841 | $MULTU $a_3,$b_3 # mul_add_c(a[3],b[3],c1,c2,c3); | ||
1842 | $ADDU $t_2,$at | ||
1843 | $ADDU $c_1,$t_2 | ||
1844 | sltu $at,$c_1,$t_2 | ||
1845 | $ADDU $c_2,$at | ||
1846 | $ST $c_3,5*$BNSZ($a0) | ||
1847 | |||
1848 | mflo $t_1 | ||
1849 | mfhi $t_2 | ||
1850 | $ADDU $c_1,$t_1 | ||
1851 | sltu $at,$c_1,$t_1 | ||
1852 | $ADDU $t_2,$at | ||
1853 | $ADDU $c_2,$t_2 | ||
1854 | $ST $c_1,6*$BNSZ($a0) | ||
1855 | $ST $c_2,7*$BNSZ($a0) | ||
1856 | |||
1857 | .set noreorder | ||
1858 | ___ | ||
1859 | $code.=<<___ if ($flavour =~ /nubi/i); | ||
1860 | $REG_L $t3,4*$SZREG($sp) | ||
1861 | $REG_L $t2,3*$SZREG($sp) | ||
1862 | $REG_L $t1,2*$SZREG($sp) | ||
1863 | $REG_L $t0,1*$SZREG($sp) | ||
1864 | $REG_L $gp,0*$SZREG($sp) | ||
1865 | $PTR_ADD $sp,6*$SZREG | ||
1866 | ___ | ||
1867 | $code.=<<___; | ||
1868 | jr $ra | ||
1869 | nop | ||
1870 | .end bn_mul_comba4 | ||
1871 | ___ | ||
1872 | |||
1873 | ($a_4,$a_5,$a_6,$a_7)=($b_0,$b_1,$b_2,$b_3); | ||
1874 | |||
1875 | sub add_c2 () { | ||
1876 | my ($hi,$lo,$c0,$c1,$c2, | ||
1877 | $warm, # !$warm denotes first call with specific sequence of | ||
1878 | # $c_[XYZ] when there is no Z-carry to accumulate yet; | ||
1879 | $an,$bn # these two are arguments for multiplication which | ||
1880 | # result is used in *next* step [which is why it's | ||
1881 | # commented as "forward multiplication" below]; | ||
1882 | )=@_; | ||
1883 | $code.=<<___; | ||
1884 | mflo $lo | ||
1885 | mfhi $hi | ||
1886 | $ADDU $c0,$lo | ||
1887 | sltu $at,$c0,$lo | ||
1888 | $MULTU $an,$bn # forward multiplication | ||
1889 | $ADDU $c0,$lo | ||
1890 | $ADDU $at,$hi | ||
1891 | sltu $lo,$c0,$lo | ||
1892 | $ADDU $c1,$at | ||
1893 | $ADDU $hi,$lo | ||
1894 | ___ | ||
1895 | $code.=<<___ if (!$warm); | ||
1896 | sltu $c2,$c1,$at | ||
1897 | $ADDU $c1,$hi | ||
1898 | sltu $hi,$c1,$hi | ||
1899 | $ADDU $c2,$hi | ||
1900 | ___ | ||
1901 | $code.=<<___ if ($warm); | ||
1902 | sltu $at,$c1,$at | ||
1903 | $ADDU $c1,$hi | ||
1904 | $ADDU $c2,$at | ||
1905 | sltu $hi,$c1,$hi | ||
1906 | $ADDU $c2,$hi | ||
1907 | ___ | ||
1908 | } | ||
1909 | |||
1910 | $code.=<<___; | ||
1911 | |||
1912 | .align 5 | ||
1913 | .globl bn_sqr_comba8 | ||
1914 | .ent bn_sqr_comba8 | ||
1915 | bn_sqr_comba8: | ||
1916 | ___ | ||
1917 | $code.=<<___ if ($flavour =~ /nubi/i); | ||
1918 | .frame $sp,6*$SZREG,$ra | ||
1919 | .mask 0x8000f008,-$SZREG | ||
1920 | .set noreorder | ||
1921 | $PTR_SUB $sp,6*$SZREG | ||
1922 | $REG_S $ra,5*$SZREG($sp) | ||
1923 | $REG_S $t3,4*$SZREG($sp) | ||
1924 | $REG_S $t2,3*$SZREG($sp) | ||
1925 | $REG_S $t1,2*$SZREG($sp) | ||
1926 | $REG_S $t0,1*$SZREG($sp) | ||
1927 | $REG_S $gp,0*$SZREG($sp) | ||
1928 | ___ | ||
1929 | $code.=<<___; | ||
1930 | .set reorder | ||
1931 | $LD $a_0,0($a1) | ||
1932 | $LD $a_1,$BNSZ($a1) | ||
1933 | $LD $a_2,2*$BNSZ($a1) | ||
1934 | $LD $a_3,3*$BNSZ($a1) | ||
1935 | |||
1936 | $MULTU $a_0,$a_0 # mul_add_c(a[0],b[0],c1,c2,c3); | ||
1937 | $LD $a_4,4*$BNSZ($a1) | ||
1938 | $LD $a_5,5*$BNSZ($a1) | ||
1939 | $LD $a_6,6*$BNSZ($a1) | ||
1940 | $LD $a_7,7*$BNSZ($a1) | ||
1941 | mflo $c_1 | ||
1942 | mfhi $c_2 | ||
1943 | $ST $c_1,0($a0) | ||
1944 | |||
1945 | $MULTU $a_0,$a_1 # mul_add_c2(a[0],b[1],c2,c3,c1); | ||
1946 | mflo $t_1 | ||
1947 | mfhi $t_2 | ||
1948 | slt $c_1,$t_2,$zero | ||
1949 | $SLL $t_2,1 | ||
1950 | $MULTU $a_2,$a_0 # mul_add_c2(a[2],b[0],c3,c1,c2); | ||
1951 | slt $a2,$t_1,$zero | ||
1952 | $ADDU $t_2,$a2 | ||
1953 | $SLL $t_1,1 | ||
1954 | $ADDU $c_2,$t_1 | ||
1955 | sltu $at,$c_2,$t_1 | ||
1956 | $ADDU $c_3,$t_2,$at | ||
1957 | $ST $c_2,$BNSZ($a0) | ||
1958 | ___ | ||
1959 | &add_c2($t_2,$t_1,$c_3,$c_1,$c_2,0, | ||
1960 | $a_1,$a_1); # mul_add_c(a[1],b[1],c3,c1,c2); | ||
1961 | $code.=<<___; | ||
1962 | mflo $t_1 | ||
1963 | mfhi $t_2 | ||
1964 | $ADDU $c_3,$t_1 | ||
1965 | sltu $at,$c_3,$t_1 | ||
1966 | $MULTU $a_0,$a_3 # mul_add_c2(a[0],b[3],c1,c2,c3); | ||
1967 | $ADDU $t_2,$at | ||
1968 | $ADDU $c_1,$t_2 | ||
1969 | sltu $at,$c_1,$t_2 | ||
1970 | $ADDU $c_2,$at | ||
1971 | $ST $c_3,2*$BNSZ($a0) | ||
1972 | ___ | ||
1973 | &add_c2($t_2,$t_1,$c_1,$c_2,$c_3,0, | ||
1974 | $a_1,$a_2); # mul_add_c2(a[1],b[2],c1,c2,c3); | ||
1975 | &add_c2($t_2,$t_1,$c_1,$c_2,$c_3,1, | ||
1976 | $a_4,$a_0); # mul_add_c2(a[4],b[0],c2,c3,c1); | ||
1977 | $code.=<<___; | ||
1978 | $ST $c_1,3*$BNSZ($a0) | ||
1979 | ___ | ||
1980 | &add_c2($t_2,$t_1,$c_2,$c_3,$c_1,0, | ||
1981 | $a_3,$a_1); # mul_add_c2(a[3],b[1],c2,c3,c1); | ||
1982 | &add_c2($t_2,$t_1,$c_2,$c_3,$c_1,1, | ||
1983 | $a_2,$a_2); # mul_add_c(a[2],b[2],c2,c3,c1); | ||
1984 | $code.=<<___; | ||
1985 | mflo $t_1 | ||
1986 | mfhi $t_2 | ||
1987 | $ADDU $c_2,$t_1 | ||
1988 | sltu $at,$c_2,$t_1 | ||
1989 | $MULTU $a_0,$a_5 # mul_add_c2(a[0],b[5],c3,c1,c2); | ||
1990 | $ADDU $t_2,$at | ||
1991 | $ADDU $c_3,$t_2 | ||
1992 | sltu $at,$c_3,$t_2 | ||
1993 | $ADDU $c_1,$at | ||
1994 | $ST $c_2,4*$BNSZ($a0) | ||
1995 | ___ | ||
1996 | &add_c2($t_2,$t_1,$c_3,$c_1,$c_2,0, | ||
1997 | $a_1,$a_4); # mul_add_c2(a[1],b[4],c3,c1,c2); | ||
1998 | &add_c2($t_2,$t_1,$c_3,$c_1,$c_2,1, | ||
1999 | $a_2,$a_3); # mul_add_c2(a[2],b[3],c3,c1,c2); | ||
2000 | &add_c2($t_2,$t_1,$c_3,$c_1,$c_2,1, | ||
2001 | $a_6,$a_0); # mul_add_c2(a[6],b[0],c1,c2,c3); | ||
2002 | $code.=<<___; | ||
2003 | $ST $c_3,5*$BNSZ($a0) | ||
2004 | ___ | ||
2005 | &add_c2($t_2,$t_1,$c_1,$c_2,$c_3,0, | ||
2006 | $a_5,$a_1); # mul_add_c2(a[5],b[1],c1,c2,c3); | ||
2007 | &add_c2($t_2,$t_1,$c_1,$c_2,$c_3,1, | ||
2008 | $a_4,$a_2); # mul_add_c2(a[4],b[2],c1,c2,c3); | ||
2009 | &add_c2($t_2,$t_1,$c_1,$c_2,$c_3,1, | ||
2010 | $a_3,$a_3); # mul_add_c(a[3],b[3],c1,c2,c3); | ||
2011 | $code.=<<___; | ||
2012 | mflo $t_1 | ||
2013 | mfhi $t_2 | ||
2014 | $ADDU $c_1,$t_1 | ||
2015 | sltu $at,$c_1,$t_1 | ||
2016 | $MULTU $a_0,$a_7 # mul_add_c2(a[0],b[7],c2,c3,c1); | ||
2017 | $ADDU $t_2,$at | ||
2018 | $ADDU $c_2,$t_2 | ||
2019 | sltu $at,$c_2,$t_2 | ||
2020 | $ADDU $c_3,$at | ||
2021 | $ST $c_1,6*$BNSZ($a0) | ||
2022 | ___ | ||
2023 | &add_c2($t_2,$t_1,$c_2,$c_3,$c_1,0, | ||
2024 | $a_1,$a_6); # mul_add_c2(a[1],b[6],c2,c3,c1); | ||
2025 | &add_c2($t_2,$t_1,$c_2,$c_3,$c_1,1, | ||
2026 | $a_2,$a_5); # mul_add_c2(a[2],b[5],c2,c3,c1); | ||
2027 | &add_c2($t_2,$t_1,$c_2,$c_3,$c_1,1, | ||
2028 | $a_3,$a_4); # mul_add_c2(a[3],b[4],c2,c3,c1); | ||
2029 | &add_c2($t_2,$t_1,$c_2,$c_3,$c_1,1, | ||
2030 | $a_7,$a_1); # mul_add_c2(a[7],b[1],c3,c1,c2); | ||
2031 | $code.=<<___; | ||
2032 | $ST $c_2,7*$BNSZ($a0) | ||
2033 | ___ | ||
2034 | &add_c2($t_2,$t_1,$c_3,$c_1,$c_2,0, | ||
2035 | $a_6,$a_2); # mul_add_c2(a[6],b[2],c3,c1,c2); | ||
2036 | &add_c2($t_2,$t_1,$c_3,$c_1,$c_2,1, | ||
2037 | $a_5,$a_3); # mul_add_c2(a[5],b[3],c3,c1,c2); | ||
2038 | &add_c2($t_2,$t_1,$c_3,$c_1,$c_2,1, | ||
2039 | $a_4,$a_4); # mul_add_c(a[4],b[4],c3,c1,c2); | ||
2040 | $code.=<<___; | ||
2041 | mflo $t_1 | ||
2042 | mfhi $t_2 | ||
2043 | $ADDU $c_3,$t_1 | ||
2044 | sltu $at,$c_3,$t_1 | ||
2045 | $MULTU $a_2,$a_7 # mul_add_c2(a[2],b[7],c1,c2,c3); | ||
2046 | $ADDU $t_2,$at | ||
2047 | $ADDU $c_1,$t_2 | ||
2048 | sltu $at,$c_1,$t_2 | ||
2049 | $ADDU $c_2,$at | ||
2050 | $ST $c_3,8*$BNSZ($a0) | ||
2051 | ___ | ||
2052 | &add_c2($t_2,$t_1,$c_1,$c_2,$c_3,0, | ||
2053 | $a_3,$a_6); # mul_add_c2(a[3],b[6],c1,c2,c3); | ||
2054 | &add_c2($t_2,$t_1,$c_1,$c_2,$c_3,1, | ||
2055 | $a_4,$a_5); # mul_add_c2(a[4],b[5],c1,c2,c3); | ||
2056 | &add_c2($t_2,$t_1,$c_1,$c_2,$c_3,1, | ||
2057 | $a_7,$a_3); # mul_add_c2(a[7],b[3],c2,c3,c1); | ||
2058 | $code.=<<___; | ||
2059 | $ST $c_1,9*$BNSZ($a0) | ||
2060 | ___ | ||
2061 | &add_c2($t_2,$t_1,$c_2,$c_3,$c_1,0, | ||
2062 | $a_6,$a_4); # mul_add_c2(a[6],b[4],c2,c3,c1); | ||
2063 | &add_c2($t_2,$t_1,$c_2,$c_3,$c_1,1, | ||
2064 | $a_5,$a_5); # mul_add_c(a[5],b[5],c2,c3,c1); | ||
2065 | $code.=<<___; | ||
2066 | mflo $t_1 | ||
2067 | mfhi $t_2 | ||
2068 | $ADDU $c_2,$t_1 | ||
2069 | sltu $at,$c_2,$t_1 | ||
2070 | $MULTU $a_4,$a_7 # mul_add_c2(a[4],b[7],c3,c1,c2); | ||
2071 | $ADDU $t_2,$at | ||
2072 | $ADDU $c_3,$t_2 | ||
2073 | sltu $at,$c_3,$t_2 | ||
2074 | $ADDU $c_1,$at | ||
2075 | $ST $c_2,10*$BNSZ($a0) | ||
2076 | ___ | ||
2077 | &add_c2($t_2,$t_1,$c_3,$c_1,$c_2,0, | ||
2078 | $a_5,$a_6); # mul_add_c2(a[5],b[6],c3,c1,c2); | ||
2079 | &add_c2($t_2,$t_1,$c_3,$c_1,$c_2,1, | ||
2080 | $a_7,$a_5); # mul_add_c2(a[7],b[5],c1,c2,c3); | ||
2081 | $code.=<<___; | ||
2082 | $ST $c_3,11*$BNSZ($a0) | ||
2083 | ___ | ||
2084 | &add_c2($t_2,$t_1,$c_1,$c_2,$c_3,0, | ||
2085 | $a_6,$a_6); # mul_add_c(a[6],b[6],c1,c2,c3); | ||
2086 | $code.=<<___; | ||
2087 | mflo $t_1 | ||
2088 | mfhi $t_2 | ||
2089 | $ADDU $c_1,$t_1 | ||
2090 | sltu $at,$c_1,$t_1 | ||
2091 | $MULTU $a_6,$a_7 # mul_add_c2(a[6],b[7],c2,c3,c1); | ||
2092 | $ADDU $t_2,$at | ||
2093 | $ADDU $c_2,$t_2 | ||
2094 | sltu $at,$c_2,$t_2 | ||
2095 | $ADDU $c_3,$at | ||
2096 | $ST $c_1,12*$BNSZ($a0) | ||
2097 | ___ | ||
2098 | &add_c2($t_2,$t_1,$c_2,$c_3,$c_1,0, | ||
2099 | $a_7,$a_7); # mul_add_c(a[7],b[7],c3,c1,c2); | ||
2100 | $code.=<<___; | ||
2101 | $ST $c_2,13*$BNSZ($a0) | ||
2102 | |||
2103 | mflo $t_1 | ||
2104 | mfhi $t_2 | ||
2105 | $ADDU $c_3,$t_1 | ||
2106 | sltu $at,$c_3,$t_1 | ||
2107 | $ADDU $t_2,$at | ||
2108 | $ADDU $c_1,$t_2 | ||
2109 | $ST $c_3,14*$BNSZ($a0) | ||
2110 | $ST $c_1,15*$BNSZ($a0) | ||
2111 | |||
2112 | .set noreorder | ||
2113 | ___ | ||
2114 | $code.=<<___ if ($flavour =~ /nubi/i); | ||
2115 | $REG_L $t3,4*$SZREG($sp) | ||
2116 | $REG_L $t2,3*$SZREG($sp) | ||
2117 | $REG_L $t1,2*$SZREG($sp) | ||
2118 | $REG_L $t0,1*$SZREG($sp) | ||
2119 | $REG_L $gp,0*$SZREG($sp) | ||
2120 | $PTR_ADD $sp,6*$SZREG | ||
2121 | ___ | ||
2122 | $code.=<<___; | ||
2123 | jr $ra | ||
2124 | nop | ||
2125 | .end bn_sqr_comba8 | ||
2126 | |||
2127 | .align 5 | ||
2128 | .globl bn_sqr_comba4 | ||
2129 | .ent bn_sqr_comba4 | ||
2130 | bn_sqr_comba4: | ||
2131 | ___ | ||
2132 | $code.=<<___ if ($flavour =~ /nubi/i); | ||
2133 | .frame $sp,6*$SZREG,$ra | ||
2134 | .mask 0x8000f008,-$SZREG | ||
2135 | .set noreorder | ||
2136 | $PTR_SUB $sp,6*$SZREG | ||
2137 | $REG_S $ra,5*$SZREG($sp) | ||
2138 | $REG_S $t3,4*$SZREG($sp) | ||
2139 | $REG_S $t2,3*$SZREG($sp) | ||
2140 | $REG_S $t1,2*$SZREG($sp) | ||
2141 | $REG_S $t0,1*$SZREG($sp) | ||
2142 | $REG_S $gp,0*$SZREG($sp) | ||
2143 | ___ | ||
2144 | $code.=<<___; | ||
2145 | .set reorder | ||
2146 | $LD $a_0,0($a1) | ||
2147 | $LD $a_1,$BNSZ($a1) | ||
2148 | $MULTU $a_0,$a_0 # mul_add_c(a[0],b[0],c1,c2,c3); | ||
2149 | $LD $a_2,2*$BNSZ($a1) | ||
2150 | $LD $a_3,3*$BNSZ($a1) | ||
2151 | mflo $c_1 | ||
2152 | mfhi $c_2 | ||
2153 | $ST $c_1,0($a0) | ||
2154 | |||
2155 | $MULTU $a_0,$a_1 # mul_add_c2(a[0],b[1],c2,c3,c1); | ||
2156 | mflo $t_1 | ||
2157 | mfhi $t_2 | ||
2158 | slt $c_1,$t_2,$zero | ||
2159 | $SLL $t_2,1 | ||
2160 | $MULTU $a_2,$a_0 # mul_add_c2(a[2],b[0],c3,c1,c2); | ||
2161 | slt $a2,$t_1,$zero | ||
2162 | $ADDU $t_2,$a2 | ||
2163 | $SLL $t_1,1 | ||
2164 | $ADDU $c_2,$t_1 | ||
2165 | sltu $at,$c_2,$t_1 | ||
2166 | $ADDU $c_3,$t_2,$at | ||
2167 | $ST $c_2,$BNSZ($a0) | ||
2168 | ___ | ||
2169 | &add_c2($t_2,$t_1,$c_3,$c_1,$c_2,0, | ||
2170 | $a_1,$a_1); # mul_add_c(a[1],b[1],c3,c1,c2); | ||
2171 | $code.=<<___; | ||
2172 | mflo $t_1 | ||
2173 | mfhi $t_2 | ||
2174 | $ADDU $c_3,$t_1 | ||
2175 | sltu $at,$c_3,$t_1 | ||
2176 | $MULTU $a_0,$a_3 # mul_add_c2(a[0],b[3],c1,c2,c3); | ||
2177 | $ADDU $t_2,$at | ||
2178 | $ADDU $c_1,$t_2 | ||
2179 | sltu $at,$c_1,$t_2 | ||
2180 | $ADDU $c_2,$at | ||
2181 | $ST $c_3,2*$BNSZ($a0) | ||
2182 | ___ | ||
2183 | &add_c2($t_2,$t_1,$c_1,$c_2,$c_3,0, | ||
2184 | $a_1,$a_2); # mul_add_c2(a2[1],b[2],c1,c2,c3); | ||
2185 | &add_c2($t_2,$t_1,$c_1,$c_2,$c_3,1, | ||
2186 | $a_3,$a_1); # mul_add_c2(a[3],b[1],c2,c3,c1); | ||
2187 | $code.=<<___; | ||
2188 | $ST $c_1,3*$BNSZ($a0) | ||
2189 | ___ | ||
2190 | &add_c2($t_2,$t_1,$c_2,$c_3,$c_1,0, | ||
2191 | $a_2,$a_2); # mul_add_c(a[2],b[2],c2,c3,c1); | ||
2192 | $code.=<<___; | ||
2193 | mflo $t_1 | ||
2194 | mfhi $t_2 | ||
2195 | $ADDU $c_2,$t_1 | ||
2196 | sltu $at,$c_2,$t_1 | ||
2197 | $MULTU $a_2,$a_3 # mul_add_c2(a[2],b[3],c3,c1,c2); | ||
2198 | $ADDU $t_2,$at | ||
2199 | $ADDU $c_3,$t_2 | ||
2200 | sltu $at,$c_3,$t_2 | ||
2201 | $ADDU $c_1,$at | ||
2202 | $ST $c_2,4*$BNSZ($a0) | ||
2203 | ___ | ||
2204 | &add_c2($t_2,$t_1,$c_3,$c_1,$c_2,0, | ||
2205 | $a_3,$a_3); # mul_add_c(a[3],b[3],c1,c2,c3); | ||
2206 | $code.=<<___; | ||
2207 | $ST $c_3,5*$BNSZ($a0) | ||
2208 | |||
2209 | mflo $t_1 | ||
2210 | mfhi $t_2 | ||
2211 | $ADDU $c_1,$t_1 | ||
2212 | sltu $at,$c_1,$t_1 | ||
2213 | $ADDU $t_2,$at | ||
2214 | $ADDU $c_2,$t_2 | ||
2215 | $ST $c_1,6*$BNSZ($a0) | ||
2216 | $ST $c_2,7*$BNSZ($a0) | ||
2217 | |||
2218 | .set noreorder | ||
2219 | ___ | ||
2220 | $code.=<<___ if ($flavour =~ /nubi/i); | ||
2221 | $REG_L $t3,4*$SZREG($sp) | ||
2222 | $REG_L $t2,3*$SZREG($sp) | ||
2223 | $REG_L $t1,2*$SZREG($sp) | ||
2224 | $REG_L $t0,1*$SZREG($sp) | ||
2225 | $REG_L $gp,0*$SZREG($sp) | ||
2226 | $PTR_ADD $sp,6*$SZREG | ||
2227 | ___ | ||
2228 | $code.=<<___; | ||
2229 | jr $ra | ||
2230 | nop | ||
2231 | .end bn_sqr_comba4 | ||
2232 | ___ | ||
2233 | print $code; | ||
2234 | close STDOUT; | ||
diff --git a/src/lib/libcrypto/bn/asm/modexp512-x86_64.pl b/src/lib/libcrypto/bn/asm/modexp512-x86_64.pl deleted file mode 100644 index 4317282835..0000000000 --- a/src/lib/libcrypto/bn/asm/modexp512-x86_64.pl +++ /dev/null | |||
@@ -1,1388 +0,0 @@ | |||
1 | #!/usr/bin/env perl | ||
2 | # | ||
3 | # Copyright (c) 2010-2011 Intel Corp. | ||
4 | # Author: Vinodh.Gopal@intel.com | ||
5 | # Jim Guilford | ||
6 | # Erdinc.Ozturk@intel.com | ||
7 | # Maxim.Perminov@intel.com | ||
8 | # | ||
9 | # More information about algorithm used can be found at: | ||
10 | # http://www.cse.buffalo.edu/srds2009/escs2009_submission_Gopal.pdf | ||
11 | # | ||
12 | # ==================================================================== | ||
13 | # Copyright (c) 2011 The OpenSSL Project. All rights reserved. | ||
14 | # | ||
15 | # Redistribution and use in source and binary forms, with or without | ||
16 | # modification, are permitted provided that the following conditions | ||
17 | # are met: | ||
18 | # | ||
19 | # 1. Redistributions of source code must retain the above copyright | ||
20 | # notice, this list of conditions and the following disclaimer. | ||
21 | # | ||
22 | # 2. Redistributions in binary form must reproduce the above copyright | ||
23 | # notice, this list of conditions and the following disclaimer in | ||
24 | # the documentation and/or other materials provided with the | ||
25 | # distribution. | ||
26 | # | ||
27 | # 3. All advertising materials mentioning features or use of this | ||
28 | # software must display the following acknowledgment: | ||
29 | # "This product includes software developed by the OpenSSL Project | ||
30 | # for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" | ||
31 | # | ||
32 | # 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
33 | # endorse or promote products derived from this software without | ||
34 | # prior written permission. For written permission, please contact | ||
35 | # licensing@OpenSSL.org. | ||
36 | # | ||
37 | # 5. Products derived from this software may not be called "OpenSSL" | ||
38 | # nor may "OpenSSL" appear in their names without prior written | ||
39 | # permission of the OpenSSL Project. | ||
40 | # | ||
41 | # 6. Redistributions of any form whatsoever must retain the following | ||
42 | # acknowledgment: | ||
43 | # "This product includes software developed by the OpenSSL Project | ||
44 | # for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" | ||
45 | # | ||
46 | # THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
47 | # EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
48 | # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
49 | # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
50 | # ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
51 | # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
52 | # NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
53 | # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
54 | # HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
55 | # STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
56 | # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
57 | # OF THE POSSIBILITY OF SUCH DAMAGE. | ||
58 | # ==================================================================== | ||
59 | |||
60 | $flavour = shift; | ||
61 | $output = shift; | ||
62 | if ($flavour =~ /\./) { $output = $flavour; undef $flavour; } | ||
63 | |||
64 | $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; | ||
65 | ( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or | ||
66 | ( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or | ||
67 | die "can't locate x86_64-xlate.pl"; | ||
68 | |||
69 | open OUT,"| \"$^X\" $xlate $flavour $output"; | ||
70 | *STDOUT=*OUT; | ||
71 | |||
72 | use strict; | ||
73 | my $code=".text\n\n"; | ||
74 | my $m=0; | ||
75 | |||
76 | # | ||
77 | # Define x512 macros | ||
78 | # | ||
79 | |||
80 | #MULSTEP_512_ADD MACRO x7, x6, x5, x4, x3, x2, x1, x0, dst, src1, src2, add_src, tmp1, tmp2 | ||
81 | # | ||
82 | # uses rax, rdx, and args | ||
83 | sub MULSTEP_512_ADD | ||
84 | { | ||
85 | my ($x, $DST, $SRC2, $ASRC, $OP, $TMP)=@_; | ||
86 | my @X=@$x; # make a copy | ||
87 | $code.=<<___; | ||
88 | mov (+8*0)($SRC2), %rax | ||
89 | mul $OP # rdx:rax = %OP * [0] | ||
90 | mov ($ASRC), $X[0] | ||
91 | add %rax, $X[0] | ||
92 | adc \$0, %rdx | ||
93 | mov $X[0], $DST | ||
94 | ___ | ||
95 | for(my $i=1;$i<8;$i++) { | ||
96 | $code.=<<___; | ||
97 | mov %rdx, $TMP | ||
98 | |||
99 | mov (+8*$i)($SRC2), %rax | ||
100 | mul $OP # rdx:rax = %OP * [$i] | ||
101 | mov (+8*$i)($ASRC), $X[$i] | ||
102 | add %rax, $X[$i] | ||
103 | adc \$0, %rdx | ||
104 | add $TMP, $X[$i] | ||
105 | adc \$0, %rdx | ||
106 | ___ | ||
107 | } | ||
108 | $code.=<<___; | ||
109 | mov %rdx, $X[0] | ||
110 | ___ | ||
111 | } | ||
112 | |||
113 | #MULSTEP_512 MACRO x7, x6, x5, x4, x3, x2, x1, x0, dst, src2, src1_val, tmp | ||
114 | # | ||
115 | # uses rax, rdx, and args | ||
116 | sub MULSTEP_512 | ||
117 | { | ||
118 | my ($x, $DST, $SRC2, $OP, $TMP)=@_; | ||
119 | my @X=@$x; # make a copy | ||
120 | $code.=<<___; | ||
121 | mov (+8*0)($SRC2), %rax | ||
122 | mul $OP # rdx:rax = %OP * [0] | ||
123 | add %rax, $X[0] | ||
124 | adc \$0, %rdx | ||
125 | mov $X[0], $DST | ||
126 | ___ | ||
127 | for(my $i=1;$i<8;$i++) { | ||
128 | $code.=<<___; | ||
129 | mov %rdx, $TMP | ||
130 | |||
131 | mov (+8*$i)($SRC2), %rax | ||
132 | mul $OP # rdx:rax = %OP * [$i] | ||
133 | add %rax, $X[$i] | ||
134 | adc \$0, %rdx | ||
135 | add $TMP, $X[$i] | ||
136 | adc \$0, %rdx | ||
137 | ___ | ||
138 | } | ||
139 | $code.=<<___; | ||
140 | mov %rdx, $X[0] | ||
141 | ___ | ||
142 | } | ||
143 | |||
144 | # | ||
145 | # Swizzle Macros | ||
146 | # | ||
147 | |||
148 | # macro to copy data from flat space to swizzled table | ||
149 | #MACRO swizzle pDst, pSrc, tmp1, tmp2 | ||
150 | # pDst and pSrc are modified | ||
151 | sub swizzle | ||
152 | { | ||
153 | my ($pDst, $pSrc, $cnt, $d0)=@_; | ||
154 | $code.=<<___; | ||
155 | mov \$8, $cnt | ||
156 | loop_$m: | ||
157 | mov ($pSrc), $d0 | ||
158 | mov $d0#w, ($pDst) | ||
159 | shr \$16, $d0 | ||
160 | mov $d0#w, (+64*1)($pDst) | ||
161 | shr \$16, $d0 | ||
162 | mov $d0#w, (+64*2)($pDst) | ||
163 | shr \$16, $d0 | ||
164 | mov $d0#w, (+64*3)($pDst) | ||
165 | lea 8($pSrc), $pSrc | ||
166 | lea 64*4($pDst), $pDst | ||
167 | dec $cnt | ||
168 | jnz loop_$m | ||
169 | ___ | ||
170 | |||
171 | $m++; | ||
172 | } | ||
173 | |||
174 | # macro to copy data from swizzled table to flat space | ||
175 | #MACRO unswizzle pDst, pSrc, tmp*3 | ||
176 | sub unswizzle | ||
177 | { | ||
178 | my ($pDst, $pSrc, $cnt, $d0, $d1)=@_; | ||
179 | $code.=<<___; | ||
180 | mov \$4, $cnt | ||
181 | loop_$m: | ||
182 | movzxw (+64*3+256*0)($pSrc), $d0 | ||
183 | movzxw (+64*3+256*1)($pSrc), $d1 | ||
184 | shl \$16, $d0 | ||
185 | shl \$16, $d1 | ||
186 | mov (+64*2+256*0)($pSrc), $d0#w | ||
187 | mov (+64*2+256*1)($pSrc), $d1#w | ||
188 | shl \$16, $d0 | ||
189 | shl \$16, $d1 | ||
190 | mov (+64*1+256*0)($pSrc), $d0#w | ||
191 | mov (+64*1+256*1)($pSrc), $d1#w | ||
192 | shl \$16, $d0 | ||
193 | shl \$16, $d1 | ||
194 | mov (+64*0+256*0)($pSrc), $d0#w | ||
195 | mov (+64*0+256*1)($pSrc), $d1#w | ||
196 | mov $d0, (+8*0)($pDst) | ||
197 | mov $d1, (+8*1)($pDst) | ||
198 | lea 256*2($pSrc), $pSrc | ||
199 | lea 8*2($pDst), $pDst | ||
200 | sub \$1, $cnt | ||
201 | jnz loop_$m | ||
202 | ___ | ||
203 | |||
204 | $m++; | ||
205 | } | ||
206 | |||
207 | # | ||
208 | # Data Structures | ||
209 | # | ||
210 | |||
211 | # Reduce Data | ||
212 | # | ||
213 | # | ||
214 | # Offset Value | ||
215 | # 0C0 Carries | ||
216 | # 0B8 X2[10] | ||
217 | # 0B0 X2[9] | ||
218 | # 0A8 X2[8] | ||
219 | # 0A0 X2[7] | ||
220 | # 098 X2[6] | ||
221 | # 090 X2[5] | ||
222 | # 088 X2[4] | ||
223 | # 080 X2[3] | ||
224 | # 078 X2[2] | ||
225 | # 070 X2[1] | ||
226 | # 068 X2[0] | ||
227 | # 060 X1[12] P[10] | ||
228 | # 058 X1[11] P[9] Z[8] | ||
229 | # 050 X1[10] P[8] Z[7] | ||
230 | # 048 X1[9] P[7] Z[6] | ||
231 | # 040 X1[8] P[6] Z[5] | ||
232 | # 038 X1[7] P[5] Z[4] | ||
233 | # 030 X1[6] P[4] Z[3] | ||
234 | # 028 X1[5] P[3] Z[2] | ||
235 | # 020 X1[4] P[2] Z[1] | ||
236 | # 018 X1[3] P[1] Z[0] | ||
237 | # 010 X1[2] P[0] Y[2] | ||
238 | # 008 X1[1] Q[1] Y[1] | ||
239 | # 000 X1[0] Q[0] Y[0] | ||
240 | |||
241 | my $X1_offset = 0; # 13 qwords | ||
242 | my $X2_offset = $X1_offset + 13*8; # 11 qwords | ||
243 | my $Carries_offset = $X2_offset + 11*8; # 1 qword | ||
244 | my $Q_offset = 0; # 2 qwords | ||
245 | my $P_offset = $Q_offset + 2*8; # 11 qwords | ||
246 | my $Y_offset = 0; # 3 qwords | ||
247 | my $Z_offset = $Y_offset + 3*8; # 9 qwords | ||
248 | |||
249 | my $Red_Data_Size = $Carries_offset + 1*8; # (25 qwords) | ||
250 | |||
251 | # | ||
252 | # Stack Frame | ||
253 | # | ||
254 | # | ||
255 | # offset value | ||
256 | # ... <old stack contents> | ||
257 | # ... | ||
258 | # 280 Garray | ||
259 | |||
260 | # 278 tmp16[15] | ||
261 | # ... ... | ||
262 | # 200 tmp16[0] | ||
263 | |||
264 | # 1F8 tmp[7] | ||
265 | # ... ... | ||
266 | # 1C0 tmp[0] | ||
267 | |||
268 | # 1B8 GT[7] | ||
269 | # ... ... | ||
270 | # 180 GT[0] | ||
271 | |||
272 | # 178 Reduce Data | ||
273 | # ... ... | ||
274 | # 0B8 Reduce Data | ||
275 | # 0B0 reserved | ||
276 | # 0A8 reserved | ||
277 | # 0A0 reserved | ||
278 | # 098 reserved | ||
279 | # 090 reserved | ||
280 | # 088 reduce result addr | ||
281 | # 080 exp[8] | ||
282 | |||
283 | # ... | ||
284 | # 048 exp[1] | ||
285 | # 040 exp[0] | ||
286 | |||
287 | # 038 reserved | ||
288 | # 030 loop_idx | ||
289 | # 028 pg | ||
290 | # 020 i | ||
291 | # 018 pData ; arg 4 | ||
292 | # 010 pG ; arg 2 | ||
293 | # 008 pResult ; arg 1 | ||
294 | # 000 rsp ; stack pointer before subtract | ||
295 | |||
296 | my $rsp_offset = 0; | ||
297 | my $pResult_offset = 8*1 + $rsp_offset; | ||
298 | my $pG_offset = 8*1 + $pResult_offset; | ||
299 | my $pData_offset = 8*1 + $pG_offset; | ||
300 | my $i_offset = 8*1 + $pData_offset; | ||
301 | my $pg_offset = 8*1 + $i_offset; | ||
302 | my $loop_idx_offset = 8*1 + $pg_offset; | ||
303 | my $reserved1_offset = 8*1 + $loop_idx_offset; | ||
304 | my $exp_offset = 8*1 + $reserved1_offset; | ||
305 | my $red_result_addr_offset= 8*9 + $exp_offset; | ||
306 | my $reserved2_offset = 8*1 + $red_result_addr_offset; | ||
307 | my $Reduce_Data_offset = 8*5 + $reserved2_offset; | ||
308 | my $GT_offset = $Red_Data_Size + $Reduce_Data_offset; | ||
309 | my $tmp_offset = 8*8 + $GT_offset; | ||
310 | my $tmp16_offset = 8*8 + $tmp_offset; | ||
311 | my $garray_offset = 8*16 + $tmp16_offset; | ||
312 | my $mem_size = 8*8*32 + $garray_offset; | ||
313 | |||
314 | # | ||
315 | # Offsets within Reduce Data | ||
316 | # | ||
317 | # | ||
318 | # struct MODF_2FOLD_MONT_512_C1_DATA { | ||
319 | # UINT64 t[8][8]; | ||
320 | # UINT64 m[8]; | ||
321 | # UINT64 m1[8]; /* 2^768 % m */ | ||
322 | # UINT64 m2[8]; /* 2^640 % m */ | ||
323 | # UINT64 k1[2]; /* (- 1/m) % 2^128 */ | ||
324 | # }; | ||
325 | |||
326 | my $T = 0; | ||
327 | my $M = 512; # = 8 * 8 * 8 | ||
328 | my $M1 = 576; # = 8 * 8 * 9 /* += 8 * 8 */ | ||
329 | my $M2 = 640; # = 8 * 8 * 10 /* += 8 * 8 */ | ||
330 | my $K1 = 704; # = 8 * 8 * 11 /* += 8 * 8 */ | ||
331 | |||
332 | # | ||
333 | # FUNCTIONS | ||
334 | # | ||
335 | |||
336 | {{{ | ||
337 | # | ||
338 | # MULADD_128x512 : Function to multiply 128-bits (2 qwords) by 512-bits (8 qwords) | ||
339 | # and add 512-bits (8 qwords) | ||
340 | # to get 640 bits (10 qwords) | ||
341 | # Input: 128-bit mul source: [rdi+8*1], rbp | ||
342 | # 512-bit mul source: [rsi+8*n] | ||
343 | # 512-bit add source: r15, r14, ..., r9, r8 | ||
344 | # Output: r9, r8, r15, r14, r13, r12, r11, r10, [rcx+8*1], [rcx+8*0] | ||
345 | # Clobbers all regs except: rcx, rsi, rdi | ||
346 | $code.=<<___; | ||
347 | .type MULADD_128x512,\@abi-omnipotent | ||
348 | .align 16 | ||
349 | MULADD_128x512: | ||
350 | ___ | ||
351 | &MULSTEP_512([map("%r$_",(8..15))], "(+8*0)(%rcx)", "%rsi", "%rbp", "%rbx"); | ||
352 | $code.=<<___; | ||
353 | mov (+8*1)(%rdi), %rbp | ||
354 | ___ | ||
355 | &MULSTEP_512([map("%r$_",(9..15,8))], "(+8*1)(%rcx)", "%rsi", "%rbp", "%rbx"); | ||
356 | $code.=<<___; | ||
357 | ret | ||
358 | .size MULADD_128x512,.-MULADD_128x512 | ||
359 | ___ | ||
360 | }}} | ||
361 | |||
362 | {{{ | ||
363 | #MULADD_256x512 MACRO pDst, pA, pB, OP, TMP, X7, X6, X5, X4, X3, X2, X1, X0 | ||
364 | # | ||
365 | # Inputs: pDst: Destination (768 bits, 12 qwords) | ||
366 | # pA: Multiplicand (1024 bits, 16 qwords) | ||
367 | # pB: Multiplicand (512 bits, 8 qwords) | ||
368 | # Dst = Ah * B + Al | ||
369 | # where Ah is (in qwords) A[15:12] (256 bits) and Al is A[7:0] (512 bits) | ||
370 | # Results in X3 X2 X1 X0 X7 X6 X5 X4 Dst[3:0] | ||
371 | # Uses registers: arguments, RAX, RDX | ||
372 | sub MULADD_256x512 | ||
373 | { | ||
374 | my ($pDst, $pA, $pB, $OP, $TMP, $X)=@_; | ||
375 | $code.=<<___; | ||
376 | mov (+8*12)($pA), $OP | ||
377 | ___ | ||
378 | &MULSTEP_512_ADD($X, "(+8*0)($pDst)", $pB, $pA, $OP, $TMP); | ||
379 | push(@$X,shift(@$X)); | ||
380 | |||
381 | $code.=<<___; | ||
382 | mov (+8*13)($pA), $OP | ||
383 | ___ | ||
384 | &MULSTEP_512($X, "(+8*1)($pDst)", $pB, $OP, $TMP); | ||
385 | push(@$X,shift(@$X)); | ||
386 | |||
387 | $code.=<<___; | ||
388 | mov (+8*14)($pA), $OP | ||
389 | ___ | ||
390 | &MULSTEP_512($X, "(+8*2)($pDst)", $pB, $OP, $TMP); | ||
391 | push(@$X,shift(@$X)); | ||
392 | |||
393 | $code.=<<___; | ||
394 | mov (+8*15)($pA), $OP | ||
395 | ___ | ||
396 | &MULSTEP_512($X, "(+8*3)($pDst)", $pB, $OP, $TMP); | ||
397 | push(@$X,shift(@$X)); | ||
398 | } | ||
399 | |||
400 | # | ||
401 | # mont_reduce(UINT64 *x, /* 1024 bits, 16 qwords */ | ||
402 | # UINT64 *m, /* 512 bits, 8 qwords */ | ||
403 | # MODF_2FOLD_MONT_512_C1_DATA *data, | ||
404 | # UINT64 *r) /* 512 bits, 8 qwords */ | ||
405 | # Input: x (number to be reduced): tmp16 (Implicit) | ||
406 | # m (modulus): [pM] (Implicit) | ||
407 | # data (reduce data): [pData] (Implicit) | ||
408 | # Output: r (result): Address in [red_res_addr] | ||
409 | # result also in: r9, r8, r15, r14, r13, r12, r11, r10 | ||
410 | |||
411 | my @X=map("%r$_",(8..15)); | ||
412 | |||
413 | $code.=<<___; | ||
414 | .type mont_reduce,\@abi-omnipotent | ||
415 | .align 16 | ||
416 | mont_reduce: | ||
417 | ___ | ||
418 | |||
419 | my $STACK_DEPTH = 8; | ||
420 | # | ||
421 | # X1 = Xh * M1 + Xl | ||
422 | $code.=<<___; | ||
423 | lea (+$Reduce_Data_offset+$X1_offset+$STACK_DEPTH)(%rsp), %rdi # pX1 (Dst) 769 bits, 13 qwords | ||
424 | mov (+$pData_offset+$STACK_DEPTH)(%rsp), %rsi # pM1 (Bsrc) 512 bits, 8 qwords | ||
425 | add \$$M1, %rsi | ||
426 | lea (+$tmp16_offset+$STACK_DEPTH)(%rsp), %rcx # X (Asrc) 1024 bits, 16 qwords | ||
427 | |||
428 | ___ | ||
429 | |||
430 | &MULADD_256x512("%rdi", "%rcx", "%rsi", "%rbp", "%rbx", \@X); # rotates @X 4 times | ||
431 | # results in r11, r10, r9, r8, r15, r14, r13, r12, X1[3:0] | ||
432 | |||
433 | $code.=<<___; | ||
434 | xor %rax, %rax | ||
435 | # X1 += xl | ||
436 | add (+8*8)(%rcx), $X[4] | ||
437 | adc (+8*9)(%rcx), $X[5] | ||
438 | adc (+8*10)(%rcx), $X[6] | ||
439 | adc (+8*11)(%rcx), $X[7] | ||
440 | adc \$0, %rax | ||
441 | # X1 is now rax, r11-r8, r15-r12, tmp16[3:0] | ||
442 | |||
443 | # | ||
444 | # check for carry ;; carry stored in rax | ||
445 | mov $X[4], (+8*8)(%rdi) # rdi points to X1 | ||
446 | mov $X[5], (+8*9)(%rdi) | ||
447 | mov $X[6], %rbp | ||
448 | mov $X[7], (+8*11)(%rdi) | ||
449 | |||
450 | mov %rax, (+$Reduce_Data_offset+$Carries_offset+$STACK_DEPTH)(%rsp) | ||
451 | |||
452 | mov (+8*0)(%rdi), $X[4] | ||
453 | mov (+8*1)(%rdi), $X[5] | ||
454 | mov (+8*2)(%rdi), $X[6] | ||
455 | mov (+8*3)(%rdi), $X[7] | ||
456 | |||
457 | # X1 is now stored in: X1[11], rbp, X1[9:8], r15-r8 | ||
458 | # rdi -> X1 | ||
459 | # rsi -> M1 | ||
460 | |||
461 | # | ||
462 | # X2 = Xh * M2 + Xl | ||
463 | # do first part (X2 = Xh * M2) | ||
464 | add \$8*10, %rdi # rdi -> pXh ; 128 bits, 2 qwords | ||
465 | # Xh is actually { [rdi+8*1], rbp } | ||
466 | add \$`$M2-$M1`, %rsi # rsi -> M2 | ||
467 | lea (+$Reduce_Data_offset+$X2_offset+$STACK_DEPTH)(%rsp), %rcx # rcx -> pX2 ; 641 bits, 11 qwords | ||
468 | ___ | ||
469 | unshift(@X,pop(@X)); unshift(@X,pop(@X)); | ||
470 | $code.=<<___; | ||
471 | |||
472 | call MULADD_128x512 # args in rcx, rdi / rbp, rsi, r15-r8 | ||
473 | # result in r9, r8, r15, r14, r13, r12, r11, r10, X2[1:0] | ||
474 | mov (+$Reduce_Data_offset+$Carries_offset+$STACK_DEPTH)(%rsp), %rax | ||
475 | |||
476 | # X2 += Xl | ||
477 | add (+8*8-8*10)(%rdi), $X[6] # (-8*10) is to adjust rdi -> Xh to Xl | ||
478 | adc (+8*9-8*10)(%rdi), $X[7] | ||
479 | mov $X[6], (+8*8)(%rcx) | ||
480 | mov $X[7], (+8*9)(%rcx) | ||
481 | |||
482 | adc %rax, %rax | ||
483 | mov %rax, (+$Reduce_Data_offset+$Carries_offset+$STACK_DEPTH)(%rsp) | ||
484 | |||
485 | lea (+$Reduce_Data_offset+$Q_offset+$STACK_DEPTH)(%rsp), %rdi # rdi -> pQ ; 128 bits, 2 qwords | ||
486 | add \$`$K1-$M2`, %rsi # rsi -> pK1 ; 128 bits, 2 qwords | ||
487 | |||
488 | # MUL_128x128t128 rdi, rcx, rsi ; Q = X2 * K1 (bottom half) | ||
489 | # B1:B0 = rsi[1:0] = K1[1:0] | ||
490 | # A1:A0 = rcx[1:0] = X2[1:0] | ||
491 | # Result = rdi[1],rbp = Q[1],rbp | ||
492 | mov (%rsi), %r8 # B0 | ||
493 | mov (+8*1)(%rsi), %rbx # B1 | ||
494 | |||
495 | mov (%rcx), %rax # A0 | ||
496 | mul %r8 # B0 | ||
497 | mov %rax, %rbp | ||
498 | mov %rdx, %r9 | ||
499 | |||
500 | mov (+8*1)(%rcx), %rax # A1 | ||
501 | mul %r8 # B0 | ||
502 | add %rax, %r9 | ||
503 | |||
504 | mov (%rcx), %rax # A0 | ||
505 | mul %rbx # B1 | ||
506 | add %rax, %r9 | ||
507 | |||
508 | mov %r9, (+8*1)(%rdi) | ||
509 | # end MUL_128x128t128 | ||
510 | |||
511 | sub \$`$K1-$M`, %rsi | ||
512 | |||
513 | mov (%rcx), $X[6] | ||
514 | mov (+8*1)(%rcx), $X[7] # r9:r8 = X2[1:0] | ||
515 | |||
516 | call MULADD_128x512 # args in rcx, rdi / rbp, rsi, r15-r8 | ||
517 | # result in r9, r8, r15, r14, r13, r12, r11, r10, X2[1:0] | ||
518 | |||
519 | # load first half of m to rdx, rdi, rbx, rax | ||
520 | # moved this here for efficiency | ||
521 | mov (+8*0)(%rsi), %rax | ||
522 | mov (+8*1)(%rsi), %rbx | ||
523 | mov (+8*2)(%rsi), %rdi | ||
524 | mov (+8*3)(%rsi), %rdx | ||
525 | |||
526 | # continue with reduction | ||
527 | mov (+$Reduce_Data_offset+$Carries_offset+$STACK_DEPTH)(%rsp), %rbp | ||
528 | |||
529 | add (+8*8)(%rcx), $X[6] | ||
530 | adc (+8*9)(%rcx), $X[7] | ||
531 | |||
532 | #accumulate the final carry to rbp | ||
533 | adc %rbp, %rbp | ||
534 | |||
535 | # Add in overflow corrections: R = (X2>>128) += T[overflow] | ||
536 | # R = {r9, r8, r15, r14, ..., r10} | ||
537 | shl \$3, %rbp | ||
538 | mov (+$pData_offset+$STACK_DEPTH)(%rsp), %rcx # rsi -> Data (and points to T) | ||
539 | add %rcx, %rbp # pT ; 512 bits, 8 qwords, spread out | ||
540 | |||
541 | # rsi will be used to generate a mask after the addition | ||
542 | xor %rsi, %rsi | ||
543 | |||
544 | add (+8*8*0)(%rbp), $X[0] | ||
545 | adc (+8*8*1)(%rbp), $X[1] | ||
546 | adc (+8*8*2)(%rbp), $X[2] | ||
547 | adc (+8*8*3)(%rbp), $X[3] | ||
548 | adc (+8*8*4)(%rbp), $X[4] | ||
549 | adc (+8*8*5)(%rbp), $X[5] | ||
550 | adc (+8*8*6)(%rbp), $X[6] | ||
551 | adc (+8*8*7)(%rbp), $X[7] | ||
552 | |||
553 | # if there is a carry: rsi = 0xFFFFFFFFFFFFFFFF | ||
554 | # if carry is clear: rsi = 0x0000000000000000 | ||
555 | sbb \$0, %rsi | ||
556 | |||
557 | # if carry is clear, subtract 0. Otherwise, subtract 256 bits of m | ||
558 | and %rsi, %rax | ||
559 | and %rsi, %rbx | ||
560 | and %rsi, %rdi | ||
561 | and %rsi, %rdx | ||
562 | |||
563 | mov \$1, %rbp | ||
564 | sub %rax, $X[0] | ||
565 | sbb %rbx, $X[1] | ||
566 | sbb %rdi, $X[2] | ||
567 | sbb %rdx, $X[3] | ||
568 | |||
569 | # if there is a borrow: rbp = 0 | ||
570 | # if there is no borrow: rbp = 1 | ||
571 | # this is used to save the borrows in between the first half and the 2nd half of the subtraction of m | ||
572 | sbb \$0, %rbp | ||
573 | |||
574 | #load second half of m to rdx, rdi, rbx, rax | ||
575 | |||
576 | add \$$M, %rcx | ||
577 | mov (+8*4)(%rcx), %rax | ||
578 | mov (+8*5)(%rcx), %rbx | ||
579 | mov (+8*6)(%rcx), %rdi | ||
580 | mov (+8*7)(%rcx), %rdx | ||
581 | |||
582 | # use the rsi mask as before | ||
583 | # if carry is clear, subtract 0. Otherwise, subtract 256 bits of m | ||
584 | and %rsi, %rax | ||
585 | and %rsi, %rbx | ||
586 | and %rsi, %rdi | ||
587 | and %rsi, %rdx | ||
588 | |||
589 | # if rbp = 0, there was a borrow before, it is moved to the carry flag | ||
590 | # if rbp = 1, there was not a borrow before, carry flag is cleared | ||
591 | sub \$1, %rbp | ||
592 | |||
593 | sbb %rax, $X[4] | ||
594 | sbb %rbx, $X[5] | ||
595 | sbb %rdi, $X[6] | ||
596 | sbb %rdx, $X[7] | ||
597 | |||
598 | # write R back to memory | ||
599 | |||
600 | mov (+$red_result_addr_offset+$STACK_DEPTH)(%rsp), %rsi | ||
601 | mov $X[0], (+8*0)(%rsi) | ||
602 | mov $X[1], (+8*1)(%rsi) | ||
603 | mov $X[2], (+8*2)(%rsi) | ||
604 | mov $X[3], (+8*3)(%rsi) | ||
605 | mov $X[4], (+8*4)(%rsi) | ||
606 | mov $X[5], (+8*5)(%rsi) | ||
607 | mov $X[6], (+8*6)(%rsi) | ||
608 | mov $X[7], (+8*7)(%rsi) | ||
609 | |||
610 | ret | ||
611 | .size mont_reduce,.-mont_reduce | ||
612 | ___ | ||
613 | }}} | ||
614 | |||
615 | {{{ | ||
616 | #MUL_512x512 MACRO pDst, pA, pB, x7, x6, x5, x4, x3, x2, x1, x0, tmp*2 | ||
617 | # | ||
618 | # Inputs: pDst: Destination (1024 bits, 16 qwords) | ||
619 | # pA: Multiplicand (512 bits, 8 qwords) | ||
620 | # pB: Multiplicand (512 bits, 8 qwords) | ||
621 | # Uses registers rax, rdx, args | ||
622 | # B operand in [pB] and also in x7...x0 | ||
623 | sub MUL_512x512 | ||
624 | { | ||
625 | my ($pDst, $pA, $pB, $x, $OP, $TMP, $pDst_o)=@_; | ||
626 | my ($pDst, $pDst_o) = ($pDst =~ m/([^+]*)\+?(.*)?/); | ||
627 | my @X=@$x; # make a copy | ||
628 | |||
629 | $code.=<<___; | ||
630 | mov (+8*0)($pA), $OP | ||
631 | |||
632 | mov $X[0], %rax | ||
633 | mul $OP # rdx:rax = %OP * [0] | ||
634 | mov %rax, (+$pDst_o+8*0)($pDst) | ||
635 | mov %rdx, $X[0] | ||
636 | ___ | ||
637 | for(my $i=1;$i<8;$i++) { | ||
638 | $code.=<<___; | ||
639 | mov $X[$i], %rax | ||
640 | mul $OP # rdx:rax = %OP * [$i] | ||
641 | add %rax, $X[$i-1] | ||
642 | adc \$0, %rdx | ||
643 | mov %rdx, $X[$i] | ||
644 | ___ | ||
645 | } | ||
646 | |||
647 | for(my $i=1;$i<8;$i++) { | ||
648 | $code.=<<___; | ||
649 | mov (+8*$i)($pA), $OP | ||
650 | ___ | ||
651 | |||
652 | &MULSTEP_512(\@X, "(+$pDst_o+8*$i)($pDst)", $pB, $OP, $TMP); | ||
653 | push(@X,shift(@X)); | ||
654 | } | ||
655 | |||
656 | $code.=<<___; | ||
657 | mov $X[0], (+$pDst_o+8*8)($pDst) | ||
658 | mov $X[1], (+$pDst_o+8*9)($pDst) | ||
659 | mov $X[2], (+$pDst_o+8*10)($pDst) | ||
660 | mov $X[3], (+$pDst_o+8*11)($pDst) | ||
661 | mov $X[4], (+$pDst_o+8*12)($pDst) | ||
662 | mov $X[5], (+$pDst_o+8*13)($pDst) | ||
663 | mov $X[6], (+$pDst_o+8*14)($pDst) | ||
664 | mov $X[7], (+$pDst_o+8*15)($pDst) | ||
665 | ___ | ||
666 | } | ||
667 | |||
668 | # | ||
669 | # mont_mul_a3b : subroutine to compute (Src1 * Src2) % M (all 512-bits) | ||
670 | # Input: src1: Address of source 1: rdi | ||
671 | # src2: Address of source 2: rsi | ||
672 | # Output: dst: Address of destination: [red_res_addr] | ||
673 | # src2 and result also in: r9, r8, r15, r14, r13, r12, r11, r10 | ||
674 | # Temp: Clobbers [tmp16], all registers | ||
675 | $code.=<<___; | ||
676 | .type mont_mul_a3b,\@abi-omnipotent | ||
677 | .align 16 | ||
678 | mont_mul_a3b: | ||
679 | # | ||
680 | # multiply tmp = src1 * src2 | ||
681 | # For multiply: dst = rcx, src1 = rdi, src2 = rsi | ||
682 | # stack depth is extra 8 from call | ||
683 | ___ | ||
684 | &MUL_512x512("%rsp+$tmp16_offset+8", "%rdi", "%rsi", [map("%r$_",(10..15,8..9))], "%rbp", "%rbx"); | ||
685 | $code.=<<___; | ||
686 | # | ||
687 | # Dst = tmp % m | ||
688 | # Call reduce(tmp, m, data, dst) | ||
689 | |||
690 | # tail recursion optimization: jmp to mont_reduce and return from there | ||
691 | jmp mont_reduce | ||
692 | # call mont_reduce | ||
693 | # ret | ||
694 | .size mont_mul_a3b,.-mont_mul_a3b | ||
695 | ___ | ||
696 | }}} | ||
697 | |||
698 | {{{ | ||
699 | #SQR_512 MACRO pDest, pA, x7, x6, x5, x4, x3, x2, x1, x0, tmp*4 | ||
700 | # | ||
701 | # Input in memory [pA] and also in x7...x0 | ||
702 | # Uses all argument registers plus rax and rdx | ||
703 | # | ||
704 | # This version computes all of the off-diagonal terms into memory, | ||
705 | # and then it adds in the diagonal terms | ||
706 | |||
707 | sub SQR_512 | ||
708 | { | ||
709 | my ($pDst, $pA, $x, $A, $tmp, $x7, $x6, $pDst_o)=@_; | ||
710 | my ($pDst, $pDst_o) = ($pDst =~ m/([^+]*)\+?(.*)?/); | ||
711 | my @X=@$x; # make a copy | ||
712 | $code.=<<___; | ||
713 | # ------------------ | ||
714 | # first pass 01...07 | ||
715 | # ------------------ | ||
716 | mov $X[0], $A | ||
717 | |||
718 | mov $X[1],%rax | ||
719 | mul $A | ||
720 | mov %rax, (+$pDst_o+8*1)($pDst) | ||
721 | ___ | ||
722 | for(my $i=2;$i<8;$i++) { | ||
723 | $code.=<<___; | ||
724 | mov %rdx, $X[$i-2] | ||
725 | mov $X[$i],%rax | ||
726 | mul $A | ||
727 | add %rax, $X[$i-2] | ||
728 | adc \$0, %rdx | ||
729 | ___ | ||
730 | } | ||
731 | $code.=<<___; | ||
732 | mov %rdx, $x7 | ||
733 | |||
734 | mov $X[0], (+$pDst_o+8*2)($pDst) | ||
735 | |||
736 | # ------------------ | ||
737 | # second pass 12...17 | ||
738 | # ------------------ | ||
739 | |||
740 | mov (+8*1)($pA), $A | ||
741 | |||
742 | mov (+8*2)($pA),%rax | ||
743 | mul $A | ||
744 | add %rax, $X[1] | ||
745 | adc \$0, %rdx | ||
746 | mov $X[1], (+$pDst_o+8*3)($pDst) | ||
747 | |||
748 | mov %rdx, $X[0] | ||
749 | mov (+8*3)($pA),%rax | ||
750 | mul $A | ||
751 | add %rax, $X[2] | ||
752 | adc \$0, %rdx | ||
753 | add $X[0], $X[2] | ||
754 | adc \$0, %rdx | ||
755 | mov $X[2], (+$pDst_o+8*4)($pDst) | ||
756 | |||
757 | mov %rdx, $X[0] | ||
758 | mov (+8*4)($pA),%rax | ||
759 | mul $A | ||
760 | add %rax, $X[3] | ||
761 | adc \$0, %rdx | ||
762 | add $X[0], $X[3] | ||
763 | adc \$0, %rdx | ||
764 | |||
765 | mov %rdx, $X[0] | ||
766 | mov (+8*5)($pA),%rax | ||
767 | mul $A | ||
768 | add %rax, $X[4] | ||
769 | adc \$0, %rdx | ||
770 | add $X[0], $X[4] | ||
771 | adc \$0, %rdx | ||
772 | |||
773 | mov %rdx, $X[0] | ||
774 | mov $X[6],%rax | ||
775 | mul $A | ||
776 | add %rax, $X[5] | ||
777 | adc \$0, %rdx | ||
778 | add $X[0], $X[5] | ||
779 | adc \$0, %rdx | ||
780 | |||
781 | mov %rdx, $X[0] | ||
782 | mov $X[7],%rax | ||
783 | mul $A | ||
784 | add %rax, $x7 | ||
785 | adc \$0, %rdx | ||
786 | add $X[0], $x7 | ||
787 | adc \$0, %rdx | ||
788 | |||
789 | mov %rdx, $X[1] | ||
790 | |||
791 | # ------------------ | ||
792 | # third pass 23...27 | ||
793 | # ------------------ | ||
794 | mov (+8*2)($pA), $A | ||
795 | |||
796 | mov (+8*3)($pA),%rax | ||
797 | mul $A | ||
798 | add %rax, $X[3] | ||
799 | adc \$0, %rdx | ||
800 | mov $X[3], (+$pDst_o+8*5)($pDst) | ||
801 | |||
802 | mov %rdx, $X[0] | ||
803 | mov (+8*4)($pA),%rax | ||
804 | mul $A | ||
805 | add %rax, $X[4] | ||
806 | adc \$0, %rdx | ||
807 | add $X[0], $X[4] | ||
808 | adc \$0, %rdx | ||
809 | mov $X[4], (+$pDst_o+8*6)($pDst) | ||
810 | |||
811 | mov %rdx, $X[0] | ||
812 | mov (+8*5)($pA),%rax | ||
813 | mul $A | ||
814 | add %rax, $X[5] | ||
815 | adc \$0, %rdx | ||
816 | add $X[0], $X[5] | ||
817 | adc \$0, %rdx | ||
818 | |||
819 | mov %rdx, $X[0] | ||
820 | mov $X[6],%rax | ||
821 | mul $A | ||
822 | add %rax, $x7 | ||
823 | adc \$0, %rdx | ||
824 | add $X[0], $x7 | ||
825 | adc \$0, %rdx | ||
826 | |||
827 | mov %rdx, $X[0] | ||
828 | mov $X[7],%rax | ||
829 | mul $A | ||
830 | add %rax, $X[1] | ||
831 | adc \$0, %rdx | ||
832 | add $X[0], $X[1] | ||
833 | adc \$0, %rdx | ||
834 | |||
835 | mov %rdx, $X[2] | ||
836 | |||
837 | # ------------------ | ||
838 | # fourth pass 34...37 | ||
839 | # ------------------ | ||
840 | |||
841 | mov (+8*3)($pA), $A | ||
842 | |||
843 | mov (+8*4)($pA),%rax | ||
844 | mul $A | ||
845 | add %rax, $X[5] | ||
846 | adc \$0, %rdx | ||
847 | mov $X[5], (+$pDst_o+8*7)($pDst) | ||
848 | |||
849 | mov %rdx, $X[0] | ||
850 | mov (+8*5)($pA),%rax | ||
851 | mul $A | ||
852 | add %rax, $x7 | ||
853 | adc \$0, %rdx | ||
854 | add $X[0], $x7 | ||
855 | adc \$0, %rdx | ||
856 | mov $x7, (+$pDst_o+8*8)($pDst) | ||
857 | |||
858 | mov %rdx, $X[0] | ||
859 | mov $X[6],%rax | ||
860 | mul $A | ||
861 | add %rax, $X[1] | ||
862 | adc \$0, %rdx | ||
863 | add $X[0], $X[1] | ||
864 | adc \$0, %rdx | ||
865 | |||
866 | mov %rdx, $X[0] | ||
867 | mov $X[7],%rax | ||
868 | mul $A | ||
869 | add %rax, $X[2] | ||
870 | adc \$0, %rdx | ||
871 | add $X[0], $X[2] | ||
872 | adc \$0, %rdx | ||
873 | |||
874 | mov %rdx, $X[5] | ||
875 | |||
876 | # ------------------ | ||
877 | # fifth pass 45...47 | ||
878 | # ------------------ | ||
879 | mov (+8*4)($pA), $A | ||
880 | |||
881 | mov (+8*5)($pA),%rax | ||
882 | mul $A | ||
883 | add %rax, $X[1] | ||
884 | adc \$0, %rdx | ||
885 | mov $X[1], (+$pDst_o+8*9)($pDst) | ||
886 | |||
887 | mov %rdx, $X[0] | ||
888 | mov $X[6],%rax | ||
889 | mul $A | ||
890 | add %rax, $X[2] | ||
891 | adc \$0, %rdx | ||
892 | add $X[0], $X[2] | ||
893 | adc \$0, %rdx | ||
894 | mov $X[2], (+$pDst_o+8*10)($pDst) | ||
895 | |||
896 | mov %rdx, $X[0] | ||
897 | mov $X[7],%rax | ||
898 | mul $A | ||
899 | add %rax, $X[5] | ||
900 | adc \$0, %rdx | ||
901 | add $X[0], $X[5] | ||
902 | adc \$0, %rdx | ||
903 | |||
904 | mov %rdx, $X[1] | ||
905 | |||
906 | # ------------------ | ||
907 | # sixth pass 56...57 | ||
908 | # ------------------ | ||
909 | mov (+8*5)($pA), $A | ||
910 | |||
911 | mov $X[6],%rax | ||
912 | mul $A | ||
913 | add %rax, $X[5] | ||
914 | adc \$0, %rdx | ||
915 | mov $X[5], (+$pDst_o+8*11)($pDst) | ||
916 | |||
917 | mov %rdx, $X[0] | ||
918 | mov $X[7],%rax | ||
919 | mul $A | ||
920 | add %rax, $X[1] | ||
921 | adc \$0, %rdx | ||
922 | add $X[0], $X[1] | ||
923 | adc \$0, %rdx | ||
924 | mov $X[1], (+$pDst_o+8*12)($pDst) | ||
925 | |||
926 | mov %rdx, $X[2] | ||
927 | |||
928 | # ------------------ | ||
929 | # seventh pass 67 | ||
930 | # ------------------ | ||
931 | mov $X[6], $A | ||
932 | |||
933 | mov $X[7],%rax | ||
934 | mul $A | ||
935 | add %rax, $X[2] | ||
936 | adc \$0, %rdx | ||
937 | mov $X[2], (+$pDst_o+8*13)($pDst) | ||
938 | |||
939 | mov %rdx, (+$pDst_o+8*14)($pDst) | ||
940 | |||
941 | # start finalize (add in squares, and double off-terms) | ||
942 | mov (+$pDst_o+8*1)($pDst), $X[0] | ||
943 | mov (+$pDst_o+8*2)($pDst), $X[1] | ||
944 | mov (+$pDst_o+8*3)($pDst), $X[2] | ||
945 | mov (+$pDst_o+8*4)($pDst), $X[3] | ||
946 | mov (+$pDst_o+8*5)($pDst), $X[4] | ||
947 | mov (+$pDst_o+8*6)($pDst), $X[5] | ||
948 | |||
949 | mov (+8*3)($pA), %rax | ||
950 | mul %rax | ||
951 | mov %rax, $x6 | ||
952 | mov %rdx, $X[6] | ||
953 | |||
954 | add $X[0], $X[0] | ||
955 | adc $X[1], $X[1] | ||
956 | adc $X[2], $X[2] | ||
957 | adc $X[3], $X[3] | ||
958 | adc $X[4], $X[4] | ||
959 | adc $X[5], $X[5] | ||
960 | adc \$0, $X[6] | ||
961 | |||
962 | mov (+8*0)($pA), %rax | ||
963 | mul %rax | ||
964 | mov %rax, (+$pDst_o+8*0)($pDst) | ||
965 | mov %rdx, $A | ||
966 | |||
967 | mov (+8*1)($pA), %rax | ||
968 | mul %rax | ||
969 | |||
970 | add $A, $X[0] | ||
971 | adc %rax, $X[1] | ||
972 | adc \$0, %rdx | ||
973 | |||
974 | mov %rdx, $A | ||
975 | mov $X[0], (+$pDst_o+8*1)($pDst) | ||
976 | mov $X[1], (+$pDst_o+8*2)($pDst) | ||
977 | |||
978 | mov (+8*2)($pA), %rax | ||
979 | mul %rax | ||
980 | |||
981 | add $A, $X[2] | ||
982 | adc %rax, $X[3] | ||
983 | adc \$0, %rdx | ||
984 | |||
985 | mov %rdx, $A | ||
986 | |||
987 | mov $X[2], (+$pDst_o+8*3)($pDst) | ||
988 | mov $X[3], (+$pDst_o+8*4)($pDst) | ||
989 | |||
990 | xor $tmp, $tmp | ||
991 | add $A, $X[4] | ||
992 | adc $x6, $X[5] | ||
993 | adc \$0, $tmp | ||
994 | |||
995 | mov $X[4], (+$pDst_o+8*5)($pDst) | ||
996 | mov $X[5], (+$pDst_o+8*6)($pDst) | ||
997 | |||
998 | # %%tmp has 0/1 in column 7 | ||
999 | # %%A6 has a full value in column 7 | ||
1000 | |||
1001 | mov (+$pDst_o+8*7)($pDst), $X[0] | ||
1002 | mov (+$pDst_o+8*8)($pDst), $X[1] | ||
1003 | mov (+$pDst_o+8*9)($pDst), $X[2] | ||
1004 | mov (+$pDst_o+8*10)($pDst), $X[3] | ||
1005 | mov (+$pDst_o+8*11)($pDst), $X[4] | ||
1006 | mov (+$pDst_o+8*12)($pDst), $X[5] | ||
1007 | mov (+$pDst_o+8*13)($pDst), $x6 | ||
1008 | mov (+$pDst_o+8*14)($pDst), $x7 | ||
1009 | |||
1010 | mov $X[7], %rax | ||
1011 | mul %rax | ||
1012 | mov %rax, $X[7] | ||
1013 | mov %rdx, $A | ||
1014 | |||
1015 | add $X[0], $X[0] | ||
1016 | adc $X[1], $X[1] | ||
1017 | adc $X[2], $X[2] | ||
1018 | adc $X[3], $X[3] | ||
1019 | adc $X[4], $X[4] | ||
1020 | adc $X[5], $X[5] | ||
1021 | adc $x6, $x6 | ||
1022 | adc $x7, $x7 | ||
1023 | adc \$0, $A | ||
1024 | |||
1025 | add $tmp, $X[0] | ||
1026 | |||
1027 | mov (+8*4)($pA), %rax | ||
1028 | mul %rax | ||
1029 | |||
1030 | add $X[6], $X[0] | ||
1031 | adc %rax, $X[1] | ||
1032 | adc \$0, %rdx | ||
1033 | |||
1034 | mov %rdx, $tmp | ||
1035 | |||
1036 | mov $X[0], (+$pDst_o+8*7)($pDst) | ||
1037 | mov $X[1], (+$pDst_o+8*8)($pDst) | ||
1038 | |||
1039 | mov (+8*5)($pA), %rax | ||
1040 | mul %rax | ||
1041 | |||
1042 | add $tmp, $X[2] | ||
1043 | adc %rax, $X[3] | ||
1044 | adc \$0, %rdx | ||
1045 | |||
1046 | mov %rdx, $tmp | ||
1047 | |||
1048 | mov $X[2], (+$pDst_o+8*9)($pDst) | ||
1049 | mov $X[3], (+$pDst_o+8*10)($pDst) | ||
1050 | |||
1051 | mov (+8*6)($pA), %rax | ||
1052 | mul %rax | ||
1053 | |||
1054 | add $tmp, $X[4] | ||
1055 | adc %rax, $X[5] | ||
1056 | adc \$0, %rdx | ||
1057 | |||
1058 | mov $X[4], (+$pDst_o+8*11)($pDst) | ||
1059 | mov $X[5], (+$pDst_o+8*12)($pDst) | ||
1060 | |||
1061 | add %rdx, $x6 | ||
1062 | adc $X[7], $x7 | ||
1063 | adc \$0, $A | ||
1064 | |||
1065 | mov $x6, (+$pDst_o+8*13)($pDst) | ||
1066 | mov $x7, (+$pDst_o+8*14)($pDst) | ||
1067 | mov $A, (+$pDst_o+8*15)($pDst) | ||
1068 | ___ | ||
1069 | } | ||
1070 | |||
1071 | # | ||
1072 | # sqr_reduce: subroutine to compute Result = reduce(Result * Result) | ||
1073 | # | ||
1074 | # input and result also in: r9, r8, r15, r14, r13, r12, r11, r10 | ||
1075 | # | ||
1076 | $code.=<<___; | ||
1077 | .type sqr_reduce,\@abi-omnipotent | ||
1078 | .align 16 | ||
1079 | sqr_reduce: | ||
1080 | mov (+$pResult_offset+8)(%rsp), %rcx | ||
1081 | ___ | ||
1082 | &SQR_512("%rsp+$tmp16_offset+8", "%rcx", [map("%r$_",(10..15,8..9))], "%rbx", "%rbp", "%rsi", "%rdi"); | ||
1083 | $code.=<<___; | ||
1084 | # tail recursion optimization: jmp to mont_reduce and return from there | ||
1085 | jmp mont_reduce | ||
1086 | # call mont_reduce | ||
1087 | # ret | ||
1088 | .size sqr_reduce,.-sqr_reduce | ||
1089 | ___ | ||
1090 | }}} | ||
1091 | |||
1092 | # | ||
1093 | # MAIN FUNCTION | ||
1094 | # | ||
1095 | |||
1096 | #mod_exp_512(UINT64 *result, /* 512 bits, 8 qwords */ | ||
1097 | # UINT64 *g, /* 512 bits, 8 qwords */ | ||
1098 | # UINT64 *exp, /* 512 bits, 8 qwords */ | ||
1099 | # struct mod_ctx_512 *data) | ||
1100 | |||
1101 | # window size = 5 | ||
1102 | # table size = 2^5 = 32 | ||
1103 | #table_entries equ 32 | ||
1104 | #table_size equ table_entries * 8 | ||
1105 | $code.=<<___; | ||
1106 | .globl mod_exp_512 | ||
1107 | .type mod_exp_512,\@function,4 | ||
1108 | mod_exp_512: | ||
1109 | push %rbp | ||
1110 | push %rbx | ||
1111 | push %r12 | ||
1112 | push %r13 | ||
1113 | push %r14 | ||
1114 | push %r15 | ||
1115 | |||
1116 | # adjust stack down and then align it with cache boundary | ||
1117 | mov %rsp, %r8 | ||
1118 | sub \$$mem_size, %rsp | ||
1119 | and \$-64, %rsp | ||
1120 | |||
1121 | # store previous stack pointer and arguments | ||
1122 | mov %r8, (+$rsp_offset)(%rsp) | ||
1123 | mov %rdi, (+$pResult_offset)(%rsp) | ||
1124 | mov %rsi, (+$pG_offset)(%rsp) | ||
1125 | mov %rcx, (+$pData_offset)(%rsp) | ||
1126 | .Lbody: | ||
1127 | # transform g into montgomery space | ||
1128 | # GT = reduce(g * C2) = reduce(g * (2^256)) | ||
1129 | # reduce expects to have the input in [tmp16] | ||
1130 | pxor %xmm4, %xmm4 | ||
1131 | movdqu (+16*0)(%rsi), %xmm0 | ||
1132 | movdqu (+16*1)(%rsi), %xmm1 | ||
1133 | movdqu (+16*2)(%rsi), %xmm2 | ||
1134 | movdqu (+16*3)(%rsi), %xmm3 | ||
1135 | movdqa %xmm4, (+$tmp16_offset+16*0)(%rsp) | ||
1136 | movdqa %xmm4, (+$tmp16_offset+16*1)(%rsp) | ||
1137 | movdqa %xmm4, (+$tmp16_offset+16*6)(%rsp) | ||
1138 | movdqa %xmm4, (+$tmp16_offset+16*7)(%rsp) | ||
1139 | movdqa %xmm0, (+$tmp16_offset+16*2)(%rsp) | ||
1140 | movdqa %xmm1, (+$tmp16_offset+16*3)(%rsp) | ||
1141 | movdqa %xmm2, (+$tmp16_offset+16*4)(%rsp) | ||
1142 | movdqa %xmm3, (+$tmp16_offset+16*5)(%rsp) | ||
1143 | |||
1144 | # load pExp before rdx gets blown away | ||
1145 | movdqu (+16*0)(%rdx), %xmm0 | ||
1146 | movdqu (+16*1)(%rdx), %xmm1 | ||
1147 | movdqu (+16*2)(%rdx), %xmm2 | ||
1148 | movdqu (+16*3)(%rdx), %xmm3 | ||
1149 | |||
1150 | lea (+$GT_offset)(%rsp), %rbx | ||
1151 | mov %rbx, (+$red_result_addr_offset)(%rsp) | ||
1152 | call mont_reduce | ||
1153 | |||
1154 | # Initialize tmp = C | ||
1155 | lea (+$tmp_offset)(%rsp), %rcx | ||
1156 | xor %rax, %rax | ||
1157 | mov %rax, (+8*0)(%rcx) | ||
1158 | mov %rax, (+8*1)(%rcx) | ||
1159 | mov %rax, (+8*3)(%rcx) | ||
1160 | mov %rax, (+8*4)(%rcx) | ||
1161 | mov %rax, (+8*5)(%rcx) | ||
1162 | mov %rax, (+8*6)(%rcx) | ||
1163 | mov %rax, (+8*7)(%rcx) | ||
1164 | mov %rax, (+$exp_offset+8*8)(%rsp) | ||
1165 | movq \$1, (+8*2)(%rcx) | ||
1166 | |||
1167 | lea (+$garray_offset)(%rsp), %rbp | ||
1168 | mov %rcx, %rsi # pTmp | ||
1169 | mov %rbp, %rdi # Garray[][0] | ||
1170 | ___ | ||
1171 | |||
1172 | &swizzle("%rdi", "%rcx", "%rax", "%rbx"); | ||
1173 | |||
1174 | # for (rax = 31; rax != 0; rax--) { | ||
1175 | # tmp = reduce(tmp * G) | ||
1176 | # swizzle(pg, tmp); | ||
1177 | # pg += 2; } | ||
1178 | $code.=<<___; | ||
1179 | mov \$31, %rax | ||
1180 | mov %rax, (+$i_offset)(%rsp) | ||
1181 | mov %rbp, (+$pg_offset)(%rsp) | ||
1182 | # rsi -> pTmp | ||
1183 | mov %rsi, (+$red_result_addr_offset)(%rsp) | ||
1184 | mov (+8*0)(%rsi), %r10 | ||
1185 | mov (+8*1)(%rsi), %r11 | ||
1186 | mov (+8*2)(%rsi), %r12 | ||
1187 | mov (+8*3)(%rsi), %r13 | ||
1188 | mov (+8*4)(%rsi), %r14 | ||
1189 | mov (+8*5)(%rsi), %r15 | ||
1190 | mov (+8*6)(%rsi), %r8 | ||
1191 | mov (+8*7)(%rsi), %r9 | ||
1192 | init_loop: | ||
1193 | lea (+$GT_offset)(%rsp), %rdi | ||
1194 | call mont_mul_a3b | ||
1195 | lea (+$tmp_offset)(%rsp), %rsi | ||
1196 | mov (+$pg_offset)(%rsp), %rbp | ||
1197 | add \$2, %rbp | ||
1198 | mov %rbp, (+$pg_offset)(%rsp) | ||
1199 | mov %rsi, %rcx # rcx = rsi = addr of tmp | ||
1200 | ___ | ||
1201 | |||
1202 | &swizzle("%rbp", "%rcx", "%rax", "%rbx"); | ||
1203 | $code.=<<___; | ||
1204 | mov (+$i_offset)(%rsp), %rax | ||
1205 | sub \$1, %rax | ||
1206 | mov %rax, (+$i_offset)(%rsp) | ||
1207 | jne init_loop | ||
1208 | |||
1209 | # | ||
1210 | # Copy exponent onto stack | ||
1211 | movdqa %xmm0, (+$exp_offset+16*0)(%rsp) | ||
1212 | movdqa %xmm1, (+$exp_offset+16*1)(%rsp) | ||
1213 | movdqa %xmm2, (+$exp_offset+16*2)(%rsp) | ||
1214 | movdqa %xmm3, (+$exp_offset+16*3)(%rsp) | ||
1215 | |||
1216 | |||
1217 | # | ||
1218 | # Do exponentiation | ||
1219 | # Initialize result to G[exp{511:507}] | ||
1220 | mov (+$exp_offset+62)(%rsp), %eax | ||
1221 | mov %rax, %rdx | ||
1222 | shr \$11, %rax | ||
1223 | and \$0x07FF, %edx | ||
1224 | mov %edx, (+$exp_offset+62)(%rsp) | ||
1225 | lea (+$garray_offset)(%rsp,%rax,2), %rsi | ||
1226 | mov (+$pResult_offset)(%rsp), %rdx | ||
1227 | ___ | ||
1228 | |||
1229 | &unswizzle("%rdx", "%rsi", "%rbp", "%rbx", "%rax"); | ||
1230 | |||
1231 | # | ||
1232 | # Loop variables | ||
1233 | # rcx = [loop_idx] = index: 510-5 to 0 by 5 | ||
1234 | $code.=<<___; | ||
1235 | movq \$505, (+$loop_idx_offset)(%rsp) | ||
1236 | |||
1237 | mov (+$pResult_offset)(%rsp), %rcx | ||
1238 | mov %rcx, (+$red_result_addr_offset)(%rsp) | ||
1239 | mov (+8*0)(%rcx), %r10 | ||
1240 | mov (+8*1)(%rcx), %r11 | ||
1241 | mov (+8*2)(%rcx), %r12 | ||
1242 | mov (+8*3)(%rcx), %r13 | ||
1243 | mov (+8*4)(%rcx), %r14 | ||
1244 | mov (+8*5)(%rcx), %r15 | ||
1245 | mov (+8*6)(%rcx), %r8 | ||
1246 | mov (+8*7)(%rcx), %r9 | ||
1247 | jmp sqr_2 | ||
1248 | |||
1249 | main_loop_a3b: | ||
1250 | call sqr_reduce | ||
1251 | call sqr_reduce | ||
1252 | call sqr_reduce | ||
1253 | sqr_2: | ||
1254 | call sqr_reduce | ||
1255 | call sqr_reduce | ||
1256 | |||
1257 | # | ||
1258 | # Do multiply, first look up proper value in Garray | ||
1259 | mov (+$loop_idx_offset)(%rsp), %rcx # bit index | ||
1260 | mov %rcx, %rax | ||
1261 | shr \$4, %rax # rax is word pointer | ||
1262 | mov (+$exp_offset)(%rsp,%rax,2), %edx | ||
1263 | and \$15, %rcx | ||
1264 | shrq %cl, %rdx | ||
1265 | and \$0x1F, %rdx | ||
1266 | |||
1267 | lea (+$garray_offset)(%rsp,%rdx,2), %rsi | ||
1268 | lea (+$tmp_offset)(%rsp), %rdx | ||
1269 | mov %rdx, %rdi | ||
1270 | ___ | ||
1271 | |||
1272 | &unswizzle("%rdx", "%rsi", "%rbp", "%rbx", "%rax"); | ||
1273 | # rdi = tmp = pG | ||
1274 | |||
1275 | # | ||
1276 | # Call mod_mul_a1(pDst, pSrc1, pSrc2, pM, pData) | ||
1277 | # result result pG M Data | ||
1278 | $code.=<<___; | ||
1279 | mov (+$pResult_offset)(%rsp), %rsi | ||
1280 | call mont_mul_a3b | ||
1281 | |||
1282 | # | ||
1283 | # finish loop | ||
1284 | mov (+$loop_idx_offset)(%rsp), %rcx | ||
1285 | sub \$5, %rcx | ||
1286 | mov %rcx, (+$loop_idx_offset)(%rsp) | ||
1287 | jge main_loop_a3b | ||
1288 | |||
1289 | # | ||
1290 | |||
1291 | end_main_loop_a3b: | ||
1292 | # transform result out of Montgomery space | ||
1293 | # result = reduce(result) | ||
1294 | mov (+$pResult_offset)(%rsp), %rdx | ||
1295 | pxor %xmm4, %xmm4 | ||
1296 | movdqu (+16*0)(%rdx), %xmm0 | ||
1297 | movdqu (+16*1)(%rdx), %xmm1 | ||
1298 | movdqu (+16*2)(%rdx), %xmm2 | ||
1299 | movdqu (+16*3)(%rdx), %xmm3 | ||
1300 | movdqa %xmm4, (+$tmp16_offset+16*4)(%rsp) | ||
1301 | movdqa %xmm4, (+$tmp16_offset+16*5)(%rsp) | ||
1302 | movdqa %xmm4, (+$tmp16_offset+16*6)(%rsp) | ||
1303 | movdqa %xmm4, (+$tmp16_offset+16*7)(%rsp) | ||
1304 | movdqa %xmm0, (+$tmp16_offset+16*0)(%rsp) | ||
1305 | movdqa %xmm1, (+$tmp16_offset+16*1)(%rsp) | ||
1306 | movdqa %xmm2, (+$tmp16_offset+16*2)(%rsp) | ||
1307 | movdqa %xmm3, (+$tmp16_offset+16*3)(%rsp) | ||
1308 | call mont_reduce | ||
1309 | |||
1310 | # If result > m, subract m | ||
1311 | # load result into r15:r8 | ||
1312 | mov (+$pResult_offset)(%rsp), %rax | ||
1313 | mov (+8*0)(%rax), %r8 | ||
1314 | mov (+8*1)(%rax), %r9 | ||
1315 | mov (+8*2)(%rax), %r10 | ||
1316 | mov (+8*3)(%rax), %r11 | ||
1317 | mov (+8*4)(%rax), %r12 | ||
1318 | mov (+8*5)(%rax), %r13 | ||
1319 | mov (+8*6)(%rax), %r14 | ||
1320 | mov (+8*7)(%rax), %r15 | ||
1321 | |||
1322 | # subtract m | ||
1323 | mov (+$pData_offset)(%rsp), %rbx | ||
1324 | add \$$M, %rbx | ||
1325 | |||
1326 | sub (+8*0)(%rbx), %r8 | ||
1327 | sbb (+8*1)(%rbx), %r9 | ||
1328 | sbb (+8*2)(%rbx), %r10 | ||
1329 | sbb (+8*3)(%rbx), %r11 | ||
1330 | sbb (+8*4)(%rbx), %r12 | ||
1331 | sbb (+8*5)(%rbx), %r13 | ||
1332 | sbb (+8*6)(%rbx), %r14 | ||
1333 | sbb (+8*7)(%rbx), %r15 | ||
1334 | |||
1335 | # if Carry is clear, replace result with difference | ||
1336 | mov (+8*0)(%rax), %rsi | ||
1337 | mov (+8*1)(%rax), %rdi | ||
1338 | mov (+8*2)(%rax), %rcx | ||
1339 | mov (+8*3)(%rax), %rdx | ||
1340 | cmovnc %r8, %rsi | ||
1341 | cmovnc %r9, %rdi | ||
1342 | cmovnc %r10, %rcx | ||
1343 | cmovnc %r11, %rdx | ||
1344 | mov %rsi, (+8*0)(%rax) | ||
1345 | mov %rdi, (+8*1)(%rax) | ||
1346 | mov %rcx, (+8*2)(%rax) | ||
1347 | mov %rdx, (+8*3)(%rax) | ||
1348 | |||
1349 | mov (+8*4)(%rax), %rsi | ||
1350 | mov (+8*5)(%rax), %rdi | ||
1351 | mov (+8*6)(%rax), %rcx | ||
1352 | mov (+8*7)(%rax), %rdx | ||
1353 | cmovnc %r12, %rsi | ||
1354 | cmovnc %r13, %rdi | ||
1355 | cmovnc %r14, %rcx | ||
1356 | cmovnc %r15, %rdx | ||
1357 | mov %rsi, (+8*4)(%rax) | ||
1358 | mov %rdi, (+8*5)(%rax) | ||
1359 | mov %rcx, (+8*6)(%rax) | ||
1360 | mov %rdx, (+8*7)(%rax) | ||
1361 | |||
1362 | mov (+$rsp_offset)(%rsp), %rsi | ||
1363 | mov 0(%rsi),%r15 | ||
1364 | mov 8(%rsi),%r14 | ||
1365 | mov 16(%rsi),%r13 | ||
1366 | mov 24(%rsi),%r12 | ||
1367 | mov 32(%rsi),%rbx | ||
1368 | mov 40(%rsi),%rbp | ||
1369 | lea 48(%rsi),%rsp | ||
1370 | .Lepilogue: | ||
1371 | ret | ||
1372 | .size mod_exp_512, . - mod_exp_512 | ||
1373 | ___ | ||
1374 | |||
1375 | sub reg_part { | ||
1376 | my ($reg,$conv)=@_; | ||
1377 | if ($reg =~ /%r[0-9]+/) { $reg .= $conv; } | ||
1378 | elsif ($conv eq "b") { $reg =~ s/%[er]([^x]+)x?/%$1l/; } | ||
1379 | elsif ($conv eq "w") { $reg =~ s/%[er](.+)/%$1/; } | ||
1380 | elsif ($conv eq "d") { $reg =~ s/%[er](.+)/%e$1/; } | ||
1381 | return $reg; | ||
1382 | } | ||
1383 | |||
1384 | $code =~ s/(%[a-z0-9]+)#([bwd])/reg_part($1,$2)/gem; | ||
1385 | $code =~ s/\`([^\`]*)\`/eval $1/gem; | ||
1386 | $code =~ s/(\(\+[^)]+\))/eval $1/gem; | ||
1387 | print $code; | ||
1388 | close STDOUT; | ||
diff --git a/src/lib/libcrypto/bn/asm/pa-risc2.s b/src/lib/libcrypto/bn/asm/pa-risc2.s deleted file mode 100644 index f3b16290eb..0000000000 --- a/src/lib/libcrypto/bn/asm/pa-risc2.s +++ /dev/null | |||
@@ -1,1618 +0,0 @@ | |||
1 | ; | ||
2 | ; PA-RISC 2.0 implementation of bn_asm code, based on the | ||
3 | ; 64-bit version of the code. This code is effectively the | ||
4 | ; same as the 64-bit version except the register model is | ||
5 | ; slightly different given all values must be 32-bit between | ||
6 | ; function calls. Thus the 64-bit return values are returned | ||
7 | ; in %ret0 and %ret1 vs just %ret0 as is done in 64-bit | ||
8 | ; | ||
9 | ; | ||
10 | ; This code is approximately 2x faster than the C version | ||
11 | ; for RSA/DSA. | ||
12 | ; | ||
13 | ; See http://devresource.hp.com/ for more details on the PA-RISC | ||
14 | ; architecture. Also see the book "PA-RISC 2.0 Architecture" | ||
15 | ; by Gerry Kane for information on the instruction set architecture. | ||
16 | ; | ||
17 | ; Code written by Chris Ruemmler (with some help from the HP C | ||
18 | ; compiler). | ||
19 | ; | ||
20 | ; The code compiles with HP's assembler | ||
21 | ; | ||
22 | |||
23 | .level 2.0N | ||
24 | .space $TEXT$ | ||
25 | .subspa $CODE$,QUAD=0,ALIGN=8,ACCESS=0x2c,CODE_ONLY | ||
26 | |||
27 | ; | ||
28 | ; Global Register definitions used for the routines. | ||
29 | ; | ||
30 | ; Some information about HP's runtime architecture for 32-bits. | ||
31 | ; | ||
32 | ; "Caller save" means the calling function must save the register | ||
33 | ; if it wants the register to be preserved. | ||
34 | ; "Callee save" means if a function uses the register, it must save | ||
35 | ; the value before using it. | ||
36 | ; | ||
37 | ; For the floating point registers | ||
38 | ; | ||
39 | ; "caller save" registers: fr4-fr11, fr22-fr31 | ||
40 | ; "callee save" registers: fr12-fr21 | ||
41 | ; "special" registers: fr0-fr3 (status and exception registers) | ||
42 | ; | ||
43 | ; For the integer registers | ||
44 | ; value zero : r0 | ||
45 | ; "caller save" registers: r1,r19-r26 | ||
46 | ; "callee save" registers: r3-r18 | ||
47 | ; return register : r2 (rp) | ||
48 | ; return values ; r28,r29 (ret0,ret1) | ||
49 | ; Stack pointer ; r30 (sp) | ||
50 | ; millicode return ptr ; r31 (also a caller save register) | ||
51 | |||
52 | |||
53 | ; | ||
54 | ; Arguments to the routines | ||
55 | ; | ||
56 | r_ptr .reg %r26 | ||
57 | a_ptr .reg %r25 | ||
58 | b_ptr .reg %r24 | ||
59 | num .reg %r24 | ||
60 | n .reg %r23 | ||
61 | |||
62 | ; | ||
63 | ; Note that the "w" argument for bn_mul_add_words and bn_mul_words | ||
64 | ; is passed on the stack at a delta of -56 from the top of stack | ||
65 | ; as the routine is entered. | ||
66 | ; | ||
67 | |||
68 | ; | ||
69 | ; Globals used in some routines | ||
70 | ; | ||
71 | |||
72 | top_overflow .reg %r23 | ||
73 | high_mask .reg %r22 ; value 0xffffffff80000000L | ||
74 | |||
75 | |||
76 | ;------------------------------------------------------------------------------ | ||
77 | ; | ||
78 | ; bn_mul_add_words | ||
79 | ; | ||
80 | ;BN_ULONG bn_mul_add_words(BN_ULONG *r_ptr, BN_ULONG *a_ptr, | ||
81 | ; int num, BN_ULONG w) | ||
82 | ; | ||
83 | ; arg0 = r_ptr | ||
84 | ; arg1 = a_ptr | ||
85 | ; arg3 = num | ||
86 | ; -56(sp) = w | ||
87 | ; | ||
88 | ; Local register definitions | ||
89 | ; | ||
90 | |||
91 | fm1 .reg %fr22 | ||
92 | fm .reg %fr23 | ||
93 | ht_temp .reg %fr24 | ||
94 | ht_temp_1 .reg %fr25 | ||
95 | lt_temp .reg %fr26 | ||
96 | lt_temp_1 .reg %fr27 | ||
97 | fm1_1 .reg %fr28 | ||
98 | fm_1 .reg %fr29 | ||
99 | |||
100 | fw_h .reg %fr7L | ||
101 | fw_l .reg %fr7R | ||
102 | fw .reg %fr7 | ||
103 | |||
104 | fht_0 .reg %fr8L | ||
105 | flt_0 .reg %fr8R | ||
106 | t_float_0 .reg %fr8 | ||
107 | |||
108 | fht_1 .reg %fr9L | ||
109 | flt_1 .reg %fr9R | ||
110 | t_float_1 .reg %fr9 | ||
111 | |||
112 | tmp_0 .reg %r31 | ||
113 | tmp_1 .reg %r21 | ||
114 | m_0 .reg %r20 | ||
115 | m_1 .reg %r19 | ||
116 | ht_0 .reg %r1 | ||
117 | ht_1 .reg %r3 | ||
118 | lt_0 .reg %r4 | ||
119 | lt_1 .reg %r5 | ||
120 | m1_0 .reg %r6 | ||
121 | m1_1 .reg %r7 | ||
122 | rp_val .reg %r8 | ||
123 | rp_val_1 .reg %r9 | ||
124 | |||
125 | bn_mul_add_words | ||
126 | .export bn_mul_add_words,entry,NO_RELOCATION,LONG_RETURN | ||
127 | .proc | ||
128 | .callinfo frame=128 | ||
129 | .entry | ||
130 | .align 64 | ||
131 | |||
132 | STD %r3,0(%sp) ; save r3 | ||
133 | STD %r4,8(%sp) ; save r4 | ||
134 | NOP ; Needed to make the loop 16-byte aligned | ||
135 | NOP ; needed to make the loop 16-byte aligned | ||
136 | |||
137 | STD %r5,16(%sp) ; save r5 | ||
138 | NOP | ||
139 | STD %r6,24(%sp) ; save r6 | ||
140 | STD %r7,32(%sp) ; save r7 | ||
141 | |||
142 | STD %r8,40(%sp) ; save r8 | ||
143 | STD %r9,48(%sp) ; save r9 | ||
144 | COPY %r0,%ret1 ; return 0 by default | ||
145 | DEPDI,Z 1,31,1,top_overflow ; top_overflow = 1 << 32 | ||
146 | |||
147 | CMPIB,>= 0,num,bn_mul_add_words_exit ; if (num <= 0) then exit | ||
148 | LDO 128(%sp),%sp ; bump stack | ||
149 | |||
150 | ; | ||
151 | ; The loop is unrolled twice, so if there is only 1 number | ||
152 | ; then go straight to the cleanup code. | ||
153 | ; | ||
154 | CMPIB,= 1,num,bn_mul_add_words_single_top | ||
155 | FLDD -184(%sp),fw ; (-56-128) load up w into fw (fw_h/fw_l) | ||
156 | |||
157 | ; | ||
158 | ; This loop is unrolled 2 times (64-byte aligned as well) | ||
159 | ; | ||
160 | ; PA-RISC 2.0 chips have two fully pipelined multipliers, thus | ||
161 | ; two 32-bit mutiplies can be issued per cycle. | ||
162 | ; | ||
163 | bn_mul_add_words_unroll2 | ||
164 | |||
165 | FLDD 0(a_ptr),t_float_0 ; load up 64-bit value (fr8L) ht(L)/lt(R) | ||
166 | FLDD 8(a_ptr),t_float_1 ; load up 64-bit value (fr8L) ht(L)/lt(R) | ||
167 | LDD 0(r_ptr),rp_val ; rp[0] | ||
168 | LDD 8(r_ptr),rp_val_1 ; rp[1] | ||
169 | |||
170 | XMPYU fht_0,fw_l,fm1 ; m1[0] = fht_0*fw_l | ||
171 | XMPYU fht_1,fw_l,fm1_1 ; m1[1] = fht_1*fw_l | ||
172 | FSTD fm1,-16(%sp) ; -16(sp) = m1[0] | ||
173 | FSTD fm1_1,-48(%sp) ; -48(sp) = m1[1] | ||
174 | |||
175 | XMPYU flt_0,fw_h,fm ; m[0] = flt_0*fw_h | ||
176 | XMPYU flt_1,fw_h,fm_1 ; m[1] = flt_1*fw_h | ||
177 | FSTD fm,-8(%sp) ; -8(sp) = m[0] | ||
178 | FSTD fm_1,-40(%sp) ; -40(sp) = m[1] | ||
179 | |||
180 | XMPYU fht_0,fw_h,ht_temp ; ht_temp = fht_0*fw_h | ||
181 | XMPYU fht_1,fw_h,ht_temp_1 ; ht_temp_1 = fht_1*fw_h | ||
182 | FSTD ht_temp,-24(%sp) ; -24(sp) = ht_temp | ||
183 | FSTD ht_temp_1,-56(%sp) ; -56(sp) = ht_temp_1 | ||
184 | |||
185 | XMPYU flt_0,fw_l,lt_temp ; lt_temp = lt*fw_l | ||
186 | XMPYU flt_1,fw_l,lt_temp_1 ; lt_temp = lt*fw_l | ||
187 | FSTD lt_temp,-32(%sp) ; -32(sp) = lt_temp | ||
188 | FSTD lt_temp_1,-64(%sp) ; -64(sp) = lt_temp_1 | ||
189 | |||
190 | LDD -8(%sp),m_0 ; m[0] | ||
191 | LDD -40(%sp),m_1 ; m[1] | ||
192 | LDD -16(%sp),m1_0 ; m1[0] | ||
193 | LDD -48(%sp),m1_1 ; m1[1] | ||
194 | |||
195 | LDD -24(%sp),ht_0 ; ht[0] | ||
196 | LDD -56(%sp),ht_1 ; ht[1] | ||
197 | ADD,L m1_0,m_0,tmp_0 ; tmp_0 = m[0] + m1[0]; | ||
198 | ADD,L m1_1,m_1,tmp_1 ; tmp_1 = m[1] + m1[1]; | ||
199 | |||
200 | LDD -32(%sp),lt_0 | ||
201 | LDD -64(%sp),lt_1 | ||
202 | CMPCLR,*>>= tmp_0,m1_0, %r0 ; if (m[0] < m1[0]) | ||
203 | ADD,L ht_0,top_overflow,ht_0 ; ht[0] += (1<<32) | ||
204 | |||
205 | CMPCLR,*>>= tmp_1,m1_1,%r0 ; if (m[1] < m1[1]) | ||
206 | ADD,L ht_1,top_overflow,ht_1 ; ht[1] += (1<<32) | ||
207 | EXTRD,U tmp_0,31,32,m_0 ; m[0]>>32 | ||
208 | DEPD,Z tmp_0,31,32,m1_0 ; m1[0] = m[0]<<32 | ||
209 | |||
210 | EXTRD,U tmp_1,31,32,m_1 ; m[1]>>32 | ||
211 | DEPD,Z tmp_1,31,32,m1_1 ; m1[1] = m[1]<<32 | ||
212 | ADD,L ht_0,m_0,ht_0 ; ht[0]+= (m[0]>>32) | ||
213 | ADD,L ht_1,m_1,ht_1 ; ht[1]+= (m[1]>>32) | ||
214 | |||
215 | ADD lt_0,m1_0,lt_0 ; lt[0] = lt[0]+m1[0]; | ||
216 | ADD,DC ht_0,%r0,ht_0 ; ht[0]++ | ||
217 | ADD lt_1,m1_1,lt_1 ; lt[1] = lt[1]+m1[1]; | ||
218 | ADD,DC ht_1,%r0,ht_1 ; ht[1]++ | ||
219 | |||
220 | ADD %ret1,lt_0,lt_0 ; lt[0] = lt[0] + c; | ||
221 | ADD,DC ht_0,%r0,ht_0 ; ht[0]++ | ||
222 | ADD lt_0,rp_val,lt_0 ; lt[0] = lt[0]+rp[0] | ||
223 | ADD,DC ht_0,%r0,ht_0 ; ht[0]++ | ||
224 | |||
225 | LDO -2(num),num ; num = num - 2; | ||
226 | ADD ht_0,lt_1,lt_1 ; lt[1] = lt[1] + ht_0 (c); | ||
227 | ADD,DC ht_1,%r0,ht_1 ; ht[1]++ | ||
228 | STD lt_0,0(r_ptr) ; rp[0] = lt[0] | ||
229 | |||
230 | ADD lt_1,rp_val_1,lt_1 ; lt[1] = lt[1]+rp[1] | ||
231 | ADD,DC ht_1,%r0,%ret1 ; ht[1]++ | ||
232 | LDO 16(a_ptr),a_ptr ; a_ptr += 2 | ||
233 | |||
234 | STD lt_1,8(r_ptr) ; rp[1] = lt[1] | ||
235 | CMPIB,<= 2,num,bn_mul_add_words_unroll2 ; go again if more to do | ||
236 | LDO 16(r_ptr),r_ptr ; r_ptr += 2 | ||
237 | |||
238 | CMPIB,=,N 0,num,bn_mul_add_words_exit ; are we done, or cleanup last one | ||
239 | |||
240 | ; | ||
241 | ; Top of loop aligned on 64-byte boundary | ||
242 | ; | ||
243 | bn_mul_add_words_single_top | ||
244 | FLDD 0(a_ptr),t_float_0 ; load up 64-bit value (fr8L) ht(L)/lt(R) | ||
245 | LDD 0(r_ptr),rp_val ; rp[0] | ||
246 | LDO 8(a_ptr),a_ptr ; a_ptr++ | ||
247 | XMPYU fht_0,fw_l,fm1 ; m1 = ht*fw_l | ||
248 | FSTD fm1,-16(%sp) ; -16(sp) = m1 | ||
249 | XMPYU flt_0,fw_h,fm ; m = lt*fw_h | ||
250 | FSTD fm,-8(%sp) ; -8(sp) = m | ||
251 | XMPYU fht_0,fw_h,ht_temp ; ht_temp = ht*fw_h | ||
252 | FSTD ht_temp,-24(%sp) ; -24(sp) = ht | ||
253 | XMPYU flt_0,fw_l,lt_temp ; lt_temp = lt*fw_l | ||
254 | FSTD lt_temp,-32(%sp) ; -32(sp) = lt | ||
255 | |||
256 | LDD -8(%sp),m_0 | ||
257 | LDD -16(%sp),m1_0 ; m1 = temp1 | ||
258 | ADD,L m_0,m1_0,tmp_0 ; tmp_0 = m + m1; | ||
259 | LDD -24(%sp),ht_0 | ||
260 | LDD -32(%sp),lt_0 | ||
261 | |||
262 | CMPCLR,*>>= tmp_0,m1_0,%r0 ; if (m < m1) | ||
263 | ADD,L ht_0,top_overflow,ht_0 ; ht += (1<<32) | ||
264 | |||
265 | EXTRD,U tmp_0,31,32,m_0 ; m>>32 | ||
266 | DEPD,Z tmp_0,31,32,m1_0 ; m1 = m<<32 | ||
267 | |||
268 | ADD,L ht_0,m_0,ht_0 ; ht+= (m>>32) | ||
269 | ADD lt_0,m1_0,tmp_0 ; tmp_0 = lt+m1; | ||
270 | ADD,DC ht_0,%r0,ht_0 ; ht++ | ||
271 | ADD %ret1,tmp_0,lt_0 ; lt = lt + c; | ||
272 | ADD,DC ht_0,%r0,ht_0 ; ht++ | ||
273 | ADD lt_0,rp_val,lt_0 ; lt = lt+rp[0] | ||
274 | ADD,DC ht_0,%r0,%ret1 ; ht++ | ||
275 | STD lt_0,0(r_ptr) ; rp[0] = lt | ||
276 | |||
277 | bn_mul_add_words_exit | ||
278 | .EXIT | ||
279 | |||
280 | EXTRD,U %ret1,31,32,%ret0 ; for 32-bit, return in ret0/ret1 | ||
281 | LDD -80(%sp),%r9 ; restore r9 | ||
282 | LDD -88(%sp),%r8 ; restore r8 | ||
283 | LDD -96(%sp),%r7 ; restore r7 | ||
284 | LDD -104(%sp),%r6 ; restore r6 | ||
285 | LDD -112(%sp),%r5 ; restore r5 | ||
286 | LDD -120(%sp),%r4 ; restore r4 | ||
287 | BVE (%rp) | ||
288 | LDD,MB -128(%sp),%r3 ; restore r3 | ||
289 | .PROCEND ;in=23,24,25,26,29;out=28; | ||
290 | |||
291 | ;---------------------------------------------------------------------------- | ||
292 | ; | ||
293 | ;BN_ULONG bn_mul_words(BN_ULONG *rp, BN_ULONG *ap, int num, BN_ULONG w) | ||
294 | ; | ||
295 | ; arg0 = rp | ||
296 | ; arg1 = ap | ||
297 | ; arg3 = num | ||
298 | ; w on stack at -56(sp) | ||
299 | |||
300 | bn_mul_words | ||
301 | .proc | ||
302 | .callinfo frame=128 | ||
303 | .entry | ||
304 | .EXPORT bn_mul_words,ENTRY,PRIV_LEV=3,NO_RELOCATION,LONG_RETURN | ||
305 | .align 64 | ||
306 | |||
307 | STD %r3,0(%sp) ; save r3 | ||
308 | STD %r4,8(%sp) ; save r4 | ||
309 | NOP | ||
310 | STD %r5,16(%sp) ; save r5 | ||
311 | |||
312 | STD %r6,24(%sp) ; save r6 | ||
313 | STD %r7,32(%sp) ; save r7 | ||
314 | COPY %r0,%ret1 ; return 0 by default | ||
315 | DEPDI,Z 1,31,1,top_overflow ; top_overflow = 1 << 32 | ||
316 | |||
317 | CMPIB,>= 0,num,bn_mul_words_exit | ||
318 | LDO 128(%sp),%sp ; bump stack | ||
319 | |||
320 | ; | ||
321 | ; See if only 1 word to do, thus just do cleanup | ||
322 | ; | ||
323 | CMPIB,= 1,num,bn_mul_words_single_top | ||
324 | FLDD -184(%sp),fw ; (-56-128) load up w into fw (fw_h/fw_l) | ||
325 | |||
326 | ; | ||
327 | ; This loop is unrolled 2 times (64-byte aligned as well) | ||
328 | ; | ||
329 | ; PA-RISC 2.0 chips have two fully pipelined multipliers, thus | ||
330 | ; two 32-bit mutiplies can be issued per cycle. | ||
331 | ; | ||
332 | bn_mul_words_unroll2 | ||
333 | |||
334 | FLDD 0(a_ptr),t_float_0 ; load up 64-bit value (fr8L) ht(L)/lt(R) | ||
335 | FLDD 8(a_ptr),t_float_1 ; load up 64-bit value (fr8L) ht(L)/lt(R) | ||
336 | XMPYU fht_0,fw_l,fm1 ; m1[0] = fht_0*fw_l | ||
337 | XMPYU fht_1,fw_l,fm1_1 ; m1[1] = ht*fw_l | ||
338 | |||
339 | FSTD fm1,-16(%sp) ; -16(sp) = m1 | ||
340 | FSTD fm1_1,-48(%sp) ; -48(sp) = m1 | ||
341 | XMPYU flt_0,fw_h,fm ; m = lt*fw_h | ||
342 | XMPYU flt_1,fw_h,fm_1 ; m = lt*fw_h | ||
343 | |||
344 | FSTD fm,-8(%sp) ; -8(sp) = m | ||
345 | FSTD fm_1,-40(%sp) ; -40(sp) = m | ||
346 | XMPYU fht_0,fw_h,ht_temp ; ht_temp = fht_0*fw_h | ||
347 | XMPYU fht_1,fw_h,ht_temp_1 ; ht_temp = ht*fw_h | ||
348 | |||
349 | FSTD ht_temp,-24(%sp) ; -24(sp) = ht | ||
350 | FSTD ht_temp_1,-56(%sp) ; -56(sp) = ht | ||
351 | XMPYU flt_0,fw_l,lt_temp ; lt_temp = lt*fw_l | ||
352 | XMPYU flt_1,fw_l,lt_temp_1 ; lt_temp = lt*fw_l | ||
353 | |||
354 | FSTD lt_temp,-32(%sp) ; -32(sp) = lt | ||
355 | FSTD lt_temp_1,-64(%sp) ; -64(sp) = lt | ||
356 | LDD -8(%sp),m_0 | ||
357 | LDD -40(%sp),m_1 | ||
358 | |||
359 | LDD -16(%sp),m1_0 | ||
360 | LDD -48(%sp),m1_1 | ||
361 | LDD -24(%sp),ht_0 | ||
362 | LDD -56(%sp),ht_1 | ||
363 | |||
364 | ADD,L m1_0,m_0,tmp_0 ; tmp_0 = m + m1; | ||
365 | ADD,L m1_1,m_1,tmp_1 ; tmp_1 = m + m1; | ||
366 | LDD -32(%sp),lt_0 | ||
367 | LDD -64(%sp),lt_1 | ||
368 | |||
369 | CMPCLR,*>>= tmp_0,m1_0, %r0 ; if (m < m1) | ||
370 | ADD,L ht_0,top_overflow,ht_0 ; ht += (1<<32) | ||
371 | CMPCLR,*>>= tmp_1,m1_1,%r0 ; if (m < m1) | ||
372 | ADD,L ht_1,top_overflow,ht_1 ; ht += (1<<32) | ||
373 | |||
374 | EXTRD,U tmp_0,31,32,m_0 ; m>>32 | ||
375 | DEPD,Z tmp_0,31,32,m1_0 ; m1 = m<<32 | ||
376 | EXTRD,U tmp_1,31,32,m_1 ; m>>32 | ||
377 | DEPD,Z tmp_1,31,32,m1_1 ; m1 = m<<32 | ||
378 | |||
379 | ADD,L ht_0,m_0,ht_0 ; ht+= (m>>32) | ||
380 | ADD,L ht_1,m_1,ht_1 ; ht+= (m>>32) | ||
381 | ADD lt_0,m1_0,lt_0 ; lt = lt+m1; | ||
382 | ADD,DC ht_0,%r0,ht_0 ; ht++ | ||
383 | |||
384 | ADD lt_1,m1_1,lt_1 ; lt = lt+m1; | ||
385 | ADD,DC ht_1,%r0,ht_1 ; ht++ | ||
386 | ADD %ret1,lt_0,lt_0 ; lt = lt + c (ret1); | ||
387 | ADD,DC ht_0,%r0,ht_0 ; ht++ | ||
388 | |||
389 | ADD ht_0,lt_1,lt_1 ; lt = lt + c (ht_0) | ||
390 | ADD,DC ht_1,%r0,ht_1 ; ht++ | ||
391 | STD lt_0,0(r_ptr) ; rp[0] = lt | ||
392 | STD lt_1,8(r_ptr) ; rp[1] = lt | ||
393 | |||
394 | COPY ht_1,%ret1 ; carry = ht | ||
395 | LDO -2(num),num ; num = num - 2; | ||
396 | LDO 16(a_ptr),a_ptr ; ap += 2 | ||
397 | CMPIB,<= 2,num,bn_mul_words_unroll2 | ||
398 | LDO 16(r_ptr),r_ptr ; rp++ | ||
399 | |||
400 | CMPIB,=,N 0,num,bn_mul_words_exit ; are we done? | ||
401 | |||
402 | ; | ||
403 | ; Top of loop aligned on 64-byte boundary | ||
404 | ; | ||
405 | bn_mul_words_single_top | ||
406 | FLDD 0(a_ptr),t_float_0 ; load up 64-bit value (fr8L) ht(L)/lt(R) | ||
407 | |||
408 | XMPYU fht_0,fw_l,fm1 ; m1 = ht*fw_l | ||
409 | FSTD fm1,-16(%sp) ; -16(sp) = m1 | ||
410 | XMPYU flt_0,fw_h,fm ; m = lt*fw_h | ||
411 | FSTD fm,-8(%sp) ; -8(sp) = m | ||
412 | XMPYU fht_0,fw_h,ht_temp ; ht_temp = ht*fw_h | ||
413 | FSTD ht_temp,-24(%sp) ; -24(sp) = ht | ||
414 | XMPYU flt_0,fw_l,lt_temp ; lt_temp = lt*fw_l | ||
415 | FSTD lt_temp,-32(%sp) ; -32(sp) = lt | ||
416 | |||
417 | LDD -8(%sp),m_0 | ||
418 | LDD -16(%sp),m1_0 | ||
419 | ADD,L m_0,m1_0,tmp_0 ; tmp_0 = m + m1; | ||
420 | LDD -24(%sp),ht_0 | ||
421 | LDD -32(%sp),lt_0 | ||
422 | |||
423 | CMPCLR,*>>= tmp_0,m1_0,%r0 ; if (m < m1) | ||
424 | ADD,L ht_0,top_overflow,ht_0 ; ht += (1<<32) | ||
425 | |||
426 | EXTRD,U tmp_0,31,32,m_0 ; m>>32 | ||
427 | DEPD,Z tmp_0,31,32,m1_0 ; m1 = m<<32 | ||
428 | |||
429 | ADD,L ht_0,m_0,ht_0 ; ht+= (m>>32) | ||
430 | ADD lt_0,m1_0,lt_0 ; lt= lt+m1; | ||
431 | ADD,DC ht_0,%r0,ht_0 ; ht++ | ||
432 | |||
433 | ADD %ret1,lt_0,lt_0 ; lt = lt + c; | ||
434 | ADD,DC ht_0,%r0,ht_0 ; ht++ | ||
435 | |||
436 | COPY ht_0,%ret1 ; copy carry | ||
437 | STD lt_0,0(r_ptr) ; rp[0] = lt | ||
438 | |||
439 | bn_mul_words_exit | ||
440 | .EXIT | ||
441 | EXTRD,U %ret1,31,32,%ret0 ; for 32-bit, return in ret0/ret1 | ||
442 | LDD -96(%sp),%r7 ; restore r7 | ||
443 | LDD -104(%sp),%r6 ; restore r6 | ||
444 | LDD -112(%sp),%r5 ; restore r5 | ||
445 | LDD -120(%sp),%r4 ; restore r4 | ||
446 | BVE (%rp) | ||
447 | LDD,MB -128(%sp),%r3 ; restore r3 | ||
448 | .PROCEND | ||
449 | |||
450 | ;---------------------------------------------------------------------------- | ||
451 | ; | ||
452 | ;void bn_sqr_words(BN_ULONG *rp, BN_ULONG *ap, int num) | ||
453 | ; | ||
454 | ; arg0 = rp | ||
455 | ; arg1 = ap | ||
456 | ; arg2 = num | ||
457 | ; | ||
458 | |||
459 | bn_sqr_words | ||
460 | .proc | ||
461 | .callinfo FRAME=128,ENTRY_GR=%r3,ARGS_SAVED,ORDERING_AWARE | ||
462 | .EXPORT bn_sqr_words,ENTRY,PRIV_LEV=3,NO_RELOCATION,LONG_RETURN | ||
463 | .entry | ||
464 | .align 64 | ||
465 | |||
466 | STD %r3,0(%sp) ; save r3 | ||
467 | STD %r4,8(%sp) ; save r4 | ||
468 | NOP | ||
469 | STD %r5,16(%sp) ; save r5 | ||
470 | |||
471 | CMPIB,>= 0,num,bn_sqr_words_exit | ||
472 | LDO 128(%sp),%sp ; bump stack | ||
473 | |||
474 | ; | ||
475 | ; If only 1, the goto straight to cleanup | ||
476 | ; | ||
477 | CMPIB,= 1,num,bn_sqr_words_single_top | ||
478 | DEPDI,Z -1,32,33,high_mask ; Create Mask 0xffffffff80000000L | ||
479 | |||
480 | ; | ||
481 | ; This loop is unrolled 2 times (64-byte aligned as well) | ||
482 | ; | ||
483 | |||
484 | bn_sqr_words_unroll2 | ||
485 | FLDD 0(a_ptr),t_float_0 ; a[0] | ||
486 | FLDD 8(a_ptr),t_float_1 ; a[1] | ||
487 | XMPYU fht_0,flt_0,fm ; m[0] | ||
488 | XMPYU fht_1,flt_1,fm_1 ; m[1] | ||
489 | |||
490 | FSTD fm,-24(%sp) ; store m[0] | ||
491 | FSTD fm_1,-56(%sp) ; store m[1] | ||
492 | XMPYU flt_0,flt_0,lt_temp ; lt[0] | ||
493 | XMPYU flt_1,flt_1,lt_temp_1 ; lt[1] | ||
494 | |||
495 | FSTD lt_temp,-16(%sp) ; store lt[0] | ||
496 | FSTD lt_temp_1,-48(%sp) ; store lt[1] | ||
497 | XMPYU fht_0,fht_0,ht_temp ; ht[0] | ||
498 | XMPYU fht_1,fht_1,ht_temp_1 ; ht[1] | ||
499 | |||
500 | FSTD ht_temp,-8(%sp) ; store ht[0] | ||
501 | FSTD ht_temp_1,-40(%sp) ; store ht[1] | ||
502 | LDD -24(%sp),m_0 | ||
503 | LDD -56(%sp),m_1 | ||
504 | |||
505 | AND m_0,high_mask,tmp_0 ; m[0] & Mask | ||
506 | AND m_1,high_mask,tmp_1 ; m[1] & Mask | ||
507 | DEPD,Z m_0,30,31,m_0 ; m[0] << 32+1 | ||
508 | DEPD,Z m_1,30,31,m_1 ; m[1] << 32+1 | ||
509 | |||
510 | LDD -16(%sp),lt_0 | ||
511 | LDD -48(%sp),lt_1 | ||
512 | EXTRD,U tmp_0,32,33,tmp_0 ; tmp_0 = m[0]&Mask >> 32-1 | ||
513 | EXTRD,U tmp_1,32,33,tmp_1 ; tmp_1 = m[1]&Mask >> 32-1 | ||
514 | |||
515 | LDD -8(%sp),ht_0 | ||
516 | LDD -40(%sp),ht_1 | ||
517 | ADD,L ht_0,tmp_0,ht_0 ; ht[0] += tmp_0 | ||
518 | ADD,L ht_1,tmp_1,ht_1 ; ht[1] += tmp_1 | ||
519 | |||
520 | ADD lt_0,m_0,lt_0 ; lt = lt+m | ||
521 | ADD,DC ht_0,%r0,ht_0 ; ht[0]++ | ||
522 | STD lt_0,0(r_ptr) ; rp[0] = lt[0] | ||
523 | STD ht_0,8(r_ptr) ; rp[1] = ht[1] | ||
524 | |||
525 | ADD lt_1,m_1,lt_1 ; lt = lt+m | ||
526 | ADD,DC ht_1,%r0,ht_1 ; ht[1]++ | ||
527 | STD lt_1,16(r_ptr) ; rp[2] = lt[1] | ||
528 | STD ht_1,24(r_ptr) ; rp[3] = ht[1] | ||
529 | |||
530 | LDO -2(num),num ; num = num - 2; | ||
531 | LDO 16(a_ptr),a_ptr ; ap += 2 | ||
532 | CMPIB,<= 2,num,bn_sqr_words_unroll2 | ||
533 | LDO 32(r_ptr),r_ptr ; rp += 4 | ||
534 | |||
535 | CMPIB,=,N 0,num,bn_sqr_words_exit ; are we done? | ||
536 | |||
537 | ; | ||
538 | ; Top of loop aligned on 64-byte boundary | ||
539 | ; | ||
540 | bn_sqr_words_single_top | ||
541 | FLDD 0(a_ptr),t_float_0 ; load up 64-bit value (fr8L) ht(L)/lt(R) | ||
542 | |||
543 | XMPYU fht_0,flt_0,fm ; m | ||
544 | FSTD fm,-24(%sp) ; store m | ||
545 | |||
546 | XMPYU flt_0,flt_0,lt_temp ; lt | ||
547 | FSTD lt_temp,-16(%sp) ; store lt | ||
548 | |||
549 | XMPYU fht_0,fht_0,ht_temp ; ht | ||
550 | FSTD ht_temp,-8(%sp) ; store ht | ||
551 | |||
552 | LDD -24(%sp),m_0 ; load m | ||
553 | AND m_0,high_mask,tmp_0 ; m & Mask | ||
554 | DEPD,Z m_0,30,31,m_0 ; m << 32+1 | ||
555 | LDD -16(%sp),lt_0 ; lt | ||
556 | |||
557 | LDD -8(%sp),ht_0 ; ht | ||
558 | EXTRD,U tmp_0,32,33,tmp_0 ; tmp_0 = m&Mask >> 32-1 | ||
559 | ADD m_0,lt_0,lt_0 ; lt = lt+m | ||
560 | ADD,L ht_0,tmp_0,ht_0 ; ht += tmp_0 | ||
561 | ADD,DC ht_0,%r0,ht_0 ; ht++ | ||
562 | |||
563 | STD lt_0,0(r_ptr) ; rp[0] = lt | ||
564 | STD ht_0,8(r_ptr) ; rp[1] = ht | ||
565 | |||
566 | bn_sqr_words_exit | ||
567 | .EXIT | ||
568 | LDD -112(%sp),%r5 ; restore r5 | ||
569 | LDD -120(%sp),%r4 ; restore r4 | ||
570 | BVE (%rp) | ||
571 | LDD,MB -128(%sp),%r3 | ||
572 | .PROCEND ;in=23,24,25,26,29;out=28; | ||
573 | |||
574 | |||
575 | ;---------------------------------------------------------------------------- | ||
576 | ; | ||
577 | ;BN_ULONG bn_add_words(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n) | ||
578 | ; | ||
579 | ; arg0 = rp | ||
580 | ; arg1 = ap | ||
581 | ; arg2 = bp | ||
582 | ; arg3 = n | ||
583 | |||
584 | t .reg %r22 | ||
585 | b .reg %r21 | ||
586 | l .reg %r20 | ||
587 | |||
588 | bn_add_words | ||
589 | .proc | ||
590 | .entry | ||
591 | .callinfo | ||
592 | .EXPORT bn_add_words,ENTRY,PRIV_LEV=3,NO_RELOCATION,LONG_RETURN | ||
593 | .align 64 | ||
594 | |||
595 | CMPIB,>= 0,n,bn_add_words_exit | ||
596 | COPY %r0,%ret1 ; return 0 by default | ||
597 | |||
598 | ; | ||
599 | ; If 2 or more numbers do the loop | ||
600 | ; | ||
601 | CMPIB,= 1,n,bn_add_words_single_top | ||
602 | NOP | ||
603 | |||
604 | ; | ||
605 | ; This loop is unrolled 2 times (64-byte aligned as well) | ||
606 | ; | ||
607 | bn_add_words_unroll2 | ||
608 | LDD 0(a_ptr),t | ||
609 | LDD 0(b_ptr),b | ||
610 | ADD t,%ret1,t ; t = t+c; | ||
611 | ADD,DC %r0,%r0,%ret1 ; set c to carry | ||
612 | ADD t,b,l ; l = t + b[0] | ||
613 | ADD,DC %ret1,%r0,%ret1 ; c+= carry | ||
614 | STD l,0(r_ptr) | ||
615 | |||
616 | LDD 8(a_ptr),t | ||
617 | LDD 8(b_ptr),b | ||
618 | ADD t,%ret1,t ; t = t+c; | ||
619 | ADD,DC %r0,%r0,%ret1 ; set c to carry | ||
620 | ADD t,b,l ; l = t + b[0] | ||
621 | ADD,DC %ret1,%r0,%ret1 ; c+= carry | ||
622 | STD l,8(r_ptr) | ||
623 | |||
624 | LDO -2(n),n | ||
625 | LDO 16(a_ptr),a_ptr | ||
626 | LDO 16(b_ptr),b_ptr | ||
627 | |||
628 | CMPIB,<= 2,n,bn_add_words_unroll2 | ||
629 | LDO 16(r_ptr),r_ptr | ||
630 | |||
631 | CMPIB,=,N 0,n,bn_add_words_exit ; are we done? | ||
632 | |||
633 | bn_add_words_single_top | ||
634 | LDD 0(a_ptr),t | ||
635 | LDD 0(b_ptr),b | ||
636 | |||
637 | ADD t,%ret1,t ; t = t+c; | ||
638 | ADD,DC %r0,%r0,%ret1 ; set c to carry (could use CMPCLR??) | ||
639 | ADD t,b,l ; l = t + b[0] | ||
640 | ADD,DC %ret1,%r0,%ret1 ; c+= carry | ||
641 | STD l,0(r_ptr) | ||
642 | |||
643 | bn_add_words_exit | ||
644 | .EXIT | ||
645 | BVE (%rp) | ||
646 | EXTRD,U %ret1,31,32,%ret0 ; for 32-bit, return in ret0/ret1 | ||
647 | .PROCEND ;in=23,24,25,26,29;out=28; | ||
648 | |||
649 | ;---------------------------------------------------------------------------- | ||
650 | ; | ||
651 | ;BN_ULONG bn_sub_words(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n) | ||
652 | ; | ||
653 | ; arg0 = rp | ||
654 | ; arg1 = ap | ||
655 | ; arg2 = bp | ||
656 | ; arg3 = n | ||
657 | |||
658 | t1 .reg %r22 | ||
659 | t2 .reg %r21 | ||
660 | sub_tmp1 .reg %r20 | ||
661 | sub_tmp2 .reg %r19 | ||
662 | |||
663 | |||
664 | bn_sub_words | ||
665 | .proc | ||
666 | .callinfo | ||
667 | .EXPORT bn_sub_words,ENTRY,PRIV_LEV=3,NO_RELOCATION,LONG_RETURN | ||
668 | .entry | ||
669 | .align 64 | ||
670 | |||
671 | CMPIB,>= 0,n,bn_sub_words_exit | ||
672 | COPY %r0,%ret1 ; return 0 by default | ||
673 | |||
674 | ; | ||
675 | ; If 2 or more numbers do the loop | ||
676 | ; | ||
677 | CMPIB,= 1,n,bn_sub_words_single_top | ||
678 | NOP | ||
679 | |||
680 | ; | ||
681 | ; This loop is unrolled 2 times (64-byte aligned as well) | ||
682 | ; | ||
683 | bn_sub_words_unroll2 | ||
684 | LDD 0(a_ptr),t1 | ||
685 | LDD 0(b_ptr),t2 | ||
686 | SUB t1,t2,sub_tmp1 ; t3 = t1-t2; | ||
687 | SUB sub_tmp1,%ret1,sub_tmp1 ; t3 = t3- c; | ||
688 | |||
689 | CMPCLR,*>> t1,t2,sub_tmp2 ; clear if t1 > t2 | ||
690 | LDO 1(%r0),sub_tmp2 | ||
691 | |||
692 | CMPCLR,*= t1,t2,%r0 | ||
693 | COPY sub_tmp2,%ret1 | ||
694 | STD sub_tmp1,0(r_ptr) | ||
695 | |||
696 | LDD 8(a_ptr),t1 | ||
697 | LDD 8(b_ptr),t2 | ||
698 | SUB t1,t2,sub_tmp1 ; t3 = t1-t2; | ||
699 | SUB sub_tmp1,%ret1,sub_tmp1 ; t3 = t3- c; | ||
700 | CMPCLR,*>> t1,t2,sub_tmp2 ; clear if t1 > t2 | ||
701 | LDO 1(%r0),sub_tmp2 | ||
702 | |||
703 | CMPCLR,*= t1,t2,%r0 | ||
704 | COPY sub_tmp2,%ret1 | ||
705 | STD sub_tmp1,8(r_ptr) | ||
706 | |||
707 | LDO -2(n),n | ||
708 | LDO 16(a_ptr),a_ptr | ||
709 | LDO 16(b_ptr),b_ptr | ||
710 | |||
711 | CMPIB,<= 2,n,bn_sub_words_unroll2 | ||
712 | LDO 16(r_ptr),r_ptr | ||
713 | |||
714 | CMPIB,=,N 0,n,bn_sub_words_exit ; are we done? | ||
715 | |||
716 | bn_sub_words_single_top | ||
717 | LDD 0(a_ptr),t1 | ||
718 | LDD 0(b_ptr),t2 | ||
719 | SUB t1,t2,sub_tmp1 ; t3 = t1-t2; | ||
720 | SUB sub_tmp1,%ret1,sub_tmp1 ; t3 = t3- c; | ||
721 | CMPCLR,*>> t1,t2,sub_tmp2 ; clear if t1 > t2 | ||
722 | LDO 1(%r0),sub_tmp2 | ||
723 | |||
724 | CMPCLR,*= t1,t2,%r0 | ||
725 | COPY sub_tmp2,%ret1 | ||
726 | |||
727 | STD sub_tmp1,0(r_ptr) | ||
728 | |||
729 | bn_sub_words_exit | ||
730 | .EXIT | ||
731 | BVE (%rp) | ||
732 | EXTRD,U %ret1,31,32,%ret0 ; for 32-bit, return in ret0/ret1 | ||
733 | .PROCEND ;in=23,24,25,26,29;out=28; | ||
734 | |||
735 | ;------------------------------------------------------------------------------ | ||
736 | ; | ||
737 | ; unsigned long bn_div_words(unsigned long h, unsigned long l, unsigned long d) | ||
738 | ; | ||
739 | ; arg0 = h | ||
740 | ; arg1 = l | ||
741 | ; arg2 = d | ||
742 | ; | ||
743 | ; This is mainly just output from the HP C compiler. | ||
744 | ; | ||
745 | ;------------------------------------------------------------------------------ | ||
746 | bn_div_words | ||
747 | .PROC | ||
748 | .EXPORT bn_div_words,ENTRY,PRIV_LEV=3,ARGW0=GR,ARGW1=GR,ARGW2=GR,ARGW3=GR,RTNVAL=GR,LONG_RETURN | ||
749 | .IMPORT BN_num_bits_word,CODE | ||
750 | ;--- not PIC .IMPORT __iob,DATA | ||
751 | ;--- not PIC .IMPORT fprintf,CODE | ||
752 | .IMPORT abort,CODE | ||
753 | .IMPORT $$div2U,MILLICODE | ||
754 | .CALLINFO CALLER,FRAME=144,ENTRY_GR=%r9,SAVE_RP,ARGS_SAVED,ORDERING_AWARE | ||
755 | .ENTRY | ||
756 | STW %r2,-20(%r30) ;offset 0x8ec | ||
757 | STW,MA %r3,192(%r30) ;offset 0x8f0 | ||
758 | STW %r4,-188(%r30) ;offset 0x8f4 | ||
759 | DEPD %r5,31,32,%r6 ;offset 0x8f8 | ||
760 | STD %r6,-184(%r30) ;offset 0x8fc | ||
761 | DEPD %r7,31,32,%r8 ;offset 0x900 | ||
762 | STD %r8,-176(%r30) ;offset 0x904 | ||
763 | STW %r9,-168(%r30) ;offset 0x908 | ||
764 | LDD -248(%r30),%r3 ;offset 0x90c | ||
765 | COPY %r26,%r4 ;offset 0x910 | ||
766 | COPY %r24,%r5 ;offset 0x914 | ||
767 | DEPD %r25,31,32,%r4 ;offset 0x918 | ||
768 | CMPB,*<> %r3,%r0,$0006000C ;offset 0x91c | ||
769 | DEPD %r23,31,32,%r5 ;offset 0x920 | ||
770 | MOVIB,TR -1,%r29,$00060002 ;offset 0x924 | ||
771 | EXTRD,U %r29,31,32,%r28 ;offset 0x928 | ||
772 | $0006002A | ||
773 | LDO -1(%r29),%r29 ;offset 0x92c | ||
774 | SUB %r23,%r7,%r23 ;offset 0x930 | ||
775 | $00060024 | ||
776 | SUB %r4,%r31,%r25 ;offset 0x934 | ||
777 | AND %r25,%r19,%r26 ;offset 0x938 | ||
778 | CMPB,*<>,N %r0,%r26,$00060046 ;offset 0x93c | ||
779 | DEPD,Z %r25,31,32,%r20 ;offset 0x940 | ||
780 | OR %r20,%r24,%r21 ;offset 0x944 | ||
781 | CMPB,*<<,N %r21,%r23,$0006002A ;offset 0x948 | ||
782 | SUB %r31,%r2,%r31 ;offset 0x94c | ||
783 | $00060046 | ||
784 | $0006002E | ||
785 | DEPD,Z %r23,31,32,%r25 ;offset 0x950 | ||
786 | EXTRD,U %r23,31,32,%r26 ;offset 0x954 | ||
787 | AND %r25,%r19,%r24 ;offset 0x958 | ||
788 | ADD,L %r31,%r26,%r31 ;offset 0x95c | ||
789 | CMPCLR,*>>= %r5,%r24,%r0 ;offset 0x960 | ||
790 | LDO 1(%r31),%r31 ;offset 0x964 | ||
791 | $00060032 | ||
792 | CMPB,*<<=,N %r31,%r4,$00060036 ;offset 0x968 | ||
793 | LDO -1(%r29),%r29 ;offset 0x96c | ||
794 | ADD,L %r4,%r3,%r4 ;offset 0x970 | ||
795 | $00060036 | ||
796 | ADDIB,=,N -1,%r8,$D0 ;offset 0x974 | ||
797 | SUB %r5,%r24,%r28 ;offset 0x978 | ||
798 | $0006003A | ||
799 | SUB %r4,%r31,%r24 ;offset 0x97c | ||
800 | SHRPD %r24,%r28,32,%r4 ;offset 0x980 | ||
801 | DEPD,Z %r29,31,32,%r9 ;offset 0x984 | ||
802 | DEPD,Z %r28,31,32,%r5 ;offset 0x988 | ||
803 | $0006001C | ||
804 | EXTRD,U %r4,31,32,%r31 ;offset 0x98c | ||
805 | CMPB,*<>,N %r31,%r2,$00060020 ;offset 0x990 | ||
806 | MOVB,TR %r6,%r29,$D1 ;offset 0x994 | ||
807 | STD %r29,-152(%r30) ;offset 0x998 | ||
808 | $0006000C | ||
809 | EXTRD,U %r3,31,32,%r25 ;offset 0x99c | ||
810 | COPY %r3,%r26 ;offset 0x9a0 | ||
811 | EXTRD,U %r3,31,32,%r9 ;offset 0x9a4 | ||
812 | EXTRD,U %r4,31,32,%r8 ;offset 0x9a8 | ||
813 | .CALL ARGW0=GR,ARGW1=GR,RTNVAL=GR ;in=25,26;out=28; | ||
814 | B,L BN_num_bits_word,%r2 ;offset 0x9ac | ||
815 | EXTRD,U %r5,31,32,%r7 ;offset 0x9b0 | ||
816 | LDI 64,%r20 ;offset 0x9b4 | ||
817 | DEPD %r7,31,32,%r5 ;offset 0x9b8 | ||
818 | DEPD %r8,31,32,%r4 ;offset 0x9bc | ||
819 | DEPD %r9,31,32,%r3 ;offset 0x9c0 | ||
820 | CMPB,= %r28,%r20,$00060012 ;offset 0x9c4 | ||
821 | COPY %r28,%r24 ;offset 0x9c8 | ||
822 | MTSARCM %r24 ;offset 0x9cc | ||
823 | DEPDI,Z -1,%sar,1,%r19 ;offset 0x9d0 | ||
824 | CMPB,*>>,N %r4,%r19,$D2 ;offset 0x9d4 | ||
825 | $00060012 | ||
826 | SUBI 64,%r24,%r31 ;offset 0x9d8 | ||
827 | CMPCLR,*<< %r4,%r3,%r0 ;offset 0x9dc | ||
828 | SUB %r4,%r3,%r4 ;offset 0x9e0 | ||
829 | $00060016 | ||
830 | CMPB,= %r31,%r0,$0006001A ;offset 0x9e4 | ||
831 | COPY %r0,%r9 ;offset 0x9e8 | ||
832 | MTSARCM %r31 ;offset 0x9ec | ||
833 | DEPD,Z %r3,%sar,64,%r3 ;offset 0x9f0 | ||
834 | SUBI 64,%r31,%r26 ;offset 0x9f4 | ||
835 | MTSAR %r26 ;offset 0x9f8 | ||
836 | SHRPD %r4,%r5,%sar,%r4 ;offset 0x9fc | ||
837 | MTSARCM %r31 ;offset 0xa00 | ||
838 | DEPD,Z %r5,%sar,64,%r5 ;offset 0xa04 | ||
839 | $0006001A | ||
840 | DEPDI,Z -1,31,32,%r19 ;offset 0xa08 | ||
841 | AND %r3,%r19,%r29 ;offset 0xa0c | ||
842 | EXTRD,U %r29,31,32,%r2 ;offset 0xa10 | ||
843 | DEPDI,Z -1,63,32,%r6 ;offset 0xa14 | ||
844 | MOVIB,TR 2,%r8,$0006001C ;offset 0xa18 | ||
845 | EXTRD,U %r3,63,32,%r7 ;offset 0xa1c | ||
846 | $D2 | ||
847 | ;--- not PIC ADDIL LR'__iob-$global$,%r27,%r1 ;offset 0xa20 | ||
848 | ;--- not PIC LDIL LR'C$7,%r21 ;offset 0xa24 | ||
849 | ;--- not PIC LDO RR'__iob-$global$+32(%r1),%r26 ;offset 0xa28 | ||
850 | ;--- not PIC .CALL ARGW0=GR,ARGW1=GR,ARGW2=GR,RTNVAL=GR ;in=24,25,26;out=28; | ||
851 | ;--- not PIC B,L fprintf,%r2 ;offset 0xa2c | ||
852 | ;--- not PIC LDO RR'C$7(%r21),%r25 ;offset 0xa30 | ||
853 | .CALL ; | ||
854 | B,L abort,%r2 ;offset 0xa34 | ||
855 | NOP ;offset 0xa38 | ||
856 | B $D3 ;offset 0xa3c | ||
857 | LDW -212(%r30),%r2 ;offset 0xa40 | ||
858 | $00060020 | ||
859 | COPY %r4,%r26 ;offset 0xa44 | ||
860 | EXTRD,U %r4,31,32,%r25 ;offset 0xa48 | ||
861 | COPY %r2,%r24 ;offset 0xa4c | ||
862 | .CALL ;in=23,24,25,26;out=20,21,22,28,29; (MILLICALL) | ||
863 | B,L $$div2U,%r31 ;offset 0xa50 | ||
864 | EXTRD,U %r2,31,32,%r23 ;offset 0xa54 | ||
865 | DEPD %r28,31,32,%r29 ;offset 0xa58 | ||
866 | $00060022 | ||
867 | STD %r29,-152(%r30) ;offset 0xa5c | ||
868 | $D1 | ||
869 | AND %r5,%r19,%r24 ;offset 0xa60 | ||
870 | EXTRD,U %r24,31,32,%r24 ;offset 0xa64 | ||
871 | STW %r2,-160(%r30) ;offset 0xa68 | ||
872 | STW %r7,-128(%r30) ;offset 0xa6c | ||
873 | FLDD -152(%r30),%fr4 ;offset 0xa70 | ||
874 | FLDD -152(%r30),%fr7 ;offset 0xa74 | ||
875 | FLDW -160(%r30),%fr8L ;offset 0xa78 | ||
876 | FLDW -128(%r30),%fr5L ;offset 0xa7c | ||
877 | XMPYU %fr8L,%fr7L,%fr10 ;offset 0xa80 | ||
878 | FSTD %fr10,-136(%r30) ;offset 0xa84 | ||
879 | XMPYU %fr8L,%fr7R,%fr22 ;offset 0xa88 | ||
880 | FSTD %fr22,-144(%r30) ;offset 0xa8c | ||
881 | XMPYU %fr5L,%fr4L,%fr11 ;offset 0xa90 | ||
882 | XMPYU %fr5L,%fr4R,%fr23 ;offset 0xa94 | ||
883 | FSTD %fr11,-112(%r30) ;offset 0xa98 | ||
884 | FSTD %fr23,-120(%r30) ;offset 0xa9c | ||
885 | LDD -136(%r30),%r28 ;offset 0xaa0 | ||
886 | DEPD,Z %r28,31,32,%r31 ;offset 0xaa4 | ||
887 | LDD -144(%r30),%r20 ;offset 0xaa8 | ||
888 | ADD,L %r20,%r31,%r31 ;offset 0xaac | ||
889 | LDD -112(%r30),%r22 ;offset 0xab0 | ||
890 | DEPD,Z %r22,31,32,%r22 ;offset 0xab4 | ||
891 | LDD -120(%r30),%r21 ;offset 0xab8 | ||
892 | B $00060024 ;offset 0xabc | ||
893 | ADD,L %r21,%r22,%r23 ;offset 0xac0 | ||
894 | $D0 | ||
895 | OR %r9,%r29,%r29 ;offset 0xac4 | ||
896 | $00060040 | ||
897 | EXTRD,U %r29,31,32,%r28 ;offset 0xac8 | ||
898 | $00060002 | ||
899 | $L2 | ||
900 | LDW -212(%r30),%r2 ;offset 0xacc | ||
901 | $D3 | ||
902 | LDW -168(%r30),%r9 ;offset 0xad0 | ||
903 | LDD -176(%r30),%r8 ;offset 0xad4 | ||
904 | EXTRD,U %r8,31,32,%r7 ;offset 0xad8 | ||
905 | LDD -184(%r30),%r6 ;offset 0xadc | ||
906 | EXTRD,U %r6,31,32,%r5 ;offset 0xae0 | ||
907 | LDW -188(%r30),%r4 ;offset 0xae4 | ||
908 | BVE (%r2) ;offset 0xae8 | ||
909 | .EXIT | ||
910 | LDW,MB -192(%r30),%r3 ;offset 0xaec | ||
911 | .PROCEND ;in=23,25;out=28,29;fpin=105,107; | ||
912 | |||
913 | |||
914 | |||
915 | |||
916 | ;---------------------------------------------------------------------------- | ||
917 | ; | ||
918 | ; Registers to hold 64-bit values to manipulate. The "L" part | ||
919 | ; of the register corresponds to the upper 32-bits, while the "R" | ||
920 | ; part corresponds to the lower 32-bits | ||
921 | ; | ||
922 | ; Note, that when using b6 and b7, the code must save these before | ||
923 | ; using them because they are callee save registers | ||
924 | ; | ||
925 | ; | ||
926 | ; Floating point registers to use to save values that | ||
927 | ; are manipulated. These don't collide with ftemp1-6 and | ||
928 | ; are all caller save registers | ||
929 | ; | ||
930 | a0 .reg %fr22 | ||
931 | a0L .reg %fr22L | ||
932 | a0R .reg %fr22R | ||
933 | |||
934 | a1 .reg %fr23 | ||
935 | a1L .reg %fr23L | ||
936 | a1R .reg %fr23R | ||
937 | |||
938 | a2 .reg %fr24 | ||
939 | a2L .reg %fr24L | ||
940 | a2R .reg %fr24R | ||
941 | |||
942 | a3 .reg %fr25 | ||
943 | a3L .reg %fr25L | ||
944 | a3R .reg %fr25R | ||
945 | |||
946 | a4 .reg %fr26 | ||
947 | a4L .reg %fr26L | ||
948 | a4R .reg %fr26R | ||
949 | |||
950 | a5 .reg %fr27 | ||
951 | a5L .reg %fr27L | ||
952 | a5R .reg %fr27R | ||
953 | |||
954 | a6 .reg %fr28 | ||
955 | a6L .reg %fr28L | ||
956 | a6R .reg %fr28R | ||
957 | |||
958 | a7 .reg %fr29 | ||
959 | a7L .reg %fr29L | ||
960 | a7R .reg %fr29R | ||
961 | |||
962 | b0 .reg %fr30 | ||
963 | b0L .reg %fr30L | ||
964 | b0R .reg %fr30R | ||
965 | |||
966 | b1 .reg %fr31 | ||
967 | b1L .reg %fr31L | ||
968 | b1R .reg %fr31R | ||
969 | |||
970 | ; | ||
971 | ; Temporary floating point variables, these are all caller save | ||
972 | ; registers | ||
973 | ; | ||
974 | ftemp1 .reg %fr4 | ||
975 | ftemp2 .reg %fr5 | ||
976 | ftemp3 .reg %fr6 | ||
977 | ftemp4 .reg %fr7 | ||
978 | |||
979 | ; | ||
980 | ; The B set of registers when used. | ||
981 | ; | ||
982 | |||
983 | b2 .reg %fr8 | ||
984 | b2L .reg %fr8L | ||
985 | b2R .reg %fr8R | ||
986 | |||
987 | b3 .reg %fr9 | ||
988 | b3L .reg %fr9L | ||
989 | b3R .reg %fr9R | ||
990 | |||
991 | b4 .reg %fr10 | ||
992 | b4L .reg %fr10L | ||
993 | b4R .reg %fr10R | ||
994 | |||
995 | b5 .reg %fr11 | ||
996 | b5L .reg %fr11L | ||
997 | b5R .reg %fr11R | ||
998 | |||
999 | b6 .reg %fr12 | ||
1000 | b6L .reg %fr12L | ||
1001 | b6R .reg %fr12R | ||
1002 | |||
1003 | b7 .reg %fr13 | ||
1004 | b7L .reg %fr13L | ||
1005 | b7R .reg %fr13R | ||
1006 | |||
1007 | c1 .reg %r21 ; only reg | ||
1008 | temp1 .reg %r20 ; only reg | ||
1009 | temp2 .reg %r19 ; only reg | ||
1010 | temp3 .reg %r31 ; only reg | ||
1011 | |||
1012 | m1 .reg %r28 | ||
1013 | c2 .reg %r23 | ||
1014 | high_one .reg %r1 | ||
1015 | ht .reg %r6 | ||
1016 | lt .reg %r5 | ||
1017 | m .reg %r4 | ||
1018 | c3 .reg %r3 | ||
1019 | |||
1020 | SQR_ADD_C .macro A0L,A0R,C1,C2,C3 | ||
1021 | XMPYU A0L,A0R,ftemp1 ; m | ||
1022 | FSTD ftemp1,-24(%sp) ; store m | ||
1023 | |||
1024 | XMPYU A0R,A0R,ftemp2 ; lt | ||
1025 | FSTD ftemp2,-16(%sp) ; store lt | ||
1026 | |||
1027 | XMPYU A0L,A0L,ftemp3 ; ht | ||
1028 | FSTD ftemp3,-8(%sp) ; store ht | ||
1029 | |||
1030 | LDD -24(%sp),m ; load m | ||
1031 | AND m,high_mask,temp2 ; m & Mask | ||
1032 | DEPD,Z m,30,31,temp3 ; m << 32+1 | ||
1033 | LDD -16(%sp),lt ; lt | ||
1034 | |||
1035 | LDD -8(%sp),ht ; ht | ||
1036 | EXTRD,U temp2,32,33,temp1 ; temp1 = m&Mask >> 32-1 | ||
1037 | ADD temp3,lt,lt ; lt = lt+m | ||
1038 | ADD,L ht,temp1,ht ; ht += temp1 | ||
1039 | ADD,DC ht,%r0,ht ; ht++ | ||
1040 | |||
1041 | ADD C1,lt,C1 ; c1=c1+lt | ||
1042 | ADD,DC ht,%r0,ht ; ht++ | ||
1043 | |||
1044 | ADD C2,ht,C2 ; c2=c2+ht | ||
1045 | ADD,DC C3,%r0,C3 ; c3++ | ||
1046 | .endm | ||
1047 | |||
1048 | SQR_ADD_C2 .macro A0L,A0R,A1L,A1R,C1,C2,C3 | ||
1049 | XMPYU A0L,A1R,ftemp1 ; m1 = bl*ht | ||
1050 | FSTD ftemp1,-16(%sp) ; | ||
1051 | XMPYU A0R,A1L,ftemp2 ; m = bh*lt | ||
1052 | FSTD ftemp2,-8(%sp) ; | ||
1053 | XMPYU A0R,A1R,ftemp3 ; lt = bl*lt | ||
1054 | FSTD ftemp3,-32(%sp) | ||
1055 | XMPYU A0L,A1L,ftemp4 ; ht = bh*ht | ||
1056 | FSTD ftemp4,-24(%sp) ; | ||
1057 | |||
1058 | LDD -8(%sp),m ; r21 = m | ||
1059 | LDD -16(%sp),m1 ; r19 = m1 | ||
1060 | ADD,L m,m1,m ; m+m1 | ||
1061 | |||
1062 | DEPD,Z m,31,32,temp3 ; (m+m1<<32) | ||
1063 | LDD -24(%sp),ht ; r24 = ht | ||
1064 | |||
1065 | CMPCLR,*>>= m,m1,%r0 ; if (m < m1) | ||
1066 | ADD,L ht,high_one,ht ; ht+=high_one | ||
1067 | |||
1068 | EXTRD,U m,31,32,temp1 ; m >> 32 | ||
1069 | LDD -32(%sp),lt ; lt | ||
1070 | ADD,L ht,temp1,ht ; ht+= m>>32 | ||
1071 | ADD lt,temp3,lt ; lt = lt+m1 | ||
1072 | ADD,DC ht,%r0,ht ; ht++ | ||
1073 | |||
1074 | ADD ht,ht,ht ; ht=ht+ht; | ||
1075 | ADD,DC C3,%r0,C3 ; add in carry (c3++) | ||
1076 | |||
1077 | ADD lt,lt,lt ; lt=lt+lt; | ||
1078 | ADD,DC ht,%r0,ht ; add in carry (ht++) | ||
1079 | |||
1080 | ADD C1,lt,C1 ; c1=c1+lt | ||
1081 | ADD,DC,*NUV ht,%r0,ht ; add in carry (ht++) | ||
1082 | LDO 1(C3),C3 ; bump c3 if overflow,nullify otherwise | ||
1083 | |||
1084 | ADD C2,ht,C2 ; c2 = c2 + ht | ||
1085 | ADD,DC C3,%r0,C3 ; add in carry (c3++) | ||
1086 | .endm | ||
1087 | |||
1088 | ; | ||
1089 | ;void bn_sqr_comba8(BN_ULONG *r, BN_ULONG *a) | ||
1090 | ; arg0 = r_ptr | ||
1091 | ; arg1 = a_ptr | ||
1092 | ; | ||
1093 | |||
1094 | bn_sqr_comba8 | ||
1095 | .PROC | ||
1096 | .CALLINFO FRAME=128,ENTRY_GR=%r3,ARGS_SAVED,ORDERING_AWARE | ||
1097 | .EXPORT bn_sqr_comba8,ENTRY,PRIV_LEV=3,NO_RELOCATION,LONG_RETURN | ||
1098 | .ENTRY | ||
1099 | .align 64 | ||
1100 | |||
1101 | STD %r3,0(%sp) ; save r3 | ||
1102 | STD %r4,8(%sp) ; save r4 | ||
1103 | STD %r5,16(%sp) ; save r5 | ||
1104 | STD %r6,24(%sp) ; save r6 | ||
1105 | |||
1106 | ; | ||
1107 | ; Zero out carries | ||
1108 | ; | ||
1109 | COPY %r0,c1 | ||
1110 | COPY %r0,c2 | ||
1111 | COPY %r0,c3 | ||
1112 | |||
1113 | LDO 128(%sp),%sp ; bump stack | ||
1114 | DEPDI,Z -1,32,33,high_mask ; Create Mask 0xffffffff80000000L | ||
1115 | DEPDI,Z 1,31,1,high_one ; Create Value 1 << 32 | ||
1116 | |||
1117 | ; | ||
1118 | ; Load up all of the values we are going to use | ||
1119 | ; | ||
1120 | FLDD 0(a_ptr),a0 | ||
1121 | FLDD 8(a_ptr),a1 | ||
1122 | FLDD 16(a_ptr),a2 | ||
1123 | FLDD 24(a_ptr),a3 | ||
1124 | FLDD 32(a_ptr),a4 | ||
1125 | FLDD 40(a_ptr),a5 | ||
1126 | FLDD 48(a_ptr),a6 | ||
1127 | FLDD 56(a_ptr),a7 | ||
1128 | |||
1129 | SQR_ADD_C a0L,a0R,c1,c2,c3 | ||
1130 | STD c1,0(r_ptr) ; r[0] = c1; | ||
1131 | COPY %r0,c1 | ||
1132 | |||
1133 | SQR_ADD_C2 a1L,a1R,a0L,a0R,c2,c3,c1 | ||
1134 | STD c2,8(r_ptr) ; r[1] = c2; | ||
1135 | COPY %r0,c2 | ||
1136 | |||
1137 | SQR_ADD_C a1L,a1R,c3,c1,c2 | ||
1138 | SQR_ADD_C2 a2L,a2R,a0L,a0R,c3,c1,c2 | ||
1139 | STD c3,16(r_ptr) ; r[2] = c3; | ||
1140 | COPY %r0,c3 | ||
1141 | |||
1142 | SQR_ADD_C2 a3L,a3R,a0L,a0R,c1,c2,c3 | ||
1143 | SQR_ADD_C2 a2L,a2R,a1L,a1R,c1,c2,c3 | ||
1144 | STD c1,24(r_ptr) ; r[3] = c1; | ||
1145 | COPY %r0,c1 | ||
1146 | |||
1147 | SQR_ADD_C a2L,a2R,c2,c3,c1 | ||
1148 | SQR_ADD_C2 a3L,a3R,a1L,a1R,c2,c3,c1 | ||
1149 | SQR_ADD_C2 a4L,a4R,a0L,a0R,c2,c3,c1 | ||
1150 | STD c2,32(r_ptr) ; r[4] = c2; | ||
1151 | COPY %r0,c2 | ||
1152 | |||
1153 | SQR_ADD_C2 a5L,a5R,a0L,a0R,c3,c1,c2 | ||
1154 | SQR_ADD_C2 a4L,a4R,a1L,a1R,c3,c1,c2 | ||
1155 | SQR_ADD_C2 a3L,a3R,a2L,a2R,c3,c1,c2 | ||
1156 | STD c3,40(r_ptr) ; r[5] = c3; | ||
1157 | COPY %r0,c3 | ||
1158 | |||
1159 | SQR_ADD_C a3L,a3R,c1,c2,c3 | ||
1160 | SQR_ADD_C2 a4L,a4R,a2L,a2R,c1,c2,c3 | ||
1161 | SQR_ADD_C2 a5L,a5R,a1L,a1R,c1,c2,c3 | ||
1162 | SQR_ADD_C2 a6L,a6R,a0L,a0R,c1,c2,c3 | ||
1163 | STD c1,48(r_ptr) ; r[6] = c1; | ||
1164 | COPY %r0,c1 | ||
1165 | |||
1166 | SQR_ADD_C2 a7L,a7R,a0L,a0R,c2,c3,c1 | ||
1167 | SQR_ADD_C2 a6L,a6R,a1L,a1R,c2,c3,c1 | ||
1168 | SQR_ADD_C2 a5L,a5R,a2L,a2R,c2,c3,c1 | ||
1169 | SQR_ADD_C2 a4L,a4R,a3L,a3R,c2,c3,c1 | ||
1170 | STD c2,56(r_ptr) ; r[7] = c2; | ||
1171 | COPY %r0,c2 | ||
1172 | |||
1173 | SQR_ADD_C a4L,a4R,c3,c1,c2 | ||
1174 | SQR_ADD_C2 a5L,a5R,a3L,a3R,c3,c1,c2 | ||
1175 | SQR_ADD_C2 a6L,a6R,a2L,a2R,c3,c1,c2 | ||
1176 | SQR_ADD_C2 a7L,a7R,a1L,a1R,c3,c1,c2 | ||
1177 | STD c3,64(r_ptr) ; r[8] = c3; | ||
1178 | COPY %r0,c3 | ||
1179 | |||
1180 | SQR_ADD_C2 a7L,a7R,a2L,a2R,c1,c2,c3 | ||
1181 | SQR_ADD_C2 a6L,a6R,a3L,a3R,c1,c2,c3 | ||
1182 | SQR_ADD_C2 a5L,a5R,a4L,a4R,c1,c2,c3 | ||
1183 | STD c1,72(r_ptr) ; r[9] = c1; | ||
1184 | COPY %r0,c1 | ||
1185 | |||
1186 | SQR_ADD_C a5L,a5R,c2,c3,c1 | ||
1187 | SQR_ADD_C2 a6L,a6R,a4L,a4R,c2,c3,c1 | ||
1188 | SQR_ADD_C2 a7L,a7R,a3L,a3R,c2,c3,c1 | ||
1189 | STD c2,80(r_ptr) ; r[10] = c2; | ||
1190 | COPY %r0,c2 | ||
1191 | |||
1192 | SQR_ADD_C2 a7L,a7R,a4L,a4R,c3,c1,c2 | ||
1193 | SQR_ADD_C2 a6L,a6R,a5L,a5R,c3,c1,c2 | ||
1194 | STD c3,88(r_ptr) ; r[11] = c3; | ||
1195 | COPY %r0,c3 | ||
1196 | |||
1197 | SQR_ADD_C a6L,a6R,c1,c2,c3 | ||
1198 | SQR_ADD_C2 a7L,a7R,a5L,a5R,c1,c2,c3 | ||
1199 | STD c1,96(r_ptr) ; r[12] = c1; | ||
1200 | COPY %r0,c1 | ||
1201 | |||
1202 | SQR_ADD_C2 a7L,a7R,a6L,a6R,c2,c3,c1 | ||
1203 | STD c2,104(r_ptr) ; r[13] = c2; | ||
1204 | COPY %r0,c2 | ||
1205 | |||
1206 | SQR_ADD_C a7L,a7R,c3,c1,c2 | ||
1207 | STD c3, 112(r_ptr) ; r[14] = c3 | ||
1208 | STD c1, 120(r_ptr) ; r[15] = c1 | ||
1209 | |||
1210 | .EXIT | ||
1211 | LDD -104(%sp),%r6 ; restore r6 | ||
1212 | LDD -112(%sp),%r5 ; restore r5 | ||
1213 | LDD -120(%sp),%r4 ; restore r4 | ||
1214 | BVE (%rp) | ||
1215 | LDD,MB -128(%sp),%r3 | ||
1216 | |||
1217 | .PROCEND | ||
1218 | |||
1219 | ;----------------------------------------------------------------------------- | ||
1220 | ; | ||
1221 | ;void bn_sqr_comba4(BN_ULONG *r, BN_ULONG *a) | ||
1222 | ; arg0 = r_ptr | ||
1223 | ; arg1 = a_ptr | ||
1224 | ; | ||
1225 | |||
1226 | bn_sqr_comba4 | ||
1227 | .proc | ||
1228 | .callinfo FRAME=128,ENTRY_GR=%r3,ARGS_SAVED,ORDERING_AWARE | ||
1229 | .EXPORT bn_sqr_comba4,ENTRY,PRIV_LEV=3,NO_RELOCATION,LONG_RETURN | ||
1230 | .entry | ||
1231 | .align 64 | ||
1232 | STD %r3,0(%sp) ; save r3 | ||
1233 | STD %r4,8(%sp) ; save r4 | ||
1234 | STD %r5,16(%sp) ; save r5 | ||
1235 | STD %r6,24(%sp) ; save r6 | ||
1236 | |||
1237 | ; | ||
1238 | ; Zero out carries | ||
1239 | ; | ||
1240 | COPY %r0,c1 | ||
1241 | COPY %r0,c2 | ||
1242 | COPY %r0,c3 | ||
1243 | |||
1244 | LDO 128(%sp),%sp ; bump stack | ||
1245 | DEPDI,Z -1,32,33,high_mask ; Create Mask 0xffffffff80000000L | ||
1246 | DEPDI,Z 1,31,1,high_one ; Create Value 1 << 32 | ||
1247 | |||
1248 | ; | ||
1249 | ; Load up all of the values we are going to use | ||
1250 | ; | ||
1251 | FLDD 0(a_ptr),a0 | ||
1252 | FLDD 8(a_ptr),a1 | ||
1253 | FLDD 16(a_ptr),a2 | ||
1254 | FLDD 24(a_ptr),a3 | ||
1255 | FLDD 32(a_ptr),a4 | ||
1256 | FLDD 40(a_ptr),a5 | ||
1257 | FLDD 48(a_ptr),a6 | ||
1258 | FLDD 56(a_ptr),a7 | ||
1259 | |||
1260 | SQR_ADD_C a0L,a0R,c1,c2,c3 | ||
1261 | |||
1262 | STD c1,0(r_ptr) ; r[0] = c1; | ||
1263 | COPY %r0,c1 | ||
1264 | |||
1265 | SQR_ADD_C2 a1L,a1R,a0L,a0R,c2,c3,c1 | ||
1266 | |||
1267 | STD c2,8(r_ptr) ; r[1] = c2; | ||
1268 | COPY %r0,c2 | ||
1269 | |||
1270 | SQR_ADD_C a1L,a1R,c3,c1,c2 | ||
1271 | SQR_ADD_C2 a2L,a2R,a0L,a0R,c3,c1,c2 | ||
1272 | |||
1273 | STD c3,16(r_ptr) ; r[2] = c3; | ||
1274 | COPY %r0,c3 | ||
1275 | |||
1276 | SQR_ADD_C2 a3L,a3R,a0L,a0R,c1,c2,c3 | ||
1277 | SQR_ADD_C2 a2L,a2R,a1L,a1R,c1,c2,c3 | ||
1278 | |||
1279 | STD c1,24(r_ptr) ; r[3] = c1; | ||
1280 | COPY %r0,c1 | ||
1281 | |||
1282 | SQR_ADD_C a2L,a2R,c2,c3,c1 | ||
1283 | SQR_ADD_C2 a3L,a3R,a1L,a1R,c2,c3,c1 | ||
1284 | |||
1285 | STD c2,32(r_ptr) ; r[4] = c2; | ||
1286 | COPY %r0,c2 | ||
1287 | |||
1288 | SQR_ADD_C2 a3L,a3R,a2L,a2R,c3,c1,c2 | ||
1289 | STD c3,40(r_ptr) ; r[5] = c3; | ||
1290 | COPY %r0,c3 | ||
1291 | |||
1292 | SQR_ADD_C a3L,a3R,c1,c2,c3 | ||
1293 | STD c1,48(r_ptr) ; r[6] = c1; | ||
1294 | STD c2,56(r_ptr) ; r[7] = c2; | ||
1295 | |||
1296 | .EXIT | ||
1297 | LDD -104(%sp),%r6 ; restore r6 | ||
1298 | LDD -112(%sp),%r5 ; restore r5 | ||
1299 | LDD -120(%sp),%r4 ; restore r4 | ||
1300 | BVE (%rp) | ||
1301 | LDD,MB -128(%sp),%r3 | ||
1302 | |||
1303 | .PROCEND | ||
1304 | |||
1305 | |||
1306 | ;--------------------------------------------------------------------------- | ||
1307 | |||
1308 | MUL_ADD_C .macro A0L,A0R,B0L,B0R,C1,C2,C3 | ||
1309 | XMPYU A0L,B0R,ftemp1 ; m1 = bl*ht | ||
1310 | FSTD ftemp1,-16(%sp) ; | ||
1311 | XMPYU A0R,B0L,ftemp2 ; m = bh*lt | ||
1312 | FSTD ftemp2,-8(%sp) ; | ||
1313 | XMPYU A0R,B0R,ftemp3 ; lt = bl*lt | ||
1314 | FSTD ftemp3,-32(%sp) | ||
1315 | XMPYU A0L,B0L,ftemp4 ; ht = bh*ht | ||
1316 | FSTD ftemp4,-24(%sp) ; | ||
1317 | |||
1318 | LDD -8(%sp),m ; r21 = m | ||
1319 | LDD -16(%sp),m1 ; r19 = m1 | ||
1320 | ADD,L m,m1,m ; m+m1 | ||
1321 | |||
1322 | DEPD,Z m,31,32,temp3 ; (m+m1<<32) | ||
1323 | LDD -24(%sp),ht ; r24 = ht | ||
1324 | |||
1325 | CMPCLR,*>>= m,m1,%r0 ; if (m < m1) | ||
1326 | ADD,L ht,high_one,ht ; ht+=high_one | ||
1327 | |||
1328 | EXTRD,U m,31,32,temp1 ; m >> 32 | ||
1329 | LDD -32(%sp),lt ; lt | ||
1330 | ADD,L ht,temp1,ht ; ht+= m>>32 | ||
1331 | ADD lt,temp3,lt ; lt = lt+m1 | ||
1332 | ADD,DC ht,%r0,ht ; ht++ | ||
1333 | |||
1334 | ADD C1,lt,C1 ; c1=c1+lt | ||
1335 | ADD,DC ht,%r0,ht ; bump c3 if overflow,nullify otherwise | ||
1336 | |||
1337 | ADD C2,ht,C2 ; c2 = c2 + ht | ||
1338 | ADD,DC C3,%r0,C3 ; add in carry (c3++) | ||
1339 | .endm | ||
1340 | |||
1341 | |||
1342 | ; | ||
1343 | ;void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b) | ||
1344 | ; arg0 = r_ptr | ||
1345 | ; arg1 = a_ptr | ||
1346 | ; arg2 = b_ptr | ||
1347 | ; | ||
1348 | |||
1349 | bn_mul_comba8 | ||
1350 | .proc | ||
1351 | .callinfo FRAME=128,ENTRY_GR=%r3,ARGS_SAVED,ORDERING_AWARE | ||
1352 | .EXPORT bn_mul_comba8,ENTRY,PRIV_LEV=3,NO_RELOCATION,LONG_RETURN | ||
1353 | .entry | ||
1354 | .align 64 | ||
1355 | |||
1356 | STD %r3,0(%sp) ; save r3 | ||
1357 | STD %r4,8(%sp) ; save r4 | ||
1358 | STD %r5,16(%sp) ; save r5 | ||
1359 | STD %r6,24(%sp) ; save r6 | ||
1360 | FSTD %fr12,32(%sp) ; save r6 | ||
1361 | FSTD %fr13,40(%sp) ; save r7 | ||
1362 | |||
1363 | ; | ||
1364 | ; Zero out carries | ||
1365 | ; | ||
1366 | COPY %r0,c1 | ||
1367 | COPY %r0,c2 | ||
1368 | COPY %r0,c3 | ||
1369 | |||
1370 | LDO 128(%sp),%sp ; bump stack | ||
1371 | DEPDI,Z 1,31,1,high_one ; Create Value 1 << 32 | ||
1372 | |||
1373 | ; | ||
1374 | ; Load up all of the values we are going to use | ||
1375 | ; | ||
1376 | FLDD 0(a_ptr),a0 | ||
1377 | FLDD 8(a_ptr),a1 | ||
1378 | FLDD 16(a_ptr),a2 | ||
1379 | FLDD 24(a_ptr),a3 | ||
1380 | FLDD 32(a_ptr),a4 | ||
1381 | FLDD 40(a_ptr),a5 | ||
1382 | FLDD 48(a_ptr),a6 | ||
1383 | FLDD 56(a_ptr),a7 | ||
1384 | |||
1385 | FLDD 0(b_ptr),b0 | ||
1386 | FLDD 8(b_ptr),b1 | ||
1387 | FLDD 16(b_ptr),b2 | ||
1388 | FLDD 24(b_ptr),b3 | ||
1389 | FLDD 32(b_ptr),b4 | ||
1390 | FLDD 40(b_ptr),b5 | ||
1391 | FLDD 48(b_ptr),b6 | ||
1392 | FLDD 56(b_ptr),b7 | ||
1393 | |||
1394 | MUL_ADD_C a0L,a0R,b0L,b0R,c1,c2,c3 | ||
1395 | STD c1,0(r_ptr) | ||
1396 | COPY %r0,c1 | ||
1397 | |||
1398 | MUL_ADD_C a0L,a0R,b1L,b1R,c2,c3,c1 | ||
1399 | MUL_ADD_C a1L,a1R,b0L,b0R,c2,c3,c1 | ||
1400 | STD c2,8(r_ptr) | ||
1401 | COPY %r0,c2 | ||
1402 | |||
1403 | MUL_ADD_C a2L,a2R,b0L,b0R,c3,c1,c2 | ||
1404 | MUL_ADD_C a1L,a1R,b1L,b1R,c3,c1,c2 | ||
1405 | MUL_ADD_C a0L,a0R,b2L,b2R,c3,c1,c2 | ||
1406 | STD c3,16(r_ptr) | ||
1407 | COPY %r0,c3 | ||
1408 | |||
1409 | MUL_ADD_C a0L,a0R,b3L,b3R,c1,c2,c3 | ||
1410 | MUL_ADD_C a1L,a1R,b2L,b2R,c1,c2,c3 | ||
1411 | MUL_ADD_C a2L,a2R,b1L,b1R,c1,c2,c3 | ||
1412 | MUL_ADD_C a3L,a3R,b0L,b0R,c1,c2,c3 | ||
1413 | STD c1,24(r_ptr) | ||
1414 | COPY %r0,c1 | ||
1415 | |||
1416 | MUL_ADD_C a4L,a4R,b0L,b0R,c2,c3,c1 | ||
1417 | MUL_ADD_C a3L,a3R,b1L,b1R,c2,c3,c1 | ||
1418 | MUL_ADD_C a2L,a2R,b2L,b2R,c2,c3,c1 | ||
1419 | MUL_ADD_C a1L,a1R,b3L,b3R,c2,c3,c1 | ||
1420 | MUL_ADD_C a0L,a0R,b4L,b4R,c2,c3,c1 | ||
1421 | STD c2,32(r_ptr) | ||
1422 | COPY %r0,c2 | ||
1423 | |||
1424 | MUL_ADD_C a0L,a0R,b5L,b5R,c3,c1,c2 | ||
1425 | MUL_ADD_C a1L,a1R,b4L,b4R,c3,c1,c2 | ||
1426 | MUL_ADD_C a2L,a2R,b3L,b3R,c3,c1,c2 | ||
1427 | MUL_ADD_C a3L,a3R,b2L,b2R,c3,c1,c2 | ||
1428 | MUL_ADD_C a4L,a4R,b1L,b1R,c3,c1,c2 | ||
1429 | MUL_ADD_C a5L,a5R,b0L,b0R,c3,c1,c2 | ||
1430 | STD c3,40(r_ptr) | ||
1431 | COPY %r0,c3 | ||
1432 | |||
1433 | MUL_ADD_C a6L,a6R,b0L,b0R,c1,c2,c3 | ||
1434 | MUL_ADD_C a5L,a5R,b1L,b1R,c1,c2,c3 | ||
1435 | MUL_ADD_C a4L,a4R,b2L,b2R,c1,c2,c3 | ||
1436 | MUL_ADD_C a3L,a3R,b3L,b3R,c1,c2,c3 | ||
1437 | MUL_ADD_C a2L,a2R,b4L,b4R,c1,c2,c3 | ||
1438 | MUL_ADD_C a1L,a1R,b5L,b5R,c1,c2,c3 | ||
1439 | MUL_ADD_C a0L,a0R,b6L,b6R,c1,c2,c3 | ||
1440 | STD c1,48(r_ptr) | ||
1441 | COPY %r0,c1 | ||
1442 | |||
1443 | MUL_ADD_C a0L,a0R,b7L,b7R,c2,c3,c1 | ||
1444 | MUL_ADD_C a1L,a1R,b6L,b6R,c2,c3,c1 | ||
1445 | MUL_ADD_C a2L,a2R,b5L,b5R,c2,c3,c1 | ||
1446 | MUL_ADD_C a3L,a3R,b4L,b4R,c2,c3,c1 | ||
1447 | MUL_ADD_C a4L,a4R,b3L,b3R,c2,c3,c1 | ||
1448 | MUL_ADD_C a5L,a5R,b2L,b2R,c2,c3,c1 | ||
1449 | MUL_ADD_C a6L,a6R,b1L,b1R,c2,c3,c1 | ||
1450 | MUL_ADD_C a7L,a7R,b0L,b0R,c2,c3,c1 | ||
1451 | STD c2,56(r_ptr) | ||
1452 | COPY %r0,c2 | ||
1453 | |||
1454 | MUL_ADD_C a7L,a7R,b1L,b1R,c3,c1,c2 | ||
1455 | MUL_ADD_C a6L,a6R,b2L,b2R,c3,c1,c2 | ||
1456 | MUL_ADD_C a5L,a5R,b3L,b3R,c3,c1,c2 | ||
1457 | MUL_ADD_C a4L,a4R,b4L,b4R,c3,c1,c2 | ||
1458 | MUL_ADD_C a3L,a3R,b5L,b5R,c3,c1,c2 | ||
1459 | MUL_ADD_C a2L,a2R,b6L,b6R,c3,c1,c2 | ||
1460 | MUL_ADD_C a1L,a1R,b7L,b7R,c3,c1,c2 | ||
1461 | STD c3,64(r_ptr) | ||
1462 | COPY %r0,c3 | ||
1463 | |||
1464 | MUL_ADD_C a2L,a2R,b7L,b7R,c1,c2,c3 | ||
1465 | MUL_ADD_C a3L,a3R,b6L,b6R,c1,c2,c3 | ||
1466 | MUL_ADD_C a4L,a4R,b5L,b5R,c1,c2,c3 | ||
1467 | MUL_ADD_C a5L,a5R,b4L,b4R,c1,c2,c3 | ||
1468 | MUL_ADD_C a6L,a6R,b3L,b3R,c1,c2,c3 | ||
1469 | MUL_ADD_C a7L,a7R,b2L,b2R,c1,c2,c3 | ||
1470 | STD c1,72(r_ptr) | ||
1471 | COPY %r0,c1 | ||
1472 | |||
1473 | MUL_ADD_C a7L,a7R,b3L,b3R,c2,c3,c1 | ||
1474 | MUL_ADD_C a6L,a6R,b4L,b4R,c2,c3,c1 | ||
1475 | MUL_ADD_C a5L,a5R,b5L,b5R,c2,c3,c1 | ||
1476 | MUL_ADD_C a4L,a4R,b6L,b6R,c2,c3,c1 | ||
1477 | MUL_ADD_C a3L,a3R,b7L,b7R,c2,c3,c1 | ||
1478 | STD c2,80(r_ptr) | ||
1479 | COPY %r0,c2 | ||
1480 | |||
1481 | MUL_ADD_C a4L,a4R,b7L,b7R,c3,c1,c2 | ||
1482 | MUL_ADD_C a5L,a5R,b6L,b6R,c3,c1,c2 | ||
1483 | MUL_ADD_C a6L,a6R,b5L,b5R,c3,c1,c2 | ||
1484 | MUL_ADD_C a7L,a7R,b4L,b4R,c3,c1,c2 | ||
1485 | STD c3,88(r_ptr) | ||
1486 | COPY %r0,c3 | ||
1487 | |||
1488 | MUL_ADD_C a7L,a7R,b5L,b5R,c1,c2,c3 | ||
1489 | MUL_ADD_C a6L,a6R,b6L,b6R,c1,c2,c3 | ||
1490 | MUL_ADD_C a5L,a5R,b7L,b7R,c1,c2,c3 | ||
1491 | STD c1,96(r_ptr) | ||
1492 | COPY %r0,c1 | ||
1493 | |||
1494 | MUL_ADD_C a6L,a6R,b7L,b7R,c2,c3,c1 | ||
1495 | MUL_ADD_C a7L,a7R,b6L,b6R,c2,c3,c1 | ||
1496 | STD c2,104(r_ptr) | ||
1497 | COPY %r0,c2 | ||
1498 | |||
1499 | MUL_ADD_C a7L,a7R,b7L,b7R,c3,c1,c2 | ||
1500 | STD c3,112(r_ptr) | ||
1501 | STD c1,120(r_ptr) | ||
1502 | |||
1503 | .EXIT | ||
1504 | FLDD -88(%sp),%fr13 | ||
1505 | FLDD -96(%sp),%fr12 | ||
1506 | LDD -104(%sp),%r6 ; restore r6 | ||
1507 | LDD -112(%sp),%r5 ; restore r5 | ||
1508 | LDD -120(%sp),%r4 ; restore r4 | ||
1509 | BVE (%rp) | ||
1510 | LDD,MB -128(%sp),%r3 | ||
1511 | |||
1512 | .PROCEND | ||
1513 | |||
1514 | ;----------------------------------------------------------------------------- | ||
1515 | ; | ||
1516 | ;void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b) | ||
1517 | ; arg0 = r_ptr | ||
1518 | ; arg1 = a_ptr | ||
1519 | ; arg2 = b_ptr | ||
1520 | ; | ||
1521 | |||
1522 | bn_mul_comba4 | ||
1523 | .proc | ||
1524 | .callinfo FRAME=128,ENTRY_GR=%r3,ARGS_SAVED,ORDERING_AWARE | ||
1525 | .EXPORT bn_mul_comba4,ENTRY,PRIV_LEV=3,NO_RELOCATION,LONG_RETURN | ||
1526 | .entry | ||
1527 | .align 64 | ||
1528 | |||
1529 | STD %r3,0(%sp) ; save r3 | ||
1530 | STD %r4,8(%sp) ; save r4 | ||
1531 | STD %r5,16(%sp) ; save r5 | ||
1532 | STD %r6,24(%sp) ; save r6 | ||
1533 | FSTD %fr12,32(%sp) ; save r6 | ||
1534 | FSTD %fr13,40(%sp) ; save r7 | ||
1535 | |||
1536 | ; | ||
1537 | ; Zero out carries | ||
1538 | ; | ||
1539 | COPY %r0,c1 | ||
1540 | COPY %r0,c2 | ||
1541 | COPY %r0,c3 | ||
1542 | |||
1543 | LDO 128(%sp),%sp ; bump stack | ||
1544 | DEPDI,Z 1,31,1,high_one ; Create Value 1 << 32 | ||
1545 | |||
1546 | ; | ||
1547 | ; Load up all of the values we are going to use | ||
1548 | ; | ||
1549 | FLDD 0(a_ptr),a0 | ||
1550 | FLDD 8(a_ptr),a1 | ||
1551 | FLDD 16(a_ptr),a2 | ||
1552 | FLDD 24(a_ptr),a3 | ||
1553 | |||
1554 | FLDD 0(b_ptr),b0 | ||
1555 | FLDD 8(b_ptr),b1 | ||
1556 | FLDD 16(b_ptr),b2 | ||
1557 | FLDD 24(b_ptr),b3 | ||
1558 | |||
1559 | MUL_ADD_C a0L,a0R,b0L,b0R,c1,c2,c3 | ||
1560 | STD c1,0(r_ptr) | ||
1561 | COPY %r0,c1 | ||
1562 | |||
1563 | MUL_ADD_C a0L,a0R,b1L,b1R,c2,c3,c1 | ||
1564 | MUL_ADD_C a1L,a1R,b0L,b0R,c2,c3,c1 | ||
1565 | STD c2,8(r_ptr) | ||
1566 | COPY %r0,c2 | ||
1567 | |||
1568 | MUL_ADD_C a2L,a2R,b0L,b0R,c3,c1,c2 | ||
1569 | MUL_ADD_C a1L,a1R,b1L,b1R,c3,c1,c2 | ||
1570 | MUL_ADD_C a0L,a0R,b2L,b2R,c3,c1,c2 | ||
1571 | STD c3,16(r_ptr) | ||
1572 | COPY %r0,c3 | ||
1573 | |||
1574 | MUL_ADD_C a0L,a0R,b3L,b3R,c1,c2,c3 | ||
1575 | MUL_ADD_C a1L,a1R,b2L,b2R,c1,c2,c3 | ||
1576 | MUL_ADD_C a2L,a2R,b1L,b1R,c1,c2,c3 | ||
1577 | MUL_ADD_C a3L,a3R,b0L,b0R,c1,c2,c3 | ||
1578 | STD c1,24(r_ptr) | ||
1579 | COPY %r0,c1 | ||
1580 | |||
1581 | MUL_ADD_C a3L,a3R,b1L,b1R,c2,c3,c1 | ||
1582 | MUL_ADD_C a2L,a2R,b2L,b2R,c2,c3,c1 | ||
1583 | MUL_ADD_C a1L,a1R,b3L,b3R,c2,c3,c1 | ||
1584 | STD c2,32(r_ptr) | ||
1585 | COPY %r0,c2 | ||
1586 | |||
1587 | MUL_ADD_C a2L,a2R,b3L,b3R,c3,c1,c2 | ||
1588 | MUL_ADD_C a3L,a3R,b2L,b2R,c3,c1,c2 | ||
1589 | STD c3,40(r_ptr) | ||
1590 | COPY %r0,c3 | ||
1591 | |||
1592 | MUL_ADD_C a3L,a3R,b3L,b3R,c1,c2,c3 | ||
1593 | STD c1,48(r_ptr) | ||
1594 | STD c2,56(r_ptr) | ||
1595 | |||
1596 | .EXIT | ||
1597 | FLDD -88(%sp),%fr13 | ||
1598 | FLDD -96(%sp),%fr12 | ||
1599 | LDD -104(%sp),%r6 ; restore r6 | ||
1600 | LDD -112(%sp),%r5 ; restore r5 | ||
1601 | LDD -120(%sp),%r4 ; restore r4 | ||
1602 | BVE (%rp) | ||
1603 | LDD,MB -128(%sp),%r3 | ||
1604 | |||
1605 | .PROCEND | ||
1606 | |||
1607 | |||
1608 | ;--- not PIC .SPACE $TEXT$ | ||
1609 | ;--- not PIC .SUBSPA $CODE$ | ||
1610 | ;--- not PIC .SPACE $PRIVATE$,SORT=16 | ||
1611 | ;--- not PIC .IMPORT $global$,DATA | ||
1612 | ;--- not PIC .SPACE $TEXT$ | ||
1613 | ;--- not PIC .SUBSPA $CODE$ | ||
1614 | ;--- not PIC .SUBSPA $LIT$,ACCESS=0x2c | ||
1615 | ;--- not PIC C$7 | ||
1616 | ;--- not PIC .ALIGN 8 | ||
1617 | ;--- not PIC .STRINGZ "Division would overflow (%d)\n" | ||
1618 | .END | ||
diff --git a/src/lib/libcrypto/bn/asm/pa-risc2W.s b/src/lib/libcrypto/bn/asm/pa-risc2W.s deleted file mode 100644 index a99545754d..0000000000 --- a/src/lib/libcrypto/bn/asm/pa-risc2W.s +++ /dev/null | |||
@@ -1,1605 +0,0 @@ | |||
1 | ; | ||
2 | ; PA-RISC 64-bit implementation of bn_asm code | ||
3 | ; | ||
4 | ; This code is approximately 2x faster than the C version | ||
5 | ; for RSA/DSA. | ||
6 | ; | ||
7 | ; See http://devresource.hp.com/ for more details on the PA-RISC | ||
8 | ; architecture. Also see the book "PA-RISC 2.0 Architecture" | ||
9 | ; by Gerry Kane for information on the instruction set architecture. | ||
10 | ; | ||
11 | ; Code written by Chris Ruemmler (with some help from the HP C | ||
12 | ; compiler). | ||
13 | ; | ||
14 | ; The code compiles with HP's assembler | ||
15 | ; | ||
16 | |||
17 | .level 2.0W | ||
18 | .space $TEXT$ | ||
19 | .subspa $CODE$,QUAD=0,ALIGN=8,ACCESS=0x2c,CODE_ONLY | ||
20 | |||
21 | ; | ||
22 | ; Global Register definitions used for the routines. | ||
23 | ; | ||
24 | ; Some information about HP's runtime architecture for 64-bits. | ||
25 | ; | ||
26 | ; "Caller save" means the calling function must save the register | ||
27 | ; if it wants the register to be preserved. | ||
28 | ; "Callee save" means if a function uses the register, it must save | ||
29 | ; the value before using it. | ||
30 | ; | ||
31 | ; For the floating point registers | ||
32 | ; | ||
33 | ; "caller save" registers: fr4-fr11, fr22-fr31 | ||
34 | ; "callee save" registers: fr12-fr21 | ||
35 | ; "special" registers: fr0-fr3 (status and exception registers) | ||
36 | ; | ||
37 | ; For the integer registers | ||
38 | ; value zero : r0 | ||
39 | ; "caller save" registers: r1,r19-r26 | ||
40 | ; "callee save" registers: r3-r18 | ||
41 | ; return register : r2 (rp) | ||
42 | ; return values ; r28 (ret0,ret1) | ||
43 | ; Stack pointer ; r30 (sp) | ||
44 | ; global data pointer ; r27 (dp) | ||
45 | ; argument pointer ; r29 (ap) | ||
46 | ; millicode return ptr ; r31 (also a caller save register) | ||
47 | |||
48 | |||
49 | ; | ||
50 | ; Arguments to the routines | ||
51 | ; | ||
52 | r_ptr .reg %r26 | ||
53 | a_ptr .reg %r25 | ||
54 | b_ptr .reg %r24 | ||
55 | num .reg %r24 | ||
56 | w .reg %r23 | ||
57 | n .reg %r23 | ||
58 | |||
59 | |||
60 | ; | ||
61 | ; Globals used in some routines | ||
62 | ; | ||
63 | |||
64 | top_overflow .reg %r29 | ||
65 | high_mask .reg %r22 ; value 0xffffffff80000000L | ||
66 | |||
67 | |||
68 | ;------------------------------------------------------------------------------ | ||
69 | ; | ||
70 | ; bn_mul_add_words | ||
71 | ; | ||
72 | ;BN_ULONG bn_mul_add_words(BN_ULONG *r_ptr, BN_ULONG *a_ptr, | ||
73 | ; int num, BN_ULONG w) | ||
74 | ; | ||
75 | ; arg0 = r_ptr | ||
76 | ; arg1 = a_ptr | ||
77 | ; arg2 = num | ||
78 | ; arg3 = w | ||
79 | ; | ||
80 | ; Local register definitions | ||
81 | ; | ||
82 | |||
83 | fm1 .reg %fr22 | ||
84 | fm .reg %fr23 | ||
85 | ht_temp .reg %fr24 | ||
86 | ht_temp_1 .reg %fr25 | ||
87 | lt_temp .reg %fr26 | ||
88 | lt_temp_1 .reg %fr27 | ||
89 | fm1_1 .reg %fr28 | ||
90 | fm_1 .reg %fr29 | ||
91 | |||
92 | fw_h .reg %fr7L | ||
93 | fw_l .reg %fr7R | ||
94 | fw .reg %fr7 | ||
95 | |||
96 | fht_0 .reg %fr8L | ||
97 | flt_0 .reg %fr8R | ||
98 | t_float_0 .reg %fr8 | ||
99 | |||
100 | fht_1 .reg %fr9L | ||
101 | flt_1 .reg %fr9R | ||
102 | t_float_1 .reg %fr9 | ||
103 | |||
104 | tmp_0 .reg %r31 | ||
105 | tmp_1 .reg %r21 | ||
106 | m_0 .reg %r20 | ||
107 | m_1 .reg %r19 | ||
108 | ht_0 .reg %r1 | ||
109 | ht_1 .reg %r3 | ||
110 | lt_0 .reg %r4 | ||
111 | lt_1 .reg %r5 | ||
112 | m1_0 .reg %r6 | ||
113 | m1_1 .reg %r7 | ||
114 | rp_val .reg %r8 | ||
115 | rp_val_1 .reg %r9 | ||
116 | |||
117 | bn_mul_add_words | ||
118 | .export bn_mul_add_words,entry,NO_RELOCATION,LONG_RETURN | ||
119 | .proc | ||
120 | .callinfo frame=128 | ||
121 | .entry | ||
122 | .align 64 | ||
123 | |||
124 | STD %r3,0(%sp) ; save r3 | ||
125 | STD %r4,8(%sp) ; save r4 | ||
126 | NOP ; Needed to make the loop 16-byte aligned | ||
127 | NOP ; Needed to make the loop 16-byte aligned | ||
128 | |||
129 | STD %r5,16(%sp) ; save r5 | ||
130 | STD %r6,24(%sp) ; save r6 | ||
131 | STD %r7,32(%sp) ; save r7 | ||
132 | STD %r8,40(%sp) ; save r8 | ||
133 | |||
134 | STD %r9,48(%sp) ; save r9 | ||
135 | COPY %r0,%ret0 ; return 0 by default | ||
136 | DEPDI,Z 1,31,1,top_overflow ; top_overflow = 1 << 32 | ||
137 | STD w,56(%sp) ; store w on stack | ||
138 | |||
139 | CMPIB,>= 0,num,bn_mul_add_words_exit ; if (num <= 0) then exit | ||
140 | LDO 128(%sp),%sp ; bump stack | ||
141 | |||
142 | ; | ||
143 | ; The loop is unrolled twice, so if there is only 1 number | ||
144 | ; then go straight to the cleanup code. | ||
145 | ; | ||
146 | CMPIB,= 1,num,bn_mul_add_words_single_top | ||
147 | FLDD -72(%sp),fw ; load up w into fp register fw (fw_h/fw_l) | ||
148 | |||
149 | ; | ||
150 | ; This loop is unrolled 2 times (64-byte aligned as well) | ||
151 | ; | ||
152 | ; PA-RISC 2.0 chips have two fully pipelined multipliers, thus | ||
153 | ; two 32-bit mutiplies can be issued per cycle. | ||
154 | ; | ||
155 | bn_mul_add_words_unroll2 | ||
156 | |||
157 | FLDD 0(a_ptr),t_float_0 ; load up 64-bit value (fr8L) ht(L)/lt(R) | ||
158 | FLDD 8(a_ptr),t_float_1 ; load up 64-bit value (fr8L) ht(L)/lt(R) | ||
159 | LDD 0(r_ptr),rp_val ; rp[0] | ||
160 | LDD 8(r_ptr),rp_val_1 ; rp[1] | ||
161 | |||
162 | XMPYU fht_0,fw_l,fm1 ; m1[0] = fht_0*fw_l | ||
163 | XMPYU fht_1,fw_l,fm1_1 ; m1[1] = fht_1*fw_l | ||
164 | FSTD fm1,-16(%sp) ; -16(sp) = m1[0] | ||
165 | FSTD fm1_1,-48(%sp) ; -48(sp) = m1[1] | ||
166 | |||
167 | XMPYU flt_0,fw_h,fm ; m[0] = flt_0*fw_h | ||
168 | XMPYU flt_1,fw_h,fm_1 ; m[1] = flt_1*fw_h | ||
169 | FSTD fm,-8(%sp) ; -8(sp) = m[0] | ||
170 | FSTD fm_1,-40(%sp) ; -40(sp) = m[1] | ||
171 | |||
172 | XMPYU fht_0,fw_h,ht_temp ; ht_temp = fht_0*fw_h | ||
173 | XMPYU fht_1,fw_h,ht_temp_1 ; ht_temp_1 = fht_1*fw_h | ||
174 | FSTD ht_temp,-24(%sp) ; -24(sp) = ht_temp | ||
175 | FSTD ht_temp_1,-56(%sp) ; -56(sp) = ht_temp_1 | ||
176 | |||
177 | XMPYU flt_0,fw_l,lt_temp ; lt_temp = lt*fw_l | ||
178 | XMPYU flt_1,fw_l,lt_temp_1 ; lt_temp = lt*fw_l | ||
179 | FSTD lt_temp,-32(%sp) ; -32(sp) = lt_temp | ||
180 | FSTD lt_temp_1,-64(%sp) ; -64(sp) = lt_temp_1 | ||
181 | |||
182 | LDD -8(%sp),m_0 ; m[0] | ||
183 | LDD -40(%sp),m_1 ; m[1] | ||
184 | LDD -16(%sp),m1_0 ; m1[0] | ||
185 | LDD -48(%sp),m1_1 ; m1[1] | ||
186 | |||
187 | LDD -24(%sp),ht_0 ; ht[0] | ||
188 | LDD -56(%sp),ht_1 ; ht[1] | ||
189 | ADD,L m1_0,m_0,tmp_0 ; tmp_0 = m[0] + m1[0]; | ||
190 | ADD,L m1_1,m_1,tmp_1 ; tmp_1 = m[1] + m1[1]; | ||
191 | |||
192 | LDD -32(%sp),lt_0 | ||
193 | LDD -64(%sp),lt_1 | ||
194 | CMPCLR,*>>= tmp_0,m1_0, %r0 ; if (m[0] < m1[0]) | ||
195 | ADD,L ht_0,top_overflow,ht_0 ; ht[0] += (1<<32) | ||
196 | |||
197 | CMPCLR,*>>= tmp_1,m1_1,%r0 ; if (m[1] < m1[1]) | ||
198 | ADD,L ht_1,top_overflow,ht_1 ; ht[1] += (1<<32) | ||
199 | EXTRD,U tmp_0,31,32,m_0 ; m[0]>>32 | ||
200 | DEPD,Z tmp_0,31,32,m1_0 ; m1[0] = m[0]<<32 | ||
201 | |||
202 | EXTRD,U tmp_1,31,32,m_1 ; m[1]>>32 | ||
203 | DEPD,Z tmp_1,31,32,m1_1 ; m1[1] = m[1]<<32 | ||
204 | ADD,L ht_0,m_0,ht_0 ; ht[0]+= (m[0]>>32) | ||
205 | ADD,L ht_1,m_1,ht_1 ; ht[1]+= (m[1]>>32) | ||
206 | |||
207 | ADD lt_0,m1_0,lt_0 ; lt[0] = lt[0]+m1[0]; | ||
208 | ADD,DC ht_0,%r0,ht_0 ; ht[0]++ | ||
209 | ADD lt_1,m1_1,lt_1 ; lt[1] = lt[1]+m1[1]; | ||
210 | ADD,DC ht_1,%r0,ht_1 ; ht[1]++ | ||
211 | |||
212 | ADD %ret0,lt_0,lt_0 ; lt[0] = lt[0] + c; | ||
213 | ADD,DC ht_0,%r0,ht_0 ; ht[0]++ | ||
214 | ADD lt_0,rp_val,lt_0 ; lt[0] = lt[0]+rp[0] | ||
215 | ADD,DC ht_0,%r0,ht_0 ; ht[0]++ | ||
216 | |||
217 | LDO -2(num),num ; num = num - 2; | ||
218 | ADD ht_0,lt_1,lt_1 ; lt[1] = lt[1] + ht_0 (c); | ||
219 | ADD,DC ht_1,%r0,ht_1 ; ht[1]++ | ||
220 | STD lt_0,0(r_ptr) ; rp[0] = lt[0] | ||
221 | |||
222 | ADD lt_1,rp_val_1,lt_1 ; lt[1] = lt[1]+rp[1] | ||
223 | ADD,DC ht_1,%r0,%ret0 ; ht[1]++ | ||
224 | LDO 16(a_ptr),a_ptr ; a_ptr += 2 | ||
225 | |||
226 | STD lt_1,8(r_ptr) ; rp[1] = lt[1] | ||
227 | CMPIB,<= 2,num,bn_mul_add_words_unroll2 ; go again if more to do | ||
228 | LDO 16(r_ptr),r_ptr ; r_ptr += 2 | ||
229 | |||
230 | CMPIB,=,N 0,num,bn_mul_add_words_exit ; are we done, or cleanup last one | ||
231 | |||
232 | ; | ||
233 | ; Top of loop aligned on 64-byte boundary | ||
234 | ; | ||
235 | bn_mul_add_words_single_top | ||
236 | FLDD 0(a_ptr),t_float_0 ; load up 64-bit value (fr8L) ht(L)/lt(R) | ||
237 | LDD 0(r_ptr),rp_val ; rp[0] | ||
238 | LDO 8(a_ptr),a_ptr ; a_ptr++ | ||
239 | XMPYU fht_0,fw_l,fm1 ; m1 = ht*fw_l | ||
240 | FSTD fm1,-16(%sp) ; -16(sp) = m1 | ||
241 | XMPYU flt_0,fw_h,fm ; m = lt*fw_h | ||
242 | FSTD fm,-8(%sp) ; -8(sp) = m | ||
243 | XMPYU fht_0,fw_h,ht_temp ; ht_temp = ht*fw_h | ||
244 | FSTD ht_temp,-24(%sp) ; -24(sp) = ht | ||
245 | XMPYU flt_0,fw_l,lt_temp ; lt_temp = lt*fw_l | ||
246 | FSTD lt_temp,-32(%sp) ; -32(sp) = lt | ||
247 | |||
248 | LDD -8(%sp),m_0 | ||
249 | LDD -16(%sp),m1_0 ; m1 = temp1 | ||
250 | ADD,L m_0,m1_0,tmp_0 ; tmp_0 = m + m1; | ||
251 | LDD -24(%sp),ht_0 | ||
252 | LDD -32(%sp),lt_0 | ||
253 | |||
254 | CMPCLR,*>>= tmp_0,m1_0,%r0 ; if (m < m1) | ||
255 | ADD,L ht_0,top_overflow,ht_0 ; ht += (1<<32) | ||
256 | |||
257 | EXTRD,U tmp_0,31,32,m_0 ; m>>32 | ||
258 | DEPD,Z tmp_0,31,32,m1_0 ; m1 = m<<32 | ||
259 | |||
260 | ADD,L ht_0,m_0,ht_0 ; ht+= (m>>32) | ||
261 | ADD lt_0,m1_0,tmp_0 ; tmp_0 = lt+m1; | ||
262 | ADD,DC ht_0,%r0,ht_0 ; ht++ | ||
263 | ADD %ret0,tmp_0,lt_0 ; lt = lt + c; | ||
264 | ADD,DC ht_0,%r0,ht_0 ; ht++ | ||
265 | ADD lt_0,rp_val,lt_0 ; lt = lt+rp[0] | ||
266 | ADD,DC ht_0,%r0,%ret0 ; ht++ | ||
267 | STD lt_0,0(r_ptr) ; rp[0] = lt | ||
268 | |||
269 | bn_mul_add_words_exit | ||
270 | .EXIT | ||
271 | LDD -80(%sp),%r9 ; restore r9 | ||
272 | LDD -88(%sp),%r8 ; restore r8 | ||
273 | LDD -96(%sp),%r7 ; restore r7 | ||
274 | LDD -104(%sp),%r6 ; restore r6 | ||
275 | LDD -112(%sp),%r5 ; restore r5 | ||
276 | LDD -120(%sp),%r4 ; restore r4 | ||
277 | BVE (%rp) | ||
278 | LDD,MB -128(%sp),%r3 ; restore r3 | ||
279 | .PROCEND ;in=23,24,25,26,29;out=28; | ||
280 | |||
281 | ;---------------------------------------------------------------------------- | ||
282 | ; | ||
283 | ;BN_ULONG bn_mul_words(BN_ULONG *rp, BN_ULONG *ap, int num, BN_ULONG w) | ||
284 | ; | ||
285 | ; arg0 = rp | ||
286 | ; arg1 = ap | ||
287 | ; arg2 = num | ||
288 | ; arg3 = w | ||
289 | |||
290 | bn_mul_words | ||
291 | .proc | ||
292 | .callinfo frame=128 | ||
293 | .entry | ||
294 | .EXPORT bn_mul_words,ENTRY,PRIV_LEV=3,NO_RELOCATION,LONG_RETURN | ||
295 | .align 64 | ||
296 | |||
297 | STD %r3,0(%sp) ; save r3 | ||
298 | STD %r4,8(%sp) ; save r4 | ||
299 | STD %r5,16(%sp) ; save r5 | ||
300 | STD %r6,24(%sp) ; save r6 | ||
301 | |||
302 | STD %r7,32(%sp) ; save r7 | ||
303 | COPY %r0,%ret0 ; return 0 by default | ||
304 | DEPDI,Z 1,31,1,top_overflow ; top_overflow = 1 << 32 | ||
305 | STD w,56(%sp) ; w on stack | ||
306 | |||
307 | CMPIB,>= 0,num,bn_mul_words_exit | ||
308 | LDO 128(%sp),%sp ; bump stack | ||
309 | |||
310 | ; | ||
311 | ; See if only 1 word to do, thus just do cleanup | ||
312 | ; | ||
313 | CMPIB,= 1,num,bn_mul_words_single_top | ||
314 | FLDD -72(%sp),fw ; load up w into fp register fw (fw_h/fw_l) | ||
315 | |||
316 | ; | ||
317 | ; This loop is unrolled 2 times (64-byte aligned as well) | ||
318 | ; | ||
319 | ; PA-RISC 2.0 chips have two fully pipelined multipliers, thus | ||
320 | ; two 32-bit mutiplies can be issued per cycle. | ||
321 | ; | ||
322 | bn_mul_words_unroll2 | ||
323 | |||
324 | FLDD 0(a_ptr),t_float_0 ; load up 64-bit value (fr8L) ht(L)/lt(R) | ||
325 | FLDD 8(a_ptr),t_float_1 ; load up 64-bit value (fr8L) ht(L)/lt(R) | ||
326 | XMPYU fht_0,fw_l,fm1 ; m1[0] = fht_0*fw_l | ||
327 | XMPYU fht_1,fw_l,fm1_1 ; m1[1] = ht*fw_l | ||
328 | |||
329 | FSTD fm1,-16(%sp) ; -16(sp) = m1 | ||
330 | FSTD fm1_1,-48(%sp) ; -48(sp) = m1 | ||
331 | XMPYU flt_0,fw_h,fm ; m = lt*fw_h | ||
332 | XMPYU flt_1,fw_h,fm_1 ; m = lt*fw_h | ||
333 | |||
334 | FSTD fm,-8(%sp) ; -8(sp) = m | ||
335 | FSTD fm_1,-40(%sp) ; -40(sp) = m | ||
336 | XMPYU fht_0,fw_h,ht_temp ; ht_temp = fht_0*fw_h | ||
337 | XMPYU fht_1,fw_h,ht_temp_1 ; ht_temp = ht*fw_h | ||
338 | |||
339 | FSTD ht_temp,-24(%sp) ; -24(sp) = ht | ||
340 | FSTD ht_temp_1,-56(%sp) ; -56(sp) = ht | ||
341 | XMPYU flt_0,fw_l,lt_temp ; lt_temp = lt*fw_l | ||
342 | XMPYU flt_1,fw_l,lt_temp_1 ; lt_temp = lt*fw_l | ||
343 | |||
344 | FSTD lt_temp,-32(%sp) ; -32(sp) = lt | ||
345 | FSTD lt_temp_1,-64(%sp) ; -64(sp) = lt | ||
346 | LDD -8(%sp),m_0 | ||
347 | LDD -40(%sp),m_1 | ||
348 | |||
349 | LDD -16(%sp),m1_0 | ||
350 | LDD -48(%sp),m1_1 | ||
351 | LDD -24(%sp),ht_0 | ||
352 | LDD -56(%sp),ht_1 | ||
353 | |||
354 | ADD,L m1_0,m_0,tmp_0 ; tmp_0 = m + m1; | ||
355 | ADD,L m1_1,m_1,tmp_1 ; tmp_1 = m + m1; | ||
356 | LDD -32(%sp),lt_0 | ||
357 | LDD -64(%sp),lt_1 | ||
358 | |||
359 | CMPCLR,*>>= tmp_0,m1_0, %r0 ; if (m < m1) | ||
360 | ADD,L ht_0,top_overflow,ht_0 ; ht += (1<<32) | ||
361 | CMPCLR,*>>= tmp_1,m1_1,%r0 ; if (m < m1) | ||
362 | ADD,L ht_1,top_overflow,ht_1 ; ht += (1<<32) | ||
363 | |||
364 | EXTRD,U tmp_0,31,32,m_0 ; m>>32 | ||
365 | DEPD,Z tmp_0,31,32,m1_0 ; m1 = m<<32 | ||
366 | EXTRD,U tmp_1,31,32,m_1 ; m>>32 | ||
367 | DEPD,Z tmp_1,31,32,m1_1 ; m1 = m<<32 | ||
368 | |||
369 | ADD,L ht_0,m_0,ht_0 ; ht+= (m>>32) | ||
370 | ADD,L ht_1,m_1,ht_1 ; ht+= (m>>32) | ||
371 | ADD lt_0,m1_0,lt_0 ; lt = lt+m1; | ||
372 | ADD,DC ht_0,%r0,ht_0 ; ht++ | ||
373 | |||
374 | ADD lt_1,m1_1,lt_1 ; lt = lt+m1; | ||
375 | ADD,DC ht_1,%r0,ht_1 ; ht++ | ||
376 | ADD %ret0,lt_0,lt_0 ; lt = lt + c (ret0); | ||
377 | ADD,DC ht_0,%r0,ht_0 ; ht++ | ||
378 | |||
379 | ADD ht_0,lt_1,lt_1 ; lt = lt + c (ht_0) | ||
380 | ADD,DC ht_1,%r0,ht_1 ; ht++ | ||
381 | STD lt_0,0(r_ptr) ; rp[0] = lt | ||
382 | STD lt_1,8(r_ptr) ; rp[1] = lt | ||
383 | |||
384 | COPY ht_1,%ret0 ; carry = ht | ||
385 | LDO -2(num),num ; num = num - 2; | ||
386 | LDO 16(a_ptr),a_ptr ; ap += 2 | ||
387 | CMPIB,<= 2,num,bn_mul_words_unroll2 | ||
388 | LDO 16(r_ptr),r_ptr ; rp++ | ||
389 | |||
390 | CMPIB,=,N 0,num,bn_mul_words_exit ; are we done? | ||
391 | |||
392 | ; | ||
393 | ; Top of loop aligned on 64-byte boundary | ||
394 | ; | ||
395 | bn_mul_words_single_top | ||
396 | FLDD 0(a_ptr),t_float_0 ; load up 64-bit value (fr8L) ht(L)/lt(R) | ||
397 | |||
398 | XMPYU fht_0,fw_l,fm1 ; m1 = ht*fw_l | ||
399 | FSTD fm1,-16(%sp) ; -16(sp) = m1 | ||
400 | XMPYU flt_0,fw_h,fm ; m = lt*fw_h | ||
401 | FSTD fm,-8(%sp) ; -8(sp) = m | ||
402 | XMPYU fht_0,fw_h,ht_temp ; ht_temp = ht*fw_h | ||
403 | FSTD ht_temp,-24(%sp) ; -24(sp) = ht | ||
404 | XMPYU flt_0,fw_l,lt_temp ; lt_temp = lt*fw_l | ||
405 | FSTD lt_temp,-32(%sp) ; -32(sp) = lt | ||
406 | |||
407 | LDD -8(%sp),m_0 | ||
408 | LDD -16(%sp),m1_0 | ||
409 | ADD,L m_0,m1_0,tmp_0 ; tmp_0 = m + m1; | ||
410 | LDD -24(%sp),ht_0 | ||
411 | LDD -32(%sp),lt_0 | ||
412 | |||
413 | CMPCLR,*>>= tmp_0,m1_0,%r0 ; if (m < m1) | ||
414 | ADD,L ht_0,top_overflow,ht_0 ; ht += (1<<32) | ||
415 | |||
416 | EXTRD,U tmp_0,31,32,m_0 ; m>>32 | ||
417 | DEPD,Z tmp_0,31,32,m1_0 ; m1 = m<<32 | ||
418 | |||
419 | ADD,L ht_0,m_0,ht_0 ; ht+= (m>>32) | ||
420 | ADD lt_0,m1_0,lt_0 ; lt= lt+m1; | ||
421 | ADD,DC ht_0,%r0,ht_0 ; ht++ | ||
422 | |||
423 | ADD %ret0,lt_0,lt_0 ; lt = lt + c; | ||
424 | ADD,DC ht_0,%r0,ht_0 ; ht++ | ||
425 | |||
426 | COPY ht_0,%ret0 ; copy carry | ||
427 | STD lt_0,0(r_ptr) ; rp[0] = lt | ||
428 | |||
429 | bn_mul_words_exit | ||
430 | .EXIT | ||
431 | LDD -96(%sp),%r7 ; restore r7 | ||
432 | LDD -104(%sp),%r6 ; restore r6 | ||
433 | LDD -112(%sp),%r5 ; restore r5 | ||
434 | LDD -120(%sp),%r4 ; restore r4 | ||
435 | BVE (%rp) | ||
436 | LDD,MB -128(%sp),%r3 ; restore r3 | ||
437 | .PROCEND ;in=23,24,25,26,29;out=28; | ||
438 | |||
439 | ;---------------------------------------------------------------------------- | ||
440 | ; | ||
441 | ;void bn_sqr_words(BN_ULONG *rp, BN_ULONG *ap, int num) | ||
442 | ; | ||
443 | ; arg0 = rp | ||
444 | ; arg1 = ap | ||
445 | ; arg2 = num | ||
446 | ; | ||
447 | |||
448 | bn_sqr_words | ||
449 | .proc | ||
450 | .callinfo FRAME=128,ENTRY_GR=%r3,ARGS_SAVED,ORDERING_AWARE | ||
451 | .EXPORT bn_sqr_words,ENTRY,PRIV_LEV=3,NO_RELOCATION,LONG_RETURN | ||
452 | .entry | ||
453 | .align 64 | ||
454 | |||
455 | STD %r3,0(%sp) ; save r3 | ||
456 | STD %r4,8(%sp) ; save r4 | ||
457 | NOP | ||
458 | STD %r5,16(%sp) ; save r5 | ||
459 | |||
460 | CMPIB,>= 0,num,bn_sqr_words_exit | ||
461 | LDO 128(%sp),%sp ; bump stack | ||
462 | |||
463 | ; | ||
464 | ; If only 1, the goto straight to cleanup | ||
465 | ; | ||
466 | CMPIB,= 1,num,bn_sqr_words_single_top | ||
467 | DEPDI,Z -1,32,33,high_mask ; Create Mask 0xffffffff80000000L | ||
468 | |||
469 | ; | ||
470 | ; This loop is unrolled 2 times (64-byte aligned as well) | ||
471 | ; | ||
472 | |||
473 | bn_sqr_words_unroll2 | ||
474 | FLDD 0(a_ptr),t_float_0 ; a[0] | ||
475 | FLDD 8(a_ptr),t_float_1 ; a[1] | ||
476 | XMPYU fht_0,flt_0,fm ; m[0] | ||
477 | XMPYU fht_1,flt_1,fm_1 ; m[1] | ||
478 | |||
479 | FSTD fm,-24(%sp) ; store m[0] | ||
480 | FSTD fm_1,-56(%sp) ; store m[1] | ||
481 | XMPYU flt_0,flt_0,lt_temp ; lt[0] | ||
482 | XMPYU flt_1,flt_1,lt_temp_1 ; lt[1] | ||
483 | |||
484 | FSTD lt_temp,-16(%sp) ; store lt[0] | ||
485 | FSTD lt_temp_1,-48(%sp) ; store lt[1] | ||
486 | XMPYU fht_0,fht_0,ht_temp ; ht[0] | ||
487 | XMPYU fht_1,fht_1,ht_temp_1 ; ht[1] | ||
488 | |||
489 | FSTD ht_temp,-8(%sp) ; store ht[0] | ||
490 | FSTD ht_temp_1,-40(%sp) ; store ht[1] | ||
491 | LDD -24(%sp),m_0 | ||
492 | LDD -56(%sp),m_1 | ||
493 | |||
494 | AND m_0,high_mask,tmp_0 ; m[0] & Mask | ||
495 | AND m_1,high_mask,tmp_1 ; m[1] & Mask | ||
496 | DEPD,Z m_0,30,31,m_0 ; m[0] << 32+1 | ||
497 | DEPD,Z m_1,30,31,m_1 ; m[1] << 32+1 | ||
498 | |||
499 | LDD -16(%sp),lt_0 | ||
500 | LDD -48(%sp),lt_1 | ||
501 | EXTRD,U tmp_0,32,33,tmp_0 ; tmp_0 = m[0]&Mask >> 32-1 | ||
502 | EXTRD,U tmp_1,32,33,tmp_1 ; tmp_1 = m[1]&Mask >> 32-1 | ||
503 | |||
504 | LDD -8(%sp),ht_0 | ||
505 | LDD -40(%sp),ht_1 | ||
506 | ADD,L ht_0,tmp_0,ht_0 ; ht[0] += tmp_0 | ||
507 | ADD,L ht_1,tmp_1,ht_1 ; ht[1] += tmp_1 | ||
508 | |||
509 | ADD lt_0,m_0,lt_0 ; lt = lt+m | ||
510 | ADD,DC ht_0,%r0,ht_0 ; ht[0]++ | ||
511 | STD lt_0,0(r_ptr) ; rp[0] = lt[0] | ||
512 | STD ht_0,8(r_ptr) ; rp[1] = ht[1] | ||
513 | |||
514 | ADD lt_1,m_1,lt_1 ; lt = lt+m | ||
515 | ADD,DC ht_1,%r0,ht_1 ; ht[1]++ | ||
516 | STD lt_1,16(r_ptr) ; rp[2] = lt[1] | ||
517 | STD ht_1,24(r_ptr) ; rp[3] = ht[1] | ||
518 | |||
519 | LDO -2(num),num ; num = num - 2; | ||
520 | LDO 16(a_ptr),a_ptr ; ap += 2 | ||
521 | CMPIB,<= 2,num,bn_sqr_words_unroll2 | ||
522 | LDO 32(r_ptr),r_ptr ; rp += 4 | ||
523 | |||
524 | CMPIB,=,N 0,num,bn_sqr_words_exit ; are we done? | ||
525 | |||
526 | ; | ||
527 | ; Top of loop aligned on 64-byte boundary | ||
528 | ; | ||
529 | bn_sqr_words_single_top | ||
530 | FLDD 0(a_ptr),t_float_0 ; load up 64-bit value (fr8L) ht(L)/lt(R) | ||
531 | |||
532 | XMPYU fht_0,flt_0,fm ; m | ||
533 | FSTD fm,-24(%sp) ; store m | ||
534 | |||
535 | XMPYU flt_0,flt_0,lt_temp ; lt | ||
536 | FSTD lt_temp,-16(%sp) ; store lt | ||
537 | |||
538 | XMPYU fht_0,fht_0,ht_temp ; ht | ||
539 | FSTD ht_temp,-8(%sp) ; store ht | ||
540 | |||
541 | LDD -24(%sp),m_0 ; load m | ||
542 | AND m_0,high_mask,tmp_0 ; m & Mask | ||
543 | DEPD,Z m_0,30,31,m_0 ; m << 32+1 | ||
544 | LDD -16(%sp),lt_0 ; lt | ||
545 | |||
546 | LDD -8(%sp),ht_0 ; ht | ||
547 | EXTRD,U tmp_0,32,33,tmp_0 ; tmp_0 = m&Mask >> 32-1 | ||
548 | ADD m_0,lt_0,lt_0 ; lt = lt+m | ||
549 | ADD,L ht_0,tmp_0,ht_0 ; ht += tmp_0 | ||
550 | ADD,DC ht_0,%r0,ht_0 ; ht++ | ||
551 | |||
552 | STD lt_0,0(r_ptr) ; rp[0] = lt | ||
553 | STD ht_0,8(r_ptr) ; rp[1] = ht | ||
554 | |||
555 | bn_sqr_words_exit | ||
556 | .EXIT | ||
557 | LDD -112(%sp),%r5 ; restore r5 | ||
558 | LDD -120(%sp),%r4 ; restore r4 | ||
559 | BVE (%rp) | ||
560 | LDD,MB -128(%sp),%r3 | ||
561 | .PROCEND ;in=23,24,25,26,29;out=28; | ||
562 | |||
563 | |||
564 | ;---------------------------------------------------------------------------- | ||
565 | ; | ||
566 | ;BN_ULONG bn_add_words(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n) | ||
567 | ; | ||
568 | ; arg0 = rp | ||
569 | ; arg1 = ap | ||
570 | ; arg2 = bp | ||
571 | ; arg3 = n | ||
572 | |||
573 | t .reg %r22 | ||
574 | b .reg %r21 | ||
575 | l .reg %r20 | ||
576 | |||
577 | bn_add_words | ||
578 | .proc | ||
579 | .entry | ||
580 | .callinfo | ||
581 | .EXPORT bn_add_words,ENTRY,PRIV_LEV=3,NO_RELOCATION,LONG_RETURN | ||
582 | .align 64 | ||
583 | |||
584 | CMPIB,>= 0,n,bn_add_words_exit | ||
585 | COPY %r0,%ret0 ; return 0 by default | ||
586 | |||
587 | ; | ||
588 | ; If 2 or more numbers do the loop | ||
589 | ; | ||
590 | CMPIB,= 1,n,bn_add_words_single_top | ||
591 | NOP | ||
592 | |||
593 | ; | ||
594 | ; This loop is unrolled 2 times (64-byte aligned as well) | ||
595 | ; | ||
596 | bn_add_words_unroll2 | ||
597 | LDD 0(a_ptr),t | ||
598 | LDD 0(b_ptr),b | ||
599 | ADD t,%ret0,t ; t = t+c; | ||
600 | ADD,DC %r0,%r0,%ret0 ; set c to carry | ||
601 | ADD t,b,l ; l = t + b[0] | ||
602 | ADD,DC %ret0,%r0,%ret0 ; c+= carry | ||
603 | STD l,0(r_ptr) | ||
604 | |||
605 | LDD 8(a_ptr),t | ||
606 | LDD 8(b_ptr),b | ||
607 | ADD t,%ret0,t ; t = t+c; | ||
608 | ADD,DC %r0,%r0,%ret0 ; set c to carry | ||
609 | ADD t,b,l ; l = t + b[0] | ||
610 | ADD,DC %ret0,%r0,%ret0 ; c+= carry | ||
611 | STD l,8(r_ptr) | ||
612 | |||
613 | LDO -2(n),n | ||
614 | LDO 16(a_ptr),a_ptr | ||
615 | LDO 16(b_ptr),b_ptr | ||
616 | |||
617 | CMPIB,<= 2,n,bn_add_words_unroll2 | ||
618 | LDO 16(r_ptr),r_ptr | ||
619 | |||
620 | CMPIB,=,N 0,n,bn_add_words_exit ; are we done? | ||
621 | |||
622 | bn_add_words_single_top | ||
623 | LDD 0(a_ptr),t | ||
624 | LDD 0(b_ptr),b | ||
625 | |||
626 | ADD t,%ret0,t ; t = t+c; | ||
627 | ADD,DC %r0,%r0,%ret0 ; set c to carry (could use CMPCLR??) | ||
628 | ADD t,b,l ; l = t + b[0] | ||
629 | ADD,DC %ret0,%r0,%ret0 ; c+= carry | ||
630 | STD l,0(r_ptr) | ||
631 | |||
632 | bn_add_words_exit | ||
633 | .EXIT | ||
634 | BVE (%rp) | ||
635 | NOP | ||
636 | .PROCEND ;in=23,24,25,26,29;out=28; | ||
637 | |||
638 | ;---------------------------------------------------------------------------- | ||
639 | ; | ||
640 | ;BN_ULONG bn_sub_words(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n) | ||
641 | ; | ||
642 | ; arg0 = rp | ||
643 | ; arg1 = ap | ||
644 | ; arg2 = bp | ||
645 | ; arg3 = n | ||
646 | |||
647 | t1 .reg %r22 | ||
648 | t2 .reg %r21 | ||
649 | sub_tmp1 .reg %r20 | ||
650 | sub_tmp2 .reg %r19 | ||
651 | |||
652 | |||
653 | bn_sub_words | ||
654 | .proc | ||
655 | .callinfo | ||
656 | .EXPORT bn_sub_words,ENTRY,PRIV_LEV=3,NO_RELOCATION,LONG_RETURN | ||
657 | .entry | ||
658 | .align 64 | ||
659 | |||
660 | CMPIB,>= 0,n,bn_sub_words_exit | ||
661 | COPY %r0,%ret0 ; return 0 by default | ||
662 | |||
663 | ; | ||
664 | ; If 2 or more numbers do the loop | ||
665 | ; | ||
666 | CMPIB,= 1,n,bn_sub_words_single_top | ||
667 | NOP | ||
668 | |||
669 | ; | ||
670 | ; This loop is unrolled 2 times (64-byte aligned as well) | ||
671 | ; | ||
672 | bn_sub_words_unroll2 | ||
673 | LDD 0(a_ptr),t1 | ||
674 | LDD 0(b_ptr),t2 | ||
675 | SUB t1,t2,sub_tmp1 ; t3 = t1-t2; | ||
676 | SUB sub_tmp1,%ret0,sub_tmp1 ; t3 = t3- c; | ||
677 | |||
678 | CMPCLR,*>> t1,t2,sub_tmp2 ; clear if t1 > t2 | ||
679 | LDO 1(%r0),sub_tmp2 | ||
680 | |||
681 | CMPCLR,*= t1,t2,%r0 | ||
682 | COPY sub_tmp2,%ret0 | ||
683 | STD sub_tmp1,0(r_ptr) | ||
684 | |||
685 | LDD 8(a_ptr),t1 | ||
686 | LDD 8(b_ptr),t2 | ||
687 | SUB t1,t2,sub_tmp1 ; t3 = t1-t2; | ||
688 | SUB sub_tmp1,%ret0,sub_tmp1 ; t3 = t3- c; | ||
689 | CMPCLR,*>> t1,t2,sub_tmp2 ; clear if t1 > t2 | ||
690 | LDO 1(%r0),sub_tmp2 | ||
691 | |||
692 | CMPCLR,*= t1,t2,%r0 | ||
693 | COPY sub_tmp2,%ret0 | ||
694 | STD sub_tmp1,8(r_ptr) | ||
695 | |||
696 | LDO -2(n),n | ||
697 | LDO 16(a_ptr),a_ptr | ||
698 | LDO 16(b_ptr),b_ptr | ||
699 | |||
700 | CMPIB,<= 2,n,bn_sub_words_unroll2 | ||
701 | LDO 16(r_ptr),r_ptr | ||
702 | |||
703 | CMPIB,=,N 0,n,bn_sub_words_exit ; are we done? | ||
704 | |||
705 | bn_sub_words_single_top | ||
706 | LDD 0(a_ptr),t1 | ||
707 | LDD 0(b_ptr),t2 | ||
708 | SUB t1,t2,sub_tmp1 ; t3 = t1-t2; | ||
709 | SUB sub_tmp1,%ret0,sub_tmp1 ; t3 = t3- c; | ||
710 | CMPCLR,*>> t1,t2,sub_tmp2 ; clear if t1 > t2 | ||
711 | LDO 1(%r0),sub_tmp2 | ||
712 | |||
713 | CMPCLR,*= t1,t2,%r0 | ||
714 | COPY sub_tmp2,%ret0 | ||
715 | |||
716 | STD sub_tmp1,0(r_ptr) | ||
717 | |||
718 | bn_sub_words_exit | ||
719 | .EXIT | ||
720 | BVE (%rp) | ||
721 | NOP | ||
722 | .PROCEND ;in=23,24,25,26,29;out=28; | ||
723 | |||
724 | ;------------------------------------------------------------------------------ | ||
725 | ; | ||
726 | ; unsigned long bn_div_words(unsigned long h, unsigned long l, unsigned long d) | ||
727 | ; | ||
728 | ; arg0 = h | ||
729 | ; arg1 = l | ||
730 | ; arg2 = d | ||
731 | ; | ||
732 | ; This is mainly just modified assembly from the compiler, thus the | ||
733 | ; lack of variable names. | ||
734 | ; | ||
735 | ;------------------------------------------------------------------------------ | ||
736 | bn_div_words | ||
737 | .proc | ||
738 | .callinfo CALLER,FRAME=272,ENTRY_GR=%r10,SAVE_RP,ARGS_SAVED,ORDERING_AWARE | ||
739 | .EXPORT bn_div_words,ENTRY,PRIV_LEV=3,NO_RELOCATION,LONG_RETURN | ||
740 | .IMPORT BN_num_bits_word,CODE,NO_RELOCATION | ||
741 | .IMPORT __iob,DATA | ||
742 | .IMPORT fprintf,CODE,NO_RELOCATION | ||
743 | .IMPORT abort,CODE,NO_RELOCATION | ||
744 | .IMPORT $$div2U,MILLICODE | ||
745 | .entry | ||
746 | STD %r2,-16(%r30) | ||
747 | STD,MA %r3,352(%r30) | ||
748 | STD %r4,-344(%r30) | ||
749 | STD %r5,-336(%r30) | ||
750 | STD %r6,-328(%r30) | ||
751 | STD %r7,-320(%r30) | ||
752 | STD %r8,-312(%r30) | ||
753 | STD %r9,-304(%r30) | ||
754 | STD %r10,-296(%r30) | ||
755 | |||
756 | STD %r27,-288(%r30) ; save gp | ||
757 | |||
758 | COPY %r24,%r3 ; save d | ||
759 | COPY %r26,%r4 ; save h (high 64-bits) | ||
760 | LDO -1(%r0),%ret0 ; return -1 by default | ||
761 | |||
762 | CMPB,*= %r0,%arg2,$D3 ; if (d == 0) | ||
763 | COPY %r25,%r5 ; save l (low 64-bits) | ||
764 | |||
765 | LDO -48(%r30),%r29 ; create ap | ||
766 | .CALL ;in=26,29;out=28; | ||
767 | B,L BN_num_bits_word,%r2 | ||
768 | COPY %r3,%r26 | ||
769 | LDD -288(%r30),%r27 ; restore gp | ||
770 | LDI 64,%r21 | ||
771 | |||
772 | CMPB,= %r21,%ret0,$00000012 ;if (i == 64) (forward) | ||
773 | COPY %ret0,%r24 ; i | ||
774 | MTSARCM %r24 | ||
775 | DEPDI,Z -1,%sar,1,%r29 | ||
776 | CMPB,*<<,N %r29,%r4,bn_div_err_case ; if (h > 1<<i) (forward) | ||
777 | |||
778 | $00000012 | ||
779 | SUBI 64,%r24,%r31 ; i = 64 - i; | ||
780 | CMPCLR,*<< %r4,%r3,%r0 ; if (h >= d) | ||
781 | SUB %r4,%r3,%r4 ; h -= d | ||
782 | CMPB,= %r31,%r0,$0000001A ; if (i) | ||
783 | COPY %r0,%r10 ; ret = 0 | ||
784 | MTSARCM %r31 ; i to shift | ||
785 | DEPD,Z %r3,%sar,64,%r3 ; d <<= i; | ||
786 | SUBI 64,%r31,%r19 ; 64 - i; redundent | ||
787 | MTSAR %r19 ; (64 -i) to shift | ||
788 | SHRPD %r4,%r5,%sar,%r4 ; l>> (64-i) | ||
789 | MTSARCM %r31 ; i to shift | ||
790 | DEPD,Z %r5,%sar,64,%r5 ; l <<= i; | ||
791 | |||
792 | $0000001A | ||
793 | DEPDI,Z -1,31,32,%r19 | ||
794 | EXTRD,U %r3,31,32,%r6 ; dh=(d&0xfff)>>32 | ||
795 | EXTRD,U %r3,63,32,%r8 ; dl = d&0xffffff | ||
796 | LDO 2(%r0),%r9 | ||
797 | STD %r3,-280(%r30) ; "d" to stack | ||
798 | |||
799 | $0000001C | ||
800 | DEPDI,Z -1,63,32,%r29 ; | ||
801 | EXTRD,U %r4,31,32,%r31 ; h >> 32 | ||
802 | CMPB,*=,N %r31,%r6,$D2 ; if ((h>>32) != dh)(forward) div | ||
803 | COPY %r4,%r26 | ||
804 | EXTRD,U %r4,31,32,%r25 | ||
805 | COPY %r6,%r24 | ||
806 | .CALL ;in=23,24,25,26;out=20,21,22,28,29; (MILLICALL) | ||
807 | B,L $$div2U,%r2 | ||
808 | EXTRD,U %r6,31,32,%r23 | ||
809 | DEPD %r28,31,32,%r29 | ||
810 | $D2 | ||
811 | STD %r29,-272(%r30) ; q | ||
812 | AND %r5,%r19,%r24 ; t & 0xffffffff00000000; | ||
813 | EXTRD,U %r24,31,32,%r24 ; ??? | ||
814 | FLDD -272(%r30),%fr7 ; q | ||
815 | FLDD -280(%r30),%fr8 ; d | ||
816 | XMPYU %fr8L,%fr7L,%fr10 | ||
817 | FSTD %fr10,-256(%r30) | ||
818 | XMPYU %fr8L,%fr7R,%fr22 | ||
819 | FSTD %fr22,-264(%r30) | ||
820 | XMPYU %fr8R,%fr7L,%fr11 | ||
821 | XMPYU %fr8R,%fr7R,%fr23 | ||
822 | FSTD %fr11,-232(%r30) | ||
823 | FSTD %fr23,-240(%r30) | ||
824 | LDD -256(%r30),%r28 | ||
825 | DEPD,Z %r28,31,32,%r2 | ||
826 | LDD -264(%r30),%r20 | ||
827 | ADD,L %r20,%r2,%r31 | ||
828 | LDD -232(%r30),%r22 | ||
829 | DEPD,Z %r22,31,32,%r22 | ||
830 | LDD -240(%r30),%r21 | ||
831 | B $00000024 ; enter loop | ||
832 | ADD,L %r21,%r22,%r23 | ||
833 | |||
834 | $0000002A | ||
835 | LDO -1(%r29),%r29 | ||
836 | SUB %r23,%r8,%r23 | ||
837 | $00000024 | ||
838 | SUB %r4,%r31,%r25 | ||
839 | AND %r25,%r19,%r26 | ||
840 | CMPB,*<>,N %r0,%r26,$00000046 ; (forward) | ||
841 | DEPD,Z %r25,31,32,%r20 | ||
842 | OR %r20,%r24,%r21 | ||
843 | CMPB,*<<,N %r21,%r23,$0000002A ;(backward) | ||
844 | SUB %r31,%r6,%r31 | ||
845 | ;-------------Break path--------------------- | ||
846 | |||
847 | $00000046 | ||
848 | DEPD,Z %r23,31,32,%r25 ;tl | ||
849 | EXTRD,U %r23,31,32,%r26 ;t | ||
850 | AND %r25,%r19,%r24 ;tl = (tl<<32)&0xfffffff0000000L | ||
851 | ADD,L %r31,%r26,%r31 ;th += t; | ||
852 | CMPCLR,*>>= %r5,%r24,%r0 ;if (l<tl) | ||
853 | LDO 1(%r31),%r31 ; th++; | ||
854 | CMPB,*<<=,N %r31,%r4,$00000036 ;if (n < th) (forward) | ||
855 | LDO -1(%r29),%r29 ;q--; | ||
856 | ADD,L %r4,%r3,%r4 ;h += d; | ||
857 | $00000036 | ||
858 | ADDIB,=,N -1,%r9,$D1 ;if (--count == 0) break (forward) | ||
859 | SUB %r5,%r24,%r28 ; l -= tl; | ||
860 | SUB %r4,%r31,%r24 ; h -= th; | ||
861 | SHRPD %r24,%r28,32,%r4 ; h = ((h<<32)|(l>>32)); | ||
862 | DEPD,Z %r29,31,32,%r10 ; ret = q<<32 | ||
863 | b $0000001C | ||
864 | DEPD,Z %r28,31,32,%r5 ; l = l << 32 | ||
865 | |||
866 | $D1 | ||
867 | OR %r10,%r29,%r28 ; ret |= q | ||
868 | $D3 | ||
869 | LDD -368(%r30),%r2 | ||
870 | $D0 | ||
871 | LDD -296(%r30),%r10 | ||
872 | LDD -304(%r30),%r9 | ||
873 | LDD -312(%r30),%r8 | ||
874 | LDD -320(%r30),%r7 | ||
875 | LDD -328(%r30),%r6 | ||
876 | LDD -336(%r30),%r5 | ||
877 | LDD -344(%r30),%r4 | ||
878 | BVE (%r2) | ||
879 | .EXIT | ||
880 | LDD,MB -352(%r30),%r3 | ||
881 | |||
882 | bn_div_err_case | ||
883 | MFIA %r6 | ||
884 | ADDIL L'bn_div_words-bn_div_err_case,%r6,%r1 | ||
885 | LDO R'bn_div_words-bn_div_err_case(%r1),%r6 | ||
886 | ADDIL LT'__iob,%r27,%r1 | ||
887 | LDD RT'__iob(%r1),%r26 | ||
888 | ADDIL L'C$4-bn_div_words,%r6,%r1 | ||
889 | LDO R'C$4-bn_div_words(%r1),%r25 | ||
890 | LDO 64(%r26),%r26 | ||
891 | .CALL ;in=24,25,26,29;out=28; | ||
892 | B,L fprintf,%r2 | ||
893 | LDO -48(%r30),%r29 | ||
894 | LDD -288(%r30),%r27 | ||
895 | .CALL ;in=29; | ||
896 | B,L abort,%r2 | ||
897 | LDO -48(%r30),%r29 | ||
898 | LDD -288(%r30),%r27 | ||
899 | B $D0 | ||
900 | LDD -368(%r30),%r2 | ||
901 | .PROCEND ;in=24,25,26,29;out=28; | ||
902 | |||
903 | ;---------------------------------------------------------------------------- | ||
904 | ; | ||
905 | ; Registers to hold 64-bit values to manipulate. The "L" part | ||
906 | ; of the register corresponds to the upper 32-bits, while the "R" | ||
907 | ; part corresponds to the lower 32-bits | ||
908 | ; | ||
909 | ; Note, that when using b6 and b7, the code must save these before | ||
910 | ; using them because they are callee save registers | ||
911 | ; | ||
912 | ; | ||
913 | ; Floating point registers to use to save values that | ||
914 | ; are manipulated. These don't collide with ftemp1-6 and | ||
915 | ; are all caller save registers | ||
916 | ; | ||
917 | a0 .reg %fr22 | ||
918 | a0L .reg %fr22L | ||
919 | a0R .reg %fr22R | ||
920 | |||
921 | a1 .reg %fr23 | ||
922 | a1L .reg %fr23L | ||
923 | a1R .reg %fr23R | ||
924 | |||
925 | a2 .reg %fr24 | ||
926 | a2L .reg %fr24L | ||
927 | a2R .reg %fr24R | ||
928 | |||
929 | a3 .reg %fr25 | ||
930 | a3L .reg %fr25L | ||
931 | a3R .reg %fr25R | ||
932 | |||
933 | a4 .reg %fr26 | ||
934 | a4L .reg %fr26L | ||
935 | a4R .reg %fr26R | ||
936 | |||
937 | a5 .reg %fr27 | ||
938 | a5L .reg %fr27L | ||
939 | a5R .reg %fr27R | ||
940 | |||
941 | a6 .reg %fr28 | ||
942 | a6L .reg %fr28L | ||
943 | a6R .reg %fr28R | ||
944 | |||
945 | a7 .reg %fr29 | ||
946 | a7L .reg %fr29L | ||
947 | a7R .reg %fr29R | ||
948 | |||
949 | b0 .reg %fr30 | ||
950 | b0L .reg %fr30L | ||
951 | b0R .reg %fr30R | ||
952 | |||
953 | b1 .reg %fr31 | ||
954 | b1L .reg %fr31L | ||
955 | b1R .reg %fr31R | ||
956 | |||
957 | ; | ||
958 | ; Temporary floating point variables, these are all caller save | ||
959 | ; registers | ||
960 | ; | ||
961 | ftemp1 .reg %fr4 | ||
962 | ftemp2 .reg %fr5 | ||
963 | ftemp3 .reg %fr6 | ||
964 | ftemp4 .reg %fr7 | ||
965 | |||
966 | ; | ||
967 | ; The B set of registers when used. | ||
968 | ; | ||
969 | |||
970 | b2 .reg %fr8 | ||
971 | b2L .reg %fr8L | ||
972 | b2R .reg %fr8R | ||
973 | |||
974 | b3 .reg %fr9 | ||
975 | b3L .reg %fr9L | ||
976 | b3R .reg %fr9R | ||
977 | |||
978 | b4 .reg %fr10 | ||
979 | b4L .reg %fr10L | ||
980 | b4R .reg %fr10R | ||
981 | |||
982 | b5 .reg %fr11 | ||
983 | b5L .reg %fr11L | ||
984 | b5R .reg %fr11R | ||
985 | |||
986 | b6 .reg %fr12 | ||
987 | b6L .reg %fr12L | ||
988 | b6R .reg %fr12R | ||
989 | |||
990 | b7 .reg %fr13 | ||
991 | b7L .reg %fr13L | ||
992 | b7R .reg %fr13R | ||
993 | |||
994 | c1 .reg %r21 ; only reg | ||
995 | temp1 .reg %r20 ; only reg | ||
996 | temp2 .reg %r19 ; only reg | ||
997 | temp3 .reg %r31 ; only reg | ||
998 | |||
999 | m1 .reg %r28 | ||
1000 | c2 .reg %r23 | ||
1001 | high_one .reg %r1 | ||
1002 | ht .reg %r6 | ||
1003 | lt .reg %r5 | ||
1004 | m .reg %r4 | ||
1005 | c3 .reg %r3 | ||
1006 | |||
1007 | SQR_ADD_C .macro A0L,A0R,C1,C2,C3 | ||
1008 | XMPYU A0L,A0R,ftemp1 ; m | ||
1009 | FSTD ftemp1,-24(%sp) ; store m | ||
1010 | |||
1011 | XMPYU A0R,A0R,ftemp2 ; lt | ||
1012 | FSTD ftemp2,-16(%sp) ; store lt | ||
1013 | |||
1014 | XMPYU A0L,A0L,ftemp3 ; ht | ||
1015 | FSTD ftemp3,-8(%sp) ; store ht | ||
1016 | |||
1017 | LDD -24(%sp),m ; load m | ||
1018 | AND m,high_mask,temp2 ; m & Mask | ||
1019 | DEPD,Z m,30,31,temp3 ; m << 32+1 | ||
1020 | LDD -16(%sp),lt ; lt | ||
1021 | |||
1022 | LDD -8(%sp),ht ; ht | ||
1023 | EXTRD,U temp2,32,33,temp1 ; temp1 = m&Mask >> 32-1 | ||
1024 | ADD temp3,lt,lt ; lt = lt+m | ||
1025 | ADD,L ht,temp1,ht ; ht += temp1 | ||
1026 | ADD,DC ht,%r0,ht ; ht++ | ||
1027 | |||
1028 | ADD C1,lt,C1 ; c1=c1+lt | ||
1029 | ADD,DC ht,%r0,ht ; ht++ | ||
1030 | |||
1031 | ADD C2,ht,C2 ; c2=c2+ht | ||
1032 | ADD,DC C3,%r0,C3 ; c3++ | ||
1033 | .endm | ||
1034 | |||
1035 | SQR_ADD_C2 .macro A0L,A0R,A1L,A1R,C1,C2,C3 | ||
1036 | XMPYU A0L,A1R,ftemp1 ; m1 = bl*ht | ||
1037 | FSTD ftemp1,-16(%sp) ; | ||
1038 | XMPYU A0R,A1L,ftemp2 ; m = bh*lt | ||
1039 | FSTD ftemp2,-8(%sp) ; | ||
1040 | XMPYU A0R,A1R,ftemp3 ; lt = bl*lt | ||
1041 | FSTD ftemp3,-32(%sp) | ||
1042 | XMPYU A0L,A1L,ftemp4 ; ht = bh*ht | ||
1043 | FSTD ftemp4,-24(%sp) ; | ||
1044 | |||
1045 | LDD -8(%sp),m ; r21 = m | ||
1046 | LDD -16(%sp),m1 ; r19 = m1 | ||
1047 | ADD,L m,m1,m ; m+m1 | ||
1048 | |||
1049 | DEPD,Z m,31,32,temp3 ; (m+m1<<32) | ||
1050 | LDD -24(%sp),ht ; r24 = ht | ||
1051 | |||
1052 | CMPCLR,*>>= m,m1,%r0 ; if (m < m1) | ||
1053 | ADD,L ht,high_one,ht ; ht+=high_one | ||
1054 | |||
1055 | EXTRD,U m,31,32,temp1 ; m >> 32 | ||
1056 | LDD -32(%sp),lt ; lt | ||
1057 | ADD,L ht,temp1,ht ; ht+= m>>32 | ||
1058 | ADD lt,temp3,lt ; lt = lt+m1 | ||
1059 | ADD,DC ht,%r0,ht ; ht++ | ||
1060 | |||
1061 | ADD ht,ht,ht ; ht=ht+ht; | ||
1062 | ADD,DC C3,%r0,C3 ; add in carry (c3++) | ||
1063 | |||
1064 | ADD lt,lt,lt ; lt=lt+lt; | ||
1065 | ADD,DC ht,%r0,ht ; add in carry (ht++) | ||
1066 | |||
1067 | ADD C1,lt,C1 ; c1=c1+lt | ||
1068 | ADD,DC,*NUV ht,%r0,ht ; add in carry (ht++) | ||
1069 | LDO 1(C3),C3 ; bump c3 if overflow,nullify otherwise | ||
1070 | |||
1071 | ADD C2,ht,C2 ; c2 = c2 + ht | ||
1072 | ADD,DC C3,%r0,C3 ; add in carry (c3++) | ||
1073 | .endm | ||
1074 | |||
1075 | ; | ||
1076 | ;void bn_sqr_comba8(BN_ULONG *r, BN_ULONG *a) | ||
1077 | ; arg0 = r_ptr | ||
1078 | ; arg1 = a_ptr | ||
1079 | ; | ||
1080 | |||
1081 | bn_sqr_comba8 | ||
1082 | .PROC | ||
1083 | .CALLINFO FRAME=128,ENTRY_GR=%r3,ARGS_SAVED,ORDERING_AWARE | ||
1084 | .EXPORT bn_sqr_comba8,ENTRY,PRIV_LEV=3,NO_RELOCATION,LONG_RETURN | ||
1085 | .ENTRY | ||
1086 | .align 64 | ||
1087 | |||
1088 | STD %r3,0(%sp) ; save r3 | ||
1089 | STD %r4,8(%sp) ; save r4 | ||
1090 | STD %r5,16(%sp) ; save r5 | ||
1091 | STD %r6,24(%sp) ; save r6 | ||
1092 | |||
1093 | ; | ||
1094 | ; Zero out carries | ||
1095 | ; | ||
1096 | COPY %r0,c1 | ||
1097 | COPY %r0,c2 | ||
1098 | COPY %r0,c3 | ||
1099 | |||
1100 | LDO 128(%sp),%sp ; bump stack | ||
1101 | DEPDI,Z -1,32,33,high_mask ; Create Mask 0xffffffff80000000L | ||
1102 | DEPDI,Z 1,31,1,high_one ; Create Value 1 << 32 | ||
1103 | |||
1104 | ; | ||
1105 | ; Load up all of the values we are going to use | ||
1106 | ; | ||
1107 | FLDD 0(a_ptr),a0 | ||
1108 | FLDD 8(a_ptr),a1 | ||
1109 | FLDD 16(a_ptr),a2 | ||
1110 | FLDD 24(a_ptr),a3 | ||
1111 | FLDD 32(a_ptr),a4 | ||
1112 | FLDD 40(a_ptr),a5 | ||
1113 | FLDD 48(a_ptr),a6 | ||
1114 | FLDD 56(a_ptr),a7 | ||
1115 | |||
1116 | SQR_ADD_C a0L,a0R,c1,c2,c3 | ||
1117 | STD c1,0(r_ptr) ; r[0] = c1; | ||
1118 | COPY %r0,c1 | ||
1119 | |||
1120 | SQR_ADD_C2 a1L,a1R,a0L,a0R,c2,c3,c1 | ||
1121 | STD c2,8(r_ptr) ; r[1] = c2; | ||
1122 | COPY %r0,c2 | ||
1123 | |||
1124 | SQR_ADD_C a1L,a1R,c3,c1,c2 | ||
1125 | SQR_ADD_C2 a2L,a2R,a0L,a0R,c3,c1,c2 | ||
1126 | STD c3,16(r_ptr) ; r[2] = c3; | ||
1127 | COPY %r0,c3 | ||
1128 | |||
1129 | SQR_ADD_C2 a3L,a3R,a0L,a0R,c1,c2,c3 | ||
1130 | SQR_ADD_C2 a2L,a2R,a1L,a1R,c1,c2,c3 | ||
1131 | STD c1,24(r_ptr) ; r[3] = c1; | ||
1132 | COPY %r0,c1 | ||
1133 | |||
1134 | SQR_ADD_C a2L,a2R,c2,c3,c1 | ||
1135 | SQR_ADD_C2 a3L,a3R,a1L,a1R,c2,c3,c1 | ||
1136 | SQR_ADD_C2 a4L,a4R,a0L,a0R,c2,c3,c1 | ||
1137 | STD c2,32(r_ptr) ; r[4] = c2; | ||
1138 | COPY %r0,c2 | ||
1139 | |||
1140 | SQR_ADD_C2 a5L,a5R,a0L,a0R,c3,c1,c2 | ||
1141 | SQR_ADD_C2 a4L,a4R,a1L,a1R,c3,c1,c2 | ||
1142 | SQR_ADD_C2 a3L,a3R,a2L,a2R,c3,c1,c2 | ||
1143 | STD c3,40(r_ptr) ; r[5] = c3; | ||
1144 | COPY %r0,c3 | ||
1145 | |||
1146 | SQR_ADD_C a3L,a3R,c1,c2,c3 | ||
1147 | SQR_ADD_C2 a4L,a4R,a2L,a2R,c1,c2,c3 | ||
1148 | SQR_ADD_C2 a5L,a5R,a1L,a1R,c1,c2,c3 | ||
1149 | SQR_ADD_C2 a6L,a6R,a0L,a0R,c1,c2,c3 | ||
1150 | STD c1,48(r_ptr) ; r[6] = c1; | ||
1151 | COPY %r0,c1 | ||
1152 | |||
1153 | SQR_ADD_C2 a7L,a7R,a0L,a0R,c2,c3,c1 | ||
1154 | SQR_ADD_C2 a6L,a6R,a1L,a1R,c2,c3,c1 | ||
1155 | SQR_ADD_C2 a5L,a5R,a2L,a2R,c2,c3,c1 | ||
1156 | SQR_ADD_C2 a4L,a4R,a3L,a3R,c2,c3,c1 | ||
1157 | STD c2,56(r_ptr) ; r[7] = c2; | ||
1158 | COPY %r0,c2 | ||
1159 | |||
1160 | SQR_ADD_C a4L,a4R,c3,c1,c2 | ||
1161 | SQR_ADD_C2 a5L,a5R,a3L,a3R,c3,c1,c2 | ||
1162 | SQR_ADD_C2 a6L,a6R,a2L,a2R,c3,c1,c2 | ||
1163 | SQR_ADD_C2 a7L,a7R,a1L,a1R,c3,c1,c2 | ||
1164 | STD c3,64(r_ptr) ; r[8] = c3; | ||
1165 | COPY %r0,c3 | ||
1166 | |||
1167 | SQR_ADD_C2 a7L,a7R,a2L,a2R,c1,c2,c3 | ||
1168 | SQR_ADD_C2 a6L,a6R,a3L,a3R,c1,c2,c3 | ||
1169 | SQR_ADD_C2 a5L,a5R,a4L,a4R,c1,c2,c3 | ||
1170 | STD c1,72(r_ptr) ; r[9] = c1; | ||
1171 | COPY %r0,c1 | ||
1172 | |||
1173 | SQR_ADD_C a5L,a5R,c2,c3,c1 | ||
1174 | SQR_ADD_C2 a6L,a6R,a4L,a4R,c2,c3,c1 | ||
1175 | SQR_ADD_C2 a7L,a7R,a3L,a3R,c2,c3,c1 | ||
1176 | STD c2,80(r_ptr) ; r[10] = c2; | ||
1177 | COPY %r0,c2 | ||
1178 | |||
1179 | SQR_ADD_C2 a7L,a7R,a4L,a4R,c3,c1,c2 | ||
1180 | SQR_ADD_C2 a6L,a6R,a5L,a5R,c3,c1,c2 | ||
1181 | STD c3,88(r_ptr) ; r[11] = c3; | ||
1182 | COPY %r0,c3 | ||
1183 | |||
1184 | SQR_ADD_C a6L,a6R,c1,c2,c3 | ||
1185 | SQR_ADD_C2 a7L,a7R,a5L,a5R,c1,c2,c3 | ||
1186 | STD c1,96(r_ptr) ; r[12] = c1; | ||
1187 | COPY %r0,c1 | ||
1188 | |||
1189 | SQR_ADD_C2 a7L,a7R,a6L,a6R,c2,c3,c1 | ||
1190 | STD c2,104(r_ptr) ; r[13] = c2; | ||
1191 | COPY %r0,c2 | ||
1192 | |||
1193 | SQR_ADD_C a7L,a7R,c3,c1,c2 | ||
1194 | STD c3, 112(r_ptr) ; r[14] = c3 | ||
1195 | STD c1, 120(r_ptr) ; r[15] = c1 | ||
1196 | |||
1197 | .EXIT | ||
1198 | LDD -104(%sp),%r6 ; restore r6 | ||
1199 | LDD -112(%sp),%r5 ; restore r5 | ||
1200 | LDD -120(%sp),%r4 ; restore r4 | ||
1201 | BVE (%rp) | ||
1202 | LDD,MB -128(%sp),%r3 | ||
1203 | |||
1204 | .PROCEND | ||
1205 | |||
1206 | ;----------------------------------------------------------------------------- | ||
1207 | ; | ||
1208 | ;void bn_sqr_comba4(BN_ULONG *r, BN_ULONG *a) | ||
1209 | ; arg0 = r_ptr | ||
1210 | ; arg1 = a_ptr | ||
1211 | ; | ||
1212 | |||
1213 | bn_sqr_comba4 | ||
1214 | .proc | ||
1215 | .callinfo FRAME=128,ENTRY_GR=%r3,ARGS_SAVED,ORDERING_AWARE | ||
1216 | .EXPORT bn_sqr_comba4,ENTRY,PRIV_LEV=3,NO_RELOCATION,LONG_RETURN | ||
1217 | .entry | ||
1218 | .align 64 | ||
1219 | STD %r3,0(%sp) ; save r3 | ||
1220 | STD %r4,8(%sp) ; save r4 | ||
1221 | STD %r5,16(%sp) ; save r5 | ||
1222 | STD %r6,24(%sp) ; save r6 | ||
1223 | |||
1224 | ; | ||
1225 | ; Zero out carries | ||
1226 | ; | ||
1227 | COPY %r0,c1 | ||
1228 | COPY %r0,c2 | ||
1229 | COPY %r0,c3 | ||
1230 | |||
1231 | LDO 128(%sp),%sp ; bump stack | ||
1232 | DEPDI,Z -1,32,33,high_mask ; Create Mask 0xffffffff80000000L | ||
1233 | DEPDI,Z 1,31,1,high_one ; Create Value 1 << 32 | ||
1234 | |||
1235 | ; | ||
1236 | ; Load up all of the values we are going to use | ||
1237 | ; | ||
1238 | FLDD 0(a_ptr),a0 | ||
1239 | FLDD 8(a_ptr),a1 | ||
1240 | FLDD 16(a_ptr),a2 | ||
1241 | FLDD 24(a_ptr),a3 | ||
1242 | FLDD 32(a_ptr),a4 | ||
1243 | FLDD 40(a_ptr),a5 | ||
1244 | FLDD 48(a_ptr),a6 | ||
1245 | FLDD 56(a_ptr),a7 | ||
1246 | |||
1247 | SQR_ADD_C a0L,a0R,c1,c2,c3 | ||
1248 | |||
1249 | STD c1,0(r_ptr) ; r[0] = c1; | ||
1250 | COPY %r0,c1 | ||
1251 | |||
1252 | SQR_ADD_C2 a1L,a1R,a0L,a0R,c2,c3,c1 | ||
1253 | |||
1254 | STD c2,8(r_ptr) ; r[1] = c2; | ||
1255 | COPY %r0,c2 | ||
1256 | |||
1257 | SQR_ADD_C a1L,a1R,c3,c1,c2 | ||
1258 | SQR_ADD_C2 a2L,a2R,a0L,a0R,c3,c1,c2 | ||
1259 | |||
1260 | STD c3,16(r_ptr) ; r[2] = c3; | ||
1261 | COPY %r0,c3 | ||
1262 | |||
1263 | SQR_ADD_C2 a3L,a3R,a0L,a0R,c1,c2,c3 | ||
1264 | SQR_ADD_C2 a2L,a2R,a1L,a1R,c1,c2,c3 | ||
1265 | |||
1266 | STD c1,24(r_ptr) ; r[3] = c1; | ||
1267 | COPY %r0,c1 | ||
1268 | |||
1269 | SQR_ADD_C a2L,a2R,c2,c3,c1 | ||
1270 | SQR_ADD_C2 a3L,a3R,a1L,a1R,c2,c3,c1 | ||
1271 | |||
1272 | STD c2,32(r_ptr) ; r[4] = c2; | ||
1273 | COPY %r0,c2 | ||
1274 | |||
1275 | SQR_ADD_C2 a3L,a3R,a2L,a2R,c3,c1,c2 | ||
1276 | STD c3,40(r_ptr) ; r[5] = c3; | ||
1277 | COPY %r0,c3 | ||
1278 | |||
1279 | SQR_ADD_C a3L,a3R,c1,c2,c3 | ||
1280 | STD c1,48(r_ptr) ; r[6] = c1; | ||
1281 | STD c2,56(r_ptr) ; r[7] = c2; | ||
1282 | |||
1283 | .EXIT | ||
1284 | LDD -104(%sp),%r6 ; restore r6 | ||
1285 | LDD -112(%sp),%r5 ; restore r5 | ||
1286 | LDD -120(%sp),%r4 ; restore r4 | ||
1287 | BVE (%rp) | ||
1288 | LDD,MB -128(%sp),%r3 | ||
1289 | |||
1290 | .PROCEND | ||
1291 | |||
1292 | |||
1293 | ;--------------------------------------------------------------------------- | ||
1294 | |||
1295 | MUL_ADD_C .macro A0L,A0R,B0L,B0R,C1,C2,C3 | ||
1296 | XMPYU A0L,B0R,ftemp1 ; m1 = bl*ht | ||
1297 | FSTD ftemp1,-16(%sp) ; | ||
1298 | XMPYU A0R,B0L,ftemp2 ; m = bh*lt | ||
1299 | FSTD ftemp2,-8(%sp) ; | ||
1300 | XMPYU A0R,B0R,ftemp3 ; lt = bl*lt | ||
1301 | FSTD ftemp3,-32(%sp) | ||
1302 | XMPYU A0L,B0L,ftemp4 ; ht = bh*ht | ||
1303 | FSTD ftemp4,-24(%sp) ; | ||
1304 | |||
1305 | LDD -8(%sp),m ; r21 = m | ||
1306 | LDD -16(%sp),m1 ; r19 = m1 | ||
1307 | ADD,L m,m1,m ; m+m1 | ||
1308 | |||
1309 | DEPD,Z m,31,32,temp3 ; (m+m1<<32) | ||
1310 | LDD -24(%sp),ht ; r24 = ht | ||
1311 | |||
1312 | CMPCLR,*>>= m,m1,%r0 ; if (m < m1) | ||
1313 | ADD,L ht,high_one,ht ; ht+=high_one | ||
1314 | |||
1315 | EXTRD,U m,31,32,temp1 ; m >> 32 | ||
1316 | LDD -32(%sp),lt ; lt | ||
1317 | ADD,L ht,temp1,ht ; ht+= m>>32 | ||
1318 | ADD lt,temp3,lt ; lt = lt+m1 | ||
1319 | ADD,DC ht,%r0,ht ; ht++ | ||
1320 | |||
1321 | ADD C1,lt,C1 ; c1=c1+lt | ||
1322 | ADD,DC ht,%r0,ht ; bump c3 if overflow,nullify otherwise | ||
1323 | |||
1324 | ADD C2,ht,C2 ; c2 = c2 + ht | ||
1325 | ADD,DC C3,%r0,C3 ; add in carry (c3++) | ||
1326 | .endm | ||
1327 | |||
1328 | |||
1329 | ; | ||
1330 | ;void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b) | ||
1331 | ; arg0 = r_ptr | ||
1332 | ; arg1 = a_ptr | ||
1333 | ; arg2 = b_ptr | ||
1334 | ; | ||
1335 | |||
1336 | bn_mul_comba8 | ||
1337 | .proc | ||
1338 | .callinfo FRAME=128,ENTRY_GR=%r3,ARGS_SAVED,ORDERING_AWARE | ||
1339 | .EXPORT bn_mul_comba8,ENTRY,PRIV_LEV=3,NO_RELOCATION,LONG_RETURN | ||
1340 | .entry | ||
1341 | .align 64 | ||
1342 | |||
1343 | STD %r3,0(%sp) ; save r3 | ||
1344 | STD %r4,8(%sp) ; save r4 | ||
1345 | STD %r5,16(%sp) ; save r5 | ||
1346 | STD %r6,24(%sp) ; save r6 | ||
1347 | FSTD %fr12,32(%sp) ; save r6 | ||
1348 | FSTD %fr13,40(%sp) ; save r7 | ||
1349 | |||
1350 | ; | ||
1351 | ; Zero out carries | ||
1352 | ; | ||
1353 | COPY %r0,c1 | ||
1354 | COPY %r0,c2 | ||
1355 | COPY %r0,c3 | ||
1356 | |||
1357 | LDO 128(%sp),%sp ; bump stack | ||
1358 | DEPDI,Z 1,31,1,high_one ; Create Value 1 << 32 | ||
1359 | |||
1360 | ; | ||
1361 | ; Load up all of the values we are going to use | ||
1362 | ; | ||
1363 | FLDD 0(a_ptr),a0 | ||
1364 | FLDD 8(a_ptr),a1 | ||
1365 | FLDD 16(a_ptr),a2 | ||
1366 | FLDD 24(a_ptr),a3 | ||
1367 | FLDD 32(a_ptr),a4 | ||
1368 | FLDD 40(a_ptr),a5 | ||
1369 | FLDD 48(a_ptr),a6 | ||
1370 | FLDD 56(a_ptr),a7 | ||
1371 | |||
1372 | FLDD 0(b_ptr),b0 | ||
1373 | FLDD 8(b_ptr),b1 | ||
1374 | FLDD 16(b_ptr),b2 | ||
1375 | FLDD 24(b_ptr),b3 | ||
1376 | FLDD 32(b_ptr),b4 | ||
1377 | FLDD 40(b_ptr),b5 | ||
1378 | FLDD 48(b_ptr),b6 | ||
1379 | FLDD 56(b_ptr),b7 | ||
1380 | |||
1381 | MUL_ADD_C a0L,a0R,b0L,b0R,c1,c2,c3 | ||
1382 | STD c1,0(r_ptr) | ||
1383 | COPY %r0,c1 | ||
1384 | |||
1385 | MUL_ADD_C a0L,a0R,b1L,b1R,c2,c3,c1 | ||
1386 | MUL_ADD_C a1L,a1R,b0L,b0R,c2,c3,c1 | ||
1387 | STD c2,8(r_ptr) | ||
1388 | COPY %r0,c2 | ||
1389 | |||
1390 | MUL_ADD_C a2L,a2R,b0L,b0R,c3,c1,c2 | ||
1391 | MUL_ADD_C a1L,a1R,b1L,b1R,c3,c1,c2 | ||
1392 | MUL_ADD_C a0L,a0R,b2L,b2R,c3,c1,c2 | ||
1393 | STD c3,16(r_ptr) | ||
1394 | COPY %r0,c3 | ||
1395 | |||
1396 | MUL_ADD_C a0L,a0R,b3L,b3R,c1,c2,c3 | ||
1397 | MUL_ADD_C a1L,a1R,b2L,b2R,c1,c2,c3 | ||
1398 | MUL_ADD_C a2L,a2R,b1L,b1R,c1,c2,c3 | ||
1399 | MUL_ADD_C a3L,a3R,b0L,b0R,c1,c2,c3 | ||
1400 | STD c1,24(r_ptr) | ||
1401 | COPY %r0,c1 | ||
1402 | |||
1403 | MUL_ADD_C a4L,a4R,b0L,b0R,c2,c3,c1 | ||
1404 | MUL_ADD_C a3L,a3R,b1L,b1R,c2,c3,c1 | ||
1405 | MUL_ADD_C a2L,a2R,b2L,b2R,c2,c3,c1 | ||
1406 | MUL_ADD_C a1L,a1R,b3L,b3R,c2,c3,c1 | ||
1407 | MUL_ADD_C a0L,a0R,b4L,b4R,c2,c3,c1 | ||
1408 | STD c2,32(r_ptr) | ||
1409 | COPY %r0,c2 | ||
1410 | |||
1411 | MUL_ADD_C a0L,a0R,b5L,b5R,c3,c1,c2 | ||
1412 | MUL_ADD_C a1L,a1R,b4L,b4R,c3,c1,c2 | ||
1413 | MUL_ADD_C a2L,a2R,b3L,b3R,c3,c1,c2 | ||
1414 | MUL_ADD_C a3L,a3R,b2L,b2R,c3,c1,c2 | ||
1415 | MUL_ADD_C a4L,a4R,b1L,b1R,c3,c1,c2 | ||
1416 | MUL_ADD_C a5L,a5R,b0L,b0R,c3,c1,c2 | ||
1417 | STD c3,40(r_ptr) | ||
1418 | COPY %r0,c3 | ||
1419 | |||
1420 | MUL_ADD_C a6L,a6R,b0L,b0R,c1,c2,c3 | ||
1421 | MUL_ADD_C a5L,a5R,b1L,b1R,c1,c2,c3 | ||
1422 | MUL_ADD_C a4L,a4R,b2L,b2R,c1,c2,c3 | ||
1423 | MUL_ADD_C a3L,a3R,b3L,b3R,c1,c2,c3 | ||
1424 | MUL_ADD_C a2L,a2R,b4L,b4R,c1,c2,c3 | ||
1425 | MUL_ADD_C a1L,a1R,b5L,b5R,c1,c2,c3 | ||
1426 | MUL_ADD_C a0L,a0R,b6L,b6R,c1,c2,c3 | ||
1427 | STD c1,48(r_ptr) | ||
1428 | COPY %r0,c1 | ||
1429 | |||
1430 | MUL_ADD_C a0L,a0R,b7L,b7R,c2,c3,c1 | ||
1431 | MUL_ADD_C a1L,a1R,b6L,b6R,c2,c3,c1 | ||
1432 | MUL_ADD_C a2L,a2R,b5L,b5R,c2,c3,c1 | ||
1433 | MUL_ADD_C a3L,a3R,b4L,b4R,c2,c3,c1 | ||
1434 | MUL_ADD_C a4L,a4R,b3L,b3R,c2,c3,c1 | ||
1435 | MUL_ADD_C a5L,a5R,b2L,b2R,c2,c3,c1 | ||
1436 | MUL_ADD_C a6L,a6R,b1L,b1R,c2,c3,c1 | ||
1437 | MUL_ADD_C a7L,a7R,b0L,b0R,c2,c3,c1 | ||
1438 | STD c2,56(r_ptr) | ||
1439 | COPY %r0,c2 | ||
1440 | |||
1441 | MUL_ADD_C a7L,a7R,b1L,b1R,c3,c1,c2 | ||
1442 | MUL_ADD_C a6L,a6R,b2L,b2R,c3,c1,c2 | ||
1443 | MUL_ADD_C a5L,a5R,b3L,b3R,c3,c1,c2 | ||
1444 | MUL_ADD_C a4L,a4R,b4L,b4R,c3,c1,c2 | ||
1445 | MUL_ADD_C a3L,a3R,b5L,b5R,c3,c1,c2 | ||
1446 | MUL_ADD_C a2L,a2R,b6L,b6R,c3,c1,c2 | ||
1447 | MUL_ADD_C a1L,a1R,b7L,b7R,c3,c1,c2 | ||
1448 | STD c3,64(r_ptr) | ||
1449 | COPY %r0,c3 | ||
1450 | |||
1451 | MUL_ADD_C a2L,a2R,b7L,b7R,c1,c2,c3 | ||
1452 | MUL_ADD_C a3L,a3R,b6L,b6R,c1,c2,c3 | ||
1453 | MUL_ADD_C a4L,a4R,b5L,b5R,c1,c2,c3 | ||
1454 | MUL_ADD_C a5L,a5R,b4L,b4R,c1,c2,c3 | ||
1455 | MUL_ADD_C a6L,a6R,b3L,b3R,c1,c2,c3 | ||
1456 | MUL_ADD_C a7L,a7R,b2L,b2R,c1,c2,c3 | ||
1457 | STD c1,72(r_ptr) | ||
1458 | COPY %r0,c1 | ||
1459 | |||
1460 | MUL_ADD_C a7L,a7R,b3L,b3R,c2,c3,c1 | ||
1461 | MUL_ADD_C a6L,a6R,b4L,b4R,c2,c3,c1 | ||
1462 | MUL_ADD_C a5L,a5R,b5L,b5R,c2,c3,c1 | ||
1463 | MUL_ADD_C a4L,a4R,b6L,b6R,c2,c3,c1 | ||
1464 | MUL_ADD_C a3L,a3R,b7L,b7R,c2,c3,c1 | ||
1465 | STD c2,80(r_ptr) | ||
1466 | COPY %r0,c2 | ||
1467 | |||
1468 | MUL_ADD_C a4L,a4R,b7L,b7R,c3,c1,c2 | ||
1469 | MUL_ADD_C a5L,a5R,b6L,b6R,c3,c1,c2 | ||
1470 | MUL_ADD_C a6L,a6R,b5L,b5R,c3,c1,c2 | ||
1471 | MUL_ADD_C a7L,a7R,b4L,b4R,c3,c1,c2 | ||
1472 | STD c3,88(r_ptr) | ||
1473 | COPY %r0,c3 | ||
1474 | |||
1475 | MUL_ADD_C a7L,a7R,b5L,b5R,c1,c2,c3 | ||
1476 | MUL_ADD_C a6L,a6R,b6L,b6R,c1,c2,c3 | ||
1477 | MUL_ADD_C a5L,a5R,b7L,b7R,c1,c2,c3 | ||
1478 | STD c1,96(r_ptr) | ||
1479 | COPY %r0,c1 | ||
1480 | |||
1481 | MUL_ADD_C a6L,a6R,b7L,b7R,c2,c3,c1 | ||
1482 | MUL_ADD_C a7L,a7R,b6L,b6R,c2,c3,c1 | ||
1483 | STD c2,104(r_ptr) | ||
1484 | COPY %r0,c2 | ||
1485 | |||
1486 | MUL_ADD_C a7L,a7R,b7L,b7R,c3,c1,c2 | ||
1487 | STD c3,112(r_ptr) | ||
1488 | STD c1,120(r_ptr) | ||
1489 | |||
1490 | .EXIT | ||
1491 | FLDD -88(%sp),%fr13 | ||
1492 | FLDD -96(%sp),%fr12 | ||
1493 | LDD -104(%sp),%r6 ; restore r6 | ||
1494 | LDD -112(%sp),%r5 ; restore r5 | ||
1495 | LDD -120(%sp),%r4 ; restore r4 | ||
1496 | BVE (%rp) | ||
1497 | LDD,MB -128(%sp),%r3 | ||
1498 | |||
1499 | .PROCEND | ||
1500 | |||
1501 | ;----------------------------------------------------------------------------- | ||
1502 | ; | ||
1503 | ;void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b) | ||
1504 | ; arg0 = r_ptr | ||
1505 | ; arg1 = a_ptr | ||
1506 | ; arg2 = b_ptr | ||
1507 | ; | ||
1508 | |||
1509 | bn_mul_comba4 | ||
1510 | .proc | ||
1511 | .callinfo FRAME=128,ENTRY_GR=%r3,ARGS_SAVED,ORDERING_AWARE | ||
1512 | .EXPORT bn_mul_comba4,ENTRY,PRIV_LEV=3,NO_RELOCATION,LONG_RETURN | ||
1513 | .entry | ||
1514 | .align 64 | ||
1515 | |||
1516 | STD %r3,0(%sp) ; save r3 | ||
1517 | STD %r4,8(%sp) ; save r4 | ||
1518 | STD %r5,16(%sp) ; save r5 | ||
1519 | STD %r6,24(%sp) ; save r6 | ||
1520 | FSTD %fr12,32(%sp) ; save r6 | ||
1521 | FSTD %fr13,40(%sp) ; save r7 | ||
1522 | |||
1523 | ; | ||
1524 | ; Zero out carries | ||
1525 | ; | ||
1526 | COPY %r0,c1 | ||
1527 | COPY %r0,c2 | ||
1528 | COPY %r0,c3 | ||
1529 | |||
1530 | LDO 128(%sp),%sp ; bump stack | ||
1531 | DEPDI,Z 1,31,1,high_one ; Create Value 1 << 32 | ||
1532 | |||
1533 | ; | ||
1534 | ; Load up all of the values we are going to use | ||
1535 | ; | ||
1536 | FLDD 0(a_ptr),a0 | ||
1537 | FLDD 8(a_ptr),a1 | ||
1538 | FLDD 16(a_ptr),a2 | ||
1539 | FLDD 24(a_ptr),a3 | ||
1540 | |||
1541 | FLDD 0(b_ptr),b0 | ||
1542 | FLDD 8(b_ptr),b1 | ||
1543 | FLDD 16(b_ptr),b2 | ||
1544 | FLDD 24(b_ptr),b3 | ||
1545 | |||
1546 | MUL_ADD_C a0L,a0R,b0L,b0R,c1,c2,c3 | ||
1547 | STD c1,0(r_ptr) | ||
1548 | COPY %r0,c1 | ||
1549 | |||
1550 | MUL_ADD_C a0L,a0R,b1L,b1R,c2,c3,c1 | ||
1551 | MUL_ADD_C a1L,a1R,b0L,b0R,c2,c3,c1 | ||
1552 | STD c2,8(r_ptr) | ||
1553 | COPY %r0,c2 | ||
1554 | |||
1555 | MUL_ADD_C a2L,a2R,b0L,b0R,c3,c1,c2 | ||
1556 | MUL_ADD_C a1L,a1R,b1L,b1R,c3,c1,c2 | ||
1557 | MUL_ADD_C a0L,a0R,b2L,b2R,c3,c1,c2 | ||
1558 | STD c3,16(r_ptr) | ||
1559 | COPY %r0,c3 | ||
1560 | |||
1561 | MUL_ADD_C a0L,a0R,b3L,b3R,c1,c2,c3 | ||
1562 | MUL_ADD_C a1L,a1R,b2L,b2R,c1,c2,c3 | ||
1563 | MUL_ADD_C a2L,a2R,b1L,b1R,c1,c2,c3 | ||
1564 | MUL_ADD_C a3L,a3R,b0L,b0R,c1,c2,c3 | ||
1565 | STD c1,24(r_ptr) | ||
1566 | COPY %r0,c1 | ||
1567 | |||
1568 | MUL_ADD_C a3L,a3R,b1L,b1R,c2,c3,c1 | ||
1569 | MUL_ADD_C a2L,a2R,b2L,b2R,c2,c3,c1 | ||
1570 | MUL_ADD_C a1L,a1R,b3L,b3R,c2,c3,c1 | ||
1571 | STD c2,32(r_ptr) | ||
1572 | COPY %r0,c2 | ||
1573 | |||
1574 | MUL_ADD_C a2L,a2R,b3L,b3R,c3,c1,c2 | ||
1575 | MUL_ADD_C a3L,a3R,b2L,b2R,c3,c1,c2 | ||
1576 | STD c3,40(r_ptr) | ||
1577 | COPY %r0,c3 | ||
1578 | |||
1579 | MUL_ADD_C a3L,a3R,b3L,b3R,c1,c2,c3 | ||
1580 | STD c1,48(r_ptr) | ||
1581 | STD c2,56(r_ptr) | ||
1582 | |||
1583 | .EXIT | ||
1584 | FLDD -88(%sp),%fr13 | ||
1585 | FLDD -96(%sp),%fr12 | ||
1586 | LDD -104(%sp),%r6 ; restore r6 | ||
1587 | LDD -112(%sp),%r5 ; restore r5 | ||
1588 | LDD -120(%sp),%r4 ; restore r4 | ||
1589 | BVE (%rp) | ||
1590 | LDD,MB -128(%sp),%r3 | ||
1591 | |||
1592 | .PROCEND | ||
1593 | |||
1594 | |||
1595 | .SPACE $TEXT$ | ||
1596 | .SUBSPA $CODE$ | ||
1597 | .SPACE $PRIVATE$,SORT=16 | ||
1598 | .IMPORT $global$,DATA | ||
1599 | .SPACE $TEXT$ | ||
1600 | .SUBSPA $CODE$ | ||
1601 | .SUBSPA $LIT$,ACCESS=0x2c | ||
1602 | C$4 | ||
1603 | .ALIGN 8 | ||
1604 | .STRINGZ "Division would overflow (%d)\n" | ||
1605 | .END | ||
diff --git a/src/lib/libcrypto/bn/asm/parisc-mont.pl b/src/lib/libcrypto/bn/asm/parisc-mont.pl deleted file mode 100644 index fcfdee1f1f..0000000000 --- a/src/lib/libcrypto/bn/asm/parisc-mont.pl +++ /dev/null | |||
@@ -1,993 +0,0 @@ | |||
1 | #!/usr/bin/env perl | ||
2 | |||
3 | # ==================================================================== | ||
4 | # Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL | ||
5 | # project. The module is, however, dual licensed under OpenSSL and | ||
6 | # CRYPTOGAMS licenses depending on where you obtain it. For further | ||
7 | # details see http://www.openssl.org/~appro/cryptogams/. | ||
8 | # ==================================================================== | ||
9 | |||
10 | # On PA-7100LC this module performs ~90-50% better, less for longer | ||
11 | # keys, than code generated by gcc 3.2 for PA-RISC 1.1. Latter means | ||
12 | # that compiler utilized xmpyu instruction to perform 32x32=64-bit | ||
13 | # multiplication, which in turn means that "baseline" performance was | ||
14 | # optimal in respect to instruction set capabilities. Fair comparison | ||
15 | # with vendor compiler is problematic, because OpenSSL doesn't define | ||
16 | # BN_LLONG [presumably] for historical reasons, which drives compiler | ||
17 | # toward 4 times 16x16=32-bit multiplicatons [plus complementary | ||
18 | # shifts and additions] instead. This means that you should observe | ||
19 | # several times improvement over code generated by vendor compiler | ||
20 | # for PA-RISC 1.1, but the "baseline" is far from optimal. The actual | ||
21 | # improvement coefficient was never collected on PA-7100LC, or any | ||
22 | # other 1.1 CPU, because I don't have access to such machine with | ||
23 | # vendor compiler. But to give you a taste, PA-RISC 1.1 code path | ||
24 | # reportedly outperformed code generated by cc +DA1.1 +O3 by factor | ||
25 | # of ~5x on PA-8600. | ||
26 | # | ||
27 | # On PA-RISC 2.0 it has to compete with pa-risc2[W].s, which is | ||
28 | # reportedly ~2x faster than vendor compiler generated code [according | ||
29 | # to comment in pa-risc2[W].s]. Here comes a catch. Execution core of | ||
30 | # this implementation is actually 32-bit one, in the sense that it | ||
31 | # operates on 32-bit values. But pa-risc2[W].s operates on arrays of | ||
32 | # 64-bit BN_LONGs... How do they interoperate then? No problem. This | ||
33 | # module picks halves of 64-bit values in reverse order and pretends | ||
34 | # they were 32-bit BN_LONGs. But can 32-bit core compete with "pure" | ||
35 | # 64-bit code such as pa-risc2[W].s then? Well, the thing is that | ||
36 | # 32x32=64-bit multiplication is the best even PA-RISC 2.0 can do, | ||
37 | # i.e. there is no "wider" multiplication like on most other 64-bit | ||
38 | # platforms. This means that even being effectively 32-bit, this | ||
39 | # implementation performs "64-bit" computational task in same amount | ||
40 | # of arithmetic operations, most notably multiplications. It requires | ||
41 | # more memory references, most notably to tp[num], but this doesn't | ||
42 | # seem to exhaust memory port capacity. And indeed, dedicated PA-RISC | ||
43 | # 2.0 code path provides virtually same performance as pa-risc2[W].s: | ||
44 | # it's ~10% better for shortest key length and ~10% worse for longest | ||
45 | # one. | ||
46 | # | ||
47 | # In case it wasn't clear. The module has two distinct code paths: | ||
48 | # PA-RISC 1.1 and PA-RISC 2.0 ones. Latter features carry-free 64-bit | ||
49 | # additions and 64-bit integer loads, not to mention specific | ||
50 | # instruction scheduling. In 64-bit build naturally only 2.0 code path | ||
51 | # is assembled. In 32-bit application context both code paths are | ||
52 | # assembled, PA-RISC 2.0 CPU is detected at run-time and proper path | ||
53 | # is taken automatically. Also, in 32-bit build the module imposes | ||
54 | # couple of limitations: vector lengths has to be even and vector | ||
55 | # addresses has to be 64-bit aligned. Normally neither is a problem: | ||
56 | # most common key lengths are even and vectors are commonly malloc-ed, | ||
57 | # which ensures alignment. | ||
58 | # | ||
59 | # Special thanks to polarhome.com for providing HP-UX account on | ||
60 | # PA-RISC 1.1 machine, and to correspondent who chose to remain | ||
61 | # anonymous for testing the code on PA-RISC 2.0 machine. | ||
62 | |||
63 | $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; | ||
64 | |||
65 | $flavour = shift; | ||
66 | $output = shift; | ||
67 | |||
68 | open STDOUT,">$output"; | ||
69 | |||
70 | if ($flavour =~ /64/) { | ||
71 | $LEVEL ="2.0W"; | ||
72 | $SIZE_T =8; | ||
73 | $FRAME_MARKER =80; | ||
74 | $SAVED_RP =16; | ||
75 | $PUSH ="std"; | ||
76 | $PUSHMA ="std,ma"; | ||
77 | $POP ="ldd"; | ||
78 | $POPMB ="ldd,mb"; | ||
79 | $BN_SZ =$SIZE_T; | ||
80 | } else { | ||
81 | $LEVEL ="1.1"; #$LEVEL.="\n\t.ALLOW\t2.0"; | ||
82 | $SIZE_T =4; | ||
83 | $FRAME_MARKER =48; | ||
84 | $SAVED_RP =20; | ||
85 | $PUSH ="stw"; | ||
86 | $PUSHMA ="stwm"; | ||
87 | $POP ="ldw"; | ||
88 | $POPMB ="ldwm"; | ||
89 | $BN_SZ =$SIZE_T; | ||
90 | } | ||
91 | |||
92 | $FRAME=8*$SIZE_T+$FRAME_MARKER; # 8 saved regs + frame marker | ||
93 | # [+ argument transfer] | ||
94 | $LOCALS=$FRAME-$FRAME_MARKER; | ||
95 | $FRAME+=32; # local variables | ||
96 | |||
97 | $tp="%r31"; | ||
98 | $ti1="%r29"; | ||
99 | $ti0="%r28"; | ||
100 | |||
101 | $rp="%r26"; | ||
102 | $ap="%r25"; | ||
103 | $bp="%r24"; | ||
104 | $np="%r23"; | ||
105 | $n0="%r22"; # passed through stack in 32-bit | ||
106 | $num="%r21"; # passed through stack in 32-bit | ||
107 | $idx="%r20"; | ||
108 | $arrsz="%r19"; | ||
109 | |||
110 | $nm1="%r7"; | ||
111 | $nm0="%r6"; | ||
112 | $ab1="%r5"; | ||
113 | $ab0="%r4"; | ||
114 | |||
115 | $fp="%r3"; | ||
116 | $hi1="%r2"; | ||
117 | $hi0="%r1"; | ||
118 | |||
119 | $xfer=$n0; # accomodates [-16..15] offset in fld[dw]s | ||
120 | |||
121 | $fm0="%fr4"; $fti=$fm0; | ||
122 | $fbi="%fr5L"; | ||
123 | $fn0="%fr5R"; | ||
124 | $fai="%fr6"; $fab0="%fr7"; $fab1="%fr8"; | ||
125 | $fni="%fr9"; $fnm0="%fr10"; $fnm1="%fr11"; | ||
126 | |||
127 | $code=<<___; | ||
128 | .LEVEL $LEVEL | ||
129 | #if 0 | ||
130 | .SPACE \$TEXT\$ | ||
131 | .SUBSPA \$CODE\$,QUAD=0,ALIGN=8,ACCESS=0x2C,CODE_ONLY | ||
132 | #else | ||
133 | .text | ||
134 | #endif | ||
135 | |||
136 | .EXPORT bn_mul_mont,ENTRY,ARGW0=GR,ARGW1=GR,ARGW2=GR,ARGW3=GR | ||
137 | .ALIGN 64 | ||
138 | bn_mul_mont | ||
139 | .PROC | ||
140 | .CALLINFO FRAME=`$FRAME-8*$SIZE_T`,NO_CALLS,SAVE_RP,SAVE_SP,ENTRY_GR=6 | ||
141 | .ENTRY | ||
142 | $PUSH %r2,-$SAVED_RP(%sp) ; standard prologue | ||
143 | $PUSHMA %r3,$FRAME(%sp) | ||
144 | $PUSH %r4,`-$FRAME+1*$SIZE_T`(%sp) | ||
145 | $PUSH %r5,`-$FRAME+2*$SIZE_T`(%sp) | ||
146 | $PUSH %r6,`-$FRAME+3*$SIZE_T`(%sp) | ||
147 | $PUSH %r7,`-$FRAME+4*$SIZE_T`(%sp) | ||
148 | $PUSH %r8,`-$FRAME+5*$SIZE_T`(%sp) | ||
149 | $PUSH %r9,`-$FRAME+6*$SIZE_T`(%sp) | ||
150 | $PUSH %r10,`-$FRAME+7*$SIZE_T`(%sp) | ||
151 | ldo -$FRAME(%sp),$fp | ||
152 | ___ | ||
153 | $code.=<<___ if ($SIZE_T==4); | ||
154 | ldw `-$FRAME_MARKER-4`($fp),$n0 | ||
155 | ldw `-$FRAME_MARKER-8`($fp),$num | ||
156 | nop | ||
157 | nop ; alignment | ||
158 | ___ | ||
159 | $code.=<<___ if ($BN_SZ==4); | ||
160 | comiclr,<= 6,$num,%r0 ; are vectors long enough? | ||
161 | b L\$abort | ||
162 | ldi 0,%r28 ; signal "unhandled" | ||
163 | add,ev %r0,$num,$num ; is $num even? | ||
164 | b L\$abort | ||
165 | nop | ||
166 | or $ap,$np,$ti1 | ||
167 | extru,= $ti1,31,3,%r0 ; are ap and np 64-bit aligned? | ||
168 | b L\$abort | ||
169 | nop | ||
170 | nop ; alignment | ||
171 | nop | ||
172 | |||
173 | fldws 0($n0),${fn0} | ||
174 | fldws,ma 4($bp),${fbi} ; bp[0] | ||
175 | ___ | ||
176 | $code.=<<___ if ($BN_SZ==8); | ||
177 | comib,> 3,$num,L\$abort ; are vectors long enough? | ||
178 | ldi 0,%r28 ; signal "unhandled" | ||
179 | addl $num,$num,$num ; I operate on 32-bit values | ||
180 | |||
181 | fldws 4($n0),${fn0} ; only low part of n0 | ||
182 | fldws 4($bp),${fbi} ; bp[0] in flipped word order | ||
183 | ___ | ||
184 | $code.=<<___; | ||
185 | fldds 0($ap),${fai} ; ap[0,1] | ||
186 | fldds 0($np),${fni} ; np[0,1] | ||
187 | |||
188 | sh2addl $num,%r0,$arrsz | ||
189 | ldi 31,$hi0 | ||
190 | ldo 36($arrsz),$hi1 ; space for tp[num+1] | ||
191 | andcm $hi1,$hi0,$hi1 ; align | ||
192 | addl $hi1,%sp,%sp | ||
193 | $PUSH $fp,-$SIZE_T(%sp) | ||
194 | |||
195 | ldo `$LOCALS+16`($fp),$xfer | ||
196 | ldo `$LOCALS+32+4`($fp),$tp | ||
197 | |||
198 | xmpyu ${fai}L,${fbi},${fab0} ; ap[0]*bp[0] | ||
199 | xmpyu ${fai}R,${fbi},${fab1} ; ap[1]*bp[0] | ||
200 | xmpyu ${fn0},${fab0}R,${fm0} | ||
201 | |||
202 | addl $arrsz,$ap,$ap ; point at the end | ||
203 | addl $arrsz,$np,$np | ||
204 | subi 0,$arrsz,$idx ; j=0 | ||
205 | ldo 8($idx),$idx ; j++++ | ||
206 | |||
207 | xmpyu ${fni}L,${fm0}R,${fnm0} ; np[0]*m | ||
208 | xmpyu ${fni}R,${fm0}R,${fnm1} ; np[1]*m | ||
209 | fstds ${fab0},-16($xfer) | ||
210 | fstds ${fnm0},-8($xfer) | ||
211 | fstds ${fab1},0($xfer) | ||
212 | fstds ${fnm1},8($xfer) | ||
213 | flddx $idx($ap),${fai} ; ap[2,3] | ||
214 | flddx $idx($np),${fni} ; np[2,3] | ||
215 | ___ | ||
216 | $code.=<<___ if ($BN_SZ==4); | ||
217 | #ifndef __OpenBSD__ | ||
218 | mtctl $hi0,%cr11 ; $hi0 still holds 31 | ||
219 | extrd,u,*= $hi0,%sar,1,$hi0 ; executes on PA-RISC 1.0 | ||
220 | b L\$parisc11 | ||
221 | nop | ||
222 | ___ | ||
223 | $code.=<<___; # PA-RISC 2.0 code-path | ||
224 | xmpyu ${fai}L,${fbi},${fab0} ; ap[j]*bp[0] | ||
225 | xmpyu ${fni}L,${fm0}R,${fnm0} ; np[j]*m | ||
226 | ldd -16($xfer),$ab0 | ||
227 | fstds ${fab0},-16($xfer) | ||
228 | |||
229 | extrd,u $ab0,31,32,$hi0 | ||
230 | extrd,u $ab0,63,32,$ab0 | ||
231 | ldd -8($xfer),$nm0 | ||
232 | fstds ${fnm0},-8($xfer) | ||
233 | ldo 8($idx),$idx ; j++++ | ||
234 | addl $ab0,$nm0,$nm0 ; low part is discarded | ||
235 | extrd,u $nm0,31,32,$hi1 | ||
236 | |||
237 | L\$1st | ||
238 | xmpyu ${fai}R,${fbi},${fab1} ; ap[j+1]*bp[0] | ||
239 | xmpyu ${fni}R,${fm0}R,${fnm1} ; np[j+1]*m | ||
240 | ldd 0($xfer),$ab1 | ||
241 | fstds ${fab1},0($xfer) | ||
242 | addl $hi0,$ab1,$ab1 | ||
243 | extrd,u $ab1,31,32,$hi0 | ||
244 | ldd 8($xfer),$nm1 | ||
245 | fstds ${fnm1},8($xfer) | ||
246 | extrd,u $ab1,63,32,$ab1 | ||
247 | addl $hi1,$nm1,$nm1 | ||
248 | flddx $idx($ap),${fai} ; ap[j,j+1] | ||
249 | flddx $idx($np),${fni} ; np[j,j+1] | ||
250 | addl $ab1,$nm1,$nm1 | ||
251 | extrd,u $nm1,31,32,$hi1 | ||
252 | |||
253 | xmpyu ${fai}L,${fbi},${fab0} ; ap[j]*bp[0] | ||
254 | xmpyu ${fni}L,${fm0}R,${fnm0} ; np[j]*m | ||
255 | ldd -16($xfer),$ab0 | ||
256 | fstds ${fab0},-16($xfer) | ||
257 | addl $hi0,$ab0,$ab0 | ||
258 | extrd,u $ab0,31,32,$hi0 | ||
259 | ldd -8($xfer),$nm0 | ||
260 | fstds ${fnm0},-8($xfer) | ||
261 | extrd,u $ab0,63,32,$ab0 | ||
262 | addl $hi1,$nm0,$nm0 | ||
263 | stw $nm1,-4($tp) ; tp[j-1] | ||
264 | addl $ab0,$nm0,$nm0 | ||
265 | stw,ma $nm0,8($tp) ; tp[j-1] | ||
266 | addib,<> 8,$idx,L\$1st ; j++++ | ||
267 | extrd,u $nm0,31,32,$hi1 | ||
268 | |||
269 | xmpyu ${fai}R,${fbi},${fab1} ; ap[j]*bp[0] | ||
270 | xmpyu ${fni}R,${fm0}R,${fnm1} ; np[j]*m | ||
271 | ldd 0($xfer),$ab1 | ||
272 | fstds ${fab1},0($xfer) | ||
273 | addl $hi0,$ab1,$ab1 | ||
274 | extrd,u $ab1,31,32,$hi0 | ||
275 | ldd 8($xfer),$nm1 | ||
276 | fstds ${fnm1},8($xfer) | ||
277 | extrd,u $ab1,63,32,$ab1 | ||
278 | addl $hi1,$nm1,$nm1 | ||
279 | ldd -16($xfer),$ab0 | ||
280 | addl $ab1,$nm1,$nm1 | ||
281 | ldd -8($xfer),$nm0 | ||
282 | extrd,u $nm1,31,32,$hi1 | ||
283 | |||
284 | addl $hi0,$ab0,$ab0 | ||
285 | extrd,u $ab0,31,32,$hi0 | ||
286 | stw $nm1,-4($tp) ; tp[j-1] | ||
287 | extrd,u $ab0,63,32,$ab0 | ||
288 | addl $hi1,$nm0,$nm0 | ||
289 | ldd 0($xfer),$ab1 | ||
290 | addl $ab0,$nm0,$nm0 | ||
291 | ldd,mb 8($xfer),$nm1 | ||
292 | extrd,u $nm0,31,32,$hi1 | ||
293 | stw,ma $nm0,8($tp) ; tp[j-1] | ||
294 | |||
295 | ldo -1($num),$num ; i-- | ||
296 | subi 0,$arrsz,$idx ; j=0 | ||
297 | ___ | ||
298 | $code.=<<___ if ($BN_SZ==4); | ||
299 | fldws,ma 4($bp),${fbi} ; bp[1] | ||
300 | ___ | ||
301 | $code.=<<___ if ($BN_SZ==8); | ||
302 | fldws 0($bp),${fbi} ; bp[1] in flipped word order | ||
303 | ___ | ||
304 | $code.=<<___; | ||
305 | flddx $idx($ap),${fai} ; ap[0,1] | ||
306 | flddx $idx($np),${fni} ; np[0,1] | ||
307 | fldws 8($xfer),${fti}R ; tp[0] | ||
308 | addl $hi0,$ab1,$ab1 | ||
309 | extrd,u $ab1,31,32,$hi0 | ||
310 | extrd,u $ab1,63,32,$ab1 | ||
311 | ldo 8($idx),$idx ; j++++ | ||
312 | xmpyu ${fai}L,${fbi},${fab0} ; ap[0]*bp[1] | ||
313 | xmpyu ${fai}R,${fbi},${fab1} ; ap[1]*bp[1] | ||
314 | addl $hi1,$nm1,$nm1 | ||
315 | addl $ab1,$nm1,$nm1 | ||
316 | extrd,u $nm1,31,32,$hi1 | ||
317 | fstws,mb ${fab0}L,-8($xfer) ; save high part | ||
318 | stw $nm1,-4($tp) ; tp[j-1] | ||
319 | |||
320 | fcpy,sgl %fr0,${fti}L ; zero high part | ||
321 | fcpy,sgl %fr0,${fab0}L | ||
322 | addl $hi1,$hi0,$hi0 | ||
323 | extrd,u $hi0,31,32,$hi1 | ||
324 | fcnvxf,dbl,dbl ${fti},${fti} ; 32-bit unsigned int -> double | ||
325 | fcnvxf,dbl,dbl ${fab0},${fab0} | ||
326 | stw $hi0,0($tp) | ||
327 | stw $hi1,4($tp) | ||
328 | |||
329 | fadd,dbl ${fti},${fab0},${fab0} ; add tp[0] | ||
330 | fcnvfx,dbl,dbl ${fab0},${fab0} ; double -> 33-bit unsigned int | ||
331 | xmpyu ${fn0},${fab0}R,${fm0} | ||
332 | ldo `$LOCALS+32+4`($fp),$tp | ||
333 | L\$outer | ||
334 | xmpyu ${fni}L,${fm0}R,${fnm0} ; np[0]*m | ||
335 | xmpyu ${fni}R,${fm0}R,${fnm1} ; np[1]*m | ||
336 | fstds ${fab0},-16($xfer) ; 33-bit value | ||
337 | fstds ${fnm0},-8($xfer) | ||
338 | flddx $idx($ap),${fai} ; ap[2] | ||
339 | flddx $idx($np),${fni} ; np[2] | ||
340 | ldo 8($idx),$idx ; j++++ | ||
341 | ldd -16($xfer),$ab0 ; 33-bit value | ||
342 | ldd -8($xfer),$nm0 | ||
343 | ldw 0($xfer),$hi0 ; high part | ||
344 | |||
345 | xmpyu ${fai}L,${fbi},${fab0} ; ap[j]*bp[i] | ||
346 | xmpyu ${fni}L,${fm0}R,${fnm0} ; np[j]*m | ||
347 | extrd,u $ab0,31,32,$ti0 ; carry bit | ||
348 | extrd,u $ab0,63,32,$ab0 | ||
349 | fstds ${fab1},0($xfer) | ||
350 | addl $ti0,$hi0,$hi0 ; account carry bit | ||
351 | fstds ${fnm1},8($xfer) | ||
352 | addl $ab0,$nm0,$nm0 ; low part is discarded | ||
353 | ldw 0($tp),$ti1 ; tp[1] | ||
354 | extrd,u $nm0,31,32,$hi1 | ||
355 | fstds ${fab0},-16($xfer) | ||
356 | fstds ${fnm0},-8($xfer) | ||
357 | |||
358 | L\$inner | ||
359 | xmpyu ${fai}R,${fbi},${fab1} ; ap[j+1]*bp[i] | ||
360 | xmpyu ${fni}R,${fm0}R,${fnm1} ; np[j+1]*m | ||
361 | ldd 0($xfer),$ab1 | ||
362 | fstds ${fab1},0($xfer) | ||
363 | addl $hi0,$ti1,$ti1 | ||
364 | addl $ti1,$ab1,$ab1 | ||
365 | ldd 8($xfer),$nm1 | ||
366 | fstds ${fnm1},8($xfer) | ||
367 | extrd,u $ab1,31,32,$hi0 | ||
368 | extrd,u $ab1,63,32,$ab1 | ||
369 | flddx $idx($ap),${fai} ; ap[j,j+1] | ||
370 | flddx $idx($np),${fni} ; np[j,j+1] | ||
371 | addl $hi1,$nm1,$nm1 | ||
372 | addl $ab1,$nm1,$nm1 | ||
373 | ldw 4($tp),$ti0 ; tp[j] | ||
374 | stw $nm1,-4($tp) ; tp[j-1] | ||
375 | |||
376 | xmpyu ${fai}L,${fbi},${fab0} ; ap[j]*bp[i] | ||
377 | xmpyu ${fni}L,${fm0}R,${fnm0} ; np[j]*m | ||
378 | ldd -16($xfer),$ab0 | ||
379 | fstds ${fab0},-16($xfer) | ||
380 | addl $hi0,$ti0,$ti0 | ||
381 | addl $ti0,$ab0,$ab0 | ||
382 | ldd -8($xfer),$nm0 | ||
383 | fstds ${fnm0},-8($xfer) | ||
384 | extrd,u $ab0,31,32,$hi0 | ||
385 | extrd,u $nm1,31,32,$hi1 | ||
386 | ldw 8($tp),$ti1 ; tp[j] | ||
387 | extrd,u $ab0,63,32,$ab0 | ||
388 | addl $hi1,$nm0,$nm0 | ||
389 | addl $ab0,$nm0,$nm0 | ||
390 | stw,ma $nm0,8($tp) ; tp[j-1] | ||
391 | addib,<> 8,$idx,L\$inner ; j++++ | ||
392 | extrd,u $nm0,31,32,$hi1 | ||
393 | |||
394 | xmpyu ${fai}R,${fbi},${fab1} ; ap[j]*bp[i] | ||
395 | xmpyu ${fni}R,${fm0}R,${fnm1} ; np[j]*m | ||
396 | ldd 0($xfer),$ab1 | ||
397 | fstds ${fab1},0($xfer) | ||
398 | addl $hi0,$ti1,$ti1 | ||
399 | addl $ti1,$ab1,$ab1 | ||
400 | ldd 8($xfer),$nm1 | ||
401 | fstds ${fnm1},8($xfer) | ||
402 | extrd,u $ab1,31,32,$hi0 | ||
403 | extrd,u $ab1,63,32,$ab1 | ||
404 | ldw 4($tp),$ti0 ; tp[j] | ||
405 | addl $hi1,$nm1,$nm1 | ||
406 | addl $ab1,$nm1,$nm1 | ||
407 | ldd -16($xfer),$ab0 | ||
408 | ldd -8($xfer),$nm0 | ||
409 | extrd,u $nm1,31,32,$hi1 | ||
410 | |||
411 | addl $hi0,$ab0,$ab0 | ||
412 | addl $ti0,$ab0,$ab0 | ||
413 | stw $nm1,-4($tp) ; tp[j-1] | ||
414 | extrd,u $ab0,31,32,$hi0 | ||
415 | ldw 8($tp),$ti1 ; tp[j] | ||
416 | extrd,u $ab0,63,32,$ab0 | ||
417 | addl $hi1,$nm0,$nm0 | ||
418 | ldd 0($xfer),$ab1 | ||
419 | addl $ab0,$nm0,$nm0 | ||
420 | ldd,mb 8($xfer),$nm1 | ||
421 | extrd,u $nm0,31,32,$hi1 | ||
422 | stw,ma $nm0,8($tp) ; tp[j-1] | ||
423 | |||
424 | addib,= -1,$num,L\$outerdone ; i-- | ||
425 | subi 0,$arrsz,$idx ; j=0 | ||
426 | ___ | ||
427 | $code.=<<___ if ($BN_SZ==4); | ||
428 | fldws,ma 4($bp),${fbi} ; bp[i] | ||
429 | ___ | ||
430 | $code.=<<___ if ($BN_SZ==8); | ||
431 | ldi 12,$ti0 ; bp[i] in flipped word order | ||
432 | addl,ev %r0,$num,$num | ||
433 | ldi -4,$ti0 | ||
434 | addl $ti0,$bp,$bp | ||
435 | fldws 0($bp),${fbi} | ||
436 | ___ | ||
437 | $code.=<<___; | ||
438 | flddx $idx($ap),${fai} ; ap[0] | ||
439 | addl $hi0,$ab1,$ab1 | ||
440 | flddx $idx($np),${fni} ; np[0] | ||
441 | fldws 8($xfer),${fti}R ; tp[0] | ||
442 | addl $ti1,$ab1,$ab1 | ||
443 | extrd,u $ab1,31,32,$hi0 | ||
444 | extrd,u $ab1,63,32,$ab1 | ||
445 | |||
446 | ldo 8($idx),$idx ; j++++ | ||
447 | xmpyu ${fai}L,${fbi},${fab0} ; ap[0]*bp[i] | ||
448 | xmpyu ${fai}R,${fbi},${fab1} ; ap[1]*bp[i] | ||
449 | ldw 4($tp),$ti0 ; tp[j] | ||
450 | |||
451 | addl $hi1,$nm1,$nm1 | ||
452 | fstws,mb ${fab0}L,-8($xfer) ; save high part | ||
453 | addl $ab1,$nm1,$nm1 | ||
454 | extrd,u $nm1,31,32,$hi1 | ||
455 | fcpy,sgl %fr0,${fti}L ; zero high part | ||
456 | fcpy,sgl %fr0,${fab0}L | ||
457 | stw $nm1,-4($tp) ; tp[j-1] | ||
458 | |||
459 | fcnvxf,dbl,dbl ${fti},${fti} ; 32-bit unsigned int -> double | ||
460 | fcnvxf,dbl,dbl ${fab0},${fab0} | ||
461 | addl $hi1,$hi0,$hi0 | ||
462 | fadd,dbl ${fti},${fab0},${fab0} ; add tp[0] | ||
463 | addl $ti0,$hi0,$hi0 | ||
464 | extrd,u $hi0,31,32,$hi1 | ||
465 | fcnvfx,dbl,dbl ${fab0},${fab0} ; double -> 33-bit unsigned int | ||
466 | stw $hi0,0($tp) | ||
467 | stw $hi1,4($tp) | ||
468 | xmpyu ${fn0},${fab0}R,${fm0} | ||
469 | |||
470 | b L\$outer | ||
471 | ldo `$LOCALS+32+4`($fp),$tp | ||
472 | |||
473 | L\$outerdone | ||
474 | addl $hi0,$ab1,$ab1 | ||
475 | addl $ti1,$ab1,$ab1 | ||
476 | extrd,u $ab1,31,32,$hi0 | ||
477 | extrd,u $ab1,63,32,$ab1 | ||
478 | |||
479 | ldw 4($tp),$ti0 ; tp[j] | ||
480 | |||
481 | addl $hi1,$nm1,$nm1 | ||
482 | addl $ab1,$nm1,$nm1 | ||
483 | extrd,u $nm1,31,32,$hi1 | ||
484 | stw $nm1,-4($tp) ; tp[j-1] | ||
485 | |||
486 | addl $hi1,$hi0,$hi0 | ||
487 | addl $ti0,$hi0,$hi0 | ||
488 | extrd,u $hi0,31,32,$hi1 | ||
489 | stw $hi0,0($tp) | ||
490 | stw $hi1,4($tp) | ||
491 | |||
492 | ldo `$LOCALS+32`($fp),$tp | ||
493 | sub %r0,%r0,%r0 ; clear borrow | ||
494 | ___ | ||
495 | $code.=<<___ if ($BN_SZ==4); | ||
496 | ldws,ma 4($tp),$ti0 | ||
497 | extru,= $rp,31,3,%r0 ; is rp 64-bit aligned? | ||
498 | b L\$sub_pa11 | ||
499 | addl $tp,$arrsz,$tp | ||
500 | L\$sub | ||
501 | ldwx $idx($np),$hi0 | ||
502 | subb $ti0,$hi0,$hi1 | ||
503 | ldwx $idx($tp),$ti0 | ||
504 | addib,<> 4,$idx,L\$sub | ||
505 | stws,ma $hi1,4($rp) | ||
506 | |||
507 | subb $ti0,%r0,$hi1 | ||
508 | ldo -4($tp),$tp | ||
509 | ___ | ||
510 | $code.=<<___ if ($BN_SZ==8); | ||
511 | ldd,ma 8($tp),$ti0 | ||
512 | L\$sub | ||
513 | ldd $idx($np),$hi0 | ||
514 | shrpd $ti0,$ti0,32,$ti0 ; flip word order | ||
515 | std $ti0,-8($tp) ; save flipped value | ||
516 | sub,db $ti0,$hi0,$hi1 | ||
517 | ldd,ma 8($tp),$ti0 | ||
518 | addib,<> 8,$idx,L\$sub | ||
519 | std,ma $hi1,8($rp) | ||
520 | |||
521 | extrd,u $ti0,31,32,$ti0 ; carry in flipped word order | ||
522 | sub,db $ti0,%r0,$hi1 | ||
523 | ldo -8($tp),$tp | ||
524 | ___ | ||
525 | $code.=<<___; | ||
526 | and $tp,$hi1,$ap | ||
527 | andcm $rp,$hi1,$bp | ||
528 | or $ap,$bp,$np | ||
529 | |||
530 | sub $rp,$arrsz,$rp ; rewind rp | ||
531 | subi 0,$arrsz,$idx | ||
532 | ldo `$LOCALS+32`($fp),$tp | ||
533 | L\$copy | ||
534 | ldd $idx($np),$hi0 | ||
535 | std,ma %r0,8($tp) | ||
536 | addib,<> 8,$idx,.-8 ; L\$copy | ||
537 | std,ma $hi0,8($rp) | ||
538 | ___ | ||
539 | |||
540 | if ($BN_SZ==4) { # PA-RISC 1.1 code-path | ||
541 | $ablo=$ab0; | ||
542 | $abhi=$ab1; | ||
543 | $nmlo0=$nm0; | ||
544 | $nmhi0=$nm1; | ||
545 | $nmlo1="%r9"; | ||
546 | $nmhi1="%r8"; | ||
547 | |||
548 | $code.=<<___; | ||
549 | b L\$done | ||
550 | nop | ||
551 | |||
552 | .ALIGN 8 | ||
553 | L\$parisc11 | ||
554 | #endif | ||
555 | xmpyu ${fai}L,${fbi},${fab0} ; ap[j]*bp[0] | ||
556 | xmpyu ${fni}L,${fm0}R,${fnm0} ; np[j]*m | ||
557 | ldw -12($xfer),$ablo | ||
558 | ldw -16($xfer),$hi0 | ||
559 | ldw -4($xfer),$nmlo0 | ||
560 | ldw -8($xfer),$nmhi0 | ||
561 | fstds ${fab0},-16($xfer) | ||
562 | fstds ${fnm0},-8($xfer) | ||
563 | |||
564 | ldo 8($idx),$idx ; j++++ | ||
565 | add $ablo,$nmlo0,$nmlo0 ; discarded | ||
566 | addc %r0,$nmhi0,$hi1 | ||
567 | ldw 4($xfer),$ablo | ||
568 | ldw 0($xfer),$abhi | ||
569 | nop | ||
570 | |||
571 | L\$1st_pa11 | ||
572 | xmpyu ${fai}R,${fbi},${fab1} ; ap[j+1]*bp[0] | ||
573 | flddx $idx($ap),${fai} ; ap[j,j+1] | ||
574 | xmpyu ${fni}R,${fm0}R,${fnm1} ; np[j+1]*m | ||
575 | flddx $idx($np),${fni} ; np[j,j+1] | ||
576 | add $hi0,$ablo,$ablo | ||
577 | ldw 12($xfer),$nmlo1 | ||
578 | addc %r0,$abhi,$hi0 | ||
579 | ldw 8($xfer),$nmhi1 | ||
580 | add $ablo,$nmlo1,$nmlo1 | ||
581 | fstds ${fab1},0($xfer) | ||
582 | addc %r0,$nmhi1,$nmhi1 | ||
583 | fstds ${fnm1},8($xfer) | ||
584 | add $hi1,$nmlo1,$nmlo1 | ||
585 | ldw -12($xfer),$ablo | ||
586 | addc %r0,$nmhi1,$hi1 | ||
587 | ldw -16($xfer),$abhi | ||
588 | |||
589 | xmpyu ${fai}L,${fbi},${fab0} ; ap[j]*bp[0] | ||
590 | ldw -4($xfer),$nmlo0 | ||
591 | xmpyu ${fni}L,${fm0}R,${fnm0} ; np[j]*m | ||
592 | ldw -8($xfer),$nmhi0 | ||
593 | add $hi0,$ablo,$ablo | ||
594 | stw $nmlo1,-4($tp) ; tp[j-1] | ||
595 | addc %r0,$abhi,$hi0 | ||
596 | fstds ${fab0},-16($xfer) | ||
597 | add $ablo,$nmlo0,$nmlo0 | ||
598 | fstds ${fnm0},-8($xfer) | ||
599 | addc %r0,$nmhi0,$nmhi0 | ||
600 | ldw 0($xfer),$abhi | ||
601 | add $hi1,$nmlo0,$nmlo0 | ||
602 | ldw 4($xfer),$ablo | ||
603 | stws,ma $nmlo0,8($tp) ; tp[j-1] | ||
604 | addib,<> 8,$idx,L\$1st_pa11 ; j++++ | ||
605 | addc %r0,$nmhi0,$hi1 | ||
606 | |||
607 | ldw 8($xfer),$nmhi1 | ||
608 | ldw 12($xfer),$nmlo1 | ||
609 | xmpyu ${fai}R,${fbi},${fab1} ; ap[j]*bp[0] | ||
610 | xmpyu ${fni}R,${fm0}R,${fnm1} ; np[j]*m | ||
611 | add $hi0,$ablo,$ablo | ||
612 | fstds ${fab1},0($xfer) | ||
613 | addc %r0,$abhi,$hi0 | ||
614 | fstds ${fnm1},8($xfer) | ||
615 | add $ablo,$nmlo1,$nmlo1 | ||
616 | ldw -16($xfer),$abhi | ||
617 | addc %r0,$nmhi1,$nmhi1 | ||
618 | ldw -12($xfer),$ablo | ||
619 | add $hi1,$nmlo1,$nmlo1 | ||
620 | ldw -8($xfer),$nmhi0 | ||
621 | addc %r0,$nmhi1,$hi1 | ||
622 | ldw -4($xfer),$nmlo0 | ||
623 | |||
624 | add $hi0,$ablo,$ablo | ||
625 | stw $nmlo1,-4($tp) ; tp[j-1] | ||
626 | addc %r0,$abhi,$hi0 | ||
627 | ldw 0($xfer),$abhi | ||
628 | add $ablo,$nmlo0,$nmlo0 | ||
629 | ldw 4($xfer),$ablo | ||
630 | addc %r0,$nmhi0,$nmhi0 | ||
631 | ldws,mb 8($xfer),$nmhi1 | ||
632 | add $hi1,$nmlo0,$nmlo0 | ||
633 | ldw 4($xfer),$nmlo1 | ||
634 | addc %r0,$nmhi0,$hi1 | ||
635 | stws,ma $nmlo0,8($tp) ; tp[j-1] | ||
636 | |||
637 | ldo -1($num),$num ; i-- | ||
638 | subi 0,$arrsz,$idx ; j=0 | ||
639 | |||
640 | fldws,ma 4($bp),${fbi} ; bp[1] | ||
641 | flddx $idx($ap),${fai} ; ap[0,1] | ||
642 | flddx $idx($np),${fni} ; np[0,1] | ||
643 | fldws 8($xfer),${fti}R ; tp[0] | ||
644 | add $hi0,$ablo,$ablo | ||
645 | addc %r0,$abhi,$hi0 | ||
646 | ldo 8($idx),$idx ; j++++ | ||
647 | xmpyu ${fai}L,${fbi},${fab0} ; ap[0]*bp[1] | ||
648 | xmpyu ${fai}R,${fbi},${fab1} ; ap[1]*bp[1] | ||
649 | add $hi1,$nmlo1,$nmlo1 | ||
650 | addc %r0,$nmhi1,$nmhi1 | ||
651 | add $ablo,$nmlo1,$nmlo1 | ||
652 | addc %r0,$nmhi1,$hi1 | ||
653 | fstws,mb ${fab0}L,-8($xfer) ; save high part | ||
654 | stw $nmlo1,-4($tp) ; tp[j-1] | ||
655 | |||
656 | fcpy,sgl %fr0,${fti}L ; zero high part | ||
657 | fcpy,sgl %fr0,${fab0}L | ||
658 | add $hi1,$hi0,$hi0 | ||
659 | addc %r0,%r0,$hi1 | ||
660 | fcnvxf,dbl,dbl ${fti},${fti} ; 32-bit unsigned int -> double | ||
661 | fcnvxf,dbl,dbl ${fab0},${fab0} | ||
662 | stw $hi0,0($tp) | ||
663 | stw $hi1,4($tp) | ||
664 | |||
665 | fadd,dbl ${fti},${fab0},${fab0} ; add tp[0] | ||
666 | fcnvfx,dbl,dbl ${fab0},${fab0} ; double -> 33-bit unsigned int | ||
667 | xmpyu ${fn0},${fab0}R,${fm0} | ||
668 | ldo `$LOCALS+32+4`($fp),$tp | ||
669 | L\$outer_pa11 | ||
670 | xmpyu ${fni}L,${fm0}R,${fnm0} ; np[0]*m | ||
671 | xmpyu ${fni}R,${fm0}R,${fnm1} ; np[1]*m | ||
672 | fstds ${fab0},-16($xfer) ; 33-bit value | ||
673 | fstds ${fnm0},-8($xfer) | ||
674 | flddx $idx($ap),${fai} ; ap[2,3] | ||
675 | flddx $idx($np),${fni} ; np[2,3] | ||
676 | ldw -16($xfer),$abhi ; carry bit actually | ||
677 | ldo 8($idx),$idx ; j++++ | ||
678 | ldw -12($xfer),$ablo | ||
679 | ldw -8($xfer),$nmhi0 | ||
680 | ldw -4($xfer),$nmlo0 | ||
681 | ldw 0($xfer),$hi0 ; high part | ||
682 | |||
683 | xmpyu ${fai}L,${fbi},${fab0} ; ap[j]*bp[i] | ||
684 | xmpyu ${fni}L,${fm0}R,${fnm0} ; np[j]*m | ||
685 | fstds ${fab1},0($xfer) | ||
686 | addl $abhi,$hi0,$hi0 ; account carry bit | ||
687 | fstds ${fnm1},8($xfer) | ||
688 | add $ablo,$nmlo0,$nmlo0 ; discarded | ||
689 | ldw 0($tp),$ti1 ; tp[1] | ||
690 | addc %r0,$nmhi0,$hi1 | ||
691 | fstds ${fab0},-16($xfer) | ||
692 | fstds ${fnm0},-8($xfer) | ||
693 | ldw 4($xfer),$ablo | ||
694 | ldw 0($xfer),$abhi | ||
695 | |||
696 | L\$inner_pa11 | ||
697 | xmpyu ${fai}R,${fbi},${fab1} ; ap[j+1]*bp[i] | ||
698 | flddx $idx($ap),${fai} ; ap[j,j+1] | ||
699 | xmpyu ${fni}R,${fm0}R,${fnm1} ; np[j+1]*m | ||
700 | flddx $idx($np),${fni} ; np[j,j+1] | ||
701 | add $hi0,$ablo,$ablo | ||
702 | ldw 4($tp),$ti0 ; tp[j] | ||
703 | addc %r0,$abhi,$abhi | ||
704 | ldw 12($xfer),$nmlo1 | ||
705 | add $ti1,$ablo,$ablo | ||
706 | ldw 8($xfer),$nmhi1 | ||
707 | addc %r0,$abhi,$hi0 | ||
708 | fstds ${fab1},0($xfer) | ||
709 | add $ablo,$nmlo1,$nmlo1 | ||
710 | fstds ${fnm1},8($xfer) | ||
711 | addc %r0,$nmhi1,$nmhi1 | ||
712 | ldw -12($xfer),$ablo | ||
713 | add $hi1,$nmlo1,$nmlo1 | ||
714 | ldw -16($xfer),$abhi | ||
715 | addc %r0,$nmhi1,$hi1 | ||
716 | |||
717 | xmpyu ${fai}L,${fbi},${fab0} ; ap[j]*bp[i] | ||
718 | ldw 8($tp),$ti1 ; tp[j] | ||
719 | xmpyu ${fni}L,${fm0}R,${fnm0} ; np[j]*m | ||
720 | ldw -4($xfer),$nmlo0 | ||
721 | add $hi0,$ablo,$ablo | ||
722 | ldw -8($xfer),$nmhi0 | ||
723 | addc %r0,$abhi,$abhi | ||
724 | stw $nmlo1,-4($tp) ; tp[j-1] | ||
725 | add $ti0,$ablo,$ablo | ||
726 | fstds ${fab0},-16($xfer) | ||
727 | addc %r0,$abhi,$hi0 | ||
728 | fstds ${fnm0},-8($xfer) | ||
729 | add $ablo,$nmlo0,$nmlo0 | ||
730 | ldw 4($xfer),$ablo | ||
731 | addc %r0,$nmhi0,$nmhi0 | ||
732 | ldw 0($xfer),$abhi | ||
733 | add $hi1,$nmlo0,$nmlo0 | ||
734 | stws,ma $nmlo0,8($tp) ; tp[j-1] | ||
735 | addib,<> 8,$idx,L\$inner_pa11 ; j++++ | ||
736 | addc %r0,$nmhi0,$hi1 | ||
737 | |||
738 | xmpyu ${fai}R,${fbi},${fab1} ; ap[j]*bp[i] | ||
739 | ldw 12($xfer),$nmlo1 | ||
740 | xmpyu ${fni}R,${fm0}R,${fnm1} ; np[j]*m | ||
741 | ldw 8($xfer),$nmhi1 | ||
742 | add $hi0,$ablo,$ablo | ||
743 | ldw 4($tp),$ti0 ; tp[j] | ||
744 | addc %r0,$abhi,$abhi | ||
745 | fstds ${fab1},0($xfer) | ||
746 | add $ti1,$ablo,$ablo | ||
747 | fstds ${fnm1},8($xfer) | ||
748 | addc %r0,$abhi,$hi0 | ||
749 | ldw -16($xfer),$abhi | ||
750 | add $ablo,$nmlo1,$nmlo1 | ||
751 | ldw -12($xfer),$ablo | ||
752 | addc %r0,$nmhi1,$nmhi1 | ||
753 | ldw -8($xfer),$nmhi0 | ||
754 | add $hi1,$nmlo1,$nmlo1 | ||
755 | ldw -4($xfer),$nmlo0 | ||
756 | addc %r0,$nmhi1,$hi1 | ||
757 | |||
758 | add $hi0,$ablo,$ablo | ||
759 | stw $nmlo1,-4($tp) ; tp[j-1] | ||
760 | addc %r0,$abhi,$abhi | ||
761 | add $ti0,$ablo,$ablo | ||
762 | ldw 8($tp),$ti1 ; tp[j] | ||
763 | addc %r0,$abhi,$hi0 | ||
764 | ldw 0($xfer),$abhi | ||
765 | add $ablo,$nmlo0,$nmlo0 | ||
766 | ldw 4($xfer),$ablo | ||
767 | addc %r0,$nmhi0,$nmhi0 | ||
768 | ldws,mb 8($xfer),$nmhi1 | ||
769 | add $hi1,$nmlo0,$nmlo0 | ||
770 | ldw 4($xfer),$nmlo1 | ||
771 | addc %r0,$nmhi0,$hi1 | ||
772 | stws,ma $nmlo0,8($tp) ; tp[j-1] | ||
773 | |||
774 | addib,= -1,$num,L\$outerdone_pa11; i-- | ||
775 | subi 0,$arrsz,$idx ; j=0 | ||
776 | |||
777 | fldws,ma 4($bp),${fbi} ; bp[i] | ||
778 | flddx $idx($ap),${fai} ; ap[0] | ||
779 | add $hi0,$ablo,$ablo | ||
780 | addc %r0,$abhi,$abhi | ||
781 | flddx $idx($np),${fni} ; np[0] | ||
782 | fldws 8($xfer),${fti}R ; tp[0] | ||
783 | add $ti1,$ablo,$ablo | ||
784 | addc %r0,$abhi,$hi0 | ||
785 | |||
786 | ldo 8($idx),$idx ; j++++ | ||
787 | xmpyu ${fai}L,${fbi},${fab0} ; ap[0]*bp[i] | ||
788 | xmpyu ${fai}R,${fbi},${fab1} ; ap[1]*bp[i] | ||
789 | ldw 4($tp),$ti0 ; tp[j] | ||
790 | |||
791 | add $hi1,$nmlo1,$nmlo1 | ||
792 | addc %r0,$nmhi1,$nmhi1 | ||
793 | fstws,mb ${fab0}L,-8($xfer) ; save high part | ||
794 | add $ablo,$nmlo1,$nmlo1 | ||
795 | addc %r0,$nmhi1,$hi1 | ||
796 | fcpy,sgl %fr0,${fti}L ; zero high part | ||
797 | fcpy,sgl %fr0,${fab0}L | ||
798 | stw $nmlo1,-4($tp) ; tp[j-1] | ||
799 | |||
800 | fcnvxf,dbl,dbl ${fti},${fti} ; 32-bit unsigned int -> double | ||
801 | fcnvxf,dbl,dbl ${fab0},${fab0} | ||
802 | add $hi1,$hi0,$hi0 | ||
803 | addc %r0,%r0,$hi1 | ||
804 | fadd,dbl ${fti},${fab0},${fab0} ; add tp[0] | ||
805 | add $ti0,$hi0,$hi0 | ||
806 | addc %r0,$hi1,$hi1 | ||
807 | fcnvfx,dbl,dbl ${fab0},${fab0} ; double -> 33-bit unsigned int | ||
808 | stw $hi0,0($tp) | ||
809 | stw $hi1,4($tp) | ||
810 | xmpyu ${fn0},${fab0}R,${fm0} | ||
811 | |||
812 | b L\$outer_pa11 | ||
813 | ldo `$LOCALS+32+4`($fp),$tp | ||
814 | |||
815 | L\$outerdone_pa11 | ||
816 | add $hi0,$ablo,$ablo | ||
817 | addc %r0,$abhi,$abhi | ||
818 | add $ti1,$ablo,$ablo | ||
819 | addc %r0,$abhi,$hi0 | ||
820 | |||
821 | ldw 4($tp),$ti0 ; tp[j] | ||
822 | |||
823 | add $hi1,$nmlo1,$nmlo1 | ||
824 | addc %r0,$nmhi1,$nmhi1 | ||
825 | add $ablo,$nmlo1,$nmlo1 | ||
826 | addc %r0,$nmhi1,$hi1 | ||
827 | stw $nmlo1,-4($tp) ; tp[j-1] | ||
828 | |||
829 | add $hi1,$hi0,$hi0 | ||
830 | addc %r0,%r0,$hi1 | ||
831 | add $ti0,$hi0,$hi0 | ||
832 | addc %r0,$hi1,$hi1 | ||
833 | stw $hi0,0($tp) | ||
834 | stw $hi1,4($tp) | ||
835 | |||
836 | ldo `$LOCALS+32+4`($fp),$tp | ||
837 | sub %r0,%r0,%r0 ; clear borrow | ||
838 | ldw -4($tp),$ti0 | ||
839 | addl $tp,$arrsz,$tp | ||
840 | L\$sub_pa11 | ||
841 | ldwx $idx($np),$hi0 | ||
842 | subb $ti0,$hi0,$hi1 | ||
843 | ldwx $idx($tp),$ti0 | ||
844 | addib,<> 4,$idx,L\$sub_pa11 | ||
845 | stws,ma $hi1,4($rp) | ||
846 | |||
847 | subb $ti0,%r0,$hi1 | ||
848 | ldo -4($tp),$tp | ||
849 | and $tp,$hi1,$ap | ||
850 | andcm $rp,$hi1,$bp | ||
851 | or $ap,$bp,$np | ||
852 | |||
853 | sub $rp,$arrsz,$rp ; rewind rp | ||
854 | subi 0,$arrsz,$idx | ||
855 | ldo `$LOCALS+32`($fp),$tp | ||
856 | L\$copy_pa11 | ||
857 | ldwx $idx($np),$hi0 | ||
858 | stws,ma %r0,4($tp) | ||
859 | addib,<> 4,$idx,L\$copy_pa11 | ||
860 | stws,ma $hi0,4($rp) | ||
861 | |||
862 | nop ; alignment | ||
863 | L\$done | ||
864 | ___ | ||
865 | } | ||
866 | |||
867 | $code.=<<___; | ||
868 | ldi 1,%r28 ; signal "handled" | ||
869 | ldo $FRAME($fp),%sp ; destroy tp[num+1] | ||
870 | |||
871 | $POP `-$FRAME-$SAVED_RP`(%sp),%r2 ; standard epilogue | ||
872 | $POP `-$FRAME+1*$SIZE_T`(%sp),%r4 | ||
873 | $POP `-$FRAME+2*$SIZE_T`(%sp),%r5 | ||
874 | $POP `-$FRAME+3*$SIZE_T`(%sp),%r6 | ||
875 | $POP `-$FRAME+4*$SIZE_T`(%sp),%r7 | ||
876 | $POP `-$FRAME+5*$SIZE_T`(%sp),%r8 | ||
877 | $POP `-$FRAME+6*$SIZE_T`(%sp),%r9 | ||
878 | $POP `-$FRAME+7*$SIZE_T`(%sp),%r10 | ||
879 | L\$abort | ||
880 | bv (%r2) | ||
881 | .EXIT | ||
882 | $POPMB -$FRAME(%sp),%r3 | ||
883 | .PROCEND | ||
884 | |||
885 | .data | ||
886 | .STRINGZ "Montgomery Multiplication for PA-RISC, CRYPTOGAMS by <appro\@openssl.org>" | ||
887 | ___ | ||
888 | |||
889 | # Explicitly encode PA-RISC 2.0 instructions used in this module, so | ||
890 | # that it can be compiled with .LEVEL 1.0. It should be noted that I | ||
891 | # wouldn't have to do this, if GNU assembler understood .ALLOW 2.0 | ||
892 | # directive... | ||
893 | |||
894 | my $ldd = sub { | ||
895 | my ($mod,$args) = @_; | ||
896 | my $orig = "ldd$mod\t$args"; | ||
897 | |||
898 | if ($args =~ /%r([0-9]+)\(%r([0-9]+)\),%r([0-9]+)/) # format 4 | ||
899 | { my $opcode=(0x03<<26)|($2<<21)|($1<<16)|(3<<6)|$3; | ||
900 | sprintf "\t.WORD\t0x%08x\t; %s",$opcode,$orig; | ||
901 | } | ||
902 | elsif ($args =~ /(\-?[0-9]+)\(%r([0-9]+)\),%r([0-9]+)/) # format 5 | ||
903 | { my $opcode=(0x03<<26)|($2<<21)|(1<<12)|(3<<6)|$3; | ||
904 | $opcode|=(($1&0xF)<<17)|(($1&0x10)<<12); # encode offset | ||
905 | $opcode|=(1<<5) if ($mod =~ /^,m/); | ||
906 | $opcode|=(1<<13) if ($mod =~ /^,mb/); | ||
907 | sprintf "\t.WORD\t0x%08x\t; %s",$opcode,$orig; | ||
908 | } | ||
909 | else { "\t".$orig; } | ||
910 | }; | ||
911 | |||
912 | my $std = sub { | ||
913 | my ($mod,$args) = @_; | ||
914 | my $orig = "std$mod\t$args"; | ||
915 | |||
916 | if ($args =~ /%r([0-9]+),(\-?[0-9]+)\(%r([0-9]+)\)/) # format 6 | ||
917 | { my $opcode=(0x03<<26)|($3<<21)|($1<<16)|(1<<12)|(0xB<<6); | ||
918 | $opcode|=(($2&0xF)<<1)|(($2&0x10)>>4); # encode offset | ||
919 | $opcode|=(1<<5) if ($mod =~ /^,m/); | ||
920 | $opcode|=(1<<13) if ($mod =~ /^,mb/); | ||
921 | sprintf "\t.WORD\t0x%08x\t; %s",$opcode,$orig; | ||
922 | } | ||
923 | else { "\t".$orig; } | ||
924 | }; | ||
925 | |||
926 | my $extrd = sub { | ||
927 | my ($mod,$args) = @_; | ||
928 | my $orig = "extrd$mod\t$args"; | ||
929 | |||
930 | # I only have ",u" completer, it's implicitly encoded... | ||
931 | if ($args =~ /%r([0-9]+),([0-9]+),([0-9]+),%r([0-9]+)/) # format 15 | ||
932 | { my $opcode=(0x36<<26)|($1<<21)|($4<<16); | ||
933 | my $len=32-$3; | ||
934 | $opcode |= (($2&0x20)<<6)|(($2&0x1f)<<5); # encode pos | ||
935 | $opcode |= (($len&0x20)<<7)|($len&0x1f); # encode len | ||
936 | sprintf "\t.WORD\t0x%08x\t; %s",$opcode,$orig; | ||
937 | } | ||
938 | elsif ($args =~ /%r([0-9]+),%sar,([0-9]+),%r([0-9]+)/) # format 12 | ||
939 | { my $opcode=(0x34<<26)|($1<<21)|($3<<16)|(2<<11)|(1<<9); | ||
940 | my $len=32-$2; | ||
941 | $opcode |= (($len&0x20)<<3)|($len&0x1f); # encode len | ||
942 | $opcode |= (1<<13) if ($mod =~ /,\**=/); | ||
943 | sprintf "\t.WORD\t0x%08x\t; %s",$opcode,$orig; | ||
944 | } | ||
945 | else { "\t".$orig; } | ||
946 | }; | ||
947 | |||
948 | my $shrpd = sub { | ||
949 | my ($mod,$args) = @_; | ||
950 | my $orig = "shrpd$mod\t$args"; | ||
951 | |||
952 | if ($args =~ /%r([0-9]+),%r([0-9]+),([0-9]+),%r([0-9]+)/) # format 14 | ||
953 | { my $opcode=(0x34<<26)|($2<<21)|($1<<16)|(1<<10)|$4; | ||
954 | my $cpos=63-$3; | ||
955 | $opcode |= (($cpos&0x20)<<6)|(($cpos&0x1f)<<5); # encode sa | ||
956 | sprintf "\t.WORD\t0x%08x\t; %s",$opcode,$orig; | ||
957 | } | ||
958 | else { "\t".$orig; } | ||
959 | }; | ||
960 | |||
961 | my $sub = sub { | ||
962 | my ($mod,$args) = @_; | ||
963 | my $orig = "sub$mod\t$args"; | ||
964 | |||
965 | if ($mod eq ",db" && $args =~ /%r([0-9]+),%r([0-9]+),%r([0-9]+)/) { | ||
966 | my $opcode=(0x02<<26)|($2<<21)|($1<<16)|$3; | ||
967 | $opcode|=(1<<10); # e1 | ||
968 | $opcode|=(1<<8); # e2 | ||
969 | $opcode|=(1<<5); # d | ||
970 | sprintf "\t.WORD\t0x%08x\t; %s",$opcode,$orig | ||
971 | } | ||
972 | else { "\t".$orig; } | ||
973 | }; | ||
974 | |||
975 | sub assemble { | ||
976 | my ($mnemonic,$mod,$args)=@_; | ||
977 | my $opcode = eval("\$$mnemonic"); | ||
978 | |||
979 | ref($opcode) eq 'CODE' ? &$opcode($mod,$args) : "\t$mnemonic$mod\t$args"; | ||
980 | } | ||
981 | |||
982 | foreach (split("\n",$code)) { | ||
983 | s/\`([^\`]*)\`/eval $1/ge; | ||
984 | # flip word order in 64-bit mode... | ||
985 | s/(xmpyu\s+)($fai|$fni)([LR])/$1.$2.($3 eq "L"?"R":"L")/e if ($BN_SZ==8); | ||
986 | # assemble 2.0 instructions in 32-bit mode... | ||
987 | s/^\s+([a-z]+)([\S]*)\s+([\S]*)/&assemble($1,$2,$3)/e if ($BN_SZ==4); | ||
988 | |||
989 | s/\bbv\b/bve/gm if ($SIZE_T==8); | ||
990 | |||
991 | print $_,"\n"; | ||
992 | } | ||
993 | close STDOUT; | ||
diff --git a/src/lib/libcrypto/bn/asm/ppc-mont.pl b/src/lib/libcrypto/bn/asm/ppc-mont.pl deleted file mode 100644 index f9b6992ccc..0000000000 --- a/src/lib/libcrypto/bn/asm/ppc-mont.pl +++ /dev/null | |||
@@ -1,334 +0,0 @@ | |||
1 | #!/usr/bin/env perl | ||
2 | |||
3 | # ==================================================================== | ||
4 | # Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL | ||
5 | # project. The module is, however, dual licensed under OpenSSL and | ||
6 | # CRYPTOGAMS licenses depending on where you obtain it. For further | ||
7 | # details see http://www.openssl.org/~appro/cryptogams/. | ||
8 | # ==================================================================== | ||
9 | |||
10 | # April 2006 | ||
11 | |||
12 | # "Teaser" Montgomery multiplication module for PowerPC. It's possible | ||
13 | # to gain a bit more by modulo-scheduling outer loop, then dedicated | ||
14 | # squaring procedure should give further 20% and code can be adapted | ||
15 | # for 32-bit application running on 64-bit CPU. As for the latter. | ||
16 | # It won't be able to achieve "native" 64-bit performance, because in | ||
17 | # 32-bit application context every addc instruction will have to be | ||
18 | # expanded as addc, twice right shift by 32 and finally adde, etc. | ||
19 | # So far RSA *sign* performance improvement over pre-bn_mul_mont asm | ||
20 | # for 64-bit application running on PPC970/G5 is: | ||
21 | # | ||
22 | # 512-bit +65% | ||
23 | # 1024-bit +35% | ||
24 | # 2048-bit +18% | ||
25 | # 4096-bit +4% | ||
26 | |||
27 | $flavour = shift; | ||
28 | |||
29 | if ($flavour =~ /32/) { | ||
30 | $BITS= 32; | ||
31 | $BNSZ= $BITS/8; | ||
32 | $SIZE_T=4; | ||
33 | $RZONE= 224; | ||
34 | |||
35 | $LD= "lwz"; # load | ||
36 | $LDU= "lwzu"; # load and update | ||
37 | $LDX= "lwzx"; # load indexed | ||
38 | $ST= "stw"; # store | ||
39 | $STU= "stwu"; # store and update | ||
40 | $STX= "stwx"; # store indexed | ||
41 | $STUX= "stwux"; # store indexed and update | ||
42 | $UMULL= "mullw"; # unsigned multiply low | ||
43 | $UMULH= "mulhwu"; # unsigned multiply high | ||
44 | $UCMP= "cmplw"; # unsigned compare | ||
45 | $SHRI= "srwi"; # unsigned shift right by immediate | ||
46 | $PUSH= $ST; | ||
47 | $POP= $LD; | ||
48 | } elsif ($flavour =~ /64/) { | ||
49 | $BITS= 64; | ||
50 | $BNSZ= $BITS/8; | ||
51 | $SIZE_T=8; | ||
52 | $RZONE= 288; | ||
53 | |||
54 | # same as above, but 64-bit mnemonics... | ||
55 | $LD= "ld"; # load | ||
56 | $LDU= "ldu"; # load and update | ||
57 | $LDX= "ldx"; # load indexed | ||
58 | $ST= "std"; # store | ||
59 | $STU= "stdu"; # store and update | ||
60 | $STX= "stdx"; # store indexed | ||
61 | $STUX= "stdux"; # store indexed and update | ||
62 | $UMULL= "mulld"; # unsigned multiply low | ||
63 | $UMULH= "mulhdu"; # unsigned multiply high | ||
64 | $UCMP= "cmpld"; # unsigned compare | ||
65 | $SHRI= "srdi"; # unsigned shift right by immediate | ||
66 | $PUSH= $ST; | ||
67 | $POP= $LD; | ||
68 | } else { die "nonsense $flavour"; } | ||
69 | |||
70 | $FRAME=8*$SIZE_T+$RZONE; | ||
71 | $LOCALS=8*$SIZE_T; | ||
72 | |||
73 | $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; | ||
74 | ( $xlate="${dir}ppc-xlate.pl" and -f $xlate ) or | ||
75 | ( $xlate="${dir}../../perlasm/ppc-xlate.pl" and -f $xlate) or | ||
76 | die "can't locate ppc-xlate.pl"; | ||
77 | |||
78 | open STDOUT,"| $^X $xlate $flavour ".shift || die "can't call $xlate: $!"; | ||
79 | |||
80 | $sp="r1"; | ||
81 | $toc="r2"; | ||
82 | $rp="r3"; $ovf="r3"; | ||
83 | $ap="r4"; | ||
84 | $bp="r5"; | ||
85 | $np="r6"; | ||
86 | $n0="r7"; | ||
87 | $num="r8"; | ||
88 | $rp="r9"; # $rp is reassigned | ||
89 | $aj="r10"; | ||
90 | $nj="r11"; | ||
91 | $tj="r12"; | ||
92 | # non-volatile registers | ||
93 | $i="r20"; | ||
94 | $j="r21"; | ||
95 | $tp="r22"; | ||
96 | $m0="r23"; | ||
97 | $m1="r24"; | ||
98 | $lo0="r25"; | ||
99 | $hi0="r26"; | ||
100 | $lo1="r27"; | ||
101 | $hi1="r28"; | ||
102 | $alo="r29"; | ||
103 | $ahi="r30"; | ||
104 | $nlo="r31"; | ||
105 | # | ||
106 | $nhi="r0"; | ||
107 | |||
108 | $code=<<___; | ||
109 | .machine "any" | ||
110 | .text | ||
111 | |||
112 | .globl .bn_mul_mont_int | ||
113 | .align 4 | ||
114 | .bn_mul_mont_int: | ||
115 | cmpwi $num,4 | ||
116 | mr $rp,r3 ; $rp is reassigned | ||
117 | li r3,0 | ||
118 | bltlr | ||
119 | ___ | ||
120 | $code.=<<___ if ($BNSZ==4); | ||
121 | cmpwi $num,32 ; longer key performance is not better | ||
122 | bgelr | ||
123 | ___ | ||
124 | $code.=<<___; | ||
125 | slwi $num,$num,`log($BNSZ)/log(2)` | ||
126 | li $tj,-4096 | ||
127 | addi $ovf,$num,$FRAME | ||
128 | subf $ovf,$ovf,$sp ; $sp-$ovf | ||
129 | and $ovf,$ovf,$tj ; minimize TLB usage | ||
130 | subf $ovf,$sp,$ovf ; $ovf-$sp | ||
131 | mr $tj,$sp | ||
132 | srwi $num,$num,`log($BNSZ)/log(2)` | ||
133 | $STUX $sp,$sp,$ovf | ||
134 | |||
135 | $PUSH r20,`-12*$SIZE_T`($tj) | ||
136 | $PUSH r21,`-11*$SIZE_T`($tj) | ||
137 | $PUSH r22,`-10*$SIZE_T`($tj) | ||
138 | $PUSH r23,`-9*$SIZE_T`($tj) | ||
139 | $PUSH r24,`-8*$SIZE_T`($tj) | ||
140 | $PUSH r25,`-7*$SIZE_T`($tj) | ||
141 | $PUSH r26,`-6*$SIZE_T`($tj) | ||
142 | $PUSH r27,`-5*$SIZE_T`($tj) | ||
143 | $PUSH r28,`-4*$SIZE_T`($tj) | ||
144 | $PUSH r29,`-3*$SIZE_T`($tj) | ||
145 | $PUSH r30,`-2*$SIZE_T`($tj) | ||
146 | $PUSH r31,`-1*$SIZE_T`($tj) | ||
147 | |||
148 | $LD $n0,0($n0) ; pull n0[0] value | ||
149 | addi $num,$num,-2 ; adjust $num for counter register | ||
150 | |||
151 | $LD $m0,0($bp) ; m0=bp[0] | ||
152 | $LD $aj,0($ap) ; ap[0] | ||
153 | addi $tp,$sp,$LOCALS | ||
154 | $UMULL $lo0,$aj,$m0 ; ap[0]*bp[0] | ||
155 | $UMULH $hi0,$aj,$m0 | ||
156 | |||
157 | $LD $aj,$BNSZ($ap) ; ap[1] | ||
158 | $LD $nj,0($np) ; np[0] | ||
159 | |||
160 | $UMULL $m1,$lo0,$n0 ; "tp[0]"*n0 | ||
161 | |||
162 | $UMULL $alo,$aj,$m0 ; ap[1]*bp[0] | ||
163 | $UMULH $ahi,$aj,$m0 | ||
164 | |||
165 | $UMULL $lo1,$nj,$m1 ; np[0]*m1 | ||
166 | $UMULH $hi1,$nj,$m1 | ||
167 | $LD $nj,$BNSZ($np) ; np[1] | ||
168 | addc $lo1,$lo1,$lo0 | ||
169 | addze $hi1,$hi1 | ||
170 | |||
171 | $UMULL $nlo,$nj,$m1 ; np[1]*m1 | ||
172 | $UMULH $nhi,$nj,$m1 | ||
173 | |||
174 | mtctr $num | ||
175 | li $j,`2*$BNSZ` | ||
176 | .align 4 | ||
177 | L1st: | ||
178 | $LDX $aj,$ap,$j ; ap[j] | ||
179 | addc $lo0,$alo,$hi0 | ||
180 | $LDX $nj,$np,$j ; np[j] | ||
181 | addze $hi0,$ahi | ||
182 | $UMULL $alo,$aj,$m0 ; ap[j]*bp[0] | ||
183 | addc $lo1,$nlo,$hi1 | ||
184 | $UMULH $ahi,$aj,$m0 | ||
185 | addze $hi1,$nhi | ||
186 | $UMULL $nlo,$nj,$m1 ; np[j]*m1 | ||
187 | addc $lo1,$lo1,$lo0 ; np[j]*m1+ap[j]*bp[0] | ||
188 | $UMULH $nhi,$nj,$m1 | ||
189 | addze $hi1,$hi1 | ||
190 | $ST $lo1,0($tp) ; tp[j-1] | ||
191 | |||
192 | addi $j,$j,$BNSZ ; j++ | ||
193 | addi $tp,$tp,$BNSZ ; tp++ | ||
194 | bdnz- L1st | ||
195 | ;L1st | ||
196 | addc $lo0,$alo,$hi0 | ||
197 | addze $hi0,$ahi | ||
198 | |||
199 | addc $lo1,$nlo,$hi1 | ||
200 | addze $hi1,$nhi | ||
201 | addc $lo1,$lo1,$lo0 ; np[j]*m1+ap[j]*bp[0] | ||
202 | addze $hi1,$hi1 | ||
203 | $ST $lo1,0($tp) ; tp[j-1] | ||
204 | |||
205 | li $ovf,0 | ||
206 | addc $hi1,$hi1,$hi0 | ||
207 | addze $ovf,$ovf ; upmost overflow bit | ||
208 | $ST $hi1,$BNSZ($tp) | ||
209 | |||
210 | li $i,$BNSZ | ||
211 | .align 4 | ||
212 | Louter: | ||
213 | $LDX $m0,$bp,$i ; m0=bp[i] | ||
214 | $LD $aj,0($ap) ; ap[0] | ||
215 | addi $tp,$sp,$LOCALS | ||
216 | $LD $tj,$LOCALS($sp); tp[0] | ||
217 | $UMULL $lo0,$aj,$m0 ; ap[0]*bp[i] | ||
218 | $UMULH $hi0,$aj,$m0 | ||
219 | $LD $aj,$BNSZ($ap) ; ap[1] | ||
220 | $LD $nj,0($np) ; np[0] | ||
221 | addc $lo0,$lo0,$tj ; ap[0]*bp[i]+tp[0] | ||
222 | $UMULL $alo,$aj,$m0 ; ap[j]*bp[i] | ||
223 | addze $hi0,$hi0 | ||
224 | $UMULL $m1,$lo0,$n0 ; tp[0]*n0 | ||
225 | $UMULH $ahi,$aj,$m0 | ||
226 | $UMULL $lo1,$nj,$m1 ; np[0]*m1 | ||
227 | $UMULH $hi1,$nj,$m1 | ||
228 | $LD $nj,$BNSZ($np) ; np[1] | ||
229 | addc $lo1,$lo1,$lo0 | ||
230 | $UMULL $nlo,$nj,$m1 ; np[1]*m1 | ||
231 | addze $hi1,$hi1 | ||
232 | $UMULH $nhi,$nj,$m1 | ||
233 | |||
234 | mtctr $num | ||
235 | li $j,`2*$BNSZ` | ||
236 | .align 4 | ||
237 | Linner: | ||
238 | $LDX $aj,$ap,$j ; ap[j] | ||
239 | addc $lo0,$alo,$hi0 | ||
240 | $LD $tj,$BNSZ($tp) ; tp[j] | ||
241 | addze $hi0,$ahi | ||
242 | $LDX $nj,$np,$j ; np[j] | ||
243 | addc $lo1,$nlo,$hi1 | ||
244 | $UMULL $alo,$aj,$m0 ; ap[j]*bp[i] | ||
245 | addze $hi1,$nhi | ||
246 | $UMULH $ahi,$aj,$m0 | ||
247 | addc $lo0,$lo0,$tj ; ap[j]*bp[i]+tp[j] | ||
248 | $UMULL $nlo,$nj,$m1 ; np[j]*m1 | ||
249 | addze $hi0,$hi0 | ||
250 | $UMULH $nhi,$nj,$m1 | ||
251 | addc $lo1,$lo1,$lo0 ; np[j]*m1+ap[j]*bp[i]+tp[j] | ||
252 | addi $j,$j,$BNSZ ; j++ | ||
253 | addze $hi1,$hi1 | ||
254 | $ST $lo1,0($tp) ; tp[j-1] | ||
255 | addi $tp,$tp,$BNSZ ; tp++ | ||
256 | bdnz- Linner | ||
257 | ;Linner | ||
258 | $LD $tj,$BNSZ($tp) ; tp[j] | ||
259 | addc $lo0,$alo,$hi0 | ||
260 | addze $hi0,$ahi | ||
261 | addc $lo0,$lo0,$tj ; ap[j]*bp[i]+tp[j] | ||
262 | addze $hi0,$hi0 | ||
263 | |||
264 | addc $lo1,$nlo,$hi1 | ||
265 | addze $hi1,$nhi | ||
266 | addc $lo1,$lo1,$lo0 ; np[j]*m1+ap[j]*bp[i]+tp[j] | ||
267 | addze $hi1,$hi1 | ||
268 | $ST $lo1,0($tp) ; tp[j-1] | ||
269 | |||
270 | addic $ovf,$ovf,-1 ; move upmost overflow to XER[CA] | ||
271 | li $ovf,0 | ||
272 | adde $hi1,$hi1,$hi0 | ||
273 | addze $ovf,$ovf | ||
274 | $ST $hi1,$BNSZ($tp) | ||
275 | ; | ||
276 | slwi $tj,$num,`log($BNSZ)/log(2)` | ||
277 | $UCMP $i,$tj | ||
278 | addi $i,$i,$BNSZ | ||
279 | ble- Louter | ||
280 | |||
281 | addi $num,$num,2 ; restore $num | ||
282 | subfc $j,$j,$j ; j=0 and "clear" XER[CA] | ||
283 | addi $tp,$sp,$LOCALS | ||
284 | mtctr $num | ||
285 | |||
286 | .align 4 | ||
287 | Lsub: $LDX $tj,$tp,$j | ||
288 | $LDX $nj,$np,$j | ||
289 | subfe $aj,$nj,$tj ; tp[j]-np[j] | ||
290 | $STX $aj,$rp,$j | ||
291 | addi $j,$j,$BNSZ | ||
292 | bdnz- Lsub | ||
293 | |||
294 | li $j,0 | ||
295 | mtctr $num | ||
296 | subfe $ovf,$j,$ovf ; handle upmost overflow bit | ||
297 | and $ap,$tp,$ovf | ||
298 | andc $np,$rp,$ovf | ||
299 | or $ap,$ap,$np ; ap=borrow?tp:rp | ||
300 | |||
301 | .align 4 | ||
302 | Lcopy: ; copy or in-place refresh | ||
303 | $LDX $tj,$ap,$j | ||
304 | $STX $tj,$rp,$j | ||
305 | $STX $j,$tp,$j ; zap at once | ||
306 | addi $j,$j,$BNSZ | ||
307 | bdnz- Lcopy | ||
308 | |||
309 | $POP $tj,0($sp) | ||
310 | li r3,1 | ||
311 | $POP r20,`-12*$SIZE_T`($tj) | ||
312 | $POP r21,`-11*$SIZE_T`($tj) | ||
313 | $POP r22,`-10*$SIZE_T`($tj) | ||
314 | $POP r23,`-9*$SIZE_T`($tj) | ||
315 | $POP r24,`-8*$SIZE_T`($tj) | ||
316 | $POP r25,`-7*$SIZE_T`($tj) | ||
317 | $POP r26,`-6*$SIZE_T`($tj) | ||
318 | $POP r27,`-5*$SIZE_T`($tj) | ||
319 | $POP r28,`-4*$SIZE_T`($tj) | ||
320 | $POP r29,`-3*$SIZE_T`($tj) | ||
321 | $POP r30,`-2*$SIZE_T`($tj) | ||
322 | $POP r31,`-1*$SIZE_T`($tj) | ||
323 | mr $sp,$tj | ||
324 | blr | ||
325 | .long 0 | ||
326 | .byte 0,12,4,0,0x80,12,6,0 | ||
327 | .long 0 | ||
328 | |||
329 | .asciz "Montgomery Multiplication for PPC, CRYPTOGAMS by <appro\@openssl.org>" | ||
330 | ___ | ||
331 | |||
332 | $code =~ s/\`([^\`]*)\`/eval $1/gem; | ||
333 | print $code; | ||
334 | close STDOUT; | ||
diff --git a/src/lib/libcrypto/bn/asm/ppc.pl b/src/lib/libcrypto/bn/asm/ppc.pl deleted file mode 100644 index 1249ce2299..0000000000 --- a/src/lib/libcrypto/bn/asm/ppc.pl +++ /dev/null | |||
@@ -1,1998 +0,0 @@ | |||
1 | #!/usr/bin/env perl | ||
2 | # | ||
3 | # Implemented as a Perl wrapper as we want to support several different | ||
4 | # architectures with single file. We pick up the target based on the | ||
5 | # file name we are asked to generate. | ||
6 | # | ||
7 | # It should be noted though that this perl code is nothing like | ||
8 | # <openssl>/crypto/perlasm/x86*. In this case perl is used pretty much | ||
9 | # as pre-processor to cover for platform differences in name decoration, | ||
10 | # linker tables, 32-/64-bit instruction sets... | ||
11 | # | ||
12 | # As you might know there're several PowerPC ABI in use. Most notably | ||
13 | # Linux and AIX use different 32-bit ABIs. Good news are that these ABIs | ||
14 | # are similar enough to implement leaf(!) functions, which would be ABI | ||
15 | # neutral. And that's what you find here: ABI neutral leaf functions. | ||
16 | # In case you wonder what that is... | ||
17 | # | ||
18 | # AIX performance | ||
19 | # | ||
20 | # MEASUREMENTS WITH cc ON a 200 MhZ PowerPC 604e. | ||
21 | # | ||
22 | # The following is the performance of 32-bit compiler | ||
23 | # generated code: | ||
24 | # | ||
25 | # OpenSSL 0.9.6c 21 dec 2001 | ||
26 | # built on: Tue Jun 11 11:06:51 EDT 2002 | ||
27 | # options:bn(64,32) ... | ||
28 | #compiler: cc -DTHREADS -DAIX -DB_ENDIAN -DBN_LLONG -O3 | ||
29 | # sign verify sign/s verify/s | ||
30 | #rsa 512 bits 0.0098s 0.0009s 102.0 1170.6 | ||
31 | #rsa 1024 bits 0.0507s 0.0026s 19.7 387.5 | ||
32 | #rsa 2048 bits 0.3036s 0.0085s 3.3 117.1 | ||
33 | #rsa 4096 bits 2.0040s 0.0299s 0.5 33.4 | ||
34 | #dsa 512 bits 0.0087s 0.0106s 114.3 94.5 | ||
35 | #dsa 1024 bits 0.0256s 0.0313s 39.0 32.0 | ||
36 | # | ||
37 | # Same bechmark with this assembler code: | ||
38 | # | ||
39 | #rsa 512 bits 0.0056s 0.0005s 178.6 2049.2 | ||
40 | #rsa 1024 bits 0.0283s 0.0015s 35.3 674.1 | ||
41 | #rsa 2048 bits 0.1744s 0.0050s 5.7 201.2 | ||
42 | #rsa 4096 bits 1.1644s 0.0179s 0.9 55.7 | ||
43 | #dsa 512 bits 0.0052s 0.0062s 191.6 162.0 | ||
44 | #dsa 1024 bits 0.0149s 0.0180s 67.0 55.5 | ||
45 | # | ||
46 | # Number of operations increases by at almost 75% | ||
47 | # | ||
48 | # Here are performance numbers for 64-bit compiler | ||
49 | # generated code: | ||
50 | # | ||
51 | # OpenSSL 0.9.6g [engine] 9 Aug 2002 | ||
52 | # built on: Fri Apr 18 16:59:20 EDT 2003 | ||
53 | # options:bn(64,64) ... | ||
54 | # compiler: cc -DTHREADS -D_REENTRANT -q64 -DB_ENDIAN -O3 | ||
55 | # sign verify sign/s verify/s | ||
56 | #rsa 512 bits 0.0028s 0.0003s 357.1 3844.4 | ||
57 | #rsa 1024 bits 0.0148s 0.0008s 67.5 1239.7 | ||
58 | #rsa 2048 bits 0.0963s 0.0028s 10.4 353.0 | ||
59 | #rsa 4096 bits 0.6538s 0.0102s 1.5 98.1 | ||
60 | #dsa 512 bits 0.0026s 0.0032s 382.5 313.7 | ||
61 | #dsa 1024 bits 0.0081s 0.0099s 122.8 100.6 | ||
62 | # | ||
63 | # Same benchmark with this assembler code: | ||
64 | # | ||
65 | #rsa 512 bits 0.0020s 0.0002s 510.4 6273.7 | ||
66 | #rsa 1024 bits 0.0088s 0.0005s 114.1 2128.3 | ||
67 | #rsa 2048 bits 0.0540s 0.0016s 18.5 622.5 | ||
68 | #rsa 4096 bits 0.3700s 0.0058s 2.7 171.0 | ||
69 | #dsa 512 bits 0.0016s 0.0020s 610.7 507.1 | ||
70 | #dsa 1024 bits 0.0047s 0.0058s 212.5 173.2 | ||
71 | # | ||
72 | # Again, performance increases by at about 75% | ||
73 | # | ||
74 | # Mac OS X, Apple G5 1.8GHz (Note this is 32 bit code) | ||
75 | # OpenSSL 0.9.7c 30 Sep 2003 | ||
76 | # | ||
77 | # Original code. | ||
78 | # | ||
79 | #rsa 512 bits 0.0011s 0.0001s 906.1 11012.5 | ||
80 | #rsa 1024 bits 0.0060s 0.0003s 166.6 3363.1 | ||
81 | #rsa 2048 bits 0.0370s 0.0010s 27.1 982.4 | ||
82 | #rsa 4096 bits 0.2426s 0.0036s 4.1 280.4 | ||
83 | #dsa 512 bits 0.0010s 0.0012s 1038.1 841.5 | ||
84 | #dsa 1024 bits 0.0030s 0.0037s 329.6 269.7 | ||
85 | #dsa 2048 bits 0.0101s 0.0127s 98.9 78.6 | ||
86 | # | ||
87 | # Same benchmark with this assembler code: | ||
88 | # | ||
89 | #rsa 512 bits 0.0007s 0.0001s 1416.2 16645.9 | ||
90 | #rsa 1024 bits 0.0036s 0.0002s 274.4 5380.6 | ||
91 | #rsa 2048 bits 0.0222s 0.0006s 45.1 1589.5 | ||
92 | #rsa 4096 bits 0.1469s 0.0022s 6.8 449.6 | ||
93 | #dsa 512 bits 0.0006s 0.0007s 1664.2 1376.2 | ||
94 | #dsa 1024 bits 0.0018s 0.0023s 545.0 442.2 | ||
95 | #dsa 2048 bits 0.0061s 0.0075s 163.5 132.8 | ||
96 | # | ||
97 | # Performance increase of ~60% | ||
98 | # | ||
99 | # If you have comments or suggestions to improve code send | ||
100 | # me a note at schari@us.ibm.com | ||
101 | # | ||
102 | |||
103 | $flavour = shift; | ||
104 | |||
105 | if ($flavour =~ /32/) { | ||
106 | $BITS= 32; | ||
107 | $BNSZ= $BITS/8; | ||
108 | $ISA= "\"ppc\""; | ||
109 | |||
110 | $LD= "lwz"; # load | ||
111 | $LDU= "lwzu"; # load and update | ||
112 | $ST= "stw"; # store | ||
113 | $STU= "stwu"; # store and update | ||
114 | $UMULL= "mullw"; # unsigned multiply low | ||
115 | $UMULH= "mulhwu"; # unsigned multiply high | ||
116 | $UDIV= "divwu"; # unsigned divide | ||
117 | $UCMPI= "cmplwi"; # unsigned compare with immediate | ||
118 | $UCMP= "cmplw"; # unsigned compare | ||
119 | $CNTLZ= "cntlzw"; # count leading zeros | ||
120 | $SHL= "slw"; # shift left | ||
121 | $SHR= "srw"; # unsigned shift right | ||
122 | $SHRI= "srwi"; # unsigned shift right by immediate | ||
123 | $SHLI= "slwi"; # shift left by immediate | ||
124 | $CLRU= "clrlwi"; # clear upper bits | ||
125 | $INSR= "insrwi"; # insert right | ||
126 | $ROTL= "rotlwi"; # rotate left by immediate | ||
127 | $TR= "tw"; # conditional trap | ||
128 | } elsif ($flavour =~ /64/) { | ||
129 | $BITS= 64; | ||
130 | $BNSZ= $BITS/8; | ||
131 | $ISA= "\"ppc64\""; | ||
132 | |||
133 | # same as above, but 64-bit mnemonics... | ||
134 | $LD= "ld"; # load | ||
135 | $LDU= "ldu"; # load and update | ||
136 | $ST= "std"; # store | ||
137 | $STU= "stdu"; # store and update | ||
138 | $UMULL= "mulld"; # unsigned multiply low | ||
139 | $UMULH= "mulhdu"; # unsigned multiply high | ||
140 | $UDIV= "divdu"; # unsigned divide | ||
141 | $UCMPI= "cmpldi"; # unsigned compare with immediate | ||
142 | $UCMP= "cmpld"; # unsigned compare | ||
143 | $CNTLZ= "cntlzd"; # count leading zeros | ||
144 | $SHL= "sld"; # shift left | ||
145 | $SHR= "srd"; # unsigned shift right | ||
146 | $SHRI= "srdi"; # unsigned shift right by immediate | ||
147 | $SHLI= "sldi"; # shift left by immediate | ||
148 | $CLRU= "clrldi"; # clear upper bits | ||
149 | $INSR= "insrdi"; # insert right | ||
150 | $ROTL= "rotldi"; # rotate left by immediate | ||
151 | $TR= "td"; # conditional trap | ||
152 | } else { die "nonsense $flavour"; } | ||
153 | |||
154 | $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; | ||
155 | ( $xlate="${dir}ppc-xlate.pl" and -f $xlate ) or | ||
156 | ( $xlate="${dir}../../perlasm/ppc-xlate.pl" and -f $xlate) or | ||
157 | die "can't locate ppc-xlate.pl"; | ||
158 | |||
159 | open STDOUT,"| $^X $xlate $flavour ".shift || die "can't call $xlate: $!"; | ||
160 | |||
161 | $data=<<EOF; | ||
162 | #-------------------------------------------------------------------- | ||
163 | # | ||
164 | # | ||
165 | # | ||
166 | # | ||
167 | # File: ppc32.s | ||
168 | # | ||
169 | # Created by: Suresh Chari | ||
170 | # IBM Thomas J. Watson Research Library | ||
171 | # Hawthorne, NY | ||
172 | # | ||
173 | # | ||
174 | # Description: Optimized assembly routines for OpenSSL crypto | ||
175 | # on the 32 bitPowerPC platform. | ||
176 | # | ||
177 | # | ||
178 | # Version History | ||
179 | # | ||
180 | # 2. Fixed bn_add,bn_sub and bn_div_words, added comments, | ||
181 | # cleaned up code. Also made a single version which can | ||
182 | # be used for both the AIX and Linux compilers. See NOTE | ||
183 | # below. | ||
184 | # 12/05/03 Suresh Chari | ||
185 | # (with lots of help from) Andy Polyakov | ||
186 | ## | ||
187 | # 1. Initial version 10/20/02 Suresh Chari | ||
188 | # | ||
189 | # | ||
190 | # The following file works for the xlc,cc | ||
191 | # and gcc compilers. | ||
192 | # | ||
193 | # NOTE: To get the file to link correctly with the gcc compiler | ||
194 | # you have to change the names of the routines and remove | ||
195 | # the first .(dot) character. This should automatically | ||
196 | # be done in the build process. | ||
197 | # | ||
198 | # Hand optimized assembly code for the following routines | ||
199 | # | ||
200 | # bn_sqr_comba4 | ||
201 | # bn_sqr_comba8 | ||
202 | # bn_mul_comba4 | ||
203 | # bn_mul_comba8 | ||
204 | # bn_sub_words | ||
205 | # bn_add_words | ||
206 | # bn_div_words | ||
207 | # bn_sqr_words | ||
208 | # bn_mul_words | ||
209 | # bn_mul_add_words | ||
210 | # | ||
211 | # NOTE: It is possible to optimize this code more for | ||
212 | # specific PowerPC or Power architectures. On the Northstar | ||
213 | # architecture the optimizations in this file do | ||
214 | # NOT provide much improvement. | ||
215 | # | ||
216 | # If you have comments or suggestions to improve code send | ||
217 | # me a note at schari\@us.ibm.com | ||
218 | # | ||
219 | #-------------------------------------------------------------------------- | ||
220 | # | ||
221 | # Defines to be used in the assembly code. | ||
222 | # | ||
223 | #.set r0,0 # we use it as storage for value of 0 | ||
224 | #.set SP,1 # preserved | ||
225 | #.set RTOC,2 # preserved | ||
226 | #.set r3,3 # 1st argument/return value | ||
227 | #.set r4,4 # 2nd argument/volatile register | ||
228 | #.set r5,5 # 3rd argument/volatile register | ||
229 | #.set r6,6 # ... | ||
230 | #.set r7,7 | ||
231 | #.set r8,8 | ||
232 | #.set r9,9 | ||
233 | #.set r10,10 | ||
234 | #.set r11,11 | ||
235 | #.set r12,12 | ||
236 | #.set r13,13 # not used, nor any other "below" it... | ||
237 | |||
238 | # Declare function names to be global | ||
239 | # NOTE: For gcc these names MUST be changed to remove | ||
240 | # the first . i.e. for example change ".bn_sqr_comba4" | ||
241 | # to "bn_sqr_comba4". This should be automatically done | ||
242 | # in the build. | ||
243 | |||
244 | .globl .bn_sqr_comba4 | ||
245 | .globl .bn_sqr_comba8 | ||
246 | .globl .bn_mul_comba4 | ||
247 | .globl .bn_mul_comba8 | ||
248 | .globl .bn_sub_words | ||
249 | .globl .bn_add_words | ||
250 | .globl .bn_div_words | ||
251 | .globl .bn_sqr_words | ||
252 | .globl .bn_mul_words | ||
253 | .globl .bn_mul_add_words | ||
254 | |||
255 | # .text section | ||
256 | |||
257 | .machine "any" | ||
258 | |||
259 | # | ||
260 | # NOTE: The following label name should be changed to | ||
261 | # "bn_sqr_comba4" i.e. remove the first dot | ||
262 | # for the gcc compiler. This should be automatically | ||
263 | # done in the build | ||
264 | # | ||
265 | |||
266 | .align 4 | ||
267 | .bn_sqr_comba4: | ||
268 | # | ||
269 | # Optimized version of bn_sqr_comba4. | ||
270 | # | ||
271 | # void bn_sqr_comba4(BN_ULONG *r, BN_ULONG *a) | ||
272 | # r3 contains r | ||
273 | # r4 contains a | ||
274 | # | ||
275 | # Freely use registers r5,r6,r7,r8,r9,r10,r11 as follows: | ||
276 | # | ||
277 | # r5,r6 are the two BN_ULONGs being multiplied. | ||
278 | # r7,r8 are the results of the 32x32 giving 64 bit multiply. | ||
279 | # r9,r10, r11 are the equivalents of c1,c2, c3. | ||
280 | # Here's the assembly | ||
281 | # | ||
282 | # | ||
283 | xor r0,r0,r0 # set r0 = 0. Used in the addze | ||
284 | # instructions below | ||
285 | |||
286 | #sqr_add_c(a,0,c1,c2,c3) | ||
287 | $LD r5,`0*$BNSZ`(r4) | ||
288 | $UMULL r9,r5,r5 | ||
289 | $UMULH r10,r5,r5 #in first iteration. No need | ||
290 | #to add since c1=c2=c3=0. | ||
291 | # Note c3(r11) is NOT set to 0 | ||
292 | # but will be. | ||
293 | |||
294 | $ST r9,`0*$BNSZ`(r3) # r[0]=c1; | ||
295 | # sqr_add_c2(a,1,0,c2,c3,c1); | ||
296 | $LD r6,`1*$BNSZ`(r4) | ||
297 | $UMULL r7,r5,r6 | ||
298 | $UMULH r8,r5,r6 | ||
299 | |||
300 | addc r7,r7,r7 # compute (r7,r8)=2*(r7,r8) | ||
301 | adde r8,r8,r8 | ||
302 | addze r9,r0 # catch carry if any. | ||
303 | # r9= r0(=0) and carry | ||
304 | |||
305 | addc r10,r7,r10 # now add to temp result. | ||
306 | addze r11,r8 # r8 added to r11 which is 0 | ||
307 | addze r9,r9 | ||
308 | |||
309 | $ST r10,`1*$BNSZ`(r3) #r[1]=c2; | ||
310 | #sqr_add_c(a,1,c3,c1,c2) | ||
311 | $UMULL r7,r6,r6 | ||
312 | $UMULH r8,r6,r6 | ||
313 | addc r11,r7,r11 | ||
314 | adde r9,r8,r9 | ||
315 | addze r10,r0 | ||
316 | #sqr_add_c2(a,2,0,c3,c1,c2) | ||
317 | $LD r6,`2*$BNSZ`(r4) | ||
318 | $UMULL r7,r5,r6 | ||
319 | $UMULH r8,r5,r6 | ||
320 | |||
321 | addc r7,r7,r7 | ||
322 | adde r8,r8,r8 | ||
323 | addze r10,r10 | ||
324 | |||
325 | addc r11,r7,r11 | ||
326 | adde r9,r8,r9 | ||
327 | addze r10,r10 | ||
328 | $ST r11,`2*$BNSZ`(r3) #r[2]=c3 | ||
329 | #sqr_add_c2(a,3,0,c1,c2,c3); | ||
330 | $LD r6,`3*$BNSZ`(r4) | ||
331 | $UMULL r7,r5,r6 | ||
332 | $UMULH r8,r5,r6 | ||
333 | addc r7,r7,r7 | ||
334 | adde r8,r8,r8 | ||
335 | addze r11,r0 | ||
336 | |||
337 | addc r9,r7,r9 | ||
338 | adde r10,r8,r10 | ||
339 | addze r11,r11 | ||
340 | #sqr_add_c2(a,2,1,c1,c2,c3); | ||
341 | $LD r5,`1*$BNSZ`(r4) | ||
342 | $LD r6,`2*$BNSZ`(r4) | ||
343 | $UMULL r7,r5,r6 | ||
344 | $UMULH r8,r5,r6 | ||
345 | |||
346 | addc r7,r7,r7 | ||
347 | adde r8,r8,r8 | ||
348 | addze r11,r11 | ||
349 | addc r9,r7,r9 | ||
350 | adde r10,r8,r10 | ||
351 | addze r11,r11 | ||
352 | $ST r9,`3*$BNSZ`(r3) #r[3]=c1 | ||
353 | #sqr_add_c(a,2,c2,c3,c1); | ||
354 | $UMULL r7,r6,r6 | ||
355 | $UMULH r8,r6,r6 | ||
356 | addc r10,r7,r10 | ||
357 | adde r11,r8,r11 | ||
358 | addze r9,r0 | ||
359 | #sqr_add_c2(a,3,1,c2,c3,c1); | ||
360 | $LD r6,`3*$BNSZ`(r4) | ||
361 | $UMULL r7,r5,r6 | ||
362 | $UMULH r8,r5,r6 | ||
363 | addc r7,r7,r7 | ||
364 | adde r8,r8,r8 | ||
365 | addze r9,r9 | ||
366 | |||
367 | addc r10,r7,r10 | ||
368 | adde r11,r8,r11 | ||
369 | addze r9,r9 | ||
370 | $ST r10,`4*$BNSZ`(r3) #r[4]=c2 | ||
371 | #sqr_add_c2(a,3,2,c3,c1,c2); | ||
372 | $LD r5,`2*$BNSZ`(r4) | ||
373 | $UMULL r7,r5,r6 | ||
374 | $UMULH r8,r5,r6 | ||
375 | addc r7,r7,r7 | ||
376 | adde r8,r8,r8 | ||
377 | addze r10,r0 | ||
378 | |||
379 | addc r11,r7,r11 | ||
380 | adde r9,r8,r9 | ||
381 | addze r10,r10 | ||
382 | $ST r11,`5*$BNSZ`(r3) #r[5] = c3 | ||
383 | #sqr_add_c(a,3,c1,c2,c3); | ||
384 | $UMULL r7,r6,r6 | ||
385 | $UMULH r8,r6,r6 | ||
386 | addc r9,r7,r9 | ||
387 | adde r10,r8,r10 | ||
388 | |||
389 | $ST r9,`6*$BNSZ`(r3) #r[6]=c1 | ||
390 | $ST r10,`7*$BNSZ`(r3) #r[7]=c2 | ||
391 | blr | ||
392 | .long 0 | ||
393 | .byte 0,12,0x14,0,0,0,2,0 | ||
394 | .long 0 | ||
395 | |||
396 | # | ||
397 | # NOTE: The following label name should be changed to | ||
398 | # "bn_sqr_comba8" i.e. remove the first dot | ||
399 | # for the gcc compiler. This should be automatically | ||
400 | # done in the build | ||
401 | # | ||
402 | |||
403 | .align 4 | ||
404 | .bn_sqr_comba8: | ||
405 | # | ||
406 | # This is an optimized version of the bn_sqr_comba8 routine. | ||
407 | # Tightly uses the adde instruction | ||
408 | # | ||
409 | # | ||
410 | # void bn_sqr_comba8(BN_ULONG *r, BN_ULONG *a) | ||
411 | # r3 contains r | ||
412 | # r4 contains a | ||
413 | # | ||
414 | # Freely use registers r5,r6,r7,r8,r9,r10,r11 as follows: | ||
415 | # | ||
416 | # r5,r6 are the two BN_ULONGs being multiplied. | ||
417 | # r7,r8 are the results of the 32x32 giving 64 bit multiply. | ||
418 | # r9,r10, r11 are the equivalents of c1,c2, c3. | ||
419 | # | ||
420 | # Possible optimization of loading all 8 longs of a into registers | ||
421 | # doesnt provide any speedup | ||
422 | # | ||
423 | |||
424 | xor r0,r0,r0 #set r0 = 0.Used in addze | ||
425 | #instructions below. | ||
426 | |||
427 | #sqr_add_c(a,0,c1,c2,c3); | ||
428 | $LD r5,`0*$BNSZ`(r4) | ||
429 | $UMULL r9,r5,r5 #1st iteration: no carries. | ||
430 | $UMULH r10,r5,r5 | ||
431 | $ST r9,`0*$BNSZ`(r3) # r[0]=c1; | ||
432 | #sqr_add_c2(a,1,0,c2,c3,c1); | ||
433 | $LD r6,`1*$BNSZ`(r4) | ||
434 | $UMULL r7,r5,r6 | ||
435 | $UMULH r8,r5,r6 | ||
436 | |||
437 | addc r10,r7,r10 #add the two register number | ||
438 | adde r11,r8,r0 # (r8,r7) to the three register | ||
439 | addze r9,r0 # number (r9,r11,r10).NOTE:r0=0 | ||
440 | |||
441 | addc r10,r7,r10 #add the two register number | ||
442 | adde r11,r8,r11 # (r8,r7) to the three register | ||
443 | addze r9,r9 # number (r9,r11,r10). | ||
444 | |||
445 | $ST r10,`1*$BNSZ`(r3) # r[1]=c2 | ||
446 | |||
447 | #sqr_add_c(a,1,c3,c1,c2); | ||
448 | $UMULL r7,r6,r6 | ||
449 | $UMULH r8,r6,r6 | ||
450 | addc r11,r7,r11 | ||
451 | adde r9,r8,r9 | ||
452 | addze r10,r0 | ||
453 | #sqr_add_c2(a,2,0,c3,c1,c2); | ||
454 | $LD r6,`2*$BNSZ`(r4) | ||
455 | $UMULL r7,r5,r6 | ||
456 | $UMULH r8,r5,r6 | ||
457 | |||
458 | addc r11,r7,r11 | ||
459 | adde r9,r8,r9 | ||
460 | addze r10,r10 | ||
461 | |||
462 | addc r11,r7,r11 | ||
463 | adde r9,r8,r9 | ||
464 | addze r10,r10 | ||
465 | |||
466 | $ST r11,`2*$BNSZ`(r3) #r[2]=c3 | ||
467 | #sqr_add_c2(a,3,0,c1,c2,c3); | ||
468 | $LD r6,`3*$BNSZ`(r4) #r6 = a[3]. r5 is already a[0]. | ||
469 | $UMULL r7,r5,r6 | ||
470 | $UMULH r8,r5,r6 | ||
471 | |||
472 | addc r9,r7,r9 | ||
473 | adde r10,r8,r10 | ||
474 | addze r11,r0 | ||
475 | |||
476 | addc r9,r7,r9 | ||
477 | adde r10,r8,r10 | ||
478 | addze r11,r11 | ||
479 | #sqr_add_c2(a,2,1,c1,c2,c3); | ||
480 | $LD r5,`1*$BNSZ`(r4) | ||
481 | $LD r6,`2*$BNSZ`(r4) | ||
482 | $UMULL r7,r5,r6 | ||
483 | $UMULH r8,r5,r6 | ||
484 | |||
485 | addc r9,r7,r9 | ||
486 | adde r10,r8,r10 | ||
487 | addze r11,r11 | ||
488 | |||
489 | addc r9,r7,r9 | ||
490 | adde r10,r8,r10 | ||
491 | addze r11,r11 | ||
492 | |||
493 | $ST r9,`3*$BNSZ`(r3) #r[3]=c1; | ||
494 | #sqr_add_c(a,2,c2,c3,c1); | ||
495 | $UMULL r7,r6,r6 | ||
496 | $UMULH r8,r6,r6 | ||
497 | |||
498 | addc r10,r7,r10 | ||
499 | adde r11,r8,r11 | ||
500 | addze r9,r0 | ||
501 | #sqr_add_c2(a,3,1,c2,c3,c1); | ||
502 | $LD r6,`3*$BNSZ`(r4) | ||
503 | $UMULL r7,r5,r6 | ||
504 | $UMULH r8,r5,r6 | ||
505 | |||
506 | addc r10,r7,r10 | ||
507 | adde r11,r8,r11 | ||
508 | addze r9,r9 | ||
509 | |||
510 | addc r10,r7,r10 | ||
511 | adde r11,r8,r11 | ||
512 | addze r9,r9 | ||
513 | #sqr_add_c2(a,4,0,c2,c3,c1); | ||
514 | $LD r5,`0*$BNSZ`(r4) | ||
515 | $LD r6,`4*$BNSZ`(r4) | ||
516 | $UMULL r7,r5,r6 | ||
517 | $UMULH r8,r5,r6 | ||
518 | |||
519 | addc r10,r7,r10 | ||
520 | adde r11,r8,r11 | ||
521 | addze r9,r9 | ||
522 | |||
523 | addc r10,r7,r10 | ||
524 | adde r11,r8,r11 | ||
525 | addze r9,r9 | ||
526 | $ST r10,`4*$BNSZ`(r3) #r[4]=c2; | ||
527 | #sqr_add_c2(a,5,0,c3,c1,c2); | ||
528 | $LD r6,`5*$BNSZ`(r4) | ||
529 | $UMULL r7,r5,r6 | ||
530 | $UMULH r8,r5,r6 | ||
531 | |||
532 | addc r11,r7,r11 | ||
533 | adde r9,r8,r9 | ||
534 | addze r10,r0 | ||
535 | |||
536 | addc r11,r7,r11 | ||
537 | adde r9,r8,r9 | ||
538 | addze r10,r10 | ||
539 | #sqr_add_c2(a,4,1,c3,c1,c2); | ||
540 | $LD r5,`1*$BNSZ`(r4) | ||
541 | $LD r6,`4*$BNSZ`(r4) | ||
542 | $UMULL r7,r5,r6 | ||
543 | $UMULH r8,r5,r6 | ||
544 | |||
545 | addc r11,r7,r11 | ||
546 | adde r9,r8,r9 | ||
547 | addze r10,r10 | ||
548 | |||
549 | addc r11,r7,r11 | ||
550 | adde r9,r8,r9 | ||
551 | addze r10,r10 | ||
552 | #sqr_add_c2(a,3,2,c3,c1,c2); | ||
553 | $LD r5,`2*$BNSZ`(r4) | ||
554 | $LD r6,`3*$BNSZ`(r4) | ||
555 | $UMULL r7,r5,r6 | ||
556 | $UMULH r8,r5,r6 | ||
557 | |||
558 | addc r11,r7,r11 | ||
559 | adde r9,r8,r9 | ||
560 | addze r10,r10 | ||
561 | |||
562 | addc r11,r7,r11 | ||
563 | adde r9,r8,r9 | ||
564 | addze r10,r10 | ||
565 | $ST r11,`5*$BNSZ`(r3) #r[5]=c3; | ||
566 | #sqr_add_c(a,3,c1,c2,c3); | ||
567 | $UMULL r7,r6,r6 | ||
568 | $UMULH r8,r6,r6 | ||
569 | addc r9,r7,r9 | ||
570 | adde r10,r8,r10 | ||
571 | addze r11,r0 | ||
572 | #sqr_add_c2(a,4,2,c1,c2,c3); | ||
573 | $LD r6,`4*$BNSZ`(r4) | ||
574 | $UMULL r7,r5,r6 | ||
575 | $UMULH r8,r5,r6 | ||
576 | |||
577 | addc r9,r7,r9 | ||
578 | adde r10,r8,r10 | ||
579 | addze r11,r11 | ||
580 | |||
581 | addc r9,r7,r9 | ||
582 | adde r10,r8,r10 | ||
583 | addze r11,r11 | ||
584 | #sqr_add_c2(a,5,1,c1,c2,c3); | ||
585 | $LD r5,`1*$BNSZ`(r4) | ||
586 | $LD r6,`5*$BNSZ`(r4) | ||
587 | $UMULL r7,r5,r6 | ||
588 | $UMULH r8,r5,r6 | ||
589 | |||
590 | addc r9,r7,r9 | ||
591 | adde r10,r8,r10 | ||
592 | addze r11,r11 | ||
593 | |||
594 | addc r9,r7,r9 | ||
595 | adde r10,r8,r10 | ||
596 | addze r11,r11 | ||
597 | #sqr_add_c2(a,6,0,c1,c2,c3); | ||
598 | $LD r5,`0*$BNSZ`(r4) | ||
599 | $LD r6,`6*$BNSZ`(r4) | ||
600 | $UMULL r7,r5,r6 | ||
601 | $UMULH r8,r5,r6 | ||
602 | addc r9,r7,r9 | ||
603 | adde r10,r8,r10 | ||
604 | addze r11,r11 | ||
605 | addc r9,r7,r9 | ||
606 | adde r10,r8,r10 | ||
607 | addze r11,r11 | ||
608 | $ST r9,`6*$BNSZ`(r3) #r[6]=c1; | ||
609 | #sqr_add_c2(a,7,0,c2,c3,c1); | ||
610 | $LD r6,`7*$BNSZ`(r4) | ||
611 | $UMULL r7,r5,r6 | ||
612 | $UMULH r8,r5,r6 | ||
613 | |||
614 | addc r10,r7,r10 | ||
615 | adde r11,r8,r11 | ||
616 | addze r9,r0 | ||
617 | addc r10,r7,r10 | ||
618 | adde r11,r8,r11 | ||
619 | addze r9,r9 | ||
620 | #sqr_add_c2(a,6,1,c2,c3,c1); | ||
621 | $LD r5,`1*$BNSZ`(r4) | ||
622 | $LD r6,`6*$BNSZ`(r4) | ||
623 | $UMULL r7,r5,r6 | ||
624 | $UMULH r8,r5,r6 | ||
625 | |||
626 | addc r10,r7,r10 | ||
627 | adde r11,r8,r11 | ||
628 | addze r9,r9 | ||
629 | addc r10,r7,r10 | ||
630 | adde r11,r8,r11 | ||
631 | addze r9,r9 | ||
632 | #sqr_add_c2(a,5,2,c2,c3,c1); | ||
633 | $LD r5,`2*$BNSZ`(r4) | ||
634 | $LD r6,`5*$BNSZ`(r4) | ||
635 | $UMULL r7,r5,r6 | ||
636 | $UMULH r8,r5,r6 | ||
637 | addc r10,r7,r10 | ||
638 | adde r11,r8,r11 | ||
639 | addze r9,r9 | ||
640 | addc r10,r7,r10 | ||
641 | adde r11,r8,r11 | ||
642 | addze r9,r9 | ||
643 | #sqr_add_c2(a,4,3,c2,c3,c1); | ||
644 | $LD r5,`3*$BNSZ`(r4) | ||
645 | $LD r6,`4*$BNSZ`(r4) | ||
646 | $UMULL r7,r5,r6 | ||
647 | $UMULH r8,r5,r6 | ||
648 | |||
649 | addc r10,r7,r10 | ||
650 | adde r11,r8,r11 | ||
651 | addze r9,r9 | ||
652 | addc r10,r7,r10 | ||
653 | adde r11,r8,r11 | ||
654 | addze r9,r9 | ||
655 | $ST r10,`7*$BNSZ`(r3) #r[7]=c2; | ||
656 | #sqr_add_c(a,4,c3,c1,c2); | ||
657 | $UMULL r7,r6,r6 | ||
658 | $UMULH r8,r6,r6 | ||
659 | addc r11,r7,r11 | ||
660 | adde r9,r8,r9 | ||
661 | addze r10,r0 | ||
662 | #sqr_add_c2(a,5,3,c3,c1,c2); | ||
663 | $LD r6,`5*$BNSZ`(r4) | ||
664 | $UMULL r7,r5,r6 | ||
665 | $UMULH r8,r5,r6 | ||
666 | addc r11,r7,r11 | ||
667 | adde r9,r8,r9 | ||
668 | addze r10,r10 | ||
669 | addc r11,r7,r11 | ||
670 | adde r9,r8,r9 | ||
671 | addze r10,r10 | ||
672 | #sqr_add_c2(a,6,2,c3,c1,c2); | ||
673 | $LD r5,`2*$BNSZ`(r4) | ||
674 | $LD r6,`6*$BNSZ`(r4) | ||
675 | $UMULL r7,r5,r6 | ||
676 | $UMULH r8,r5,r6 | ||
677 | addc r11,r7,r11 | ||
678 | adde r9,r8,r9 | ||
679 | addze r10,r10 | ||
680 | |||
681 | addc r11,r7,r11 | ||
682 | adde r9,r8,r9 | ||
683 | addze r10,r10 | ||
684 | #sqr_add_c2(a,7,1,c3,c1,c2); | ||
685 | $LD r5,`1*$BNSZ`(r4) | ||
686 | $LD r6,`7*$BNSZ`(r4) | ||
687 | $UMULL r7,r5,r6 | ||
688 | $UMULH r8,r5,r6 | ||
689 | addc r11,r7,r11 | ||
690 | adde r9,r8,r9 | ||
691 | addze r10,r10 | ||
692 | addc r11,r7,r11 | ||
693 | adde r9,r8,r9 | ||
694 | addze r10,r10 | ||
695 | $ST r11,`8*$BNSZ`(r3) #r[8]=c3; | ||
696 | #sqr_add_c2(a,7,2,c1,c2,c3); | ||
697 | $LD r5,`2*$BNSZ`(r4) | ||
698 | $UMULL r7,r5,r6 | ||
699 | $UMULH r8,r5,r6 | ||
700 | |||
701 | addc r9,r7,r9 | ||
702 | adde r10,r8,r10 | ||
703 | addze r11,r0 | ||
704 | addc r9,r7,r9 | ||
705 | adde r10,r8,r10 | ||
706 | addze r11,r11 | ||
707 | #sqr_add_c2(a,6,3,c1,c2,c3); | ||
708 | $LD r5,`3*$BNSZ`(r4) | ||
709 | $LD r6,`6*$BNSZ`(r4) | ||
710 | $UMULL r7,r5,r6 | ||
711 | $UMULH r8,r5,r6 | ||
712 | addc r9,r7,r9 | ||
713 | adde r10,r8,r10 | ||
714 | addze r11,r11 | ||
715 | addc r9,r7,r9 | ||
716 | adde r10,r8,r10 | ||
717 | addze r11,r11 | ||
718 | #sqr_add_c2(a,5,4,c1,c2,c3); | ||
719 | $LD r5,`4*$BNSZ`(r4) | ||
720 | $LD r6,`5*$BNSZ`(r4) | ||
721 | $UMULL r7,r5,r6 | ||
722 | $UMULH r8,r5,r6 | ||
723 | addc r9,r7,r9 | ||
724 | adde r10,r8,r10 | ||
725 | addze r11,r11 | ||
726 | addc r9,r7,r9 | ||
727 | adde r10,r8,r10 | ||
728 | addze r11,r11 | ||
729 | $ST r9,`9*$BNSZ`(r3) #r[9]=c1; | ||
730 | #sqr_add_c(a,5,c2,c3,c1); | ||
731 | $UMULL r7,r6,r6 | ||
732 | $UMULH r8,r6,r6 | ||
733 | addc r10,r7,r10 | ||
734 | adde r11,r8,r11 | ||
735 | addze r9,r0 | ||
736 | #sqr_add_c2(a,6,4,c2,c3,c1); | ||
737 | $LD r6,`6*$BNSZ`(r4) | ||
738 | $UMULL r7,r5,r6 | ||
739 | $UMULH r8,r5,r6 | ||
740 | addc r10,r7,r10 | ||
741 | adde r11,r8,r11 | ||
742 | addze r9,r9 | ||
743 | addc r10,r7,r10 | ||
744 | adde r11,r8,r11 | ||
745 | addze r9,r9 | ||
746 | #sqr_add_c2(a,7,3,c2,c3,c1); | ||
747 | $LD r5,`3*$BNSZ`(r4) | ||
748 | $LD r6,`7*$BNSZ`(r4) | ||
749 | $UMULL r7,r5,r6 | ||
750 | $UMULH r8,r5,r6 | ||
751 | addc r10,r7,r10 | ||
752 | adde r11,r8,r11 | ||
753 | addze r9,r9 | ||
754 | addc r10,r7,r10 | ||
755 | adde r11,r8,r11 | ||
756 | addze r9,r9 | ||
757 | $ST r10,`10*$BNSZ`(r3) #r[10]=c2; | ||
758 | #sqr_add_c2(a,7,4,c3,c1,c2); | ||
759 | $LD r5,`4*$BNSZ`(r4) | ||
760 | $UMULL r7,r5,r6 | ||
761 | $UMULH r8,r5,r6 | ||
762 | addc r11,r7,r11 | ||
763 | adde r9,r8,r9 | ||
764 | addze r10,r0 | ||
765 | addc r11,r7,r11 | ||
766 | adde r9,r8,r9 | ||
767 | addze r10,r10 | ||
768 | #sqr_add_c2(a,6,5,c3,c1,c2); | ||
769 | $LD r5,`5*$BNSZ`(r4) | ||
770 | $LD r6,`6*$BNSZ`(r4) | ||
771 | $UMULL r7,r5,r6 | ||
772 | $UMULH r8,r5,r6 | ||
773 | addc r11,r7,r11 | ||
774 | adde r9,r8,r9 | ||
775 | addze r10,r10 | ||
776 | addc r11,r7,r11 | ||
777 | adde r9,r8,r9 | ||
778 | addze r10,r10 | ||
779 | $ST r11,`11*$BNSZ`(r3) #r[11]=c3; | ||
780 | #sqr_add_c(a,6,c1,c2,c3); | ||
781 | $UMULL r7,r6,r6 | ||
782 | $UMULH r8,r6,r6 | ||
783 | addc r9,r7,r9 | ||
784 | adde r10,r8,r10 | ||
785 | addze r11,r0 | ||
786 | #sqr_add_c2(a,7,5,c1,c2,c3) | ||
787 | $LD r6,`7*$BNSZ`(r4) | ||
788 | $UMULL r7,r5,r6 | ||
789 | $UMULH r8,r5,r6 | ||
790 | addc r9,r7,r9 | ||
791 | adde r10,r8,r10 | ||
792 | addze r11,r11 | ||
793 | addc r9,r7,r9 | ||
794 | adde r10,r8,r10 | ||
795 | addze r11,r11 | ||
796 | $ST r9,`12*$BNSZ`(r3) #r[12]=c1; | ||
797 | |||
798 | #sqr_add_c2(a,7,6,c2,c3,c1) | ||
799 | $LD r5,`6*$BNSZ`(r4) | ||
800 | $UMULL r7,r5,r6 | ||
801 | $UMULH r8,r5,r6 | ||
802 | addc r10,r7,r10 | ||
803 | adde r11,r8,r11 | ||
804 | addze r9,r0 | ||
805 | addc r10,r7,r10 | ||
806 | adde r11,r8,r11 | ||
807 | addze r9,r9 | ||
808 | $ST r10,`13*$BNSZ`(r3) #r[13]=c2; | ||
809 | #sqr_add_c(a,7,c3,c1,c2); | ||
810 | $UMULL r7,r6,r6 | ||
811 | $UMULH r8,r6,r6 | ||
812 | addc r11,r7,r11 | ||
813 | adde r9,r8,r9 | ||
814 | $ST r11,`14*$BNSZ`(r3) #r[14]=c3; | ||
815 | $ST r9, `15*$BNSZ`(r3) #r[15]=c1; | ||
816 | |||
817 | |||
818 | blr | ||
819 | .long 0 | ||
820 | .byte 0,12,0x14,0,0,0,2,0 | ||
821 | .long 0 | ||
822 | |||
823 | # | ||
824 | # NOTE: The following label name should be changed to | ||
825 | # "bn_mul_comba4" i.e. remove the first dot | ||
826 | # for the gcc compiler. This should be automatically | ||
827 | # done in the build | ||
828 | # | ||
829 | |||
830 | .align 4 | ||
831 | .bn_mul_comba4: | ||
832 | # | ||
833 | # This is an optimized version of the bn_mul_comba4 routine. | ||
834 | # | ||
835 | # void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b) | ||
836 | # r3 contains r | ||
837 | # r4 contains a | ||
838 | # r5 contains b | ||
839 | # r6, r7 are the 2 BN_ULONGs being multiplied. | ||
840 | # r8, r9 are the results of the 32x32 giving 64 multiply. | ||
841 | # r10, r11, r12 are the equivalents of c1, c2, and c3. | ||
842 | # | ||
843 | xor r0,r0,r0 #r0=0. Used in addze below. | ||
844 | #mul_add_c(a[0],b[0],c1,c2,c3); | ||
845 | $LD r6,`0*$BNSZ`(r4) | ||
846 | $LD r7,`0*$BNSZ`(r5) | ||
847 | $UMULL r10,r6,r7 | ||
848 | $UMULH r11,r6,r7 | ||
849 | $ST r10,`0*$BNSZ`(r3) #r[0]=c1 | ||
850 | #mul_add_c(a[0],b[1],c2,c3,c1); | ||
851 | $LD r7,`1*$BNSZ`(r5) | ||
852 | $UMULL r8,r6,r7 | ||
853 | $UMULH r9,r6,r7 | ||
854 | addc r11,r8,r11 | ||
855 | adde r12,r9,r0 | ||
856 | addze r10,r0 | ||
857 | #mul_add_c(a[1],b[0],c2,c3,c1); | ||
858 | $LD r6, `1*$BNSZ`(r4) | ||
859 | $LD r7, `0*$BNSZ`(r5) | ||
860 | $UMULL r8,r6,r7 | ||
861 | $UMULH r9,r6,r7 | ||
862 | addc r11,r8,r11 | ||
863 | adde r12,r9,r12 | ||
864 | addze r10,r10 | ||
865 | $ST r11,`1*$BNSZ`(r3) #r[1]=c2 | ||
866 | #mul_add_c(a[2],b[0],c3,c1,c2); | ||
867 | $LD r6,`2*$BNSZ`(r4) | ||
868 | $UMULL r8,r6,r7 | ||
869 | $UMULH r9,r6,r7 | ||
870 | addc r12,r8,r12 | ||
871 | adde r10,r9,r10 | ||
872 | addze r11,r0 | ||
873 | #mul_add_c(a[1],b[1],c3,c1,c2); | ||
874 | $LD r6,`1*$BNSZ`(r4) | ||
875 | $LD r7,`1*$BNSZ`(r5) | ||
876 | $UMULL r8,r6,r7 | ||
877 | $UMULH r9,r6,r7 | ||
878 | addc r12,r8,r12 | ||
879 | adde r10,r9,r10 | ||
880 | addze r11,r11 | ||
881 | #mul_add_c(a[0],b[2],c3,c1,c2); | ||
882 | $LD r6,`0*$BNSZ`(r4) | ||
883 | $LD r7,`2*$BNSZ`(r5) | ||
884 | $UMULL r8,r6,r7 | ||
885 | $UMULH r9,r6,r7 | ||
886 | addc r12,r8,r12 | ||
887 | adde r10,r9,r10 | ||
888 | addze r11,r11 | ||
889 | $ST r12,`2*$BNSZ`(r3) #r[2]=c3 | ||
890 | #mul_add_c(a[0],b[3],c1,c2,c3); | ||
891 | $LD r7,`3*$BNSZ`(r5) | ||
892 | $UMULL r8,r6,r7 | ||
893 | $UMULH r9,r6,r7 | ||
894 | addc r10,r8,r10 | ||
895 | adde r11,r9,r11 | ||
896 | addze r12,r0 | ||
897 | #mul_add_c(a[1],b[2],c1,c2,c3); | ||
898 | $LD r6,`1*$BNSZ`(r4) | ||
899 | $LD r7,`2*$BNSZ`(r5) | ||
900 | $UMULL r8,r6,r7 | ||
901 | $UMULH r9,r6,r7 | ||
902 | addc r10,r8,r10 | ||
903 | adde r11,r9,r11 | ||
904 | addze r12,r12 | ||
905 | #mul_add_c(a[2],b[1],c1,c2,c3); | ||
906 | $LD r6,`2*$BNSZ`(r4) | ||
907 | $LD r7,`1*$BNSZ`(r5) | ||
908 | $UMULL r8,r6,r7 | ||
909 | $UMULH r9,r6,r7 | ||
910 | addc r10,r8,r10 | ||
911 | adde r11,r9,r11 | ||
912 | addze r12,r12 | ||
913 | #mul_add_c(a[3],b[0],c1,c2,c3); | ||
914 | $LD r6,`3*$BNSZ`(r4) | ||
915 | $LD r7,`0*$BNSZ`(r5) | ||
916 | $UMULL r8,r6,r7 | ||
917 | $UMULH r9,r6,r7 | ||
918 | addc r10,r8,r10 | ||
919 | adde r11,r9,r11 | ||
920 | addze r12,r12 | ||
921 | $ST r10,`3*$BNSZ`(r3) #r[3]=c1 | ||
922 | #mul_add_c(a[3],b[1],c2,c3,c1); | ||
923 | $LD r7,`1*$BNSZ`(r5) | ||
924 | $UMULL r8,r6,r7 | ||
925 | $UMULH r9,r6,r7 | ||
926 | addc r11,r8,r11 | ||
927 | adde r12,r9,r12 | ||
928 | addze r10,r0 | ||
929 | #mul_add_c(a[2],b[2],c2,c3,c1); | ||
930 | $LD r6,`2*$BNSZ`(r4) | ||
931 | $LD r7,`2*$BNSZ`(r5) | ||
932 | $UMULL r8,r6,r7 | ||
933 | $UMULH r9,r6,r7 | ||
934 | addc r11,r8,r11 | ||
935 | adde r12,r9,r12 | ||
936 | addze r10,r10 | ||
937 | #mul_add_c(a[1],b[3],c2,c3,c1); | ||
938 | $LD r6,`1*$BNSZ`(r4) | ||
939 | $LD r7,`3*$BNSZ`(r5) | ||
940 | $UMULL r8,r6,r7 | ||
941 | $UMULH r9,r6,r7 | ||
942 | addc r11,r8,r11 | ||
943 | adde r12,r9,r12 | ||
944 | addze r10,r10 | ||
945 | $ST r11,`4*$BNSZ`(r3) #r[4]=c2 | ||
946 | #mul_add_c(a[2],b[3],c3,c1,c2); | ||
947 | $LD r6,`2*$BNSZ`(r4) | ||
948 | $UMULL r8,r6,r7 | ||
949 | $UMULH r9,r6,r7 | ||
950 | addc r12,r8,r12 | ||
951 | adde r10,r9,r10 | ||
952 | addze r11,r0 | ||
953 | #mul_add_c(a[3],b[2],c3,c1,c2); | ||
954 | $LD r6,`3*$BNSZ`(r4) | ||
955 | $LD r7,`2*$BNSZ`(r5) | ||
956 | $UMULL r8,r6,r7 | ||
957 | $UMULH r9,r6,r7 | ||
958 | addc r12,r8,r12 | ||
959 | adde r10,r9,r10 | ||
960 | addze r11,r11 | ||
961 | $ST r12,`5*$BNSZ`(r3) #r[5]=c3 | ||
962 | #mul_add_c(a[3],b[3],c1,c2,c3); | ||
963 | $LD r7,`3*$BNSZ`(r5) | ||
964 | $UMULL r8,r6,r7 | ||
965 | $UMULH r9,r6,r7 | ||
966 | addc r10,r8,r10 | ||
967 | adde r11,r9,r11 | ||
968 | |||
969 | $ST r10,`6*$BNSZ`(r3) #r[6]=c1 | ||
970 | $ST r11,`7*$BNSZ`(r3) #r[7]=c2 | ||
971 | blr | ||
972 | .long 0 | ||
973 | .byte 0,12,0x14,0,0,0,3,0 | ||
974 | .long 0 | ||
975 | |||
976 | # | ||
977 | # NOTE: The following label name should be changed to | ||
978 | # "bn_mul_comba8" i.e. remove the first dot | ||
979 | # for the gcc compiler. This should be automatically | ||
980 | # done in the build | ||
981 | # | ||
982 | |||
983 | .align 4 | ||
984 | .bn_mul_comba8: | ||
985 | # | ||
986 | # Optimized version of the bn_mul_comba8 routine. | ||
987 | # | ||
988 | # void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b) | ||
989 | # r3 contains r | ||
990 | # r4 contains a | ||
991 | # r5 contains b | ||
992 | # r6, r7 are the 2 BN_ULONGs being multiplied. | ||
993 | # r8, r9 are the results of the 32x32 giving 64 multiply. | ||
994 | # r10, r11, r12 are the equivalents of c1, c2, and c3. | ||
995 | # | ||
996 | xor r0,r0,r0 #r0=0. Used in addze below. | ||
997 | |||
998 | #mul_add_c(a[0],b[0],c1,c2,c3); | ||
999 | $LD r6,`0*$BNSZ`(r4) #a[0] | ||
1000 | $LD r7,`0*$BNSZ`(r5) #b[0] | ||
1001 | $UMULL r10,r6,r7 | ||
1002 | $UMULH r11,r6,r7 | ||
1003 | $ST r10,`0*$BNSZ`(r3) #r[0]=c1; | ||
1004 | #mul_add_c(a[0],b[1],c2,c3,c1); | ||
1005 | $LD r7,`1*$BNSZ`(r5) | ||
1006 | $UMULL r8,r6,r7 | ||
1007 | $UMULH r9,r6,r7 | ||
1008 | addc r11,r11,r8 | ||
1009 | addze r12,r9 # since we didnt set r12 to zero before. | ||
1010 | addze r10,r0 | ||
1011 | #mul_add_c(a[1],b[0],c2,c3,c1); | ||
1012 | $LD r6,`1*$BNSZ`(r4) | ||
1013 | $LD r7,`0*$BNSZ`(r5) | ||
1014 | $UMULL r8,r6,r7 | ||
1015 | $UMULH r9,r6,r7 | ||
1016 | addc r11,r11,r8 | ||
1017 | adde r12,r12,r9 | ||
1018 | addze r10,r10 | ||
1019 | $ST r11,`1*$BNSZ`(r3) #r[1]=c2; | ||
1020 | #mul_add_c(a[2],b[0],c3,c1,c2); | ||
1021 | $LD r6,`2*$BNSZ`(r4) | ||
1022 | $UMULL r8,r6,r7 | ||
1023 | $UMULH r9,r6,r7 | ||
1024 | addc r12,r12,r8 | ||
1025 | adde r10,r10,r9 | ||
1026 | addze r11,r0 | ||
1027 | #mul_add_c(a[1],b[1],c3,c1,c2); | ||
1028 | $LD r6,`1*$BNSZ`(r4) | ||
1029 | $LD r7,`1*$BNSZ`(r5) | ||
1030 | $UMULL r8,r6,r7 | ||
1031 | $UMULH r9,r6,r7 | ||
1032 | addc r12,r12,r8 | ||
1033 | adde r10,r10,r9 | ||
1034 | addze r11,r11 | ||
1035 | #mul_add_c(a[0],b[2],c3,c1,c2); | ||
1036 | $LD r6,`0*$BNSZ`(r4) | ||
1037 | $LD r7,`2*$BNSZ`(r5) | ||
1038 | $UMULL r8,r6,r7 | ||
1039 | $UMULH r9,r6,r7 | ||
1040 | addc r12,r12,r8 | ||
1041 | adde r10,r10,r9 | ||
1042 | addze r11,r11 | ||
1043 | $ST r12,`2*$BNSZ`(r3) #r[2]=c3; | ||
1044 | #mul_add_c(a[0],b[3],c1,c2,c3); | ||
1045 | $LD r7,`3*$BNSZ`(r5) | ||
1046 | $UMULL r8,r6,r7 | ||
1047 | $UMULH r9,r6,r7 | ||
1048 | addc r10,r10,r8 | ||
1049 | adde r11,r11,r9 | ||
1050 | addze r12,r0 | ||
1051 | #mul_add_c(a[1],b[2],c1,c2,c3); | ||
1052 | $LD r6,`1*$BNSZ`(r4) | ||
1053 | $LD r7,`2*$BNSZ`(r5) | ||
1054 | $UMULL r8,r6,r7 | ||
1055 | $UMULH r9,r6,r7 | ||
1056 | addc r10,r10,r8 | ||
1057 | adde r11,r11,r9 | ||
1058 | addze r12,r12 | ||
1059 | |||
1060 | #mul_add_c(a[2],b[1],c1,c2,c3); | ||
1061 | $LD r6,`2*$BNSZ`(r4) | ||
1062 | $LD r7,`1*$BNSZ`(r5) | ||
1063 | $UMULL r8,r6,r7 | ||
1064 | $UMULH r9,r6,r7 | ||
1065 | addc r10,r10,r8 | ||
1066 | adde r11,r11,r9 | ||
1067 | addze r12,r12 | ||
1068 | #mul_add_c(a[3],b[0],c1,c2,c3); | ||
1069 | $LD r6,`3*$BNSZ`(r4) | ||
1070 | $LD r7,`0*$BNSZ`(r5) | ||
1071 | $UMULL r8,r6,r7 | ||
1072 | $UMULH r9,r6,r7 | ||
1073 | addc r10,r10,r8 | ||
1074 | adde r11,r11,r9 | ||
1075 | addze r12,r12 | ||
1076 | $ST r10,`3*$BNSZ`(r3) #r[3]=c1; | ||
1077 | #mul_add_c(a[4],b[0],c2,c3,c1); | ||
1078 | $LD r6,`4*$BNSZ`(r4) | ||
1079 | $UMULL r8,r6,r7 | ||
1080 | $UMULH r9,r6,r7 | ||
1081 | addc r11,r11,r8 | ||
1082 | adde r12,r12,r9 | ||
1083 | addze r10,r0 | ||
1084 | #mul_add_c(a[3],b[1],c2,c3,c1); | ||
1085 | $LD r6,`3*$BNSZ`(r4) | ||
1086 | $LD r7,`1*$BNSZ`(r5) | ||
1087 | $UMULL r8,r6,r7 | ||
1088 | $UMULH r9,r6,r7 | ||
1089 | addc r11,r11,r8 | ||
1090 | adde r12,r12,r9 | ||
1091 | addze r10,r10 | ||
1092 | #mul_add_c(a[2],b[2],c2,c3,c1); | ||
1093 | $LD r6,`2*$BNSZ`(r4) | ||
1094 | $LD r7,`2*$BNSZ`(r5) | ||
1095 | $UMULL r8,r6,r7 | ||
1096 | $UMULH r9,r6,r7 | ||
1097 | addc r11,r11,r8 | ||
1098 | adde r12,r12,r9 | ||
1099 | addze r10,r10 | ||
1100 | #mul_add_c(a[1],b[3],c2,c3,c1); | ||
1101 | $LD r6,`1*$BNSZ`(r4) | ||
1102 | $LD r7,`3*$BNSZ`(r5) | ||
1103 | $UMULL r8,r6,r7 | ||
1104 | $UMULH r9,r6,r7 | ||
1105 | addc r11,r11,r8 | ||
1106 | adde r12,r12,r9 | ||
1107 | addze r10,r10 | ||
1108 | #mul_add_c(a[0],b[4],c2,c3,c1); | ||
1109 | $LD r6,`0*$BNSZ`(r4) | ||
1110 | $LD r7,`4*$BNSZ`(r5) | ||
1111 | $UMULL r8,r6,r7 | ||
1112 | $UMULH r9,r6,r7 | ||
1113 | addc r11,r11,r8 | ||
1114 | adde r12,r12,r9 | ||
1115 | addze r10,r10 | ||
1116 | $ST r11,`4*$BNSZ`(r3) #r[4]=c2; | ||
1117 | #mul_add_c(a[0],b[5],c3,c1,c2); | ||
1118 | $LD r7,`5*$BNSZ`(r5) | ||
1119 | $UMULL r8,r6,r7 | ||
1120 | $UMULH r9,r6,r7 | ||
1121 | addc r12,r12,r8 | ||
1122 | adde r10,r10,r9 | ||
1123 | addze r11,r0 | ||
1124 | #mul_add_c(a[1],b[4],c3,c1,c2); | ||
1125 | $LD r6,`1*$BNSZ`(r4) | ||
1126 | $LD r7,`4*$BNSZ`(r5) | ||
1127 | $UMULL r8,r6,r7 | ||
1128 | $UMULH r9,r6,r7 | ||
1129 | addc r12,r12,r8 | ||
1130 | adde r10,r10,r9 | ||
1131 | addze r11,r11 | ||
1132 | #mul_add_c(a[2],b[3],c3,c1,c2); | ||
1133 | $LD r6,`2*$BNSZ`(r4) | ||
1134 | $LD r7,`3*$BNSZ`(r5) | ||
1135 | $UMULL r8,r6,r7 | ||
1136 | $UMULH r9,r6,r7 | ||
1137 | addc r12,r12,r8 | ||
1138 | adde r10,r10,r9 | ||
1139 | addze r11,r11 | ||
1140 | #mul_add_c(a[3],b[2],c3,c1,c2); | ||
1141 | $LD r6,`3*$BNSZ`(r4) | ||
1142 | $LD r7,`2*$BNSZ`(r5) | ||
1143 | $UMULL r8,r6,r7 | ||
1144 | $UMULH r9,r6,r7 | ||
1145 | addc r12,r12,r8 | ||
1146 | adde r10,r10,r9 | ||
1147 | addze r11,r11 | ||
1148 | #mul_add_c(a[4],b[1],c3,c1,c2); | ||
1149 | $LD r6,`4*$BNSZ`(r4) | ||
1150 | $LD r7,`1*$BNSZ`(r5) | ||
1151 | $UMULL r8,r6,r7 | ||
1152 | $UMULH r9,r6,r7 | ||
1153 | addc r12,r12,r8 | ||
1154 | adde r10,r10,r9 | ||
1155 | addze r11,r11 | ||
1156 | #mul_add_c(a[5],b[0],c3,c1,c2); | ||
1157 | $LD r6,`5*$BNSZ`(r4) | ||
1158 | $LD r7,`0*$BNSZ`(r5) | ||
1159 | $UMULL r8,r6,r7 | ||
1160 | $UMULH r9,r6,r7 | ||
1161 | addc r12,r12,r8 | ||
1162 | adde r10,r10,r9 | ||
1163 | addze r11,r11 | ||
1164 | $ST r12,`5*$BNSZ`(r3) #r[5]=c3; | ||
1165 | #mul_add_c(a[6],b[0],c1,c2,c3); | ||
1166 | $LD r6,`6*$BNSZ`(r4) | ||
1167 | $UMULL r8,r6,r7 | ||
1168 | $UMULH r9,r6,r7 | ||
1169 | addc r10,r10,r8 | ||
1170 | adde r11,r11,r9 | ||
1171 | addze r12,r0 | ||
1172 | #mul_add_c(a[5],b[1],c1,c2,c3); | ||
1173 | $LD r6,`5*$BNSZ`(r4) | ||
1174 | $LD r7,`1*$BNSZ`(r5) | ||
1175 | $UMULL r8,r6,r7 | ||
1176 | $UMULH r9,r6,r7 | ||
1177 | addc r10,r10,r8 | ||
1178 | adde r11,r11,r9 | ||
1179 | addze r12,r12 | ||
1180 | #mul_add_c(a[4],b[2],c1,c2,c3); | ||
1181 | $LD r6,`4*$BNSZ`(r4) | ||
1182 | $LD r7,`2*$BNSZ`(r5) | ||
1183 | $UMULL r8,r6,r7 | ||
1184 | $UMULH r9,r6,r7 | ||
1185 | addc r10,r10,r8 | ||
1186 | adde r11,r11,r9 | ||
1187 | addze r12,r12 | ||
1188 | #mul_add_c(a[3],b[3],c1,c2,c3); | ||
1189 | $LD r6,`3*$BNSZ`(r4) | ||
1190 | $LD r7,`3*$BNSZ`(r5) | ||
1191 | $UMULL r8,r6,r7 | ||
1192 | $UMULH r9,r6,r7 | ||
1193 | addc r10,r10,r8 | ||
1194 | adde r11,r11,r9 | ||
1195 | addze r12,r12 | ||
1196 | #mul_add_c(a[2],b[4],c1,c2,c3); | ||
1197 | $LD r6,`2*$BNSZ`(r4) | ||
1198 | $LD r7,`4*$BNSZ`(r5) | ||
1199 | $UMULL r8,r6,r7 | ||
1200 | $UMULH r9,r6,r7 | ||
1201 | addc r10,r10,r8 | ||
1202 | adde r11,r11,r9 | ||
1203 | addze r12,r12 | ||
1204 | #mul_add_c(a[1],b[5],c1,c2,c3); | ||
1205 | $LD r6,`1*$BNSZ`(r4) | ||
1206 | $LD r7,`5*$BNSZ`(r5) | ||
1207 | $UMULL r8,r6,r7 | ||
1208 | $UMULH r9,r6,r7 | ||
1209 | addc r10,r10,r8 | ||
1210 | adde r11,r11,r9 | ||
1211 | addze r12,r12 | ||
1212 | #mul_add_c(a[0],b[6],c1,c2,c3); | ||
1213 | $LD r6,`0*$BNSZ`(r4) | ||
1214 | $LD r7,`6*$BNSZ`(r5) | ||
1215 | $UMULL r8,r6,r7 | ||
1216 | $UMULH r9,r6,r7 | ||
1217 | addc r10,r10,r8 | ||
1218 | adde r11,r11,r9 | ||
1219 | addze r12,r12 | ||
1220 | $ST r10,`6*$BNSZ`(r3) #r[6]=c1; | ||
1221 | #mul_add_c(a[0],b[7],c2,c3,c1); | ||
1222 | $LD r7,`7*$BNSZ`(r5) | ||
1223 | $UMULL r8,r6,r7 | ||
1224 | $UMULH r9,r6,r7 | ||
1225 | addc r11,r11,r8 | ||
1226 | adde r12,r12,r9 | ||
1227 | addze r10,r0 | ||
1228 | #mul_add_c(a[1],b[6],c2,c3,c1); | ||
1229 | $LD r6,`1*$BNSZ`(r4) | ||
1230 | $LD r7,`6*$BNSZ`(r5) | ||
1231 | $UMULL r8,r6,r7 | ||
1232 | $UMULH r9,r6,r7 | ||
1233 | addc r11,r11,r8 | ||
1234 | adde r12,r12,r9 | ||
1235 | addze r10,r10 | ||
1236 | #mul_add_c(a[2],b[5],c2,c3,c1); | ||
1237 | $LD r6,`2*$BNSZ`(r4) | ||
1238 | $LD r7,`5*$BNSZ`(r5) | ||
1239 | $UMULL r8,r6,r7 | ||
1240 | $UMULH r9,r6,r7 | ||
1241 | addc r11,r11,r8 | ||
1242 | adde r12,r12,r9 | ||
1243 | addze r10,r10 | ||
1244 | #mul_add_c(a[3],b[4],c2,c3,c1); | ||
1245 | $LD r6,`3*$BNSZ`(r4) | ||
1246 | $LD r7,`4*$BNSZ`(r5) | ||
1247 | $UMULL r8,r6,r7 | ||
1248 | $UMULH r9,r6,r7 | ||
1249 | addc r11,r11,r8 | ||
1250 | adde r12,r12,r9 | ||
1251 | addze r10,r10 | ||
1252 | #mul_add_c(a[4],b[3],c2,c3,c1); | ||
1253 | $LD r6,`4*$BNSZ`(r4) | ||
1254 | $LD r7,`3*$BNSZ`(r5) | ||
1255 | $UMULL r8,r6,r7 | ||
1256 | $UMULH r9,r6,r7 | ||
1257 | addc r11,r11,r8 | ||
1258 | adde r12,r12,r9 | ||
1259 | addze r10,r10 | ||
1260 | #mul_add_c(a[5],b[2],c2,c3,c1); | ||
1261 | $LD r6,`5*$BNSZ`(r4) | ||
1262 | $LD r7,`2*$BNSZ`(r5) | ||
1263 | $UMULL r8,r6,r7 | ||
1264 | $UMULH r9,r6,r7 | ||
1265 | addc r11,r11,r8 | ||
1266 | adde r12,r12,r9 | ||
1267 | addze r10,r10 | ||
1268 | #mul_add_c(a[6],b[1],c2,c3,c1); | ||
1269 | $LD r6,`6*$BNSZ`(r4) | ||
1270 | $LD r7,`1*$BNSZ`(r5) | ||
1271 | $UMULL r8,r6,r7 | ||
1272 | $UMULH r9,r6,r7 | ||
1273 | addc r11,r11,r8 | ||
1274 | adde r12,r12,r9 | ||
1275 | addze r10,r10 | ||
1276 | #mul_add_c(a[7],b[0],c2,c3,c1); | ||
1277 | $LD r6,`7*$BNSZ`(r4) | ||
1278 | $LD r7,`0*$BNSZ`(r5) | ||
1279 | $UMULL r8,r6,r7 | ||
1280 | $UMULH r9,r6,r7 | ||
1281 | addc r11,r11,r8 | ||
1282 | adde r12,r12,r9 | ||
1283 | addze r10,r10 | ||
1284 | $ST r11,`7*$BNSZ`(r3) #r[7]=c2; | ||
1285 | #mul_add_c(a[7],b[1],c3,c1,c2); | ||
1286 | $LD r7,`1*$BNSZ`(r5) | ||
1287 | $UMULL r8,r6,r7 | ||
1288 | $UMULH r9,r6,r7 | ||
1289 | addc r12,r12,r8 | ||
1290 | adde r10,r10,r9 | ||
1291 | addze r11,r0 | ||
1292 | #mul_add_c(a[6],b[2],c3,c1,c2); | ||
1293 | $LD r6,`6*$BNSZ`(r4) | ||
1294 | $LD r7,`2*$BNSZ`(r5) | ||
1295 | $UMULL r8,r6,r7 | ||
1296 | $UMULH r9,r6,r7 | ||
1297 | addc r12,r12,r8 | ||
1298 | adde r10,r10,r9 | ||
1299 | addze r11,r11 | ||
1300 | #mul_add_c(a[5],b[3],c3,c1,c2); | ||
1301 | $LD r6,`5*$BNSZ`(r4) | ||
1302 | $LD r7,`3*$BNSZ`(r5) | ||
1303 | $UMULL r8,r6,r7 | ||
1304 | $UMULH r9,r6,r7 | ||
1305 | addc r12,r12,r8 | ||
1306 | adde r10,r10,r9 | ||
1307 | addze r11,r11 | ||
1308 | #mul_add_c(a[4],b[4],c3,c1,c2); | ||
1309 | $LD r6,`4*$BNSZ`(r4) | ||
1310 | $LD r7,`4*$BNSZ`(r5) | ||
1311 | $UMULL r8,r6,r7 | ||
1312 | $UMULH r9,r6,r7 | ||
1313 | addc r12,r12,r8 | ||
1314 | adde r10,r10,r9 | ||
1315 | addze r11,r11 | ||
1316 | #mul_add_c(a[3],b[5],c3,c1,c2); | ||
1317 | $LD r6,`3*$BNSZ`(r4) | ||
1318 | $LD r7,`5*$BNSZ`(r5) | ||
1319 | $UMULL r8,r6,r7 | ||
1320 | $UMULH r9,r6,r7 | ||
1321 | addc r12,r12,r8 | ||
1322 | adde r10,r10,r9 | ||
1323 | addze r11,r11 | ||
1324 | #mul_add_c(a[2],b[6],c3,c1,c2); | ||
1325 | $LD r6,`2*$BNSZ`(r4) | ||
1326 | $LD r7,`6*$BNSZ`(r5) | ||
1327 | $UMULL r8,r6,r7 | ||
1328 | $UMULH r9,r6,r7 | ||
1329 | addc r12,r12,r8 | ||
1330 | adde r10,r10,r9 | ||
1331 | addze r11,r11 | ||
1332 | #mul_add_c(a[1],b[7],c3,c1,c2); | ||
1333 | $LD r6,`1*$BNSZ`(r4) | ||
1334 | $LD r7,`7*$BNSZ`(r5) | ||
1335 | $UMULL r8,r6,r7 | ||
1336 | $UMULH r9,r6,r7 | ||
1337 | addc r12,r12,r8 | ||
1338 | adde r10,r10,r9 | ||
1339 | addze r11,r11 | ||
1340 | $ST r12,`8*$BNSZ`(r3) #r[8]=c3; | ||
1341 | #mul_add_c(a[2],b[7],c1,c2,c3); | ||
1342 | $LD r6,`2*$BNSZ`(r4) | ||
1343 | $UMULL r8,r6,r7 | ||
1344 | $UMULH r9,r6,r7 | ||
1345 | addc r10,r10,r8 | ||
1346 | adde r11,r11,r9 | ||
1347 | addze r12,r0 | ||
1348 | #mul_add_c(a[3],b[6],c1,c2,c3); | ||
1349 | $LD r6,`3*$BNSZ`(r4) | ||
1350 | $LD r7,`6*$BNSZ`(r5) | ||
1351 | $UMULL r8,r6,r7 | ||
1352 | $UMULH r9,r6,r7 | ||
1353 | addc r10,r10,r8 | ||
1354 | adde r11,r11,r9 | ||
1355 | addze r12,r12 | ||
1356 | #mul_add_c(a[4],b[5],c1,c2,c3); | ||
1357 | $LD r6,`4*$BNSZ`(r4) | ||
1358 | $LD r7,`5*$BNSZ`(r5) | ||
1359 | $UMULL r8,r6,r7 | ||
1360 | $UMULH r9,r6,r7 | ||
1361 | addc r10,r10,r8 | ||
1362 | adde r11,r11,r9 | ||
1363 | addze r12,r12 | ||
1364 | #mul_add_c(a[5],b[4],c1,c2,c3); | ||
1365 | $LD r6,`5*$BNSZ`(r4) | ||
1366 | $LD r7,`4*$BNSZ`(r5) | ||
1367 | $UMULL r8,r6,r7 | ||
1368 | $UMULH r9,r6,r7 | ||
1369 | addc r10,r10,r8 | ||
1370 | adde r11,r11,r9 | ||
1371 | addze r12,r12 | ||
1372 | #mul_add_c(a[6],b[3],c1,c2,c3); | ||
1373 | $LD r6,`6*$BNSZ`(r4) | ||
1374 | $LD r7,`3*$BNSZ`(r5) | ||
1375 | $UMULL r8,r6,r7 | ||
1376 | $UMULH r9,r6,r7 | ||
1377 | addc r10,r10,r8 | ||
1378 | adde r11,r11,r9 | ||
1379 | addze r12,r12 | ||
1380 | #mul_add_c(a[7],b[2],c1,c2,c3); | ||
1381 | $LD r6,`7*$BNSZ`(r4) | ||
1382 | $LD r7,`2*$BNSZ`(r5) | ||
1383 | $UMULL r8,r6,r7 | ||
1384 | $UMULH r9,r6,r7 | ||
1385 | addc r10,r10,r8 | ||
1386 | adde r11,r11,r9 | ||
1387 | addze r12,r12 | ||
1388 | $ST r10,`9*$BNSZ`(r3) #r[9]=c1; | ||
1389 | #mul_add_c(a[7],b[3],c2,c3,c1); | ||
1390 | $LD r7,`3*$BNSZ`(r5) | ||
1391 | $UMULL r8,r6,r7 | ||
1392 | $UMULH r9,r6,r7 | ||
1393 | addc r11,r11,r8 | ||
1394 | adde r12,r12,r9 | ||
1395 | addze r10,r0 | ||
1396 | #mul_add_c(a[6],b[4],c2,c3,c1); | ||
1397 | $LD r6,`6*$BNSZ`(r4) | ||
1398 | $LD r7,`4*$BNSZ`(r5) | ||
1399 | $UMULL r8,r6,r7 | ||
1400 | $UMULH r9,r6,r7 | ||
1401 | addc r11,r11,r8 | ||
1402 | adde r12,r12,r9 | ||
1403 | addze r10,r10 | ||
1404 | #mul_add_c(a[5],b[5],c2,c3,c1); | ||
1405 | $LD r6,`5*$BNSZ`(r4) | ||
1406 | $LD r7,`5*$BNSZ`(r5) | ||
1407 | $UMULL r8,r6,r7 | ||
1408 | $UMULH r9,r6,r7 | ||
1409 | addc r11,r11,r8 | ||
1410 | adde r12,r12,r9 | ||
1411 | addze r10,r10 | ||
1412 | #mul_add_c(a[4],b[6],c2,c3,c1); | ||
1413 | $LD r6,`4*$BNSZ`(r4) | ||
1414 | $LD r7,`6*$BNSZ`(r5) | ||
1415 | $UMULL r8,r6,r7 | ||
1416 | $UMULH r9,r6,r7 | ||
1417 | addc r11,r11,r8 | ||
1418 | adde r12,r12,r9 | ||
1419 | addze r10,r10 | ||
1420 | #mul_add_c(a[3],b[7],c2,c3,c1); | ||
1421 | $LD r6,`3*$BNSZ`(r4) | ||
1422 | $LD r7,`7*$BNSZ`(r5) | ||
1423 | $UMULL r8,r6,r7 | ||
1424 | $UMULH r9,r6,r7 | ||
1425 | addc r11,r11,r8 | ||
1426 | adde r12,r12,r9 | ||
1427 | addze r10,r10 | ||
1428 | $ST r11,`10*$BNSZ`(r3) #r[10]=c2; | ||
1429 | #mul_add_c(a[4],b[7],c3,c1,c2); | ||
1430 | $LD r6,`4*$BNSZ`(r4) | ||
1431 | $UMULL r8,r6,r7 | ||
1432 | $UMULH r9,r6,r7 | ||
1433 | addc r12,r12,r8 | ||
1434 | adde r10,r10,r9 | ||
1435 | addze r11,r0 | ||
1436 | #mul_add_c(a[5],b[6],c3,c1,c2); | ||
1437 | $LD r6,`5*$BNSZ`(r4) | ||
1438 | $LD r7,`6*$BNSZ`(r5) | ||
1439 | $UMULL r8,r6,r7 | ||
1440 | $UMULH r9,r6,r7 | ||
1441 | addc r12,r12,r8 | ||
1442 | adde r10,r10,r9 | ||
1443 | addze r11,r11 | ||
1444 | #mul_add_c(a[6],b[5],c3,c1,c2); | ||
1445 | $LD r6,`6*$BNSZ`(r4) | ||
1446 | $LD r7,`5*$BNSZ`(r5) | ||
1447 | $UMULL r8,r6,r7 | ||
1448 | $UMULH r9,r6,r7 | ||
1449 | addc r12,r12,r8 | ||
1450 | adde r10,r10,r9 | ||
1451 | addze r11,r11 | ||
1452 | #mul_add_c(a[7],b[4],c3,c1,c2); | ||
1453 | $LD r6,`7*$BNSZ`(r4) | ||
1454 | $LD r7,`4*$BNSZ`(r5) | ||
1455 | $UMULL r8,r6,r7 | ||
1456 | $UMULH r9,r6,r7 | ||
1457 | addc r12,r12,r8 | ||
1458 | adde r10,r10,r9 | ||
1459 | addze r11,r11 | ||
1460 | $ST r12,`11*$BNSZ`(r3) #r[11]=c3; | ||
1461 | #mul_add_c(a[7],b[5],c1,c2,c3); | ||
1462 | $LD r7,`5*$BNSZ`(r5) | ||
1463 | $UMULL r8,r6,r7 | ||
1464 | $UMULH r9,r6,r7 | ||
1465 | addc r10,r10,r8 | ||
1466 | adde r11,r11,r9 | ||
1467 | addze r12,r0 | ||
1468 | #mul_add_c(a[6],b[6],c1,c2,c3); | ||
1469 | $LD r6,`6*$BNSZ`(r4) | ||
1470 | $LD r7,`6*$BNSZ`(r5) | ||
1471 | $UMULL r8,r6,r7 | ||
1472 | $UMULH r9,r6,r7 | ||
1473 | addc r10,r10,r8 | ||
1474 | adde r11,r11,r9 | ||
1475 | addze r12,r12 | ||
1476 | #mul_add_c(a[5],b[7],c1,c2,c3); | ||
1477 | $LD r6,`5*$BNSZ`(r4) | ||
1478 | $LD r7,`7*$BNSZ`(r5) | ||
1479 | $UMULL r8,r6,r7 | ||
1480 | $UMULH r9,r6,r7 | ||
1481 | addc r10,r10,r8 | ||
1482 | adde r11,r11,r9 | ||
1483 | addze r12,r12 | ||
1484 | $ST r10,`12*$BNSZ`(r3) #r[12]=c1; | ||
1485 | #mul_add_c(a[6],b[7],c2,c3,c1); | ||
1486 | $LD r6,`6*$BNSZ`(r4) | ||
1487 | $UMULL r8,r6,r7 | ||
1488 | $UMULH r9,r6,r7 | ||
1489 | addc r11,r11,r8 | ||
1490 | adde r12,r12,r9 | ||
1491 | addze r10,r0 | ||
1492 | #mul_add_c(a[7],b[6],c2,c3,c1); | ||
1493 | $LD r6,`7*$BNSZ`(r4) | ||
1494 | $LD r7,`6*$BNSZ`(r5) | ||
1495 | $UMULL r8,r6,r7 | ||
1496 | $UMULH r9,r6,r7 | ||
1497 | addc r11,r11,r8 | ||
1498 | adde r12,r12,r9 | ||
1499 | addze r10,r10 | ||
1500 | $ST r11,`13*$BNSZ`(r3) #r[13]=c2; | ||
1501 | #mul_add_c(a[7],b[7],c3,c1,c2); | ||
1502 | $LD r7,`7*$BNSZ`(r5) | ||
1503 | $UMULL r8,r6,r7 | ||
1504 | $UMULH r9,r6,r7 | ||
1505 | addc r12,r12,r8 | ||
1506 | adde r10,r10,r9 | ||
1507 | $ST r12,`14*$BNSZ`(r3) #r[14]=c3; | ||
1508 | $ST r10,`15*$BNSZ`(r3) #r[15]=c1; | ||
1509 | blr | ||
1510 | .long 0 | ||
1511 | .byte 0,12,0x14,0,0,0,3,0 | ||
1512 | .long 0 | ||
1513 | |||
1514 | # | ||
1515 | # NOTE: The following label name should be changed to | ||
1516 | # "bn_sub_words" i.e. remove the first dot | ||
1517 | # for the gcc compiler. This should be automatically | ||
1518 | # done in the build | ||
1519 | # | ||
1520 | # | ||
1521 | .align 4 | ||
1522 | .bn_sub_words: | ||
1523 | # | ||
1524 | # Handcoded version of bn_sub_words | ||
1525 | # | ||
1526 | #BN_ULONG bn_sub_words(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n) | ||
1527 | # | ||
1528 | # r3 = r | ||
1529 | # r4 = a | ||
1530 | # r5 = b | ||
1531 | # r6 = n | ||
1532 | # | ||
1533 | # Note: No loop unrolling done since this is not a performance | ||
1534 | # critical loop. | ||
1535 | |||
1536 | xor r0,r0,r0 #set r0 = 0 | ||
1537 | # | ||
1538 | # check for r6 = 0 AND set carry bit. | ||
1539 | # | ||
1540 | subfc. r7,r0,r6 # If r6 is 0 then result is 0. | ||
1541 | # if r6 > 0 then result !=0 | ||
1542 | # In either case carry bit is set. | ||
1543 | beq Lppcasm_sub_adios | ||
1544 | addi r4,r4,-$BNSZ | ||
1545 | addi r3,r3,-$BNSZ | ||
1546 | addi r5,r5,-$BNSZ | ||
1547 | mtctr r6 | ||
1548 | Lppcasm_sub_mainloop: | ||
1549 | $LDU r7,$BNSZ(r4) | ||
1550 | $LDU r8,$BNSZ(r5) | ||
1551 | subfe r6,r8,r7 # r6 = r7+carry bit + onescomplement(r8) | ||
1552 | # if carry = 1 this is r7-r8. Else it | ||
1553 | # is r7-r8 -1 as we need. | ||
1554 | $STU r6,$BNSZ(r3) | ||
1555 | bdnz- Lppcasm_sub_mainloop | ||
1556 | Lppcasm_sub_adios: | ||
1557 | subfze r3,r0 # if carry bit is set then r3 = 0 else -1 | ||
1558 | andi. r3,r3,1 # keep only last bit. | ||
1559 | blr | ||
1560 | .long 0 | ||
1561 | .byte 0,12,0x14,0,0,0,4,0 | ||
1562 | .long 0 | ||
1563 | |||
1564 | # | ||
1565 | # NOTE: The following label name should be changed to | ||
1566 | # "bn_add_words" i.e. remove the first dot | ||
1567 | # for the gcc compiler. This should be automatically | ||
1568 | # done in the build | ||
1569 | # | ||
1570 | |||
1571 | .align 4 | ||
1572 | .bn_add_words: | ||
1573 | # | ||
1574 | # Handcoded version of bn_add_words | ||
1575 | # | ||
1576 | #BN_ULONG bn_add_words(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n) | ||
1577 | # | ||
1578 | # r3 = r | ||
1579 | # r4 = a | ||
1580 | # r5 = b | ||
1581 | # r6 = n | ||
1582 | # | ||
1583 | # Note: No loop unrolling done since this is not a performance | ||
1584 | # critical loop. | ||
1585 | |||
1586 | xor r0,r0,r0 | ||
1587 | # | ||
1588 | # check for r6 = 0. Is this needed? | ||
1589 | # | ||
1590 | addic. r6,r6,0 #test r6 and clear carry bit. | ||
1591 | beq Lppcasm_add_adios | ||
1592 | addi r4,r4,-$BNSZ | ||
1593 | addi r3,r3,-$BNSZ | ||
1594 | addi r5,r5,-$BNSZ | ||
1595 | mtctr r6 | ||
1596 | Lppcasm_add_mainloop: | ||
1597 | $LDU r7,$BNSZ(r4) | ||
1598 | $LDU r8,$BNSZ(r5) | ||
1599 | adde r8,r7,r8 | ||
1600 | $STU r8,$BNSZ(r3) | ||
1601 | bdnz- Lppcasm_add_mainloop | ||
1602 | Lppcasm_add_adios: | ||
1603 | addze r3,r0 #return carry bit. | ||
1604 | blr | ||
1605 | .long 0 | ||
1606 | .byte 0,12,0x14,0,0,0,4,0 | ||
1607 | .long 0 | ||
1608 | |||
1609 | # | ||
1610 | # NOTE: The following label name should be changed to | ||
1611 | # "bn_div_words" i.e. remove the first dot | ||
1612 | # for the gcc compiler. This should be automatically | ||
1613 | # done in the build | ||
1614 | # | ||
1615 | |||
1616 | .align 4 | ||
1617 | .bn_div_words: | ||
1618 | # | ||
1619 | # This is a cleaned up version of code generated by | ||
1620 | # the AIX compiler. The only optimization is to use | ||
1621 | # the PPC instruction to count leading zeros instead | ||
1622 | # of call to num_bits_word. Since this was compiled | ||
1623 | # only at level -O2 we can possibly squeeze it more? | ||
1624 | # | ||
1625 | # r3 = h | ||
1626 | # r4 = l | ||
1627 | # r5 = d | ||
1628 | |||
1629 | $UCMPI 0,r5,0 # compare r5 and 0 | ||
1630 | bne Lppcasm_div1 # proceed if d!=0 | ||
1631 | li r3,-1 # d=0 return -1 | ||
1632 | blr | ||
1633 | Lppcasm_div1: | ||
1634 | xor r0,r0,r0 #r0=0 | ||
1635 | li r8,$BITS | ||
1636 | $CNTLZ. r7,r5 #r7 = num leading 0s in d. | ||
1637 | beq Lppcasm_div2 #proceed if no leading zeros | ||
1638 | subf r8,r7,r8 #r8 = BN_num_bits_word(d) | ||
1639 | $SHR. r9,r3,r8 #are there any bits above r8'th? | ||
1640 | $TR 16,r9,r0 #if there're, signal to dump core... | ||
1641 | Lppcasm_div2: | ||
1642 | $UCMP 0,r3,r5 #h>=d? | ||
1643 | blt Lppcasm_div3 #goto Lppcasm_div3 if not | ||
1644 | subf r3,r5,r3 #h-=d ; | ||
1645 | Lppcasm_div3: #r7 = BN_BITS2-i. so r7=i | ||
1646 | cmpi 0,0,r7,0 # is (i == 0)? | ||
1647 | beq Lppcasm_div4 | ||
1648 | $SHL r3,r3,r7 # h = (h<< i) | ||
1649 | $SHR r8,r4,r8 # r8 = (l >> BN_BITS2 -i) | ||
1650 | $SHL r5,r5,r7 # d<<=i | ||
1651 | or r3,r3,r8 # h = (h<<i)|(l>>(BN_BITS2-i)) | ||
1652 | $SHL r4,r4,r7 # l <<=i | ||
1653 | Lppcasm_div4: | ||
1654 | $SHRI r9,r5,`$BITS/2` # r9 = dh | ||
1655 | # dl will be computed when needed | ||
1656 | # as it saves registers. | ||
1657 | li r6,2 #r6=2 | ||
1658 | mtctr r6 #counter will be in count. | ||
1659 | Lppcasm_divouterloop: | ||
1660 | $SHRI r8,r3,`$BITS/2` #r8 = (h>>BN_BITS4) | ||
1661 | $SHRI r11,r4,`$BITS/2` #r11= (l&BN_MASK2h)>>BN_BITS4 | ||
1662 | # compute here for innerloop. | ||
1663 | $UCMP 0,r8,r9 # is (h>>BN_BITS4)==dh | ||
1664 | bne Lppcasm_div5 # goto Lppcasm_div5 if not | ||
1665 | |||
1666 | li r8,-1 | ||
1667 | $CLRU r8,r8,`$BITS/2` #q = BN_MASK2l | ||
1668 | b Lppcasm_div6 | ||
1669 | Lppcasm_div5: | ||
1670 | $UDIV r8,r3,r9 #q = h/dh | ||
1671 | Lppcasm_div6: | ||
1672 | $UMULL r12,r9,r8 #th = q*dh | ||
1673 | $CLRU r10,r5,`$BITS/2` #r10=dl | ||
1674 | $UMULL r6,r8,r10 #tl = q*dl | ||
1675 | |||
1676 | Lppcasm_divinnerloop: | ||
1677 | subf r10,r12,r3 #t = h -th | ||
1678 | $SHRI r7,r10,`$BITS/2` #r7= (t &BN_MASK2H), sort of... | ||
1679 | addic. r7,r7,0 #test if r7 == 0. used below. | ||
1680 | # now want to compute | ||
1681 | # r7 = (t<<BN_BITS4)|((l&BN_MASK2h)>>BN_BITS4) | ||
1682 | # the following 2 instructions do that | ||
1683 | $SHLI r7,r10,`$BITS/2` # r7 = (t<<BN_BITS4) | ||
1684 | or r7,r7,r11 # r7|=((l&BN_MASK2h)>>BN_BITS4) | ||
1685 | $UCMP cr1,r6,r7 # compare (tl <= r7) | ||
1686 | bne Lppcasm_divinnerexit | ||
1687 | ble cr1,Lppcasm_divinnerexit | ||
1688 | addi r8,r8,-1 #q-- | ||
1689 | subf r12,r9,r12 #th -=dh | ||
1690 | $CLRU r10,r5,`$BITS/2` #r10=dl. t is no longer needed in loop. | ||
1691 | subf r6,r10,r6 #tl -=dl | ||
1692 | b Lppcasm_divinnerloop | ||
1693 | Lppcasm_divinnerexit: | ||
1694 | $SHRI r10,r6,`$BITS/2` #t=(tl>>BN_BITS4) | ||
1695 | $SHLI r11,r6,`$BITS/2` #tl=(tl<<BN_BITS4)&BN_MASK2h; | ||
1696 | $UCMP cr1,r4,r11 # compare l and tl | ||
1697 | add r12,r12,r10 # th+=t | ||
1698 | bge cr1,Lppcasm_div7 # if (l>=tl) goto Lppcasm_div7 | ||
1699 | addi r12,r12,1 # th++ | ||
1700 | Lppcasm_div7: | ||
1701 | subf r11,r11,r4 #r11=l-tl | ||
1702 | $UCMP cr1,r3,r12 #compare h and th | ||
1703 | bge cr1,Lppcasm_div8 #if (h>=th) goto Lppcasm_div8 | ||
1704 | addi r8,r8,-1 # q-- | ||
1705 | add r3,r5,r3 # h+=d | ||
1706 | Lppcasm_div8: | ||
1707 | subf r12,r12,r3 #r12 = h-th | ||
1708 | $SHLI r4,r11,`$BITS/2` #l=(l&BN_MASK2l)<<BN_BITS4 | ||
1709 | # want to compute | ||
1710 | # h = ((h<<BN_BITS4)|(l>>BN_BITS4))&BN_MASK2 | ||
1711 | # the following 2 instructions will do this. | ||
1712 | $INSR r11,r12,`$BITS/2`,`$BITS/2` # r11 is the value we want rotated $BITS/2. | ||
1713 | $ROTL r3,r11,`$BITS/2` # rotate by $BITS/2 and store in r3 | ||
1714 | bdz Lppcasm_div9 #if (count==0) break ; | ||
1715 | $SHLI r0,r8,`$BITS/2` #ret =q<<BN_BITS4 | ||
1716 | b Lppcasm_divouterloop | ||
1717 | Lppcasm_div9: | ||
1718 | or r3,r8,r0 | ||
1719 | blr | ||
1720 | .long 0 | ||
1721 | .byte 0,12,0x14,0,0,0,3,0 | ||
1722 | .long 0 | ||
1723 | |||
1724 | # | ||
1725 | # NOTE: The following label name should be changed to | ||
1726 | # "bn_sqr_words" i.e. remove the first dot | ||
1727 | # for the gcc compiler. This should be automatically | ||
1728 | # done in the build | ||
1729 | # | ||
1730 | .align 4 | ||
1731 | .bn_sqr_words: | ||
1732 | # | ||
1733 | # Optimized version of bn_sqr_words | ||
1734 | # | ||
1735 | # void bn_sqr_words(BN_ULONG *r, BN_ULONG *a, int n) | ||
1736 | # | ||
1737 | # r3 = r | ||
1738 | # r4 = a | ||
1739 | # r5 = n | ||
1740 | # | ||
1741 | # r6 = a[i]. | ||
1742 | # r7,r8 = product. | ||
1743 | # | ||
1744 | # No unrolling done here. Not performance critical. | ||
1745 | |||
1746 | addic. r5,r5,0 #test r5. | ||
1747 | beq Lppcasm_sqr_adios | ||
1748 | addi r4,r4,-$BNSZ | ||
1749 | addi r3,r3,-$BNSZ | ||
1750 | mtctr r5 | ||
1751 | Lppcasm_sqr_mainloop: | ||
1752 | #sqr(r[0],r[1],a[0]); | ||
1753 | $LDU r6,$BNSZ(r4) | ||
1754 | $UMULL r7,r6,r6 | ||
1755 | $UMULH r8,r6,r6 | ||
1756 | $STU r7,$BNSZ(r3) | ||
1757 | $STU r8,$BNSZ(r3) | ||
1758 | bdnz- Lppcasm_sqr_mainloop | ||
1759 | Lppcasm_sqr_adios: | ||
1760 | blr | ||
1761 | .long 0 | ||
1762 | .byte 0,12,0x14,0,0,0,3,0 | ||
1763 | .long 0 | ||
1764 | |||
1765 | # | ||
1766 | # NOTE: The following label name should be changed to | ||
1767 | # "bn_mul_words" i.e. remove the first dot | ||
1768 | # for the gcc compiler. This should be automatically | ||
1769 | # done in the build | ||
1770 | # | ||
1771 | |||
1772 | .align 4 | ||
1773 | .bn_mul_words: | ||
1774 | # | ||
1775 | # BN_ULONG bn_mul_words(BN_ULONG *rp, BN_ULONG *ap, int num, BN_ULONG w) | ||
1776 | # | ||
1777 | # r3 = rp | ||
1778 | # r4 = ap | ||
1779 | # r5 = num | ||
1780 | # r6 = w | ||
1781 | xor r0,r0,r0 | ||
1782 | xor r12,r12,r12 # used for carry | ||
1783 | rlwinm. r7,r5,30,2,31 # num >> 2 | ||
1784 | beq Lppcasm_mw_REM | ||
1785 | mtctr r7 | ||
1786 | Lppcasm_mw_LOOP: | ||
1787 | #mul(rp[0],ap[0],w,c1); | ||
1788 | $LD r8,`0*$BNSZ`(r4) | ||
1789 | $UMULL r9,r6,r8 | ||
1790 | $UMULH r10,r6,r8 | ||
1791 | addc r9,r9,r12 | ||
1792 | #addze r10,r10 #carry is NOT ignored. | ||
1793 | #will be taken care of | ||
1794 | #in second spin below | ||
1795 | #using adde. | ||
1796 | $ST r9,`0*$BNSZ`(r3) | ||
1797 | #mul(rp[1],ap[1],w,c1); | ||
1798 | $LD r8,`1*$BNSZ`(r4) | ||
1799 | $UMULL r11,r6,r8 | ||
1800 | $UMULH r12,r6,r8 | ||
1801 | adde r11,r11,r10 | ||
1802 | #addze r12,r12 | ||
1803 | $ST r11,`1*$BNSZ`(r3) | ||
1804 | #mul(rp[2],ap[2],w,c1); | ||
1805 | $LD r8,`2*$BNSZ`(r4) | ||
1806 | $UMULL r9,r6,r8 | ||
1807 | $UMULH r10,r6,r8 | ||
1808 | adde r9,r9,r12 | ||
1809 | #addze r10,r10 | ||
1810 | $ST r9,`2*$BNSZ`(r3) | ||
1811 | #mul_add(rp[3],ap[3],w,c1); | ||
1812 | $LD r8,`3*$BNSZ`(r4) | ||
1813 | $UMULL r11,r6,r8 | ||
1814 | $UMULH r12,r6,r8 | ||
1815 | adde r11,r11,r10 | ||
1816 | addze r12,r12 #this spin we collect carry into | ||
1817 | #r12 | ||
1818 | $ST r11,`3*$BNSZ`(r3) | ||
1819 | |||
1820 | addi r3,r3,`4*$BNSZ` | ||
1821 | addi r4,r4,`4*$BNSZ` | ||
1822 | bdnz- Lppcasm_mw_LOOP | ||
1823 | |||
1824 | Lppcasm_mw_REM: | ||
1825 | andi. r5,r5,0x3 | ||
1826 | beq Lppcasm_mw_OVER | ||
1827 | #mul(rp[0],ap[0],w,c1); | ||
1828 | $LD r8,`0*$BNSZ`(r4) | ||
1829 | $UMULL r9,r6,r8 | ||
1830 | $UMULH r10,r6,r8 | ||
1831 | addc r9,r9,r12 | ||
1832 | addze r10,r10 | ||
1833 | $ST r9,`0*$BNSZ`(r3) | ||
1834 | addi r12,r10,0 | ||
1835 | |||
1836 | addi r5,r5,-1 | ||
1837 | cmpli 0,0,r5,0 | ||
1838 | beq Lppcasm_mw_OVER | ||
1839 | |||
1840 | |||
1841 | #mul(rp[1],ap[1],w,c1); | ||
1842 | $LD r8,`1*$BNSZ`(r4) | ||
1843 | $UMULL r9,r6,r8 | ||
1844 | $UMULH r10,r6,r8 | ||
1845 | addc r9,r9,r12 | ||
1846 | addze r10,r10 | ||
1847 | $ST r9,`1*$BNSZ`(r3) | ||
1848 | addi r12,r10,0 | ||
1849 | |||
1850 | addi r5,r5,-1 | ||
1851 | cmpli 0,0,r5,0 | ||
1852 | beq Lppcasm_mw_OVER | ||
1853 | |||
1854 | #mul_add(rp[2],ap[2],w,c1); | ||
1855 | $LD r8,`2*$BNSZ`(r4) | ||
1856 | $UMULL r9,r6,r8 | ||
1857 | $UMULH r10,r6,r8 | ||
1858 | addc r9,r9,r12 | ||
1859 | addze r10,r10 | ||
1860 | $ST r9,`2*$BNSZ`(r3) | ||
1861 | addi r12,r10,0 | ||
1862 | |||
1863 | Lppcasm_mw_OVER: | ||
1864 | addi r3,r12,0 | ||
1865 | blr | ||
1866 | .long 0 | ||
1867 | .byte 0,12,0x14,0,0,0,4,0 | ||
1868 | .long 0 | ||
1869 | |||
1870 | # | ||
1871 | # NOTE: The following label name should be changed to | ||
1872 | # "bn_mul_add_words" i.e. remove the first dot | ||
1873 | # for the gcc compiler. This should be automatically | ||
1874 | # done in the build | ||
1875 | # | ||
1876 | |||
1877 | .align 4 | ||
1878 | .bn_mul_add_words: | ||
1879 | # | ||
1880 | # BN_ULONG bn_mul_add_words(BN_ULONG *rp, BN_ULONG *ap, int num, BN_ULONG w) | ||
1881 | # | ||
1882 | # r3 = rp | ||
1883 | # r4 = ap | ||
1884 | # r5 = num | ||
1885 | # r6 = w | ||
1886 | # | ||
1887 | # empirical evidence suggests that unrolled version performs best!! | ||
1888 | # | ||
1889 | xor r0,r0,r0 #r0 = 0 | ||
1890 | xor r12,r12,r12 #r12 = 0 . used for carry | ||
1891 | rlwinm. r7,r5,30,2,31 # num >> 2 | ||
1892 | beq Lppcasm_maw_leftover # if (num < 4) go LPPCASM_maw_leftover | ||
1893 | mtctr r7 | ||
1894 | Lppcasm_maw_mainloop: | ||
1895 | #mul_add(rp[0],ap[0],w,c1); | ||
1896 | $LD r8,`0*$BNSZ`(r4) | ||
1897 | $LD r11,`0*$BNSZ`(r3) | ||
1898 | $UMULL r9,r6,r8 | ||
1899 | $UMULH r10,r6,r8 | ||
1900 | addc r9,r9,r12 #r12 is carry. | ||
1901 | addze r10,r10 | ||
1902 | addc r9,r9,r11 | ||
1903 | #addze r10,r10 | ||
1904 | #the above instruction addze | ||
1905 | #is NOT needed. Carry will NOT | ||
1906 | #be ignored. It's not affected | ||
1907 | #by multiply and will be collected | ||
1908 | #in the next spin | ||
1909 | $ST r9,`0*$BNSZ`(r3) | ||
1910 | |||
1911 | #mul_add(rp[1],ap[1],w,c1); | ||
1912 | $LD r8,`1*$BNSZ`(r4) | ||
1913 | $LD r9,`1*$BNSZ`(r3) | ||
1914 | $UMULL r11,r6,r8 | ||
1915 | $UMULH r12,r6,r8 | ||
1916 | adde r11,r11,r10 #r10 is carry. | ||
1917 | addze r12,r12 | ||
1918 | addc r11,r11,r9 | ||
1919 | #addze r12,r12 | ||
1920 | $ST r11,`1*$BNSZ`(r3) | ||
1921 | |||
1922 | #mul_add(rp[2],ap[2],w,c1); | ||
1923 | $LD r8,`2*$BNSZ`(r4) | ||
1924 | $UMULL r9,r6,r8 | ||
1925 | $LD r11,`2*$BNSZ`(r3) | ||
1926 | $UMULH r10,r6,r8 | ||
1927 | adde r9,r9,r12 | ||
1928 | addze r10,r10 | ||
1929 | addc r9,r9,r11 | ||
1930 | #addze r10,r10 | ||
1931 | $ST r9,`2*$BNSZ`(r3) | ||
1932 | |||
1933 | #mul_add(rp[3],ap[3],w,c1); | ||
1934 | $LD r8,`3*$BNSZ`(r4) | ||
1935 | $UMULL r11,r6,r8 | ||
1936 | $LD r9,`3*$BNSZ`(r3) | ||
1937 | $UMULH r12,r6,r8 | ||
1938 | adde r11,r11,r10 | ||
1939 | addze r12,r12 | ||
1940 | addc r11,r11,r9 | ||
1941 | addze r12,r12 | ||
1942 | $ST r11,`3*$BNSZ`(r3) | ||
1943 | addi r3,r3,`4*$BNSZ` | ||
1944 | addi r4,r4,`4*$BNSZ` | ||
1945 | bdnz- Lppcasm_maw_mainloop | ||
1946 | |||
1947 | Lppcasm_maw_leftover: | ||
1948 | andi. r5,r5,0x3 | ||
1949 | beq Lppcasm_maw_adios | ||
1950 | addi r3,r3,-$BNSZ | ||
1951 | addi r4,r4,-$BNSZ | ||
1952 | #mul_add(rp[0],ap[0],w,c1); | ||
1953 | mtctr r5 | ||
1954 | $LDU r8,$BNSZ(r4) | ||
1955 | $UMULL r9,r6,r8 | ||
1956 | $UMULH r10,r6,r8 | ||
1957 | $LDU r11,$BNSZ(r3) | ||
1958 | addc r9,r9,r11 | ||
1959 | addze r10,r10 | ||
1960 | addc r9,r9,r12 | ||
1961 | addze r12,r10 | ||
1962 | $ST r9,0(r3) | ||
1963 | |||
1964 | bdz Lppcasm_maw_adios | ||
1965 | #mul_add(rp[1],ap[1],w,c1); | ||
1966 | $LDU r8,$BNSZ(r4) | ||
1967 | $UMULL r9,r6,r8 | ||
1968 | $UMULH r10,r6,r8 | ||
1969 | $LDU r11,$BNSZ(r3) | ||
1970 | addc r9,r9,r11 | ||
1971 | addze r10,r10 | ||
1972 | addc r9,r9,r12 | ||
1973 | addze r12,r10 | ||
1974 | $ST r9,0(r3) | ||
1975 | |||
1976 | bdz Lppcasm_maw_adios | ||
1977 | #mul_add(rp[2],ap[2],w,c1); | ||
1978 | $LDU r8,$BNSZ(r4) | ||
1979 | $UMULL r9,r6,r8 | ||
1980 | $UMULH r10,r6,r8 | ||
1981 | $LDU r11,$BNSZ(r3) | ||
1982 | addc r9,r9,r11 | ||
1983 | addze r10,r10 | ||
1984 | addc r9,r9,r12 | ||
1985 | addze r12,r10 | ||
1986 | $ST r9,0(r3) | ||
1987 | |||
1988 | Lppcasm_maw_adios: | ||
1989 | addi r3,r12,0 | ||
1990 | blr | ||
1991 | .long 0 | ||
1992 | .byte 0,12,0x14,0,0,0,4,0 | ||
1993 | .long 0 | ||
1994 | .align 4 | ||
1995 | EOF | ||
1996 | $data =~ s/\`([^\`]*)\`/eval $1/gem; | ||
1997 | print $data; | ||
1998 | close STDOUT; | ||
diff --git a/src/lib/libcrypto/bn/asm/ppc64-mont.pl b/src/lib/libcrypto/bn/asm/ppc64-mont.pl deleted file mode 100644 index a14e769ad0..0000000000 --- a/src/lib/libcrypto/bn/asm/ppc64-mont.pl +++ /dev/null | |||
@@ -1,1088 +0,0 @@ | |||
1 | #!/usr/bin/env perl | ||
2 | |||
3 | # ==================================================================== | ||
4 | # Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL | ||
5 | # project. The module is, however, dual licensed under OpenSSL and | ||
6 | # CRYPTOGAMS licenses depending on where you obtain it. For further | ||
7 | # details see http://www.openssl.org/~appro/cryptogams/. | ||
8 | # ==================================================================== | ||
9 | |||
10 | # December 2007 | ||
11 | |||
12 | # The reason for undertaken effort is basically following. Even though | ||
13 | # Power 6 CPU operates at incredible 4.7GHz clock frequency, its PKI | ||
14 | # performance was observed to be less than impressive, essentially as | ||
15 | # fast as 1.8GHz PPC970, or 2.6 times(!) slower than one would hope. | ||
16 | # Well, it's not surprising that IBM had to make some sacrifices to | ||
17 | # boost the clock frequency that much, but no overall improvement? | ||
18 | # Having observed how much difference did switching to FPU make on | ||
19 | # UltraSPARC, playing same stunt on Power 6 appeared appropriate... | ||
20 | # Unfortunately the resulting performance improvement is not as | ||
21 | # impressive, ~30%, and in absolute terms is still very far from what | ||
22 | # one would expect from 4.7GHz CPU. There is a chance that I'm doing | ||
23 | # something wrong, but in the lack of assembler level micro-profiling | ||
24 | # data or at least decent platform guide I can't tell... Or better | ||
25 | # results might be achieved with VMX... Anyway, this module provides | ||
26 | # *worse* performance on other PowerPC implementations, ~40-15% slower | ||
27 | # on PPC970 depending on key length and ~40% slower on Power 5 for all | ||
28 | # key lengths. As it's obviously inappropriate as "best all-round" | ||
29 | # alternative, it has to be complemented with run-time CPU family | ||
30 | # detection. Oh! It should also be noted that unlike other PowerPC | ||
31 | # implementation IALU ppc-mont.pl module performs *suboptimaly* on | ||
32 | # >=1024-bit key lengths on Power 6. It should also be noted that | ||
33 | # *everything* said so far applies to 64-bit builds! As far as 32-bit | ||
34 | # application executed on 64-bit CPU goes, this module is likely to | ||
35 | # become preferred choice, because it's easy to adapt it for such | ||
36 | # case and *is* faster than 32-bit ppc-mont.pl on *all* processors. | ||
37 | |||
38 | # February 2008 | ||
39 | |||
40 | # Micro-profiling assisted optimization results in ~15% improvement | ||
41 | # over original ppc64-mont.pl version, or overall ~50% improvement | ||
42 | # over ppc.pl module on Power 6. If compared to ppc-mont.pl on same | ||
43 | # Power 6 CPU, this module is 5-150% faster depending on key length, | ||
44 | # [hereafter] more for longer keys. But if compared to ppc-mont.pl | ||
45 | # on 1.8GHz PPC970, it's only 5-55% faster. Still far from impressive | ||
46 | # in absolute terms, but it's apparently the way Power 6 is... | ||
47 | |||
48 | # December 2009 | ||
49 | |||
50 | # Adapted for 32-bit build this module delivers 25-120%, yes, more | ||
51 | # than *twice* for longer keys, performance improvement over 32-bit | ||
52 | # ppc-mont.pl on 1.8GHz PPC970. However! This implementation utilizes | ||
53 | # even 64-bit integer operations and the trouble is that most PPC | ||
54 | # operating systems don't preserve upper halves of general purpose | ||
55 | # registers upon 32-bit signal delivery. They do preserve them upon | ||
56 | # context switch, but not signalling:-( This means that asynchronous | ||
57 | # signals have to be blocked upon entry to this subroutine. Signal | ||
58 | # masking (and of course complementary unmasking) has quite an impact | ||
59 | # on performance, naturally larger for shorter keys. It's so severe | ||
60 | # that 512-bit key performance can be as low as 1/3 of expected one. | ||
61 | # This is why this routine can be engaged for longer key operations | ||
62 | # only on these OSes, see crypto/ppccap.c for further details. MacOS X | ||
63 | # is an exception from this and doesn't require signal masking, and | ||
64 | # that's where above improvement coefficients were collected. For | ||
65 | # others alternative would be to break dependence on upper halves of | ||
66 | # GPRs by sticking to 32-bit integer operations... | ||
67 | |||
68 | $flavour = shift; | ||
69 | |||
70 | if ($flavour =~ /32/) { | ||
71 | $SIZE_T=4; | ||
72 | $RZONE= 224; | ||
73 | $fname= "bn_mul_mont_fpu64"; | ||
74 | |||
75 | $STUX= "stwux"; # store indexed and update | ||
76 | $PUSH= "stw"; | ||
77 | $POP= "lwz"; | ||
78 | } elsif ($flavour =~ /64/) { | ||
79 | $SIZE_T=8; | ||
80 | $RZONE= 288; | ||
81 | $fname= "bn_mul_mont_fpu64"; | ||
82 | |||
83 | # same as above, but 64-bit mnemonics... | ||
84 | $STUX= "stdux"; # store indexed and update | ||
85 | $PUSH= "std"; | ||
86 | $POP= "ld"; | ||
87 | } else { die "nonsense $flavour"; } | ||
88 | |||
89 | $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; | ||
90 | ( $xlate="${dir}ppc-xlate.pl" and -f $xlate ) or | ||
91 | ( $xlate="${dir}../../perlasm/ppc-xlate.pl" and -f $xlate) or | ||
92 | die "can't locate ppc-xlate.pl"; | ||
93 | |||
94 | open STDOUT,"| $^X $xlate $flavour ".shift || die "can't call $xlate: $!"; | ||
95 | |||
96 | $FRAME=64; # padded frame header | ||
97 | $TRANSFER=16*8; | ||
98 | |||
99 | $carry="r0"; | ||
100 | $sp="r1"; | ||
101 | $toc="r2"; | ||
102 | $rp="r3"; $ovf="r3"; | ||
103 | $ap="r4"; | ||
104 | $bp="r5"; | ||
105 | $np="r6"; | ||
106 | $n0="r7"; | ||
107 | $num="r8"; | ||
108 | $rp="r9"; # $rp is reassigned | ||
109 | $tp="r10"; | ||
110 | $j="r11"; | ||
111 | $i="r12"; | ||
112 | # non-volatile registers | ||
113 | $nap_d="r22"; # interleaved ap and np in double format | ||
114 | $a0="r23"; # ap[0] | ||
115 | $t0="r24"; # temporary registers | ||
116 | $t1="r25"; | ||
117 | $t2="r26"; | ||
118 | $t3="r27"; | ||
119 | $t4="r28"; | ||
120 | $t5="r29"; | ||
121 | $t6="r30"; | ||
122 | $t7="r31"; | ||
123 | |||
124 | # PPC offers enough register bank capacity to unroll inner loops twice | ||
125 | # | ||
126 | # ..A3A2A1A0 | ||
127 | # dcba | ||
128 | # ----------- | ||
129 | # A0a | ||
130 | # A0b | ||
131 | # A0c | ||
132 | # A0d | ||
133 | # A1a | ||
134 | # A1b | ||
135 | # A1c | ||
136 | # A1d | ||
137 | # A2a | ||
138 | # A2b | ||
139 | # A2c | ||
140 | # A2d | ||
141 | # A3a | ||
142 | # A3b | ||
143 | # A3c | ||
144 | # A3d | ||
145 | # ..a | ||
146 | # ..b | ||
147 | # | ||
148 | $ba="f0"; $bb="f1"; $bc="f2"; $bd="f3"; | ||
149 | $na="f4"; $nb="f5"; $nc="f6"; $nd="f7"; | ||
150 | $dota="f8"; $dotb="f9"; | ||
151 | $A0="f10"; $A1="f11"; $A2="f12"; $A3="f13"; | ||
152 | $N0="f20"; $N1="f21"; $N2="f22"; $N3="f23"; | ||
153 | $T0a="f24"; $T0b="f25"; | ||
154 | $T1a="f26"; $T1b="f27"; | ||
155 | $T2a="f28"; $T2b="f29"; | ||
156 | $T3a="f30"; $T3b="f31"; | ||
157 | |||
158 | # sp----------->+-------------------------------+ | ||
159 | # | saved sp | | ||
160 | # +-------------------------------+ | ||
161 | # . . | ||
162 | # +64 +-------------------------------+ | ||
163 | # | 16 gpr<->fpr transfer zone | | ||
164 | # . . | ||
165 | # . . | ||
166 | # +16*8 +-------------------------------+ | ||
167 | # | __int64 tmp[-1] | | ||
168 | # +-------------------------------+ | ||
169 | # | __int64 tmp[num] | | ||
170 | # . . | ||
171 | # . . | ||
172 | # . . | ||
173 | # +(num+1)*8 +-------------------------------+ | ||
174 | # | padding to 64 byte boundary | | ||
175 | # . . | ||
176 | # +X +-------------------------------+ | ||
177 | # | double nap_d[4*num] | | ||
178 | # . . | ||
179 | # . . | ||
180 | # . . | ||
181 | # +-------------------------------+ | ||
182 | # . . | ||
183 | # -12*size_t +-------------------------------+ | ||
184 | # | 10 saved gpr, r22-r31 | | ||
185 | # . . | ||
186 | # . . | ||
187 | # -12*8 +-------------------------------+ | ||
188 | # | 12 saved fpr, f20-f31 | | ||
189 | # . . | ||
190 | # . . | ||
191 | # +-------------------------------+ | ||
192 | |||
193 | $code=<<___; | ||
194 | .machine "any" | ||
195 | .text | ||
196 | |||
197 | .globl .$fname | ||
198 | .align 5 | ||
199 | .$fname: | ||
200 | cmpwi $num,`3*8/$SIZE_T` | ||
201 | mr $rp,r3 ; $rp is reassigned | ||
202 | li r3,0 ; possible "not handled" return code | ||
203 | bltlr- | ||
204 | andi. r0,$num,`16/$SIZE_T-1` ; $num has to be "even" | ||
205 | bnelr- | ||
206 | |||
207 | slwi $num,$num,`log($SIZE_T)/log(2)` ; num*=sizeof(BN_LONG) | ||
208 | li $i,-4096 | ||
209 | slwi $tp,$num,2 ; place for {an}p_{lh}[num], i.e. 4*num | ||
210 | add $tp,$tp,$num ; place for tp[num+1] | ||
211 | addi $tp,$tp,`$FRAME+$TRANSFER+8+64+$RZONE` | ||
212 | subf $tp,$tp,$sp ; $sp-$tp | ||
213 | and $tp,$tp,$i ; minimize TLB usage | ||
214 | subf $tp,$sp,$tp ; $tp-$sp | ||
215 | mr $i,$sp | ||
216 | $STUX $sp,$sp,$tp ; alloca | ||
217 | |||
218 | $PUSH r22,`-12*8-10*$SIZE_T`($i) | ||
219 | $PUSH r23,`-12*8-9*$SIZE_T`($i) | ||
220 | $PUSH r24,`-12*8-8*$SIZE_T`($i) | ||
221 | $PUSH r25,`-12*8-7*$SIZE_T`($i) | ||
222 | $PUSH r26,`-12*8-6*$SIZE_T`($i) | ||
223 | $PUSH r27,`-12*8-5*$SIZE_T`($i) | ||
224 | $PUSH r28,`-12*8-4*$SIZE_T`($i) | ||
225 | $PUSH r29,`-12*8-3*$SIZE_T`($i) | ||
226 | $PUSH r30,`-12*8-2*$SIZE_T`($i) | ||
227 | $PUSH r31,`-12*8-1*$SIZE_T`($i) | ||
228 | stfd f20,`-12*8`($i) | ||
229 | stfd f21,`-11*8`($i) | ||
230 | stfd f22,`-10*8`($i) | ||
231 | stfd f23,`-9*8`($i) | ||
232 | stfd f24,`-8*8`($i) | ||
233 | stfd f25,`-7*8`($i) | ||
234 | stfd f26,`-6*8`($i) | ||
235 | stfd f27,`-5*8`($i) | ||
236 | stfd f28,`-4*8`($i) | ||
237 | stfd f29,`-3*8`($i) | ||
238 | stfd f30,`-2*8`($i) | ||
239 | stfd f31,`-1*8`($i) | ||
240 | ___ | ||
241 | $code.=<<___ if ($SIZE_T==8); | ||
242 | ld $a0,0($ap) ; pull ap[0] value | ||
243 | ld $n0,0($n0) ; pull n0[0] value | ||
244 | ld $t3,0($bp) ; bp[0] | ||
245 | ___ | ||
246 | $code.=<<___ if ($SIZE_T==4); | ||
247 | mr $t1,$n0 | ||
248 | lwz $a0,0($ap) ; pull ap[0,1] value | ||
249 | lwz $t0,4($ap) | ||
250 | lwz $n0,0($t1) ; pull n0[0,1] value | ||
251 | lwz $t1,4($t1) | ||
252 | lwz $t3,0($bp) ; bp[0,1] | ||
253 | lwz $t2,4($bp) | ||
254 | insrdi $a0,$t0,32,0 | ||
255 | insrdi $n0,$t1,32,0 | ||
256 | insrdi $t3,$t2,32,0 | ||
257 | ___ | ||
258 | $code.=<<___; | ||
259 | addi $tp,$sp,`$FRAME+$TRANSFER+8+64` | ||
260 | li $i,-64 | ||
261 | add $nap_d,$tp,$num | ||
262 | and $nap_d,$nap_d,$i ; align to 64 bytes | ||
263 | |||
264 | mulld $t7,$a0,$t3 ; ap[0]*bp[0] | ||
265 | ; nap_d is off by 1, because it's used with stfdu/lfdu | ||
266 | addi $nap_d,$nap_d,-8 | ||
267 | srwi $j,$num,`3+1` ; counter register, num/2 | ||
268 | mulld $t7,$t7,$n0 ; tp[0]*n0 | ||
269 | addi $j,$j,-1 | ||
270 | addi $tp,$sp,`$FRAME+$TRANSFER-8` | ||
271 | li $carry,0 | ||
272 | mtctr $j | ||
273 | |||
274 | ; transfer bp[0] to FPU as 4x16-bit values | ||
275 | extrdi $t0,$t3,16,48 | ||
276 | extrdi $t1,$t3,16,32 | ||
277 | extrdi $t2,$t3,16,16 | ||
278 | extrdi $t3,$t3,16,0 | ||
279 | std $t0,`$FRAME+0`($sp) | ||
280 | std $t1,`$FRAME+8`($sp) | ||
281 | std $t2,`$FRAME+16`($sp) | ||
282 | std $t3,`$FRAME+24`($sp) | ||
283 | ; transfer (ap[0]*bp[0])*n0 to FPU as 4x16-bit values | ||
284 | extrdi $t4,$t7,16,48 | ||
285 | extrdi $t5,$t7,16,32 | ||
286 | extrdi $t6,$t7,16,16 | ||
287 | extrdi $t7,$t7,16,0 | ||
288 | std $t4,`$FRAME+32`($sp) | ||
289 | std $t5,`$FRAME+40`($sp) | ||
290 | std $t6,`$FRAME+48`($sp) | ||
291 | std $t7,`$FRAME+56`($sp) | ||
292 | ___ | ||
293 | $code.=<<___ if ($SIZE_T==8); | ||
294 | lwz $t0,4($ap) ; load a[j] as 32-bit word pair | ||
295 | lwz $t1,0($ap) | ||
296 | lwz $t2,12($ap) ; load a[j+1] as 32-bit word pair | ||
297 | lwz $t3,8($ap) | ||
298 | lwz $t4,4($np) ; load n[j] as 32-bit word pair | ||
299 | lwz $t5,0($np) | ||
300 | lwz $t6,12($np) ; load n[j+1] as 32-bit word pair | ||
301 | lwz $t7,8($np) | ||
302 | ___ | ||
303 | $code.=<<___ if ($SIZE_T==4); | ||
304 | lwz $t0,0($ap) ; load a[j..j+3] as 32-bit word pairs | ||
305 | lwz $t1,4($ap) | ||
306 | lwz $t2,8($ap) | ||
307 | lwz $t3,12($ap) | ||
308 | lwz $t4,0($np) ; load n[j..j+3] as 32-bit word pairs | ||
309 | lwz $t5,4($np) | ||
310 | lwz $t6,8($np) | ||
311 | lwz $t7,12($np) | ||
312 | ___ | ||
313 | $code.=<<___; | ||
314 | lfd $ba,`$FRAME+0`($sp) | ||
315 | lfd $bb,`$FRAME+8`($sp) | ||
316 | lfd $bc,`$FRAME+16`($sp) | ||
317 | lfd $bd,`$FRAME+24`($sp) | ||
318 | lfd $na,`$FRAME+32`($sp) | ||
319 | lfd $nb,`$FRAME+40`($sp) | ||
320 | lfd $nc,`$FRAME+48`($sp) | ||
321 | lfd $nd,`$FRAME+56`($sp) | ||
322 | std $t0,`$FRAME+64`($sp) | ||
323 | std $t1,`$FRAME+72`($sp) | ||
324 | std $t2,`$FRAME+80`($sp) | ||
325 | std $t3,`$FRAME+88`($sp) | ||
326 | std $t4,`$FRAME+96`($sp) | ||
327 | std $t5,`$FRAME+104`($sp) | ||
328 | std $t6,`$FRAME+112`($sp) | ||
329 | std $t7,`$FRAME+120`($sp) | ||
330 | fcfid $ba,$ba | ||
331 | fcfid $bb,$bb | ||
332 | fcfid $bc,$bc | ||
333 | fcfid $bd,$bd | ||
334 | fcfid $na,$na | ||
335 | fcfid $nb,$nb | ||
336 | fcfid $nc,$nc | ||
337 | fcfid $nd,$nd | ||
338 | |||
339 | lfd $A0,`$FRAME+64`($sp) | ||
340 | lfd $A1,`$FRAME+72`($sp) | ||
341 | lfd $A2,`$FRAME+80`($sp) | ||
342 | lfd $A3,`$FRAME+88`($sp) | ||
343 | lfd $N0,`$FRAME+96`($sp) | ||
344 | lfd $N1,`$FRAME+104`($sp) | ||
345 | lfd $N2,`$FRAME+112`($sp) | ||
346 | lfd $N3,`$FRAME+120`($sp) | ||
347 | fcfid $A0,$A0 | ||
348 | fcfid $A1,$A1 | ||
349 | fcfid $A2,$A2 | ||
350 | fcfid $A3,$A3 | ||
351 | fcfid $N0,$N0 | ||
352 | fcfid $N1,$N1 | ||
353 | fcfid $N2,$N2 | ||
354 | fcfid $N3,$N3 | ||
355 | addi $ap,$ap,16 | ||
356 | addi $np,$np,16 | ||
357 | |||
358 | fmul $T1a,$A1,$ba | ||
359 | fmul $T1b,$A1,$bb | ||
360 | stfd $A0,8($nap_d) ; save a[j] in double format | ||
361 | stfd $A1,16($nap_d) | ||
362 | fmul $T2a,$A2,$ba | ||
363 | fmul $T2b,$A2,$bb | ||
364 | stfd $A2,24($nap_d) ; save a[j+1] in double format | ||
365 | stfd $A3,32($nap_d) | ||
366 | fmul $T3a,$A3,$ba | ||
367 | fmul $T3b,$A3,$bb | ||
368 | stfd $N0,40($nap_d) ; save n[j] in double format | ||
369 | stfd $N1,48($nap_d) | ||
370 | fmul $T0a,$A0,$ba | ||
371 | fmul $T0b,$A0,$bb | ||
372 | stfd $N2,56($nap_d) ; save n[j+1] in double format | ||
373 | stfdu $N3,64($nap_d) | ||
374 | |||
375 | fmadd $T1a,$A0,$bc,$T1a | ||
376 | fmadd $T1b,$A0,$bd,$T1b | ||
377 | fmadd $T2a,$A1,$bc,$T2a | ||
378 | fmadd $T2b,$A1,$bd,$T2b | ||
379 | fmadd $T3a,$A2,$bc,$T3a | ||
380 | fmadd $T3b,$A2,$bd,$T3b | ||
381 | fmul $dota,$A3,$bc | ||
382 | fmul $dotb,$A3,$bd | ||
383 | |||
384 | fmadd $T1a,$N1,$na,$T1a | ||
385 | fmadd $T1b,$N1,$nb,$T1b | ||
386 | fmadd $T2a,$N2,$na,$T2a | ||
387 | fmadd $T2b,$N2,$nb,$T2b | ||
388 | fmadd $T3a,$N3,$na,$T3a | ||
389 | fmadd $T3b,$N3,$nb,$T3b | ||
390 | fmadd $T0a,$N0,$na,$T0a | ||
391 | fmadd $T0b,$N0,$nb,$T0b | ||
392 | |||
393 | fmadd $T1a,$N0,$nc,$T1a | ||
394 | fmadd $T1b,$N0,$nd,$T1b | ||
395 | fmadd $T2a,$N1,$nc,$T2a | ||
396 | fmadd $T2b,$N1,$nd,$T2b | ||
397 | fmadd $T3a,$N2,$nc,$T3a | ||
398 | fmadd $T3b,$N2,$nd,$T3b | ||
399 | fmadd $dota,$N3,$nc,$dota | ||
400 | fmadd $dotb,$N3,$nd,$dotb | ||
401 | |||
402 | fctid $T0a,$T0a | ||
403 | fctid $T0b,$T0b | ||
404 | fctid $T1a,$T1a | ||
405 | fctid $T1b,$T1b | ||
406 | fctid $T2a,$T2a | ||
407 | fctid $T2b,$T2b | ||
408 | fctid $T3a,$T3a | ||
409 | fctid $T3b,$T3b | ||
410 | |||
411 | stfd $T0a,`$FRAME+0`($sp) | ||
412 | stfd $T0b,`$FRAME+8`($sp) | ||
413 | stfd $T1a,`$FRAME+16`($sp) | ||
414 | stfd $T1b,`$FRAME+24`($sp) | ||
415 | stfd $T2a,`$FRAME+32`($sp) | ||
416 | stfd $T2b,`$FRAME+40`($sp) | ||
417 | stfd $T3a,`$FRAME+48`($sp) | ||
418 | stfd $T3b,`$FRAME+56`($sp) | ||
419 | |||
420 | .align 5 | ||
421 | L1st: | ||
422 | ___ | ||
423 | $code.=<<___ if ($SIZE_T==8); | ||
424 | lwz $t0,4($ap) ; load a[j] as 32-bit word pair | ||
425 | lwz $t1,0($ap) | ||
426 | lwz $t2,12($ap) ; load a[j+1] as 32-bit word pair | ||
427 | lwz $t3,8($ap) | ||
428 | lwz $t4,4($np) ; load n[j] as 32-bit word pair | ||
429 | lwz $t5,0($np) | ||
430 | lwz $t6,12($np) ; load n[j+1] as 32-bit word pair | ||
431 | lwz $t7,8($np) | ||
432 | ___ | ||
433 | $code.=<<___ if ($SIZE_T==4); | ||
434 | lwz $t0,0($ap) ; load a[j..j+3] as 32-bit word pairs | ||
435 | lwz $t1,4($ap) | ||
436 | lwz $t2,8($ap) | ||
437 | lwz $t3,12($ap) | ||
438 | lwz $t4,0($np) ; load n[j..j+3] as 32-bit word pairs | ||
439 | lwz $t5,4($np) | ||
440 | lwz $t6,8($np) | ||
441 | lwz $t7,12($np) | ||
442 | ___ | ||
443 | $code.=<<___; | ||
444 | std $t0,`$FRAME+64`($sp) | ||
445 | std $t1,`$FRAME+72`($sp) | ||
446 | std $t2,`$FRAME+80`($sp) | ||
447 | std $t3,`$FRAME+88`($sp) | ||
448 | std $t4,`$FRAME+96`($sp) | ||
449 | std $t5,`$FRAME+104`($sp) | ||
450 | std $t6,`$FRAME+112`($sp) | ||
451 | std $t7,`$FRAME+120`($sp) | ||
452 | ld $t0,`$FRAME+0`($sp) | ||
453 | ld $t1,`$FRAME+8`($sp) | ||
454 | ld $t2,`$FRAME+16`($sp) | ||
455 | ld $t3,`$FRAME+24`($sp) | ||
456 | ld $t4,`$FRAME+32`($sp) | ||
457 | ld $t5,`$FRAME+40`($sp) | ||
458 | ld $t6,`$FRAME+48`($sp) | ||
459 | ld $t7,`$FRAME+56`($sp) | ||
460 | lfd $A0,`$FRAME+64`($sp) | ||
461 | lfd $A1,`$FRAME+72`($sp) | ||
462 | lfd $A2,`$FRAME+80`($sp) | ||
463 | lfd $A3,`$FRAME+88`($sp) | ||
464 | lfd $N0,`$FRAME+96`($sp) | ||
465 | lfd $N1,`$FRAME+104`($sp) | ||
466 | lfd $N2,`$FRAME+112`($sp) | ||
467 | lfd $N3,`$FRAME+120`($sp) | ||
468 | fcfid $A0,$A0 | ||
469 | fcfid $A1,$A1 | ||
470 | fcfid $A2,$A2 | ||
471 | fcfid $A3,$A3 | ||
472 | fcfid $N0,$N0 | ||
473 | fcfid $N1,$N1 | ||
474 | fcfid $N2,$N2 | ||
475 | fcfid $N3,$N3 | ||
476 | addi $ap,$ap,16 | ||
477 | addi $np,$np,16 | ||
478 | |||
479 | fmul $T1a,$A1,$ba | ||
480 | fmul $T1b,$A1,$bb | ||
481 | fmul $T2a,$A2,$ba | ||
482 | fmul $T2b,$A2,$bb | ||
483 | stfd $A0,8($nap_d) ; save a[j] in double format | ||
484 | stfd $A1,16($nap_d) | ||
485 | fmul $T3a,$A3,$ba | ||
486 | fmul $T3b,$A3,$bb | ||
487 | fmadd $T0a,$A0,$ba,$dota | ||
488 | fmadd $T0b,$A0,$bb,$dotb | ||
489 | stfd $A2,24($nap_d) ; save a[j+1] in double format | ||
490 | stfd $A3,32($nap_d) | ||
491 | |||
492 | fmadd $T1a,$A0,$bc,$T1a | ||
493 | fmadd $T1b,$A0,$bd,$T1b | ||
494 | fmadd $T2a,$A1,$bc,$T2a | ||
495 | fmadd $T2b,$A1,$bd,$T2b | ||
496 | stfd $N0,40($nap_d) ; save n[j] in double format | ||
497 | stfd $N1,48($nap_d) | ||
498 | fmadd $T3a,$A2,$bc,$T3a | ||
499 | fmadd $T3b,$A2,$bd,$T3b | ||
500 | add $t0,$t0,$carry ; can not overflow | ||
501 | fmul $dota,$A3,$bc | ||
502 | fmul $dotb,$A3,$bd | ||
503 | stfd $N2,56($nap_d) ; save n[j+1] in double format | ||
504 | stfdu $N3,64($nap_d) | ||
505 | srdi $carry,$t0,16 | ||
506 | add $t1,$t1,$carry | ||
507 | srdi $carry,$t1,16 | ||
508 | |||
509 | fmadd $T1a,$N1,$na,$T1a | ||
510 | fmadd $T1b,$N1,$nb,$T1b | ||
511 | insrdi $t0,$t1,16,32 | ||
512 | fmadd $T2a,$N2,$na,$T2a | ||
513 | fmadd $T2b,$N2,$nb,$T2b | ||
514 | add $t2,$t2,$carry | ||
515 | fmadd $T3a,$N3,$na,$T3a | ||
516 | fmadd $T3b,$N3,$nb,$T3b | ||
517 | srdi $carry,$t2,16 | ||
518 | fmadd $T0a,$N0,$na,$T0a | ||
519 | fmadd $T0b,$N0,$nb,$T0b | ||
520 | insrdi $t0,$t2,16,16 | ||
521 | add $t3,$t3,$carry | ||
522 | srdi $carry,$t3,16 | ||
523 | |||
524 | fmadd $T1a,$N0,$nc,$T1a | ||
525 | fmadd $T1b,$N0,$nd,$T1b | ||
526 | insrdi $t0,$t3,16,0 ; 0..63 bits | ||
527 | fmadd $T2a,$N1,$nc,$T2a | ||
528 | fmadd $T2b,$N1,$nd,$T2b | ||
529 | add $t4,$t4,$carry | ||
530 | fmadd $T3a,$N2,$nc,$T3a | ||
531 | fmadd $T3b,$N2,$nd,$T3b | ||
532 | srdi $carry,$t4,16 | ||
533 | fmadd $dota,$N3,$nc,$dota | ||
534 | fmadd $dotb,$N3,$nd,$dotb | ||
535 | add $t5,$t5,$carry | ||
536 | srdi $carry,$t5,16 | ||
537 | insrdi $t4,$t5,16,32 | ||
538 | |||
539 | fctid $T0a,$T0a | ||
540 | fctid $T0b,$T0b | ||
541 | add $t6,$t6,$carry | ||
542 | fctid $T1a,$T1a | ||
543 | fctid $T1b,$T1b | ||
544 | srdi $carry,$t6,16 | ||
545 | fctid $T2a,$T2a | ||
546 | fctid $T2b,$T2b | ||
547 | insrdi $t4,$t6,16,16 | ||
548 | fctid $T3a,$T3a | ||
549 | fctid $T3b,$T3b | ||
550 | add $t7,$t7,$carry | ||
551 | insrdi $t4,$t7,16,0 ; 64..127 bits | ||
552 | srdi $carry,$t7,16 ; upper 33 bits | ||
553 | |||
554 | stfd $T0a,`$FRAME+0`($sp) | ||
555 | stfd $T0b,`$FRAME+8`($sp) | ||
556 | stfd $T1a,`$FRAME+16`($sp) | ||
557 | stfd $T1b,`$FRAME+24`($sp) | ||
558 | stfd $T2a,`$FRAME+32`($sp) | ||
559 | stfd $T2b,`$FRAME+40`($sp) | ||
560 | stfd $T3a,`$FRAME+48`($sp) | ||
561 | stfd $T3b,`$FRAME+56`($sp) | ||
562 | std $t0,8($tp) ; tp[j-1] | ||
563 | stdu $t4,16($tp) ; tp[j] | ||
564 | bdnz- L1st | ||
565 | |||
566 | fctid $dota,$dota | ||
567 | fctid $dotb,$dotb | ||
568 | |||
569 | ld $t0,`$FRAME+0`($sp) | ||
570 | ld $t1,`$FRAME+8`($sp) | ||
571 | ld $t2,`$FRAME+16`($sp) | ||
572 | ld $t3,`$FRAME+24`($sp) | ||
573 | ld $t4,`$FRAME+32`($sp) | ||
574 | ld $t5,`$FRAME+40`($sp) | ||
575 | ld $t6,`$FRAME+48`($sp) | ||
576 | ld $t7,`$FRAME+56`($sp) | ||
577 | stfd $dota,`$FRAME+64`($sp) | ||
578 | stfd $dotb,`$FRAME+72`($sp) | ||
579 | |||
580 | add $t0,$t0,$carry ; can not overflow | ||
581 | srdi $carry,$t0,16 | ||
582 | add $t1,$t1,$carry | ||
583 | srdi $carry,$t1,16 | ||
584 | insrdi $t0,$t1,16,32 | ||
585 | add $t2,$t2,$carry | ||
586 | srdi $carry,$t2,16 | ||
587 | insrdi $t0,$t2,16,16 | ||
588 | add $t3,$t3,$carry | ||
589 | srdi $carry,$t3,16 | ||
590 | insrdi $t0,$t3,16,0 ; 0..63 bits | ||
591 | add $t4,$t4,$carry | ||
592 | srdi $carry,$t4,16 | ||
593 | add $t5,$t5,$carry | ||
594 | srdi $carry,$t5,16 | ||
595 | insrdi $t4,$t5,16,32 | ||
596 | add $t6,$t6,$carry | ||
597 | srdi $carry,$t6,16 | ||
598 | insrdi $t4,$t6,16,16 | ||
599 | add $t7,$t7,$carry | ||
600 | insrdi $t4,$t7,16,0 ; 64..127 bits | ||
601 | srdi $carry,$t7,16 ; upper 33 bits | ||
602 | ld $t6,`$FRAME+64`($sp) | ||
603 | ld $t7,`$FRAME+72`($sp) | ||
604 | |||
605 | std $t0,8($tp) ; tp[j-1] | ||
606 | stdu $t4,16($tp) ; tp[j] | ||
607 | |||
608 | add $t6,$t6,$carry ; can not overflow | ||
609 | srdi $carry,$t6,16 | ||
610 | add $t7,$t7,$carry | ||
611 | insrdi $t6,$t7,48,0 | ||
612 | srdi $ovf,$t7,48 | ||
613 | std $t6,8($tp) ; tp[num-1] | ||
614 | |||
615 | slwi $t7,$num,2 | ||
616 | subf $nap_d,$t7,$nap_d ; rewind pointer | ||
617 | |||
618 | li $i,8 ; i=1 | ||
619 | .align 5 | ||
620 | Louter: | ||
621 | ___ | ||
622 | $code.=<<___ if ($SIZE_T==8); | ||
623 | ldx $t3,$bp,$i ; bp[i] | ||
624 | ___ | ||
625 | $code.=<<___ if ($SIZE_T==4); | ||
626 | add $t0,$bp,$i | ||
627 | lwz $t3,0($t0) ; bp[i,i+1] | ||
628 | lwz $t0,4($t0) | ||
629 | insrdi $t3,$t0,32,0 | ||
630 | ___ | ||
631 | $code.=<<___; | ||
632 | ld $t6,`$FRAME+$TRANSFER+8`($sp) ; tp[0] | ||
633 | mulld $t7,$a0,$t3 ; ap[0]*bp[i] | ||
634 | |||
635 | addi $tp,$sp,`$FRAME+$TRANSFER` | ||
636 | add $t7,$t7,$t6 ; ap[0]*bp[i]+tp[0] | ||
637 | li $carry,0 | ||
638 | mulld $t7,$t7,$n0 ; tp[0]*n0 | ||
639 | mtctr $j | ||
640 | |||
641 | ; transfer bp[i] to FPU as 4x16-bit values | ||
642 | extrdi $t0,$t3,16,48 | ||
643 | extrdi $t1,$t3,16,32 | ||
644 | extrdi $t2,$t3,16,16 | ||
645 | extrdi $t3,$t3,16,0 | ||
646 | std $t0,`$FRAME+0`($sp) | ||
647 | std $t1,`$FRAME+8`($sp) | ||
648 | std $t2,`$FRAME+16`($sp) | ||
649 | std $t3,`$FRAME+24`($sp) | ||
650 | ; transfer (ap[0]*bp[i]+tp[0])*n0 to FPU as 4x16-bit values | ||
651 | extrdi $t4,$t7,16,48 | ||
652 | extrdi $t5,$t7,16,32 | ||
653 | extrdi $t6,$t7,16,16 | ||
654 | extrdi $t7,$t7,16,0 | ||
655 | std $t4,`$FRAME+32`($sp) | ||
656 | std $t5,`$FRAME+40`($sp) | ||
657 | std $t6,`$FRAME+48`($sp) | ||
658 | std $t7,`$FRAME+56`($sp) | ||
659 | |||
660 | lfd $A0,8($nap_d) ; load a[j] in double format | ||
661 | lfd $A1,16($nap_d) | ||
662 | lfd $A2,24($nap_d) ; load a[j+1] in double format | ||
663 | lfd $A3,32($nap_d) | ||
664 | lfd $N0,40($nap_d) ; load n[j] in double format | ||
665 | lfd $N1,48($nap_d) | ||
666 | lfd $N2,56($nap_d) ; load n[j+1] in double format | ||
667 | lfdu $N3,64($nap_d) | ||
668 | |||
669 | lfd $ba,`$FRAME+0`($sp) | ||
670 | lfd $bb,`$FRAME+8`($sp) | ||
671 | lfd $bc,`$FRAME+16`($sp) | ||
672 | lfd $bd,`$FRAME+24`($sp) | ||
673 | lfd $na,`$FRAME+32`($sp) | ||
674 | lfd $nb,`$FRAME+40`($sp) | ||
675 | lfd $nc,`$FRAME+48`($sp) | ||
676 | lfd $nd,`$FRAME+56`($sp) | ||
677 | |||
678 | fcfid $ba,$ba | ||
679 | fcfid $bb,$bb | ||
680 | fcfid $bc,$bc | ||
681 | fcfid $bd,$bd | ||
682 | fcfid $na,$na | ||
683 | fcfid $nb,$nb | ||
684 | fcfid $nc,$nc | ||
685 | fcfid $nd,$nd | ||
686 | |||
687 | fmul $T1a,$A1,$ba | ||
688 | fmul $T1b,$A1,$bb | ||
689 | fmul $T2a,$A2,$ba | ||
690 | fmul $T2b,$A2,$bb | ||
691 | fmul $T3a,$A3,$ba | ||
692 | fmul $T3b,$A3,$bb | ||
693 | fmul $T0a,$A0,$ba | ||
694 | fmul $T0b,$A0,$bb | ||
695 | |||
696 | fmadd $T1a,$A0,$bc,$T1a | ||
697 | fmadd $T1b,$A0,$bd,$T1b | ||
698 | fmadd $T2a,$A1,$bc,$T2a | ||
699 | fmadd $T2b,$A1,$bd,$T2b | ||
700 | fmadd $T3a,$A2,$bc,$T3a | ||
701 | fmadd $T3b,$A2,$bd,$T3b | ||
702 | fmul $dota,$A3,$bc | ||
703 | fmul $dotb,$A3,$bd | ||
704 | |||
705 | fmadd $T1a,$N1,$na,$T1a | ||
706 | fmadd $T1b,$N1,$nb,$T1b | ||
707 | lfd $A0,8($nap_d) ; load a[j] in double format | ||
708 | lfd $A1,16($nap_d) | ||
709 | fmadd $T2a,$N2,$na,$T2a | ||
710 | fmadd $T2b,$N2,$nb,$T2b | ||
711 | lfd $A2,24($nap_d) ; load a[j+1] in double format | ||
712 | lfd $A3,32($nap_d) | ||
713 | fmadd $T3a,$N3,$na,$T3a | ||
714 | fmadd $T3b,$N3,$nb,$T3b | ||
715 | fmadd $T0a,$N0,$na,$T0a | ||
716 | fmadd $T0b,$N0,$nb,$T0b | ||
717 | |||
718 | fmadd $T1a,$N0,$nc,$T1a | ||
719 | fmadd $T1b,$N0,$nd,$T1b | ||
720 | fmadd $T2a,$N1,$nc,$T2a | ||
721 | fmadd $T2b,$N1,$nd,$T2b | ||
722 | fmadd $T3a,$N2,$nc,$T3a | ||
723 | fmadd $T3b,$N2,$nd,$T3b | ||
724 | fmadd $dota,$N3,$nc,$dota | ||
725 | fmadd $dotb,$N3,$nd,$dotb | ||
726 | |||
727 | fctid $T0a,$T0a | ||
728 | fctid $T0b,$T0b | ||
729 | fctid $T1a,$T1a | ||
730 | fctid $T1b,$T1b | ||
731 | fctid $T2a,$T2a | ||
732 | fctid $T2b,$T2b | ||
733 | fctid $T3a,$T3a | ||
734 | fctid $T3b,$T3b | ||
735 | |||
736 | stfd $T0a,`$FRAME+0`($sp) | ||
737 | stfd $T0b,`$FRAME+8`($sp) | ||
738 | stfd $T1a,`$FRAME+16`($sp) | ||
739 | stfd $T1b,`$FRAME+24`($sp) | ||
740 | stfd $T2a,`$FRAME+32`($sp) | ||
741 | stfd $T2b,`$FRAME+40`($sp) | ||
742 | stfd $T3a,`$FRAME+48`($sp) | ||
743 | stfd $T3b,`$FRAME+56`($sp) | ||
744 | |||
745 | .align 5 | ||
746 | Linner: | ||
747 | fmul $T1a,$A1,$ba | ||
748 | fmul $T1b,$A1,$bb | ||
749 | fmul $T2a,$A2,$ba | ||
750 | fmul $T2b,$A2,$bb | ||
751 | lfd $N0,40($nap_d) ; load n[j] in double format | ||
752 | lfd $N1,48($nap_d) | ||
753 | fmul $T3a,$A3,$ba | ||
754 | fmul $T3b,$A3,$bb | ||
755 | fmadd $T0a,$A0,$ba,$dota | ||
756 | fmadd $T0b,$A0,$bb,$dotb | ||
757 | lfd $N2,56($nap_d) ; load n[j+1] in double format | ||
758 | lfdu $N3,64($nap_d) | ||
759 | |||
760 | fmadd $T1a,$A0,$bc,$T1a | ||
761 | fmadd $T1b,$A0,$bd,$T1b | ||
762 | fmadd $T2a,$A1,$bc,$T2a | ||
763 | fmadd $T2b,$A1,$bd,$T2b | ||
764 | lfd $A0,8($nap_d) ; load a[j] in double format | ||
765 | lfd $A1,16($nap_d) | ||
766 | fmadd $T3a,$A2,$bc,$T3a | ||
767 | fmadd $T3b,$A2,$bd,$T3b | ||
768 | fmul $dota,$A3,$bc | ||
769 | fmul $dotb,$A3,$bd | ||
770 | lfd $A2,24($nap_d) ; load a[j+1] in double format | ||
771 | lfd $A3,32($nap_d) | ||
772 | |||
773 | fmadd $T1a,$N1,$na,$T1a | ||
774 | fmadd $T1b,$N1,$nb,$T1b | ||
775 | ld $t0,`$FRAME+0`($sp) | ||
776 | ld $t1,`$FRAME+8`($sp) | ||
777 | fmadd $T2a,$N2,$na,$T2a | ||
778 | fmadd $T2b,$N2,$nb,$T2b | ||
779 | ld $t2,`$FRAME+16`($sp) | ||
780 | ld $t3,`$FRAME+24`($sp) | ||
781 | fmadd $T3a,$N3,$na,$T3a | ||
782 | fmadd $T3b,$N3,$nb,$T3b | ||
783 | add $t0,$t0,$carry ; can not overflow | ||
784 | ld $t4,`$FRAME+32`($sp) | ||
785 | ld $t5,`$FRAME+40`($sp) | ||
786 | fmadd $T0a,$N0,$na,$T0a | ||
787 | fmadd $T0b,$N0,$nb,$T0b | ||
788 | srdi $carry,$t0,16 | ||
789 | add $t1,$t1,$carry | ||
790 | srdi $carry,$t1,16 | ||
791 | ld $t6,`$FRAME+48`($sp) | ||
792 | ld $t7,`$FRAME+56`($sp) | ||
793 | |||
794 | fmadd $T1a,$N0,$nc,$T1a | ||
795 | fmadd $T1b,$N0,$nd,$T1b | ||
796 | insrdi $t0,$t1,16,32 | ||
797 | ld $t1,8($tp) ; tp[j] | ||
798 | fmadd $T2a,$N1,$nc,$T2a | ||
799 | fmadd $T2b,$N1,$nd,$T2b | ||
800 | add $t2,$t2,$carry | ||
801 | fmadd $T3a,$N2,$nc,$T3a | ||
802 | fmadd $T3b,$N2,$nd,$T3b | ||
803 | srdi $carry,$t2,16 | ||
804 | insrdi $t0,$t2,16,16 | ||
805 | fmadd $dota,$N3,$nc,$dota | ||
806 | fmadd $dotb,$N3,$nd,$dotb | ||
807 | add $t3,$t3,$carry | ||
808 | ldu $t2,16($tp) ; tp[j+1] | ||
809 | srdi $carry,$t3,16 | ||
810 | insrdi $t0,$t3,16,0 ; 0..63 bits | ||
811 | add $t4,$t4,$carry | ||
812 | |||
813 | fctid $T0a,$T0a | ||
814 | fctid $T0b,$T0b | ||
815 | srdi $carry,$t4,16 | ||
816 | fctid $T1a,$T1a | ||
817 | fctid $T1b,$T1b | ||
818 | add $t5,$t5,$carry | ||
819 | fctid $T2a,$T2a | ||
820 | fctid $T2b,$T2b | ||
821 | srdi $carry,$t5,16 | ||
822 | insrdi $t4,$t5,16,32 | ||
823 | fctid $T3a,$T3a | ||
824 | fctid $T3b,$T3b | ||
825 | add $t6,$t6,$carry | ||
826 | srdi $carry,$t6,16 | ||
827 | insrdi $t4,$t6,16,16 | ||
828 | |||
829 | stfd $T0a,`$FRAME+0`($sp) | ||
830 | stfd $T0b,`$FRAME+8`($sp) | ||
831 | add $t7,$t7,$carry | ||
832 | addc $t3,$t0,$t1 | ||
833 | ___ | ||
834 | $code.=<<___ if ($SIZE_T==4); # adjust XER[CA] | ||
835 | extrdi $t0,$t0,32,0 | ||
836 | extrdi $t1,$t1,32,0 | ||
837 | adde $t0,$t0,$t1 | ||
838 | ___ | ||
839 | $code.=<<___; | ||
840 | stfd $T1a,`$FRAME+16`($sp) | ||
841 | stfd $T1b,`$FRAME+24`($sp) | ||
842 | insrdi $t4,$t7,16,0 ; 64..127 bits | ||
843 | srdi $carry,$t7,16 ; upper 33 bits | ||
844 | stfd $T2a,`$FRAME+32`($sp) | ||
845 | stfd $T2b,`$FRAME+40`($sp) | ||
846 | adde $t5,$t4,$t2 | ||
847 | ___ | ||
848 | $code.=<<___ if ($SIZE_T==4); # adjust XER[CA] | ||
849 | extrdi $t4,$t4,32,0 | ||
850 | extrdi $t2,$t2,32,0 | ||
851 | adde $t4,$t4,$t2 | ||
852 | ___ | ||
853 | $code.=<<___; | ||
854 | stfd $T3a,`$FRAME+48`($sp) | ||
855 | stfd $T3b,`$FRAME+56`($sp) | ||
856 | addze $carry,$carry | ||
857 | std $t3,-16($tp) ; tp[j-1] | ||
858 | std $t5,-8($tp) ; tp[j] | ||
859 | bdnz- Linner | ||
860 | |||
861 | fctid $dota,$dota | ||
862 | fctid $dotb,$dotb | ||
863 | ld $t0,`$FRAME+0`($sp) | ||
864 | ld $t1,`$FRAME+8`($sp) | ||
865 | ld $t2,`$FRAME+16`($sp) | ||
866 | ld $t3,`$FRAME+24`($sp) | ||
867 | ld $t4,`$FRAME+32`($sp) | ||
868 | ld $t5,`$FRAME+40`($sp) | ||
869 | ld $t6,`$FRAME+48`($sp) | ||
870 | ld $t7,`$FRAME+56`($sp) | ||
871 | stfd $dota,`$FRAME+64`($sp) | ||
872 | stfd $dotb,`$FRAME+72`($sp) | ||
873 | |||
874 | add $t0,$t0,$carry ; can not overflow | ||
875 | srdi $carry,$t0,16 | ||
876 | add $t1,$t1,$carry | ||
877 | srdi $carry,$t1,16 | ||
878 | insrdi $t0,$t1,16,32 | ||
879 | add $t2,$t2,$carry | ||
880 | ld $t1,8($tp) ; tp[j] | ||
881 | srdi $carry,$t2,16 | ||
882 | insrdi $t0,$t2,16,16 | ||
883 | add $t3,$t3,$carry | ||
884 | ldu $t2,16($tp) ; tp[j+1] | ||
885 | srdi $carry,$t3,16 | ||
886 | insrdi $t0,$t3,16,0 ; 0..63 bits | ||
887 | add $t4,$t4,$carry | ||
888 | srdi $carry,$t4,16 | ||
889 | add $t5,$t5,$carry | ||
890 | srdi $carry,$t5,16 | ||
891 | insrdi $t4,$t5,16,32 | ||
892 | add $t6,$t6,$carry | ||
893 | srdi $carry,$t6,16 | ||
894 | insrdi $t4,$t6,16,16 | ||
895 | add $t7,$t7,$carry | ||
896 | insrdi $t4,$t7,16,0 ; 64..127 bits | ||
897 | srdi $carry,$t7,16 ; upper 33 bits | ||
898 | ld $t6,`$FRAME+64`($sp) | ||
899 | ld $t7,`$FRAME+72`($sp) | ||
900 | |||
901 | addc $t3,$t0,$t1 | ||
902 | ___ | ||
903 | $code.=<<___ if ($SIZE_T==4); # adjust XER[CA] | ||
904 | extrdi $t0,$t0,32,0 | ||
905 | extrdi $t1,$t1,32,0 | ||
906 | adde $t0,$t0,$t1 | ||
907 | ___ | ||
908 | $code.=<<___; | ||
909 | adde $t5,$t4,$t2 | ||
910 | ___ | ||
911 | $code.=<<___ if ($SIZE_T==4); # adjust XER[CA] | ||
912 | extrdi $t4,$t4,32,0 | ||
913 | extrdi $t2,$t2,32,0 | ||
914 | adde $t4,$t4,$t2 | ||
915 | ___ | ||
916 | $code.=<<___; | ||
917 | addze $carry,$carry | ||
918 | |||
919 | std $t3,-16($tp) ; tp[j-1] | ||
920 | std $t5,-8($tp) ; tp[j] | ||
921 | |||
922 | add $carry,$carry,$ovf ; comsume upmost overflow | ||
923 | add $t6,$t6,$carry ; can not overflow | ||
924 | srdi $carry,$t6,16 | ||
925 | add $t7,$t7,$carry | ||
926 | insrdi $t6,$t7,48,0 | ||
927 | srdi $ovf,$t7,48 | ||
928 | std $t6,0($tp) ; tp[num-1] | ||
929 | |||
930 | slwi $t7,$num,2 | ||
931 | addi $i,$i,8 | ||
932 | subf $nap_d,$t7,$nap_d ; rewind pointer | ||
933 | cmpw $i,$num | ||
934 | blt- Louter | ||
935 | ___ | ||
936 | |||
937 | $code.=<<___ if ($SIZE_T==8); | ||
938 | subf $np,$num,$np ; rewind np | ||
939 | addi $j,$j,1 ; restore counter | ||
940 | subfc $i,$i,$i ; j=0 and "clear" XER[CA] | ||
941 | addi $tp,$sp,`$FRAME+$TRANSFER+8` | ||
942 | addi $t4,$sp,`$FRAME+$TRANSFER+16` | ||
943 | addi $t5,$np,8 | ||
944 | addi $t6,$rp,8 | ||
945 | mtctr $j | ||
946 | |||
947 | .align 4 | ||
948 | Lsub: ldx $t0,$tp,$i | ||
949 | ldx $t1,$np,$i | ||
950 | ldx $t2,$t4,$i | ||
951 | ldx $t3,$t5,$i | ||
952 | subfe $t0,$t1,$t0 ; tp[j]-np[j] | ||
953 | subfe $t2,$t3,$t2 ; tp[j+1]-np[j+1] | ||
954 | stdx $t0,$rp,$i | ||
955 | stdx $t2,$t6,$i | ||
956 | addi $i,$i,16 | ||
957 | bdnz- Lsub | ||
958 | |||
959 | li $i,0 | ||
960 | subfe $ovf,$i,$ovf ; handle upmost overflow bit | ||
961 | and $ap,$tp,$ovf | ||
962 | andc $np,$rp,$ovf | ||
963 | or $ap,$ap,$np ; ap=borrow?tp:rp | ||
964 | addi $t7,$ap,8 | ||
965 | mtctr $j | ||
966 | |||
967 | .align 4 | ||
968 | Lcopy: ; copy or in-place refresh | ||
969 | ldx $t0,$ap,$i | ||
970 | ldx $t1,$t7,$i | ||
971 | std $i,8($nap_d) ; zap nap_d | ||
972 | std $i,16($nap_d) | ||
973 | std $i,24($nap_d) | ||
974 | std $i,32($nap_d) | ||
975 | std $i,40($nap_d) | ||
976 | std $i,48($nap_d) | ||
977 | std $i,56($nap_d) | ||
978 | stdu $i,64($nap_d) | ||
979 | stdx $t0,$rp,$i | ||
980 | stdx $t1,$t6,$i | ||
981 | stdx $i,$tp,$i ; zap tp at once | ||
982 | stdx $i,$t4,$i | ||
983 | addi $i,$i,16 | ||
984 | bdnz- Lcopy | ||
985 | ___ | ||
986 | $code.=<<___ if ($SIZE_T==4); | ||
987 | subf $np,$num,$np ; rewind np | ||
988 | addi $j,$j,1 ; restore counter | ||
989 | subfc $i,$i,$i ; j=0 and "clear" XER[CA] | ||
990 | addi $tp,$sp,`$FRAME+$TRANSFER` | ||
991 | addi $np,$np,-4 | ||
992 | addi $rp,$rp,-4 | ||
993 | addi $ap,$sp,`$FRAME+$TRANSFER+4` | ||
994 | mtctr $j | ||
995 | |||
996 | .align 4 | ||
997 | Lsub: ld $t0,8($tp) ; load tp[j..j+3] in 64-bit word order | ||
998 | ldu $t2,16($tp) | ||
999 | lwz $t4,4($np) ; load np[j..j+3] in 32-bit word order | ||
1000 | lwz $t5,8($np) | ||
1001 | lwz $t6,12($np) | ||
1002 | lwzu $t7,16($np) | ||
1003 | extrdi $t1,$t0,32,0 | ||
1004 | extrdi $t3,$t2,32,0 | ||
1005 | subfe $t4,$t4,$t0 ; tp[j]-np[j] | ||
1006 | stw $t0,4($ap) ; save tp[j..j+3] in 32-bit word order | ||
1007 | subfe $t5,$t5,$t1 ; tp[j+1]-np[j+1] | ||
1008 | stw $t1,8($ap) | ||
1009 | subfe $t6,$t6,$t2 ; tp[j+2]-np[j+2] | ||
1010 | stw $t2,12($ap) | ||
1011 | subfe $t7,$t7,$t3 ; tp[j+3]-np[j+3] | ||
1012 | stwu $t3,16($ap) | ||
1013 | stw $t4,4($rp) | ||
1014 | stw $t5,8($rp) | ||
1015 | stw $t6,12($rp) | ||
1016 | stwu $t7,16($rp) | ||
1017 | bdnz- Lsub | ||
1018 | |||
1019 | li $i,0 | ||
1020 | subfe $ovf,$i,$ovf ; handle upmost overflow bit | ||
1021 | addi $tp,$sp,`$FRAME+$TRANSFER+4` | ||
1022 | subf $rp,$num,$rp ; rewind rp | ||
1023 | and $ap,$tp,$ovf | ||
1024 | andc $np,$rp,$ovf | ||
1025 | or $ap,$ap,$np ; ap=borrow?tp:rp | ||
1026 | addi $tp,$sp,`$FRAME+$TRANSFER` | ||
1027 | mtctr $j | ||
1028 | |||
1029 | .align 4 | ||
1030 | Lcopy: ; copy or in-place refresh | ||
1031 | lwz $t0,4($ap) | ||
1032 | lwz $t1,8($ap) | ||
1033 | lwz $t2,12($ap) | ||
1034 | lwzu $t3,16($ap) | ||
1035 | std $i,8($nap_d) ; zap nap_d | ||
1036 | std $i,16($nap_d) | ||
1037 | std $i,24($nap_d) | ||
1038 | std $i,32($nap_d) | ||
1039 | std $i,40($nap_d) | ||
1040 | std $i,48($nap_d) | ||
1041 | std $i,56($nap_d) | ||
1042 | stdu $i,64($nap_d) | ||
1043 | stw $t0,4($rp) | ||
1044 | stw $t1,8($rp) | ||
1045 | stw $t2,12($rp) | ||
1046 | stwu $t3,16($rp) | ||
1047 | std $i,8($tp) ; zap tp at once | ||
1048 | stdu $i,16($tp) | ||
1049 | bdnz- Lcopy | ||
1050 | ___ | ||
1051 | |||
1052 | $code.=<<___; | ||
1053 | $POP $i,0($sp) | ||
1054 | li r3,1 ; signal "handled" | ||
1055 | $POP r22,`-12*8-10*$SIZE_T`($i) | ||
1056 | $POP r23,`-12*8-9*$SIZE_T`($i) | ||
1057 | $POP r24,`-12*8-8*$SIZE_T`($i) | ||
1058 | $POP r25,`-12*8-7*$SIZE_T`($i) | ||
1059 | $POP r26,`-12*8-6*$SIZE_T`($i) | ||
1060 | $POP r27,`-12*8-5*$SIZE_T`($i) | ||
1061 | $POP r28,`-12*8-4*$SIZE_T`($i) | ||
1062 | $POP r29,`-12*8-3*$SIZE_T`($i) | ||
1063 | $POP r30,`-12*8-2*$SIZE_T`($i) | ||
1064 | $POP r31,`-12*8-1*$SIZE_T`($i) | ||
1065 | lfd f20,`-12*8`($i) | ||
1066 | lfd f21,`-11*8`($i) | ||
1067 | lfd f22,`-10*8`($i) | ||
1068 | lfd f23,`-9*8`($i) | ||
1069 | lfd f24,`-8*8`($i) | ||
1070 | lfd f25,`-7*8`($i) | ||
1071 | lfd f26,`-6*8`($i) | ||
1072 | lfd f27,`-5*8`($i) | ||
1073 | lfd f28,`-4*8`($i) | ||
1074 | lfd f29,`-3*8`($i) | ||
1075 | lfd f30,`-2*8`($i) | ||
1076 | lfd f31,`-1*8`($i) | ||
1077 | mr $sp,$i | ||
1078 | blr | ||
1079 | .long 0 | ||
1080 | .byte 0,12,4,0,0x8c,10,6,0 | ||
1081 | .long 0 | ||
1082 | |||
1083 | .asciz "Montgomery Multiplication for PPC64, CRYPTOGAMS by <appro\@openssl.org>" | ||
1084 | ___ | ||
1085 | |||
1086 | $code =~ s/\`([^\`]*)\`/eval $1/gem; | ||
1087 | print $code; | ||
1088 | close STDOUT; | ||
diff --git a/src/lib/libcrypto/bn/asm/s390x-gf2m.pl b/src/lib/libcrypto/bn/asm/s390x-gf2m.pl deleted file mode 100644 index cd9f13eca2..0000000000 --- a/src/lib/libcrypto/bn/asm/s390x-gf2m.pl +++ /dev/null | |||
@@ -1,221 +0,0 @@ | |||
1 | #!/usr/bin/env perl | ||
2 | # | ||
3 | # ==================================================================== | ||
4 | # Written by Andy Polyakov <appro@openssl.org> for the OpenSSL | ||
5 | # project. The module is, however, dual licensed under OpenSSL and | ||
6 | # CRYPTOGAMS licenses depending on where you obtain it. For further | ||
7 | # details see http://www.openssl.org/~appro/cryptogams/. | ||
8 | # ==================================================================== | ||
9 | # | ||
10 | # May 2011 | ||
11 | # | ||
12 | # The module implements bn_GF2m_mul_2x2 polynomial multiplication used | ||
13 | # in bn_gf2m.c. It's kind of low-hanging mechanical port from C for | ||
14 | # the time being... gcc 4.3 appeared to generate poor code, therefore | ||
15 | # the effort. And indeed, the module delivers 55%-90%(*) improvement | ||
16 | # on haviest ECDSA verify and ECDH benchmarks for 163- and 571-bit | ||
17 | # key lengths on z990, 30%-55%(*) - on z10, and 70%-110%(*) - on z196. | ||
18 | # This is for 64-bit build. In 32-bit "highgprs" case improvement is | ||
19 | # even higher, for example on z990 it was measured 80%-150%. ECDSA | ||
20 | # sign is modest 9%-12% faster. Keep in mind that these coefficients | ||
21 | # are not ones for bn_GF2m_mul_2x2 itself, as not all CPU time is | ||
22 | # burnt in it... | ||
23 | # | ||
24 | # (*) gcc 4.1 was observed to deliver better results than gcc 4.3, | ||
25 | # so that improvement coefficients can vary from one specific | ||
26 | # setup to another. | ||
27 | |||
28 | $flavour = shift; | ||
29 | |||
30 | if ($flavour =~ /3[12]/) { | ||
31 | $SIZE_T=4; | ||
32 | $g=""; | ||
33 | } else { | ||
34 | $SIZE_T=8; | ||
35 | $g="g"; | ||
36 | } | ||
37 | |||
38 | while (($output=shift) && ($output!~/^\w[\w\-]*\.\w+$/)) {} | ||
39 | open STDOUT,">$output"; | ||
40 | |||
41 | $stdframe=16*$SIZE_T+4*8; | ||
42 | |||
43 | $rp="%r2"; | ||
44 | $a1="%r3"; | ||
45 | $a0="%r4"; | ||
46 | $b1="%r5"; | ||
47 | $b0="%r6"; | ||
48 | |||
49 | $ra="%r14"; | ||
50 | $sp="%r15"; | ||
51 | |||
52 | @T=("%r0","%r1"); | ||
53 | @i=("%r12","%r13"); | ||
54 | |||
55 | ($a1,$a2,$a4,$a8,$a12,$a48)=map("%r$_",(6..11)); | ||
56 | ($lo,$hi,$b)=map("%r$_",(3..5)); $a=$lo; $mask=$a8; | ||
57 | |||
58 | $code.=<<___; | ||
59 | .text | ||
60 | |||
61 | .type _mul_1x1,\@function | ||
62 | .align 16 | ||
63 | _mul_1x1: | ||
64 | lgr $a1,$a | ||
65 | sllg $a2,$a,1 | ||
66 | sllg $a4,$a,2 | ||
67 | sllg $a8,$a,3 | ||
68 | |||
69 | srag $lo,$a1,63 # broadcast 63rd bit | ||
70 | nihh $a1,0x1fff | ||
71 | srag @i[0],$a2,63 # broadcast 62nd bit | ||
72 | nihh $a2,0x3fff | ||
73 | srag @i[1],$a4,63 # broadcast 61st bit | ||
74 | nihh $a4,0x7fff | ||
75 | ngr $lo,$b | ||
76 | ngr @i[0],$b | ||
77 | ngr @i[1],$b | ||
78 | |||
79 | lghi @T[0],0 | ||
80 | lgr $a12,$a1 | ||
81 | stg @T[0],`$stdframe+0*8`($sp) # tab[0]=0 | ||
82 | xgr $a12,$a2 | ||
83 | stg $a1,`$stdframe+1*8`($sp) # tab[1]=a1 | ||
84 | lgr $a48,$a4 | ||
85 | stg $a2,`$stdframe+2*8`($sp) # tab[2]=a2 | ||
86 | xgr $a48,$a8 | ||
87 | stg $a12,`$stdframe+3*8`($sp) # tab[3]=a1^a2 | ||
88 | xgr $a1,$a4 | ||
89 | |||
90 | stg $a4,`$stdframe+4*8`($sp) # tab[4]=a4 | ||
91 | xgr $a2,$a4 | ||
92 | stg $a1,`$stdframe+5*8`($sp) # tab[5]=a1^a4 | ||
93 | xgr $a12,$a4 | ||
94 | stg $a2,`$stdframe+6*8`($sp) # tab[6]=a2^a4 | ||
95 | xgr $a1,$a48 | ||
96 | stg $a12,`$stdframe+7*8`($sp) # tab[7]=a1^a2^a4 | ||
97 | xgr $a2,$a48 | ||
98 | |||
99 | stg $a8,`$stdframe+8*8`($sp) # tab[8]=a8 | ||
100 | xgr $a12,$a48 | ||
101 | stg $a1,`$stdframe+9*8`($sp) # tab[9]=a1^a8 | ||
102 | xgr $a1,$a4 | ||
103 | stg $a2,`$stdframe+10*8`($sp) # tab[10]=a2^a8 | ||
104 | xgr $a2,$a4 | ||
105 | stg $a12,`$stdframe+11*8`($sp) # tab[11]=a1^a2^a8 | ||
106 | |||
107 | xgr $a12,$a4 | ||
108 | stg $a48,`$stdframe+12*8`($sp) # tab[12]=a4^a8 | ||
109 | srlg $hi,$lo,1 | ||
110 | stg $a1,`$stdframe+13*8`($sp) # tab[13]=a1^a4^a8 | ||
111 | sllg $lo,$lo,63 | ||
112 | stg $a2,`$stdframe+14*8`($sp) # tab[14]=a2^a4^a8 | ||
113 | srlg @T[0],@i[0],2 | ||
114 | stg $a12,`$stdframe+15*8`($sp) # tab[15]=a1^a2^a4^a8 | ||
115 | |||
116 | lghi $mask,`0xf<<3` | ||
117 | sllg $a1,@i[0],62 | ||
118 | sllg @i[0],$b,3 | ||
119 | srlg @T[1],@i[1],3 | ||
120 | ngr @i[0],$mask | ||
121 | sllg $a2,@i[1],61 | ||
122 | srlg @i[1],$b,4-3 | ||
123 | xgr $hi,@T[0] | ||
124 | ngr @i[1],$mask | ||
125 | xgr $lo,$a1 | ||
126 | xgr $hi,@T[1] | ||
127 | xgr $lo,$a2 | ||
128 | |||
129 | xg $lo,$stdframe(@i[0],$sp) | ||
130 | srlg @i[0],$b,8-3 | ||
131 | ngr @i[0],$mask | ||
132 | ___ | ||
133 | for($n=1;$n<14;$n++) { | ||
134 | $code.=<<___; | ||
135 | lg @T[1],$stdframe(@i[1],$sp) | ||
136 | srlg @i[1],$b,`($n+2)*4`-3 | ||
137 | sllg @T[0],@T[1],`$n*4` | ||
138 | ngr @i[1],$mask | ||
139 | srlg @T[1],@T[1],`64-$n*4` | ||
140 | xgr $lo,@T[0] | ||
141 | xgr $hi,@T[1] | ||
142 | ___ | ||
143 | push(@i,shift(@i)); push(@T,shift(@T)); | ||
144 | } | ||
145 | $code.=<<___; | ||
146 | lg @T[1],$stdframe(@i[1],$sp) | ||
147 | sllg @T[0],@T[1],`$n*4` | ||
148 | srlg @T[1],@T[1],`64-$n*4` | ||
149 | xgr $lo,@T[0] | ||
150 | xgr $hi,@T[1] | ||
151 | |||
152 | lg @T[0],$stdframe(@i[0],$sp) | ||
153 | sllg @T[1],@T[0],`($n+1)*4` | ||
154 | srlg @T[0],@T[0],`64-($n+1)*4` | ||
155 | xgr $lo,@T[1] | ||
156 | xgr $hi,@T[0] | ||
157 | |||
158 | br $ra | ||
159 | .size _mul_1x1,.-_mul_1x1 | ||
160 | |||
161 | .globl bn_GF2m_mul_2x2 | ||
162 | .type bn_GF2m_mul_2x2,\@function | ||
163 | .align 16 | ||
164 | bn_GF2m_mul_2x2: | ||
165 | stm${g} %r3,%r15,3*$SIZE_T($sp) | ||
166 | |||
167 | lghi %r1,-$stdframe-128 | ||
168 | la %r0,0($sp) | ||
169 | la $sp,0(%r1,$sp) # alloca | ||
170 | st${g} %r0,0($sp) # back chain | ||
171 | ___ | ||
172 | if ($SIZE_T==8) { | ||
173 | my @r=map("%r$_",(6..9)); | ||
174 | $code.=<<___; | ||
175 | bras $ra,_mul_1x1 # a1·b1 | ||
176 | stmg $lo,$hi,16($rp) | ||
177 | |||
178 | lg $a,`$stdframe+128+4*$SIZE_T`($sp) | ||
179 | lg $b,`$stdframe+128+6*$SIZE_T`($sp) | ||
180 | bras $ra,_mul_1x1 # a0·b0 | ||
181 | stmg $lo,$hi,0($rp) | ||
182 | |||
183 | lg $a,`$stdframe+128+3*$SIZE_T`($sp) | ||
184 | lg $b,`$stdframe+128+5*$SIZE_T`($sp) | ||
185 | xg $a,`$stdframe+128+4*$SIZE_T`($sp) | ||
186 | xg $b,`$stdframe+128+6*$SIZE_T`($sp) | ||
187 | bras $ra,_mul_1x1 # (a0+a1)·(b0+b1) | ||
188 | lmg @r[0],@r[3],0($rp) | ||
189 | |||
190 | xgr $lo,$hi | ||
191 | xgr $hi,@r[1] | ||
192 | xgr $lo,@r[0] | ||
193 | xgr $hi,@r[2] | ||
194 | xgr $lo,@r[3] | ||
195 | xgr $hi,@r[3] | ||
196 | xgr $lo,$hi | ||
197 | stg $hi,16($rp) | ||
198 | stg $lo,8($rp) | ||
199 | ___ | ||
200 | } else { | ||
201 | $code.=<<___; | ||
202 | sllg %r3,%r3,32 | ||
203 | sllg %r5,%r5,32 | ||
204 | or %r3,%r4 | ||
205 | or %r5,%r6 | ||
206 | bras $ra,_mul_1x1 | ||
207 | rllg $lo,$lo,32 | ||
208 | rllg $hi,$hi,32 | ||
209 | stmg $lo,$hi,0($rp) | ||
210 | ___ | ||
211 | } | ||
212 | $code.=<<___; | ||
213 | lm${g} %r6,%r15,`$stdframe+128+6*$SIZE_T`($sp) | ||
214 | br $ra | ||
215 | .size bn_GF2m_mul_2x2,.-bn_GF2m_mul_2x2 | ||
216 | .string "GF(2^m) Multiplication for s390x, CRYPTOGAMS by <appro\@openssl.org>" | ||
217 | ___ | ||
218 | |||
219 | $code =~ s/\`([^\`]*)\`/eval($1)/gem; | ||
220 | print $code; | ||
221 | close STDOUT; | ||
diff --git a/src/lib/libcrypto/bn/asm/s390x-mont.pl b/src/lib/libcrypto/bn/asm/s390x-mont.pl deleted file mode 100644 index 9fd64e81ee..0000000000 --- a/src/lib/libcrypto/bn/asm/s390x-mont.pl +++ /dev/null | |||
@@ -1,277 +0,0 @@ | |||
1 | #!/usr/bin/env perl | ||
2 | |||
3 | # ==================================================================== | ||
4 | # Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL | ||
5 | # project. The module is, however, dual licensed under OpenSSL and | ||
6 | # CRYPTOGAMS licenses depending on where you obtain it. For further | ||
7 | # details see http://www.openssl.org/~appro/cryptogams/. | ||
8 | # ==================================================================== | ||
9 | |||
10 | # April 2007. | ||
11 | # | ||
12 | # Performance improvement over vanilla C code varies from 85% to 45% | ||
13 | # depending on key length and benchmark. Unfortunately in this context | ||
14 | # these are not very impressive results [for code that utilizes "wide" | ||
15 | # 64x64=128-bit multiplication, which is not commonly available to C | ||
16 | # programmers], at least hand-coded bn_asm.c replacement is known to | ||
17 | # provide 30-40% better results for longest keys. Well, on a second | ||
18 | # thought it's not very surprising, because z-CPUs are single-issue | ||
19 | # and _strictly_ in-order execution, while bn_mul_mont is more or less | ||
20 | # dependent on CPU ability to pipe-line instructions and have several | ||
21 | # of them "in-flight" at the same time. I mean while other methods, | ||
22 | # for example Karatsuba, aim to minimize amount of multiplications at | ||
23 | # the cost of other operations increase, bn_mul_mont aim to neatly | ||
24 | # "overlap" multiplications and the other operations [and on most | ||
25 | # platforms even minimize the amount of the other operations, in | ||
26 | # particular references to memory]. But it's possible to improve this | ||
27 | # module performance by implementing dedicated squaring code-path and | ||
28 | # possibly by unrolling loops... | ||
29 | |||
30 | # January 2009. | ||
31 | # | ||
32 | # Reschedule to minimize/avoid Address Generation Interlock hazard, | ||
33 | # make inner loops counter-based. | ||
34 | |||
35 | # November 2010. | ||
36 | # | ||
37 | # Adapt for -m31 build. If kernel supports what's called "highgprs" | ||
38 | # feature on Linux [see /proc/cpuinfo], it's possible to use 64-bit | ||
39 | # instructions and achieve "64-bit" performance even in 31-bit legacy | ||
40 | # application context. The feature is not specific to any particular | ||
41 | # processor, as long as it's "z-CPU". Latter implies that the code | ||
42 | # remains z/Architecture specific. Compatibility with 32-bit BN_ULONG | ||
43 | # is achieved by swapping words after 64-bit loads, follow _dswap-s. | ||
44 | # On z990 it was measured to perform 2.6-2.2 times better than | ||
45 | # compiler-generated code, less for longer keys... | ||
46 | |||
47 | $flavour = shift; | ||
48 | |||
49 | if ($flavour =~ /3[12]/) { | ||
50 | $SIZE_T=4; | ||
51 | $g=""; | ||
52 | } else { | ||
53 | $SIZE_T=8; | ||
54 | $g="g"; | ||
55 | } | ||
56 | |||
57 | while (($output=shift) && ($output!~/^\w[\w\-]*\.\w+$/)) {} | ||
58 | open STDOUT,">$output"; | ||
59 | |||
60 | $stdframe=16*$SIZE_T+4*8; | ||
61 | |||
62 | $mn0="%r0"; | ||
63 | $num="%r1"; | ||
64 | |||
65 | # int bn_mul_mont( | ||
66 | $rp="%r2"; # BN_ULONG *rp, | ||
67 | $ap="%r3"; # const BN_ULONG *ap, | ||
68 | $bp="%r4"; # const BN_ULONG *bp, | ||
69 | $np="%r5"; # const BN_ULONG *np, | ||
70 | $n0="%r6"; # const BN_ULONG *n0, | ||
71 | #$num="160(%r15)" # int num); | ||
72 | |||
73 | $bi="%r2"; # zaps rp | ||
74 | $j="%r7"; | ||
75 | |||
76 | $ahi="%r8"; | ||
77 | $alo="%r9"; | ||
78 | $nhi="%r10"; | ||
79 | $nlo="%r11"; | ||
80 | $AHI="%r12"; | ||
81 | $NHI="%r13"; | ||
82 | $count="%r14"; | ||
83 | $sp="%r15"; | ||
84 | |||
85 | $code.=<<___; | ||
86 | .text | ||
87 | .globl bn_mul_mont | ||
88 | .type bn_mul_mont,\@function | ||
89 | bn_mul_mont: | ||
90 | lgf $num,`$stdframe+$SIZE_T-4`($sp) # pull $num | ||
91 | sla $num,`log($SIZE_T)/log(2)` # $num to enumerate bytes | ||
92 | la $bp,0($num,$bp) | ||
93 | |||
94 | st${g} %r2,2*$SIZE_T($sp) | ||
95 | |||
96 | cghi $num,16 # | ||
97 | lghi %r2,0 # | ||
98 | blr %r14 # if($num<16) return 0; | ||
99 | ___ | ||
100 | $code.=<<___ if ($flavour =~ /3[12]/); | ||
101 | tmll $num,4 | ||
102 | bnzr %r14 # if ($num&1) return 0; | ||
103 | ___ | ||
104 | $code.=<<___ if ($flavour !~ /3[12]/); | ||
105 | cghi $num,96 # | ||
106 | bhr %r14 # if($num>96) return 0; | ||
107 | ___ | ||
108 | $code.=<<___; | ||
109 | stm${g} %r3,%r15,3*$SIZE_T($sp) | ||
110 | |||
111 | lghi $rp,-$stdframe-8 # leave room for carry bit | ||
112 | lcgr $j,$num # -$num | ||
113 | lgr %r0,$sp | ||
114 | la $rp,0($rp,$sp) | ||
115 | la $sp,0($j,$rp) # alloca | ||
116 | st${g} %r0,0($sp) # back chain | ||
117 | |||
118 | sra $num,3 # restore $num | ||
119 | la $bp,0($j,$bp) # restore $bp | ||
120 | ahi $num,-1 # adjust $num for inner loop | ||
121 | lg $n0,0($n0) # pull n0 | ||
122 | _dswap $n0 | ||
123 | |||
124 | lg $bi,0($bp) | ||
125 | _dswap $bi | ||
126 | lg $alo,0($ap) | ||
127 | _dswap $alo | ||
128 | mlgr $ahi,$bi # ap[0]*bp[0] | ||
129 | lgr $AHI,$ahi | ||
130 | |||
131 | lgr $mn0,$alo # "tp[0]"*n0 | ||
132 | msgr $mn0,$n0 | ||
133 | |||
134 | lg $nlo,0($np) # | ||
135 | _dswap $nlo | ||
136 | mlgr $nhi,$mn0 # np[0]*m1 | ||
137 | algr $nlo,$alo # +="tp[0]" | ||
138 | lghi $NHI,0 | ||
139 | alcgr $NHI,$nhi | ||
140 | |||
141 | la $j,8(%r0) # j=1 | ||
142 | lr $count,$num | ||
143 | |||
144 | .align 16 | ||
145 | .L1st: | ||
146 | lg $alo,0($j,$ap) | ||
147 | _dswap $alo | ||
148 | mlgr $ahi,$bi # ap[j]*bp[0] | ||
149 | algr $alo,$AHI | ||
150 | lghi $AHI,0 | ||
151 | alcgr $AHI,$ahi | ||
152 | |||
153 | lg $nlo,0($j,$np) | ||
154 | _dswap $nlo | ||
155 | mlgr $nhi,$mn0 # np[j]*m1 | ||
156 | algr $nlo,$NHI | ||
157 | lghi $NHI,0 | ||
158 | alcgr $nhi,$NHI # +="tp[j]" | ||
159 | algr $nlo,$alo | ||
160 | alcgr $NHI,$nhi | ||
161 | |||
162 | stg $nlo,$stdframe-8($j,$sp) # tp[j-1]= | ||
163 | la $j,8($j) # j++ | ||
164 | brct $count,.L1st | ||
165 | |||
166 | algr $NHI,$AHI | ||
167 | lghi $AHI,0 | ||
168 | alcgr $AHI,$AHI # upmost overflow bit | ||
169 | stg $NHI,$stdframe-8($j,$sp) | ||
170 | stg $AHI,$stdframe($j,$sp) | ||
171 | la $bp,8($bp) # bp++ | ||
172 | |||
173 | .Louter: | ||
174 | lg $bi,0($bp) # bp[i] | ||
175 | _dswap $bi | ||
176 | lg $alo,0($ap) | ||
177 | _dswap $alo | ||
178 | mlgr $ahi,$bi # ap[0]*bp[i] | ||
179 | alg $alo,$stdframe($sp) # +=tp[0] | ||
180 | lghi $AHI,0 | ||
181 | alcgr $AHI,$ahi | ||
182 | |||
183 | lgr $mn0,$alo | ||
184 | msgr $mn0,$n0 # tp[0]*n0 | ||
185 | |||
186 | lg $nlo,0($np) # np[0] | ||
187 | _dswap $nlo | ||
188 | mlgr $nhi,$mn0 # np[0]*m1 | ||
189 | algr $nlo,$alo # +="tp[0]" | ||
190 | lghi $NHI,0 | ||
191 | alcgr $NHI,$nhi | ||
192 | |||
193 | la $j,8(%r0) # j=1 | ||
194 | lr $count,$num | ||
195 | |||
196 | .align 16 | ||
197 | .Linner: | ||
198 | lg $alo,0($j,$ap) | ||
199 | _dswap $alo | ||
200 | mlgr $ahi,$bi # ap[j]*bp[i] | ||
201 | algr $alo,$AHI | ||
202 | lghi $AHI,0 | ||
203 | alcgr $ahi,$AHI | ||
204 | alg $alo,$stdframe($j,$sp)# +=tp[j] | ||
205 | alcgr $AHI,$ahi | ||
206 | |||
207 | lg $nlo,0($j,$np) | ||
208 | _dswap $nlo | ||
209 | mlgr $nhi,$mn0 # np[j]*m1 | ||
210 | algr $nlo,$NHI | ||
211 | lghi $NHI,0 | ||
212 | alcgr $nhi,$NHI | ||
213 | algr $nlo,$alo # +="tp[j]" | ||
214 | alcgr $NHI,$nhi | ||
215 | |||
216 | stg $nlo,$stdframe-8($j,$sp) # tp[j-1]= | ||
217 | la $j,8($j) # j++ | ||
218 | brct $count,.Linner | ||
219 | |||
220 | algr $NHI,$AHI | ||
221 | lghi $AHI,0 | ||
222 | alcgr $AHI,$AHI | ||
223 | alg $NHI,$stdframe($j,$sp)# accumulate previous upmost overflow bit | ||
224 | lghi $ahi,0 | ||
225 | alcgr $AHI,$ahi # new upmost overflow bit | ||
226 | stg $NHI,$stdframe-8($j,$sp) | ||
227 | stg $AHI,$stdframe($j,$sp) | ||
228 | |||
229 | la $bp,8($bp) # bp++ | ||
230 | cl${g} $bp,`$stdframe+8+4*$SIZE_T`($j,$sp) # compare to &bp[num] | ||
231 | jne .Louter | ||
232 | |||
233 | l${g} $rp,`$stdframe+8+2*$SIZE_T`($j,$sp) # reincarnate rp | ||
234 | la $ap,$stdframe($sp) | ||
235 | ahi $num,1 # restore $num, incidentally clears "borrow" | ||
236 | |||
237 | la $j,0(%r0) | ||
238 | lr $count,$num | ||
239 | .Lsub: lg $alo,0($j,$ap) | ||
240 | lg $nlo,0($j,$np) | ||
241 | _dswap $nlo | ||
242 | slbgr $alo,$nlo | ||
243 | stg $alo,0($j,$rp) | ||
244 | la $j,8($j) | ||
245 | brct $count,.Lsub | ||
246 | lghi $ahi,0 | ||
247 | slbgr $AHI,$ahi # handle upmost carry | ||
248 | |||
249 | ngr $ap,$AHI | ||
250 | lghi $np,-1 | ||
251 | xgr $np,$AHI | ||
252 | ngr $np,$rp | ||
253 | ogr $ap,$np # ap=borrow?tp:rp | ||
254 | |||
255 | la $j,0(%r0) | ||
256 | lgr $count,$num | ||
257 | .Lcopy: lg $alo,0($j,$ap) # copy or in-place refresh | ||
258 | _dswap $alo | ||
259 | stg $j,$stdframe($j,$sp) # zap tp | ||
260 | stg $alo,0($j,$rp) | ||
261 | la $j,8($j) | ||
262 | brct $count,.Lcopy | ||
263 | |||
264 | la %r1,`$stdframe+8+6*$SIZE_T`($j,$sp) | ||
265 | lm${g} %r6,%r15,0(%r1) | ||
266 | lghi %r2,1 # signal "processed" | ||
267 | br %r14 | ||
268 | .size bn_mul_mont,.-bn_mul_mont | ||
269 | .string "Montgomery Multiplication for s390x, CRYPTOGAMS by <appro\@openssl.org>" | ||
270 | ___ | ||
271 | |||
272 | foreach (split("\n",$code)) { | ||
273 | s/\`([^\`]*)\`/eval $1/ge; | ||
274 | s/_dswap\s+(%r[0-9]+)/sprintf("rllg\t%s,%s,32",$1,$1) if($SIZE_T==4)/e; | ||
275 | print $_,"\n"; | ||
276 | } | ||
277 | close STDOUT; | ||
diff --git a/src/lib/libcrypto/bn/asm/s390x.S b/src/lib/libcrypto/bn/asm/s390x.S deleted file mode 100755 index 43fcb79bc0..0000000000 --- a/src/lib/libcrypto/bn/asm/s390x.S +++ /dev/null | |||
@@ -1,678 +0,0 @@ | |||
1 | .ident "s390x.S, version 1.1" | ||
2 | // ==================================================================== | ||
3 | // Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL | ||
4 | // project. | ||
5 | // | ||
6 | // Rights for redistribution and usage in source and binary forms are | ||
7 | // granted according to the OpenSSL license. Warranty of any kind is | ||
8 | // disclaimed. | ||
9 | // ==================================================================== | ||
10 | |||
11 | .text | ||
12 | |||
13 | #define zero %r0 | ||
14 | |||
15 | // BN_ULONG bn_mul_add_words(BN_ULONG *r2,BN_ULONG *r3,int r4,BN_ULONG r5); | ||
16 | .globl bn_mul_add_words | ||
17 | .type bn_mul_add_words,@function | ||
18 | .align 4 | ||
19 | bn_mul_add_words: | ||
20 | lghi zero,0 // zero = 0 | ||
21 | la %r1,0(%r2) // put rp aside | ||
22 | lghi %r2,0 // i=0; | ||
23 | ltgfr %r4,%r4 | ||
24 | bler %r14 // if (len<=0) return 0; | ||
25 | |||
26 | stmg %r6,%r10,48(%r15) | ||
27 | lghi %r10,3 | ||
28 | lghi %r8,0 // carry = 0 | ||
29 | nr %r10,%r4 // len%4 | ||
30 | sra %r4,2 // cnt=len/4 | ||
31 | jz .Loop1_madd // carry is incidentally cleared if branch taken | ||
32 | algr zero,zero // clear carry | ||
33 | |||
34 | .Loop4_madd: | ||
35 | lg %r7,0(%r2,%r3) // ap[i] | ||
36 | mlgr %r6,%r5 // *=w | ||
37 | alcgr %r7,%r8 // +=carry | ||
38 | alcgr %r6,zero | ||
39 | alg %r7,0(%r2,%r1) // +=rp[i] | ||
40 | stg %r7,0(%r2,%r1) // rp[i]= | ||
41 | |||
42 | lg %r9,8(%r2,%r3) | ||
43 | mlgr %r8,%r5 | ||
44 | alcgr %r9,%r6 | ||
45 | alcgr %r8,zero | ||
46 | alg %r9,8(%r2,%r1) | ||
47 | stg %r9,8(%r2,%r1) | ||
48 | |||
49 | lg %r7,16(%r2,%r3) | ||
50 | mlgr %r6,%r5 | ||
51 | alcgr %r7,%r8 | ||
52 | alcgr %r6,zero | ||
53 | alg %r7,16(%r2,%r1) | ||
54 | stg %r7,16(%r2,%r1) | ||
55 | |||
56 | lg %r9,24(%r2,%r3) | ||
57 | mlgr %r8,%r5 | ||
58 | alcgr %r9,%r6 | ||
59 | alcgr %r8,zero | ||
60 | alg %r9,24(%r2,%r1) | ||
61 | stg %r9,24(%r2,%r1) | ||
62 | |||
63 | la %r2,32(%r2) // i+=4 | ||
64 | brct %r4,.Loop4_madd | ||
65 | |||
66 | la %r10,1(%r10) // see if len%4 is zero ... | ||
67 | brct %r10,.Loop1_madd // without touching condition code:-) | ||
68 | |||
69 | .Lend_madd: | ||
70 | alcgr %r8,zero // collect carry bit | ||
71 | lgr %r2,%r8 | ||
72 | lmg %r6,%r10,48(%r15) | ||
73 | br %r14 | ||
74 | |||
75 | .Loop1_madd: | ||
76 | lg %r7,0(%r2,%r3) // ap[i] | ||
77 | mlgr %r6,%r5 // *=w | ||
78 | alcgr %r7,%r8 // +=carry | ||
79 | alcgr %r6,zero | ||
80 | alg %r7,0(%r2,%r1) // +=rp[i] | ||
81 | stg %r7,0(%r2,%r1) // rp[i]= | ||
82 | |||
83 | lgr %r8,%r6 | ||
84 | la %r2,8(%r2) // i++ | ||
85 | brct %r10,.Loop1_madd | ||
86 | |||
87 | j .Lend_madd | ||
88 | .size bn_mul_add_words,.-bn_mul_add_words | ||
89 | |||
90 | // BN_ULONG bn_mul_words(BN_ULONG *r2,BN_ULONG *r3,int r4,BN_ULONG r5); | ||
91 | .globl bn_mul_words | ||
92 | .type bn_mul_words,@function | ||
93 | .align 4 | ||
94 | bn_mul_words: | ||
95 | lghi zero,0 // zero = 0 | ||
96 | la %r1,0(%r2) // put rp aside | ||
97 | lghi %r2,0 // i=0; | ||
98 | ltgfr %r4,%r4 | ||
99 | bler %r14 // if (len<=0) return 0; | ||
100 | |||
101 | stmg %r6,%r10,48(%r15) | ||
102 | lghi %r10,3 | ||
103 | lghi %r8,0 // carry = 0 | ||
104 | nr %r10,%r4 // len%4 | ||
105 | sra %r4,2 // cnt=len/4 | ||
106 | jz .Loop1_mul // carry is incidentally cleared if branch taken | ||
107 | algr zero,zero // clear carry | ||
108 | |||
109 | .Loop4_mul: | ||
110 | lg %r7,0(%r2,%r3) // ap[i] | ||
111 | mlgr %r6,%r5 // *=w | ||
112 | alcgr %r7,%r8 // +=carry | ||
113 | stg %r7,0(%r2,%r1) // rp[i]= | ||
114 | |||
115 | lg %r9,8(%r2,%r3) | ||
116 | mlgr %r8,%r5 | ||
117 | alcgr %r9,%r6 | ||
118 | stg %r9,8(%r2,%r1) | ||
119 | |||
120 | lg %r7,16(%r2,%r3) | ||
121 | mlgr %r6,%r5 | ||
122 | alcgr %r7,%r8 | ||
123 | stg %r7,16(%r2,%r1) | ||
124 | |||
125 | lg %r9,24(%r2,%r3) | ||
126 | mlgr %r8,%r5 | ||
127 | alcgr %r9,%r6 | ||
128 | stg %r9,24(%r2,%r1) | ||
129 | |||
130 | la %r2,32(%r2) // i+=4 | ||
131 | brct %r4,.Loop4_mul | ||
132 | |||
133 | la %r10,1(%r10) // see if len%4 is zero ... | ||
134 | brct %r10,.Loop1_mul // without touching condition code:-) | ||
135 | |||
136 | .Lend_mul: | ||
137 | alcgr %r8,zero // collect carry bit | ||
138 | lgr %r2,%r8 | ||
139 | lmg %r6,%r10,48(%r15) | ||
140 | br %r14 | ||
141 | |||
142 | .Loop1_mul: | ||
143 | lg %r7,0(%r2,%r3) // ap[i] | ||
144 | mlgr %r6,%r5 // *=w | ||
145 | alcgr %r7,%r8 // +=carry | ||
146 | stg %r7,0(%r2,%r1) // rp[i]= | ||
147 | |||
148 | lgr %r8,%r6 | ||
149 | la %r2,8(%r2) // i++ | ||
150 | brct %r10,.Loop1_mul | ||
151 | |||
152 | j .Lend_mul | ||
153 | .size bn_mul_words,.-bn_mul_words | ||
154 | |||
155 | // void bn_sqr_words(BN_ULONG *r2,BN_ULONG *r2,int r4) | ||
156 | .globl bn_sqr_words | ||
157 | .type bn_sqr_words,@function | ||
158 | .align 4 | ||
159 | bn_sqr_words: | ||
160 | ltgfr %r4,%r4 | ||
161 | bler %r14 | ||
162 | |||
163 | stmg %r6,%r7,48(%r15) | ||
164 | srag %r1,%r4,2 // cnt=len/4 | ||
165 | jz .Loop1_sqr | ||
166 | |||
167 | .Loop4_sqr: | ||
168 | lg %r7,0(%r3) | ||
169 | mlgr %r6,%r7 | ||
170 | stg %r7,0(%r2) | ||
171 | stg %r6,8(%r2) | ||
172 | |||
173 | lg %r7,8(%r3) | ||
174 | mlgr %r6,%r7 | ||
175 | stg %r7,16(%r2) | ||
176 | stg %r6,24(%r2) | ||
177 | |||
178 | lg %r7,16(%r3) | ||
179 | mlgr %r6,%r7 | ||
180 | stg %r7,32(%r2) | ||
181 | stg %r6,40(%r2) | ||
182 | |||
183 | lg %r7,24(%r3) | ||
184 | mlgr %r6,%r7 | ||
185 | stg %r7,48(%r2) | ||
186 | stg %r6,56(%r2) | ||
187 | |||
188 | la %r3,32(%r3) | ||
189 | la %r2,64(%r2) | ||
190 | brct %r1,.Loop4_sqr | ||
191 | |||
192 | lghi %r1,3 | ||
193 | nr %r4,%r1 // cnt=len%4 | ||
194 | jz .Lend_sqr | ||
195 | |||
196 | .Loop1_sqr: | ||
197 | lg %r7,0(%r3) | ||
198 | mlgr %r6,%r7 | ||
199 | stg %r7,0(%r2) | ||
200 | stg %r6,8(%r2) | ||
201 | |||
202 | la %r3,8(%r3) | ||
203 | la %r2,16(%r2) | ||
204 | brct %r4,.Loop1_sqr | ||
205 | |||
206 | .Lend_sqr: | ||
207 | lmg %r6,%r7,48(%r15) | ||
208 | br %r14 | ||
209 | .size bn_sqr_words,.-bn_sqr_words | ||
210 | |||
211 | // BN_ULONG bn_div_words(BN_ULONG h,BN_ULONG l,BN_ULONG d); | ||
212 | .globl bn_div_words | ||
213 | .type bn_div_words,@function | ||
214 | .align 4 | ||
215 | bn_div_words: | ||
216 | dlgr %r2,%r4 | ||
217 | lgr %r2,%r3 | ||
218 | br %r14 | ||
219 | .size bn_div_words,.-bn_div_words | ||
220 | |||
221 | // BN_ULONG bn_add_words(BN_ULONG *r2,BN_ULONG *r3,BN_ULONG *r4,int r5); | ||
222 | .globl bn_add_words | ||
223 | .type bn_add_words,@function | ||
224 | .align 4 | ||
225 | bn_add_words: | ||
226 | la %r1,0(%r2) // put rp aside | ||
227 | lghi %r2,0 // i=0 | ||
228 | ltgfr %r5,%r5 | ||
229 | bler %r14 // if (len<=0) return 0; | ||
230 | |||
231 | stg %r6,48(%r15) | ||
232 | lghi %r6,3 | ||
233 | nr %r6,%r5 // len%4 | ||
234 | sra %r5,2 // len/4, use sra because it sets condition code | ||
235 | jz .Loop1_add // carry is incidentally cleared if branch taken | ||
236 | algr %r2,%r2 // clear carry | ||
237 | |||
238 | .Loop4_add: | ||
239 | lg %r0,0(%r2,%r3) | ||
240 | alcg %r0,0(%r2,%r4) | ||
241 | stg %r0,0(%r2,%r1) | ||
242 | lg %r0,8(%r2,%r3) | ||
243 | alcg %r0,8(%r2,%r4) | ||
244 | stg %r0,8(%r2,%r1) | ||
245 | lg %r0,16(%r2,%r3) | ||
246 | alcg %r0,16(%r2,%r4) | ||
247 | stg %r0,16(%r2,%r1) | ||
248 | lg %r0,24(%r2,%r3) | ||
249 | alcg %r0,24(%r2,%r4) | ||
250 | stg %r0,24(%r2,%r1) | ||
251 | |||
252 | la %r2,32(%r2) // i+=4 | ||
253 | brct %r5,.Loop4_add | ||
254 | |||
255 | la %r6,1(%r6) // see if len%4 is zero ... | ||
256 | brct %r6,.Loop1_add // without touching condition code:-) | ||
257 | |||
258 | .Lexit_add: | ||
259 | lghi %r2,0 | ||
260 | alcgr %r2,%r2 | ||
261 | lg %r6,48(%r15) | ||
262 | br %r14 | ||
263 | |||
264 | .Loop1_add: | ||
265 | lg %r0,0(%r2,%r3) | ||
266 | alcg %r0,0(%r2,%r4) | ||
267 | stg %r0,0(%r2,%r1) | ||
268 | |||
269 | la %r2,8(%r2) // i++ | ||
270 | brct %r6,.Loop1_add | ||
271 | |||
272 | j .Lexit_add | ||
273 | .size bn_add_words,.-bn_add_words | ||
274 | |||
275 | // BN_ULONG bn_sub_words(BN_ULONG *r2,BN_ULONG *r3,BN_ULONG *r4,int r5); | ||
276 | .globl bn_sub_words | ||
277 | .type bn_sub_words,@function | ||
278 | .align 4 | ||
279 | bn_sub_words: | ||
280 | la %r1,0(%r2) // put rp aside | ||
281 | lghi %r2,0 // i=0 | ||
282 | ltgfr %r5,%r5 | ||
283 | bler %r14 // if (len<=0) return 0; | ||
284 | |||
285 | stg %r6,48(%r15) | ||
286 | lghi %r6,3 | ||
287 | nr %r6,%r5 // len%4 | ||
288 | sra %r5,2 // len/4, use sra because it sets condition code | ||
289 | jnz .Loop4_sub // borrow is incidentally cleared if branch taken | ||
290 | slgr %r2,%r2 // clear borrow | ||
291 | |||
292 | .Loop1_sub: | ||
293 | lg %r0,0(%r2,%r3) | ||
294 | slbg %r0,0(%r2,%r4) | ||
295 | stg %r0,0(%r2,%r1) | ||
296 | |||
297 | la %r2,8(%r2) // i++ | ||
298 | brct %r6,.Loop1_sub | ||
299 | j .Lexit_sub | ||
300 | |||
301 | .Loop4_sub: | ||
302 | lg %r0,0(%r2,%r3) | ||
303 | slbg %r0,0(%r2,%r4) | ||
304 | stg %r0,0(%r2,%r1) | ||
305 | lg %r0,8(%r2,%r3) | ||
306 | slbg %r0,8(%r2,%r4) | ||
307 | stg %r0,8(%r2,%r1) | ||
308 | lg %r0,16(%r2,%r3) | ||
309 | slbg %r0,16(%r2,%r4) | ||
310 | stg %r0,16(%r2,%r1) | ||
311 | lg %r0,24(%r2,%r3) | ||
312 | slbg %r0,24(%r2,%r4) | ||
313 | stg %r0,24(%r2,%r1) | ||
314 | |||
315 | la %r2,32(%r2) // i+=4 | ||
316 | brct %r5,.Loop4_sub | ||
317 | |||
318 | la %r6,1(%r6) // see if len%4 is zero ... | ||
319 | brct %r6,.Loop1_sub // without touching condition code:-) | ||
320 | |||
321 | .Lexit_sub: | ||
322 | lghi %r2,0 | ||
323 | slbgr %r2,%r2 | ||
324 | lcgr %r2,%r2 | ||
325 | lg %r6,48(%r15) | ||
326 | br %r14 | ||
327 | .size bn_sub_words,.-bn_sub_words | ||
328 | |||
329 | #define c1 %r1 | ||
330 | #define c2 %r5 | ||
331 | #define c3 %r8 | ||
332 | |||
333 | #define mul_add_c(ai,bi,c1,c2,c3) \ | ||
334 | lg %r7,ai*8(%r3); \ | ||
335 | mlg %r6,bi*8(%r4); \ | ||
336 | algr c1,%r7; \ | ||
337 | alcgr c2,%r6; \ | ||
338 | alcgr c3,zero | ||
339 | |||
340 | // void bn_mul_comba8(BN_ULONG *r2,BN_ULONG *r3,BN_ULONG *r4); | ||
341 | .globl bn_mul_comba8 | ||
342 | .type bn_mul_comba8,@function | ||
343 | .align 4 | ||
344 | bn_mul_comba8: | ||
345 | stmg %r6,%r8,48(%r15) | ||
346 | |||
347 | lghi c1,0 | ||
348 | lghi c2,0 | ||
349 | lghi c3,0 | ||
350 | lghi zero,0 | ||
351 | |||
352 | mul_add_c(0,0,c1,c2,c3); | ||
353 | stg c1,0*8(%r2) | ||
354 | lghi c1,0 | ||
355 | |||
356 | mul_add_c(0,1,c2,c3,c1); | ||
357 | mul_add_c(1,0,c2,c3,c1); | ||
358 | stg c2,1*8(%r2) | ||
359 | lghi c2,0 | ||
360 | |||
361 | mul_add_c(2,0,c3,c1,c2); | ||
362 | mul_add_c(1,1,c3,c1,c2); | ||
363 | mul_add_c(0,2,c3,c1,c2); | ||
364 | stg c3,2*8(%r2) | ||
365 | lghi c3,0 | ||
366 | |||
367 | mul_add_c(0,3,c1,c2,c3); | ||
368 | mul_add_c(1,2,c1,c2,c3); | ||
369 | mul_add_c(2,1,c1,c2,c3); | ||
370 | mul_add_c(3,0,c1,c2,c3); | ||
371 | stg c1,3*8(%r2) | ||
372 | lghi c1,0 | ||
373 | |||
374 | mul_add_c(4,0,c2,c3,c1); | ||
375 | mul_add_c(3,1,c2,c3,c1); | ||
376 | mul_add_c(2,2,c2,c3,c1); | ||
377 | mul_add_c(1,3,c2,c3,c1); | ||
378 | mul_add_c(0,4,c2,c3,c1); | ||
379 | stg c2,4*8(%r2) | ||
380 | lghi c2,0 | ||
381 | |||
382 | mul_add_c(0,5,c3,c1,c2); | ||
383 | mul_add_c(1,4,c3,c1,c2); | ||
384 | mul_add_c(2,3,c3,c1,c2); | ||
385 | mul_add_c(3,2,c3,c1,c2); | ||
386 | mul_add_c(4,1,c3,c1,c2); | ||
387 | mul_add_c(5,0,c3,c1,c2); | ||
388 | stg c3,5*8(%r2) | ||
389 | lghi c3,0 | ||
390 | |||
391 | mul_add_c(6,0,c1,c2,c3); | ||
392 | mul_add_c(5,1,c1,c2,c3); | ||
393 | mul_add_c(4,2,c1,c2,c3); | ||
394 | mul_add_c(3,3,c1,c2,c3); | ||
395 | mul_add_c(2,4,c1,c2,c3); | ||
396 | mul_add_c(1,5,c1,c2,c3); | ||
397 | mul_add_c(0,6,c1,c2,c3); | ||
398 | stg c1,6*8(%r2) | ||
399 | lghi c1,0 | ||
400 | |||
401 | mul_add_c(0,7,c2,c3,c1); | ||
402 | mul_add_c(1,6,c2,c3,c1); | ||
403 | mul_add_c(2,5,c2,c3,c1); | ||
404 | mul_add_c(3,4,c2,c3,c1); | ||
405 | mul_add_c(4,3,c2,c3,c1); | ||
406 | mul_add_c(5,2,c2,c3,c1); | ||
407 | mul_add_c(6,1,c2,c3,c1); | ||
408 | mul_add_c(7,0,c2,c3,c1); | ||
409 | stg c2,7*8(%r2) | ||
410 | lghi c2,0 | ||
411 | |||
412 | mul_add_c(7,1,c3,c1,c2); | ||
413 | mul_add_c(6,2,c3,c1,c2); | ||
414 | mul_add_c(5,3,c3,c1,c2); | ||
415 | mul_add_c(4,4,c3,c1,c2); | ||
416 | mul_add_c(3,5,c3,c1,c2); | ||
417 | mul_add_c(2,6,c3,c1,c2); | ||
418 | mul_add_c(1,7,c3,c1,c2); | ||
419 | stg c3,8*8(%r2) | ||
420 | lghi c3,0 | ||
421 | |||
422 | mul_add_c(2,7,c1,c2,c3); | ||
423 | mul_add_c(3,6,c1,c2,c3); | ||
424 | mul_add_c(4,5,c1,c2,c3); | ||
425 | mul_add_c(5,4,c1,c2,c3); | ||
426 | mul_add_c(6,3,c1,c2,c3); | ||
427 | mul_add_c(7,2,c1,c2,c3); | ||
428 | stg c1,9*8(%r2) | ||
429 | lghi c1,0 | ||
430 | |||
431 | mul_add_c(7,3,c2,c3,c1); | ||
432 | mul_add_c(6,4,c2,c3,c1); | ||
433 | mul_add_c(5,5,c2,c3,c1); | ||
434 | mul_add_c(4,6,c2,c3,c1); | ||
435 | mul_add_c(3,7,c2,c3,c1); | ||
436 | stg c2,10*8(%r2) | ||
437 | lghi c2,0 | ||
438 | |||
439 | mul_add_c(4,7,c3,c1,c2); | ||
440 | mul_add_c(5,6,c3,c1,c2); | ||
441 | mul_add_c(6,5,c3,c1,c2); | ||
442 | mul_add_c(7,4,c3,c1,c2); | ||
443 | stg c3,11*8(%r2) | ||
444 | lghi c3,0 | ||
445 | |||
446 | mul_add_c(7,5,c1,c2,c3); | ||
447 | mul_add_c(6,6,c1,c2,c3); | ||
448 | mul_add_c(5,7,c1,c2,c3); | ||
449 | stg c1,12*8(%r2) | ||
450 | lghi c1,0 | ||
451 | |||
452 | |||
453 | mul_add_c(6,7,c2,c3,c1); | ||
454 | mul_add_c(7,6,c2,c3,c1); | ||
455 | stg c2,13*8(%r2) | ||
456 | lghi c2,0 | ||
457 | |||
458 | mul_add_c(7,7,c3,c1,c2); | ||
459 | stg c3,14*8(%r2) | ||
460 | stg c1,15*8(%r2) | ||
461 | |||
462 | lmg %r6,%r8,48(%r15) | ||
463 | br %r14 | ||
464 | .size bn_mul_comba8,.-bn_mul_comba8 | ||
465 | |||
466 | // void bn_mul_comba4(BN_ULONG *r2,BN_ULONG *r3,BN_ULONG *r4); | ||
467 | .globl bn_mul_comba4 | ||
468 | .type bn_mul_comba4,@function | ||
469 | .align 4 | ||
470 | bn_mul_comba4: | ||
471 | stmg %r6,%r8,48(%r15) | ||
472 | |||
473 | lghi c1,0 | ||
474 | lghi c2,0 | ||
475 | lghi c3,0 | ||
476 | lghi zero,0 | ||
477 | |||
478 | mul_add_c(0,0,c1,c2,c3); | ||
479 | stg c1,0*8(%r3) | ||
480 | lghi c1,0 | ||
481 | |||
482 | mul_add_c(0,1,c2,c3,c1); | ||
483 | mul_add_c(1,0,c2,c3,c1); | ||
484 | stg c2,1*8(%r2) | ||
485 | lghi c2,0 | ||
486 | |||
487 | mul_add_c(2,0,c3,c1,c2); | ||
488 | mul_add_c(1,1,c3,c1,c2); | ||
489 | mul_add_c(0,2,c3,c1,c2); | ||
490 | stg c3,2*8(%r2) | ||
491 | lghi c3,0 | ||
492 | |||
493 | mul_add_c(0,3,c1,c2,c3); | ||
494 | mul_add_c(1,2,c1,c2,c3); | ||
495 | mul_add_c(2,1,c1,c2,c3); | ||
496 | mul_add_c(3,0,c1,c2,c3); | ||
497 | stg c1,3*8(%r2) | ||
498 | lghi c1,0 | ||
499 | |||
500 | mul_add_c(3,1,c2,c3,c1); | ||
501 | mul_add_c(2,2,c2,c3,c1); | ||
502 | mul_add_c(1,3,c2,c3,c1); | ||
503 | stg c2,4*8(%r2) | ||
504 | lghi c2,0 | ||
505 | |||
506 | mul_add_c(2,3,c3,c1,c2); | ||
507 | mul_add_c(3,2,c3,c1,c2); | ||
508 | stg c3,5*8(%r2) | ||
509 | lghi c3,0 | ||
510 | |||
511 | mul_add_c(3,3,c1,c2,c3); | ||
512 | stg c1,6*8(%r2) | ||
513 | stg c2,7*8(%r2) | ||
514 | |||
515 | stmg %r6,%r8,48(%r15) | ||
516 | br %r14 | ||
517 | .size bn_mul_comba4,.-bn_mul_comba4 | ||
518 | |||
519 | #define sqr_add_c(ai,c1,c2,c3) \ | ||
520 | lg %r7,ai*8(%r3); \ | ||
521 | mlgr %r6,%r7; \ | ||
522 | algr c1,%r7; \ | ||
523 | alcgr c2,%r6; \ | ||
524 | alcgr c3,zero | ||
525 | |||
526 | #define sqr_add_c2(ai,aj,c1,c2,c3) \ | ||
527 | lg %r7,ai*8(%r3); \ | ||
528 | mlg %r6,aj*8(%r3); \ | ||
529 | algr c1,%r7; \ | ||
530 | alcgr c2,%r6; \ | ||
531 | alcgr c3,zero; \ | ||
532 | algr c1,%r7; \ | ||
533 | alcgr c2,%r6; \ | ||
534 | alcgr c3,zero | ||
535 | |||
536 | // void bn_sqr_comba8(BN_ULONG *r2,BN_ULONG *r3); | ||
537 | .globl bn_sqr_comba8 | ||
538 | .type bn_sqr_comba8,@function | ||
539 | .align 4 | ||
540 | bn_sqr_comba8: | ||
541 | stmg %r6,%r8,48(%r15) | ||
542 | |||
543 | lghi c1,0 | ||
544 | lghi c2,0 | ||
545 | lghi c3,0 | ||
546 | lghi zero,0 | ||
547 | |||
548 | sqr_add_c(0,c1,c2,c3); | ||
549 | stg c1,0*8(%r2) | ||
550 | lghi c1,0 | ||
551 | |||
552 | sqr_add_c2(1,0,c2,c3,c1); | ||
553 | stg c2,1*8(%r2) | ||
554 | lghi c2,0 | ||
555 | |||
556 | sqr_add_c(1,c3,c1,c2); | ||
557 | sqr_add_c2(2,0,c3,c1,c2); | ||
558 | stg c3,2*8(%r2) | ||
559 | lghi c3,0 | ||
560 | |||
561 | sqr_add_c2(3,0,c1,c2,c3); | ||
562 | sqr_add_c2(2,1,c1,c2,c3); | ||
563 | stg c1,3*8(%r2) | ||
564 | lghi c1,0 | ||
565 | |||
566 | sqr_add_c(2,c2,c3,c1); | ||
567 | sqr_add_c2(3,1,c2,c3,c1); | ||
568 | sqr_add_c2(4,0,c2,c3,c1); | ||
569 | stg c2,4*8(%r2) | ||
570 | lghi c2,0 | ||
571 | |||
572 | sqr_add_c2(5,0,c3,c1,c2); | ||
573 | sqr_add_c2(4,1,c3,c1,c2); | ||
574 | sqr_add_c2(3,2,c3,c1,c2); | ||
575 | stg c3,5*8(%r2) | ||
576 | lghi c3,0 | ||
577 | |||
578 | sqr_add_c(3,c1,c2,c3); | ||
579 | sqr_add_c2(4,2,c1,c2,c3); | ||
580 | sqr_add_c2(5,1,c1,c2,c3); | ||
581 | sqr_add_c2(6,0,c1,c2,c3); | ||
582 | stg c1,6*8(%r2) | ||
583 | lghi c1,0 | ||
584 | |||
585 | sqr_add_c2(7,0,c2,c3,c1); | ||
586 | sqr_add_c2(6,1,c2,c3,c1); | ||
587 | sqr_add_c2(5,2,c2,c3,c1); | ||
588 | sqr_add_c2(4,3,c2,c3,c1); | ||
589 | stg c2,7*8(%r2) | ||
590 | lghi c2,0 | ||
591 | |||
592 | sqr_add_c(4,c3,c1,c2); | ||
593 | sqr_add_c2(5,3,c3,c1,c2); | ||
594 | sqr_add_c2(6,2,c3,c1,c2); | ||
595 | sqr_add_c2(7,1,c3,c1,c2); | ||
596 | stg c3,8*8(%r2) | ||
597 | lghi c3,0 | ||
598 | |||
599 | sqr_add_c2(7,2,c1,c2,c3); | ||
600 | sqr_add_c2(6,3,c1,c2,c3); | ||
601 | sqr_add_c2(5,4,c1,c2,c3); | ||
602 | stg c1,9*8(%r2) | ||
603 | lghi c1,0 | ||
604 | |||
605 | sqr_add_c(5,c2,c3,c1); | ||
606 | sqr_add_c2(6,4,c2,c3,c1); | ||
607 | sqr_add_c2(7,3,c2,c3,c1); | ||
608 | stg c2,10*8(%r2) | ||
609 | lghi c2,0 | ||
610 | |||
611 | sqr_add_c2(7,4,c3,c1,c2); | ||
612 | sqr_add_c2(6,5,c3,c1,c2); | ||
613 | stg c3,11*8(%r2) | ||
614 | lghi c3,0 | ||
615 | |||
616 | sqr_add_c(6,c1,c2,c3); | ||
617 | sqr_add_c2(7,5,c1,c2,c3); | ||
618 | stg c1,12*8(%r2) | ||
619 | lghi c1,0 | ||
620 | |||
621 | sqr_add_c2(7,6,c2,c3,c1); | ||
622 | stg c2,13*8(%r2) | ||
623 | lghi c2,0 | ||
624 | |||
625 | sqr_add_c(7,c3,c1,c2); | ||
626 | stg c3,14*8(%r2) | ||
627 | stg c1,15*8(%r2) | ||
628 | |||
629 | lmg %r6,%r8,48(%r15) | ||
630 | br %r14 | ||
631 | .size bn_sqr_comba8,.-bn_sqr_comba8 | ||
632 | |||
633 | // void bn_sqr_comba4(BN_ULONG *r2,BN_ULONG *r3); | ||
634 | .globl bn_sqr_comba4 | ||
635 | .type bn_sqr_comba4,@function | ||
636 | .align 4 | ||
637 | bn_sqr_comba4: | ||
638 | stmg %r6,%r8,48(%r15) | ||
639 | |||
640 | lghi c1,0 | ||
641 | lghi c2,0 | ||
642 | lghi c3,0 | ||
643 | lghi zero,0 | ||
644 | |||
645 | sqr_add_c(0,c1,c2,c3); | ||
646 | stg c1,0*8(%r2) | ||
647 | lghi c1,0 | ||
648 | |||
649 | sqr_add_c2(1,0,c2,c3,c1); | ||
650 | stg c2,1*8(%r2) | ||
651 | lghi c2,0 | ||
652 | |||
653 | sqr_add_c(1,c3,c1,c2); | ||
654 | sqr_add_c2(2,0,c3,c1,c2); | ||
655 | stg c3,2*8(%r2) | ||
656 | lghi c3,0 | ||
657 | |||
658 | sqr_add_c2(3,0,c1,c2,c3); | ||
659 | sqr_add_c2(2,1,c1,c2,c3); | ||
660 | stg c1,3*8(%r2) | ||
661 | lghi c1,0 | ||
662 | |||
663 | sqr_add_c(2,c2,c3,c1); | ||
664 | sqr_add_c2(3,1,c2,c3,c1); | ||
665 | stg c2,4*8(%r2) | ||
666 | lghi c2,0 | ||
667 | |||
668 | sqr_add_c2(3,2,c3,c1,c2); | ||
669 | stg c3,5*8(%r2) | ||
670 | lghi c3,0 | ||
671 | |||
672 | sqr_add_c(3,c1,c2,c3); | ||
673 | stg c1,6*8(%r2) | ||
674 | stg c2,7*8(%r2) | ||
675 | |||
676 | lmg %r6,%r8,48(%r15) | ||
677 | br %r14 | ||
678 | .size bn_sqr_comba4,.-bn_sqr_comba4 | ||
diff --git a/src/lib/libcrypto/bn/asm/sparcv8.S b/src/lib/libcrypto/bn/asm/sparcv8.S deleted file mode 100644 index 88c5dc480a..0000000000 --- a/src/lib/libcrypto/bn/asm/sparcv8.S +++ /dev/null | |||
@@ -1,1458 +0,0 @@ | |||
1 | .ident "sparcv8.s, Version 1.4" | ||
2 | .ident "SPARC v8 ISA artwork by Andy Polyakov <appro@fy.chalmers.se>" | ||
3 | |||
4 | /* | ||
5 | * ==================================================================== | ||
6 | * Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL | ||
7 | * project. | ||
8 | * | ||
9 | * Rights for redistribution and usage in source and binary forms are | ||
10 | * granted according to the OpenSSL license. Warranty of any kind is | ||
11 | * disclaimed. | ||
12 | * ==================================================================== | ||
13 | */ | ||
14 | |||
15 | /* | ||
16 | * This is my modest contributon to OpenSSL project (see | ||
17 | * http://www.openssl.org/ for more information about it) and is | ||
18 | * a drop-in SuperSPARC ISA replacement for crypto/bn/bn_asm.c | ||
19 | * module. For updates see http://fy.chalmers.se/~appro/hpe/. | ||
20 | * | ||
21 | * See bn_asm.sparc.v8plus.S for more details. | ||
22 | */ | ||
23 | |||
24 | /* | ||
25 | * Revision history. | ||
26 | * | ||
27 | * 1.1 - new loop unrolling model(*); | ||
28 | * 1.2 - made gas friendly; | ||
29 | * 1.3 - fixed problem with /usr/ccs/lib/cpp; | ||
30 | * 1.4 - some retunes; | ||
31 | * | ||
32 | * (*) see bn_asm.sparc.v8plus.S for details | ||
33 | */ | ||
34 | |||
35 | .section ".text",#alloc,#execinstr | ||
36 | .file "bn_asm.sparc.v8.S" | ||
37 | |||
38 | .align 32 | ||
39 | |||
40 | .global bn_mul_add_words | ||
41 | /* | ||
42 | * BN_ULONG bn_mul_add_words(rp,ap,num,w) | ||
43 | * BN_ULONG *rp,*ap; | ||
44 | * int num; | ||
45 | * BN_ULONG w; | ||
46 | */ | ||
47 | bn_mul_add_words: | ||
48 | cmp %o2,0 | ||
49 | bg,a .L_bn_mul_add_words_proceed | ||
50 | ld [%o1],%g2 | ||
51 | retl | ||
52 | clr %o0 | ||
53 | |||
54 | .L_bn_mul_add_words_proceed: | ||
55 | andcc %o2,-4,%g0 | ||
56 | bz .L_bn_mul_add_words_tail | ||
57 | clr %o5 | ||
58 | |||
59 | .L_bn_mul_add_words_loop: | ||
60 | ld [%o0],%o4 | ||
61 | ld [%o1+4],%g3 | ||
62 | umul %o3,%g2,%g2 | ||
63 | rd %y,%g1 | ||
64 | addcc %o4,%o5,%o4 | ||
65 | addx %g1,0,%g1 | ||
66 | addcc %o4,%g2,%o4 | ||
67 | st %o4,[%o0] | ||
68 | addx %g1,0,%o5 | ||
69 | |||
70 | ld [%o0+4],%o4 | ||
71 | ld [%o1+8],%g2 | ||
72 | umul %o3,%g3,%g3 | ||
73 | dec 4,%o2 | ||
74 | rd %y,%g1 | ||
75 | addcc %o4,%o5,%o4 | ||
76 | addx %g1,0,%g1 | ||
77 | addcc %o4,%g3,%o4 | ||
78 | st %o4,[%o0+4] | ||
79 | addx %g1,0,%o5 | ||
80 | |||
81 | ld [%o0+8],%o4 | ||
82 | ld [%o1+12],%g3 | ||
83 | umul %o3,%g2,%g2 | ||
84 | inc 16,%o1 | ||
85 | rd %y,%g1 | ||
86 | addcc %o4,%o5,%o4 | ||
87 | addx %g1,0,%g1 | ||
88 | addcc %o4,%g2,%o4 | ||
89 | st %o4,[%o0+8] | ||
90 | addx %g1,0,%o5 | ||
91 | |||
92 | ld [%o0+12],%o4 | ||
93 | umul %o3,%g3,%g3 | ||
94 | inc 16,%o0 | ||
95 | rd %y,%g1 | ||
96 | addcc %o4,%o5,%o4 | ||
97 | addx %g1,0,%g1 | ||
98 | addcc %o4,%g3,%o4 | ||
99 | st %o4,[%o0-4] | ||
100 | addx %g1,0,%o5 | ||
101 | andcc %o2,-4,%g0 | ||
102 | bnz,a .L_bn_mul_add_words_loop | ||
103 | ld [%o1],%g2 | ||
104 | |||
105 | tst %o2 | ||
106 | bnz,a .L_bn_mul_add_words_tail | ||
107 | ld [%o1],%g2 | ||
108 | .L_bn_mul_add_words_return: | ||
109 | retl | ||
110 | mov %o5,%o0 | ||
111 | nop | ||
112 | |||
113 | .L_bn_mul_add_words_tail: | ||
114 | ld [%o0],%o4 | ||
115 | umul %o3,%g2,%g2 | ||
116 | addcc %o4,%o5,%o4 | ||
117 | rd %y,%g1 | ||
118 | addx %g1,0,%g1 | ||
119 | addcc %o4,%g2,%o4 | ||
120 | addx %g1,0,%o5 | ||
121 | deccc %o2 | ||
122 | bz .L_bn_mul_add_words_return | ||
123 | st %o4,[%o0] | ||
124 | |||
125 | ld [%o1+4],%g2 | ||
126 | ld [%o0+4],%o4 | ||
127 | umul %o3,%g2,%g2 | ||
128 | rd %y,%g1 | ||
129 | addcc %o4,%o5,%o4 | ||
130 | addx %g1,0,%g1 | ||
131 | addcc %o4,%g2,%o4 | ||
132 | addx %g1,0,%o5 | ||
133 | deccc %o2 | ||
134 | bz .L_bn_mul_add_words_return | ||
135 | st %o4,[%o0+4] | ||
136 | |||
137 | ld [%o1+8],%g2 | ||
138 | ld [%o0+8],%o4 | ||
139 | umul %o3,%g2,%g2 | ||
140 | rd %y,%g1 | ||
141 | addcc %o4,%o5,%o4 | ||
142 | addx %g1,0,%g1 | ||
143 | addcc %o4,%g2,%o4 | ||
144 | st %o4,[%o0+8] | ||
145 | retl | ||
146 | addx %g1,0,%o0 | ||
147 | |||
148 | .type bn_mul_add_words,#function | ||
149 | .size bn_mul_add_words,(.-bn_mul_add_words) | ||
150 | |||
151 | .align 32 | ||
152 | |||
153 | .global bn_mul_words | ||
154 | /* | ||
155 | * BN_ULONG bn_mul_words(rp,ap,num,w) | ||
156 | * BN_ULONG *rp,*ap; | ||
157 | * int num; | ||
158 | * BN_ULONG w; | ||
159 | */ | ||
160 | bn_mul_words: | ||
161 | cmp %o2,0 | ||
162 | bg,a .L_bn_mul_words_proceeed | ||
163 | ld [%o1],%g2 | ||
164 | retl | ||
165 | clr %o0 | ||
166 | |||
167 | .L_bn_mul_words_proceeed: | ||
168 | andcc %o2,-4,%g0 | ||
169 | bz .L_bn_mul_words_tail | ||
170 | clr %o5 | ||
171 | |||
172 | .L_bn_mul_words_loop: | ||
173 | ld [%o1+4],%g3 | ||
174 | umul %o3,%g2,%g2 | ||
175 | addcc %g2,%o5,%g2 | ||
176 | rd %y,%g1 | ||
177 | addx %g1,0,%o5 | ||
178 | st %g2,[%o0] | ||
179 | |||
180 | ld [%o1+8],%g2 | ||
181 | umul %o3,%g3,%g3 | ||
182 | addcc %g3,%o5,%g3 | ||
183 | rd %y,%g1 | ||
184 | dec 4,%o2 | ||
185 | addx %g1,0,%o5 | ||
186 | st %g3,[%o0+4] | ||
187 | |||
188 | ld [%o1+12],%g3 | ||
189 | umul %o3,%g2,%g2 | ||
190 | addcc %g2,%o5,%g2 | ||
191 | rd %y,%g1 | ||
192 | inc 16,%o1 | ||
193 | st %g2,[%o0+8] | ||
194 | addx %g1,0,%o5 | ||
195 | |||
196 | umul %o3,%g3,%g3 | ||
197 | addcc %g3,%o5,%g3 | ||
198 | rd %y,%g1 | ||
199 | inc 16,%o0 | ||
200 | addx %g1,0,%o5 | ||
201 | st %g3,[%o0-4] | ||
202 | andcc %o2,-4,%g0 | ||
203 | nop | ||
204 | bnz,a .L_bn_mul_words_loop | ||
205 | ld [%o1],%g2 | ||
206 | |||
207 | tst %o2 | ||
208 | bnz,a .L_bn_mul_words_tail | ||
209 | ld [%o1],%g2 | ||
210 | .L_bn_mul_words_return: | ||
211 | retl | ||
212 | mov %o5,%o0 | ||
213 | nop | ||
214 | |||
215 | .L_bn_mul_words_tail: | ||
216 | umul %o3,%g2,%g2 | ||
217 | addcc %g2,%o5,%g2 | ||
218 | rd %y,%g1 | ||
219 | addx %g1,0,%o5 | ||
220 | deccc %o2 | ||
221 | bz .L_bn_mul_words_return | ||
222 | st %g2,[%o0] | ||
223 | nop | ||
224 | |||
225 | ld [%o1+4],%g2 | ||
226 | umul %o3,%g2,%g2 | ||
227 | addcc %g2,%o5,%g2 | ||
228 | rd %y,%g1 | ||
229 | addx %g1,0,%o5 | ||
230 | deccc %o2 | ||
231 | bz .L_bn_mul_words_return | ||
232 | st %g2,[%o0+4] | ||
233 | |||
234 | ld [%o1+8],%g2 | ||
235 | umul %o3,%g2,%g2 | ||
236 | addcc %g2,%o5,%g2 | ||
237 | rd %y,%g1 | ||
238 | st %g2,[%o0+8] | ||
239 | retl | ||
240 | addx %g1,0,%o0 | ||
241 | |||
242 | .type bn_mul_words,#function | ||
243 | .size bn_mul_words,(.-bn_mul_words) | ||
244 | |||
245 | .align 32 | ||
246 | .global bn_sqr_words | ||
247 | /* | ||
248 | * void bn_sqr_words(r,a,n) | ||
249 | * BN_ULONG *r,*a; | ||
250 | * int n; | ||
251 | */ | ||
252 | bn_sqr_words: | ||
253 | cmp %o2,0 | ||
254 | bg,a .L_bn_sqr_words_proceeed | ||
255 | ld [%o1],%g2 | ||
256 | retl | ||
257 | clr %o0 | ||
258 | |||
259 | .L_bn_sqr_words_proceeed: | ||
260 | andcc %o2,-4,%g0 | ||
261 | bz .L_bn_sqr_words_tail | ||
262 | clr %o5 | ||
263 | |||
264 | .L_bn_sqr_words_loop: | ||
265 | ld [%o1+4],%g3 | ||
266 | umul %g2,%g2,%o4 | ||
267 | st %o4,[%o0] | ||
268 | rd %y,%o5 | ||
269 | st %o5,[%o0+4] | ||
270 | |||
271 | ld [%o1+8],%g2 | ||
272 | umul %g3,%g3,%o4 | ||
273 | dec 4,%o2 | ||
274 | st %o4,[%o0+8] | ||
275 | rd %y,%o5 | ||
276 | st %o5,[%o0+12] | ||
277 | nop | ||
278 | |||
279 | ld [%o1+12],%g3 | ||
280 | umul %g2,%g2,%o4 | ||
281 | st %o4,[%o0+16] | ||
282 | rd %y,%o5 | ||
283 | inc 16,%o1 | ||
284 | st %o5,[%o0+20] | ||
285 | |||
286 | umul %g3,%g3,%o4 | ||
287 | inc 32,%o0 | ||
288 | st %o4,[%o0-8] | ||
289 | rd %y,%o5 | ||
290 | st %o5,[%o0-4] | ||
291 | andcc %o2,-4,%g2 | ||
292 | bnz,a .L_bn_sqr_words_loop | ||
293 | ld [%o1],%g2 | ||
294 | |||
295 | tst %o2 | ||
296 | nop | ||
297 | bnz,a .L_bn_sqr_words_tail | ||
298 | ld [%o1],%g2 | ||
299 | .L_bn_sqr_words_return: | ||
300 | retl | ||
301 | clr %o0 | ||
302 | |||
303 | .L_bn_sqr_words_tail: | ||
304 | umul %g2,%g2,%o4 | ||
305 | st %o4,[%o0] | ||
306 | deccc %o2 | ||
307 | rd %y,%o5 | ||
308 | bz .L_bn_sqr_words_return | ||
309 | st %o5,[%o0+4] | ||
310 | |||
311 | ld [%o1+4],%g2 | ||
312 | umul %g2,%g2,%o4 | ||
313 | st %o4,[%o0+8] | ||
314 | deccc %o2 | ||
315 | rd %y,%o5 | ||
316 | nop | ||
317 | bz .L_bn_sqr_words_return | ||
318 | st %o5,[%o0+12] | ||
319 | |||
320 | ld [%o1+8],%g2 | ||
321 | umul %g2,%g2,%o4 | ||
322 | st %o4,[%o0+16] | ||
323 | rd %y,%o5 | ||
324 | st %o5,[%o0+20] | ||
325 | retl | ||
326 | clr %o0 | ||
327 | |||
328 | .type bn_sqr_words,#function | ||
329 | .size bn_sqr_words,(.-bn_sqr_words) | ||
330 | |||
331 | .align 32 | ||
332 | |||
333 | .global bn_div_words | ||
334 | /* | ||
335 | * BN_ULONG bn_div_words(h,l,d) | ||
336 | * BN_ULONG h,l,d; | ||
337 | */ | ||
338 | bn_div_words: | ||
339 | wr %o0,%y | ||
340 | udiv %o1,%o2,%o0 | ||
341 | retl | ||
342 | nop | ||
343 | |||
344 | .type bn_div_words,#function | ||
345 | .size bn_div_words,(.-bn_div_words) | ||
346 | |||
347 | .align 32 | ||
348 | |||
349 | .global bn_add_words | ||
350 | /* | ||
351 | * BN_ULONG bn_add_words(rp,ap,bp,n) | ||
352 | * BN_ULONG *rp,*ap,*bp; | ||
353 | * int n; | ||
354 | */ | ||
355 | bn_add_words: | ||
356 | cmp %o3,0 | ||
357 | bg,a .L_bn_add_words_proceed | ||
358 | ld [%o1],%o4 | ||
359 | retl | ||
360 | clr %o0 | ||
361 | |||
362 | .L_bn_add_words_proceed: | ||
363 | andcc %o3,-4,%g0 | ||
364 | bz .L_bn_add_words_tail | ||
365 | clr %g1 | ||
366 | ba .L_bn_add_words_warn_loop | ||
367 | addcc %g0,0,%g0 ! clear carry flag | ||
368 | |||
369 | .L_bn_add_words_loop: | ||
370 | ld [%o1],%o4 | ||
371 | .L_bn_add_words_warn_loop: | ||
372 | ld [%o2],%o5 | ||
373 | ld [%o1+4],%g3 | ||
374 | ld [%o2+4],%g4 | ||
375 | dec 4,%o3 | ||
376 | addxcc %o5,%o4,%o5 | ||
377 | st %o5,[%o0] | ||
378 | |||
379 | ld [%o1+8],%o4 | ||
380 | ld [%o2+8],%o5 | ||
381 | inc 16,%o1 | ||
382 | addxcc %g3,%g4,%g3 | ||
383 | st %g3,[%o0+4] | ||
384 | |||
385 | ld [%o1-4],%g3 | ||
386 | ld [%o2+12],%g4 | ||
387 | inc 16,%o2 | ||
388 | addxcc %o5,%o4,%o5 | ||
389 | st %o5,[%o0+8] | ||
390 | |||
391 | inc 16,%o0 | ||
392 | addxcc %g3,%g4,%g3 | ||
393 | st %g3,[%o0-4] | ||
394 | addx %g0,0,%g1 | ||
395 | andcc %o3,-4,%g0 | ||
396 | bnz,a .L_bn_add_words_loop | ||
397 | addcc %g1,-1,%g0 | ||
398 | |||
399 | tst %o3 | ||
400 | bnz,a .L_bn_add_words_tail | ||
401 | ld [%o1],%o4 | ||
402 | .L_bn_add_words_return: | ||
403 | retl | ||
404 | mov %g1,%o0 | ||
405 | |||
406 | .L_bn_add_words_tail: | ||
407 | addcc %g1,-1,%g0 | ||
408 | ld [%o2],%o5 | ||
409 | addxcc %o5,%o4,%o5 | ||
410 | addx %g0,0,%g1 | ||
411 | deccc %o3 | ||
412 | bz .L_bn_add_words_return | ||
413 | st %o5,[%o0] | ||
414 | |||
415 | ld [%o1+4],%o4 | ||
416 | addcc %g1,-1,%g0 | ||
417 | ld [%o2+4],%o5 | ||
418 | addxcc %o5,%o4,%o5 | ||
419 | addx %g0,0,%g1 | ||
420 | deccc %o3 | ||
421 | bz .L_bn_add_words_return | ||
422 | st %o5,[%o0+4] | ||
423 | |||
424 | ld [%o1+8],%o4 | ||
425 | addcc %g1,-1,%g0 | ||
426 | ld [%o2+8],%o5 | ||
427 | addxcc %o5,%o4,%o5 | ||
428 | st %o5,[%o0+8] | ||
429 | retl | ||
430 | addx %g0,0,%o0 | ||
431 | |||
432 | .type bn_add_words,#function | ||
433 | .size bn_add_words,(.-bn_add_words) | ||
434 | |||
435 | .align 32 | ||
436 | |||
437 | .global bn_sub_words | ||
438 | /* | ||
439 | * BN_ULONG bn_sub_words(rp,ap,bp,n) | ||
440 | * BN_ULONG *rp,*ap,*bp; | ||
441 | * int n; | ||
442 | */ | ||
443 | bn_sub_words: | ||
444 | cmp %o3,0 | ||
445 | bg,a .L_bn_sub_words_proceed | ||
446 | ld [%o1],%o4 | ||
447 | retl | ||
448 | clr %o0 | ||
449 | |||
450 | .L_bn_sub_words_proceed: | ||
451 | andcc %o3,-4,%g0 | ||
452 | bz .L_bn_sub_words_tail | ||
453 | clr %g1 | ||
454 | ba .L_bn_sub_words_warm_loop | ||
455 | addcc %g0,0,%g0 ! clear carry flag | ||
456 | |||
457 | .L_bn_sub_words_loop: | ||
458 | ld [%o1],%o4 | ||
459 | .L_bn_sub_words_warm_loop: | ||
460 | ld [%o2],%o5 | ||
461 | ld [%o1+4],%g3 | ||
462 | ld [%o2+4],%g4 | ||
463 | dec 4,%o3 | ||
464 | subxcc %o4,%o5,%o5 | ||
465 | st %o5,[%o0] | ||
466 | |||
467 | ld [%o1+8],%o4 | ||
468 | ld [%o2+8],%o5 | ||
469 | inc 16,%o1 | ||
470 | subxcc %g3,%g4,%g4 | ||
471 | st %g4,[%o0+4] | ||
472 | |||
473 | ld [%o1-4],%g3 | ||
474 | ld [%o2+12],%g4 | ||
475 | inc 16,%o2 | ||
476 | subxcc %o4,%o5,%o5 | ||
477 | st %o5,[%o0+8] | ||
478 | |||
479 | inc 16,%o0 | ||
480 | subxcc %g3,%g4,%g4 | ||
481 | st %g4,[%o0-4] | ||
482 | addx %g0,0,%g1 | ||
483 | andcc %o3,-4,%g0 | ||
484 | bnz,a .L_bn_sub_words_loop | ||
485 | addcc %g1,-1,%g0 | ||
486 | |||
487 | tst %o3 | ||
488 | nop | ||
489 | bnz,a .L_bn_sub_words_tail | ||
490 | ld [%o1],%o4 | ||
491 | .L_bn_sub_words_return: | ||
492 | retl | ||
493 | mov %g1,%o0 | ||
494 | |||
495 | .L_bn_sub_words_tail: | ||
496 | addcc %g1,-1,%g0 | ||
497 | ld [%o2],%o5 | ||
498 | subxcc %o4,%o5,%o5 | ||
499 | addx %g0,0,%g1 | ||
500 | deccc %o3 | ||
501 | bz .L_bn_sub_words_return | ||
502 | st %o5,[%o0] | ||
503 | nop | ||
504 | |||
505 | ld [%o1+4],%o4 | ||
506 | addcc %g1,-1,%g0 | ||
507 | ld [%o2+4],%o5 | ||
508 | subxcc %o4,%o5,%o5 | ||
509 | addx %g0,0,%g1 | ||
510 | deccc %o3 | ||
511 | bz .L_bn_sub_words_return | ||
512 | st %o5,[%o0+4] | ||
513 | |||
514 | ld [%o1+8],%o4 | ||
515 | addcc %g1,-1,%g0 | ||
516 | ld [%o2+8],%o5 | ||
517 | subxcc %o4,%o5,%o5 | ||
518 | st %o5,[%o0+8] | ||
519 | retl | ||
520 | addx %g0,0,%o0 | ||
521 | |||
522 | .type bn_sub_words,#function | ||
523 | .size bn_sub_words,(.-bn_sub_words) | ||
524 | |||
525 | #define FRAME_SIZE -96 | ||
526 | |||
527 | /* | ||
528 | * Here is register usage map for *all* routines below. | ||
529 | */ | ||
530 | #define t_1 %o0 | ||
531 | #define t_2 %o1 | ||
532 | #define c_1 %o2 | ||
533 | #define c_2 %o3 | ||
534 | #define c_3 %o4 | ||
535 | |||
536 | #define ap(I) [%i1+4*I] | ||
537 | #define bp(I) [%i2+4*I] | ||
538 | #define rp(I) [%i0+4*I] | ||
539 | |||
540 | #define a_0 %l0 | ||
541 | #define a_1 %l1 | ||
542 | #define a_2 %l2 | ||
543 | #define a_3 %l3 | ||
544 | #define a_4 %l4 | ||
545 | #define a_5 %l5 | ||
546 | #define a_6 %l6 | ||
547 | #define a_7 %l7 | ||
548 | |||
549 | #define b_0 %i3 | ||
550 | #define b_1 %i4 | ||
551 | #define b_2 %i5 | ||
552 | #define b_3 %o5 | ||
553 | #define b_4 %g1 | ||
554 | #define b_5 %g2 | ||
555 | #define b_6 %g3 | ||
556 | #define b_7 %g4 | ||
557 | |||
558 | .align 32 | ||
559 | .global bn_mul_comba8 | ||
560 | /* | ||
561 | * void bn_mul_comba8(r,a,b) | ||
562 | * BN_ULONG *r,*a,*b; | ||
563 | */ | ||
564 | bn_mul_comba8: | ||
565 | save %sp,FRAME_SIZE,%sp | ||
566 | ld ap(0),a_0 | ||
567 | ld bp(0),b_0 | ||
568 | umul a_0,b_0,c_1 !=!mul_add_c(a[0],b[0],c1,c2,c3); | ||
569 | ld bp(1),b_1 | ||
570 | rd %y,c_2 | ||
571 | st c_1,rp(0) !r[0]=c1; | ||
572 | |||
573 | umul a_0,b_1,t_1 !=!mul_add_c(a[0],b[1],c2,c3,c1); | ||
574 | ld ap(1),a_1 | ||
575 | addcc c_2,t_1,c_2 | ||
576 | rd %y,t_2 | ||
577 | addxcc %g0,t_2,c_3 != | ||
578 | addx %g0,%g0,c_1 | ||
579 | ld ap(2),a_2 | ||
580 | umul a_1,b_0,t_1 !mul_add_c(a[1],b[0],c2,c3,c1); | ||
581 | addcc c_2,t_1,c_2 != | ||
582 | rd %y,t_2 | ||
583 | addxcc c_3,t_2,c_3 | ||
584 | st c_2,rp(1) !r[1]=c2; | ||
585 | addx c_1,%g0,c_1 != | ||
586 | |||
587 | umul a_2,b_0,t_1 !mul_add_c(a[2],b[0],c3,c1,c2); | ||
588 | addcc c_3,t_1,c_3 | ||
589 | rd %y,t_2 | ||
590 | addxcc c_1,t_2,c_1 != | ||
591 | addx %g0,%g0,c_2 | ||
592 | ld bp(2),b_2 | ||
593 | umul a_1,b_1,t_1 !mul_add_c(a[1],b[1],c3,c1,c2); | ||
594 | addcc c_3,t_1,c_3 != | ||
595 | rd %y,t_2 | ||
596 | addxcc c_1,t_2,c_1 | ||
597 | ld bp(3),b_3 | ||
598 | addx c_2,%g0,c_2 != | ||
599 | umul a_0,b_2,t_1 !mul_add_c(a[0],b[2],c3,c1,c2); | ||
600 | addcc c_3,t_1,c_3 | ||
601 | rd %y,t_2 | ||
602 | addxcc c_1,t_2,c_1 != | ||
603 | addx c_2,%g0,c_2 | ||
604 | st c_3,rp(2) !r[2]=c3; | ||
605 | |||
606 | umul a_0,b_3,t_1 !mul_add_c(a[0],b[3],c1,c2,c3); | ||
607 | addcc c_1,t_1,c_1 != | ||
608 | rd %y,t_2 | ||
609 | addxcc c_2,t_2,c_2 | ||
610 | addx %g0,%g0,c_3 | ||
611 | umul a_1,b_2,t_1 !=!mul_add_c(a[1],b[2],c1,c2,c3); | ||
612 | addcc c_1,t_1,c_1 | ||
613 | rd %y,t_2 | ||
614 | addxcc c_2,t_2,c_2 | ||
615 | addx c_3,%g0,c_3 != | ||
616 | ld ap(3),a_3 | ||
617 | umul a_2,b_1,t_1 !mul_add_c(a[2],b[1],c1,c2,c3); | ||
618 | addcc c_1,t_1,c_1 | ||
619 | rd %y,t_2 != | ||
620 | addxcc c_2,t_2,c_2 | ||
621 | addx c_3,%g0,c_3 | ||
622 | ld ap(4),a_4 | ||
623 | umul a_3,b_0,t_1 !mul_add_c(a[3],b[0],c1,c2,c3);!= | ||
624 | addcc c_1,t_1,c_1 | ||
625 | rd %y,t_2 | ||
626 | addxcc c_2,t_2,c_2 | ||
627 | addx c_3,%g0,c_3 != | ||
628 | st c_1,rp(3) !r[3]=c1; | ||
629 | |||
630 | umul a_4,b_0,t_1 !mul_add_c(a[4],b[0],c2,c3,c1); | ||
631 | addcc c_2,t_1,c_2 | ||
632 | rd %y,t_2 != | ||
633 | addxcc c_3,t_2,c_3 | ||
634 | addx %g0,%g0,c_1 | ||
635 | umul a_3,b_1,t_1 !mul_add_c(a[3],b[1],c2,c3,c1); | ||
636 | addcc c_2,t_1,c_2 != | ||
637 | rd %y,t_2 | ||
638 | addxcc c_3,t_2,c_3 | ||
639 | addx c_1,%g0,c_1 | ||
640 | umul a_2,b_2,t_1 !=!mul_add_c(a[2],b[2],c2,c3,c1); | ||
641 | addcc c_2,t_1,c_2 | ||
642 | rd %y,t_2 | ||
643 | addxcc c_3,t_2,c_3 | ||
644 | addx c_1,%g0,c_1 != | ||
645 | ld bp(4),b_4 | ||
646 | umul a_1,b_3,t_1 !mul_add_c(a[1],b[3],c2,c3,c1); | ||
647 | addcc c_2,t_1,c_2 | ||
648 | rd %y,t_2 != | ||
649 | addxcc c_3,t_2,c_3 | ||
650 | addx c_1,%g0,c_1 | ||
651 | ld bp(5),b_5 | ||
652 | umul a_0,b_4,t_1 !=!mul_add_c(a[0],b[4],c2,c3,c1); | ||
653 | addcc c_2,t_1,c_2 | ||
654 | rd %y,t_2 | ||
655 | addxcc c_3,t_2,c_3 | ||
656 | addx c_1,%g0,c_1 != | ||
657 | st c_2,rp(4) !r[4]=c2; | ||
658 | |||
659 | umul a_0,b_5,t_1 !mul_add_c(a[0],b[5],c3,c1,c2); | ||
660 | addcc c_3,t_1,c_3 | ||
661 | rd %y,t_2 != | ||
662 | addxcc c_1,t_2,c_1 | ||
663 | addx %g0,%g0,c_2 | ||
664 | umul a_1,b_4,t_1 !mul_add_c(a[1],b[4],c3,c1,c2); | ||
665 | addcc c_3,t_1,c_3 != | ||
666 | rd %y,t_2 | ||
667 | addxcc c_1,t_2,c_1 | ||
668 | addx c_2,%g0,c_2 | ||
669 | umul a_2,b_3,t_1 !=!mul_add_c(a[2],b[3],c3,c1,c2); | ||
670 | addcc c_3,t_1,c_3 | ||
671 | rd %y,t_2 | ||
672 | addxcc c_1,t_2,c_1 | ||
673 | addx c_2,%g0,c_2 != | ||
674 | umul a_3,b_2,t_1 !mul_add_c(a[3],b[2],c3,c1,c2); | ||
675 | addcc c_3,t_1,c_3 | ||
676 | rd %y,t_2 | ||
677 | addxcc c_1,t_2,c_1 != | ||
678 | addx c_2,%g0,c_2 | ||
679 | ld ap(5),a_5 | ||
680 | umul a_4,b_1,t_1 !mul_add_c(a[4],b[1],c3,c1,c2); | ||
681 | addcc c_3,t_1,c_3 != | ||
682 | rd %y,t_2 | ||
683 | addxcc c_1,t_2,c_1 | ||
684 | ld ap(6),a_6 | ||
685 | addx c_2,%g0,c_2 != | ||
686 | umul a_5,b_0,t_1 !mul_add_c(a[5],b[0],c3,c1,c2); | ||
687 | addcc c_3,t_1,c_3 | ||
688 | rd %y,t_2 | ||
689 | addxcc c_1,t_2,c_1 != | ||
690 | addx c_2,%g0,c_2 | ||
691 | st c_3,rp(5) !r[5]=c3; | ||
692 | |||
693 | umul a_6,b_0,t_1 !mul_add_c(a[6],b[0],c1,c2,c3); | ||
694 | addcc c_1,t_1,c_1 != | ||
695 | rd %y,t_2 | ||
696 | addxcc c_2,t_2,c_2 | ||
697 | addx %g0,%g0,c_3 | ||
698 | umul a_5,b_1,t_1 !=!mul_add_c(a[5],b[1],c1,c2,c3); | ||
699 | addcc c_1,t_1,c_1 | ||
700 | rd %y,t_2 | ||
701 | addxcc c_2,t_2,c_2 | ||
702 | addx c_3,%g0,c_3 != | ||
703 | umul a_4,b_2,t_1 !mul_add_c(a[4],b[2],c1,c2,c3); | ||
704 | addcc c_1,t_1,c_1 | ||
705 | rd %y,t_2 | ||
706 | addxcc c_2,t_2,c_2 != | ||
707 | addx c_3,%g0,c_3 | ||
708 | umul a_3,b_3,t_1 !mul_add_c(a[3],b[3],c1,c2,c3); | ||
709 | addcc c_1,t_1,c_1 | ||
710 | rd %y,t_2 != | ||
711 | addxcc c_2,t_2,c_2 | ||
712 | addx c_3,%g0,c_3 | ||
713 | umul a_2,b_4,t_1 !mul_add_c(a[2],b[4],c1,c2,c3); | ||
714 | addcc c_1,t_1,c_1 != | ||
715 | rd %y,t_2 | ||
716 | addxcc c_2,t_2,c_2 | ||
717 | ld bp(6),b_6 | ||
718 | addx c_3,%g0,c_3 != | ||
719 | umul a_1,b_5,t_1 !mul_add_c(a[1],b[5],c1,c2,c3); | ||
720 | addcc c_1,t_1,c_1 | ||
721 | rd %y,t_2 | ||
722 | addxcc c_2,t_2,c_2 != | ||
723 | addx c_3,%g0,c_3 | ||
724 | ld bp(7),b_7 | ||
725 | umul a_0,b_6,t_1 !mul_add_c(a[0],b[6],c1,c2,c3); | ||
726 | addcc c_1,t_1,c_1 != | ||
727 | rd %y,t_2 | ||
728 | addxcc c_2,t_2,c_2 | ||
729 | st c_1,rp(6) !r[6]=c1; | ||
730 | addx c_3,%g0,c_3 != | ||
731 | |||
732 | umul a_0,b_7,t_1 !mul_add_c(a[0],b[7],c2,c3,c1); | ||
733 | addcc c_2,t_1,c_2 | ||
734 | rd %y,t_2 | ||
735 | addxcc c_3,t_2,c_3 != | ||
736 | addx %g0,%g0,c_1 | ||
737 | umul a_1,b_6,t_1 !mul_add_c(a[1],b[6],c2,c3,c1); | ||
738 | addcc c_2,t_1,c_2 | ||
739 | rd %y,t_2 != | ||
740 | addxcc c_3,t_2,c_3 | ||
741 | addx c_1,%g0,c_1 | ||
742 | umul a_2,b_5,t_1 !mul_add_c(a[2],b[5],c2,c3,c1); | ||
743 | addcc c_2,t_1,c_2 != | ||
744 | rd %y,t_2 | ||
745 | addxcc c_3,t_2,c_3 | ||
746 | addx c_1,%g0,c_1 | ||
747 | umul a_3,b_4,t_1 !=!mul_add_c(a[3],b[4],c2,c3,c1); | ||
748 | addcc c_2,t_1,c_2 | ||
749 | rd %y,t_2 | ||
750 | addxcc c_3,t_2,c_3 | ||
751 | addx c_1,%g0,c_1 != | ||
752 | umul a_4,b_3,t_1 !mul_add_c(a[4],b[3],c2,c3,c1); | ||
753 | addcc c_2,t_1,c_2 | ||
754 | rd %y,t_2 | ||
755 | addxcc c_3,t_2,c_3 != | ||
756 | addx c_1,%g0,c_1 | ||
757 | umul a_5,b_2,t_1 !mul_add_c(a[5],b[2],c2,c3,c1); | ||
758 | addcc c_2,t_1,c_2 | ||
759 | rd %y,t_2 != | ||
760 | addxcc c_3,t_2,c_3 | ||
761 | addx c_1,%g0,c_1 | ||
762 | ld ap(7),a_7 | ||
763 | umul a_6,b_1,t_1 !=!mul_add_c(a[6],b[1],c2,c3,c1); | ||
764 | addcc c_2,t_1,c_2 | ||
765 | rd %y,t_2 | ||
766 | addxcc c_3,t_2,c_3 | ||
767 | addx c_1,%g0,c_1 != | ||
768 | umul a_7,b_0,t_1 !mul_add_c(a[7],b[0],c2,c3,c1); | ||
769 | addcc c_2,t_1,c_2 | ||
770 | rd %y,t_2 | ||
771 | addxcc c_3,t_2,c_3 != | ||
772 | addx c_1,%g0,c_1 | ||
773 | st c_2,rp(7) !r[7]=c2; | ||
774 | |||
775 | umul a_7,b_1,t_1 !mul_add_c(a[7],b[1],c3,c1,c2); | ||
776 | addcc c_3,t_1,c_3 != | ||
777 | rd %y,t_2 | ||
778 | addxcc c_1,t_2,c_1 | ||
779 | addx %g0,%g0,c_2 | ||
780 | umul a_6,b_2,t_1 !=!mul_add_c(a[6],b[2],c3,c1,c2); | ||
781 | addcc c_3,t_1,c_3 | ||
782 | rd %y,t_2 | ||
783 | addxcc c_1,t_2,c_1 | ||
784 | addx c_2,%g0,c_2 != | ||
785 | umul a_5,b_3,t_1 !mul_add_c(a[5],b[3],c3,c1,c2); | ||
786 | addcc c_3,t_1,c_3 | ||
787 | rd %y,t_2 | ||
788 | addxcc c_1,t_2,c_1 != | ||
789 | addx c_2,%g0,c_2 | ||
790 | umul a_4,b_4,t_1 !mul_add_c(a[4],b[4],c3,c1,c2); | ||
791 | addcc c_3,t_1,c_3 | ||
792 | rd %y,t_2 != | ||
793 | addxcc c_1,t_2,c_1 | ||
794 | addx c_2,%g0,c_2 | ||
795 | umul a_3,b_5,t_1 !mul_add_c(a[3],b[5],c3,c1,c2); | ||
796 | addcc c_3,t_1,c_3 != | ||
797 | rd %y,t_2 | ||
798 | addxcc c_1,t_2,c_1 | ||
799 | addx c_2,%g0,c_2 | ||
800 | umul a_2,b_6,t_1 !=!mul_add_c(a[2],b[6],c3,c1,c2); | ||
801 | addcc c_3,t_1,c_3 | ||
802 | rd %y,t_2 | ||
803 | addxcc c_1,t_2,c_1 | ||
804 | addx c_2,%g0,c_2 != | ||
805 | umul a_1,b_7,t_1 !mul_add_c(a[1],b[7],c3,c1,c2); | ||
806 | addcc c_3,t_1,c_3 | ||
807 | rd %y,t_2 | ||
808 | addxcc c_1,t_2,c_1 ! | ||
809 | addx c_2,%g0,c_2 | ||
810 | st c_3,rp(8) !r[8]=c3; | ||
811 | |||
812 | umul a_2,b_7,t_1 !mul_add_c(a[2],b[7],c1,c2,c3); | ||
813 | addcc c_1,t_1,c_1 != | ||
814 | rd %y,t_2 | ||
815 | addxcc c_2,t_2,c_2 | ||
816 | addx %g0,%g0,c_3 | ||
817 | umul a_3,b_6,t_1 !=!mul_add_c(a[3],b[6],c1,c2,c3); | ||
818 | addcc c_1,t_1,c_1 | ||
819 | rd %y,t_2 | ||
820 | addxcc c_2,t_2,c_2 | ||
821 | addx c_3,%g0,c_3 != | ||
822 | umul a_4,b_5,t_1 !mul_add_c(a[4],b[5],c1,c2,c3); | ||
823 | addcc c_1,t_1,c_1 | ||
824 | rd %y,t_2 | ||
825 | addxcc c_2,t_2,c_2 != | ||
826 | addx c_3,%g0,c_3 | ||
827 | umul a_5,b_4,t_1 !mul_add_c(a[5],b[4],c1,c2,c3); | ||
828 | addcc c_1,t_1,c_1 | ||
829 | rd %y,t_2 != | ||
830 | addxcc c_2,t_2,c_2 | ||
831 | addx c_3,%g0,c_3 | ||
832 | umul a_6,b_3,t_1 !mul_add_c(a[6],b[3],c1,c2,c3); | ||
833 | addcc c_1,t_1,c_1 != | ||
834 | rd %y,t_2 | ||
835 | addxcc c_2,t_2,c_2 | ||
836 | addx c_3,%g0,c_3 | ||
837 | umul a_7,b_2,t_1 !=!mul_add_c(a[7],b[2],c1,c2,c3); | ||
838 | addcc c_1,t_1,c_1 | ||
839 | rd %y,t_2 | ||
840 | addxcc c_2,t_2,c_2 | ||
841 | addx c_3,%g0,c_3 != | ||
842 | st c_1,rp(9) !r[9]=c1; | ||
843 | |||
844 | umul a_7,b_3,t_1 !mul_add_c(a[7],b[3],c2,c3,c1); | ||
845 | addcc c_2,t_1,c_2 | ||
846 | rd %y,t_2 != | ||
847 | addxcc c_3,t_2,c_3 | ||
848 | addx %g0,%g0,c_1 | ||
849 | umul a_6,b_4,t_1 !mul_add_c(a[6],b[4],c2,c3,c1); | ||
850 | addcc c_2,t_1,c_2 != | ||
851 | rd %y,t_2 | ||
852 | addxcc c_3,t_2,c_3 | ||
853 | addx c_1,%g0,c_1 | ||
854 | umul a_5,b_5,t_1 !=!mul_add_c(a[5],b[5],c2,c3,c1); | ||
855 | addcc c_2,t_1,c_2 | ||
856 | rd %y,t_2 | ||
857 | addxcc c_3,t_2,c_3 | ||
858 | addx c_1,%g0,c_1 != | ||
859 | umul a_4,b_6,t_1 !mul_add_c(a[4],b[6],c2,c3,c1); | ||
860 | addcc c_2,t_1,c_2 | ||
861 | rd %y,t_2 | ||
862 | addxcc c_3,t_2,c_3 != | ||
863 | addx c_1,%g0,c_1 | ||
864 | umul a_3,b_7,t_1 !mul_add_c(a[3],b[7],c2,c3,c1); | ||
865 | addcc c_2,t_1,c_2 | ||
866 | rd %y,t_2 != | ||
867 | addxcc c_3,t_2,c_3 | ||
868 | addx c_1,%g0,c_1 | ||
869 | st c_2,rp(10) !r[10]=c2; | ||
870 | |||
871 | umul a_4,b_7,t_1 !=!mul_add_c(a[4],b[7],c3,c1,c2); | ||
872 | addcc c_3,t_1,c_3 | ||
873 | rd %y,t_2 | ||
874 | addxcc c_1,t_2,c_1 | ||
875 | addx %g0,%g0,c_2 != | ||
876 | umul a_5,b_6,t_1 !mul_add_c(a[5],b[6],c3,c1,c2); | ||
877 | addcc c_3,t_1,c_3 | ||
878 | rd %y,t_2 | ||
879 | addxcc c_1,t_2,c_1 != | ||
880 | addx c_2,%g0,c_2 | ||
881 | umul a_6,b_5,t_1 !mul_add_c(a[6],b[5],c3,c1,c2); | ||
882 | addcc c_3,t_1,c_3 | ||
883 | rd %y,t_2 != | ||
884 | addxcc c_1,t_2,c_1 | ||
885 | addx c_2,%g0,c_2 | ||
886 | umul a_7,b_4,t_1 !mul_add_c(a[7],b[4],c3,c1,c2); | ||
887 | addcc c_3,t_1,c_3 != | ||
888 | rd %y,t_2 | ||
889 | addxcc c_1,t_2,c_1 | ||
890 | st c_3,rp(11) !r[11]=c3; | ||
891 | addx c_2,%g0,c_2 != | ||
892 | |||
893 | umul a_7,b_5,t_1 !mul_add_c(a[7],b[5],c1,c2,c3); | ||
894 | addcc c_1,t_1,c_1 | ||
895 | rd %y,t_2 | ||
896 | addxcc c_2,t_2,c_2 != | ||
897 | addx %g0,%g0,c_3 | ||
898 | umul a_6,b_6,t_1 !mul_add_c(a[6],b[6],c1,c2,c3); | ||
899 | addcc c_1,t_1,c_1 | ||
900 | rd %y,t_2 != | ||
901 | addxcc c_2,t_2,c_2 | ||
902 | addx c_3,%g0,c_3 | ||
903 | umul a_5,b_7,t_1 !mul_add_c(a[5],b[7],c1,c2,c3); | ||
904 | addcc c_1,t_1,c_1 != | ||
905 | rd %y,t_2 | ||
906 | addxcc c_2,t_2,c_2 | ||
907 | st c_1,rp(12) !r[12]=c1; | ||
908 | addx c_3,%g0,c_3 != | ||
909 | |||
910 | umul a_6,b_7,t_1 !mul_add_c(a[6],b[7],c2,c3,c1); | ||
911 | addcc c_2,t_1,c_2 | ||
912 | rd %y,t_2 | ||
913 | addxcc c_3,t_2,c_3 != | ||
914 | addx %g0,%g0,c_1 | ||
915 | umul a_7,b_6,t_1 !mul_add_c(a[7],b[6],c2,c3,c1); | ||
916 | addcc c_2,t_1,c_2 | ||
917 | rd %y,t_2 != | ||
918 | addxcc c_3,t_2,c_3 | ||
919 | addx c_1,%g0,c_1 | ||
920 | st c_2,rp(13) !r[13]=c2; | ||
921 | |||
922 | umul a_7,b_7,t_1 !=!mul_add_c(a[7],b[7],c3,c1,c2); | ||
923 | addcc c_3,t_1,c_3 | ||
924 | rd %y,t_2 | ||
925 | addxcc c_1,t_2,c_1 | ||
926 | nop != | ||
927 | st c_3,rp(14) !r[14]=c3; | ||
928 | st c_1,rp(15) !r[15]=c1; | ||
929 | |||
930 | ret | ||
931 | restore %g0,%g0,%o0 | ||
932 | |||
933 | .type bn_mul_comba8,#function | ||
934 | .size bn_mul_comba8,(.-bn_mul_comba8) | ||
935 | |||
936 | .align 32 | ||
937 | |||
938 | .global bn_mul_comba4 | ||
939 | /* | ||
940 | * void bn_mul_comba4(r,a,b) | ||
941 | * BN_ULONG *r,*a,*b; | ||
942 | */ | ||
943 | bn_mul_comba4: | ||
944 | save %sp,FRAME_SIZE,%sp | ||
945 | ld ap(0),a_0 | ||
946 | ld bp(0),b_0 | ||
947 | umul a_0,b_0,c_1 !=!mul_add_c(a[0],b[0],c1,c2,c3); | ||
948 | ld bp(1),b_1 | ||
949 | rd %y,c_2 | ||
950 | st c_1,rp(0) !r[0]=c1; | ||
951 | |||
952 | umul a_0,b_1,t_1 !=!mul_add_c(a[0],b[1],c2,c3,c1); | ||
953 | ld ap(1),a_1 | ||
954 | addcc c_2,t_1,c_2 | ||
955 | rd %y,t_2 != | ||
956 | addxcc %g0,t_2,c_3 | ||
957 | addx %g0,%g0,c_1 | ||
958 | ld ap(2),a_2 | ||
959 | umul a_1,b_0,t_1 !=!mul_add_c(a[1],b[0],c2,c3,c1); | ||
960 | addcc c_2,t_1,c_2 | ||
961 | rd %y,t_2 | ||
962 | addxcc c_3,t_2,c_3 | ||
963 | addx c_1,%g0,c_1 != | ||
964 | st c_2,rp(1) !r[1]=c2; | ||
965 | |||
966 | umul a_2,b_0,t_1 !mul_add_c(a[2],b[0],c3,c1,c2); | ||
967 | addcc c_3,t_1,c_3 | ||
968 | rd %y,t_2 != | ||
969 | addxcc c_1,t_2,c_1 | ||
970 | addx %g0,%g0,c_2 | ||
971 | ld bp(2),b_2 | ||
972 | umul a_1,b_1,t_1 !=!mul_add_c(a[1],b[1],c3,c1,c2); | ||
973 | addcc c_3,t_1,c_3 | ||
974 | rd %y,t_2 | ||
975 | addxcc c_1,t_2,c_1 | ||
976 | addx c_2,%g0,c_2 != | ||
977 | ld bp(3),b_3 | ||
978 | umul a_0,b_2,t_1 !mul_add_c(a[0],b[2],c3,c1,c2); | ||
979 | addcc c_3,t_1,c_3 | ||
980 | rd %y,t_2 != | ||
981 | addxcc c_1,t_2,c_1 | ||
982 | addx c_2,%g0,c_2 | ||
983 | st c_3,rp(2) !r[2]=c3; | ||
984 | |||
985 | umul a_0,b_3,t_1 !=!mul_add_c(a[0],b[3],c1,c2,c3); | ||
986 | addcc c_1,t_1,c_1 | ||
987 | rd %y,t_2 | ||
988 | addxcc c_2,t_2,c_2 | ||
989 | addx %g0,%g0,c_3 != | ||
990 | umul a_1,b_2,t_1 !mul_add_c(a[1],b[2],c1,c2,c3); | ||
991 | addcc c_1,t_1,c_1 | ||
992 | rd %y,t_2 | ||
993 | addxcc c_2,t_2,c_2 != | ||
994 | addx c_3,%g0,c_3 | ||
995 | ld ap(3),a_3 | ||
996 | umul a_2,b_1,t_1 !mul_add_c(a[2],b[1],c1,c2,c3); | ||
997 | addcc c_1,t_1,c_1 != | ||
998 | rd %y,t_2 | ||
999 | addxcc c_2,t_2,c_2 | ||
1000 | addx c_3,%g0,c_3 | ||
1001 | umul a_3,b_0,t_1 !=!mul_add_c(a[3],b[0],c1,c2,c3); | ||
1002 | addcc c_1,t_1,c_1 | ||
1003 | rd %y,t_2 | ||
1004 | addxcc c_2,t_2,c_2 | ||
1005 | addx c_3,%g0,c_3 != | ||
1006 | st c_1,rp(3) !r[3]=c1; | ||
1007 | |||
1008 | umul a_3,b_1,t_1 !mul_add_c(a[3],b[1],c2,c3,c1); | ||
1009 | addcc c_2,t_1,c_2 | ||
1010 | rd %y,t_2 != | ||
1011 | addxcc c_3,t_2,c_3 | ||
1012 | addx %g0,%g0,c_1 | ||
1013 | umul a_2,b_2,t_1 !mul_add_c(a[2],b[2],c2,c3,c1); | ||
1014 | addcc c_2,t_1,c_2 != | ||
1015 | rd %y,t_2 | ||
1016 | addxcc c_3,t_2,c_3 | ||
1017 | addx c_1,%g0,c_1 | ||
1018 | umul a_1,b_3,t_1 !=!mul_add_c(a[1],b[3],c2,c3,c1); | ||
1019 | addcc c_2,t_1,c_2 | ||
1020 | rd %y,t_2 | ||
1021 | addxcc c_3,t_2,c_3 | ||
1022 | addx c_1,%g0,c_1 != | ||
1023 | st c_2,rp(4) !r[4]=c2; | ||
1024 | |||
1025 | umul a_2,b_3,t_1 !mul_add_c(a[2],b[3],c3,c1,c2); | ||
1026 | addcc c_3,t_1,c_3 | ||
1027 | rd %y,t_2 != | ||
1028 | addxcc c_1,t_2,c_1 | ||
1029 | addx %g0,%g0,c_2 | ||
1030 | umul a_3,b_2,t_1 !mul_add_c(a[3],b[2],c3,c1,c2); | ||
1031 | addcc c_3,t_1,c_3 != | ||
1032 | rd %y,t_2 | ||
1033 | addxcc c_1,t_2,c_1 | ||
1034 | st c_3,rp(5) !r[5]=c3; | ||
1035 | addx c_2,%g0,c_2 != | ||
1036 | |||
1037 | umul a_3,b_3,t_1 !mul_add_c(a[3],b[3],c1,c2,c3); | ||
1038 | addcc c_1,t_1,c_1 | ||
1039 | rd %y,t_2 | ||
1040 | addxcc c_2,t_2,c_2 != | ||
1041 | st c_1,rp(6) !r[6]=c1; | ||
1042 | st c_2,rp(7) !r[7]=c2; | ||
1043 | |||
1044 | ret | ||
1045 | restore %g0,%g0,%o0 | ||
1046 | |||
1047 | .type bn_mul_comba4,#function | ||
1048 | .size bn_mul_comba4,(.-bn_mul_comba4) | ||
1049 | |||
1050 | .align 32 | ||
1051 | |||
1052 | .global bn_sqr_comba8 | ||
1053 | bn_sqr_comba8: | ||
1054 | save %sp,FRAME_SIZE,%sp | ||
1055 | ld ap(0),a_0 | ||
1056 | ld ap(1),a_1 | ||
1057 | umul a_0,a_0,c_1 !=!sqr_add_c(a,0,c1,c2,c3); | ||
1058 | rd %y,c_2 | ||
1059 | st c_1,rp(0) !r[0]=c1; | ||
1060 | |||
1061 | ld ap(2),a_2 | ||
1062 | umul a_0,a_1,t_1 !=!sqr_add_c2(a,1,0,c2,c3,c1); | ||
1063 | addcc c_2,t_1,c_2 | ||
1064 | rd %y,t_2 | ||
1065 | addxcc %g0,t_2,c_3 | ||
1066 | addx %g0,%g0,c_1 != | ||
1067 | addcc c_2,t_1,c_2 | ||
1068 | addxcc c_3,t_2,c_3 | ||
1069 | st c_2,rp(1) !r[1]=c2; | ||
1070 | addx c_1,%g0,c_1 != | ||
1071 | |||
1072 | umul a_2,a_0,t_1 !sqr_add_c2(a,2,0,c3,c1,c2); | ||
1073 | addcc c_3,t_1,c_3 | ||
1074 | rd %y,t_2 | ||
1075 | addxcc c_1,t_2,c_1 != | ||
1076 | addx %g0,%g0,c_2 | ||
1077 | addcc c_3,t_1,c_3 | ||
1078 | addxcc c_1,t_2,c_1 | ||
1079 | addx c_2,%g0,c_2 != | ||
1080 | ld ap(3),a_3 | ||
1081 | umul a_1,a_1,t_1 !sqr_add_c(a,1,c3,c1,c2); | ||
1082 | addcc c_3,t_1,c_3 | ||
1083 | rd %y,t_2 != | ||
1084 | addxcc c_1,t_2,c_1 | ||
1085 | addx c_2,%g0,c_2 | ||
1086 | st c_3,rp(2) !r[2]=c3; | ||
1087 | |||
1088 | umul a_0,a_3,t_1 !=!sqr_add_c2(a,3,0,c1,c2,c3); | ||
1089 | addcc c_1,t_1,c_1 | ||
1090 | rd %y,t_2 | ||
1091 | addxcc c_2,t_2,c_2 | ||
1092 | addx %g0,%g0,c_3 != | ||
1093 | addcc c_1,t_1,c_1 | ||
1094 | addxcc c_2,t_2,c_2 | ||
1095 | ld ap(4),a_4 | ||
1096 | addx c_3,%g0,c_3 != | ||
1097 | umul a_1,a_2,t_1 !sqr_add_c2(a,2,1,c1,c2,c3); | ||
1098 | addcc c_1,t_1,c_1 | ||
1099 | rd %y,t_2 | ||
1100 | addxcc c_2,t_2,c_2 != | ||
1101 | addx c_3,%g0,c_3 | ||
1102 | addcc c_1,t_1,c_1 | ||
1103 | addxcc c_2,t_2,c_2 | ||
1104 | addx c_3,%g0,c_3 != | ||
1105 | st c_1,rp(3) !r[3]=c1; | ||
1106 | |||
1107 | umul a_4,a_0,t_1 !sqr_add_c2(a,4,0,c2,c3,c1); | ||
1108 | addcc c_2,t_1,c_2 | ||
1109 | rd %y,t_2 != | ||
1110 | addxcc c_3,t_2,c_3 | ||
1111 | addx %g0,%g0,c_1 | ||
1112 | addcc c_2,t_1,c_2 | ||
1113 | addxcc c_3,t_2,c_3 != | ||
1114 | addx c_1,%g0,c_1 | ||
1115 | umul a_3,a_1,t_1 !sqr_add_c2(a,3,1,c2,c3,c1); | ||
1116 | addcc c_2,t_1,c_2 | ||
1117 | rd %y,t_2 != | ||
1118 | addxcc c_3,t_2,c_3 | ||
1119 | addx c_1,%g0,c_1 | ||
1120 | addcc c_2,t_1,c_2 | ||
1121 | addxcc c_3,t_2,c_3 != | ||
1122 | addx c_1,%g0,c_1 | ||
1123 | ld ap(5),a_5 | ||
1124 | umul a_2,a_2,t_1 !sqr_add_c(a,2,c2,c3,c1); | ||
1125 | addcc c_2,t_1,c_2 != | ||
1126 | rd %y,t_2 | ||
1127 | addxcc c_3,t_2,c_3 | ||
1128 | st c_2,rp(4) !r[4]=c2; | ||
1129 | addx c_1,%g0,c_1 != | ||
1130 | |||
1131 | umul a_0,a_5,t_1 !sqr_add_c2(a,5,0,c3,c1,c2); | ||
1132 | addcc c_3,t_1,c_3 | ||
1133 | rd %y,t_2 | ||
1134 | addxcc c_1,t_2,c_1 != | ||
1135 | addx %g0,%g0,c_2 | ||
1136 | addcc c_3,t_1,c_3 | ||
1137 | addxcc c_1,t_2,c_1 | ||
1138 | addx c_2,%g0,c_2 != | ||
1139 | umul a_1,a_4,t_1 !sqr_add_c2(a,4,1,c3,c1,c2); | ||
1140 | addcc c_3,t_1,c_3 | ||
1141 | rd %y,t_2 | ||
1142 | addxcc c_1,t_2,c_1 != | ||
1143 | addx c_2,%g0,c_2 | ||
1144 | addcc c_3,t_1,c_3 | ||
1145 | addxcc c_1,t_2,c_1 | ||
1146 | addx c_2,%g0,c_2 != | ||
1147 | ld ap(6),a_6 | ||
1148 | umul a_2,a_3,t_1 !sqr_add_c2(a,3,2,c3,c1,c2); | ||
1149 | addcc c_3,t_1,c_3 | ||
1150 | rd %y,t_2 != | ||
1151 | addxcc c_1,t_2,c_1 | ||
1152 | addx c_2,%g0,c_2 | ||
1153 | addcc c_3,t_1,c_3 | ||
1154 | addxcc c_1,t_2,c_1 != | ||
1155 | addx c_2,%g0,c_2 | ||
1156 | st c_3,rp(5) !r[5]=c3; | ||
1157 | |||
1158 | umul a_6,a_0,t_1 !sqr_add_c2(a,6,0,c1,c2,c3); | ||
1159 | addcc c_1,t_1,c_1 != | ||
1160 | rd %y,t_2 | ||
1161 | addxcc c_2,t_2,c_2 | ||
1162 | addx %g0,%g0,c_3 | ||
1163 | addcc c_1,t_1,c_1 != | ||
1164 | addxcc c_2,t_2,c_2 | ||
1165 | addx c_3,%g0,c_3 | ||
1166 | umul a_5,a_1,t_1 !sqr_add_c2(a,5,1,c1,c2,c3); | ||
1167 | addcc c_1,t_1,c_1 != | ||
1168 | rd %y,t_2 | ||
1169 | addxcc c_2,t_2,c_2 | ||
1170 | addx c_3,%g0,c_3 | ||
1171 | addcc c_1,t_1,c_1 != | ||
1172 | addxcc c_2,t_2,c_2 | ||
1173 | addx c_3,%g0,c_3 | ||
1174 | umul a_4,a_2,t_1 !sqr_add_c2(a,4,2,c1,c2,c3); | ||
1175 | addcc c_1,t_1,c_1 != | ||
1176 | rd %y,t_2 | ||
1177 | addxcc c_2,t_2,c_2 | ||
1178 | addx c_3,%g0,c_3 | ||
1179 | addcc c_1,t_1,c_1 != | ||
1180 | addxcc c_2,t_2,c_2 | ||
1181 | addx c_3,%g0,c_3 | ||
1182 | ld ap(7),a_7 | ||
1183 | umul a_3,a_3,t_1 !=!sqr_add_c(a,3,c1,c2,c3); | ||
1184 | addcc c_1,t_1,c_1 | ||
1185 | rd %y,t_2 | ||
1186 | addxcc c_2,t_2,c_2 | ||
1187 | addx c_3,%g0,c_3 != | ||
1188 | st c_1,rp(6) !r[6]=c1; | ||
1189 | |||
1190 | umul a_0,a_7,t_1 !sqr_add_c2(a,7,0,c2,c3,c1); | ||
1191 | addcc c_2,t_1,c_2 | ||
1192 | rd %y,t_2 != | ||
1193 | addxcc c_3,t_2,c_3 | ||
1194 | addx %g0,%g0,c_1 | ||
1195 | addcc c_2,t_1,c_2 | ||
1196 | addxcc c_3,t_2,c_3 != | ||
1197 | addx c_1,%g0,c_1 | ||
1198 | umul a_1,a_6,t_1 !sqr_add_c2(a,6,1,c2,c3,c1); | ||
1199 | addcc c_2,t_1,c_2 | ||
1200 | rd %y,t_2 != | ||
1201 | addxcc c_3,t_2,c_3 | ||
1202 | addx c_1,%g0,c_1 | ||
1203 | addcc c_2,t_1,c_2 | ||
1204 | addxcc c_3,t_2,c_3 != | ||
1205 | addx c_1,%g0,c_1 | ||
1206 | umul a_2,a_5,t_1 !sqr_add_c2(a,5,2,c2,c3,c1); | ||
1207 | addcc c_2,t_1,c_2 | ||
1208 | rd %y,t_2 != | ||
1209 | addxcc c_3,t_2,c_3 | ||
1210 | addx c_1,%g0,c_1 | ||
1211 | addcc c_2,t_1,c_2 | ||
1212 | addxcc c_3,t_2,c_3 != | ||
1213 | addx c_1,%g0,c_1 | ||
1214 | umul a_3,a_4,t_1 !sqr_add_c2(a,4,3,c2,c3,c1); | ||
1215 | addcc c_2,t_1,c_2 | ||
1216 | rd %y,t_2 != | ||
1217 | addxcc c_3,t_2,c_3 | ||
1218 | addx c_1,%g0,c_1 | ||
1219 | addcc c_2,t_1,c_2 | ||
1220 | addxcc c_3,t_2,c_3 != | ||
1221 | addx c_1,%g0,c_1 | ||
1222 | st c_2,rp(7) !r[7]=c2; | ||
1223 | |||
1224 | umul a_7,a_1,t_1 !sqr_add_c2(a,7,1,c3,c1,c2); | ||
1225 | addcc c_3,t_1,c_3 != | ||
1226 | rd %y,t_2 | ||
1227 | addxcc c_1,t_2,c_1 | ||
1228 | addx %g0,%g0,c_2 | ||
1229 | addcc c_3,t_1,c_3 != | ||
1230 | addxcc c_1,t_2,c_1 | ||
1231 | addx c_2,%g0,c_2 | ||
1232 | umul a_6,a_2,t_1 !sqr_add_c2(a,6,2,c3,c1,c2); | ||
1233 | addcc c_3,t_1,c_3 != | ||
1234 | rd %y,t_2 | ||
1235 | addxcc c_1,t_2,c_1 | ||
1236 | addx c_2,%g0,c_2 | ||
1237 | addcc c_3,t_1,c_3 != | ||
1238 | addxcc c_1,t_2,c_1 | ||
1239 | addx c_2,%g0,c_2 | ||
1240 | umul a_5,a_3,t_1 !sqr_add_c2(a,5,3,c3,c1,c2); | ||
1241 | addcc c_3,t_1,c_3 != | ||
1242 | rd %y,t_2 | ||
1243 | addxcc c_1,t_2,c_1 | ||
1244 | addx c_2,%g0,c_2 | ||
1245 | addcc c_3,t_1,c_3 != | ||
1246 | addxcc c_1,t_2,c_1 | ||
1247 | addx c_2,%g0,c_2 | ||
1248 | umul a_4,a_4,t_1 !sqr_add_c(a,4,c3,c1,c2); | ||
1249 | addcc c_3,t_1,c_3 != | ||
1250 | rd %y,t_2 | ||
1251 | addxcc c_1,t_2,c_1 | ||
1252 | st c_3,rp(8) !r[8]=c3; | ||
1253 | addx c_2,%g0,c_2 != | ||
1254 | |||
1255 | umul a_2,a_7,t_1 !sqr_add_c2(a,7,2,c1,c2,c3); | ||
1256 | addcc c_1,t_1,c_1 | ||
1257 | rd %y,t_2 | ||
1258 | addxcc c_2,t_2,c_2 != | ||
1259 | addx %g0,%g0,c_3 | ||
1260 | addcc c_1,t_1,c_1 | ||
1261 | addxcc c_2,t_2,c_2 | ||
1262 | addx c_3,%g0,c_3 != | ||
1263 | umul a_3,a_6,t_1 !sqr_add_c2(a,6,3,c1,c2,c3); | ||
1264 | addcc c_1,t_1,c_1 | ||
1265 | rd %y,t_2 | ||
1266 | addxcc c_2,t_2,c_2 != | ||
1267 | addx c_3,%g0,c_3 | ||
1268 | addcc c_1,t_1,c_1 | ||
1269 | addxcc c_2,t_2,c_2 | ||
1270 | addx c_3,%g0,c_3 != | ||
1271 | umul a_4,a_5,t_1 !sqr_add_c2(a,5,4,c1,c2,c3); | ||
1272 | addcc c_1,t_1,c_1 | ||
1273 | rd %y,t_2 | ||
1274 | addxcc c_2,t_2,c_2 != | ||
1275 | addx c_3,%g0,c_3 | ||
1276 | addcc c_1,t_1,c_1 | ||
1277 | addxcc c_2,t_2,c_2 | ||
1278 | addx c_3,%g0,c_3 != | ||
1279 | st c_1,rp(9) !r[9]=c1; | ||
1280 | |||
1281 | umul a_7,a_3,t_1 !sqr_add_c2(a,7,3,c2,c3,c1); | ||
1282 | addcc c_2,t_1,c_2 | ||
1283 | rd %y,t_2 != | ||
1284 | addxcc c_3,t_2,c_3 | ||
1285 | addx %g0,%g0,c_1 | ||
1286 | addcc c_2,t_1,c_2 | ||
1287 | addxcc c_3,t_2,c_3 != | ||
1288 | addx c_1,%g0,c_1 | ||
1289 | umul a_6,a_4,t_1 !sqr_add_c2(a,6,4,c2,c3,c1); | ||
1290 | addcc c_2,t_1,c_2 | ||
1291 | rd %y,t_2 != | ||
1292 | addxcc c_3,t_2,c_3 | ||
1293 | addx c_1,%g0,c_1 | ||
1294 | addcc c_2,t_1,c_2 | ||
1295 | addxcc c_3,t_2,c_3 != | ||
1296 | addx c_1,%g0,c_1 | ||
1297 | umul a_5,a_5,t_1 !sqr_add_c(a,5,c2,c3,c1); | ||
1298 | addcc c_2,t_1,c_2 | ||
1299 | rd %y,t_2 != | ||
1300 | addxcc c_3,t_2,c_3 | ||
1301 | addx c_1,%g0,c_1 | ||
1302 | st c_2,rp(10) !r[10]=c2; | ||
1303 | |||
1304 | umul a_4,a_7,t_1 !=!sqr_add_c2(a,7,4,c3,c1,c2); | ||
1305 | addcc c_3,t_1,c_3 | ||
1306 | rd %y,t_2 | ||
1307 | addxcc c_1,t_2,c_1 | ||
1308 | addx %g0,%g0,c_2 != | ||
1309 | addcc c_3,t_1,c_3 | ||
1310 | addxcc c_1,t_2,c_1 | ||
1311 | addx c_2,%g0,c_2 | ||
1312 | umul a_5,a_6,t_1 !=!sqr_add_c2(a,6,5,c3,c1,c2); | ||
1313 | addcc c_3,t_1,c_3 | ||
1314 | rd %y,t_2 | ||
1315 | addxcc c_1,t_2,c_1 | ||
1316 | addx c_2,%g0,c_2 != | ||
1317 | addcc c_3,t_1,c_3 | ||
1318 | addxcc c_1,t_2,c_1 | ||
1319 | st c_3,rp(11) !r[11]=c3; | ||
1320 | addx c_2,%g0,c_2 != | ||
1321 | |||
1322 | umul a_7,a_5,t_1 !sqr_add_c2(a,7,5,c1,c2,c3); | ||
1323 | addcc c_1,t_1,c_1 | ||
1324 | rd %y,t_2 | ||
1325 | addxcc c_2,t_2,c_2 != | ||
1326 | addx %g0,%g0,c_3 | ||
1327 | addcc c_1,t_1,c_1 | ||
1328 | addxcc c_2,t_2,c_2 | ||
1329 | addx c_3,%g0,c_3 != | ||
1330 | umul a_6,a_6,t_1 !sqr_add_c(a,6,c1,c2,c3); | ||
1331 | addcc c_1,t_1,c_1 | ||
1332 | rd %y,t_2 | ||
1333 | addxcc c_2,t_2,c_2 != | ||
1334 | addx c_3,%g0,c_3 | ||
1335 | st c_1,rp(12) !r[12]=c1; | ||
1336 | |||
1337 | umul a_6,a_7,t_1 !sqr_add_c2(a,7,6,c2,c3,c1); | ||
1338 | addcc c_2,t_1,c_2 != | ||
1339 | rd %y,t_2 | ||
1340 | addxcc c_3,t_2,c_3 | ||
1341 | addx %g0,%g0,c_1 | ||
1342 | addcc c_2,t_1,c_2 != | ||
1343 | addxcc c_3,t_2,c_3 | ||
1344 | st c_2,rp(13) !r[13]=c2; | ||
1345 | addx c_1,%g0,c_1 != | ||
1346 | |||
1347 | umul a_7,a_7,t_1 !sqr_add_c(a,7,c3,c1,c2); | ||
1348 | addcc c_3,t_1,c_3 | ||
1349 | rd %y,t_2 | ||
1350 | addxcc c_1,t_2,c_1 != | ||
1351 | st c_3,rp(14) !r[14]=c3; | ||
1352 | st c_1,rp(15) !r[15]=c1; | ||
1353 | |||
1354 | ret | ||
1355 | restore %g0,%g0,%o0 | ||
1356 | |||
1357 | .type bn_sqr_comba8,#function | ||
1358 | .size bn_sqr_comba8,(.-bn_sqr_comba8) | ||
1359 | |||
1360 | .align 32 | ||
1361 | |||
1362 | .global bn_sqr_comba4 | ||
1363 | /* | ||
1364 | * void bn_sqr_comba4(r,a) | ||
1365 | * BN_ULONG *r,*a; | ||
1366 | */ | ||
1367 | bn_sqr_comba4: | ||
1368 | save %sp,FRAME_SIZE,%sp | ||
1369 | ld ap(0),a_0 | ||
1370 | umul a_0,a_0,c_1 !sqr_add_c(a,0,c1,c2,c3); | ||
1371 | ld ap(1),a_1 != | ||
1372 | rd %y,c_2 | ||
1373 | st c_1,rp(0) !r[0]=c1; | ||
1374 | |||
1375 | ld ap(2),a_2 | ||
1376 | umul a_0,a_1,t_1 !=!sqr_add_c2(a,1,0,c2,c3,c1); | ||
1377 | addcc c_2,t_1,c_2 | ||
1378 | rd %y,t_2 | ||
1379 | addxcc %g0,t_2,c_3 | ||
1380 | addx %g0,%g0,c_1 != | ||
1381 | addcc c_2,t_1,c_2 | ||
1382 | addxcc c_3,t_2,c_3 | ||
1383 | addx c_1,%g0,c_1 != | ||
1384 | st c_2,rp(1) !r[1]=c2; | ||
1385 | |||
1386 | umul a_2,a_0,t_1 !sqr_add_c2(a,2,0,c3,c1,c2); | ||
1387 | addcc c_3,t_1,c_3 | ||
1388 | rd %y,t_2 != | ||
1389 | addxcc c_1,t_2,c_1 | ||
1390 | addx %g0,%g0,c_2 | ||
1391 | addcc c_3,t_1,c_3 | ||
1392 | addxcc c_1,t_2,c_1 != | ||
1393 | addx c_2,%g0,c_2 | ||
1394 | ld ap(3),a_3 | ||
1395 | umul a_1,a_1,t_1 !sqr_add_c(a,1,c3,c1,c2); | ||
1396 | addcc c_3,t_1,c_3 != | ||
1397 | rd %y,t_2 | ||
1398 | addxcc c_1,t_2,c_1 | ||
1399 | st c_3,rp(2) !r[2]=c3; | ||
1400 | addx c_2,%g0,c_2 != | ||
1401 | |||
1402 | umul a_0,a_3,t_1 !sqr_add_c2(a,3,0,c1,c2,c3); | ||
1403 | addcc c_1,t_1,c_1 | ||
1404 | rd %y,t_2 | ||
1405 | addxcc c_2,t_2,c_2 != | ||
1406 | addx %g0,%g0,c_3 | ||
1407 | addcc c_1,t_1,c_1 | ||
1408 | addxcc c_2,t_2,c_2 | ||
1409 | addx c_3,%g0,c_3 != | ||
1410 | umul a_1,a_2,t_1 !sqr_add_c2(a,2,1,c1,c2,c3); | ||
1411 | addcc c_1,t_1,c_1 | ||
1412 | rd %y,t_2 | ||
1413 | addxcc c_2,t_2,c_2 != | ||
1414 | addx c_3,%g0,c_3 | ||
1415 | addcc c_1,t_1,c_1 | ||
1416 | addxcc c_2,t_2,c_2 | ||
1417 | addx c_3,%g0,c_3 != | ||
1418 | st c_1,rp(3) !r[3]=c1; | ||
1419 | |||
1420 | umul a_3,a_1,t_1 !sqr_add_c2(a,3,1,c2,c3,c1); | ||
1421 | addcc c_2,t_1,c_2 | ||
1422 | rd %y,t_2 != | ||
1423 | addxcc c_3,t_2,c_3 | ||
1424 | addx %g0,%g0,c_1 | ||
1425 | addcc c_2,t_1,c_2 | ||
1426 | addxcc c_3,t_2,c_3 != | ||
1427 | addx c_1,%g0,c_1 | ||
1428 | umul a_2,a_2,t_1 !sqr_add_c(a,2,c2,c3,c1); | ||
1429 | addcc c_2,t_1,c_2 | ||
1430 | rd %y,t_2 != | ||
1431 | addxcc c_3,t_2,c_3 | ||
1432 | addx c_1,%g0,c_1 | ||
1433 | st c_2,rp(4) !r[4]=c2; | ||
1434 | |||
1435 | umul a_2,a_3,t_1 !=!sqr_add_c2(a,3,2,c3,c1,c2); | ||
1436 | addcc c_3,t_1,c_3 | ||
1437 | rd %y,t_2 | ||
1438 | addxcc c_1,t_2,c_1 | ||
1439 | addx %g0,%g0,c_2 != | ||
1440 | addcc c_3,t_1,c_3 | ||
1441 | addxcc c_1,t_2,c_1 | ||
1442 | st c_3,rp(5) !r[5]=c3; | ||
1443 | addx c_2,%g0,c_2 != | ||
1444 | |||
1445 | umul a_3,a_3,t_1 !sqr_add_c(a,3,c1,c2,c3); | ||
1446 | addcc c_1,t_1,c_1 | ||
1447 | rd %y,t_2 | ||
1448 | addxcc c_2,t_2,c_2 != | ||
1449 | st c_1,rp(6) !r[6]=c1; | ||
1450 | st c_2,rp(7) !r[7]=c2; | ||
1451 | |||
1452 | ret | ||
1453 | restore %g0,%g0,%o0 | ||
1454 | |||
1455 | .type bn_sqr_comba4,#function | ||
1456 | .size bn_sqr_comba4,(.-bn_sqr_comba4) | ||
1457 | |||
1458 | .align 32 | ||
diff --git a/src/lib/libcrypto/bn/asm/sparcv8plus.S b/src/lib/libcrypto/bn/asm/sparcv8plus.S deleted file mode 100644 index 608dbe1571..0000000000 --- a/src/lib/libcrypto/bn/asm/sparcv8plus.S +++ /dev/null | |||
@@ -1,1558 +0,0 @@ | |||
1 | .ident "sparcv8plus.s, Version 1.4" | ||
2 | .ident "SPARC v9 ISA artwork by Andy Polyakov <appro@fy.chalmers.se>" | ||
3 | |||
4 | /* | ||
5 | * ==================================================================== | ||
6 | * Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL | ||
7 | * project. | ||
8 | * | ||
9 | * Rights for redistribution and usage in source and binary forms are | ||
10 | * granted according to the OpenSSL license. Warranty of any kind is | ||
11 | * disclaimed. | ||
12 | * ==================================================================== | ||
13 | */ | ||
14 | |||
15 | /* | ||
16 | * This is my modest contribution to OpenSSL project (see | ||
17 | * http://www.openssl.org/ for more information about it) and is | ||
18 | * a drop-in UltraSPARC ISA replacement for crypto/bn/bn_asm.c | ||
19 | * module. For updates see http://fy.chalmers.se/~appro/hpe/. | ||
20 | * | ||
21 | * Questions-n-answers. | ||
22 | * | ||
23 | * Q. How to compile? | ||
24 | * A. With SC4.x/SC5.x: | ||
25 | * | ||
26 | * cc -xarch=v8plus -c bn_asm.sparc.v8plus.S -o bn_asm.o | ||
27 | * | ||
28 | * and with gcc: | ||
29 | * | ||
30 | * gcc -mcpu=ultrasparc -c bn_asm.sparc.v8plus.S -o bn_asm.o | ||
31 | * | ||
32 | * or if above fails (it does if you have gas installed): | ||
33 | * | ||
34 | * gcc -E bn_asm.sparc.v8plus.S | as -xarch=v8plus /dev/fd/0 -o bn_asm.o | ||
35 | * | ||
36 | * Quick-n-dirty way to fuse the module into the library. | ||
37 | * Provided that the library is already configured and built | ||
38 | * (in 0.9.2 case with no-asm option): | ||
39 | * | ||
40 | * # cd crypto/bn | ||
41 | * # cp /some/place/bn_asm.sparc.v8plus.S . | ||
42 | * # cc -xarch=v8plus -c bn_asm.sparc.v8plus.S -o bn_asm.o | ||
43 | * # make | ||
44 | * # cd ../.. | ||
45 | * # make; make test | ||
46 | * | ||
47 | * Quick-n-dirty way to get rid of it: | ||
48 | * | ||
49 | * # cd crypto/bn | ||
50 | * # touch bn_asm.c | ||
51 | * # make | ||
52 | * # cd ../.. | ||
53 | * # make; make test | ||
54 | * | ||
55 | * Q. V8plus architecture? What kind of beast is that? | ||
56 | * A. Well, it's rather a programming model than an architecture... | ||
57 | * It's actually v9-compliant, i.e. *any* UltraSPARC, CPU under | ||
58 | * special conditions, namely when kernel doesn't preserve upper | ||
59 | * 32 bits of otherwise 64-bit registers during a context switch. | ||
60 | * | ||
61 | * Q. Why just UltraSPARC? What about SuperSPARC? | ||
62 | * A. Original release did target UltraSPARC only. Now SuperSPARC | ||
63 | * version is provided along. Both version share bn_*comba[48] | ||
64 | * implementations (see comment later in code for explanation). | ||
65 | * But what's so special about this UltraSPARC implementation? | ||
66 | * Why didn't I let compiler do the job? Trouble is that most of | ||
67 | * available compilers (well, SC5.0 is the only exception) don't | ||
68 | * attempt to take advantage of UltraSPARC's 64-bitness under | ||
69 | * 32-bit kernels even though it's perfectly possible (see next | ||
70 | * question). | ||
71 | * | ||
72 | * Q. 64-bit registers under 32-bit kernels? Didn't you just say it | ||
73 | * doesn't work? | ||
74 | * A. You can't adress *all* registers as 64-bit wide:-( The catch is | ||
75 | * that you actually may rely upon %o0-%o5 and %g1-%g4 being fully | ||
76 | * preserved if you're in a leaf function, i.e. such never calling | ||
77 | * any other functions. All functions in this module are leaf and | ||
78 | * 10 registers is a handful. And as a matter of fact none-"comba" | ||
79 | * routines don't require even that much and I could even afford to | ||
80 | * not allocate own stack frame for 'em:-) | ||
81 | * | ||
82 | * Q. What about 64-bit kernels? | ||
83 | * A. What about 'em? Just kidding:-) Pure 64-bit version is currently | ||
84 | * under evaluation and development... | ||
85 | * | ||
86 | * Q. What about shared libraries? | ||
87 | * A. What about 'em? Kidding again:-) Code does *not* contain any | ||
88 | * code position dependencies and it's safe to include it into | ||
89 | * shared library as is. | ||
90 | * | ||
91 | * Q. How much faster does it go? | ||
92 | * A. Do you have a good benchmark? In either case below is what I | ||
93 | * experience with crypto/bn/expspeed.c test program: | ||
94 | * | ||
95 | * v8plus module on U10/300MHz against bn_asm.c compiled with: | ||
96 | * | ||
97 | * cc-5.0 -xarch=v8plus -xO5 -xdepend +7-12% | ||
98 | * cc-4.2 -xarch=v8plus -xO5 -xdepend +25-35% | ||
99 | * egcs-1.1.2 -mcpu=ultrasparc -O3 +35-45% | ||
100 | * | ||
101 | * v8 module on SS10/60MHz against bn_asm.c compiled with: | ||
102 | * | ||
103 | * cc-5.0 -xarch=v8 -xO5 -xdepend +7-10% | ||
104 | * cc-4.2 -xarch=v8 -xO5 -xdepend +10% | ||
105 | * egcs-1.1.2 -mv8 -O3 +35-45% | ||
106 | * | ||
107 | * As you can see it's damn hard to beat the new Sun C compiler | ||
108 | * and it's in first place GNU C users who will appreciate this | ||
109 | * assembler implementation:-) | ||
110 | */ | ||
111 | |||
112 | /* | ||
113 | * Revision history. | ||
114 | * | ||
115 | * 1.0 - initial release; | ||
116 | * 1.1 - new loop unrolling model(*); | ||
117 | * - some more fine tuning; | ||
118 | * 1.2 - made gas friendly; | ||
119 | * - updates to documentation concerning v9; | ||
120 | * - new performance comparison matrix; | ||
121 | * 1.3 - fixed problem with /usr/ccs/lib/cpp; | ||
122 | * 1.4 - native V9 bn_*_comba[48] implementation (15% more efficient) | ||
123 | * resulting in slight overall performance kick; | ||
124 | * - some retunes; | ||
125 | * - support for GNU as added; | ||
126 | * | ||
127 | * (*) Originally unrolled loop looked like this: | ||
128 | * for (;;) { | ||
129 | * op(p+0); if (--n==0) break; | ||
130 | * op(p+1); if (--n==0) break; | ||
131 | * op(p+2); if (--n==0) break; | ||
132 | * op(p+3); if (--n==0) break; | ||
133 | * p+=4; | ||
134 | * } | ||
135 | * I unroll according to following: | ||
136 | * while (n&~3) { | ||
137 | * op(p+0); op(p+1); op(p+2); op(p+3); | ||
138 | * p+=4; n=-4; | ||
139 | * } | ||
140 | * if (n) { | ||
141 | * op(p+0); if (--n==0) return; | ||
142 | * op(p+2); if (--n==0) return; | ||
143 | * op(p+3); return; | ||
144 | * } | ||
145 | */ | ||
146 | |||
147 | #if defined(__SUNPRO_C) && defined(__sparcv9) | ||
148 | /* They've said -xarch=v9 at command line */ | ||
149 | .register %g2,#scratch | ||
150 | .register %g3,#scratch | ||
151 | # define FRAME_SIZE -192 | ||
152 | #elif defined(__GNUC__) && defined(__arch64__) | ||
153 | /* They've said -m64 at command line */ | ||
154 | .register %g2,#scratch | ||
155 | .register %g3,#scratch | ||
156 | # define FRAME_SIZE -192 | ||
157 | #else | ||
158 | # define FRAME_SIZE -96 | ||
159 | #endif | ||
160 | /* | ||
161 | * GNU assembler can't stand stuw:-( | ||
162 | */ | ||
163 | #define stuw st | ||
164 | |||
165 | .section ".text",#alloc,#execinstr | ||
166 | .file "bn_asm.sparc.v8plus.S" | ||
167 | |||
168 | .align 32 | ||
169 | |||
170 | .global bn_mul_add_words | ||
171 | /* | ||
172 | * BN_ULONG bn_mul_add_words(rp,ap,num,w) | ||
173 | * BN_ULONG *rp,*ap; | ||
174 | * int num; | ||
175 | * BN_ULONG w; | ||
176 | */ | ||
177 | bn_mul_add_words: | ||
178 | sra %o2,%g0,%o2 ! signx %o2 | ||
179 | brgz,a %o2,.L_bn_mul_add_words_proceed | ||
180 | lduw [%o1],%g2 | ||
181 | retl | ||
182 | clr %o0 | ||
183 | nop | ||
184 | nop | ||
185 | nop | ||
186 | |||
187 | .L_bn_mul_add_words_proceed: | ||
188 | srl %o3,%g0,%o3 ! clruw %o3 | ||
189 | andcc %o2,-4,%g0 | ||
190 | bz,pn %icc,.L_bn_mul_add_words_tail | ||
191 | clr %o5 | ||
192 | |||
193 | .L_bn_mul_add_words_loop: ! wow! 32 aligned! | ||
194 | lduw [%o0],%g1 | ||
195 | lduw [%o1+4],%g3 | ||
196 | mulx %o3,%g2,%g2 | ||
197 | add %g1,%o5,%o4 | ||
198 | nop | ||
199 | add %o4,%g2,%o4 | ||
200 | stuw %o4,[%o0] | ||
201 | srlx %o4,32,%o5 | ||
202 | |||
203 | lduw [%o0+4],%g1 | ||
204 | lduw [%o1+8],%g2 | ||
205 | mulx %o3,%g3,%g3 | ||
206 | add %g1,%o5,%o4 | ||
207 | dec 4,%o2 | ||
208 | add %o4,%g3,%o4 | ||
209 | stuw %o4,[%o0+4] | ||
210 | srlx %o4,32,%o5 | ||
211 | |||
212 | lduw [%o0+8],%g1 | ||
213 | lduw [%o1+12],%g3 | ||
214 | mulx %o3,%g2,%g2 | ||
215 | add %g1,%o5,%o4 | ||
216 | inc 16,%o1 | ||
217 | add %o4,%g2,%o4 | ||
218 | stuw %o4,[%o0+8] | ||
219 | srlx %o4,32,%o5 | ||
220 | |||
221 | lduw [%o0+12],%g1 | ||
222 | mulx %o3,%g3,%g3 | ||
223 | add %g1,%o5,%o4 | ||
224 | inc 16,%o0 | ||
225 | add %o4,%g3,%o4 | ||
226 | andcc %o2,-4,%g0 | ||
227 | stuw %o4,[%o0-4] | ||
228 | srlx %o4,32,%o5 | ||
229 | bnz,a,pt %icc,.L_bn_mul_add_words_loop | ||
230 | lduw [%o1],%g2 | ||
231 | |||
232 | brnz,a,pn %o2,.L_bn_mul_add_words_tail | ||
233 | lduw [%o1],%g2 | ||
234 | .L_bn_mul_add_words_return: | ||
235 | retl | ||
236 | mov %o5,%o0 | ||
237 | |||
238 | .L_bn_mul_add_words_tail: | ||
239 | lduw [%o0],%g1 | ||
240 | mulx %o3,%g2,%g2 | ||
241 | add %g1,%o5,%o4 | ||
242 | dec %o2 | ||
243 | add %o4,%g2,%o4 | ||
244 | srlx %o4,32,%o5 | ||
245 | brz,pt %o2,.L_bn_mul_add_words_return | ||
246 | stuw %o4,[%o0] | ||
247 | |||
248 | lduw [%o1+4],%g2 | ||
249 | lduw [%o0+4],%g1 | ||
250 | mulx %o3,%g2,%g2 | ||
251 | add %g1,%o5,%o4 | ||
252 | dec %o2 | ||
253 | add %o4,%g2,%o4 | ||
254 | srlx %o4,32,%o5 | ||
255 | brz,pt %o2,.L_bn_mul_add_words_return | ||
256 | stuw %o4,[%o0+4] | ||
257 | |||
258 | lduw [%o1+8],%g2 | ||
259 | lduw [%o0+8],%g1 | ||
260 | mulx %o3,%g2,%g2 | ||
261 | add %g1,%o5,%o4 | ||
262 | add %o4,%g2,%o4 | ||
263 | stuw %o4,[%o0+8] | ||
264 | retl | ||
265 | srlx %o4,32,%o0 | ||
266 | |||
267 | .type bn_mul_add_words,#function | ||
268 | .size bn_mul_add_words,(.-bn_mul_add_words) | ||
269 | |||
270 | .align 32 | ||
271 | |||
272 | .global bn_mul_words | ||
273 | /* | ||
274 | * BN_ULONG bn_mul_words(rp,ap,num,w) | ||
275 | * BN_ULONG *rp,*ap; | ||
276 | * int num; | ||
277 | * BN_ULONG w; | ||
278 | */ | ||
279 | bn_mul_words: | ||
280 | sra %o2,%g0,%o2 ! signx %o2 | ||
281 | brgz,a %o2,.L_bn_mul_words_proceeed | ||
282 | lduw [%o1],%g2 | ||
283 | retl | ||
284 | clr %o0 | ||
285 | nop | ||
286 | nop | ||
287 | nop | ||
288 | |||
289 | .L_bn_mul_words_proceeed: | ||
290 | srl %o3,%g0,%o3 ! clruw %o3 | ||
291 | andcc %o2,-4,%g0 | ||
292 | bz,pn %icc,.L_bn_mul_words_tail | ||
293 | clr %o5 | ||
294 | |||
295 | .L_bn_mul_words_loop: ! wow! 32 aligned! | ||
296 | lduw [%o1+4],%g3 | ||
297 | mulx %o3,%g2,%g2 | ||
298 | add %g2,%o5,%o4 | ||
299 | nop | ||
300 | stuw %o4,[%o0] | ||
301 | srlx %o4,32,%o5 | ||
302 | |||
303 | lduw [%o1+8],%g2 | ||
304 | mulx %o3,%g3,%g3 | ||
305 | add %g3,%o5,%o4 | ||
306 | dec 4,%o2 | ||
307 | stuw %o4,[%o0+4] | ||
308 | srlx %o4,32,%o5 | ||
309 | |||
310 | lduw [%o1+12],%g3 | ||
311 | mulx %o3,%g2,%g2 | ||
312 | add %g2,%o5,%o4 | ||
313 | inc 16,%o1 | ||
314 | stuw %o4,[%o0+8] | ||
315 | srlx %o4,32,%o5 | ||
316 | |||
317 | mulx %o3,%g3,%g3 | ||
318 | add %g3,%o5,%o4 | ||
319 | inc 16,%o0 | ||
320 | stuw %o4,[%o0-4] | ||
321 | srlx %o4,32,%o5 | ||
322 | andcc %o2,-4,%g0 | ||
323 | bnz,a,pt %icc,.L_bn_mul_words_loop | ||
324 | lduw [%o1],%g2 | ||
325 | nop | ||
326 | nop | ||
327 | |||
328 | brnz,a,pn %o2,.L_bn_mul_words_tail | ||
329 | lduw [%o1],%g2 | ||
330 | .L_bn_mul_words_return: | ||
331 | retl | ||
332 | mov %o5,%o0 | ||
333 | |||
334 | .L_bn_mul_words_tail: | ||
335 | mulx %o3,%g2,%g2 | ||
336 | add %g2,%o5,%o4 | ||
337 | dec %o2 | ||
338 | srlx %o4,32,%o5 | ||
339 | brz,pt %o2,.L_bn_mul_words_return | ||
340 | stuw %o4,[%o0] | ||
341 | |||
342 | lduw [%o1+4],%g2 | ||
343 | mulx %o3,%g2,%g2 | ||
344 | add %g2,%o5,%o4 | ||
345 | dec %o2 | ||
346 | srlx %o4,32,%o5 | ||
347 | brz,pt %o2,.L_bn_mul_words_return | ||
348 | stuw %o4,[%o0+4] | ||
349 | |||
350 | lduw [%o1+8],%g2 | ||
351 | mulx %o3,%g2,%g2 | ||
352 | add %g2,%o5,%o4 | ||
353 | stuw %o4,[%o0+8] | ||
354 | retl | ||
355 | srlx %o4,32,%o0 | ||
356 | |||
357 | .type bn_mul_words,#function | ||
358 | .size bn_mul_words,(.-bn_mul_words) | ||
359 | |||
360 | .align 32 | ||
361 | .global bn_sqr_words | ||
362 | /* | ||
363 | * void bn_sqr_words(r,a,n) | ||
364 | * BN_ULONG *r,*a; | ||
365 | * int n; | ||
366 | */ | ||
367 | bn_sqr_words: | ||
368 | sra %o2,%g0,%o2 ! signx %o2 | ||
369 | brgz,a %o2,.L_bn_sqr_words_proceeed | ||
370 | lduw [%o1],%g2 | ||
371 | retl | ||
372 | clr %o0 | ||
373 | nop | ||
374 | nop | ||
375 | nop | ||
376 | |||
377 | .L_bn_sqr_words_proceeed: | ||
378 | andcc %o2,-4,%g0 | ||
379 | nop | ||
380 | bz,pn %icc,.L_bn_sqr_words_tail | ||
381 | nop | ||
382 | |||
383 | .L_bn_sqr_words_loop: ! wow! 32 aligned! | ||
384 | lduw [%o1+4],%g3 | ||
385 | mulx %g2,%g2,%o4 | ||
386 | stuw %o4,[%o0] | ||
387 | srlx %o4,32,%o5 | ||
388 | stuw %o5,[%o0+4] | ||
389 | nop | ||
390 | |||
391 | lduw [%o1+8],%g2 | ||
392 | mulx %g3,%g3,%o4 | ||
393 | dec 4,%o2 | ||
394 | stuw %o4,[%o0+8] | ||
395 | srlx %o4,32,%o5 | ||
396 | stuw %o5,[%o0+12] | ||
397 | |||
398 | lduw [%o1+12],%g3 | ||
399 | mulx %g2,%g2,%o4 | ||
400 | srlx %o4,32,%o5 | ||
401 | stuw %o4,[%o0+16] | ||
402 | inc 16,%o1 | ||
403 | stuw %o5,[%o0+20] | ||
404 | |||
405 | mulx %g3,%g3,%o4 | ||
406 | inc 32,%o0 | ||
407 | stuw %o4,[%o0-8] | ||
408 | srlx %o4,32,%o5 | ||
409 | andcc %o2,-4,%g2 | ||
410 | stuw %o5,[%o0-4] | ||
411 | bnz,a,pt %icc,.L_bn_sqr_words_loop | ||
412 | lduw [%o1],%g2 | ||
413 | nop | ||
414 | |||
415 | brnz,a,pn %o2,.L_bn_sqr_words_tail | ||
416 | lduw [%o1],%g2 | ||
417 | .L_bn_sqr_words_return: | ||
418 | retl | ||
419 | clr %o0 | ||
420 | |||
421 | .L_bn_sqr_words_tail: | ||
422 | mulx %g2,%g2,%o4 | ||
423 | dec %o2 | ||
424 | stuw %o4,[%o0] | ||
425 | srlx %o4,32,%o5 | ||
426 | brz,pt %o2,.L_bn_sqr_words_return | ||
427 | stuw %o5,[%o0+4] | ||
428 | |||
429 | lduw [%o1+4],%g2 | ||
430 | mulx %g2,%g2,%o4 | ||
431 | dec %o2 | ||
432 | stuw %o4,[%o0+8] | ||
433 | srlx %o4,32,%o5 | ||
434 | brz,pt %o2,.L_bn_sqr_words_return | ||
435 | stuw %o5,[%o0+12] | ||
436 | |||
437 | lduw [%o1+8],%g2 | ||
438 | mulx %g2,%g2,%o4 | ||
439 | srlx %o4,32,%o5 | ||
440 | stuw %o4,[%o0+16] | ||
441 | stuw %o5,[%o0+20] | ||
442 | retl | ||
443 | clr %o0 | ||
444 | |||
445 | .type bn_sqr_words,#function | ||
446 | .size bn_sqr_words,(.-bn_sqr_words) | ||
447 | |||
448 | .align 32 | ||
449 | .global bn_div_words | ||
450 | /* | ||
451 | * BN_ULONG bn_div_words(h,l,d) | ||
452 | * BN_ULONG h,l,d; | ||
453 | */ | ||
454 | bn_div_words: | ||
455 | sllx %o0,32,%o0 | ||
456 | or %o0,%o1,%o0 | ||
457 | udivx %o0,%o2,%o0 | ||
458 | retl | ||
459 | srl %o0,%g0,%o0 ! clruw %o0 | ||
460 | |||
461 | .type bn_div_words,#function | ||
462 | .size bn_div_words,(.-bn_div_words) | ||
463 | |||
464 | .align 32 | ||
465 | |||
466 | .global bn_add_words | ||
467 | /* | ||
468 | * BN_ULONG bn_add_words(rp,ap,bp,n) | ||
469 | * BN_ULONG *rp,*ap,*bp; | ||
470 | * int n; | ||
471 | */ | ||
472 | bn_add_words: | ||
473 | sra %o3,%g0,%o3 ! signx %o3 | ||
474 | brgz,a %o3,.L_bn_add_words_proceed | ||
475 | lduw [%o1],%o4 | ||
476 | retl | ||
477 | clr %o0 | ||
478 | |||
479 | .L_bn_add_words_proceed: | ||
480 | andcc %o3,-4,%g0 | ||
481 | bz,pn %icc,.L_bn_add_words_tail | ||
482 | addcc %g0,0,%g0 ! clear carry flag | ||
483 | |||
484 | .L_bn_add_words_loop: ! wow! 32 aligned! | ||
485 | dec 4,%o3 | ||
486 | lduw [%o2],%o5 | ||
487 | lduw [%o1+4],%g1 | ||
488 | lduw [%o2+4],%g2 | ||
489 | lduw [%o1+8],%g3 | ||
490 | lduw [%o2+8],%g4 | ||
491 | addccc %o5,%o4,%o5 | ||
492 | stuw %o5,[%o0] | ||
493 | |||
494 | lduw [%o1+12],%o4 | ||
495 | lduw [%o2+12],%o5 | ||
496 | inc 16,%o1 | ||
497 | addccc %g1,%g2,%g1 | ||
498 | stuw %g1,[%o0+4] | ||
499 | |||
500 | inc 16,%o2 | ||
501 | addccc %g3,%g4,%g3 | ||
502 | stuw %g3,[%o0+8] | ||
503 | |||
504 | inc 16,%o0 | ||
505 | addccc %o5,%o4,%o5 | ||
506 | stuw %o5,[%o0-4] | ||
507 | and %o3,-4,%g1 | ||
508 | brnz,a,pt %g1,.L_bn_add_words_loop | ||
509 | lduw [%o1],%o4 | ||
510 | |||
511 | brnz,a,pn %o3,.L_bn_add_words_tail | ||
512 | lduw [%o1],%o4 | ||
513 | .L_bn_add_words_return: | ||
514 | clr %o0 | ||
515 | retl | ||
516 | movcs %icc,1,%o0 | ||
517 | nop | ||
518 | |||
519 | .L_bn_add_words_tail: | ||
520 | lduw [%o2],%o5 | ||
521 | dec %o3 | ||
522 | addccc %o5,%o4,%o5 | ||
523 | brz,pt %o3,.L_bn_add_words_return | ||
524 | stuw %o5,[%o0] | ||
525 | |||
526 | lduw [%o1+4],%o4 | ||
527 | lduw [%o2+4],%o5 | ||
528 | dec %o3 | ||
529 | addccc %o5,%o4,%o5 | ||
530 | brz,pt %o3,.L_bn_add_words_return | ||
531 | stuw %o5,[%o0+4] | ||
532 | |||
533 | lduw [%o1+8],%o4 | ||
534 | lduw [%o2+8],%o5 | ||
535 | addccc %o5,%o4,%o5 | ||
536 | stuw %o5,[%o0+8] | ||
537 | clr %o0 | ||
538 | retl | ||
539 | movcs %icc,1,%o0 | ||
540 | |||
541 | .type bn_add_words,#function | ||
542 | .size bn_add_words,(.-bn_add_words) | ||
543 | |||
544 | .global bn_sub_words | ||
545 | /* | ||
546 | * BN_ULONG bn_sub_words(rp,ap,bp,n) | ||
547 | * BN_ULONG *rp,*ap,*bp; | ||
548 | * int n; | ||
549 | */ | ||
550 | bn_sub_words: | ||
551 | sra %o3,%g0,%o3 ! signx %o3 | ||
552 | brgz,a %o3,.L_bn_sub_words_proceed | ||
553 | lduw [%o1],%o4 | ||
554 | retl | ||
555 | clr %o0 | ||
556 | |||
557 | .L_bn_sub_words_proceed: | ||
558 | andcc %o3,-4,%g0 | ||
559 | bz,pn %icc,.L_bn_sub_words_tail | ||
560 | addcc %g0,0,%g0 ! clear carry flag | ||
561 | |||
562 | .L_bn_sub_words_loop: ! wow! 32 aligned! | ||
563 | dec 4,%o3 | ||
564 | lduw [%o2],%o5 | ||
565 | lduw [%o1+4],%g1 | ||
566 | lduw [%o2+4],%g2 | ||
567 | lduw [%o1+8],%g3 | ||
568 | lduw [%o2+8],%g4 | ||
569 | subccc %o4,%o5,%o5 | ||
570 | stuw %o5,[%o0] | ||
571 | |||
572 | lduw [%o1+12],%o4 | ||
573 | lduw [%o2+12],%o5 | ||
574 | inc 16,%o1 | ||
575 | subccc %g1,%g2,%g2 | ||
576 | stuw %g2,[%o0+4] | ||
577 | |||
578 | inc 16,%o2 | ||
579 | subccc %g3,%g4,%g4 | ||
580 | stuw %g4,[%o0+8] | ||
581 | |||
582 | inc 16,%o0 | ||
583 | subccc %o4,%o5,%o5 | ||
584 | stuw %o5,[%o0-4] | ||
585 | and %o3,-4,%g1 | ||
586 | brnz,a,pt %g1,.L_bn_sub_words_loop | ||
587 | lduw [%o1],%o4 | ||
588 | |||
589 | brnz,a,pn %o3,.L_bn_sub_words_tail | ||
590 | lduw [%o1],%o4 | ||
591 | .L_bn_sub_words_return: | ||
592 | clr %o0 | ||
593 | retl | ||
594 | movcs %icc,1,%o0 | ||
595 | nop | ||
596 | |||
597 | .L_bn_sub_words_tail: ! wow! 32 aligned! | ||
598 | lduw [%o2],%o5 | ||
599 | dec %o3 | ||
600 | subccc %o4,%o5,%o5 | ||
601 | brz,pt %o3,.L_bn_sub_words_return | ||
602 | stuw %o5,[%o0] | ||
603 | |||
604 | lduw [%o1+4],%o4 | ||
605 | lduw [%o2+4],%o5 | ||
606 | dec %o3 | ||
607 | subccc %o4,%o5,%o5 | ||
608 | brz,pt %o3,.L_bn_sub_words_return | ||
609 | stuw %o5,[%o0+4] | ||
610 | |||
611 | lduw [%o1+8],%o4 | ||
612 | lduw [%o2+8],%o5 | ||
613 | subccc %o4,%o5,%o5 | ||
614 | stuw %o5,[%o0+8] | ||
615 | clr %o0 | ||
616 | retl | ||
617 | movcs %icc,1,%o0 | ||
618 | |||
619 | .type bn_sub_words,#function | ||
620 | .size bn_sub_words,(.-bn_sub_words) | ||
621 | |||
622 | /* | ||
623 | * Code below depends on the fact that upper parts of the %l0-%l7 | ||
624 | * and %i0-%i7 are zeroed by kernel after context switch. In | ||
625 | * previous versions this comment stated that "the trouble is that | ||
626 | * it's not feasible to implement the mumbo-jumbo in less V9 | ||
627 | * instructions:-(" which apparently isn't true thanks to | ||
628 | * 'bcs,a %xcc,.+8; inc %rd' pair. But the performance improvement | ||
629 | * results not from the shorter code, but from elimination of | ||
630 | * multicycle none-pairable 'rd %y,%rd' instructions. | ||
631 | * | ||
632 | * Andy. | ||
633 | */ | ||
634 | |||
635 | /* | ||
636 | * Here is register usage map for *all* routines below. | ||
637 | */ | ||
638 | #define t_1 %o0 | ||
639 | #define t_2 %o1 | ||
640 | #define c_12 %o2 | ||
641 | #define c_3 %o3 | ||
642 | |||
643 | #define ap(I) [%i1+4*I] | ||
644 | #define bp(I) [%i2+4*I] | ||
645 | #define rp(I) [%i0+4*I] | ||
646 | |||
647 | #define a_0 %l0 | ||
648 | #define a_1 %l1 | ||
649 | #define a_2 %l2 | ||
650 | #define a_3 %l3 | ||
651 | #define a_4 %l4 | ||
652 | #define a_5 %l5 | ||
653 | #define a_6 %l6 | ||
654 | #define a_7 %l7 | ||
655 | |||
656 | #define b_0 %i3 | ||
657 | #define b_1 %i4 | ||
658 | #define b_2 %i5 | ||
659 | #define b_3 %o4 | ||
660 | #define b_4 %o5 | ||
661 | #define b_5 %o7 | ||
662 | #define b_6 %g1 | ||
663 | #define b_7 %g4 | ||
664 | |||
665 | .align 32 | ||
666 | .global bn_mul_comba8 | ||
667 | /* | ||
668 | * void bn_mul_comba8(r,a,b) | ||
669 | * BN_ULONG *r,*a,*b; | ||
670 | */ | ||
671 | bn_mul_comba8: | ||
672 | save %sp,FRAME_SIZE,%sp | ||
673 | mov 1,t_2 | ||
674 | lduw ap(0),a_0 | ||
675 | sllx t_2,32,t_2 | ||
676 | lduw bp(0),b_0 != | ||
677 | lduw bp(1),b_1 | ||
678 | mulx a_0,b_0,t_1 !mul_add_c(a[0],b[0],c1,c2,c3); | ||
679 | srlx t_1,32,c_12 | ||
680 | stuw t_1,rp(0) !=!r[0]=c1; | ||
681 | |||
682 | lduw ap(1),a_1 | ||
683 | mulx a_0,b_1,t_1 !mul_add_c(a[0],b[1],c2,c3,c1); | ||
684 | addcc c_12,t_1,c_12 | ||
685 | clr c_3 != | ||
686 | bcs,a %xcc,.+8 | ||
687 | add c_3,t_2,c_3 | ||
688 | lduw ap(2),a_2 | ||
689 | mulx a_1,b_0,t_1 !=!mul_add_c(a[1],b[0],c2,c3,c1); | ||
690 | addcc c_12,t_1,t_1 | ||
691 | bcs,a %xcc,.+8 | ||
692 | add c_3,t_2,c_3 | ||
693 | srlx t_1,32,c_12 != | ||
694 | stuw t_1,rp(1) !r[1]=c2; | ||
695 | or c_12,c_3,c_12 | ||
696 | |||
697 | mulx a_2,b_0,t_1 !mul_add_c(a[2],b[0],c3,c1,c2); | ||
698 | addcc c_12,t_1,c_12 != | ||
699 | clr c_3 | ||
700 | bcs,a %xcc,.+8 | ||
701 | add c_3,t_2,c_3 | ||
702 | lduw bp(2),b_2 != | ||
703 | mulx a_1,b_1,t_1 !mul_add_c(a[1],b[1],c3,c1,c2); | ||
704 | addcc c_12,t_1,c_12 | ||
705 | bcs,a %xcc,.+8 | ||
706 | add c_3,t_2,c_3 != | ||
707 | lduw bp(3),b_3 | ||
708 | mulx a_0,b_2,t_1 !mul_add_c(a[0],b[2],c3,c1,c2); | ||
709 | addcc c_12,t_1,t_1 | ||
710 | bcs,a %xcc,.+8 != | ||
711 | add c_3,t_2,c_3 | ||
712 | srlx t_1,32,c_12 | ||
713 | stuw t_1,rp(2) !r[2]=c3; | ||
714 | or c_12,c_3,c_12 != | ||
715 | |||
716 | mulx a_0,b_3,t_1 !mul_add_c(a[0],b[3],c1,c2,c3); | ||
717 | addcc c_12,t_1,c_12 | ||
718 | clr c_3 | ||
719 | bcs,a %xcc,.+8 != | ||
720 | add c_3,t_2,c_3 | ||
721 | mulx a_1,b_2,t_1 !=!mul_add_c(a[1],b[2],c1,c2,c3); | ||
722 | addcc c_12,t_1,c_12 | ||
723 | bcs,a %xcc,.+8 != | ||
724 | add c_3,t_2,c_3 | ||
725 | lduw ap(3),a_3 | ||
726 | mulx a_2,b_1,t_1 !mul_add_c(a[2],b[1],c1,c2,c3); | ||
727 | addcc c_12,t_1,c_12 != | ||
728 | bcs,a %xcc,.+8 | ||
729 | add c_3,t_2,c_3 | ||
730 | lduw ap(4),a_4 | ||
731 | mulx a_3,b_0,t_1 !=!mul_add_c(a[3],b[0],c1,c2,c3);!= | ||
732 | addcc c_12,t_1,t_1 | ||
733 | bcs,a %xcc,.+8 | ||
734 | add c_3,t_2,c_3 | ||
735 | srlx t_1,32,c_12 != | ||
736 | stuw t_1,rp(3) !r[3]=c1; | ||
737 | or c_12,c_3,c_12 | ||
738 | |||
739 | mulx a_4,b_0,t_1 !mul_add_c(a[4],b[0],c2,c3,c1); | ||
740 | addcc c_12,t_1,c_12 != | ||
741 | clr c_3 | ||
742 | bcs,a %xcc,.+8 | ||
743 | add c_3,t_2,c_3 | ||
744 | mulx a_3,b_1,t_1 !=!mul_add_c(a[3],b[1],c2,c3,c1); | ||
745 | addcc c_12,t_1,c_12 | ||
746 | bcs,a %xcc,.+8 | ||
747 | add c_3,t_2,c_3 | ||
748 | mulx a_2,b_2,t_1 !=!mul_add_c(a[2],b[2],c2,c3,c1); | ||
749 | addcc c_12,t_1,c_12 | ||
750 | bcs,a %xcc,.+8 | ||
751 | add c_3,t_2,c_3 | ||
752 | lduw bp(4),b_4 != | ||
753 | mulx a_1,b_3,t_1 !mul_add_c(a[1],b[3],c2,c3,c1); | ||
754 | addcc c_12,t_1,c_12 | ||
755 | bcs,a %xcc,.+8 | ||
756 | add c_3,t_2,c_3 != | ||
757 | lduw bp(5),b_5 | ||
758 | mulx a_0,b_4,t_1 !mul_add_c(a[0],b[4],c2,c3,c1); | ||
759 | addcc c_12,t_1,t_1 | ||
760 | bcs,a %xcc,.+8 != | ||
761 | add c_3,t_2,c_3 | ||
762 | srlx t_1,32,c_12 | ||
763 | stuw t_1,rp(4) !r[4]=c2; | ||
764 | or c_12,c_3,c_12 != | ||
765 | |||
766 | mulx a_0,b_5,t_1 !mul_add_c(a[0],b[5],c3,c1,c2); | ||
767 | addcc c_12,t_1,c_12 | ||
768 | clr c_3 | ||
769 | bcs,a %xcc,.+8 != | ||
770 | add c_3,t_2,c_3 | ||
771 | mulx a_1,b_4,t_1 !mul_add_c(a[1],b[4],c3,c1,c2); | ||
772 | addcc c_12,t_1,c_12 | ||
773 | bcs,a %xcc,.+8 != | ||
774 | add c_3,t_2,c_3 | ||
775 | mulx a_2,b_3,t_1 !mul_add_c(a[2],b[3],c3,c1,c2); | ||
776 | addcc c_12,t_1,c_12 | ||
777 | bcs,a %xcc,.+8 != | ||
778 | add c_3,t_2,c_3 | ||
779 | mulx a_3,b_2,t_1 !mul_add_c(a[3],b[2],c3,c1,c2); | ||
780 | addcc c_12,t_1,c_12 | ||
781 | bcs,a %xcc,.+8 != | ||
782 | add c_3,t_2,c_3 | ||
783 | lduw ap(5),a_5 | ||
784 | mulx a_4,b_1,t_1 !mul_add_c(a[4],b[1],c3,c1,c2); | ||
785 | addcc c_12,t_1,c_12 != | ||
786 | bcs,a %xcc,.+8 | ||
787 | add c_3,t_2,c_3 | ||
788 | lduw ap(6),a_6 | ||
789 | mulx a_5,b_0,t_1 !=!mul_add_c(a[5],b[0],c3,c1,c2); | ||
790 | addcc c_12,t_1,t_1 | ||
791 | bcs,a %xcc,.+8 | ||
792 | add c_3,t_2,c_3 | ||
793 | srlx t_1,32,c_12 != | ||
794 | stuw t_1,rp(5) !r[5]=c3; | ||
795 | or c_12,c_3,c_12 | ||
796 | |||
797 | mulx a_6,b_0,t_1 !mul_add_c(a[6],b[0],c1,c2,c3); | ||
798 | addcc c_12,t_1,c_12 != | ||
799 | clr c_3 | ||
800 | bcs,a %xcc,.+8 | ||
801 | add c_3,t_2,c_3 | ||
802 | mulx a_5,b_1,t_1 !=!mul_add_c(a[5],b[1],c1,c2,c3); | ||
803 | addcc c_12,t_1,c_12 | ||
804 | bcs,a %xcc,.+8 | ||
805 | add c_3,t_2,c_3 | ||
806 | mulx a_4,b_2,t_1 !=!mul_add_c(a[4],b[2],c1,c2,c3); | ||
807 | addcc c_12,t_1,c_12 | ||
808 | bcs,a %xcc,.+8 | ||
809 | add c_3,t_2,c_3 | ||
810 | mulx a_3,b_3,t_1 !=!mul_add_c(a[3],b[3],c1,c2,c3); | ||
811 | addcc c_12,t_1,c_12 | ||
812 | bcs,a %xcc,.+8 | ||
813 | add c_3,t_2,c_3 | ||
814 | mulx a_2,b_4,t_1 !=!mul_add_c(a[2],b[4],c1,c2,c3); | ||
815 | addcc c_12,t_1,c_12 | ||
816 | bcs,a %xcc,.+8 | ||
817 | add c_3,t_2,c_3 | ||
818 | lduw bp(6),b_6 != | ||
819 | mulx a_1,b_5,t_1 !mul_add_c(a[1],b[5],c1,c2,c3); | ||
820 | addcc c_12,t_1,c_12 | ||
821 | bcs,a %xcc,.+8 | ||
822 | add c_3,t_2,c_3 != | ||
823 | lduw bp(7),b_7 | ||
824 | mulx a_0,b_6,t_1 !mul_add_c(a[0],b[6],c1,c2,c3); | ||
825 | addcc c_12,t_1,t_1 | ||
826 | bcs,a %xcc,.+8 != | ||
827 | add c_3,t_2,c_3 | ||
828 | srlx t_1,32,c_12 | ||
829 | stuw t_1,rp(6) !r[6]=c1; | ||
830 | or c_12,c_3,c_12 != | ||
831 | |||
832 | mulx a_0,b_7,t_1 !mul_add_c(a[0],b[7],c2,c3,c1); | ||
833 | addcc c_12,t_1,c_12 | ||
834 | clr c_3 | ||
835 | bcs,a %xcc,.+8 != | ||
836 | add c_3,t_2,c_3 | ||
837 | mulx a_1,b_6,t_1 !mul_add_c(a[1],b[6],c2,c3,c1); | ||
838 | addcc c_12,t_1,c_12 | ||
839 | bcs,a %xcc,.+8 != | ||
840 | add c_3,t_2,c_3 | ||
841 | mulx a_2,b_5,t_1 !mul_add_c(a[2],b[5],c2,c3,c1); | ||
842 | addcc c_12,t_1,c_12 | ||
843 | bcs,a %xcc,.+8 != | ||
844 | add c_3,t_2,c_3 | ||
845 | mulx a_3,b_4,t_1 !mul_add_c(a[3],b[4],c2,c3,c1); | ||
846 | addcc c_12,t_1,c_12 | ||
847 | bcs,a %xcc,.+8 != | ||
848 | add c_3,t_2,c_3 | ||
849 | mulx a_4,b_3,t_1 !mul_add_c(a[4],b[3],c2,c3,c1); | ||
850 | addcc c_12,t_1,c_12 | ||
851 | bcs,a %xcc,.+8 != | ||
852 | add c_3,t_2,c_3 | ||
853 | mulx a_5,b_2,t_1 !mul_add_c(a[5],b[2],c2,c3,c1); | ||
854 | addcc c_12,t_1,c_12 | ||
855 | bcs,a %xcc,.+8 != | ||
856 | add c_3,t_2,c_3 | ||
857 | lduw ap(7),a_7 | ||
858 | mulx a_6,b_1,t_1 !=!mul_add_c(a[6],b[1],c2,c3,c1); | ||
859 | addcc c_12,t_1,c_12 | ||
860 | bcs,a %xcc,.+8 | ||
861 | add c_3,t_2,c_3 | ||
862 | mulx a_7,b_0,t_1 !=!mul_add_c(a[7],b[0],c2,c3,c1); | ||
863 | addcc c_12,t_1,t_1 | ||
864 | bcs,a %xcc,.+8 | ||
865 | add c_3,t_2,c_3 | ||
866 | srlx t_1,32,c_12 != | ||
867 | stuw t_1,rp(7) !r[7]=c2; | ||
868 | or c_12,c_3,c_12 | ||
869 | |||
870 | mulx a_7,b_1,t_1 !=!mul_add_c(a[7],b[1],c3,c1,c2); | ||
871 | addcc c_12,t_1,c_12 | ||
872 | clr c_3 | ||
873 | bcs,a %xcc,.+8 | ||
874 | add c_3,t_2,c_3 != | ||
875 | mulx a_6,b_2,t_1 !mul_add_c(a[6],b[2],c3,c1,c2); | ||
876 | addcc c_12,t_1,c_12 | ||
877 | bcs,a %xcc,.+8 | ||
878 | add c_3,t_2,c_3 != | ||
879 | mulx a_5,b_3,t_1 !mul_add_c(a[5],b[3],c3,c1,c2); | ||
880 | addcc c_12,t_1,c_12 | ||
881 | bcs,a %xcc,.+8 | ||
882 | add c_3,t_2,c_3 != | ||
883 | mulx a_4,b_4,t_1 !mul_add_c(a[4],b[4],c3,c1,c2); | ||
884 | addcc c_12,t_1,c_12 | ||
885 | bcs,a %xcc,.+8 | ||
886 | add c_3,t_2,c_3 != | ||
887 | mulx a_3,b_5,t_1 !mul_add_c(a[3],b[5],c3,c1,c2); | ||
888 | addcc c_12,t_1,c_12 | ||
889 | bcs,a %xcc,.+8 | ||
890 | add c_3,t_2,c_3 != | ||
891 | mulx a_2,b_6,t_1 !mul_add_c(a[2],b[6],c3,c1,c2); | ||
892 | addcc c_12,t_1,c_12 | ||
893 | bcs,a %xcc,.+8 | ||
894 | add c_3,t_2,c_3 != | ||
895 | mulx a_1,b_7,t_1 !mul_add_c(a[1],b[7],c3,c1,c2); | ||
896 | addcc c_12,t_1,t_1 | ||
897 | bcs,a %xcc,.+8 | ||
898 | add c_3,t_2,c_3 != | ||
899 | srlx t_1,32,c_12 | ||
900 | stuw t_1,rp(8) !r[8]=c3; | ||
901 | or c_12,c_3,c_12 | ||
902 | |||
903 | mulx a_2,b_7,t_1 !=!mul_add_c(a[2],b[7],c1,c2,c3); | ||
904 | addcc c_12,t_1,c_12 | ||
905 | clr c_3 | ||
906 | bcs,a %xcc,.+8 | ||
907 | add c_3,t_2,c_3 != | ||
908 | mulx a_3,b_6,t_1 !mul_add_c(a[3],b[6],c1,c2,c3); | ||
909 | addcc c_12,t_1,c_12 | ||
910 | bcs,a %xcc,.+8 != | ||
911 | add c_3,t_2,c_3 | ||
912 | mulx a_4,b_5,t_1 !mul_add_c(a[4],b[5],c1,c2,c3); | ||
913 | addcc c_12,t_1,c_12 | ||
914 | bcs,a %xcc,.+8 != | ||
915 | add c_3,t_2,c_3 | ||
916 | mulx a_5,b_4,t_1 !mul_add_c(a[5],b[4],c1,c2,c3); | ||
917 | addcc c_12,t_1,c_12 | ||
918 | bcs,a %xcc,.+8 != | ||
919 | add c_3,t_2,c_3 | ||
920 | mulx a_6,b_3,t_1 !mul_add_c(a[6],b[3],c1,c2,c3); | ||
921 | addcc c_12,t_1,c_12 | ||
922 | bcs,a %xcc,.+8 != | ||
923 | add c_3,t_2,c_3 | ||
924 | mulx a_7,b_2,t_1 !mul_add_c(a[7],b[2],c1,c2,c3); | ||
925 | addcc c_12,t_1,t_1 | ||
926 | bcs,a %xcc,.+8 != | ||
927 | add c_3,t_2,c_3 | ||
928 | srlx t_1,32,c_12 | ||
929 | stuw t_1,rp(9) !r[9]=c1; | ||
930 | or c_12,c_3,c_12 != | ||
931 | |||
932 | mulx a_7,b_3,t_1 !mul_add_c(a[7],b[3],c2,c3,c1); | ||
933 | addcc c_12,t_1,c_12 | ||
934 | clr c_3 | ||
935 | bcs,a %xcc,.+8 != | ||
936 | add c_3,t_2,c_3 | ||
937 | mulx a_6,b_4,t_1 !mul_add_c(a[6],b[4],c2,c3,c1); | ||
938 | addcc c_12,t_1,c_12 | ||
939 | bcs,a %xcc,.+8 != | ||
940 | add c_3,t_2,c_3 | ||
941 | mulx a_5,b_5,t_1 !mul_add_c(a[5],b[5],c2,c3,c1); | ||
942 | addcc c_12,t_1,c_12 | ||
943 | bcs,a %xcc,.+8 != | ||
944 | add c_3,t_2,c_3 | ||
945 | mulx a_4,b_6,t_1 !mul_add_c(a[4],b[6],c2,c3,c1); | ||
946 | addcc c_12,t_1,c_12 | ||
947 | bcs,a %xcc,.+8 != | ||
948 | add c_3,t_2,c_3 | ||
949 | mulx a_3,b_7,t_1 !mul_add_c(a[3],b[7],c2,c3,c1); | ||
950 | addcc c_12,t_1,t_1 | ||
951 | bcs,a %xcc,.+8 != | ||
952 | add c_3,t_2,c_3 | ||
953 | srlx t_1,32,c_12 | ||
954 | stuw t_1,rp(10) !r[10]=c2; | ||
955 | or c_12,c_3,c_12 != | ||
956 | |||
957 | mulx a_4,b_7,t_1 !mul_add_c(a[4],b[7],c3,c1,c2); | ||
958 | addcc c_12,t_1,c_12 | ||
959 | clr c_3 | ||
960 | bcs,a %xcc,.+8 != | ||
961 | add c_3,t_2,c_3 | ||
962 | mulx a_5,b_6,t_1 !mul_add_c(a[5],b[6],c3,c1,c2); | ||
963 | addcc c_12,t_1,c_12 | ||
964 | bcs,a %xcc,.+8 != | ||
965 | add c_3,t_2,c_3 | ||
966 | mulx a_6,b_5,t_1 !mul_add_c(a[6],b[5],c3,c1,c2); | ||
967 | addcc c_12,t_1,c_12 | ||
968 | bcs,a %xcc,.+8 != | ||
969 | add c_3,t_2,c_3 | ||
970 | mulx a_7,b_4,t_1 !mul_add_c(a[7],b[4],c3,c1,c2); | ||
971 | addcc c_12,t_1,t_1 | ||
972 | bcs,a %xcc,.+8 != | ||
973 | add c_3,t_2,c_3 | ||
974 | srlx t_1,32,c_12 | ||
975 | stuw t_1,rp(11) !r[11]=c3; | ||
976 | or c_12,c_3,c_12 != | ||
977 | |||
978 | mulx a_7,b_5,t_1 !mul_add_c(a[7],b[5],c1,c2,c3); | ||
979 | addcc c_12,t_1,c_12 | ||
980 | clr c_3 | ||
981 | bcs,a %xcc,.+8 != | ||
982 | add c_3,t_2,c_3 | ||
983 | mulx a_6,b_6,t_1 !mul_add_c(a[6],b[6],c1,c2,c3); | ||
984 | addcc c_12,t_1,c_12 | ||
985 | bcs,a %xcc,.+8 != | ||
986 | add c_3,t_2,c_3 | ||
987 | mulx a_5,b_7,t_1 !mul_add_c(a[5],b[7],c1,c2,c3); | ||
988 | addcc c_12,t_1,t_1 | ||
989 | bcs,a %xcc,.+8 != | ||
990 | add c_3,t_2,c_3 | ||
991 | srlx t_1,32,c_12 | ||
992 | stuw t_1,rp(12) !r[12]=c1; | ||
993 | or c_12,c_3,c_12 != | ||
994 | |||
995 | mulx a_6,b_7,t_1 !mul_add_c(a[6],b[7],c2,c3,c1); | ||
996 | addcc c_12,t_1,c_12 | ||
997 | clr c_3 | ||
998 | bcs,a %xcc,.+8 != | ||
999 | add c_3,t_2,c_3 | ||
1000 | mulx a_7,b_6,t_1 !mul_add_c(a[7],b[6],c2,c3,c1); | ||
1001 | addcc c_12,t_1,t_1 | ||
1002 | bcs,a %xcc,.+8 != | ||
1003 | add c_3,t_2,c_3 | ||
1004 | srlx t_1,32,c_12 | ||
1005 | st t_1,rp(13) !r[13]=c2; | ||
1006 | or c_12,c_3,c_12 != | ||
1007 | |||
1008 | mulx a_7,b_7,t_1 !mul_add_c(a[7],b[7],c3,c1,c2); | ||
1009 | addcc c_12,t_1,t_1 | ||
1010 | srlx t_1,32,c_12 != | ||
1011 | stuw t_1,rp(14) !r[14]=c3; | ||
1012 | stuw c_12,rp(15) !r[15]=c1; | ||
1013 | |||
1014 | ret | ||
1015 | restore %g0,%g0,%o0 != | ||
1016 | |||
1017 | .type bn_mul_comba8,#function | ||
1018 | .size bn_mul_comba8,(.-bn_mul_comba8) | ||
1019 | |||
1020 | .align 32 | ||
1021 | |||
1022 | .global bn_mul_comba4 | ||
1023 | /* | ||
1024 | * void bn_mul_comba4(r,a,b) | ||
1025 | * BN_ULONG *r,*a,*b; | ||
1026 | */ | ||
1027 | bn_mul_comba4: | ||
1028 | save %sp,FRAME_SIZE,%sp | ||
1029 | lduw ap(0),a_0 | ||
1030 | mov 1,t_2 | ||
1031 | lduw bp(0),b_0 | ||
1032 | sllx t_2,32,t_2 != | ||
1033 | lduw bp(1),b_1 | ||
1034 | mulx a_0,b_0,t_1 !mul_add_c(a[0],b[0],c1,c2,c3); | ||
1035 | srlx t_1,32,c_12 | ||
1036 | stuw t_1,rp(0) !=!r[0]=c1; | ||
1037 | |||
1038 | lduw ap(1),a_1 | ||
1039 | mulx a_0,b_1,t_1 !mul_add_c(a[0],b[1],c2,c3,c1); | ||
1040 | addcc c_12,t_1,c_12 | ||
1041 | clr c_3 != | ||
1042 | bcs,a %xcc,.+8 | ||
1043 | add c_3,t_2,c_3 | ||
1044 | lduw ap(2),a_2 | ||
1045 | mulx a_1,b_0,t_1 !=!mul_add_c(a[1],b[0],c2,c3,c1); | ||
1046 | addcc c_12,t_1,t_1 | ||
1047 | bcs,a %xcc,.+8 | ||
1048 | add c_3,t_2,c_3 | ||
1049 | srlx t_1,32,c_12 != | ||
1050 | stuw t_1,rp(1) !r[1]=c2; | ||
1051 | or c_12,c_3,c_12 | ||
1052 | |||
1053 | mulx a_2,b_0,t_1 !mul_add_c(a[2],b[0],c3,c1,c2); | ||
1054 | addcc c_12,t_1,c_12 != | ||
1055 | clr c_3 | ||
1056 | bcs,a %xcc,.+8 | ||
1057 | add c_3,t_2,c_3 | ||
1058 | lduw bp(2),b_2 != | ||
1059 | mulx a_1,b_1,t_1 !mul_add_c(a[1],b[1],c3,c1,c2); | ||
1060 | addcc c_12,t_1,c_12 | ||
1061 | bcs,a %xcc,.+8 | ||
1062 | add c_3,t_2,c_3 != | ||
1063 | lduw bp(3),b_3 | ||
1064 | mulx a_0,b_2,t_1 !mul_add_c(a[0],b[2],c3,c1,c2); | ||
1065 | addcc c_12,t_1,t_1 | ||
1066 | bcs,a %xcc,.+8 != | ||
1067 | add c_3,t_2,c_3 | ||
1068 | srlx t_1,32,c_12 | ||
1069 | stuw t_1,rp(2) !r[2]=c3; | ||
1070 | or c_12,c_3,c_12 != | ||
1071 | |||
1072 | mulx a_0,b_3,t_1 !mul_add_c(a[0],b[3],c1,c2,c3); | ||
1073 | addcc c_12,t_1,c_12 | ||
1074 | clr c_3 | ||
1075 | bcs,a %xcc,.+8 != | ||
1076 | add c_3,t_2,c_3 | ||
1077 | mulx a_1,b_2,t_1 !mul_add_c(a[1],b[2],c1,c2,c3); | ||
1078 | addcc c_12,t_1,c_12 | ||
1079 | bcs,a %xcc,.+8 != | ||
1080 | add c_3,t_2,c_3 | ||
1081 | lduw ap(3),a_3 | ||
1082 | mulx a_2,b_1,t_1 !mul_add_c(a[2],b[1],c1,c2,c3); | ||
1083 | addcc c_12,t_1,c_12 != | ||
1084 | bcs,a %xcc,.+8 | ||
1085 | add c_3,t_2,c_3 | ||
1086 | mulx a_3,b_0,t_1 !mul_add_c(a[3],b[0],c1,c2,c3);!= | ||
1087 | addcc c_12,t_1,t_1 != | ||
1088 | bcs,a %xcc,.+8 | ||
1089 | add c_3,t_2,c_3 | ||
1090 | srlx t_1,32,c_12 | ||
1091 | stuw t_1,rp(3) !=!r[3]=c1; | ||
1092 | or c_12,c_3,c_12 | ||
1093 | |||
1094 | mulx a_3,b_1,t_1 !mul_add_c(a[3],b[1],c2,c3,c1); | ||
1095 | addcc c_12,t_1,c_12 | ||
1096 | clr c_3 != | ||
1097 | bcs,a %xcc,.+8 | ||
1098 | add c_3,t_2,c_3 | ||
1099 | mulx a_2,b_2,t_1 !mul_add_c(a[2],b[2],c2,c3,c1); | ||
1100 | addcc c_12,t_1,c_12 != | ||
1101 | bcs,a %xcc,.+8 | ||
1102 | add c_3,t_2,c_3 | ||
1103 | mulx a_1,b_3,t_1 !mul_add_c(a[1],b[3],c2,c3,c1); | ||
1104 | addcc c_12,t_1,t_1 != | ||
1105 | bcs,a %xcc,.+8 | ||
1106 | add c_3,t_2,c_3 | ||
1107 | srlx t_1,32,c_12 | ||
1108 | stuw t_1,rp(4) !=!r[4]=c2; | ||
1109 | or c_12,c_3,c_12 | ||
1110 | |||
1111 | mulx a_2,b_3,t_1 !mul_add_c(a[2],b[3],c3,c1,c2); | ||
1112 | addcc c_12,t_1,c_12 | ||
1113 | clr c_3 != | ||
1114 | bcs,a %xcc,.+8 | ||
1115 | add c_3,t_2,c_3 | ||
1116 | mulx a_3,b_2,t_1 !mul_add_c(a[3],b[2],c3,c1,c2); | ||
1117 | addcc c_12,t_1,t_1 != | ||
1118 | bcs,a %xcc,.+8 | ||
1119 | add c_3,t_2,c_3 | ||
1120 | srlx t_1,32,c_12 | ||
1121 | stuw t_1,rp(5) !=!r[5]=c3; | ||
1122 | or c_12,c_3,c_12 | ||
1123 | |||
1124 | mulx a_3,b_3,t_1 !mul_add_c(a[3],b[3],c1,c2,c3); | ||
1125 | addcc c_12,t_1,t_1 | ||
1126 | srlx t_1,32,c_12 != | ||
1127 | stuw t_1,rp(6) !r[6]=c1; | ||
1128 | stuw c_12,rp(7) !r[7]=c2; | ||
1129 | |||
1130 | ret | ||
1131 | restore %g0,%g0,%o0 | ||
1132 | |||
1133 | .type bn_mul_comba4,#function | ||
1134 | .size bn_mul_comba4,(.-bn_mul_comba4) | ||
1135 | |||
1136 | .align 32 | ||
1137 | |||
1138 | .global bn_sqr_comba8 | ||
1139 | bn_sqr_comba8: | ||
1140 | save %sp,FRAME_SIZE,%sp | ||
1141 | mov 1,t_2 | ||
1142 | lduw ap(0),a_0 | ||
1143 | sllx t_2,32,t_2 | ||
1144 | lduw ap(1),a_1 | ||
1145 | mulx a_0,a_0,t_1 !sqr_add_c(a,0,c1,c2,c3); | ||
1146 | srlx t_1,32,c_12 | ||
1147 | stuw t_1,rp(0) !r[0]=c1; | ||
1148 | |||
1149 | lduw ap(2),a_2 | ||
1150 | mulx a_0,a_1,t_1 !=!sqr_add_c2(a,1,0,c2,c3,c1); | ||
1151 | addcc c_12,t_1,c_12 | ||
1152 | clr c_3 | ||
1153 | bcs,a %xcc,.+8 | ||
1154 | add c_3,t_2,c_3 | ||
1155 | addcc c_12,t_1,t_1 | ||
1156 | bcs,a %xcc,.+8 | ||
1157 | add c_3,t_2,c_3 | ||
1158 | srlx t_1,32,c_12 | ||
1159 | stuw t_1,rp(1) !r[1]=c2; | ||
1160 | or c_12,c_3,c_12 | ||
1161 | |||
1162 | mulx a_2,a_0,t_1 !sqr_add_c2(a,2,0,c3,c1,c2); | ||
1163 | addcc c_12,t_1,c_12 | ||
1164 | clr c_3 | ||
1165 | bcs,a %xcc,.+8 | ||
1166 | add c_3,t_2,c_3 | ||
1167 | addcc c_12,t_1,c_12 | ||
1168 | bcs,a %xcc,.+8 | ||
1169 | add c_3,t_2,c_3 | ||
1170 | lduw ap(3),a_3 | ||
1171 | mulx a_1,a_1,t_1 !sqr_add_c(a,1,c3,c1,c2); | ||
1172 | addcc c_12,t_1,t_1 | ||
1173 | bcs,a %xcc,.+8 | ||
1174 | add c_3,t_2,c_3 | ||
1175 | srlx t_1,32,c_12 | ||
1176 | stuw t_1,rp(2) !r[2]=c3; | ||
1177 | or c_12,c_3,c_12 | ||
1178 | |||
1179 | mulx a_0,a_3,t_1 !sqr_add_c2(a,3,0,c1,c2,c3); | ||
1180 | addcc c_12,t_1,c_12 | ||
1181 | clr c_3 | ||
1182 | bcs,a %xcc,.+8 | ||
1183 | add c_3,t_2,c_3 | ||
1184 | addcc c_12,t_1,c_12 | ||
1185 | bcs,a %xcc,.+8 | ||
1186 | add c_3,t_2,c_3 | ||
1187 | lduw ap(4),a_4 | ||
1188 | mulx a_1,a_2,t_1 !sqr_add_c2(a,2,1,c1,c2,c3); | ||
1189 | addcc c_12,t_1,c_12 | ||
1190 | bcs,a %xcc,.+8 | ||
1191 | add c_3,t_2,c_3 | ||
1192 | addcc c_12,t_1,t_1 | ||
1193 | bcs,a %xcc,.+8 | ||
1194 | add c_3,t_2,c_3 | ||
1195 | srlx t_1,32,c_12 | ||
1196 | st t_1,rp(3) !r[3]=c1; | ||
1197 | or c_12,c_3,c_12 | ||
1198 | |||
1199 | mulx a_4,a_0,t_1 !sqr_add_c2(a,4,0,c2,c3,c1); | ||
1200 | addcc c_12,t_1,c_12 | ||
1201 | clr c_3 | ||
1202 | bcs,a %xcc,.+8 | ||
1203 | add c_3,t_2,c_3 | ||
1204 | addcc c_12,t_1,c_12 | ||
1205 | bcs,a %xcc,.+8 | ||
1206 | add c_3,t_2,c_3 | ||
1207 | mulx a_3,a_1,t_1 !sqr_add_c2(a,3,1,c2,c3,c1); | ||
1208 | addcc c_12,t_1,c_12 | ||
1209 | bcs,a %xcc,.+8 | ||
1210 | add c_3,t_2,c_3 | ||
1211 | addcc c_12,t_1,c_12 | ||
1212 | bcs,a %xcc,.+8 | ||
1213 | add c_3,t_2,c_3 | ||
1214 | lduw ap(5),a_5 | ||
1215 | mulx a_2,a_2,t_1 !sqr_add_c(a,2,c2,c3,c1); | ||
1216 | addcc c_12,t_1,t_1 | ||
1217 | bcs,a %xcc,.+8 | ||
1218 | add c_3,t_2,c_3 | ||
1219 | srlx t_1,32,c_12 | ||
1220 | stuw t_1,rp(4) !r[4]=c2; | ||
1221 | or c_12,c_3,c_12 | ||
1222 | |||
1223 | mulx a_0,a_5,t_1 !sqr_add_c2(a,5,0,c3,c1,c2); | ||
1224 | addcc c_12,t_1,c_12 | ||
1225 | clr c_3 | ||
1226 | bcs,a %xcc,.+8 | ||
1227 | add c_3,t_2,c_3 | ||
1228 | addcc c_12,t_1,c_12 | ||
1229 | bcs,a %xcc,.+8 | ||
1230 | add c_3,t_2,c_3 | ||
1231 | mulx a_1,a_4,t_1 !sqr_add_c2(a,4,1,c3,c1,c2); | ||
1232 | addcc c_12,t_1,c_12 | ||
1233 | bcs,a %xcc,.+8 | ||
1234 | add c_3,t_2,c_3 | ||
1235 | addcc c_12,t_1,c_12 | ||
1236 | bcs,a %xcc,.+8 | ||
1237 | add c_3,t_2,c_3 | ||
1238 | lduw ap(6),a_6 | ||
1239 | mulx a_2,a_3,t_1 !sqr_add_c2(a,3,2,c3,c1,c2); | ||
1240 | addcc c_12,t_1,c_12 | ||
1241 | bcs,a %xcc,.+8 | ||
1242 | add c_3,t_2,c_3 | ||
1243 | addcc c_12,t_1,t_1 | ||
1244 | bcs,a %xcc,.+8 | ||
1245 | add c_3,t_2,c_3 | ||
1246 | srlx t_1,32,c_12 | ||
1247 | stuw t_1,rp(5) !r[5]=c3; | ||
1248 | or c_12,c_3,c_12 | ||
1249 | |||
1250 | mulx a_6,a_0,t_1 !sqr_add_c2(a,6,0,c1,c2,c3); | ||
1251 | addcc c_12,t_1,c_12 | ||
1252 | clr c_3 | ||
1253 | bcs,a %xcc,.+8 | ||
1254 | add c_3,t_2,c_3 | ||
1255 | addcc c_12,t_1,c_12 | ||
1256 | bcs,a %xcc,.+8 | ||
1257 | add c_3,t_2,c_3 | ||
1258 | mulx a_5,a_1,t_1 !sqr_add_c2(a,5,1,c1,c2,c3); | ||
1259 | addcc c_12,t_1,c_12 | ||
1260 | bcs,a %xcc,.+8 | ||
1261 | add c_3,t_2,c_3 | ||
1262 | addcc c_12,t_1,c_12 | ||
1263 | bcs,a %xcc,.+8 | ||
1264 | add c_3,t_2,c_3 | ||
1265 | mulx a_4,a_2,t_1 !sqr_add_c2(a,4,2,c1,c2,c3); | ||
1266 | addcc c_12,t_1,c_12 | ||
1267 | bcs,a %xcc,.+8 | ||
1268 | add c_3,t_2,c_3 | ||
1269 | addcc c_12,t_1,c_12 | ||
1270 | bcs,a %xcc,.+8 | ||
1271 | add c_3,t_2,c_3 | ||
1272 | lduw ap(7),a_7 | ||
1273 | mulx a_3,a_3,t_1 !=!sqr_add_c(a,3,c1,c2,c3); | ||
1274 | addcc c_12,t_1,t_1 | ||
1275 | bcs,a %xcc,.+8 | ||
1276 | add c_3,t_2,c_3 | ||
1277 | srlx t_1,32,c_12 | ||
1278 | stuw t_1,rp(6) !r[6]=c1; | ||
1279 | or c_12,c_3,c_12 | ||
1280 | |||
1281 | mulx a_0,a_7,t_1 !sqr_add_c2(a,7,0,c2,c3,c1); | ||
1282 | addcc c_12,t_1,c_12 | ||
1283 | clr c_3 | ||
1284 | bcs,a %xcc,.+8 | ||
1285 | add c_3,t_2,c_3 | ||
1286 | addcc c_12,t_1,c_12 | ||
1287 | bcs,a %xcc,.+8 | ||
1288 | add c_3,t_2,c_3 | ||
1289 | mulx a_1,a_6,t_1 !sqr_add_c2(a,6,1,c2,c3,c1); | ||
1290 | addcc c_12,t_1,c_12 | ||
1291 | bcs,a %xcc,.+8 | ||
1292 | add c_3,t_2,c_3 | ||
1293 | addcc c_12,t_1,c_12 | ||
1294 | bcs,a %xcc,.+8 | ||
1295 | add c_3,t_2,c_3 | ||
1296 | mulx a_2,a_5,t_1 !sqr_add_c2(a,5,2,c2,c3,c1); | ||
1297 | addcc c_12,t_1,c_12 | ||
1298 | bcs,a %xcc,.+8 | ||
1299 | add c_3,t_2,c_3 | ||
1300 | addcc c_12,t_1,c_12 | ||
1301 | bcs,a %xcc,.+8 | ||
1302 | add c_3,t_2,c_3 | ||
1303 | mulx a_3,a_4,t_1 !sqr_add_c2(a,4,3,c2,c3,c1); | ||
1304 | addcc c_12,t_1,c_12 | ||
1305 | bcs,a %xcc,.+8 | ||
1306 | add c_3,t_2,c_3 | ||
1307 | addcc c_12,t_1,t_1 | ||
1308 | bcs,a %xcc,.+8 | ||
1309 | add c_3,t_2,c_3 | ||
1310 | srlx t_1,32,c_12 | ||
1311 | stuw t_1,rp(7) !r[7]=c2; | ||
1312 | or c_12,c_3,c_12 | ||
1313 | |||
1314 | mulx a_7,a_1,t_1 !sqr_add_c2(a,7,1,c3,c1,c2); | ||
1315 | addcc c_12,t_1,c_12 | ||
1316 | clr c_3 | ||
1317 | bcs,a %xcc,.+8 | ||
1318 | add c_3,t_2,c_3 | ||
1319 | addcc c_12,t_1,c_12 | ||
1320 | bcs,a %xcc,.+8 | ||
1321 | add c_3,t_2,c_3 | ||
1322 | mulx a_6,a_2,t_1 !sqr_add_c2(a,6,2,c3,c1,c2); | ||
1323 | addcc c_12,t_1,c_12 | ||
1324 | bcs,a %xcc,.+8 | ||
1325 | add c_3,t_2,c_3 | ||
1326 | addcc c_12,t_1,c_12 | ||
1327 | bcs,a %xcc,.+8 | ||
1328 | add c_3,t_2,c_3 | ||
1329 | mulx a_5,a_3,t_1 !sqr_add_c2(a,5,3,c3,c1,c2); | ||
1330 | addcc c_12,t_1,c_12 | ||
1331 | bcs,a %xcc,.+8 | ||
1332 | add c_3,t_2,c_3 | ||
1333 | addcc c_12,t_1,c_12 | ||
1334 | bcs,a %xcc,.+8 | ||
1335 | add c_3,t_2,c_3 | ||
1336 | mulx a_4,a_4,t_1 !sqr_add_c(a,4,c3,c1,c2); | ||
1337 | addcc c_12,t_1,t_1 | ||
1338 | bcs,a %xcc,.+8 | ||
1339 | add c_3,t_2,c_3 | ||
1340 | srlx t_1,32,c_12 | ||
1341 | stuw t_1,rp(8) !r[8]=c3; | ||
1342 | or c_12,c_3,c_12 | ||
1343 | |||
1344 | mulx a_2,a_7,t_1 !sqr_add_c2(a,7,2,c1,c2,c3); | ||
1345 | addcc c_12,t_1,c_12 | ||
1346 | clr c_3 | ||
1347 | bcs,a %xcc,.+8 | ||
1348 | add c_3,t_2,c_3 | ||
1349 | addcc c_12,t_1,c_12 | ||
1350 | bcs,a %xcc,.+8 | ||
1351 | add c_3,t_2,c_3 | ||
1352 | mulx a_3,a_6,t_1 !sqr_add_c2(a,6,3,c1,c2,c3); | ||
1353 | addcc c_12,t_1,c_12 | ||
1354 | bcs,a %xcc,.+8 | ||
1355 | add c_3,t_2,c_3 | ||
1356 | addcc c_12,t_1,c_12 | ||
1357 | bcs,a %xcc,.+8 | ||
1358 | add c_3,t_2,c_3 | ||
1359 | mulx a_4,a_5,t_1 !sqr_add_c2(a,5,4,c1,c2,c3); | ||
1360 | addcc c_12,t_1,c_12 | ||
1361 | bcs,a %xcc,.+8 | ||
1362 | add c_3,t_2,c_3 | ||
1363 | addcc c_12,t_1,t_1 | ||
1364 | bcs,a %xcc,.+8 | ||
1365 | add c_3,t_2,c_3 | ||
1366 | srlx t_1,32,c_12 | ||
1367 | stuw t_1,rp(9) !r[9]=c1; | ||
1368 | or c_12,c_3,c_12 | ||
1369 | |||
1370 | mulx a_7,a_3,t_1 !sqr_add_c2(a,7,3,c2,c3,c1); | ||
1371 | addcc c_12,t_1,c_12 | ||
1372 | clr c_3 | ||
1373 | bcs,a %xcc,.+8 | ||
1374 | add c_3,t_2,c_3 | ||
1375 | addcc c_12,t_1,c_12 | ||
1376 | bcs,a %xcc,.+8 | ||
1377 | add c_3,t_2,c_3 | ||
1378 | mulx a_6,a_4,t_1 !sqr_add_c2(a,6,4,c2,c3,c1); | ||
1379 | addcc c_12,t_1,c_12 | ||
1380 | bcs,a %xcc,.+8 | ||
1381 | add c_3,t_2,c_3 | ||
1382 | addcc c_12,t_1,c_12 | ||
1383 | bcs,a %xcc,.+8 | ||
1384 | add c_3,t_2,c_3 | ||
1385 | mulx a_5,a_5,t_1 !sqr_add_c(a,5,c2,c3,c1); | ||
1386 | addcc c_12,t_1,t_1 | ||
1387 | bcs,a %xcc,.+8 | ||
1388 | add c_3,t_2,c_3 | ||
1389 | srlx t_1,32,c_12 | ||
1390 | stuw t_1,rp(10) !r[10]=c2; | ||
1391 | or c_12,c_3,c_12 | ||
1392 | |||
1393 | mulx a_4,a_7,t_1 !sqr_add_c2(a,7,4,c3,c1,c2); | ||
1394 | addcc c_12,t_1,c_12 | ||
1395 | clr c_3 | ||
1396 | bcs,a %xcc,.+8 | ||
1397 | add c_3,t_2,c_3 | ||
1398 | addcc c_12,t_1,c_12 | ||
1399 | bcs,a %xcc,.+8 | ||
1400 | add c_3,t_2,c_3 | ||
1401 | mulx a_5,a_6,t_1 !sqr_add_c2(a,6,5,c3,c1,c2); | ||
1402 | addcc c_12,t_1,c_12 | ||
1403 | bcs,a %xcc,.+8 | ||
1404 | add c_3,t_2,c_3 | ||
1405 | addcc c_12,t_1,t_1 | ||
1406 | bcs,a %xcc,.+8 | ||
1407 | add c_3,t_2,c_3 | ||
1408 | srlx t_1,32,c_12 | ||
1409 | stuw t_1,rp(11) !r[11]=c3; | ||
1410 | or c_12,c_3,c_12 | ||
1411 | |||
1412 | mulx a_7,a_5,t_1 !sqr_add_c2(a,7,5,c1,c2,c3); | ||
1413 | addcc c_12,t_1,c_12 | ||
1414 | clr c_3 | ||
1415 | bcs,a %xcc,.+8 | ||
1416 | add c_3,t_2,c_3 | ||
1417 | addcc c_12,t_1,c_12 | ||
1418 | bcs,a %xcc,.+8 | ||
1419 | add c_3,t_2,c_3 | ||
1420 | mulx a_6,a_6,t_1 !sqr_add_c(a,6,c1,c2,c3); | ||
1421 | addcc c_12,t_1,t_1 | ||
1422 | bcs,a %xcc,.+8 | ||
1423 | add c_3,t_2,c_3 | ||
1424 | srlx t_1,32,c_12 | ||
1425 | stuw t_1,rp(12) !r[12]=c1; | ||
1426 | or c_12,c_3,c_12 | ||
1427 | |||
1428 | mulx a_6,a_7,t_1 !sqr_add_c2(a,7,6,c2,c3,c1); | ||
1429 | addcc c_12,t_1,c_12 | ||
1430 | clr c_3 | ||
1431 | bcs,a %xcc,.+8 | ||
1432 | add c_3,t_2,c_3 | ||
1433 | addcc c_12,t_1,t_1 | ||
1434 | bcs,a %xcc,.+8 | ||
1435 | add c_3,t_2,c_3 | ||
1436 | srlx t_1,32,c_12 | ||
1437 | stuw t_1,rp(13) !r[13]=c2; | ||
1438 | or c_12,c_3,c_12 | ||
1439 | |||
1440 | mulx a_7,a_7,t_1 !sqr_add_c(a,7,c3,c1,c2); | ||
1441 | addcc c_12,t_1,t_1 | ||
1442 | srlx t_1,32,c_12 | ||
1443 | stuw t_1,rp(14) !r[14]=c3; | ||
1444 | stuw c_12,rp(15) !r[15]=c1; | ||
1445 | |||
1446 | ret | ||
1447 | restore %g0,%g0,%o0 | ||
1448 | |||
1449 | .type bn_sqr_comba8,#function | ||
1450 | .size bn_sqr_comba8,(.-bn_sqr_comba8) | ||
1451 | |||
1452 | .align 32 | ||
1453 | |||
1454 | .global bn_sqr_comba4 | ||
1455 | /* | ||
1456 | * void bn_sqr_comba4(r,a) | ||
1457 | * BN_ULONG *r,*a; | ||
1458 | */ | ||
1459 | bn_sqr_comba4: | ||
1460 | save %sp,FRAME_SIZE,%sp | ||
1461 | mov 1,t_2 | ||
1462 | lduw ap(0),a_0 | ||
1463 | sllx t_2,32,t_2 | ||
1464 | lduw ap(1),a_1 | ||
1465 | mulx a_0,a_0,t_1 !sqr_add_c(a,0,c1,c2,c3); | ||
1466 | srlx t_1,32,c_12 | ||
1467 | stuw t_1,rp(0) !r[0]=c1; | ||
1468 | |||
1469 | lduw ap(2),a_2 | ||
1470 | mulx a_0,a_1,t_1 !sqr_add_c2(a,1,0,c2,c3,c1); | ||
1471 | addcc c_12,t_1,c_12 | ||
1472 | clr c_3 | ||
1473 | bcs,a %xcc,.+8 | ||
1474 | add c_3,t_2,c_3 | ||
1475 | addcc c_12,t_1,t_1 | ||
1476 | bcs,a %xcc,.+8 | ||
1477 | add c_3,t_2,c_3 | ||
1478 | srlx t_1,32,c_12 | ||
1479 | stuw t_1,rp(1) !r[1]=c2; | ||
1480 | or c_12,c_3,c_12 | ||
1481 | |||
1482 | mulx a_2,a_0,t_1 !sqr_add_c2(a,2,0,c3,c1,c2); | ||
1483 | addcc c_12,t_1,c_12 | ||
1484 | clr c_3 | ||
1485 | bcs,a %xcc,.+8 | ||
1486 | add c_3,t_2,c_3 | ||
1487 | addcc c_12,t_1,c_12 | ||
1488 | bcs,a %xcc,.+8 | ||
1489 | add c_3,t_2,c_3 | ||
1490 | lduw ap(3),a_3 | ||
1491 | mulx a_1,a_1,t_1 !sqr_add_c(a,1,c3,c1,c2); | ||
1492 | addcc c_12,t_1,t_1 | ||
1493 | bcs,a %xcc,.+8 | ||
1494 | add c_3,t_2,c_3 | ||
1495 | srlx t_1,32,c_12 | ||
1496 | stuw t_1,rp(2) !r[2]=c3; | ||
1497 | or c_12,c_3,c_12 | ||
1498 | |||
1499 | mulx a_0,a_3,t_1 !sqr_add_c2(a,3,0,c1,c2,c3); | ||
1500 | addcc c_12,t_1,c_12 | ||
1501 | clr c_3 | ||
1502 | bcs,a %xcc,.+8 | ||
1503 | add c_3,t_2,c_3 | ||
1504 | addcc c_12,t_1,c_12 | ||
1505 | bcs,a %xcc,.+8 | ||
1506 | add c_3,t_2,c_3 | ||
1507 | mulx a_1,a_2,t_1 !sqr_add_c2(a,2,1,c1,c2,c3); | ||
1508 | addcc c_12,t_1,c_12 | ||
1509 | bcs,a %xcc,.+8 | ||
1510 | add c_3,t_2,c_3 | ||
1511 | addcc c_12,t_1,t_1 | ||
1512 | bcs,a %xcc,.+8 | ||
1513 | add c_3,t_2,c_3 | ||
1514 | srlx t_1,32,c_12 | ||
1515 | stuw t_1,rp(3) !r[3]=c1; | ||
1516 | or c_12,c_3,c_12 | ||
1517 | |||
1518 | mulx a_3,a_1,t_1 !sqr_add_c2(a,3,1,c2,c3,c1); | ||
1519 | addcc c_12,t_1,c_12 | ||
1520 | clr c_3 | ||
1521 | bcs,a %xcc,.+8 | ||
1522 | add c_3,t_2,c_3 | ||
1523 | addcc c_12,t_1,c_12 | ||
1524 | bcs,a %xcc,.+8 | ||
1525 | add c_3,t_2,c_3 | ||
1526 | mulx a_2,a_2,t_1 !sqr_add_c(a,2,c2,c3,c1); | ||
1527 | addcc c_12,t_1,t_1 | ||
1528 | bcs,a %xcc,.+8 | ||
1529 | add c_3,t_2,c_3 | ||
1530 | srlx t_1,32,c_12 | ||
1531 | stuw t_1,rp(4) !r[4]=c2; | ||
1532 | or c_12,c_3,c_12 | ||
1533 | |||
1534 | mulx a_2,a_3,t_1 !sqr_add_c2(a,3,2,c3,c1,c2); | ||
1535 | addcc c_12,t_1,c_12 | ||
1536 | clr c_3 | ||
1537 | bcs,a %xcc,.+8 | ||
1538 | add c_3,t_2,c_3 | ||
1539 | addcc c_12,t_1,t_1 | ||
1540 | bcs,a %xcc,.+8 | ||
1541 | add c_3,t_2,c_3 | ||
1542 | srlx t_1,32,c_12 | ||
1543 | stuw t_1,rp(5) !r[5]=c3; | ||
1544 | or c_12,c_3,c_12 | ||
1545 | |||
1546 | mulx a_3,a_3,t_1 !sqr_add_c(a,3,c1,c2,c3); | ||
1547 | addcc c_12,t_1,t_1 | ||
1548 | srlx t_1,32,c_12 | ||
1549 | stuw t_1,rp(6) !r[6]=c1; | ||
1550 | stuw c_12,rp(7) !r[7]=c2; | ||
1551 | |||
1552 | ret | ||
1553 | restore %g0,%g0,%o0 | ||
1554 | |||
1555 | .type bn_sqr_comba4,#function | ||
1556 | .size bn_sqr_comba4,(.-bn_sqr_comba4) | ||
1557 | |||
1558 | .align 32 | ||
diff --git a/src/lib/libcrypto/bn/asm/sparcv9-mont.pl b/src/lib/libcrypto/bn/asm/sparcv9-mont.pl deleted file mode 100644 index b8fb1e8a25..0000000000 --- a/src/lib/libcrypto/bn/asm/sparcv9-mont.pl +++ /dev/null | |||
@@ -1,606 +0,0 @@ | |||
1 | #!/usr/bin/env perl | ||
2 | |||
3 | # ==================================================================== | ||
4 | # Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL | ||
5 | # project. The module is, however, dual licensed under OpenSSL and | ||
6 | # CRYPTOGAMS licenses depending on where you obtain it. For further | ||
7 | # details see http://www.openssl.org/~appro/cryptogams/. | ||
8 | # ==================================================================== | ||
9 | |||
10 | # December 2005 | ||
11 | # | ||
12 | # Pure SPARCv9/8+ and IALU-only bn_mul_mont implementation. The reasons | ||
13 | # for undertaken effort are multiple. First of all, UltraSPARC is not | ||
14 | # the whole SPARCv9 universe and other VIS-free implementations deserve | ||
15 | # optimized code as much. Secondly, newly introduced UltraSPARC T1, | ||
16 | # a.k.a. Niagara, has shared FPU and concurrent FPU-intensive pathes, | ||
17 | # such as sparcv9a-mont, will simply sink it. Yes, T1 is equipped with | ||
18 | # several integrated RSA/DSA accelerator circuits accessible through | ||
19 | # kernel driver [only(*)], but having decent user-land software | ||
20 | # implementation is important too. Finally, reasons like desire to | ||
21 | # experiment with dedicated squaring procedure. Yes, this module | ||
22 | # implements one, because it was easiest to draft it in SPARCv9 | ||
23 | # instructions... | ||
24 | |||
25 | # (*) Engine accessing the driver in question is on my TODO list. | ||
26 | # For reference, acceleator is estimated to give 6 to 10 times | ||
27 | # improvement on single-threaded RSA sign. It should be noted | ||
28 | # that 6-10x improvement coefficient does not actually mean | ||
29 | # something extraordinary in terms of absolute [single-threaded] | ||
30 | # performance, as SPARCv9 instruction set is by all means least | ||
31 | # suitable for high performance crypto among other 64 bit | ||
32 | # platforms. 6-10x factor simply places T1 in same performance | ||
33 | # domain as say AMD64 and IA-64. Improvement of RSA verify don't | ||
34 | # appear impressive at all, but it's the sign operation which is | ||
35 | # far more critical/interesting. | ||
36 | |||
37 | # You might notice that inner loops are modulo-scheduled:-) This has | ||
38 | # essentially negligible impact on UltraSPARC performance, it's | ||
39 | # Fujitsu SPARC64 V users who should notice and hopefully appreciate | ||
40 | # the advantage... Currently this module surpasses sparcv9a-mont.pl | ||
41 | # by ~20% on UltraSPARC-III and later cores, but recall that sparcv9a | ||
42 | # module still have hidden potential [see TODO list there], which is | ||
43 | # estimated to be larger than 20%... | ||
44 | |||
45 | # int bn_mul_mont( | ||
46 | $rp="%i0"; # BN_ULONG *rp, | ||
47 | $ap="%i1"; # const BN_ULONG *ap, | ||
48 | $bp="%i2"; # const BN_ULONG *bp, | ||
49 | $np="%i3"; # const BN_ULONG *np, | ||
50 | $n0="%i4"; # const BN_ULONG *n0, | ||
51 | $num="%i5"; # int num); | ||
52 | |||
53 | $bits=32; | ||
54 | for (@ARGV) { $bits=64 if (/\-m64/ || /\-xarch\=v9/); } | ||
55 | if ($bits==64) { $bias=2047; $frame=192; } | ||
56 | else { $bias=0; $frame=128; } | ||
57 | |||
58 | $car0="%o0"; | ||
59 | $car1="%o1"; | ||
60 | $car2="%o2"; # 1 bit | ||
61 | $acc0="%o3"; | ||
62 | $acc1="%o4"; | ||
63 | $mask="%g1"; # 32 bits, what a waste... | ||
64 | $tmp0="%g4"; | ||
65 | $tmp1="%g5"; | ||
66 | |||
67 | $i="%l0"; | ||
68 | $j="%l1"; | ||
69 | $mul0="%l2"; | ||
70 | $mul1="%l3"; | ||
71 | $tp="%l4"; | ||
72 | $apj="%l5"; | ||
73 | $npj="%l6"; | ||
74 | $tpj="%l7"; | ||
75 | |||
76 | $fname="bn_mul_mont_int"; | ||
77 | |||
78 | $code=<<___; | ||
79 | .section ".text",#alloc,#execinstr | ||
80 | |||
81 | .global $fname | ||
82 | .align 32 | ||
83 | $fname: | ||
84 | cmp %o5,4 ! 128 bits minimum | ||
85 | bge,pt %icc,.Lenter | ||
86 | sethi %hi(0xffffffff),$mask | ||
87 | retl | ||
88 | clr %o0 | ||
89 | .align 32 | ||
90 | .Lenter: | ||
91 | save %sp,-$frame,%sp | ||
92 | sll $num,2,$num ! num*=4 | ||
93 | or $mask,%lo(0xffffffff),$mask | ||
94 | ld [$n0],$n0 | ||
95 | cmp $ap,$bp | ||
96 | and $num,$mask,$num | ||
97 | ld [$bp],$mul0 ! bp[0] | ||
98 | nop | ||
99 | |||
100 | add %sp,$bias,%o7 ! real top of stack | ||
101 | ld [$ap],$car0 ! ap[0] ! redundant in squaring context | ||
102 | sub %o7,$num,%o7 | ||
103 | ld [$ap+4],$apj ! ap[1] | ||
104 | and %o7,-1024,%o7 | ||
105 | ld [$np],$car1 ! np[0] | ||
106 | sub %o7,$bias,%sp ! alloca | ||
107 | ld [$np+4],$npj ! np[1] | ||
108 | be,pt `$bits==32?"%icc":"%xcc"`,.Lbn_sqr_mont | ||
109 | mov 12,$j | ||
110 | |||
111 | mulx $car0,$mul0,$car0 ! ap[0]*bp[0] | ||
112 | mulx $apj,$mul0,$tmp0 !prologue! ap[1]*bp[0] | ||
113 | and $car0,$mask,$acc0 | ||
114 | add %sp,$bias+$frame,$tp | ||
115 | ld [$ap+8],$apj !prologue! | ||
116 | |||
117 | mulx $n0,$acc0,$mul1 ! "t[0]"*n0 | ||
118 | and $mul1,$mask,$mul1 | ||
119 | |||
120 | mulx $car1,$mul1,$car1 ! np[0]*"t[0]"*n0 | ||
121 | mulx $npj,$mul1,$acc1 !prologue! np[1]*"t[0]"*n0 | ||
122 | srlx $car0,32,$car0 | ||
123 | add $acc0,$car1,$car1 | ||
124 | ld [$np+8],$npj !prologue! | ||
125 | srlx $car1,32,$car1 | ||
126 | mov $tmp0,$acc0 !prologue! | ||
127 | |||
128 | .L1st: | ||
129 | mulx $apj,$mul0,$tmp0 | ||
130 | mulx $npj,$mul1,$tmp1 | ||
131 | add $acc0,$car0,$car0 | ||
132 | ld [$ap+$j],$apj ! ap[j] | ||
133 | and $car0,$mask,$acc0 | ||
134 | add $acc1,$car1,$car1 | ||
135 | ld [$np+$j],$npj ! np[j] | ||
136 | srlx $car0,32,$car0 | ||
137 | add $acc0,$car1,$car1 | ||
138 | add $j,4,$j ! j++ | ||
139 | mov $tmp0,$acc0 | ||
140 | st $car1,[$tp] | ||
141 | cmp $j,$num | ||
142 | mov $tmp1,$acc1 | ||
143 | srlx $car1,32,$car1 | ||
144 | bl %icc,.L1st | ||
145 | add $tp,4,$tp ! tp++ | ||
146 | !.L1st | ||
147 | |||
148 | mulx $apj,$mul0,$tmp0 !epilogue! | ||
149 | mulx $npj,$mul1,$tmp1 | ||
150 | add $acc0,$car0,$car0 | ||
151 | and $car0,$mask,$acc0 | ||
152 | add $acc1,$car1,$car1 | ||
153 | srlx $car0,32,$car0 | ||
154 | add $acc0,$car1,$car1 | ||
155 | st $car1,[$tp] | ||
156 | srlx $car1,32,$car1 | ||
157 | |||
158 | add $tmp0,$car0,$car0 | ||
159 | and $car0,$mask,$acc0 | ||
160 | add $tmp1,$car1,$car1 | ||
161 | srlx $car0,32,$car0 | ||
162 | add $acc0,$car1,$car1 | ||
163 | st $car1,[$tp+4] | ||
164 | srlx $car1,32,$car1 | ||
165 | |||
166 | add $car0,$car1,$car1 | ||
167 | st $car1,[$tp+8] | ||
168 | srlx $car1,32,$car2 | ||
169 | |||
170 | mov 4,$i ! i++ | ||
171 | ld [$bp+4],$mul0 ! bp[1] | ||
172 | .Louter: | ||
173 | add %sp,$bias+$frame,$tp | ||
174 | ld [$ap],$car0 ! ap[0] | ||
175 | ld [$ap+4],$apj ! ap[1] | ||
176 | ld [$np],$car1 ! np[0] | ||
177 | ld [$np+4],$npj ! np[1] | ||
178 | ld [$tp],$tmp1 ! tp[0] | ||
179 | ld [$tp+4],$tpj ! tp[1] | ||
180 | mov 12,$j | ||
181 | |||
182 | mulx $car0,$mul0,$car0 | ||
183 | mulx $apj,$mul0,$tmp0 !prologue! | ||
184 | add $tmp1,$car0,$car0 | ||
185 | ld [$ap+8],$apj !prologue! | ||
186 | and $car0,$mask,$acc0 | ||
187 | |||
188 | mulx $n0,$acc0,$mul1 | ||
189 | and $mul1,$mask,$mul1 | ||
190 | |||
191 | mulx $car1,$mul1,$car1 | ||
192 | mulx $npj,$mul1,$acc1 !prologue! | ||
193 | srlx $car0,32,$car0 | ||
194 | add $acc0,$car1,$car1 | ||
195 | ld [$np+8],$npj !prologue! | ||
196 | srlx $car1,32,$car1 | ||
197 | mov $tmp0,$acc0 !prologue! | ||
198 | |||
199 | .Linner: | ||
200 | mulx $apj,$mul0,$tmp0 | ||
201 | mulx $npj,$mul1,$tmp1 | ||
202 | add $tpj,$car0,$car0 | ||
203 | ld [$ap+$j],$apj ! ap[j] | ||
204 | add $acc0,$car0,$car0 | ||
205 | add $acc1,$car1,$car1 | ||
206 | ld [$np+$j],$npj ! np[j] | ||
207 | and $car0,$mask,$acc0 | ||
208 | ld [$tp+8],$tpj ! tp[j] | ||
209 | srlx $car0,32,$car0 | ||
210 | add $acc0,$car1,$car1 | ||
211 | add $j,4,$j ! j++ | ||
212 | mov $tmp0,$acc0 | ||
213 | st $car1,[$tp] ! tp[j-1] | ||
214 | srlx $car1,32,$car1 | ||
215 | mov $tmp1,$acc1 | ||
216 | cmp $j,$num | ||
217 | bl %icc,.Linner | ||
218 | add $tp,4,$tp ! tp++ | ||
219 | !.Linner | ||
220 | |||
221 | mulx $apj,$mul0,$tmp0 !epilogue! | ||
222 | mulx $npj,$mul1,$tmp1 | ||
223 | add $tpj,$car0,$car0 | ||
224 | add $acc0,$car0,$car0 | ||
225 | ld [$tp+8],$tpj ! tp[j] | ||
226 | and $car0,$mask,$acc0 | ||
227 | add $acc1,$car1,$car1 | ||
228 | srlx $car0,32,$car0 | ||
229 | add $acc0,$car1,$car1 | ||
230 | st $car1,[$tp] ! tp[j-1] | ||
231 | srlx $car1,32,$car1 | ||
232 | |||
233 | add $tpj,$car0,$car0 | ||
234 | add $tmp0,$car0,$car0 | ||
235 | and $car0,$mask,$acc0 | ||
236 | add $tmp1,$car1,$car1 | ||
237 | add $acc0,$car1,$car1 | ||
238 | st $car1,[$tp+4] ! tp[j-1] | ||
239 | srlx $car0,32,$car0 | ||
240 | add $i,4,$i ! i++ | ||
241 | srlx $car1,32,$car1 | ||
242 | |||
243 | add $car0,$car1,$car1 | ||
244 | cmp $i,$num | ||
245 | add $car2,$car1,$car1 | ||
246 | st $car1,[$tp+8] | ||
247 | |||
248 | srlx $car1,32,$car2 | ||
249 | bl,a %icc,.Louter | ||
250 | ld [$bp+$i],$mul0 ! bp[i] | ||
251 | !.Louter | ||
252 | |||
253 | add $tp,12,$tp | ||
254 | |||
255 | .Ltail: | ||
256 | add $np,$num,$np | ||
257 | add $rp,$num,$rp | ||
258 | mov $tp,$ap | ||
259 | sub %g0,$num,%o7 ! k=-num | ||
260 | ba .Lsub | ||
261 | subcc %g0,%g0,%g0 ! clear %icc.c | ||
262 | .align 16 | ||
263 | .Lsub: | ||
264 | ld [$tp+%o7],%o0 | ||
265 | ld [$np+%o7],%o1 | ||
266 | subccc %o0,%o1,%o1 ! tp[j]-np[j] | ||
267 | add $rp,%o7,$i | ||
268 | add %o7,4,%o7 | ||
269 | brnz %o7,.Lsub | ||
270 | st %o1,[$i] | ||
271 | subc $car2,0,$car2 ! handle upmost overflow bit | ||
272 | and $tp,$car2,$ap | ||
273 | andn $rp,$car2,$np | ||
274 | or $ap,$np,$ap | ||
275 | sub %g0,$num,%o7 | ||
276 | |||
277 | .Lcopy: | ||
278 | ld [$ap+%o7],%o0 ! copy or in-place refresh | ||
279 | st %g0,[$tp+%o7] ! zap tp | ||
280 | st %o0,[$rp+%o7] | ||
281 | add %o7,4,%o7 | ||
282 | brnz %o7,.Lcopy | ||
283 | nop | ||
284 | mov 1,%i0 | ||
285 | ret | ||
286 | restore | ||
287 | ___ | ||
288 | |||
289 | ######## | ||
290 | ######## .Lbn_sqr_mont gives up to 20% *overall* improvement over | ||
291 | ######## code without following dedicated squaring procedure. | ||
292 | ######## | ||
293 | $sbit="%i2"; # re-use $bp! | ||
294 | |||
295 | $code.=<<___; | ||
296 | .align 32 | ||
297 | .Lbn_sqr_mont: | ||
298 | mulx $mul0,$mul0,$car0 ! ap[0]*ap[0] | ||
299 | mulx $apj,$mul0,$tmp0 !prologue! | ||
300 | and $car0,$mask,$acc0 | ||
301 | add %sp,$bias+$frame,$tp | ||
302 | ld [$ap+8],$apj !prologue! | ||
303 | |||
304 | mulx $n0,$acc0,$mul1 ! "t[0]"*n0 | ||
305 | srlx $car0,32,$car0 | ||
306 | and $mul1,$mask,$mul1 | ||
307 | |||
308 | mulx $car1,$mul1,$car1 ! np[0]*"t[0]"*n0 | ||
309 | mulx $npj,$mul1,$acc1 !prologue! | ||
310 | and $car0,1,$sbit | ||
311 | ld [$np+8],$npj !prologue! | ||
312 | srlx $car0,1,$car0 | ||
313 | add $acc0,$car1,$car1 | ||
314 | srlx $car1,32,$car1 | ||
315 | mov $tmp0,$acc0 !prologue! | ||
316 | |||
317 | .Lsqr_1st: | ||
318 | mulx $apj,$mul0,$tmp0 | ||
319 | mulx $npj,$mul1,$tmp1 | ||
320 | add $acc0,$car0,$car0 ! ap[j]*a0+c0 | ||
321 | add $acc1,$car1,$car1 | ||
322 | ld [$ap+$j],$apj ! ap[j] | ||
323 | and $car0,$mask,$acc0 | ||
324 | ld [$np+$j],$npj ! np[j] | ||
325 | srlx $car0,32,$car0 | ||
326 | add $acc0,$acc0,$acc0 | ||
327 | or $sbit,$acc0,$acc0 | ||
328 | mov $tmp1,$acc1 | ||
329 | srlx $acc0,32,$sbit | ||
330 | add $j,4,$j ! j++ | ||
331 | and $acc0,$mask,$acc0 | ||
332 | cmp $j,$num | ||
333 | add $acc0,$car1,$car1 | ||
334 | st $car1,[$tp] | ||
335 | mov $tmp0,$acc0 | ||
336 | srlx $car1,32,$car1 | ||
337 | bl %icc,.Lsqr_1st | ||
338 | add $tp,4,$tp ! tp++ | ||
339 | !.Lsqr_1st | ||
340 | |||
341 | mulx $apj,$mul0,$tmp0 ! epilogue | ||
342 | mulx $npj,$mul1,$tmp1 | ||
343 | add $acc0,$car0,$car0 ! ap[j]*a0+c0 | ||
344 | add $acc1,$car1,$car1 | ||
345 | and $car0,$mask,$acc0 | ||
346 | srlx $car0,32,$car0 | ||
347 | add $acc0,$acc0,$acc0 | ||
348 | or $sbit,$acc0,$acc0 | ||
349 | srlx $acc0,32,$sbit | ||
350 | and $acc0,$mask,$acc0 | ||
351 | add $acc0,$car1,$car1 | ||
352 | st $car1,[$tp] | ||
353 | srlx $car1,32,$car1 | ||
354 | |||
355 | add $tmp0,$car0,$car0 ! ap[j]*a0+c0 | ||
356 | add $tmp1,$car1,$car1 | ||
357 | and $car0,$mask,$acc0 | ||
358 | srlx $car0,32,$car0 | ||
359 | add $acc0,$acc0,$acc0 | ||
360 | or $sbit,$acc0,$acc0 | ||
361 | srlx $acc0,32,$sbit | ||
362 | and $acc0,$mask,$acc0 | ||
363 | add $acc0,$car1,$car1 | ||
364 | st $car1,[$tp+4] | ||
365 | srlx $car1,32,$car1 | ||
366 | |||
367 | add $car0,$car0,$car0 | ||
368 | or $sbit,$car0,$car0 | ||
369 | add $car0,$car1,$car1 | ||
370 | st $car1,[$tp+8] | ||
371 | srlx $car1,32,$car2 | ||
372 | |||
373 | ld [%sp+$bias+$frame],$tmp0 ! tp[0] | ||
374 | ld [%sp+$bias+$frame+4],$tmp1 ! tp[1] | ||
375 | ld [%sp+$bias+$frame+8],$tpj ! tp[2] | ||
376 | ld [$ap+4],$mul0 ! ap[1] | ||
377 | ld [$ap+8],$apj ! ap[2] | ||
378 | ld [$np],$car1 ! np[0] | ||
379 | ld [$np+4],$npj ! np[1] | ||
380 | mulx $n0,$tmp0,$mul1 | ||
381 | |||
382 | mulx $mul0,$mul0,$car0 | ||
383 | and $mul1,$mask,$mul1 | ||
384 | |||
385 | mulx $car1,$mul1,$car1 | ||
386 | mulx $npj,$mul1,$acc1 | ||
387 | add $tmp0,$car1,$car1 | ||
388 | and $car0,$mask,$acc0 | ||
389 | ld [$np+8],$npj ! np[2] | ||
390 | srlx $car1,32,$car1 | ||
391 | add $tmp1,$car1,$car1 | ||
392 | srlx $car0,32,$car0 | ||
393 | add $acc0,$car1,$car1 | ||
394 | and $car0,1,$sbit | ||
395 | add $acc1,$car1,$car1 | ||
396 | srlx $car0,1,$car0 | ||
397 | mov 12,$j | ||
398 | st $car1,[%sp+$bias+$frame] ! tp[0]= | ||
399 | srlx $car1,32,$car1 | ||
400 | add %sp,$bias+$frame+4,$tp | ||
401 | |||
402 | .Lsqr_2nd: | ||
403 | mulx $apj,$mul0,$acc0 | ||
404 | mulx $npj,$mul1,$acc1 | ||
405 | add $acc0,$car0,$car0 | ||
406 | add $tpj,$car1,$car1 | ||
407 | ld [$ap+$j],$apj ! ap[j] | ||
408 | and $car0,$mask,$acc0 | ||
409 | ld [$np+$j],$npj ! np[j] | ||
410 | srlx $car0,32,$car0 | ||
411 | add $acc1,$car1,$car1 | ||
412 | ld [$tp+8],$tpj ! tp[j] | ||
413 | add $acc0,$acc0,$acc0 | ||
414 | add $j,4,$j ! j++ | ||
415 | or $sbit,$acc0,$acc0 | ||
416 | srlx $acc0,32,$sbit | ||
417 | and $acc0,$mask,$acc0 | ||
418 | cmp $j,$num | ||
419 | add $acc0,$car1,$car1 | ||
420 | st $car1,[$tp] ! tp[j-1] | ||
421 | srlx $car1,32,$car1 | ||
422 | bl %icc,.Lsqr_2nd | ||
423 | add $tp,4,$tp ! tp++ | ||
424 | !.Lsqr_2nd | ||
425 | |||
426 | mulx $apj,$mul0,$acc0 | ||
427 | mulx $npj,$mul1,$acc1 | ||
428 | add $acc0,$car0,$car0 | ||
429 | add $tpj,$car1,$car1 | ||
430 | and $car0,$mask,$acc0 | ||
431 | srlx $car0,32,$car0 | ||
432 | add $acc1,$car1,$car1 | ||
433 | add $acc0,$acc0,$acc0 | ||
434 | or $sbit,$acc0,$acc0 | ||
435 | srlx $acc0,32,$sbit | ||
436 | and $acc0,$mask,$acc0 | ||
437 | add $acc0,$car1,$car1 | ||
438 | st $car1,[$tp] ! tp[j-1] | ||
439 | srlx $car1,32,$car1 | ||
440 | |||
441 | add $car0,$car0,$car0 | ||
442 | or $sbit,$car0,$car0 | ||
443 | add $car0,$car1,$car1 | ||
444 | add $car2,$car1,$car1 | ||
445 | st $car1,[$tp+4] | ||
446 | srlx $car1,32,$car2 | ||
447 | |||
448 | ld [%sp+$bias+$frame],$tmp1 ! tp[0] | ||
449 | ld [%sp+$bias+$frame+4],$tpj ! tp[1] | ||
450 | ld [$ap+8],$mul0 ! ap[2] | ||
451 | ld [$np],$car1 ! np[0] | ||
452 | ld [$np+4],$npj ! np[1] | ||
453 | mulx $n0,$tmp1,$mul1 | ||
454 | and $mul1,$mask,$mul1 | ||
455 | mov 8,$i | ||
456 | |||
457 | mulx $mul0,$mul0,$car0 | ||
458 | mulx $car1,$mul1,$car1 | ||
459 | and $car0,$mask,$acc0 | ||
460 | add $tmp1,$car1,$car1 | ||
461 | srlx $car0,32,$car0 | ||
462 | add %sp,$bias+$frame,$tp | ||
463 | srlx $car1,32,$car1 | ||
464 | and $car0,1,$sbit | ||
465 | srlx $car0,1,$car0 | ||
466 | mov 4,$j | ||
467 | |||
468 | .Lsqr_outer: | ||
469 | .Lsqr_inner1: | ||
470 | mulx $npj,$mul1,$acc1 | ||
471 | add $tpj,$car1,$car1 | ||
472 | add $j,4,$j | ||
473 | ld [$tp+8],$tpj | ||
474 | cmp $j,$i | ||
475 | add $acc1,$car1,$car1 | ||
476 | ld [$np+$j],$npj | ||
477 | st $car1,[$tp] | ||
478 | srlx $car1,32,$car1 | ||
479 | bl %icc,.Lsqr_inner1 | ||
480 | add $tp,4,$tp | ||
481 | !.Lsqr_inner1 | ||
482 | |||
483 | add $j,4,$j | ||
484 | ld [$ap+$j],$apj ! ap[j] | ||
485 | mulx $npj,$mul1,$acc1 | ||
486 | add $tpj,$car1,$car1 | ||
487 | ld [$np+$j],$npj ! np[j] | ||
488 | add $acc0,$car1,$car1 | ||
489 | ld [$tp+8],$tpj ! tp[j] | ||
490 | add $acc1,$car1,$car1 | ||
491 | st $car1,[$tp] | ||
492 | srlx $car1,32,$car1 | ||
493 | |||
494 | add $j,4,$j | ||
495 | cmp $j,$num | ||
496 | be,pn %icc,.Lsqr_no_inner2 | ||
497 | add $tp,4,$tp | ||
498 | |||
499 | .Lsqr_inner2: | ||
500 | mulx $apj,$mul0,$acc0 | ||
501 | mulx $npj,$mul1,$acc1 | ||
502 | add $tpj,$car1,$car1 | ||
503 | add $acc0,$car0,$car0 | ||
504 | ld [$ap+$j],$apj ! ap[j] | ||
505 | and $car0,$mask,$acc0 | ||
506 | ld [$np+$j],$npj ! np[j] | ||
507 | srlx $car0,32,$car0 | ||
508 | add $acc0,$acc0,$acc0 | ||
509 | ld [$tp+8],$tpj ! tp[j] | ||
510 | or $sbit,$acc0,$acc0 | ||
511 | add $j,4,$j ! j++ | ||
512 | srlx $acc0,32,$sbit | ||
513 | and $acc0,$mask,$acc0 | ||
514 | cmp $j,$num | ||
515 | add $acc0,$car1,$car1 | ||
516 | add $acc1,$car1,$car1 | ||
517 | st $car1,[$tp] ! tp[j-1] | ||
518 | srlx $car1,32,$car1 | ||
519 | bl %icc,.Lsqr_inner2 | ||
520 | add $tp,4,$tp ! tp++ | ||
521 | |||
522 | .Lsqr_no_inner2: | ||
523 | mulx $apj,$mul0,$acc0 | ||
524 | mulx $npj,$mul1,$acc1 | ||
525 | add $tpj,$car1,$car1 | ||
526 | add $acc0,$car0,$car0 | ||
527 | and $car0,$mask,$acc0 | ||
528 | srlx $car0,32,$car0 | ||
529 | add $acc0,$acc0,$acc0 | ||
530 | or $sbit,$acc0,$acc0 | ||
531 | srlx $acc0,32,$sbit | ||
532 | and $acc0,$mask,$acc0 | ||
533 | add $acc0,$car1,$car1 | ||
534 | add $acc1,$car1,$car1 | ||
535 | st $car1,[$tp] ! tp[j-1] | ||
536 | srlx $car1,32,$car1 | ||
537 | |||
538 | add $car0,$car0,$car0 | ||
539 | or $sbit,$car0,$car0 | ||
540 | add $car0,$car1,$car1 | ||
541 | add $car2,$car1,$car1 | ||
542 | st $car1,[$tp+4] | ||
543 | srlx $car1,32,$car2 | ||
544 | |||
545 | add $i,4,$i ! i++ | ||
546 | ld [%sp+$bias+$frame],$tmp1 ! tp[0] | ||
547 | ld [%sp+$bias+$frame+4],$tpj ! tp[1] | ||
548 | ld [$ap+$i],$mul0 ! ap[j] | ||
549 | ld [$np],$car1 ! np[0] | ||
550 | ld [$np+4],$npj ! np[1] | ||
551 | mulx $n0,$tmp1,$mul1 | ||
552 | and $mul1,$mask,$mul1 | ||
553 | add $i,4,$tmp0 | ||
554 | |||
555 | mulx $mul0,$mul0,$car0 | ||
556 | mulx $car1,$mul1,$car1 | ||
557 | and $car0,$mask,$acc0 | ||
558 | add $tmp1,$car1,$car1 | ||
559 | srlx $car0,32,$car0 | ||
560 | add %sp,$bias+$frame,$tp | ||
561 | srlx $car1,32,$car1 | ||
562 | and $car0,1,$sbit | ||
563 | srlx $car0,1,$car0 | ||
564 | |||
565 | cmp $tmp0,$num ! i<num-1 | ||
566 | bl %icc,.Lsqr_outer | ||
567 | mov 4,$j | ||
568 | |||
569 | .Lsqr_last: | ||
570 | mulx $npj,$mul1,$acc1 | ||
571 | add $tpj,$car1,$car1 | ||
572 | add $j,4,$j | ||
573 | ld [$tp+8],$tpj | ||
574 | cmp $j,$i | ||
575 | add $acc1,$car1,$car1 | ||
576 | ld [$np+$j],$npj | ||
577 | st $car1,[$tp] | ||
578 | srlx $car1,32,$car1 | ||
579 | bl %icc,.Lsqr_last | ||
580 | add $tp,4,$tp | ||
581 | !.Lsqr_last | ||
582 | |||
583 | mulx $npj,$mul1,$acc1 | ||
584 | add $tpj,$car1,$car1 | ||
585 | add $acc0,$car1,$car1 | ||
586 | add $acc1,$car1,$car1 | ||
587 | st $car1,[$tp] | ||
588 | srlx $car1,32,$car1 | ||
589 | |||
590 | add $car0,$car0,$car0 ! recover $car0 | ||
591 | or $sbit,$car0,$car0 | ||
592 | add $car0,$car1,$car1 | ||
593 | add $car2,$car1,$car1 | ||
594 | st $car1,[$tp+4] | ||
595 | srlx $car1,32,$car2 | ||
596 | |||
597 | ba .Ltail | ||
598 | add $tp,8,$tp | ||
599 | .type $fname,#function | ||
600 | .size $fname,(.-$fname) | ||
601 | .asciz "Montgomery Multipltication for SPARCv9, CRYPTOGAMS by <appro\@openssl.org>" | ||
602 | .align 32 | ||
603 | ___ | ||
604 | $code =~ s/\`([^\`]*)\`/eval($1)/gem; | ||
605 | print $code; | ||
606 | close STDOUT; | ||
diff --git a/src/lib/libcrypto/bn/asm/sparcv9a-mont.pl b/src/lib/libcrypto/bn/asm/sparcv9a-mont.pl deleted file mode 100755 index a14205f2f0..0000000000 --- a/src/lib/libcrypto/bn/asm/sparcv9a-mont.pl +++ /dev/null | |||
@@ -1,882 +0,0 @@ | |||
1 | #!/usr/bin/env perl | ||
2 | |||
3 | # ==================================================================== | ||
4 | # Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL | ||
5 | # project. The module is, however, dual licensed under OpenSSL and | ||
6 | # CRYPTOGAMS licenses depending on where you obtain it. For further | ||
7 | # details see http://www.openssl.org/~appro/cryptogams/. | ||
8 | # ==================================================================== | ||
9 | |||
10 | # October 2005 | ||
11 | # | ||
12 | # "Teaser" Montgomery multiplication module for UltraSPARC. Why FPU? | ||
13 | # Because unlike integer multiplier, which simply stalls whole CPU, | ||
14 | # FPU is fully pipelined and can effectively emit 48 bit partial | ||
15 | # product every cycle. Why not blended SPARC v9? One can argue that | ||
16 | # making this module dependent on UltraSPARC VIS extension limits its | ||
17 | # binary compatibility. Well yes, it does exclude SPARC64 prior-V(!) | ||
18 | # implementations from compatibility matrix. But the rest, whole Sun | ||
19 | # UltraSPARC family and brand new Fujitsu's SPARC64 V, all support | ||
20 | # VIS extension instructions used in this module. This is considered | ||
21 | # good enough to not care about HAL SPARC64 users [if any] who have | ||
22 | # integer-only pure SPARCv9 module to "fall down" to. | ||
23 | |||
24 | # USI&II cores currently exhibit uniform 2x improvement [over pre- | ||
25 | # bn_mul_mont codebase] for all key lengths and benchmarks. On USIII | ||
26 | # performance improves few percents for shorter keys and worsens few | ||
27 | # percents for longer keys. This is because USIII integer multiplier | ||
28 | # is >3x faster than USI&II one, which is harder to match [but see | ||
29 | # TODO list below]. It should also be noted that SPARC64 V features | ||
30 | # out-of-order execution, which *might* mean that integer multiplier | ||
31 | # is pipelined, which in turn *might* be impossible to match... On | ||
32 | # additional note, SPARC64 V implements FP Multiply-Add instruction, | ||
33 | # which is perfectly usable in this context... In other words, as far | ||
34 | # as Fujitsu SPARC64 V goes, talk to the author:-) | ||
35 | |||
36 | # The implementation implies following "non-natural" limitations on | ||
37 | # input arguments: | ||
38 | # - num may not be less than 4; | ||
39 | # - num has to be even; | ||
40 | # Failure to meet either condition has no fatal effects, simply | ||
41 | # doesn't give any performance gain. | ||
42 | |||
43 | # TODO: | ||
44 | # - modulo-schedule inner loop for better performance (on in-order | ||
45 | # execution core such as UltraSPARC this shall result in further | ||
46 | # noticeable(!) improvement); | ||
47 | # - dedicated squaring procedure[?]; | ||
48 | |||
49 | ###################################################################### | ||
50 | # November 2006 | ||
51 | # | ||
52 | # Modulo-scheduled inner loops allow to interleave floating point and | ||
53 | # integer instructions and minimize Read-After-Write penalties. This | ||
54 | # results in *further* 20-50% perfromance improvement [depending on | ||
55 | # key length, more for longer keys] on USI&II cores and 30-80% - on | ||
56 | # USIII&IV. | ||
57 | |||
58 | $fname="bn_mul_mont_fpu"; | ||
59 | $bits=32; | ||
60 | for (@ARGV) { $bits=64 if (/\-m64/ || /\-xarch\=v9/); } | ||
61 | |||
62 | if ($bits==64) { | ||
63 | $bias=2047; | ||
64 | $frame=192; | ||
65 | } else { | ||
66 | $bias=0; | ||
67 | $frame=128; # 96 rounded up to largest known cache-line | ||
68 | } | ||
69 | $locals=64; | ||
70 | |||
71 | # In order to provide for 32-/64-bit ABI duality, I keep integers wider | ||
72 | # than 32 bit in %g1-%g4 and %o0-%o5. %l0-%l7 and %i0-%i5 are used | ||
73 | # exclusively for pointers, indexes and other small values... | ||
74 | # int bn_mul_mont( | ||
75 | $rp="%i0"; # BN_ULONG *rp, | ||
76 | $ap="%i1"; # const BN_ULONG *ap, | ||
77 | $bp="%i2"; # const BN_ULONG *bp, | ||
78 | $np="%i3"; # const BN_ULONG *np, | ||
79 | $n0="%i4"; # const BN_ULONG *n0, | ||
80 | $num="%i5"; # int num); | ||
81 | |||
82 | $tp="%l0"; # t[num] | ||
83 | $ap_l="%l1"; # a[num],n[num] are smashed to 32-bit words and saved | ||
84 | $ap_h="%l2"; # to these four vectors as double-precision FP values. | ||
85 | $np_l="%l3"; # This way a bunch of fxtods are eliminated in second | ||
86 | $np_h="%l4"; # loop and L1-cache aliasing is minimized... | ||
87 | $i="%l5"; | ||
88 | $j="%l6"; | ||
89 | $mask="%l7"; # 16-bit mask, 0xffff | ||
90 | |||
91 | $n0="%g4"; # reassigned(!) to "64-bit" register | ||
92 | $carry="%i4"; # %i4 reused(!) for a carry bit | ||
93 | |||
94 | # FP register naming chart | ||
95 | # | ||
96 | # ..HILO | ||
97 | # dcba | ||
98 | # -------- | ||
99 | # LOa | ||
100 | # LOb | ||
101 | # LOc | ||
102 | # LOd | ||
103 | # HIa | ||
104 | # HIb | ||
105 | # HIc | ||
106 | # HId | ||
107 | # ..a | ||
108 | # ..b | ||
109 | $ba="%f0"; $bb="%f2"; $bc="%f4"; $bd="%f6"; | ||
110 | $na="%f8"; $nb="%f10"; $nc="%f12"; $nd="%f14"; | ||
111 | $alo="%f16"; $alo_="%f17"; $ahi="%f18"; $ahi_="%f19"; | ||
112 | $nlo="%f20"; $nlo_="%f21"; $nhi="%f22"; $nhi_="%f23"; | ||
113 | |||
114 | $dota="%f24"; $dotb="%f26"; | ||
115 | |||
116 | $aloa="%f32"; $alob="%f34"; $aloc="%f36"; $alod="%f38"; | ||
117 | $ahia="%f40"; $ahib="%f42"; $ahic="%f44"; $ahid="%f46"; | ||
118 | $nloa="%f48"; $nlob="%f50"; $nloc="%f52"; $nlod="%f54"; | ||
119 | $nhia="%f56"; $nhib="%f58"; $nhic="%f60"; $nhid="%f62"; | ||
120 | |||
121 | $ASI_FL16_P=0xD2; # magic ASI value to engage 16-bit FP load | ||
122 | |||
123 | $code=<<___; | ||
124 | .section ".text",#alloc,#execinstr | ||
125 | |||
126 | .global $fname | ||
127 | .align 32 | ||
128 | $fname: | ||
129 | save %sp,-$frame-$locals,%sp | ||
130 | |||
131 | cmp $num,4 | ||
132 | bl,a,pn %icc,.Lret | ||
133 | clr %i0 | ||
134 | andcc $num,1,%g0 ! $num has to be even... | ||
135 | bnz,a,pn %icc,.Lret | ||
136 | clr %i0 ! signal "unsupported input value" | ||
137 | |||
138 | srl $num,1,$num | ||
139 | sethi %hi(0xffff),$mask | ||
140 | ld [%i4+0],$n0 ! $n0 reassigned, remember? | ||
141 | or $mask,%lo(0xffff),$mask | ||
142 | ld [%i4+4],%o0 | ||
143 | sllx %o0,32,%o0 | ||
144 | or %o0,$n0,$n0 ! $n0=n0[1].n0[0] | ||
145 | |||
146 | sll $num,3,$num ! num*=8 | ||
147 | |||
148 | add %sp,$bias,%o0 ! real top of stack | ||
149 | sll $num,2,%o1 | ||
150 | add %o1,$num,%o1 ! %o1=num*5 | ||
151 | sub %o0,%o1,%o0 | ||
152 | and %o0,-2048,%o0 ! optimize TLB utilization | ||
153 | sub %o0,$bias,%sp ! alloca(5*num*8) | ||
154 | |||
155 | rd %asi,%o7 ! save %asi | ||
156 | add %sp,$bias+$frame+$locals,$tp | ||
157 | add $tp,$num,$ap_l | ||
158 | add $ap_l,$num,$ap_l ! [an]p_[lh] point at the vectors' ends ! | ||
159 | add $ap_l,$num,$ap_h | ||
160 | add $ap_h,$num,$np_l | ||
161 | add $np_l,$num,$np_h | ||
162 | |||
163 | wr %g0,$ASI_FL16_P,%asi ! setup %asi for 16-bit FP loads | ||
164 | |||
165 | add $rp,$num,$rp ! readjust input pointers to point | ||
166 | add $ap,$num,$ap ! at the ends too... | ||
167 | add $bp,$num,$bp | ||
168 | add $np,$num,$np | ||
169 | |||
170 | stx %o7,[%sp+$bias+$frame+48] ! save %asi | ||
171 | |||
172 | sub %g0,$num,$i ! i=-num | ||
173 | sub %g0,$num,$j ! j=-num | ||
174 | |||
175 | add $ap,$j,%o3 | ||
176 | add $bp,$i,%o4 | ||
177 | |||
178 | ld [%o3+4],%g1 ! bp[0] | ||
179 | ld [%o3+0],%o0 | ||
180 | ld [%o4+4],%g5 ! ap[0] | ||
181 | sllx %g1,32,%g1 | ||
182 | ld [%o4+0],%o1 | ||
183 | sllx %g5,32,%g5 | ||
184 | or %g1,%o0,%o0 | ||
185 | or %g5,%o1,%o1 | ||
186 | |||
187 | add $np,$j,%o5 | ||
188 | |||
189 | mulx %o1,%o0,%o0 ! ap[0]*bp[0] | ||
190 | mulx $n0,%o0,%o0 ! ap[0]*bp[0]*n0 | ||
191 | stx %o0,[%sp+$bias+$frame+0] | ||
192 | |||
193 | ld [%o3+0],$alo_ ! load a[j] as pair of 32-bit words | ||
194 | fzeros $alo | ||
195 | ld [%o3+4],$ahi_ | ||
196 | fzeros $ahi | ||
197 | ld [%o5+0],$nlo_ ! load n[j] as pair of 32-bit words | ||
198 | fzeros $nlo | ||
199 | ld [%o5+4],$nhi_ | ||
200 | fzeros $nhi | ||
201 | |||
202 | ! transfer b[i] to FPU as 4x16-bit values | ||
203 | ldda [%o4+2]%asi,$ba | ||
204 | fxtod $alo,$alo | ||
205 | ldda [%o4+0]%asi,$bb | ||
206 | fxtod $ahi,$ahi | ||
207 | ldda [%o4+6]%asi,$bc | ||
208 | fxtod $nlo,$nlo | ||
209 | ldda [%o4+4]%asi,$bd | ||
210 | fxtod $nhi,$nhi | ||
211 | |||
212 | ! transfer ap[0]*b[0]*n0 to FPU as 4x16-bit values | ||
213 | ldda [%sp+$bias+$frame+6]%asi,$na | ||
214 | fxtod $ba,$ba | ||
215 | ldda [%sp+$bias+$frame+4]%asi,$nb | ||
216 | fxtod $bb,$bb | ||
217 | ldda [%sp+$bias+$frame+2]%asi,$nc | ||
218 | fxtod $bc,$bc | ||
219 | ldda [%sp+$bias+$frame+0]%asi,$nd | ||
220 | fxtod $bd,$bd | ||
221 | |||
222 | std $alo,[$ap_l+$j] ! save smashed ap[j] in double format | ||
223 | fxtod $na,$na | ||
224 | std $ahi,[$ap_h+$j] | ||
225 | fxtod $nb,$nb | ||
226 | std $nlo,[$np_l+$j] ! save smashed np[j] in double format | ||
227 | fxtod $nc,$nc | ||
228 | std $nhi,[$np_h+$j] | ||
229 | fxtod $nd,$nd | ||
230 | |||
231 | fmuld $alo,$ba,$aloa | ||
232 | fmuld $nlo,$na,$nloa | ||
233 | fmuld $alo,$bb,$alob | ||
234 | fmuld $nlo,$nb,$nlob | ||
235 | fmuld $alo,$bc,$aloc | ||
236 | faddd $aloa,$nloa,$nloa | ||
237 | fmuld $nlo,$nc,$nloc | ||
238 | fmuld $alo,$bd,$alod | ||
239 | faddd $alob,$nlob,$nlob | ||
240 | fmuld $nlo,$nd,$nlod | ||
241 | fmuld $ahi,$ba,$ahia | ||
242 | faddd $aloc,$nloc,$nloc | ||
243 | fmuld $nhi,$na,$nhia | ||
244 | fmuld $ahi,$bb,$ahib | ||
245 | faddd $alod,$nlod,$nlod | ||
246 | fmuld $nhi,$nb,$nhib | ||
247 | fmuld $ahi,$bc,$ahic | ||
248 | faddd $ahia,$nhia,$nhia | ||
249 | fmuld $nhi,$nc,$nhic | ||
250 | fmuld $ahi,$bd,$ahid | ||
251 | faddd $ahib,$nhib,$nhib | ||
252 | fmuld $nhi,$nd,$nhid | ||
253 | |||
254 | faddd $ahic,$nhic,$dota ! $nhic | ||
255 | faddd $ahid,$nhid,$dotb ! $nhid | ||
256 | |||
257 | faddd $nloc,$nhia,$nloc | ||
258 | faddd $nlod,$nhib,$nlod | ||
259 | |||
260 | fdtox $nloa,$nloa | ||
261 | fdtox $nlob,$nlob | ||
262 | fdtox $nloc,$nloc | ||
263 | fdtox $nlod,$nlod | ||
264 | |||
265 | std $nloa,[%sp+$bias+$frame+0] | ||
266 | add $j,8,$j | ||
267 | std $nlob,[%sp+$bias+$frame+8] | ||
268 | add $ap,$j,%o4 | ||
269 | std $nloc,[%sp+$bias+$frame+16] | ||
270 | add $np,$j,%o5 | ||
271 | std $nlod,[%sp+$bias+$frame+24] | ||
272 | |||
273 | ld [%o4+0],$alo_ ! load a[j] as pair of 32-bit words | ||
274 | fzeros $alo | ||
275 | ld [%o4+4],$ahi_ | ||
276 | fzeros $ahi | ||
277 | ld [%o5+0],$nlo_ ! load n[j] as pair of 32-bit words | ||
278 | fzeros $nlo | ||
279 | ld [%o5+4],$nhi_ | ||
280 | fzeros $nhi | ||
281 | |||
282 | fxtod $alo,$alo | ||
283 | fxtod $ahi,$ahi | ||
284 | fxtod $nlo,$nlo | ||
285 | fxtod $nhi,$nhi | ||
286 | |||
287 | ldx [%sp+$bias+$frame+0],%o0 | ||
288 | fmuld $alo,$ba,$aloa | ||
289 | ldx [%sp+$bias+$frame+8],%o1 | ||
290 | fmuld $nlo,$na,$nloa | ||
291 | ldx [%sp+$bias+$frame+16],%o2 | ||
292 | fmuld $alo,$bb,$alob | ||
293 | ldx [%sp+$bias+$frame+24],%o3 | ||
294 | fmuld $nlo,$nb,$nlob | ||
295 | |||
296 | srlx %o0,16,%o7 | ||
297 | std $alo,[$ap_l+$j] ! save smashed ap[j] in double format | ||
298 | fmuld $alo,$bc,$aloc | ||
299 | add %o7,%o1,%o1 | ||
300 | std $ahi,[$ap_h+$j] | ||
301 | faddd $aloa,$nloa,$nloa | ||
302 | fmuld $nlo,$nc,$nloc | ||
303 | srlx %o1,16,%o7 | ||
304 | std $nlo,[$np_l+$j] ! save smashed np[j] in double format | ||
305 | fmuld $alo,$bd,$alod | ||
306 | add %o7,%o2,%o2 | ||
307 | std $nhi,[$np_h+$j] | ||
308 | faddd $alob,$nlob,$nlob | ||
309 | fmuld $nlo,$nd,$nlod | ||
310 | srlx %o2,16,%o7 | ||
311 | fmuld $ahi,$ba,$ahia | ||
312 | add %o7,%o3,%o3 ! %o3.%o2[0..15].%o1[0..15].%o0[0..15] | ||
313 | faddd $aloc,$nloc,$nloc | ||
314 | fmuld $nhi,$na,$nhia | ||
315 | !and %o0,$mask,%o0 | ||
316 | !and %o1,$mask,%o1 | ||
317 | !and %o2,$mask,%o2 | ||
318 | !sllx %o1,16,%o1 | ||
319 | !sllx %o2,32,%o2 | ||
320 | !sllx %o3,48,%o7 | ||
321 | !or %o1,%o0,%o0 | ||
322 | !or %o2,%o0,%o0 | ||
323 | !or %o7,%o0,%o0 ! 64-bit result | ||
324 | srlx %o3,16,%g1 ! 34-bit carry | ||
325 | fmuld $ahi,$bb,$ahib | ||
326 | |||
327 | faddd $alod,$nlod,$nlod | ||
328 | fmuld $nhi,$nb,$nhib | ||
329 | fmuld $ahi,$bc,$ahic | ||
330 | faddd $ahia,$nhia,$nhia | ||
331 | fmuld $nhi,$nc,$nhic | ||
332 | fmuld $ahi,$bd,$ahid | ||
333 | faddd $ahib,$nhib,$nhib | ||
334 | fmuld $nhi,$nd,$nhid | ||
335 | |||
336 | faddd $dota,$nloa,$nloa | ||
337 | faddd $dotb,$nlob,$nlob | ||
338 | faddd $ahic,$nhic,$dota ! $nhic | ||
339 | faddd $ahid,$nhid,$dotb ! $nhid | ||
340 | |||
341 | faddd $nloc,$nhia,$nloc | ||
342 | faddd $nlod,$nhib,$nlod | ||
343 | |||
344 | fdtox $nloa,$nloa | ||
345 | fdtox $nlob,$nlob | ||
346 | fdtox $nloc,$nloc | ||
347 | fdtox $nlod,$nlod | ||
348 | |||
349 | std $nloa,[%sp+$bias+$frame+0] | ||
350 | std $nlob,[%sp+$bias+$frame+8] | ||
351 | addcc $j,8,$j | ||
352 | std $nloc,[%sp+$bias+$frame+16] | ||
353 | bz,pn %icc,.L1stskip | ||
354 | std $nlod,[%sp+$bias+$frame+24] | ||
355 | |||
356 | .align 32 ! incidentally already aligned ! | ||
357 | .L1st: | ||
358 | add $ap,$j,%o4 | ||
359 | add $np,$j,%o5 | ||
360 | ld [%o4+0],$alo_ ! load a[j] as pair of 32-bit words | ||
361 | fzeros $alo | ||
362 | ld [%o4+4],$ahi_ | ||
363 | fzeros $ahi | ||
364 | ld [%o5+0],$nlo_ ! load n[j] as pair of 32-bit words | ||
365 | fzeros $nlo | ||
366 | ld [%o5+4],$nhi_ | ||
367 | fzeros $nhi | ||
368 | |||
369 | fxtod $alo,$alo | ||
370 | fxtod $ahi,$ahi | ||
371 | fxtod $nlo,$nlo | ||
372 | fxtod $nhi,$nhi | ||
373 | |||
374 | ldx [%sp+$bias+$frame+0],%o0 | ||
375 | fmuld $alo,$ba,$aloa | ||
376 | ldx [%sp+$bias+$frame+8],%o1 | ||
377 | fmuld $nlo,$na,$nloa | ||
378 | ldx [%sp+$bias+$frame+16],%o2 | ||
379 | fmuld $alo,$bb,$alob | ||
380 | ldx [%sp+$bias+$frame+24],%o3 | ||
381 | fmuld $nlo,$nb,$nlob | ||
382 | |||
383 | srlx %o0,16,%o7 | ||
384 | std $alo,[$ap_l+$j] ! save smashed ap[j] in double format | ||
385 | fmuld $alo,$bc,$aloc | ||
386 | add %o7,%o1,%o1 | ||
387 | std $ahi,[$ap_h+$j] | ||
388 | faddd $aloa,$nloa,$nloa | ||
389 | fmuld $nlo,$nc,$nloc | ||
390 | srlx %o1,16,%o7 | ||
391 | std $nlo,[$np_l+$j] ! save smashed np[j] in double format | ||
392 | fmuld $alo,$bd,$alod | ||
393 | add %o7,%o2,%o2 | ||
394 | std $nhi,[$np_h+$j] | ||
395 | faddd $alob,$nlob,$nlob | ||
396 | fmuld $nlo,$nd,$nlod | ||
397 | srlx %o2,16,%o7 | ||
398 | fmuld $ahi,$ba,$ahia | ||
399 | add %o7,%o3,%o3 ! %o3.%o2[0..15].%o1[0..15].%o0[0..15] | ||
400 | and %o0,$mask,%o0 | ||
401 | faddd $aloc,$nloc,$nloc | ||
402 | fmuld $nhi,$na,$nhia | ||
403 | and %o1,$mask,%o1 | ||
404 | and %o2,$mask,%o2 | ||
405 | fmuld $ahi,$bb,$ahib | ||
406 | sllx %o1,16,%o1 | ||
407 | faddd $alod,$nlod,$nlod | ||
408 | fmuld $nhi,$nb,$nhib | ||
409 | sllx %o2,32,%o2 | ||
410 | fmuld $ahi,$bc,$ahic | ||
411 | sllx %o3,48,%o7 | ||
412 | or %o1,%o0,%o0 | ||
413 | faddd $ahia,$nhia,$nhia | ||
414 | fmuld $nhi,$nc,$nhic | ||
415 | or %o2,%o0,%o0 | ||
416 | fmuld $ahi,$bd,$ahid | ||
417 | or %o7,%o0,%o0 ! 64-bit result | ||
418 | faddd $ahib,$nhib,$nhib | ||
419 | fmuld $nhi,$nd,$nhid | ||
420 | addcc %g1,%o0,%o0 | ||
421 | faddd $dota,$nloa,$nloa | ||
422 | srlx %o3,16,%g1 ! 34-bit carry | ||
423 | faddd $dotb,$nlob,$nlob | ||
424 | bcs,a %xcc,.+8 | ||
425 | add %g1,1,%g1 | ||
426 | |||
427 | stx %o0,[$tp] ! tp[j-1]= | ||
428 | |||
429 | faddd $ahic,$nhic,$dota ! $nhic | ||
430 | faddd $ahid,$nhid,$dotb ! $nhid | ||
431 | |||
432 | faddd $nloc,$nhia,$nloc | ||
433 | faddd $nlod,$nhib,$nlod | ||
434 | |||
435 | fdtox $nloa,$nloa | ||
436 | fdtox $nlob,$nlob | ||
437 | fdtox $nloc,$nloc | ||
438 | fdtox $nlod,$nlod | ||
439 | |||
440 | std $nloa,[%sp+$bias+$frame+0] | ||
441 | std $nlob,[%sp+$bias+$frame+8] | ||
442 | std $nloc,[%sp+$bias+$frame+16] | ||
443 | std $nlod,[%sp+$bias+$frame+24] | ||
444 | |||
445 | addcc $j,8,$j | ||
446 | bnz,pt %icc,.L1st | ||
447 | add $tp,8,$tp | ||
448 | |||
449 | .L1stskip: | ||
450 | fdtox $dota,$dota | ||
451 | fdtox $dotb,$dotb | ||
452 | |||
453 | ldx [%sp+$bias+$frame+0],%o0 | ||
454 | ldx [%sp+$bias+$frame+8],%o1 | ||
455 | ldx [%sp+$bias+$frame+16],%o2 | ||
456 | ldx [%sp+$bias+$frame+24],%o3 | ||
457 | |||
458 | srlx %o0,16,%o7 | ||
459 | std $dota,[%sp+$bias+$frame+32] | ||
460 | add %o7,%o1,%o1 | ||
461 | std $dotb,[%sp+$bias+$frame+40] | ||
462 | srlx %o1,16,%o7 | ||
463 | add %o7,%o2,%o2 | ||
464 | srlx %o2,16,%o7 | ||
465 | add %o7,%o3,%o3 ! %o3.%o2[0..15].%o1[0..15].%o0[0..15] | ||
466 | and %o0,$mask,%o0 | ||
467 | and %o1,$mask,%o1 | ||
468 | and %o2,$mask,%o2 | ||
469 | sllx %o1,16,%o1 | ||
470 | sllx %o2,32,%o2 | ||
471 | sllx %o3,48,%o7 | ||
472 | or %o1,%o0,%o0 | ||
473 | or %o2,%o0,%o0 | ||
474 | or %o7,%o0,%o0 ! 64-bit result | ||
475 | ldx [%sp+$bias+$frame+32],%o4 | ||
476 | addcc %g1,%o0,%o0 | ||
477 | ldx [%sp+$bias+$frame+40],%o5 | ||
478 | srlx %o3,16,%g1 ! 34-bit carry | ||
479 | bcs,a %xcc,.+8 | ||
480 | add %g1,1,%g1 | ||
481 | |||
482 | stx %o0,[$tp] ! tp[j-1]= | ||
483 | add $tp,8,$tp | ||
484 | |||
485 | srlx %o4,16,%o7 | ||
486 | add %o7,%o5,%o5 | ||
487 | and %o4,$mask,%o4 | ||
488 | sllx %o5,16,%o7 | ||
489 | or %o7,%o4,%o4 | ||
490 | addcc %g1,%o4,%o4 | ||
491 | srlx %o5,48,%g1 | ||
492 | bcs,a %xcc,.+8 | ||
493 | add %g1,1,%g1 | ||
494 | |||
495 | mov %g1,$carry | ||
496 | stx %o4,[$tp] ! tp[num-1]= | ||
497 | |||
498 | ba .Louter | ||
499 | add $i,8,$i | ||
500 | .align 32 | ||
501 | .Louter: | ||
502 | sub %g0,$num,$j ! j=-num | ||
503 | add %sp,$bias+$frame+$locals,$tp | ||
504 | |||
505 | add $ap,$j,%o3 | ||
506 | add $bp,$i,%o4 | ||
507 | |||
508 | ld [%o3+4],%g1 ! bp[i] | ||
509 | ld [%o3+0],%o0 | ||
510 | ld [%o4+4],%g5 ! ap[0] | ||
511 | sllx %g1,32,%g1 | ||
512 | ld [%o4+0],%o1 | ||
513 | sllx %g5,32,%g5 | ||
514 | or %g1,%o0,%o0 | ||
515 | or %g5,%o1,%o1 | ||
516 | |||
517 | ldx [$tp],%o2 ! tp[0] | ||
518 | mulx %o1,%o0,%o0 | ||
519 | addcc %o2,%o0,%o0 | ||
520 | mulx $n0,%o0,%o0 ! (ap[0]*bp[i]+t[0])*n0 | ||
521 | stx %o0,[%sp+$bias+$frame+0] | ||
522 | |||
523 | ! transfer b[i] to FPU as 4x16-bit values | ||
524 | ldda [%o4+2]%asi,$ba | ||
525 | ldda [%o4+0]%asi,$bb | ||
526 | ldda [%o4+6]%asi,$bc | ||
527 | ldda [%o4+4]%asi,$bd | ||
528 | |||
529 | ! transfer (ap[0]*b[i]+t[0])*n0 to FPU as 4x16-bit values | ||
530 | ldda [%sp+$bias+$frame+6]%asi,$na | ||
531 | fxtod $ba,$ba | ||
532 | ldda [%sp+$bias+$frame+4]%asi,$nb | ||
533 | fxtod $bb,$bb | ||
534 | ldda [%sp+$bias+$frame+2]%asi,$nc | ||
535 | fxtod $bc,$bc | ||
536 | ldda [%sp+$bias+$frame+0]%asi,$nd | ||
537 | fxtod $bd,$bd | ||
538 | ldd [$ap_l+$j],$alo ! load a[j] in double format | ||
539 | fxtod $na,$na | ||
540 | ldd [$ap_h+$j],$ahi | ||
541 | fxtod $nb,$nb | ||
542 | ldd [$np_l+$j],$nlo ! load n[j] in double format | ||
543 | fxtod $nc,$nc | ||
544 | ldd [$np_h+$j],$nhi | ||
545 | fxtod $nd,$nd | ||
546 | |||
547 | fmuld $alo,$ba,$aloa | ||
548 | fmuld $nlo,$na,$nloa | ||
549 | fmuld $alo,$bb,$alob | ||
550 | fmuld $nlo,$nb,$nlob | ||
551 | fmuld $alo,$bc,$aloc | ||
552 | faddd $aloa,$nloa,$nloa | ||
553 | fmuld $nlo,$nc,$nloc | ||
554 | fmuld $alo,$bd,$alod | ||
555 | faddd $alob,$nlob,$nlob | ||
556 | fmuld $nlo,$nd,$nlod | ||
557 | fmuld $ahi,$ba,$ahia | ||
558 | faddd $aloc,$nloc,$nloc | ||
559 | fmuld $nhi,$na,$nhia | ||
560 | fmuld $ahi,$bb,$ahib | ||
561 | faddd $alod,$nlod,$nlod | ||
562 | fmuld $nhi,$nb,$nhib | ||
563 | fmuld $ahi,$bc,$ahic | ||
564 | faddd $ahia,$nhia,$nhia | ||
565 | fmuld $nhi,$nc,$nhic | ||
566 | fmuld $ahi,$bd,$ahid | ||
567 | faddd $ahib,$nhib,$nhib | ||
568 | fmuld $nhi,$nd,$nhid | ||
569 | |||
570 | faddd $ahic,$nhic,$dota ! $nhic | ||
571 | faddd $ahid,$nhid,$dotb ! $nhid | ||
572 | |||
573 | faddd $nloc,$nhia,$nloc | ||
574 | faddd $nlod,$nhib,$nlod | ||
575 | |||
576 | fdtox $nloa,$nloa | ||
577 | fdtox $nlob,$nlob | ||
578 | fdtox $nloc,$nloc | ||
579 | fdtox $nlod,$nlod | ||
580 | |||
581 | std $nloa,[%sp+$bias+$frame+0] | ||
582 | std $nlob,[%sp+$bias+$frame+8] | ||
583 | std $nloc,[%sp+$bias+$frame+16] | ||
584 | add $j,8,$j | ||
585 | std $nlod,[%sp+$bias+$frame+24] | ||
586 | |||
587 | ldd [$ap_l+$j],$alo ! load a[j] in double format | ||
588 | ldd [$ap_h+$j],$ahi | ||
589 | ldd [$np_l+$j],$nlo ! load n[j] in double format | ||
590 | ldd [$np_h+$j],$nhi | ||
591 | |||
592 | fmuld $alo,$ba,$aloa | ||
593 | fmuld $nlo,$na,$nloa | ||
594 | fmuld $alo,$bb,$alob | ||
595 | fmuld $nlo,$nb,$nlob | ||
596 | fmuld $alo,$bc,$aloc | ||
597 | ldx [%sp+$bias+$frame+0],%o0 | ||
598 | faddd $aloa,$nloa,$nloa | ||
599 | fmuld $nlo,$nc,$nloc | ||
600 | ldx [%sp+$bias+$frame+8],%o1 | ||
601 | fmuld $alo,$bd,$alod | ||
602 | ldx [%sp+$bias+$frame+16],%o2 | ||
603 | faddd $alob,$nlob,$nlob | ||
604 | fmuld $nlo,$nd,$nlod | ||
605 | ldx [%sp+$bias+$frame+24],%o3 | ||
606 | fmuld $ahi,$ba,$ahia | ||
607 | |||
608 | srlx %o0,16,%o7 | ||
609 | faddd $aloc,$nloc,$nloc | ||
610 | fmuld $nhi,$na,$nhia | ||
611 | add %o7,%o1,%o1 | ||
612 | fmuld $ahi,$bb,$ahib | ||
613 | srlx %o1,16,%o7 | ||
614 | faddd $alod,$nlod,$nlod | ||
615 | fmuld $nhi,$nb,$nhib | ||
616 | add %o7,%o2,%o2 | ||
617 | fmuld $ahi,$bc,$ahic | ||
618 | srlx %o2,16,%o7 | ||
619 | faddd $ahia,$nhia,$nhia | ||
620 | fmuld $nhi,$nc,$nhic | ||
621 | add %o7,%o3,%o3 ! %o3.%o2[0..15].%o1[0..15].%o0[0..15] | ||
622 | ! why? | ||
623 | and %o0,$mask,%o0 | ||
624 | fmuld $ahi,$bd,$ahid | ||
625 | and %o1,$mask,%o1 | ||
626 | and %o2,$mask,%o2 | ||
627 | faddd $ahib,$nhib,$nhib | ||
628 | fmuld $nhi,$nd,$nhid | ||
629 | sllx %o1,16,%o1 | ||
630 | faddd $dota,$nloa,$nloa | ||
631 | sllx %o2,32,%o2 | ||
632 | faddd $dotb,$nlob,$nlob | ||
633 | sllx %o3,48,%o7 | ||
634 | or %o1,%o0,%o0 | ||
635 | faddd $ahic,$nhic,$dota ! $nhic | ||
636 | or %o2,%o0,%o0 | ||
637 | faddd $ahid,$nhid,$dotb ! $nhid | ||
638 | or %o7,%o0,%o0 ! 64-bit result | ||
639 | ldx [$tp],%o7 | ||
640 | faddd $nloc,$nhia,$nloc | ||
641 | addcc %o7,%o0,%o0 | ||
642 | ! end-of-why? | ||
643 | faddd $nlod,$nhib,$nlod | ||
644 | srlx %o3,16,%g1 ! 34-bit carry | ||
645 | fdtox $nloa,$nloa | ||
646 | bcs,a %xcc,.+8 | ||
647 | add %g1,1,%g1 | ||
648 | |||
649 | fdtox $nlob,$nlob | ||
650 | fdtox $nloc,$nloc | ||
651 | fdtox $nlod,$nlod | ||
652 | |||
653 | std $nloa,[%sp+$bias+$frame+0] | ||
654 | std $nlob,[%sp+$bias+$frame+8] | ||
655 | addcc $j,8,$j | ||
656 | std $nloc,[%sp+$bias+$frame+16] | ||
657 | bz,pn %icc,.Linnerskip | ||
658 | std $nlod,[%sp+$bias+$frame+24] | ||
659 | |||
660 | ba .Linner | ||
661 | nop | ||
662 | .align 32 | ||
663 | .Linner: | ||
664 | ldd [$ap_l+$j],$alo ! load a[j] in double format | ||
665 | ldd [$ap_h+$j],$ahi | ||
666 | ldd [$np_l+$j],$nlo ! load n[j] in double format | ||
667 | ldd [$np_h+$j],$nhi | ||
668 | |||
669 | fmuld $alo,$ba,$aloa | ||
670 | fmuld $nlo,$na,$nloa | ||
671 | fmuld $alo,$bb,$alob | ||
672 | fmuld $nlo,$nb,$nlob | ||
673 | fmuld $alo,$bc,$aloc | ||
674 | ldx [%sp+$bias+$frame+0],%o0 | ||
675 | faddd $aloa,$nloa,$nloa | ||
676 | fmuld $nlo,$nc,$nloc | ||
677 | ldx [%sp+$bias+$frame+8],%o1 | ||
678 | fmuld $alo,$bd,$alod | ||
679 | ldx [%sp+$bias+$frame+16],%o2 | ||
680 | faddd $alob,$nlob,$nlob | ||
681 | fmuld $nlo,$nd,$nlod | ||
682 | ldx [%sp+$bias+$frame+24],%o3 | ||
683 | fmuld $ahi,$ba,$ahia | ||
684 | |||
685 | srlx %o0,16,%o7 | ||
686 | faddd $aloc,$nloc,$nloc | ||
687 | fmuld $nhi,$na,$nhia | ||
688 | add %o7,%o1,%o1 | ||
689 | fmuld $ahi,$bb,$ahib | ||
690 | srlx %o1,16,%o7 | ||
691 | faddd $alod,$nlod,$nlod | ||
692 | fmuld $nhi,$nb,$nhib | ||
693 | add %o7,%o2,%o2 | ||
694 | fmuld $ahi,$bc,$ahic | ||
695 | srlx %o2,16,%o7 | ||
696 | faddd $ahia,$nhia,$nhia | ||
697 | fmuld $nhi,$nc,$nhic | ||
698 | add %o7,%o3,%o3 ! %o3.%o2[0..15].%o1[0..15].%o0[0..15] | ||
699 | and %o0,$mask,%o0 | ||
700 | fmuld $ahi,$bd,$ahid | ||
701 | and %o1,$mask,%o1 | ||
702 | and %o2,$mask,%o2 | ||
703 | faddd $ahib,$nhib,$nhib | ||
704 | fmuld $nhi,$nd,$nhid | ||
705 | sllx %o1,16,%o1 | ||
706 | faddd $dota,$nloa,$nloa | ||
707 | sllx %o2,32,%o2 | ||
708 | faddd $dotb,$nlob,$nlob | ||
709 | sllx %o3,48,%o7 | ||
710 | or %o1,%o0,%o0 | ||
711 | faddd $ahic,$nhic,$dota ! $nhic | ||
712 | or %o2,%o0,%o0 | ||
713 | faddd $ahid,$nhid,$dotb ! $nhid | ||
714 | or %o7,%o0,%o0 ! 64-bit result | ||
715 | faddd $nloc,$nhia,$nloc | ||
716 | addcc %g1,%o0,%o0 | ||
717 | ldx [$tp+8],%o7 ! tp[j] | ||
718 | faddd $nlod,$nhib,$nlod | ||
719 | srlx %o3,16,%g1 ! 34-bit carry | ||
720 | fdtox $nloa,$nloa | ||
721 | bcs,a %xcc,.+8 | ||
722 | add %g1,1,%g1 | ||
723 | fdtox $nlob,$nlob | ||
724 | addcc %o7,%o0,%o0 | ||
725 | fdtox $nloc,$nloc | ||
726 | bcs,a %xcc,.+8 | ||
727 | add %g1,1,%g1 | ||
728 | |||
729 | stx %o0,[$tp] ! tp[j-1] | ||
730 | fdtox $nlod,$nlod | ||
731 | |||
732 | std $nloa,[%sp+$bias+$frame+0] | ||
733 | std $nlob,[%sp+$bias+$frame+8] | ||
734 | std $nloc,[%sp+$bias+$frame+16] | ||
735 | addcc $j,8,$j | ||
736 | std $nlod,[%sp+$bias+$frame+24] | ||
737 | bnz,pt %icc,.Linner | ||
738 | add $tp,8,$tp | ||
739 | |||
740 | .Linnerskip: | ||
741 | fdtox $dota,$dota | ||
742 | fdtox $dotb,$dotb | ||
743 | |||
744 | ldx [%sp+$bias+$frame+0],%o0 | ||
745 | ldx [%sp+$bias+$frame+8],%o1 | ||
746 | ldx [%sp+$bias+$frame+16],%o2 | ||
747 | ldx [%sp+$bias+$frame+24],%o3 | ||
748 | |||
749 | srlx %o0,16,%o7 | ||
750 | std $dota,[%sp+$bias+$frame+32] | ||
751 | add %o7,%o1,%o1 | ||
752 | std $dotb,[%sp+$bias+$frame+40] | ||
753 | srlx %o1,16,%o7 | ||
754 | add %o7,%o2,%o2 | ||
755 | srlx %o2,16,%o7 | ||
756 | add %o7,%o3,%o3 ! %o3.%o2[0..15].%o1[0..15].%o0[0..15] | ||
757 | and %o0,$mask,%o0 | ||
758 | and %o1,$mask,%o1 | ||
759 | and %o2,$mask,%o2 | ||
760 | sllx %o1,16,%o1 | ||
761 | sllx %o2,32,%o2 | ||
762 | sllx %o3,48,%o7 | ||
763 | or %o1,%o0,%o0 | ||
764 | or %o2,%o0,%o0 | ||
765 | ldx [%sp+$bias+$frame+32],%o4 | ||
766 | or %o7,%o0,%o0 ! 64-bit result | ||
767 | ldx [%sp+$bias+$frame+40],%o5 | ||
768 | addcc %g1,%o0,%o0 | ||
769 | ldx [$tp+8],%o7 ! tp[j] | ||
770 | srlx %o3,16,%g1 ! 34-bit carry | ||
771 | bcs,a %xcc,.+8 | ||
772 | add %g1,1,%g1 | ||
773 | |||
774 | addcc %o7,%o0,%o0 | ||
775 | bcs,a %xcc,.+8 | ||
776 | add %g1,1,%g1 | ||
777 | |||
778 | stx %o0,[$tp] ! tp[j-1] | ||
779 | add $tp,8,$tp | ||
780 | |||
781 | srlx %o4,16,%o7 | ||
782 | add %o7,%o5,%o5 | ||
783 | and %o4,$mask,%o4 | ||
784 | sllx %o5,16,%o7 | ||
785 | or %o7,%o4,%o4 | ||
786 | addcc %g1,%o4,%o4 | ||
787 | srlx %o5,48,%g1 | ||
788 | bcs,a %xcc,.+8 | ||
789 | add %g1,1,%g1 | ||
790 | |||
791 | addcc $carry,%o4,%o4 | ||
792 | stx %o4,[$tp] ! tp[num-1] | ||
793 | mov %g1,$carry | ||
794 | bcs,a %xcc,.+8 | ||
795 | add $carry,1,$carry | ||
796 | |||
797 | addcc $i,8,$i | ||
798 | bnz %icc,.Louter | ||
799 | nop | ||
800 | |||
801 | add $tp,8,$tp ! adjust tp to point at the end | ||
802 | orn %g0,%g0,%g4 | ||
803 | sub %g0,$num,%o7 ! n=-num | ||
804 | ba .Lsub | ||
805 | subcc %g0,%g0,%g0 ! clear %icc.c | ||
806 | |||
807 | .align 32 | ||
808 | .Lsub: | ||
809 | ldx [$tp+%o7],%o0 | ||
810 | add $np,%o7,%g1 | ||
811 | ld [%g1+0],%o2 | ||
812 | ld [%g1+4],%o3 | ||
813 | srlx %o0,32,%o1 | ||
814 | subccc %o0,%o2,%o2 | ||
815 | add $rp,%o7,%g1 | ||
816 | subccc %o1,%o3,%o3 | ||
817 | st %o2,[%g1+0] | ||
818 | add %o7,8,%o7 | ||
819 | brnz,pt %o7,.Lsub | ||
820 | st %o3,[%g1+4] | ||
821 | subc $carry,0,%g4 | ||
822 | sub %g0,$num,%o7 ! n=-num | ||
823 | ba .Lcopy | ||
824 | nop | ||
825 | |||
826 | .align 32 | ||
827 | .Lcopy: | ||
828 | ldx [$tp+%o7],%o0 | ||
829 | add $rp,%o7,%g1 | ||
830 | ld [%g1+0],%o2 | ||
831 | ld [%g1+4],%o3 | ||
832 | stx %g0,[$tp+%o7] | ||
833 | and %o0,%g4,%o0 | ||
834 | srlx %o0,32,%o1 | ||
835 | andn %o2,%g4,%o2 | ||
836 | andn %o3,%g4,%o3 | ||
837 | or %o2,%o0,%o0 | ||
838 | or %o3,%o1,%o1 | ||
839 | st %o0,[%g1+0] | ||
840 | add %o7,8,%o7 | ||
841 | brnz,pt %o7,.Lcopy | ||
842 | st %o1,[%g1+4] | ||
843 | sub %g0,$num,%o7 ! n=-num | ||
844 | |||
845 | .Lzap: | ||
846 | stx %g0,[$ap_l+%o7] | ||
847 | stx %g0,[$ap_h+%o7] | ||
848 | stx %g0,[$np_l+%o7] | ||
849 | stx %g0,[$np_h+%o7] | ||
850 | add %o7,8,%o7 | ||
851 | brnz,pt %o7,.Lzap | ||
852 | nop | ||
853 | |||
854 | ldx [%sp+$bias+$frame+48],%o7 | ||
855 | wr %g0,%o7,%asi ! restore %asi | ||
856 | |||
857 | mov 1,%i0 | ||
858 | .Lret: | ||
859 | ret | ||
860 | restore | ||
861 | .type $fname,#function | ||
862 | .size $fname,(.-$fname) | ||
863 | .asciz "Montgomery Multipltication for UltraSPARC, CRYPTOGAMS by <appro\@openssl.org>" | ||
864 | .align 32 | ||
865 | ___ | ||
866 | |||
867 | $code =~ s/\`([^\`]*)\`/eval($1)/gem; | ||
868 | |||
869 | # Below substitution makes it possible to compile without demanding | ||
870 | # VIS extentions on command line, e.g. -xarch=v9 vs. -xarch=v9a. I | ||
871 | # dare to do this, because VIS capability is detected at run-time now | ||
872 | # and this routine is not called on CPU not capable to execute it. Do | ||
873 | # note that fzeros is not the only VIS dependency! Another dependency | ||
874 | # is implicit and is just _a_ numerical value loaded to %asi register, | ||
875 | # which assembler can't recognize as VIS specific... | ||
876 | $code =~ s/fzeros\s+%f([0-9]+)/ | ||
877 | sprintf(".word\t0x%x\t! fzeros %%f%d",0x81b00c20|($1<<25),$1) | ||
878 | /gem; | ||
879 | |||
880 | print $code; | ||
881 | # flush | ||
882 | close STDOUT; | ||
diff --git a/src/lib/libcrypto/bn/asm/via-mont.pl b/src/lib/libcrypto/bn/asm/via-mont.pl deleted file mode 100644 index c046a514c8..0000000000 --- a/src/lib/libcrypto/bn/asm/via-mont.pl +++ /dev/null | |||
@@ -1,242 +0,0 @@ | |||
1 | #!/usr/bin/env perl | ||
2 | # | ||
3 | # ==================================================================== | ||
4 | # Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL | ||
5 | # project. The module is, however, dual licensed under OpenSSL and | ||
6 | # CRYPTOGAMS licenses depending on where you obtain it. For further | ||
7 | # details see http://www.openssl.org/~appro/cryptogams/. | ||
8 | # ==================================================================== | ||
9 | # | ||
10 | # Wrapper around 'rep montmul', VIA-specific instruction accessing | ||
11 | # PadLock Montgomery Multiplier. The wrapper is designed as drop-in | ||
12 | # replacement for OpenSSL bn_mul_mont [first implemented in 0.9.9]. | ||
13 | # | ||
14 | # Below are interleaved outputs from 'openssl speed rsa dsa' for 4 | ||
15 | # different software configurations on 1.5GHz VIA Esther processor. | ||
16 | # Lines marked with "software integer" denote performance of hand- | ||
17 | # coded integer-only assembler found in OpenSSL 0.9.7. "Software SSE2" | ||
18 | # refers to hand-coded SSE2 Montgomery multiplication procedure found | ||
19 | # OpenSSL 0.9.9. "Hardware VIA SDK" refers to padlock_pmm routine from | ||
20 | # Padlock SDK 2.0.1 available for download from VIA, which naturally | ||
21 | # utilizes the magic 'repz montmul' instruction. And finally "hardware | ||
22 | # this" refers to *this* implementation which also uses 'repz montmul' | ||
23 | # | ||
24 | # sign verify sign/s verify/s | ||
25 | # rsa 512 bits 0.001720s 0.000140s 581.4 7149.7 software integer | ||
26 | # rsa 512 bits 0.000690s 0.000086s 1450.3 11606.0 software SSE2 | ||
27 | # rsa 512 bits 0.006136s 0.000201s 163.0 4974.5 hardware VIA SDK | ||
28 | # rsa 512 bits 0.000712s 0.000050s 1404.9 19858.5 hardware this | ||
29 | # | ||
30 | # rsa 1024 bits 0.008518s 0.000413s 117.4 2420.8 software integer | ||
31 | # rsa 1024 bits 0.004275s 0.000277s 233.9 3609.7 software SSE2 | ||
32 | # rsa 1024 bits 0.012136s 0.000260s 82.4 3844.5 hardware VIA SDK | ||
33 | # rsa 1024 bits 0.002522s 0.000116s 396.5 8650.9 hardware this | ||
34 | # | ||
35 | # rsa 2048 bits 0.050101s 0.001371s 20.0 729.6 software integer | ||
36 | # rsa 2048 bits 0.030273s 0.001008s 33.0 991.9 software SSE2 | ||
37 | # rsa 2048 bits 0.030833s 0.000976s 32.4 1025.1 hardware VIA SDK | ||
38 | # rsa 2048 bits 0.011879s 0.000342s 84.2 2921.7 hardware this | ||
39 | # | ||
40 | # rsa 4096 bits 0.327097s 0.004859s 3.1 205.8 software integer | ||
41 | # rsa 4096 bits 0.229318s 0.003859s 4.4 259.2 software SSE2 | ||
42 | # rsa 4096 bits 0.233953s 0.003274s 4.3 305.4 hardware VIA SDK | ||
43 | # rsa 4096 bits 0.070493s 0.001166s 14.2 857.6 hardware this | ||
44 | # | ||
45 | # dsa 512 bits 0.001342s 0.001651s 745.2 605.7 software integer | ||
46 | # dsa 512 bits 0.000844s 0.000987s 1185.3 1013.1 software SSE2 | ||
47 | # dsa 512 bits 0.001902s 0.002247s 525.6 444.9 hardware VIA SDK | ||
48 | # dsa 512 bits 0.000458s 0.000524s 2182.2 1909.1 hardware this | ||
49 | # | ||
50 | # dsa 1024 bits 0.003964s 0.004926s 252.3 203.0 software integer | ||
51 | # dsa 1024 bits 0.002686s 0.003166s 372.3 315.8 software SSE2 | ||
52 | # dsa 1024 bits 0.002397s 0.002823s 417.1 354.3 hardware VIA SDK | ||
53 | # dsa 1024 bits 0.000978s 0.001170s 1022.2 855.0 hardware this | ||
54 | # | ||
55 | # dsa 2048 bits 0.013280s 0.016518s 75.3 60.5 software integer | ||
56 | # dsa 2048 bits 0.009911s 0.011522s 100.9 86.8 software SSE2 | ||
57 | # dsa 2048 bits 0.009542s 0.011763s 104.8 85.0 hardware VIA SDK | ||
58 | # dsa 2048 bits 0.002884s 0.003352s 346.8 298.3 hardware this | ||
59 | # | ||
60 | # To give you some other reference point here is output for 2.4GHz P4 | ||
61 | # running hand-coded SSE2 bn_mul_mont found in 0.9.9, i.e. "software | ||
62 | # SSE2" in above terms. | ||
63 | # | ||
64 | # rsa 512 bits 0.000407s 0.000047s 2454.2 21137.0 | ||
65 | # rsa 1024 bits 0.002426s 0.000141s 412.1 7100.0 | ||
66 | # rsa 2048 bits 0.015046s 0.000491s 66.5 2034.9 | ||
67 | # rsa 4096 bits 0.109770s 0.002379s 9.1 420.3 | ||
68 | # dsa 512 bits 0.000438s 0.000525s 2281.1 1904.1 | ||
69 | # dsa 1024 bits 0.001346s 0.001595s 742.7 627.0 | ||
70 | # dsa 2048 bits 0.004745s 0.005582s 210.7 179.1 | ||
71 | # | ||
72 | # Conclusions: | ||
73 | # - VIA SDK leaves a *lot* of room for improvement (which this | ||
74 | # implementation successfully fills:-); | ||
75 | # - 'rep montmul' gives up to >3x performance improvement depending on | ||
76 | # key length; | ||
77 | # - in terms of absolute performance it delivers approximately as much | ||
78 | # as modern out-of-order 32-bit cores [again, for longer keys]. | ||
79 | |||
80 | $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; | ||
81 | push(@INC,"${dir}","${dir}../../perlasm"); | ||
82 | require "x86asm.pl"; | ||
83 | |||
84 | &asm_init($ARGV[0],"via-mont.pl"); | ||
85 | |||
86 | # int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, const BN_ULONG *np,const BN_ULONG *n0, int num); | ||
87 | $func="bn_mul_mont_padlock"; | ||
88 | |||
89 | $pad=16*1; # amount of reserved bytes on top of every vector | ||
90 | |||
91 | # stack layout | ||
92 | $mZeroPrime=&DWP(0,"esp"); # these are specified by VIA | ||
93 | $A=&DWP(4,"esp"); | ||
94 | $B=&DWP(8,"esp"); | ||
95 | $T=&DWP(12,"esp"); | ||
96 | $M=&DWP(16,"esp"); | ||
97 | $scratch=&DWP(20,"esp"); | ||
98 | $rp=&DWP(24,"esp"); # these are mine | ||
99 | $sp=&DWP(28,"esp"); | ||
100 | # &DWP(32,"esp") # 32 byte scratch area | ||
101 | # &DWP(64+(4*$num+$pad)*0,"esp") # padded tp[num] | ||
102 | # &DWP(64+(4*$num+$pad)*1,"esp") # padded copy of ap[num] | ||
103 | # &DWP(64+(4*$num+$pad)*2,"esp") # padded copy of bp[num] | ||
104 | # &DWP(64+(4*$num+$pad)*3,"esp") # padded copy of np[num] | ||
105 | # Note that SDK suggests to unconditionally allocate 2K per vector. This | ||
106 | # has quite an impact on performance. It naturally depends on key length, | ||
107 | # but to give an example 1024 bit private RSA key operations suffer >30% | ||
108 | # penalty. I allocate only as much as actually required... | ||
109 | |||
110 | &function_begin($func); | ||
111 | &xor ("eax","eax"); | ||
112 | &mov ("ecx",&wparam(5)); # num | ||
113 | # meet VIA's limitations for num [note that the specification | ||
114 | # expresses them in bits, while we work with amount of 32-bit words] | ||
115 | &test ("ecx",3); | ||
116 | &jnz (&label("leave")); # num % 4 != 0 | ||
117 | &cmp ("ecx",8); | ||
118 | &jb (&label("leave")); # num < 8 | ||
119 | &cmp ("ecx",1024); | ||
120 | &ja (&label("leave")); # num > 1024 | ||
121 | |||
122 | &pushf (); | ||
123 | &cld (); | ||
124 | |||
125 | &mov ("edi",&wparam(0)); # rp | ||
126 | &mov ("eax",&wparam(1)); # ap | ||
127 | &mov ("ebx",&wparam(2)); # bp | ||
128 | &mov ("edx",&wparam(3)); # np | ||
129 | &mov ("esi",&wparam(4)); # n0 | ||
130 | &mov ("esi",&DWP(0,"esi")); # *n0 | ||
131 | |||
132 | &lea ("ecx",&DWP($pad,"","ecx",4)); # ecx becomes vector size in bytes | ||
133 | &lea ("ebp",&DWP(64,"","ecx",4)); # allocate 4 vectors + 64 bytes | ||
134 | &neg ("ebp"); | ||
135 | &add ("ebp","esp"); | ||
136 | &and ("ebp",-64); # align to cache-line | ||
137 | &xchg ("ebp","esp"); # alloca | ||
138 | |||
139 | &mov ($rp,"edi"); # save rp | ||
140 | &mov ($sp,"ebp"); # save esp | ||
141 | |||
142 | &mov ($mZeroPrime,"esi"); | ||
143 | &lea ("esi",&DWP(64,"esp")); # tp | ||
144 | &mov ($T,"esi"); | ||
145 | &lea ("edi",&DWP(32,"esp")); # scratch area | ||
146 | &mov ($scratch,"edi"); | ||
147 | &mov ("esi","eax"); | ||
148 | |||
149 | &lea ("ebp",&DWP(-$pad,"ecx")); | ||
150 | &shr ("ebp",2); # restore original num value in ebp | ||
151 | |||
152 | &xor ("eax","eax"); | ||
153 | |||
154 | &mov ("ecx","ebp"); | ||
155 | &lea ("ecx",&DWP((32+$pad)/4,"ecx"));# padded tp + scratch | ||
156 | &data_byte(0xf3,0xab); # rep stosl, bzero | ||
157 | |||
158 | &mov ("ecx","ebp"); | ||
159 | &lea ("edi",&DWP(64+$pad,"esp","ecx",4));# pointer to ap copy | ||
160 | &mov ($A,"edi"); | ||
161 | &data_byte(0xf3,0xa5); # rep movsl, memcpy | ||
162 | &mov ("ecx",$pad/4); | ||
163 | &data_byte(0xf3,0xab); # rep stosl, bzero pad | ||
164 | # edi points at the end of padded ap copy... | ||
165 | |||
166 | &mov ("ecx","ebp"); | ||
167 | &mov ("esi","ebx"); | ||
168 | &mov ($B,"edi"); | ||
169 | &data_byte(0xf3,0xa5); # rep movsl, memcpy | ||
170 | &mov ("ecx",$pad/4); | ||
171 | &data_byte(0xf3,0xab); # rep stosl, bzero pad | ||
172 | # edi points at the end of padded bp copy... | ||
173 | |||
174 | &mov ("ecx","ebp"); | ||
175 | &mov ("esi","edx"); | ||
176 | &mov ($M,"edi"); | ||
177 | &data_byte(0xf3,0xa5); # rep movsl, memcpy | ||
178 | &mov ("ecx",$pad/4); | ||
179 | &data_byte(0xf3,0xab); # rep stosl, bzero pad | ||
180 | # edi points at the end of padded np copy... | ||
181 | |||
182 | # let magic happen... | ||
183 | &mov ("ecx","ebp"); | ||
184 | &mov ("esi","esp"); | ||
185 | &shl ("ecx",5); # convert word counter to bit counter | ||
186 | &align (4); | ||
187 | &data_byte(0xf3,0x0f,0xa6,0xc0);# rep montmul | ||
188 | |||
189 | &mov ("ecx","ebp"); | ||
190 | &lea ("esi",&DWP(64,"esp")); # tp | ||
191 | # edi still points at the end of padded np copy... | ||
192 | &neg ("ebp"); | ||
193 | &lea ("ebp",&DWP(-$pad,"edi","ebp",4)); # so just "rewind" | ||
194 | &mov ("edi",$rp); # restore rp | ||
195 | &xor ("edx","edx"); # i=0 and clear CF | ||
196 | |||
197 | &set_label("sub",8); | ||
198 | &mov ("eax",&DWP(0,"esi","edx",4)); | ||
199 | &sbb ("eax",&DWP(0,"ebp","edx",4)); | ||
200 | &mov (&DWP(0,"edi","edx",4),"eax"); # rp[i]=tp[i]-np[i] | ||
201 | &lea ("edx",&DWP(1,"edx")); # i++ | ||
202 | &loop (&label("sub")); # doesn't affect CF! | ||
203 | |||
204 | &mov ("eax",&DWP(0,"esi","edx",4)); # upmost overflow bit | ||
205 | &sbb ("eax",0); | ||
206 | &and ("esi","eax"); | ||
207 | ¬ ("eax"); | ||
208 | &mov ("ebp","edi"); | ||
209 | &and ("ebp","eax"); | ||
210 | &or ("esi","ebp"); # tp=carry?tp:rp | ||
211 | |||
212 | &mov ("ecx","edx"); # num | ||
213 | &xor ("edx","edx"); # i=0 | ||
214 | |||
215 | &set_label("copy",8); | ||
216 | &mov ("eax",&DWP(0,"esi","edx",4)); | ||
217 | &mov (&DWP(64,"esp","edx",4),"ecx"); # zap tp | ||
218 | &mov (&DWP(0,"edi","edx",4),"eax"); | ||
219 | &lea ("edx",&DWP(1,"edx")); # i++ | ||
220 | &loop (&label("copy")); | ||
221 | |||
222 | &mov ("ebp",$sp); | ||
223 | &xor ("eax","eax"); | ||
224 | |||
225 | &mov ("ecx",64/4); | ||
226 | &mov ("edi","esp"); # zap frame including scratch area | ||
227 | &data_byte(0xf3,0xab); # rep stosl, bzero | ||
228 | |||
229 | # zap copies of ap, bp and np | ||
230 | &lea ("edi",&DWP(64+$pad,"esp","edx",4));# pointer to ap | ||
231 | &lea ("ecx",&DWP(3*$pad/4,"edx","edx",2)); | ||
232 | &data_byte(0xf3,0xab); # rep stosl, bzero | ||
233 | |||
234 | &mov ("esp","ebp"); | ||
235 | &inc ("eax"); # signal "done" | ||
236 | &popf (); | ||
237 | &set_label("leave"); | ||
238 | &function_end($func); | ||
239 | |||
240 | &asciz("Padlock Montgomery Multiplication, CRYPTOGAMS by <appro\@openssl.org>"); | ||
241 | |||
242 | &asm_finish(); | ||
diff --git a/src/lib/libcrypto/bn/asm/x86-gf2m.pl b/src/lib/libcrypto/bn/asm/x86-gf2m.pl deleted file mode 100644 index 808a1e5969..0000000000 --- a/src/lib/libcrypto/bn/asm/x86-gf2m.pl +++ /dev/null | |||
@@ -1,313 +0,0 @@ | |||
1 | #!/usr/bin/env perl | ||
2 | # | ||
3 | # ==================================================================== | ||
4 | # Written by Andy Polyakov <appro@openssl.org> for the OpenSSL | ||
5 | # project. The module is, however, dual licensed under OpenSSL and | ||
6 | # CRYPTOGAMS licenses depending on where you obtain it. For further | ||
7 | # details see http://www.openssl.org/~appro/cryptogams/. | ||
8 | # ==================================================================== | ||
9 | # | ||
10 | # May 2011 | ||
11 | # | ||
12 | # The module implements bn_GF2m_mul_2x2 polynomial multiplication used | ||
13 | # in bn_gf2m.c. It's kind of low-hanging mechanical port from C for | ||
14 | # the time being... Except that it has three code paths: pure integer | ||
15 | # code suitable for any x86 CPU, MMX code suitable for PIII and later | ||
16 | # and PCLMULQDQ suitable for Westmere and later. Improvement varies | ||
17 | # from one benchmark and µ-arch to another. Below are interval values | ||
18 | # for 163- and 571-bit ECDH benchmarks relative to compiler-generated | ||
19 | # code: | ||
20 | # | ||
21 | # PIII 16%-30% | ||
22 | # P4 12%-12% | ||
23 | # Opteron 18%-40% | ||
24 | # Core2 19%-44% | ||
25 | # Atom 38%-64% | ||
26 | # Westmere 53%-121%(PCLMULQDQ)/20%-32%(MMX) | ||
27 | # Sandy Bridge 72%-127%(PCLMULQDQ)/27%-23%(MMX) | ||
28 | # | ||
29 | # Note that above improvement coefficients are not coefficients for | ||
30 | # bn_GF2m_mul_2x2 itself. For example 120% ECDH improvement is result | ||
31 | # of bn_GF2m_mul_2x2 being >4x faster. As it gets faster, benchmark | ||
32 | # is more and more dominated by other subroutines, most notably by | ||
33 | # BN_GF2m_mod[_mul]_arr... | ||
34 | |||
35 | $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; | ||
36 | push(@INC,"${dir}","${dir}../../perlasm"); | ||
37 | require "x86asm.pl"; | ||
38 | |||
39 | &asm_init($ARGV[0],$0,$x86only = $ARGV[$#ARGV] eq "386"); | ||
40 | |||
41 | $sse2=0; | ||
42 | for (@ARGV) { $sse2=1 if (/-DOPENSSL_IA32_SSE2/); } | ||
43 | |||
44 | &external_label("OPENSSL_ia32cap_P") if ($sse2); | ||
45 | |||
46 | $a="eax"; | ||
47 | $b="ebx"; | ||
48 | ($a1,$a2,$a4)=("ecx","edx","ebp"); | ||
49 | |||
50 | $R="mm0"; | ||
51 | @T=("mm1","mm2"); | ||
52 | ($A,$B,$B30,$B31)=("mm2","mm3","mm4","mm5"); | ||
53 | @i=("esi","edi"); | ||
54 | |||
55 | if (!$x86only) { | ||
56 | &function_begin_B("_mul_1x1_mmx"); | ||
57 | &sub ("esp",32+4); | ||
58 | &mov ($a1,$a); | ||
59 | &lea ($a2,&DWP(0,$a,$a)); | ||
60 | &and ($a1,0x3fffffff); | ||
61 | &lea ($a4,&DWP(0,$a2,$a2)); | ||
62 | &mov (&DWP(0*4,"esp"),0); | ||
63 | &and ($a2,0x7fffffff); | ||
64 | &movd ($A,$a); | ||
65 | &movd ($B,$b); | ||
66 | &mov (&DWP(1*4,"esp"),$a1); # a1 | ||
67 | &xor ($a1,$a2); # a1^a2 | ||
68 | &pxor ($B31,$B31); | ||
69 | &pxor ($B30,$B30); | ||
70 | &mov (&DWP(2*4,"esp"),$a2); # a2 | ||
71 | &xor ($a2,$a4); # a2^a4 | ||
72 | &mov (&DWP(3*4,"esp"),$a1); # a1^a2 | ||
73 | &pcmpgtd($B31,$A); # broadcast 31st bit | ||
74 | &paddd ($A,$A); # $A<<=1 | ||
75 | &xor ($a1,$a2); # a1^a4=a1^a2^a2^a4 | ||
76 | &mov (&DWP(4*4,"esp"),$a4); # a4 | ||
77 | &xor ($a4,$a2); # a2=a4^a2^a4 | ||
78 | &pand ($B31,$B); | ||
79 | &pcmpgtd($B30,$A); # broadcast 30th bit | ||
80 | &mov (&DWP(5*4,"esp"),$a1); # a1^a4 | ||
81 | &xor ($a4,$a1); # a1^a2^a4 | ||
82 | &psllq ($B31,31); | ||
83 | &pand ($B30,$B); | ||
84 | &mov (&DWP(6*4,"esp"),$a2); # a2^a4 | ||
85 | &mov (@i[0],0x7); | ||
86 | &mov (&DWP(7*4,"esp"),$a4); # a1^a2^a4 | ||
87 | &mov ($a4,@i[0]); | ||
88 | &and (@i[0],$b); | ||
89 | &shr ($b,3); | ||
90 | &mov (@i[1],$a4); | ||
91 | &psllq ($B30,30); | ||
92 | &and (@i[1],$b); | ||
93 | &shr ($b,3); | ||
94 | &movd ($R,&DWP(0,"esp",@i[0],4)); | ||
95 | &mov (@i[0],$a4); | ||
96 | &and (@i[0],$b); | ||
97 | &shr ($b,3); | ||
98 | for($n=1;$n<9;$n++) { | ||
99 | &movd (@T[1],&DWP(0,"esp",@i[1],4)); | ||
100 | &mov (@i[1],$a4); | ||
101 | &psllq (@T[1],3*$n); | ||
102 | &and (@i[1],$b); | ||
103 | &shr ($b,3); | ||
104 | &pxor ($R,@T[1]); | ||
105 | |||
106 | push(@i,shift(@i)); push(@T,shift(@T)); | ||
107 | } | ||
108 | &movd (@T[1],&DWP(0,"esp",@i[1],4)); | ||
109 | &pxor ($R,$B30); | ||
110 | &psllq (@T[1],3*$n++); | ||
111 | &pxor ($R,@T[1]); | ||
112 | |||
113 | &movd (@T[0],&DWP(0,"esp",@i[0],4)); | ||
114 | &pxor ($R,$B31); | ||
115 | &psllq (@T[0],3*$n); | ||
116 | &add ("esp",32+4); | ||
117 | &pxor ($R,@T[0]); | ||
118 | &ret (); | ||
119 | &function_end_B("_mul_1x1_mmx"); | ||
120 | } | ||
121 | |||
122 | ($lo,$hi)=("eax","edx"); | ||
123 | @T=("ecx","ebp"); | ||
124 | |||
125 | &function_begin_B("_mul_1x1_ialu"); | ||
126 | &sub ("esp",32+4); | ||
127 | &mov ($a1,$a); | ||
128 | &lea ($a2,&DWP(0,$a,$a)); | ||
129 | &lea ($a4,&DWP(0,"",$a,4)); | ||
130 | &and ($a1,0x3fffffff); | ||
131 | &lea (@i[1],&DWP(0,$lo,$lo)); | ||
132 | &sar ($lo,31); # broadcast 31st bit | ||
133 | &mov (&DWP(0*4,"esp"),0); | ||
134 | &and ($a2,0x7fffffff); | ||
135 | &mov (&DWP(1*4,"esp"),$a1); # a1 | ||
136 | &xor ($a1,$a2); # a1^a2 | ||
137 | &mov (&DWP(2*4,"esp"),$a2); # a2 | ||
138 | &xor ($a2,$a4); # a2^a4 | ||
139 | &mov (&DWP(3*4,"esp"),$a1); # a1^a2 | ||
140 | &xor ($a1,$a2); # a1^a4=a1^a2^a2^a4 | ||
141 | &mov (&DWP(4*4,"esp"),$a4); # a4 | ||
142 | &xor ($a4,$a2); # a2=a4^a2^a4 | ||
143 | &mov (&DWP(5*4,"esp"),$a1); # a1^a4 | ||
144 | &xor ($a4,$a1); # a1^a2^a4 | ||
145 | &sar (@i[1],31); # broardcast 30th bit | ||
146 | &and ($lo,$b); | ||
147 | &mov (&DWP(6*4,"esp"),$a2); # a2^a4 | ||
148 | &and (@i[1],$b); | ||
149 | &mov (&DWP(7*4,"esp"),$a4); # a1^a2^a4 | ||
150 | &mov ($hi,$lo); | ||
151 | &shl ($lo,31); | ||
152 | &mov (@T[0],@i[1]); | ||
153 | &shr ($hi,1); | ||
154 | |||
155 | &mov (@i[0],0x7); | ||
156 | &shl (@i[1],30); | ||
157 | &and (@i[0],$b); | ||
158 | &shr (@T[0],2); | ||
159 | &xor ($lo,@i[1]); | ||
160 | |||
161 | &shr ($b,3); | ||
162 | &mov (@i[1],0x7); # 5-byte instruction!? | ||
163 | &and (@i[1],$b); | ||
164 | &shr ($b,3); | ||
165 | &xor ($hi,@T[0]); | ||
166 | &xor ($lo,&DWP(0,"esp",@i[0],4)); | ||
167 | &mov (@i[0],0x7); | ||
168 | &and (@i[0],$b); | ||
169 | &shr ($b,3); | ||
170 | for($n=1;$n<9;$n++) { | ||
171 | &mov (@T[1],&DWP(0,"esp",@i[1],4)); | ||
172 | &mov (@i[1],0x7); | ||
173 | &mov (@T[0],@T[1]); | ||
174 | &shl (@T[1],3*$n); | ||
175 | &and (@i[1],$b); | ||
176 | &shr (@T[0],32-3*$n); | ||
177 | &xor ($lo,@T[1]); | ||
178 | &shr ($b,3); | ||
179 | &xor ($hi,@T[0]); | ||
180 | |||
181 | push(@i,shift(@i)); push(@T,shift(@T)); | ||
182 | } | ||
183 | &mov (@T[1],&DWP(0,"esp",@i[1],4)); | ||
184 | &mov (@T[0],@T[1]); | ||
185 | &shl (@T[1],3*$n); | ||
186 | &mov (@i[1],&DWP(0,"esp",@i[0],4)); | ||
187 | &shr (@T[0],32-3*$n); $n++; | ||
188 | &mov (@i[0],@i[1]); | ||
189 | &xor ($lo,@T[1]); | ||
190 | &shl (@i[1],3*$n); | ||
191 | &xor ($hi,@T[0]); | ||
192 | &shr (@i[0],32-3*$n); | ||
193 | &xor ($lo,@i[1]); | ||
194 | &xor ($hi,@i[0]); | ||
195 | |||
196 | &add ("esp",32+4); | ||
197 | &ret (); | ||
198 | &function_end_B("_mul_1x1_ialu"); | ||
199 | |||
200 | # void bn_GF2m_mul_2x2(BN_ULONG *r, BN_ULONG a1, BN_ULONG a0, BN_ULONG b1, BN_ULONG b0); | ||
201 | &function_begin_B("bn_GF2m_mul_2x2"); | ||
202 | if (!$x86only) { | ||
203 | &picmeup("edx","OPENSSL_ia32cap_P"); | ||
204 | &mov ("eax",&DWP(0,"edx")); | ||
205 | &mov ("edx",&DWP(4,"edx")); | ||
206 | &test ("eax",1<<23); # check MMX bit | ||
207 | &jz (&label("ialu")); | ||
208 | if ($sse2) { | ||
209 | &test ("eax",1<<24); # check FXSR bit | ||
210 | &jz (&label("mmx")); | ||
211 | &test ("edx",1<<1); # check PCLMULQDQ bit | ||
212 | &jz (&label("mmx")); | ||
213 | |||
214 | &movups ("xmm0",&QWP(8,"esp")); | ||
215 | &shufps ("xmm0","xmm0",0b10110001); | ||
216 | &pclmulqdq ("xmm0","xmm0",1); | ||
217 | &mov ("eax",&DWP(4,"esp")); | ||
218 | &movups (&QWP(0,"eax"),"xmm0"); | ||
219 | &ret (); | ||
220 | |||
221 | &set_label("mmx",16); | ||
222 | } | ||
223 | &push ("ebp"); | ||
224 | &push ("ebx"); | ||
225 | &push ("esi"); | ||
226 | &push ("edi"); | ||
227 | &mov ($a,&wparam(1)); | ||
228 | &mov ($b,&wparam(3)); | ||
229 | &call ("_mul_1x1_mmx"); # a1·b1 | ||
230 | &movq ("mm7",$R); | ||
231 | |||
232 | &mov ($a,&wparam(2)); | ||
233 | &mov ($b,&wparam(4)); | ||
234 | &call ("_mul_1x1_mmx"); # a0·b0 | ||
235 | &movq ("mm6",$R); | ||
236 | |||
237 | &mov ($a,&wparam(1)); | ||
238 | &mov ($b,&wparam(3)); | ||
239 | &xor ($a,&wparam(2)); | ||
240 | &xor ($b,&wparam(4)); | ||
241 | &call ("_mul_1x1_mmx"); # (a0+a1)·(b0+b1) | ||
242 | &pxor ($R,"mm7"); | ||
243 | &mov ($a,&wparam(0)); | ||
244 | &pxor ($R,"mm6"); # (a0+a1)·(b0+b1)-a1·b1-a0·b0 | ||
245 | |||
246 | &movq ($A,$R); | ||
247 | &psllq ($R,32); | ||
248 | &pop ("edi"); | ||
249 | &psrlq ($A,32); | ||
250 | &pop ("esi"); | ||
251 | &pxor ($R,"mm6"); | ||
252 | &pop ("ebx"); | ||
253 | &pxor ($A,"mm7"); | ||
254 | &movq (&QWP(0,$a),$R); | ||
255 | &pop ("ebp"); | ||
256 | &movq (&QWP(8,$a),$A); | ||
257 | &emms (); | ||
258 | &ret (); | ||
259 | &set_label("ialu",16); | ||
260 | } | ||
261 | &push ("ebp"); | ||
262 | &push ("ebx"); | ||
263 | &push ("esi"); | ||
264 | &push ("edi"); | ||
265 | &stack_push(4+1); | ||
266 | |||
267 | &mov ($a,&wparam(1)); | ||
268 | &mov ($b,&wparam(3)); | ||
269 | &call ("_mul_1x1_ialu"); # a1·b1 | ||
270 | &mov (&DWP(8,"esp"),$lo); | ||
271 | &mov (&DWP(12,"esp"),$hi); | ||
272 | |||
273 | &mov ($a,&wparam(2)); | ||
274 | &mov ($b,&wparam(4)); | ||
275 | &call ("_mul_1x1_ialu"); # a0·b0 | ||
276 | &mov (&DWP(0,"esp"),$lo); | ||
277 | &mov (&DWP(4,"esp"),$hi); | ||
278 | |||
279 | &mov ($a,&wparam(1)); | ||
280 | &mov ($b,&wparam(3)); | ||
281 | &xor ($a,&wparam(2)); | ||
282 | &xor ($b,&wparam(4)); | ||
283 | &call ("_mul_1x1_ialu"); # (a0+a1)·(b0+b1) | ||
284 | |||
285 | &mov ("ebp",&wparam(0)); | ||
286 | @r=("ebx","ecx","edi","esi"); | ||
287 | &mov (@r[0],&DWP(0,"esp")); | ||
288 | &mov (@r[1],&DWP(4,"esp")); | ||
289 | &mov (@r[2],&DWP(8,"esp")); | ||
290 | &mov (@r[3],&DWP(12,"esp")); | ||
291 | |||
292 | &xor ($lo,$hi); | ||
293 | &xor ($hi,@r[1]); | ||
294 | &xor ($lo,@r[0]); | ||
295 | &mov (&DWP(0,"ebp"),@r[0]); | ||
296 | &xor ($hi,@r[2]); | ||
297 | &mov (&DWP(12,"ebp"),@r[3]); | ||
298 | &xor ($lo,@r[3]); | ||
299 | &stack_pop(4+1); | ||
300 | &xor ($hi,@r[3]); | ||
301 | &pop ("edi"); | ||
302 | &xor ($lo,$hi); | ||
303 | &pop ("esi"); | ||
304 | &mov (&DWP(8,"ebp"),$hi); | ||
305 | &pop ("ebx"); | ||
306 | &mov (&DWP(4,"ebp"),$lo); | ||
307 | &pop ("ebp"); | ||
308 | &ret (); | ||
309 | &function_end_B("bn_GF2m_mul_2x2"); | ||
310 | |||
311 | &asciz ("GF(2^m) Multiplication for x86, CRYPTOGAMS by <appro\@openssl.org>"); | ||
312 | |||
313 | &asm_finish(); | ||
diff --git a/src/lib/libcrypto/bn/asm/x86-mont.pl b/src/lib/libcrypto/bn/asm/x86-mont.pl deleted file mode 100755 index e8f6b05084..0000000000 --- a/src/lib/libcrypto/bn/asm/x86-mont.pl +++ /dev/null | |||
@@ -1,593 +0,0 @@ | |||
1 | #!/usr/bin/env perl | ||
2 | |||
3 | # ==================================================================== | ||
4 | # Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL | ||
5 | # project. The module is, however, dual licensed under OpenSSL and | ||
6 | # CRYPTOGAMS licenses depending on where you obtain it. For further | ||
7 | # details see http://www.openssl.org/~appro/cryptogams/. | ||
8 | # ==================================================================== | ||
9 | |||
10 | # October 2005 | ||
11 | # | ||
12 | # This is a "teaser" code, as it can be improved in several ways... | ||
13 | # First of all non-SSE2 path should be implemented (yes, for now it | ||
14 | # performs Montgomery multiplication/convolution only on SSE2-capable | ||
15 | # CPUs such as P4, others fall down to original code). Then inner loop | ||
16 | # can be unrolled and modulo-scheduled to improve ILP and possibly | ||
17 | # moved to 128-bit XMM register bank (though it would require input | ||
18 | # rearrangement and/or increase bus bandwidth utilization). Dedicated | ||
19 | # squaring procedure should give further performance improvement... | ||
20 | # Yet, for being draft, the code improves rsa512 *sign* benchmark by | ||
21 | # 110%(!), rsa1024 one - by 70% and rsa4096 - by 20%:-) | ||
22 | |||
23 | # December 2006 | ||
24 | # | ||
25 | # Modulo-scheduling SSE2 loops results in further 15-20% improvement. | ||
26 | # Integer-only code [being equipped with dedicated squaring procedure] | ||
27 | # gives ~40% on rsa512 sign benchmark... | ||
28 | |||
29 | $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; | ||
30 | push(@INC,"${dir}","${dir}../../perlasm"); | ||
31 | require "x86asm.pl"; | ||
32 | |||
33 | &asm_init($ARGV[0],$0); | ||
34 | |||
35 | $sse2=0; | ||
36 | for (@ARGV) { $sse2=1 if (/-DOPENSSL_IA32_SSE2/); } | ||
37 | |||
38 | &external_label("OPENSSL_ia32cap_P") if ($sse2); | ||
39 | |||
40 | &function_begin("bn_mul_mont"); | ||
41 | |||
42 | $i="edx"; | ||
43 | $j="ecx"; | ||
44 | $ap="esi"; $tp="esi"; # overlapping variables!!! | ||
45 | $rp="edi"; $bp="edi"; # overlapping variables!!! | ||
46 | $np="ebp"; | ||
47 | $num="ebx"; | ||
48 | |||
49 | $_num=&DWP(4*0,"esp"); # stack top layout | ||
50 | $_rp=&DWP(4*1,"esp"); | ||
51 | $_ap=&DWP(4*2,"esp"); | ||
52 | $_bp=&DWP(4*3,"esp"); | ||
53 | $_np=&DWP(4*4,"esp"); | ||
54 | $_n0=&DWP(4*5,"esp"); $_n0q=&QWP(4*5,"esp"); | ||
55 | $_sp=&DWP(4*6,"esp"); | ||
56 | $_bpend=&DWP(4*7,"esp"); | ||
57 | $frame=32; # size of above frame rounded up to 16n | ||
58 | |||
59 | &xor ("eax","eax"); | ||
60 | &mov ("edi",&wparam(5)); # int num | ||
61 | &cmp ("edi",4); | ||
62 | &jl (&label("just_leave")); | ||
63 | |||
64 | &lea ("esi",&wparam(0)); # put aside pointer to argument block | ||
65 | &lea ("edx",&wparam(1)); # load ap | ||
66 | &mov ("ebp","esp"); # saved stack pointer! | ||
67 | &add ("edi",2); # extra two words on top of tp | ||
68 | &neg ("edi"); | ||
69 | &lea ("esp",&DWP(-$frame,"esp","edi",4)); # alloca($frame+4*(num+2)) | ||
70 | &neg ("edi"); | ||
71 | |||
72 | # minimize cache contention by arraning 2K window between stack | ||
73 | # pointer and ap argument [np is also position sensitive vector, | ||
74 | # but it's assumed to be near ap, as it's allocated at ~same | ||
75 | # time]. | ||
76 | &mov ("eax","esp"); | ||
77 | &sub ("eax","edx"); | ||
78 | &and ("eax",2047); | ||
79 | &sub ("esp","eax"); # this aligns sp and ap modulo 2048 | ||
80 | |||
81 | &xor ("edx","esp"); | ||
82 | &and ("edx",2048); | ||
83 | &xor ("edx",2048); | ||
84 | &sub ("esp","edx"); # this splits them apart modulo 4096 | ||
85 | |||
86 | &and ("esp",-64); # align to cache line | ||
87 | |||
88 | ################################# load argument block... | ||
89 | &mov ("eax",&DWP(0*4,"esi"));# BN_ULONG *rp | ||
90 | &mov ("ebx",&DWP(1*4,"esi"));# const BN_ULONG *ap | ||
91 | &mov ("ecx",&DWP(2*4,"esi"));# const BN_ULONG *bp | ||
92 | &mov ("edx",&DWP(3*4,"esi"));# const BN_ULONG *np | ||
93 | &mov ("esi",&DWP(4*4,"esi"));# const BN_ULONG *n0 | ||
94 | #&mov ("edi",&DWP(5*4,"esi"));# int num | ||
95 | |||
96 | &mov ("esi",&DWP(0,"esi")); # pull n0[0] | ||
97 | &mov ($_rp,"eax"); # ... save a copy of argument block | ||
98 | &mov ($_ap,"ebx"); | ||
99 | &mov ($_bp,"ecx"); | ||
100 | &mov ($_np,"edx"); | ||
101 | &mov ($_n0,"esi"); | ||
102 | &lea ($num,&DWP(-3,"edi")); # num=num-1 to assist modulo-scheduling | ||
103 | #&mov ($_num,$num); # redundant as $num is not reused | ||
104 | &mov ($_sp,"ebp"); # saved stack pointer! | ||
105 | |||
106 | if($sse2) { | ||
107 | $acc0="mm0"; # mmx register bank layout | ||
108 | $acc1="mm1"; | ||
109 | $car0="mm2"; | ||
110 | $car1="mm3"; | ||
111 | $mul0="mm4"; | ||
112 | $mul1="mm5"; | ||
113 | $temp="mm6"; | ||
114 | $mask="mm7"; | ||
115 | |||
116 | &picmeup("eax","OPENSSL_ia32cap_P"); | ||
117 | &bt (&DWP(0,"eax"),26); | ||
118 | &jnc (&label("non_sse2")); | ||
119 | |||
120 | &mov ("eax",-1); | ||
121 | &movd ($mask,"eax"); # mask 32 lower bits | ||
122 | |||
123 | &mov ($ap,$_ap); # load input pointers | ||
124 | &mov ($bp,$_bp); | ||
125 | &mov ($np,$_np); | ||
126 | |||
127 | &xor ($i,$i); # i=0 | ||
128 | &xor ($j,$j); # j=0 | ||
129 | |||
130 | &movd ($mul0,&DWP(0,$bp)); # bp[0] | ||
131 | &movd ($mul1,&DWP(0,$ap)); # ap[0] | ||
132 | &movd ($car1,&DWP(0,$np)); # np[0] | ||
133 | |||
134 | &pmuludq($mul1,$mul0); # ap[0]*bp[0] | ||
135 | &movq ($car0,$mul1); | ||
136 | &movq ($acc0,$mul1); # I wish movd worked for | ||
137 | &pand ($acc0,$mask); # inter-register transfers | ||
138 | |||
139 | &pmuludq($mul1,$_n0q); # *=n0 | ||
140 | |||
141 | &pmuludq($car1,$mul1); # "t[0]"*np[0]*n0 | ||
142 | &paddq ($car1,$acc0); | ||
143 | |||
144 | &movd ($acc1,&DWP(4,$np)); # np[1] | ||
145 | &movd ($acc0,&DWP(4,$ap)); # ap[1] | ||
146 | |||
147 | &psrlq ($car0,32); | ||
148 | &psrlq ($car1,32); | ||
149 | |||
150 | &inc ($j); # j++ | ||
151 | &set_label("1st",16); | ||
152 | &pmuludq($acc0,$mul0); # ap[j]*bp[0] | ||
153 | &pmuludq($acc1,$mul1); # np[j]*m1 | ||
154 | &paddq ($car0,$acc0); # +=c0 | ||
155 | &paddq ($car1,$acc1); # +=c1 | ||
156 | |||
157 | &movq ($acc0,$car0); | ||
158 | &pand ($acc0,$mask); | ||
159 | &movd ($acc1,&DWP(4,$np,$j,4)); # np[j+1] | ||
160 | &paddq ($car1,$acc0); # +=ap[j]*bp[0]; | ||
161 | &movd ($acc0,&DWP(4,$ap,$j,4)); # ap[j+1] | ||
162 | &psrlq ($car0,32); | ||
163 | &movd (&DWP($frame-4,"esp",$j,4),$car1); # tp[j-1]= | ||
164 | &psrlq ($car1,32); | ||
165 | |||
166 | &lea ($j,&DWP(1,$j)); | ||
167 | &cmp ($j,$num); | ||
168 | &jl (&label("1st")); | ||
169 | |||
170 | &pmuludq($acc0,$mul0); # ap[num-1]*bp[0] | ||
171 | &pmuludq($acc1,$mul1); # np[num-1]*m1 | ||
172 | &paddq ($car0,$acc0); # +=c0 | ||
173 | &paddq ($car1,$acc1); # +=c1 | ||
174 | |||
175 | &movq ($acc0,$car0); | ||
176 | &pand ($acc0,$mask); | ||
177 | &paddq ($car1,$acc0); # +=ap[num-1]*bp[0]; | ||
178 | &movd (&DWP($frame-4,"esp",$j,4),$car1); # tp[num-2]= | ||
179 | |||
180 | &psrlq ($car0,32); | ||
181 | &psrlq ($car1,32); | ||
182 | |||
183 | &paddq ($car1,$car0); | ||
184 | &movq (&QWP($frame,"esp",$num,4),$car1); # tp[num].tp[num-1] | ||
185 | |||
186 | &inc ($i); # i++ | ||
187 | &set_label("outer"); | ||
188 | &xor ($j,$j); # j=0 | ||
189 | |||
190 | &movd ($mul0,&DWP(0,$bp,$i,4)); # bp[i] | ||
191 | &movd ($mul1,&DWP(0,$ap)); # ap[0] | ||
192 | &movd ($temp,&DWP($frame,"esp")); # tp[0] | ||
193 | &movd ($car1,&DWP(0,$np)); # np[0] | ||
194 | &pmuludq($mul1,$mul0); # ap[0]*bp[i] | ||
195 | |||
196 | &paddq ($mul1,$temp); # +=tp[0] | ||
197 | &movq ($acc0,$mul1); | ||
198 | &movq ($car0,$mul1); | ||
199 | &pand ($acc0,$mask); | ||
200 | |||
201 | &pmuludq($mul1,$_n0q); # *=n0 | ||
202 | |||
203 | &pmuludq($car1,$mul1); | ||
204 | &paddq ($car1,$acc0); | ||
205 | |||
206 | &movd ($temp,&DWP($frame+4,"esp")); # tp[1] | ||
207 | &movd ($acc1,&DWP(4,$np)); # np[1] | ||
208 | &movd ($acc0,&DWP(4,$ap)); # ap[1] | ||
209 | |||
210 | &psrlq ($car0,32); | ||
211 | &psrlq ($car1,32); | ||
212 | &paddq ($car0,$temp); # +=tp[1] | ||
213 | |||
214 | &inc ($j); # j++ | ||
215 | &dec ($num); | ||
216 | &set_label("inner"); | ||
217 | &pmuludq($acc0,$mul0); # ap[j]*bp[i] | ||
218 | &pmuludq($acc1,$mul1); # np[j]*m1 | ||
219 | &paddq ($car0,$acc0); # +=c0 | ||
220 | &paddq ($car1,$acc1); # +=c1 | ||
221 | |||
222 | &movq ($acc0,$car0); | ||
223 | &movd ($temp,&DWP($frame+4,"esp",$j,4));# tp[j+1] | ||
224 | &pand ($acc0,$mask); | ||
225 | &movd ($acc1,&DWP(4,$np,$j,4)); # np[j+1] | ||
226 | &paddq ($car1,$acc0); # +=ap[j]*bp[i]+tp[j] | ||
227 | &movd ($acc0,&DWP(4,$ap,$j,4)); # ap[j+1] | ||
228 | &psrlq ($car0,32); | ||
229 | &movd (&DWP($frame-4,"esp",$j,4),$car1);# tp[j-1]= | ||
230 | &psrlq ($car1,32); | ||
231 | &paddq ($car0,$temp); # +=tp[j+1] | ||
232 | |||
233 | &dec ($num); | ||
234 | &lea ($j,&DWP(1,$j)); # j++ | ||
235 | &jnz (&label("inner")); | ||
236 | |||
237 | &mov ($num,$j); | ||
238 | &pmuludq($acc0,$mul0); # ap[num-1]*bp[i] | ||
239 | &pmuludq($acc1,$mul1); # np[num-1]*m1 | ||
240 | &paddq ($car0,$acc0); # +=c0 | ||
241 | &paddq ($car1,$acc1); # +=c1 | ||
242 | |||
243 | &movq ($acc0,$car0); | ||
244 | &pand ($acc0,$mask); | ||
245 | &paddq ($car1,$acc0); # +=ap[num-1]*bp[i]+tp[num-1] | ||
246 | &movd (&DWP($frame-4,"esp",$j,4),$car1); # tp[num-2]= | ||
247 | &psrlq ($car0,32); | ||
248 | &psrlq ($car1,32); | ||
249 | |||
250 | &movd ($temp,&DWP($frame+4,"esp",$num,4)); # += tp[num] | ||
251 | &paddq ($car1,$car0); | ||
252 | &paddq ($car1,$temp); | ||
253 | &movq (&QWP($frame,"esp",$num,4),$car1); # tp[num].tp[num-1] | ||
254 | |||
255 | &lea ($i,&DWP(1,$i)); # i++ | ||
256 | &cmp ($i,$num); | ||
257 | &jle (&label("outer")); | ||
258 | |||
259 | &emms (); # done with mmx bank | ||
260 | &jmp (&label("common_tail")); | ||
261 | |||
262 | &set_label("non_sse2",16); | ||
263 | } | ||
264 | |||
265 | if (0) { | ||
266 | &mov ("esp",$_sp); | ||
267 | &xor ("eax","eax"); # signal "not fast enough [yet]" | ||
268 | &jmp (&label("just_leave")); | ||
269 | # While the below code provides competitive performance for | ||
270 | # all key lengthes on modern Intel cores, it's still more | ||
271 | # than 10% slower for 4096-bit key elsewhere:-( "Competitive" | ||
272 | # means compared to the original integer-only assembler. | ||
273 | # 512-bit RSA sign is better by ~40%, but that's about all | ||
274 | # one can say about all CPUs... | ||
275 | } else { | ||
276 | $inp="esi"; # integer path uses these registers differently | ||
277 | $word="edi"; | ||
278 | $carry="ebp"; | ||
279 | |||
280 | &mov ($inp,$_ap); | ||
281 | &lea ($carry,&DWP(1,$num)); | ||
282 | &mov ($word,$_bp); | ||
283 | &xor ($j,$j); # j=0 | ||
284 | &mov ("edx",$inp); | ||
285 | &and ($carry,1); # see if num is even | ||
286 | &sub ("edx",$word); # see if ap==bp | ||
287 | &lea ("eax",&DWP(4,$word,$num,4)); # &bp[num] | ||
288 | &or ($carry,"edx"); | ||
289 | &mov ($word,&DWP(0,$word)); # bp[0] | ||
290 | &jz (&label("bn_sqr_mont")); | ||
291 | &mov ($_bpend,"eax"); | ||
292 | &mov ("eax",&DWP(0,$inp)); | ||
293 | &xor ("edx","edx"); | ||
294 | |||
295 | &set_label("mull",16); | ||
296 | &mov ($carry,"edx"); | ||
297 | &mul ($word); # ap[j]*bp[0] | ||
298 | &add ($carry,"eax"); | ||
299 | &lea ($j,&DWP(1,$j)); | ||
300 | &adc ("edx",0); | ||
301 | &mov ("eax",&DWP(0,$inp,$j,4)); # ap[j+1] | ||
302 | &cmp ($j,$num); | ||
303 | &mov (&DWP($frame-4,"esp",$j,4),$carry); # tp[j]= | ||
304 | &jl (&label("mull")); | ||
305 | |||
306 | &mov ($carry,"edx"); | ||
307 | &mul ($word); # ap[num-1]*bp[0] | ||
308 | &mov ($word,$_n0); | ||
309 | &add ("eax",$carry); | ||
310 | &mov ($inp,$_np); | ||
311 | &adc ("edx",0); | ||
312 | &imul ($word,&DWP($frame,"esp")); # n0*tp[0] | ||
313 | |||
314 | &mov (&DWP($frame,"esp",$num,4),"eax"); # tp[num-1]= | ||
315 | &xor ($j,$j); | ||
316 | &mov (&DWP($frame+4,"esp",$num,4),"edx"); # tp[num]= | ||
317 | &mov (&DWP($frame+8,"esp",$num,4),$j); # tp[num+1]= | ||
318 | |||
319 | &mov ("eax",&DWP(0,$inp)); # np[0] | ||
320 | &mul ($word); # np[0]*m | ||
321 | &add ("eax",&DWP($frame,"esp")); # +=tp[0] | ||
322 | &mov ("eax",&DWP(4,$inp)); # np[1] | ||
323 | &adc ("edx",0); | ||
324 | &inc ($j); | ||
325 | |||
326 | &jmp (&label("2ndmadd")); | ||
327 | |||
328 | &set_label("1stmadd",16); | ||
329 | &mov ($carry,"edx"); | ||
330 | &mul ($word); # ap[j]*bp[i] | ||
331 | &add ($carry,&DWP($frame,"esp",$j,4)); # +=tp[j] | ||
332 | &lea ($j,&DWP(1,$j)); | ||
333 | &adc ("edx",0); | ||
334 | &add ($carry,"eax"); | ||
335 | &mov ("eax",&DWP(0,$inp,$j,4)); # ap[j+1] | ||
336 | &adc ("edx",0); | ||
337 | &cmp ($j,$num); | ||
338 | &mov (&DWP($frame-4,"esp",$j,4),$carry); # tp[j]= | ||
339 | &jl (&label("1stmadd")); | ||
340 | |||
341 | &mov ($carry,"edx"); | ||
342 | &mul ($word); # ap[num-1]*bp[i] | ||
343 | &add ("eax",&DWP($frame,"esp",$num,4)); # +=tp[num-1] | ||
344 | &mov ($word,$_n0); | ||
345 | &adc ("edx",0); | ||
346 | &mov ($inp,$_np); | ||
347 | &add ($carry,"eax"); | ||
348 | &adc ("edx",0); | ||
349 | &imul ($word,&DWP($frame,"esp")); # n0*tp[0] | ||
350 | |||
351 | &xor ($j,$j); | ||
352 | &add ("edx",&DWP($frame+4,"esp",$num,4)); # carry+=tp[num] | ||
353 | &mov (&DWP($frame,"esp",$num,4),$carry); # tp[num-1]= | ||
354 | &adc ($j,0); | ||
355 | &mov ("eax",&DWP(0,$inp)); # np[0] | ||
356 | &mov (&DWP($frame+4,"esp",$num,4),"edx"); # tp[num]= | ||
357 | &mov (&DWP($frame+8,"esp",$num,4),$j); # tp[num+1]= | ||
358 | |||
359 | &mul ($word); # np[0]*m | ||
360 | &add ("eax",&DWP($frame,"esp")); # +=tp[0] | ||
361 | &mov ("eax",&DWP(4,$inp)); # np[1] | ||
362 | &adc ("edx",0); | ||
363 | &mov ($j,1); | ||
364 | |||
365 | &set_label("2ndmadd",16); | ||
366 | &mov ($carry,"edx"); | ||
367 | &mul ($word); # np[j]*m | ||
368 | &add ($carry,&DWP($frame,"esp",$j,4)); # +=tp[j] | ||
369 | &lea ($j,&DWP(1,$j)); | ||
370 | &adc ("edx",0); | ||
371 | &add ($carry,"eax"); | ||
372 | &mov ("eax",&DWP(0,$inp,$j,4)); # np[j+1] | ||
373 | &adc ("edx",0); | ||
374 | &cmp ($j,$num); | ||
375 | &mov (&DWP($frame-8,"esp",$j,4),$carry); # tp[j-1]= | ||
376 | &jl (&label("2ndmadd")); | ||
377 | |||
378 | &mov ($carry,"edx"); | ||
379 | &mul ($word); # np[j]*m | ||
380 | &add ($carry,&DWP($frame,"esp",$num,4)); # +=tp[num-1] | ||
381 | &adc ("edx",0); | ||
382 | &add ($carry,"eax"); | ||
383 | &adc ("edx",0); | ||
384 | &mov (&DWP($frame-4,"esp",$num,4),$carry); # tp[num-2]= | ||
385 | |||
386 | &xor ("eax","eax"); | ||
387 | &mov ($j,$_bp); # &bp[i] | ||
388 | &add ("edx",&DWP($frame+4,"esp",$num,4)); # carry+=tp[num] | ||
389 | &adc ("eax",&DWP($frame+8,"esp",$num,4)); # +=tp[num+1] | ||
390 | &lea ($j,&DWP(4,$j)); | ||
391 | &mov (&DWP($frame,"esp",$num,4),"edx"); # tp[num-1]= | ||
392 | &cmp ($j,$_bpend); | ||
393 | &mov (&DWP($frame+4,"esp",$num,4),"eax"); # tp[num]= | ||
394 | &je (&label("common_tail")); | ||
395 | |||
396 | &mov ($word,&DWP(0,$j)); # bp[i+1] | ||
397 | &mov ($inp,$_ap); | ||
398 | &mov ($_bp,$j); # &bp[++i] | ||
399 | &xor ($j,$j); | ||
400 | &xor ("edx","edx"); | ||
401 | &mov ("eax",&DWP(0,$inp)); | ||
402 | &jmp (&label("1stmadd")); | ||
403 | |||
404 | &set_label("bn_sqr_mont",16); | ||
405 | $sbit=$num; | ||
406 | &mov ($_num,$num); | ||
407 | &mov ($_bp,$j); # i=0 | ||
408 | |||
409 | &mov ("eax",$word); # ap[0] | ||
410 | &mul ($word); # ap[0]*ap[0] | ||
411 | &mov (&DWP($frame,"esp"),"eax"); # tp[0]= | ||
412 | &mov ($sbit,"edx"); | ||
413 | &shr ("edx",1); | ||
414 | &and ($sbit,1); | ||
415 | &inc ($j); | ||
416 | &set_label("sqr",16); | ||
417 | &mov ("eax",&DWP(0,$inp,$j,4)); # ap[j] | ||
418 | &mov ($carry,"edx"); | ||
419 | &mul ($word); # ap[j]*ap[0] | ||
420 | &add ("eax",$carry); | ||
421 | &lea ($j,&DWP(1,$j)); | ||
422 | &adc ("edx",0); | ||
423 | &lea ($carry,&DWP(0,$sbit,"eax",2)); | ||
424 | &shr ("eax",31); | ||
425 | &cmp ($j,$_num); | ||
426 | &mov ($sbit,"eax"); | ||
427 | &mov (&DWP($frame-4,"esp",$j,4),$carry); # tp[j]= | ||
428 | &jl (&label("sqr")); | ||
429 | |||
430 | &mov ("eax",&DWP(0,$inp,$j,4)); # ap[num-1] | ||
431 | &mov ($carry,"edx"); | ||
432 | &mul ($word); # ap[num-1]*ap[0] | ||
433 | &add ("eax",$carry); | ||
434 | &mov ($word,$_n0); | ||
435 | &adc ("edx",0); | ||
436 | &mov ($inp,$_np); | ||
437 | &lea ($carry,&DWP(0,$sbit,"eax",2)); | ||
438 | &imul ($word,&DWP($frame,"esp")); # n0*tp[0] | ||
439 | &shr ("eax",31); | ||
440 | &mov (&DWP($frame,"esp",$j,4),$carry); # tp[num-1]= | ||
441 | |||
442 | &lea ($carry,&DWP(0,"eax","edx",2)); | ||
443 | &mov ("eax",&DWP(0,$inp)); # np[0] | ||
444 | &shr ("edx",31); | ||
445 | &mov (&DWP($frame+4,"esp",$j,4),$carry); # tp[num]= | ||
446 | &mov (&DWP($frame+8,"esp",$j,4),"edx"); # tp[num+1]= | ||
447 | |||
448 | &mul ($word); # np[0]*m | ||
449 | &add ("eax",&DWP($frame,"esp")); # +=tp[0] | ||
450 | &mov ($num,$j); | ||
451 | &adc ("edx",0); | ||
452 | &mov ("eax",&DWP(4,$inp)); # np[1] | ||
453 | &mov ($j,1); | ||
454 | |||
455 | &set_label("3rdmadd",16); | ||
456 | &mov ($carry,"edx"); | ||
457 | &mul ($word); # np[j]*m | ||
458 | &add ($carry,&DWP($frame,"esp",$j,4)); # +=tp[j] | ||
459 | &adc ("edx",0); | ||
460 | &add ($carry,"eax"); | ||
461 | &mov ("eax",&DWP(4,$inp,$j,4)); # np[j+1] | ||
462 | &adc ("edx",0); | ||
463 | &mov (&DWP($frame-4,"esp",$j,4),$carry); # tp[j-1]= | ||
464 | |||
465 | &mov ($carry,"edx"); | ||
466 | &mul ($word); # np[j+1]*m | ||
467 | &add ($carry,&DWP($frame+4,"esp",$j,4)); # +=tp[j+1] | ||
468 | &lea ($j,&DWP(2,$j)); | ||
469 | &adc ("edx",0); | ||
470 | &add ($carry,"eax"); | ||
471 | &mov ("eax",&DWP(0,$inp,$j,4)); # np[j+2] | ||
472 | &adc ("edx",0); | ||
473 | &cmp ($j,$num); | ||
474 | &mov (&DWP($frame-8,"esp",$j,4),$carry); # tp[j]= | ||
475 | &jl (&label("3rdmadd")); | ||
476 | |||
477 | &mov ($carry,"edx"); | ||
478 | &mul ($word); # np[j]*m | ||
479 | &add ($carry,&DWP($frame,"esp",$num,4)); # +=tp[num-1] | ||
480 | &adc ("edx",0); | ||
481 | &add ($carry,"eax"); | ||
482 | &adc ("edx",0); | ||
483 | &mov (&DWP($frame-4,"esp",$num,4),$carry); # tp[num-2]= | ||
484 | |||
485 | &mov ($j,$_bp); # i | ||
486 | &xor ("eax","eax"); | ||
487 | &mov ($inp,$_ap); | ||
488 | &add ("edx",&DWP($frame+4,"esp",$num,4)); # carry+=tp[num] | ||
489 | &adc ("eax",&DWP($frame+8,"esp",$num,4)); # +=tp[num+1] | ||
490 | &mov (&DWP($frame,"esp",$num,4),"edx"); # tp[num-1]= | ||
491 | &cmp ($j,$num); | ||
492 | &mov (&DWP($frame+4,"esp",$num,4),"eax"); # tp[num]= | ||
493 | &je (&label("common_tail")); | ||
494 | |||
495 | &mov ($word,&DWP(4,$inp,$j,4)); # ap[i] | ||
496 | &lea ($j,&DWP(1,$j)); | ||
497 | &mov ("eax",$word); | ||
498 | &mov ($_bp,$j); # ++i | ||
499 | &mul ($word); # ap[i]*ap[i] | ||
500 | &add ("eax",&DWP($frame,"esp",$j,4)); # +=tp[i] | ||
501 | &adc ("edx",0); | ||
502 | &mov (&DWP($frame,"esp",$j,4),"eax"); # tp[i]= | ||
503 | &xor ($carry,$carry); | ||
504 | &cmp ($j,$num); | ||
505 | &lea ($j,&DWP(1,$j)); | ||
506 | &je (&label("sqrlast")); | ||
507 | |||
508 | &mov ($sbit,"edx"); # zaps $num | ||
509 | &shr ("edx",1); | ||
510 | &and ($sbit,1); | ||
511 | &set_label("sqradd",16); | ||
512 | &mov ("eax",&DWP(0,$inp,$j,4)); # ap[j] | ||
513 | &mov ($carry,"edx"); | ||
514 | &mul ($word); # ap[j]*ap[i] | ||
515 | &add ("eax",$carry); | ||
516 | &lea ($carry,&DWP(0,"eax","eax")); | ||
517 | &adc ("edx",0); | ||
518 | &shr ("eax",31); | ||
519 | &add ($carry,&DWP($frame,"esp",$j,4)); # +=tp[j] | ||
520 | &lea ($j,&DWP(1,$j)); | ||
521 | &adc ("eax",0); | ||
522 | &add ($carry,$sbit); | ||
523 | &adc ("eax",0); | ||
524 | &cmp ($j,$_num); | ||
525 | &mov (&DWP($frame-4,"esp",$j,4),$carry); # tp[j]= | ||
526 | &mov ($sbit,"eax"); | ||
527 | &jle (&label("sqradd")); | ||
528 | |||
529 | &mov ($carry,"edx"); | ||
530 | &add ("edx","edx"); | ||
531 | &shr ($carry,31); | ||
532 | &add ("edx",$sbit); | ||
533 | &adc ($carry,0); | ||
534 | &set_label("sqrlast"); | ||
535 | &mov ($word,$_n0); | ||
536 | &mov ($inp,$_np); | ||
537 | &imul ($word,&DWP($frame,"esp")); # n0*tp[0] | ||
538 | |||
539 | &add ("edx",&DWP($frame,"esp",$j,4)); # +=tp[num] | ||
540 | &mov ("eax",&DWP(0,$inp)); # np[0] | ||
541 | &adc ($carry,0); | ||
542 | &mov (&DWP($frame,"esp",$j,4),"edx"); # tp[num]= | ||
543 | &mov (&DWP($frame+4,"esp",$j,4),$carry); # tp[num+1]= | ||
544 | |||
545 | &mul ($word); # np[0]*m | ||
546 | &add ("eax",&DWP($frame,"esp")); # +=tp[0] | ||
547 | &lea ($num,&DWP(-1,$j)); | ||
548 | &adc ("edx",0); | ||
549 | &mov ($j,1); | ||
550 | &mov ("eax",&DWP(4,$inp)); # np[1] | ||
551 | |||
552 | &jmp (&label("3rdmadd")); | ||
553 | } | ||
554 | |||
555 | &set_label("common_tail",16); | ||
556 | &mov ($np,$_np); # load modulus pointer | ||
557 | &mov ($rp,$_rp); # load result pointer | ||
558 | &lea ($tp,&DWP($frame,"esp")); # [$ap and $bp are zapped] | ||
559 | |||
560 | &mov ("eax",&DWP(0,$tp)); # tp[0] | ||
561 | &mov ($j,$num); # j=num-1 | ||
562 | &xor ($i,$i); # i=0 and clear CF! | ||
563 | |||
564 | &set_label("sub",16); | ||
565 | &sbb ("eax",&DWP(0,$np,$i,4)); | ||
566 | &mov (&DWP(0,$rp,$i,4),"eax"); # rp[i]=tp[i]-np[i] | ||
567 | &dec ($j); # doesn't affect CF! | ||
568 | &mov ("eax",&DWP(4,$tp,$i,4)); # tp[i+1] | ||
569 | &lea ($i,&DWP(1,$i)); # i++ | ||
570 | &jge (&label("sub")); | ||
571 | |||
572 | &sbb ("eax",0); # handle upmost overflow bit | ||
573 | &and ($tp,"eax"); | ||
574 | ¬ ("eax"); | ||
575 | &mov ($np,$rp); | ||
576 | &and ($np,"eax"); | ||
577 | &or ($tp,$np); # tp=carry?tp:rp | ||
578 | |||
579 | &set_label("copy",16); # copy or in-place refresh | ||
580 | &mov ("eax",&DWP(0,$tp,$num,4)); | ||
581 | &mov (&DWP(0,$rp,$num,4),"eax"); # rp[i]=tp[i] | ||
582 | &mov (&DWP($frame,"esp",$num,4),$j); # zap temporary vector | ||
583 | &dec ($num); | ||
584 | &jge (&label("copy")); | ||
585 | |||
586 | &mov ("esp",$_sp); # pull saved stack pointer | ||
587 | &mov ("eax",1); | ||
588 | &set_label("just_leave"); | ||
589 | &function_end("bn_mul_mont"); | ||
590 | |||
591 | &asciz("Montgomery Multiplication for x86, CRYPTOGAMS by <appro\@openssl.org>"); | ||
592 | |||
593 | &asm_finish(); | ||
diff --git a/src/lib/libcrypto/bn/asm/x86.pl b/src/lib/libcrypto/bn/asm/x86.pl deleted file mode 100644 index 1bc4f1bb27..0000000000 --- a/src/lib/libcrypto/bn/asm/x86.pl +++ /dev/null | |||
@@ -1,28 +0,0 @@ | |||
1 | #!/usr/local/bin/perl | ||
2 | |||
3 | push(@INC,"perlasm","../../perlasm"); | ||
4 | require "x86asm.pl"; | ||
5 | |||
6 | require("x86/mul_add.pl"); | ||
7 | require("x86/mul.pl"); | ||
8 | require("x86/sqr.pl"); | ||
9 | require("x86/div.pl"); | ||
10 | require("x86/add.pl"); | ||
11 | require("x86/sub.pl"); | ||
12 | require("x86/comba.pl"); | ||
13 | |||
14 | &asm_init($ARGV[0],$0); | ||
15 | |||
16 | &bn_mul_add_words("bn_mul_add_words"); | ||
17 | &bn_mul_words("bn_mul_words"); | ||
18 | &bn_sqr_words("bn_sqr_words"); | ||
19 | &bn_div_words("bn_div_words"); | ||
20 | &bn_add_words("bn_add_words"); | ||
21 | &bn_sub_words("bn_sub_words"); | ||
22 | &bn_mul_comba("bn_mul_comba8",8); | ||
23 | &bn_mul_comba("bn_mul_comba4",4); | ||
24 | &bn_sqr_comba("bn_sqr_comba8",8); | ||
25 | &bn_sqr_comba("bn_sqr_comba4",4); | ||
26 | |||
27 | &asm_finish(); | ||
28 | |||
diff --git a/src/lib/libcrypto/bn/asm/x86/add.pl b/src/lib/libcrypto/bn/asm/x86/add.pl deleted file mode 100644 index 3bb0080922..0000000000 --- a/src/lib/libcrypto/bn/asm/x86/add.pl +++ /dev/null | |||
@@ -1,76 +0,0 @@ | |||
1 | #!/usr/local/bin/perl | ||
2 | # x86 assembler | ||
3 | |||
4 | sub bn_add_words | ||
5 | { | ||
6 | local($name)=@_; | ||
7 | |||
8 | &function_begin($name,""); | ||
9 | |||
10 | &comment(""); | ||
11 | $a="esi"; | ||
12 | $b="edi"; | ||
13 | $c="eax"; | ||
14 | $r="ebx"; | ||
15 | $tmp1="ecx"; | ||
16 | $tmp2="edx"; | ||
17 | $num="ebp"; | ||
18 | |||
19 | &mov($r,&wparam(0)); # get r | ||
20 | &mov($a,&wparam(1)); # get a | ||
21 | &mov($b,&wparam(2)); # get b | ||
22 | &mov($num,&wparam(3)); # get num | ||
23 | &xor($c,$c); # clear carry | ||
24 | &and($num,0xfffffff8); # num / 8 | ||
25 | |||
26 | &jz(&label("aw_finish")); | ||
27 | |||
28 | &set_label("aw_loop",0); | ||
29 | for ($i=0; $i<8; $i++) | ||
30 | { | ||
31 | &comment("Round $i"); | ||
32 | |||
33 | &mov($tmp1,&DWP($i*4,$a,"",0)); # *a | ||
34 | &mov($tmp2,&DWP($i*4,$b,"",0)); # *b | ||
35 | &add($tmp1,$c); | ||
36 | &mov($c,0); | ||
37 | &adc($c,$c); | ||
38 | &add($tmp1,$tmp2); | ||
39 | &adc($c,0); | ||
40 | &mov(&DWP($i*4,$r,"",0),$tmp1); # *r | ||
41 | } | ||
42 | |||
43 | &comment(""); | ||
44 | &add($a,32); | ||
45 | &add($b,32); | ||
46 | &add($r,32); | ||
47 | &sub($num,8); | ||
48 | &jnz(&label("aw_loop")); | ||
49 | |||
50 | &set_label("aw_finish",0); | ||
51 | &mov($num,&wparam(3)); # get num | ||
52 | &and($num,7); | ||
53 | &jz(&label("aw_end")); | ||
54 | |||
55 | for ($i=0; $i<7; $i++) | ||
56 | { | ||
57 | &comment("Tail Round $i"); | ||
58 | &mov($tmp1,&DWP($i*4,$a,"",0)); # *a | ||
59 | &mov($tmp2,&DWP($i*4,$b,"",0));# *b | ||
60 | &add($tmp1,$c); | ||
61 | &mov($c,0); | ||
62 | &adc($c,$c); | ||
63 | &add($tmp1,$tmp2); | ||
64 | &adc($c,0); | ||
65 | &dec($num) if ($i != 6); | ||
66 | &mov(&DWP($i*4,$r,"",0),$tmp1); # *a | ||
67 | &jz(&label("aw_end")) if ($i != 6); | ||
68 | } | ||
69 | &set_label("aw_end",0); | ||
70 | |||
71 | # &mov("eax",$c); # $c is "eax" | ||
72 | |||
73 | &function_end($name); | ||
74 | } | ||
75 | |||
76 | 1; | ||
diff --git a/src/lib/libcrypto/bn/asm/x86/comba.pl b/src/lib/libcrypto/bn/asm/x86/comba.pl deleted file mode 100644 index dc4ec97ff5..0000000000 --- a/src/lib/libcrypto/bn/asm/x86/comba.pl +++ /dev/null | |||
@@ -1,277 +0,0 @@ | |||
1 | #!/usr/local/bin/perl | ||
2 | # x86 assembler | ||
3 | |||
4 | sub mul_add_c | ||
5 | { | ||
6 | local($a,$ai,$b,$bi,$c0,$c1,$c2,$pos,$i,$na,$nb)=@_; | ||
7 | |||
8 | # pos == -1 if eax and edx are pre-loaded, 0 to load from next | ||
9 | # words, and 1 if load return value | ||
10 | |||
11 | &comment("mul a[$ai]*b[$bi]"); | ||
12 | |||
13 | # "eax" and "edx" will always be pre-loaded. | ||
14 | # &mov("eax",&DWP($ai*4,$a,"",0)) ; | ||
15 | # &mov("edx",&DWP($bi*4,$b,"",0)); | ||
16 | |||
17 | &mul("edx"); | ||
18 | &add($c0,"eax"); | ||
19 | &mov("eax",&DWP(($na)*4,$a,"",0)) if $pos == 0; # laod next a | ||
20 | &mov("eax",&wparam(0)) if $pos > 0; # load r[] | ||
21 | ### | ||
22 | &adc($c1,"edx"); | ||
23 | &mov("edx",&DWP(($nb)*4,$b,"",0)) if $pos == 0; # laod next b | ||
24 | &mov("edx",&DWP(($nb)*4,$b,"",0)) if $pos == 1; # laod next b | ||
25 | ### | ||
26 | &adc($c2,0); | ||
27 | # is pos > 1, it means it is the last loop | ||
28 | &mov(&DWP($i*4,"eax","",0),$c0) if $pos > 0; # save r[]; | ||
29 | &mov("eax",&DWP(($na)*4,$a,"",0)) if $pos == 1; # laod next a | ||
30 | } | ||
31 | |||
32 | sub sqr_add_c | ||
33 | { | ||
34 | local($r,$a,$ai,$bi,$c0,$c1,$c2,$pos,$i,$na,$nb)=@_; | ||
35 | |||
36 | # pos == -1 if eax and edx are pre-loaded, 0 to load from next | ||
37 | # words, and 1 if load return value | ||
38 | |||
39 | &comment("sqr a[$ai]*a[$bi]"); | ||
40 | |||
41 | # "eax" and "edx" will always be pre-loaded. | ||
42 | # &mov("eax",&DWP($ai*4,$a,"",0)) ; | ||
43 | # &mov("edx",&DWP($bi*4,$b,"",0)); | ||
44 | |||
45 | if ($ai == $bi) | ||
46 | { &mul("eax");} | ||
47 | else | ||
48 | { &mul("edx");} | ||
49 | &add($c0,"eax"); | ||
50 | &mov("eax",&DWP(($na)*4,$a,"",0)) if $pos == 0; # load next a | ||
51 | ### | ||
52 | &adc($c1,"edx"); | ||
53 | &mov("edx",&DWP(($nb)*4,$a,"",0)) if ($pos == 1) && ($na != $nb); | ||
54 | ### | ||
55 | &adc($c2,0); | ||
56 | # is pos > 1, it means it is the last loop | ||
57 | &mov(&DWP($i*4,$r,"",0),$c0) if $pos > 0; # save r[]; | ||
58 | &mov("eax",&DWP(($na)*4,$a,"",0)) if $pos == 1; # load next b | ||
59 | } | ||
60 | |||
61 | sub sqr_add_c2 | ||
62 | { | ||
63 | local($r,$a,$ai,$bi,$c0,$c1,$c2,$pos,$i,$na,$nb)=@_; | ||
64 | |||
65 | # pos == -1 if eax and edx are pre-loaded, 0 to load from next | ||
66 | # words, and 1 if load return value | ||
67 | |||
68 | &comment("sqr a[$ai]*a[$bi]"); | ||
69 | |||
70 | # "eax" and "edx" will always be pre-loaded. | ||
71 | # &mov("eax",&DWP($ai*4,$a,"",0)) ; | ||
72 | # &mov("edx",&DWP($bi*4,$a,"",0)); | ||
73 | |||
74 | if ($ai == $bi) | ||
75 | { &mul("eax");} | ||
76 | else | ||
77 | { &mul("edx");} | ||
78 | &add("eax","eax"); | ||
79 | ### | ||
80 | &adc("edx","edx"); | ||
81 | ### | ||
82 | &adc($c2,0); | ||
83 | &add($c0,"eax"); | ||
84 | &adc($c1,"edx"); | ||
85 | &mov("eax",&DWP(($na)*4,$a,"",0)) if $pos == 0; # load next a | ||
86 | &mov("eax",&DWP(($na)*4,$a,"",0)) if $pos == 1; # load next b | ||
87 | &adc($c2,0); | ||
88 | &mov(&DWP($i*4,$r,"",0),$c0) if $pos > 0; # save r[]; | ||
89 | &mov("edx",&DWP(($nb)*4,$a,"",0)) if ($pos <= 1) && ($na != $nb); | ||
90 | ### | ||
91 | } | ||
92 | |||
93 | sub bn_mul_comba | ||
94 | { | ||
95 | local($name,$num)=@_; | ||
96 | local($a,$b,$c0,$c1,$c2); | ||
97 | local($i,$as,$ae,$bs,$be,$ai,$bi); | ||
98 | local($tot,$end); | ||
99 | |||
100 | &function_begin_B($name,""); | ||
101 | |||
102 | $c0="ebx"; | ||
103 | $c1="ecx"; | ||
104 | $c2="ebp"; | ||
105 | $a="esi"; | ||
106 | $b="edi"; | ||
107 | |||
108 | $as=0; | ||
109 | $ae=0; | ||
110 | $bs=0; | ||
111 | $be=0; | ||
112 | $tot=$num+$num-1; | ||
113 | |||
114 | &push("esi"); | ||
115 | &mov($a,&wparam(1)); | ||
116 | &push("edi"); | ||
117 | &mov($b,&wparam(2)); | ||
118 | &push("ebp"); | ||
119 | &push("ebx"); | ||
120 | |||
121 | &xor($c0,$c0); | ||
122 | &mov("eax",&DWP(0,$a,"",0)); # load the first word | ||
123 | &xor($c1,$c1); | ||
124 | &mov("edx",&DWP(0,$b,"",0)); # load the first second | ||
125 | |||
126 | for ($i=0; $i<$tot; $i++) | ||
127 | { | ||
128 | $ai=$as; | ||
129 | $bi=$bs; | ||
130 | $end=$be+1; | ||
131 | |||
132 | &comment("################## Calculate word $i"); | ||
133 | |||
134 | for ($j=$bs; $j<$end; $j++) | ||
135 | { | ||
136 | &xor($c2,$c2) if ($j == $bs); | ||
137 | if (($j+1) == $end) | ||
138 | { | ||
139 | $v=1; | ||
140 | $v=2 if (($i+1) == $tot); | ||
141 | } | ||
142 | else | ||
143 | { $v=0; } | ||
144 | if (($j+1) != $end) | ||
145 | { | ||
146 | $na=($ai-1); | ||
147 | $nb=($bi+1); | ||
148 | } | ||
149 | else | ||
150 | { | ||
151 | $na=$as+($i < ($num-1)); | ||
152 | $nb=$bs+($i >= ($num-1)); | ||
153 | } | ||
154 | #printf STDERR "[$ai,$bi] -> [$na,$nb]\n"; | ||
155 | &mul_add_c($a,$ai,$b,$bi,$c0,$c1,$c2,$v,$i,$na,$nb); | ||
156 | if ($v) | ||
157 | { | ||
158 | &comment("saved r[$i]"); | ||
159 | # &mov("eax",&wparam(0)); | ||
160 | # &mov(&DWP($i*4,"eax","",0),$c0); | ||
161 | ($c0,$c1,$c2)=($c1,$c2,$c0); | ||
162 | } | ||
163 | $ai--; | ||
164 | $bi++; | ||
165 | } | ||
166 | $as++ if ($i < ($num-1)); | ||
167 | $ae++ if ($i >= ($num-1)); | ||
168 | |||
169 | $bs++ if ($i >= ($num-1)); | ||
170 | $be++ if ($i < ($num-1)); | ||
171 | } | ||
172 | &comment("save r[$i]"); | ||
173 | # &mov("eax",&wparam(0)); | ||
174 | &mov(&DWP($i*4,"eax","",0),$c0); | ||
175 | |||
176 | &pop("ebx"); | ||
177 | &pop("ebp"); | ||
178 | &pop("edi"); | ||
179 | &pop("esi"); | ||
180 | &ret(); | ||
181 | &function_end_B($name); | ||
182 | } | ||
183 | |||
184 | sub bn_sqr_comba | ||
185 | { | ||
186 | local($name,$num)=@_; | ||
187 | local($r,$a,$c0,$c1,$c2)=@_; | ||
188 | local($i,$as,$ae,$bs,$be,$ai,$bi); | ||
189 | local($b,$tot,$end,$half); | ||
190 | |||
191 | &function_begin_B($name,""); | ||
192 | |||
193 | $c0="ebx"; | ||
194 | $c1="ecx"; | ||
195 | $c2="ebp"; | ||
196 | $a="esi"; | ||
197 | $r="edi"; | ||
198 | |||
199 | &push("esi"); | ||
200 | &push("edi"); | ||
201 | &push("ebp"); | ||
202 | &push("ebx"); | ||
203 | &mov($r,&wparam(0)); | ||
204 | &mov($a,&wparam(1)); | ||
205 | &xor($c0,$c0); | ||
206 | &xor($c1,$c1); | ||
207 | &mov("eax",&DWP(0,$a,"",0)); # load the first word | ||
208 | |||
209 | $as=0; | ||
210 | $ae=0; | ||
211 | $bs=0; | ||
212 | $be=0; | ||
213 | $tot=$num+$num-1; | ||
214 | |||
215 | for ($i=0; $i<$tot; $i++) | ||
216 | { | ||
217 | $ai=$as; | ||
218 | $bi=$bs; | ||
219 | $end=$be+1; | ||
220 | |||
221 | &comment("############### Calculate word $i"); | ||
222 | for ($j=$bs; $j<$end; $j++) | ||
223 | { | ||
224 | &xor($c2,$c2) if ($j == $bs); | ||
225 | if (($ai-1) < ($bi+1)) | ||
226 | { | ||
227 | $v=1; | ||
228 | $v=2 if ($i+1) == $tot; | ||
229 | } | ||
230 | else | ||
231 | { $v=0; } | ||
232 | if (!$v) | ||
233 | { | ||
234 | $na=$ai-1; | ||
235 | $nb=$bi+1; | ||
236 | } | ||
237 | else | ||
238 | { | ||
239 | $na=$as+($i < ($num-1)); | ||
240 | $nb=$bs+($i >= ($num-1)); | ||
241 | } | ||
242 | if ($ai == $bi) | ||
243 | { | ||
244 | &sqr_add_c($r,$a,$ai,$bi, | ||
245 | $c0,$c1,$c2,$v,$i,$na,$nb); | ||
246 | } | ||
247 | else | ||
248 | { | ||
249 | &sqr_add_c2($r,$a,$ai,$bi, | ||
250 | $c0,$c1,$c2,$v,$i,$na,$nb); | ||
251 | } | ||
252 | if ($v) | ||
253 | { | ||
254 | &comment("saved r[$i]"); | ||
255 | #&mov(&DWP($i*4,$r,"",0),$c0); | ||
256 | ($c0,$c1,$c2)=($c1,$c2,$c0); | ||
257 | last; | ||
258 | } | ||
259 | $ai--; | ||
260 | $bi++; | ||
261 | } | ||
262 | $as++ if ($i < ($num-1)); | ||
263 | $ae++ if ($i >= ($num-1)); | ||
264 | |||
265 | $bs++ if ($i >= ($num-1)); | ||
266 | $be++ if ($i < ($num-1)); | ||
267 | } | ||
268 | &mov(&DWP($i*4,$r,"",0),$c0); | ||
269 | &pop("ebx"); | ||
270 | &pop("ebp"); | ||
271 | &pop("edi"); | ||
272 | &pop("esi"); | ||
273 | &ret(); | ||
274 | &function_end_B($name); | ||
275 | } | ||
276 | |||
277 | 1; | ||
diff --git a/src/lib/libcrypto/bn/asm/x86/div.pl b/src/lib/libcrypto/bn/asm/x86/div.pl deleted file mode 100644 index e771eda82f..0000000000 --- a/src/lib/libcrypto/bn/asm/x86/div.pl +++ /dev/null | |||
@@ -1,15 +0,0 @@ | |||
1 | #!/usr/local/bin/perl | ||
2 | # x86 assembler | ||
3 | |||
4 | sub bn_div_words | ||
5 | { | ||
6 | local($name)=@_; | ||
7 | |||
8 | &function_begin($name,""); | ||
9 | &mov("edx",&wparam(0)); # | ||
10 | &mov("eax",&wparam(1)); # | ||
11 | &mov("ebx",&wparam(2)); # | ||
12 | &div("ebx"); | ||
13 | &function_end($name); | ||
14 | } | ||
15 | 1; | ||
diff --git a/src/lib/libcrypto/bn/asm/x86/mul.pl b/src/lib/libcrypto/bn/asm/x86/mul.pl deleted file mode 100644 index 92b5542dac..0000000000 --- a/src/lib/libcrypto/bn/asm/x86/mul.pl +++ /dev/null | |||
@@ -1,77 +0,0 @@ | |||
1 | #!/usr/local/bin/perl | ||
2 | # x86 assembler | ||
3 | |||
4 | sub bn_mul_words | ||
5 | { | ||
6 | local($name)=@_; | ||
7 | |||
8 | &function_begin($name,""); | ||
9 | |||
10 | &comment(""); | ||
11 | $Low="eax"; | ||
12 | $High="edx"; | ||
13 | $a="ebx"; | ||
14 | $w="ecx"; | ||
15 | $r="edi"; | ||
16 | $c="esi"; | ||
17 | $num="ebp"; | ||
18 | |||
19 | &xor($c,$c); # clear carry | ||
20 | &mov($r,&wparam(0)); # | ||
21 | &mov($a,&wparam(1)); # | ||
22 | &mov($num,&wparam(2)); # | ||
23 | &mov($w,&wparam(3)); # | ||
24 | |||
25 | &and($num,0xfffffff8); # num / 8 | ||
26 | &jz(&label("mw_finish")); | ||
27 | |||
28 | &set_label("mw_loop",0); | ||
29 | for ($i=0; $i<32; $i+=4) | ||
30 | { | ||
31 | &comment("Round $i"); | ||
32 | |||
33 | &mov("eax",&DWP($i,$a,"",0)); # *a | ||
34 | &mul($w); # *a * w | ||
35 | &add("eax",$c); # L(t)+=c | ||
36 | # XXX | ||
37 | |||
38 | &adc("edx",0); # H(t)+=carry | ||
39 | &mov(&DWP($i,$r,"",0),"eax"); # *r= L(t); | ||
40 | |||
41 | &mov($c,"edx"); # c= H(t); | ||
42 | } | ||
43 | |||
44 | &comment(""); | ||
45 | &add($a,32); | ||
46 | &add($r,32); | ||
47 | &sub($num,8); | ||
48 | &jz(&label("mw_finish")); | ||
49 | &jmp(&label("mw_loop")); | ||
50 | |||
51 | &set_label("mw_finish",0); | ||
52 | &mov($num,&wparam(2)); # get num | ||
53 | &and($num,7); | ||
54 | &jnz(&label("mw_finish2")); | ||
55 | &jmp(&label("mw_end")); | ||
56 | |||
57 | &set_label("mw_finish2",1); | ||
58 | for ($i=0; $i<7; $i++) | ||
59 | { | ||
60 | &comment("Tail Round $i"); | ||
61 | &mov("eax",&DWP($i*4,$a,"",0));# *a | ||
62 | &mul($w); # *a * w | ||
63 | &add("eax",$c); # L(t)+=c | ||
64 | # XXX | ||
65 | &adc("edx",0); # H(t)+=carry | ||
66 | &mov(&DWP($i*4,$r,"",0),"eax");# *r= L(t); | ||
67 | &mov($c,"edx"); # c= H(t); | ||
68 | &dec($num) if ($i != 7-1); | ||
69 | &jz(&label("mw_end")) if ($i != 7-1); | ||
70 | } | ||
71 | &set_label("mw_end",0); | ||
72 | &mov("eax",$c); | ||
73 | |||
74 | &function_end($name); | ||
75 | } | ||
76 | |||
77 | 1; | ||
diff --git a/src/lib/libcrypto/bn/asm/x86/mul_add.pl b/src/lib/libcrypto/bn/asm/x86/mul_add.pl deleted file mode 100644 index 9803dbdad0..0000000000 --- a/src/lib/libcrypto/bn/asm/x86/mul_add.pl +++ /dev/null | |||
@@ -1,87 +0,0 @@ | |||
1 | #!/usr/local/bin/perl | ||
2 | # x86 assembler | ||
3 | |||
4 | sub bn_mul_add_words | ||
5 | { | ||
6 | local($name)=@_; | ||
7 | |||
8 | &function_begin($name,""); | ||
9 | |||
10 | &comment(""); | ||
11 | $Low="eax"; | ||
12 | $High="edx"; | ||
13 | $a="ebx"; | ||
14 | $w="ebp"; | ||
15 | $r="edi"; | ||
16 | $c="esi"; | ||
17 | |||
18 | &xor($c,$c); # clear carry | ||
19 | &mov($r,&wparam(0)); # | ||
20 | |||
21 | &mov("ecx",&wparam(2)); # | ||
22 | &mov($a,&wparam(1)); # | ||
23 | |||
24 | &and("ecx",0xfffffff8); # num / 8 | ||
25 | &mov($w,&wparam(3)); # | ||
26 | |||
27 | &push("ecx"); # Up the stack for a tmp variable | ||
28 | |||
29 | &jz(&label("maw_finish")); | ||
30 | |||
31 | &set_label("maw_loop",0); | ||
32 | |||
33 | &mov(&swtmp(0),"ecx"); # | ||
34 | |||
35 | for ($i=0; $i<32; $i+=4) | ||
36 | { | ||
37 | &comment("Round $i"); | ||
38 | |||
39 | &mov("eax",&DWP($i,$a,"",0)); # *a | ||
40 | &mul($w); # *a * w | ||
41 | &add("eax",$c); # L(t)+= *r | ||
42 | &mov($c,&DWP($i,$r,"",0)); # L(t)+= *r | ||
43 | &adc("edx",0); # H(t)+=carry | ||
44 | &add("eax",$c); # L(t)+=c | ||
45 | &adc("edx",0); # H(t)+=carry | ||
46 | &mov(&DWP($i,$r,"",0),"eax"); # *r= L(t); | ||
47 | &mov($c,"edx"); # c= H(t); | ||
48 | } | ||
49 | |||
50 | &comment(""); | ||
51 | &mov("ecx",&swtmp(0)); # | ||
52 | &add($a,32); | ||
53 | &add($r,32); | ||
54 | &sub("ecx",8); | ||
55 | &jnz(&label("maw_loop")); | ||
56 | |||
57 | &set_label("maw_finish",0); | ||
58 | &mov("ecx",&wparam(2)); # get num | ||
59 | &and("ecx",7); | ||
60 | &jnz(&label("maw_finish2")); # helps branch prediction | ||
61 | &jmp(&label("maw_end")); | ||
62 | |||
63 | &set_label("maw_finish2",1); | ||
64 | for ($i=0; $i<7; $i++) | ||
65 | { | ||
66 | &comment("Tail Round $i"); | ||
67 | &mov("eax",&DWP($i*4,$a,"",0));# *a | ||
68 | &mul($w); # *a * w | ||
69 | &add("eax",$c); # L(t)+=c | ||
70 | &mov($c,&DWP($i*4,$r,"",0)); # L(t)+= *r | ||
71 | &adc("edx",0); # H(t)+=carry | ||
72 | &add("eax",$c); | ||
73 | &adc("edx",0); # H(t)+=carry | ||
74 | &dec("ecx") if ($i != 7-1); | ||
75 | &mov(&DWP($i*4,$r,"",0),"eax"); # *r= L(t); | ||
76 | &mov($c,"edx"); # c= H(t); | ||
77 | &jz(&label("maw_end")) if ($i != 7-1); | ||
78 | } | ||
79 | &set_label("maw_end",0); | ||
80 | &mov("eax",$c); | ||
81 | |||
82 | &pop("ecx"); # clear variable from | ||
83 | |||
84 | &function_end($name); | ||
85 | } | ||
86 | |||
87 | 1; | ||
diff --git a/src/lib/libcrypto/bn/asm/x86/sqr.pl b/src/lib/libcrypto/bn/asm/x86/sqr.pl deleted file mode 100644 index 6cf75a76e2..0000000000 --- a/src/lib/libcrypto/bn/asm/x86/sqr.pl +++ /dev/null | |||
@@ -1,60 +0,0 @@ | |||
1 | #!/usr/local/bin/perl | ||
2 | # x86 assembler | ||
3 | |||
4 | sub bn_sqr_words | ||
5 | { | ||
6 | local($name)=@_; | ||
7 | |||
8 | &function_begin($name,""); | ||
9 | |||
10 | &comment(""); | ||
11 | $r="esi"; | ||
12 | $a="edi"; | ||
13 | $num="ebx"; | ||
14 | |||
15 | &mov($r,&wparam(0)); # | ||
16 | &mov($a,&wparam(1)); # | ||
17 | &mov($num,&wparam(2)); # | ||
18 | |||
19 | &and($num,0xfffffff8); # num / 8 | ||
20 | &jz(&label("sw_finish")); | ||
21 | |||
22 | &set_label("sw_loop",0); | ||
23 | for ($i=0; $i<32; $i+=4) | ||
24 | { | ||
25 | &comment("Round $i"); | ||
26 | &mov("eax",&DWP($i,$a,"",0)); # *a | ||
27 | # XXX | ||
28 | &mul("eax"); # *a * *a | ||
29 | &mov(&DWP($i*2,$r,"",0),"eax"); # | ||
30 | &mov(&DWP($i*2+4,$r,"",0),"edx");# | ||
31 | } | ||
32 | |||
33 | &comment(""); | ||
34 | &add($a,32); | ||
35 | &add($r,64); | ||
36 | &sub($num,8); | ||
37 | &jnz(&label("sw_loop")); | ||
38 | |||
39 | &set_label("sw_finish",0); | ||
40 | &mov($num,&wparam(2)); # get num | ||
41 | &and($num,7); | ||
42 | &jz(&label("sw_end")); | ||
43 | |||
44 | for ($i=0; $i<7; $i++) | ||
45 | { | ||
46 | &comment("Tail Round $i"); | ||
47 | &mov("eax",&DWP($i*4,$a,"",0)); # *a | ||
48 | # XXX | ||
49 | &mul("eax"); # *a * *a | ||
50 | &mov(&DWP($i*8,$r,"",0),"eax"); # | ||
51 | &dec($num) if ($i != 7-1); | ||
52 | &mov(&DWP($i*8+4,$r,"",0),"edx"); | ||
53 | &jz(&label("sw_end")) if ($i != 7-1); | ||
54 | } | ||
55 | &set_label("sw_end",0); | ||
56 | |||
57 | &function_end($name); | ||
58 | } | ||
59 | |||
60 | 1; | ||
diff --git a/src/lib/libcrypto/bn/asm/x86/sub.pl b/src/lib/libcrypto/bn/asm/x86/sub.pl deleted file mode 100644 index 0c5364cce5..0000000000 --- a/src/lib/libcrypto/bn/asm/x86/sub.pl +++ /dev/null | |||
@@ -1,76 +0,0 @@ | |||
1 | #!/usr/local/bin/perl | ||
2 | # x86 assembler | ||
3 | |||
4 | sub bn_sub_words | ||
5 | { | ||
6 | local($name)=@_; | ||
7 | |||
8 | &function_begin($name,""); | ||
9 | |||
10 | &comment(""); | ||
11 | $a="esi"; | ||
12 | $b="edi"; | ||
13 | $c="eax"; | ||
14 | $r="ebx"; | ||
15 | $tmp1="ecx"; | ||
16 | $tmp2="edx"; | ||
17 | $num="ebp"; | ||
18 | |||
19 | &mov($r,&wparam(0)); # get r | ||
20 | &mov($a,&wparam(1)); # get a | ||
21 | &mov($b,&wparam(2)); # get b | ||
22 | &mov($num,&wparam(3)); # get num | ||
23 | &xor($c,$c); # clear carry | ||
24 | &and($num,0xfffffff8); # num / 8 | ||
25 | |||
26 | &jz(&label("aw_finish")); | ||
27 | |||
28 | &set_label("aw_loop",0); | ||
29 | for ($i=0; $i<8; $i++) | ||
30 | { | ||
31 | &comment("Round $i"); | ||
32 | |||
33 | &mov($tmp1,&DWP($i*4,$a,"",0)); # *a | ||
34 | &mov($tmp2,&DWP($i*4,$b,"",0)); # *b | ||
35 | &sub($tmp1,$c); | ||
36 | &mov($c,0); | ||
37 | &adc($c,$c); | ||
38 | &sub($tmp1,$tmp2); | ||
39 | &adc($c,0); | ||
40 | &mov(&DWP($i*4,$r,"",0),$tmp1); # *r | ||
41 | } | ||
42 | |||
43 | &comment(""); | ||
44 | &add($a,32); | ||
45 | &add($b,32); | ||
46 | &add($r,32); | ||
47 | &sub($num,8); | ||
48 | &jnz(&label("aw_loop")); | ||
49 | |||
50 | &set_label("aw_finish",0); | ||
51 | &mov($num,&wparam(3)); # get num | ||
52 | &and($num,7); | ||
53 | &jz(&label("aw_end")); | ||
54 | |||
55 | for ($i=0; $i<7; $i++) | ||
56 | { | ||
57 | &comment("Tail Round $i"); | ||
58 | &mov($tmp1,&DWP($i*4,$a,"",0)); # *a | ||
59 | &mov($tmp2,&DWP($i*4,$b,"",0));# *b | ||
60 | &sub($tmp1,$c); | ||
61 | &mov($c,0); | ||
62 | &adc($c,$c); | ||
63 | &sub($tmp1,$tmp2); | ||
64 | &adc($c,0); | ||
65 | &dec($num) if ($i != 6); | ||
66 | &mov(&DWP($i*4,$r,"",0),$tmp1); # *a | ||
67 | &jz(&label("aw_end")) if ($i != 6); | ||
68 | } | ||
69 | &set_label("aw_end",0); | ||
70 | |||
71 | # &mov("eax",$c); # $c is "eax" | ||
72 | |||
73 | &function_end($name); | ||
74 | } | ||
75 | |||
76 | 1; | ||
diff --git a/src/lib/libcrypto/bn/asm/x86_64-gcc.c b/src/lib/libcrypto/bn/asm/x86_64-gcc.c deleted file mode 100644 index 9deffa71f1..0000000000 --- a/src/lib/libcrypto/bn/asm/x86_64-gcc.c +++ /dev/null | |||
@@ -1,598 +0,0 @@ | |||
1 | /* $OpenBSD: x86_64-gcc.c,v 1.5 2015/02/25 15:39:49 bcook Exp $ */ | ||
2 | #include "../bn_lcl.h" | ||
3 | #if !(defined(__GNUC__) && __GNUC__>=2) | ||
4 | # include "../bn_asm.c" /* kind of dirty hack for Sun Studio */ | ||
5 | #else | ||
6 | /* | ||
7 | * x86_64 BIGNUM accelerator version 0.1, December 2002. | ||
8 | * | ||
9 | * Implemented by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL | ||
10 | * project. | ||
11 | * | ||
12 | * Rights for redistribution and usage in source and binary forms are | ||
13 | * granted according to the OpenSSL license. Warranty of any kind is | ||
14 | * disclaimed. | ||
15 | * | ||
16 | * Q. Version 0.1? It doesn't sound like Andy, he used to assign real | ||
17 | * versions, like 1.0... | ||
18 | * A. Well, that's because this code is basically a quick-n-dirty | ||
19 | * proof-of-concept hack. As you can see it's implemented with | ||
20 | * inline assembler, which means that you're bound to GCC and that | ||
21 | * there might be enough room for further improvement. | ||
22 | * | ||
23 | * Q. Why inline assembler? | ||
24 | * A. x86_64 features own ABI which I'm not familiar with. This is | ||
25 | * why I decided to let the compiler take care of subroutine | ||
26 | * prologue/epilogue as well as register allocation. For reference. | ||
27 | * Win64 implements different ABI for AMD64, different from Linux. | ||
28 | * | ||
29 | * Q. How much faster does it get? | ||
30 | * A. 'apps/openssl speed rsa dsa' output with no-asm: | ||
31 | * | ||
32 | * sign verify sign/s verify/s | ||
33 | * rsa 512 bits 0.0006s 0.0001s 1683.8 18456.2 | ||
34 | * rsa 1024 bits 0.0028s 0.0002s 356.0 6407.0 | ||
35 | * rsa 2048 bits 0.0172s 0.0005s 58.0 1957.8 | ||
36 | * rsa 4096 bits 0.1155s 0.0018s 8.7 555.6 | ||
37 | * sign verify sign/s verify/s | ||
38 | * dsa 512 bits 0.0005s 0.0006s 2100.8 1768.3 | ||
39 | * dsa 1024 bits 0.0014s 0.0018s 692.3 559.2 | ||
40 | * dsa 2048 bits 0.0049s 0.0061s 204.7 165.0 | ||
41 | * | ||
42 | * 'apps/openssl speed rsa dsa' output with this module: | ||
43 | * | ||
44 | * sign verify sign/s verify/s | ||
45 | * rsa 512 bits 0.0004s 0.0000s 2767.1 33297.9 | ||
46 | * rsa 1024 bits 0.0012s 0.0001s 867.4 14674.7 | ||
47 | * rsa 2048 bits 0.0061s 0.0002s 164.0 5270.0 | ||
48 | * rsa 4096 bits 0.0384s 0.0006s 26.1 1650.8 | ||
49 | * sign verify sign/s verify/s | ||
50 | * dsa 512 bits 0.0002s 0.0003s 4442.2 3786.3 | ||
51 | * dsa 1024 bits 0.0005s 0.0007s 1835.1 1497.4 | ||
52 | * dsa 2048 bits 0.0016s 0.0020s 620.4 504.6 | ||
53 | * | ||
54 | * For the reference. IA-32 assembler implementation performs | ||
55 | * very much like 64-bit code compiled with no-asm on the same | ||
56 | * machine. | ||
57 | */ | ||
58 | |||
59 | #define BN_ULONG unsigned long | ||
60 | |||
61 | #undef mul | ||
62 | #undef mul_add | ||
63 | #undef sqr | ||
64 | |||
65 | /* | ||
66 | * "m"(a), "+m"(r) is the way to favor DirectPath µ-code; | ||
67 | * "g"(0) let the compiler to decide where does it | ||
68 | * want to keep the value of zero; | ||
69 | */ | ||
70 | #define mul_add(r,a,word,carry) do { \ | ||
71 | BN_ULONG high,low; \ | ||
72 | asm ("mulq %3" \ | ||
73 | : "=a"(low),"=d"(high) \ | ||
74 | : "a"(word),"m"(a) \ | ||
75 | : "cc"); \ | ||
76 | asm ("addq %2,%0; adcq %3,%1" \ | ||
77 | : "+r"(carry),"+d"(high)\ | ||
78 | : "a"(low),"g"(0) \ | ||
79 | : "cc"); \ | ||
80 | asm ("addq %2,%0; adcq %3,%1" \ | ||
81 | : "+m"(r),"+d"(high) \ | ||
82 | : "r"(carry),"g"(0) \ | ||
83 | : "cc"); \ | ||
84 | carry=high; \ | ||
85 | } while (0) | ||
86 | |||
87 | #define mul(r,a,word,carry) do { \ | ||
88 | BN_ULONG high,low; \ | ||
89 | asm ("mulq %3" \ | ||
90 | : "=a"(low),"=d"(high) \ | ||
91 | : "a"(word),"g"(a) \ | ||
92 | : "cc"); \ | ||
93 | asm ("addq %2,%0; adcq %3,%1" \ | ||
94 | : "+r"(carry),"+d"(high)\ | ||
95 | : "a"(low),"g"(0) \ | ||
96 | : "cc"); \ | ||
97 | (r)=carry, carry=high; \ | ||
98 | } while (0) | ||
99 | |||
100 | #define sqr(r0,r1,a) \ | ||
101 | asm ("mulq %2" \ | ||
102 | : "=a"(r0),"=d"(r1) \ | ||
103 | : "a"(a) \ | ||
104 | : "cc"); | ||
105 | |||
106 | BN_ULONG bn_mul_add_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w) | ||
107 | { | ||
108 | BN_ULONG c1=0; | ||
109 | |||
110 | if (num <= 0) return(c1); | ||
111 | |||
112 | while (num&~3) | ||
113 | { | ||
114 | mul_add(rp[0],ap[0],w,c1); | ||
115 | mul_add(rp[1],ap[1],w,c1); | ||
116 | mul_add(rp[2],ap[2],w,c1); | ||
117 | mul_add(rp[3],ap[3],w,c1); | ||
118 | ap+=4; rp+=4; num-=4; | ||
119 | } | ||
120 | if (num) | ||
121 | { | ||
122 | mul_add(rp[0],ap[0],w,c1); if (--num==0) return c1; | ||
123 | mul_add(rp[1],ap[1],w,c1); if (--num==0) return c1; | ||
124 | mul_add(rp[2],ap[2],w,c1); return c1; | ||
125 | } | ||
126 | |||
127 | return(c1); | ||
128 | } | ||
129 | |||
130 | BN_ULONG bn_mul_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w) | ||
131 | { | ||
132 | BN_ULONG c1=0; | ||
133 | |||
134 | if (num <= 0) return(c1); | ||
135 | |||
136 | while (num&~3) | ||
137 | { | ||
138 | mul(rp[0],ap[0],w,c1); | ||
139 | mul(rp[1],ap[1],w,c1); | ||
140 | mul(rp[2],ap[2],w,c1); | ||
141 | mul(rp[3],ap[3],w,c1); | ||
142 | ap+=4; rp+=4; num-=4; | ||
143 | } | ||
144 | if (num) | ||
145 | { | ||
146 | mul(rp[0],ap[0],w,c1); if (--num == 0) return c1; | ||
147 | mul(rp[1],ap[1],w,c1); if (--num == 0) return c1; | ||
148 | mul(rp[2],ap[2],w,c1); | ||
149 | } | ||
150 | return(c1); | ||
151 | } | ||
152 | |||
153 | void bn_sqr_words(BN_ULONG *r, const BN_ULONG *a, int n) | ||
154 | { | ||
155 | if (n <= 0) return; | ||
156 | |||
157 | while (n&~3) | ||
158 | { | ||
159 | sqr(r[0],r[1],a[0]); | ||
160 | sqr(r[2],r[3],a[1]); | ||
161 | sqr(r[4],r[5],a[2]); | ||
162 | sqr(r[6],r[7],a[3]); | ||
163 | a+=4; r+=8; n-=4; | ||
164 | } | ||
165 | if (n) | ||
166 | { | ||
167 | sqr(r[0],r[1],a[0]); if (--n == 0) return; | ||
168 | sqr(r[2],r[3],a[1]); if (--n == 0) return; | ||
169 | sqr(r[4],r[5],a[2]); | ||
170 | } | ||
171 | } | ||
172 | |||
173 | BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d) | ||
174 | { BN_ULONG ret,waste; | ||
175 | |||
176 | asm ("divq %4" | ||
177 | : "=a"(ret),"=d"(waste) | ||
178 | : "a"(l),"d"(h),"g"(d) | ||
179 | : "cc"); | ||
180 | |||
181 | return ret; | ||
182 | } | ||
183 | |||
184 | BN_ULONG bn_add_words (BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,int n) | ||
185 | { BN_ULONG ret=0,i=0; | ||
186 | |||
187 | if (n <= 0) return 0; | ||
188 | |||
189 | asm ( | ||
190 | " subq %2,%2 \n" | ||
191 | ".p2align 4 \n" | ||
192 | "1: movq (%4,%2,8),%0 \n" | ||
193 | " adcq (%5,%2,8),%0 \n" | ||
194 | " movq %0,(%3,%2,8) \n" | ||
195 | " leaq 1(%2),%2 \n" | ||
196 | " loop 1b \n" | ||
197 | " sbbq %0,%0 \n" | ||
198 | : "=&a"(ret),"+c"(n),"=&r"(i) | ||
199 | : "r"(rp),"r"(ap),"r"(bp) | ||
200 | : "cc" | ||
201 | ); | ||
202 | |||
203 | return ret&1; | ||
204 | } | ||
205 | |||
206 | #ifndef SIMICS | ||
207 | BN_ULONG bn_sub_words (BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,int n) | ||
208 | { BN_ULONG ret=0,i=0; | ||
209 | |||
210 | if (n <= 0) return 0; | ||
211 | |||
212 | asm ( | ||
213 | " subq %2,%2 \n" | ||
214 | ".p2align 4 \n" | ||
215 | "1: movq (%4,%2,8),%0 \n" | ||
216 | " sbbq (%5,%2,8),%0 \n" | ||
217 | " movq %0,(%3,%2,8) \n" | ||
218 | " leaq 1(%2),%2 \n" | ||
219 | " loop 1b \n" | ||
220 | " sbbq %0,%0 \n" | ||
221 | : "=&a"(ret),"+c"(n),"=&r"(i) | ||
222 | : "r"(rp),"r"(ap),"r"(bp) | ||
223 | : "cc" | ||
224 | ); | ||
225 | |||
226 | return ret&1; | ||
227 | } | ||
228 | #else | ||
229 | /* Simics 1.4<7 has buggy sbbq:-( */ | ||
230 | #define BN_MASK2 0xffffffffffffffffL | ||
231 | BN_ULONG bn_sub_words(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n) | ||
232 | { | ||
233 | BN_ULONG t1,t2; | ||
234 | int c=0; | ||
235 | |||
236 | if (n <= 0) return((BN_ULONG)0); | ||
237 | |||
238 | for (;;) | ||
239 | { | ||
240 | t1=a[0]; t2=b[0]; | ||
241 | r[0]=(t1-t2-c)&BN_MASK2; | ||
242 | if (t1 != t2) c=(t1 < t2); | ||
243 | if (--n <= 0) break; | ||
244 | |||
245 | t1=a[1]; t2=b[1]; | ||
246 | r[1]=(t1-t2-c)&BN_MASK2; | ||
247 | if (t1 != t2) c=(t1 < t2); | ||
248 | if (--n <= 0) break; | ||
249 | |||
250 | t1=a[2]; t2=b[2]; | ||
251 | r[2]=(t1-t2-c)&BN_MASK2; | ||
252 | if (t1 != t2) c=(t1 < t2); | ||
253 | if (--n <= 0) break; | ||
254 | |||
255 | t1=a[3]; t2=b[3]; | ||
256 | r[3]=(t1-t2-c)&BN_MASK2; | ||
257 | if (t1 != t2) c=(t1 < t2); | ||
258 | if (--n <= 0) break; | ||
259 | |||
260 | a+=4; | ||
261 | b+=4; | ||
262 | r+=4; | ||
263 | } | ||
264 | return(c); | ||
265 | } | ||
266 | #endif | ||
267 | |||
268 | /* mul_add_c(a,b,c0,c1,c2) -- c+=a*b for three word number c=(c2,c1,c0) */ | ||
269 | /* mul_add_c2(a,b,c0,c1,c2) -- c+=2*a*b for three word number c=(c2,c1,c0) */ | ||
270 | /* sqr_add_c(a,i,c0,c1,c2) -- c+=a[i]^2 for three word number c=(c2,c1,c0) */ | ||
271 | /* sqr_add_c2(a,i,c0,c1,c2) -- c+=2*a[i]*a[j] for three word number c=(c2,c1,c0) */ | ||
272 | |||
273 | /* | ||
274 | * Keep in mind that carrying into high part of multiplication result | ||
275 | * can not overflow, because it cannot be all-ones. | ||
276 | */ | ||
277 | #if 0 | ||
278 | /* original macros are kept for reference purposes */ | ||
279 | #define mul_add_c(a,b,c0,c1,c2) do { \ | ||
280 | BN_ULONG ta = (a), tb = (b); \ | ||
281 | BN_ULONG lo, hi; \ | ||
282 | BN_UMULT_LOHI(lo,hi,ta,tb); \ | ||
283 | c0 += lo; hi += (c0<lo)?1:0; \ | ||
284 | c1 += hi; c2 += (c1<hi)?1:0; \ | ||
285 | } while(0) | ||
286 | |||
287 | #define mul_add_c2(a,b,c0,c1,c2) do { \ | ||
288 | BN_ULONG ta = (a), tb = (b); \ | ||
289 | BN_ULONG lo, hi, tt; \ | ||
290 | BN_UMULT_LOHI(lo,hi,ta,tb); \ | ||
291 | c0 += lo; tt = hi+((c0<lo)?1:0); \ | ||
292 | c1 += tt; c2 += (c1<tt)?1:0; \ | ||
293 | c0 += lo; hi += (c0<lo)?1:0; \ | ||
294 | c1 += hi; c2 += (c1<hi)?1:0; \ | ||
295 | } while(0) | ||
296 | |||
297 | #define sqr_add_c(a,i,c0,c1,c2) do { \ | ||
298 | BN_ULONG ta = (a)[i]; \ | ||
299 | BN_ULONG lo, hi; \ | ||
300 | BN_UMULT_LOHI(lo,hi,ta,ta); \ | ||
301 | c0 += lo; hi += (c0<lo)?1:0; \ | ||
302 | c1 += hi; c2 += (c1<hi)?1:0; \ | ||
303 | } while(0) | ||
304 | #else | ||
305 | #define mul_add_c(a,b,c0,c1,c2) do { \ | ||
306 | BN_ULONG t1,t2; \ | ||
307 | asm ("mulq %3" \ | ||
308 | : "=a"(t1),"=d"(t2) \ | ||
309 | : "a"(a),"m"(b) \ | ||
310 | : "cc"); \ | ||
311 | asm ("addq %3,%0; adcq %4,%1; adcq %5,%2" \ | ||
312 | : "+r"(c0),"+r"(c1),"+r"(c2) \ | ||
313 | : "r"(t1),"r"(t2),"g"(0) \ | ||
314 | : "cc"); \ | ||
315 | } while (0) | ||
316 | |||
317 | #define sqr_add_c(a,i,c0,c1,c2) do { \ | ||
318 | BN_ULONG t1,t2; \ | ||
319 | asm ("mulq %2" \ | ||
320 | : "=a"(t1),"=d"(t2) \ | ||
321 | : "a"(a[i]) \ | ||
322 | : "cc"); \ | ||
323 | asm ("addq %3,%0; adcq %4,%1; adcq %5,%2" \ | ||
324 | : "+r"(c0),"+r"(c1),"+r"(c2) \ | ||
325 | : "r"(t1),"r"(t2),"g"(0) \ | ||
326 | : "cc"); \ | ||
327 | } while (0) | ||
328 | |||
329 | #define mul_add_c2(a,b,c0,c1,c2) do { \ | ||
330 | BN_ULONG t1,t2; \ | ||
331 | asm ("mulq %3" \ | ||
332 | : "=a"(t1),"=d"(t2) \ | ||
333 | : "a"(a),"m"(b) \ | ||
334 | : "cc"); \ | ||
335 | asm ("addq %3,%0; adcq %4,%1; adcq %5,%2" \ | ||
336 | : "+r"(c0),"+r"(c1),"+r"(c2) \ | ||
337 | : "r"(t1),"r"(t2),"g"(0) \ | ||
338 | : "cc"); \ | ||
339 | asm ("addq %3,%0; adcq %4,%1; adcq %5,%2" \ | ||
340 | : "+r"(c0),"+r"(c1),"+r"(c2) \ | ||
341 | : "r"(t1),"r"(t2),"g"(0) \ | ||
342 | : "cc"); \ | ||
343 | } while (0) | ||
344 | #endif | ||
345 | |||
346 | #define sqr_add_c2(a,i,j,c0,c1,c2) \ | ||
347 | mul_add_c2((a)[i],(a)[j],c0,c1,c2) | ||
348 | |||
349 | void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b) | ||
350 | { | ||
351 | BN_ULONG c1,c2,c3; | ||
352 | |||
353 | c1=0; | ||
354 | c2=0; | ||
355 | c3=0; | ||
356 | mul_add_c(a[0],b[0],c1,c2,c3); | ||
357 | r[0]=c1; | ||
358 | c1=0; | ||
359 | mul_add_c(a[0],b[1],c2,c3,c1); | ||
360 | mul_add_c(a[1],b[0],c2,c3,c1); | ||
361 | r[1]=c2; | ||
362 | c2=0; | ||
363 | mul_add_c(a[2],b[0],c3,c1,c2); | ||
364 | mul_add_c(a[1],b[1],c3,c1,c2); | ||
365 | mul_add_c(a[0],b[2],c3,c1,c2); | ||
366 | r[2]=c3; | ||
367 | c3=0; | ||
368 | mul_add_c(a[0],b[3],c1,c2,c3); | ||
369 | mul_add_c(a[1],b[2],c1,c2,c3); | ||
370 | mul_add_c(a[2],b[1],c1,c2,c3); | ||
371 | mul_add_c(a[3],b[0],c1,c2,c3); | ||
372 | r[3]=c1; | ||
373 | c1=0; | ||
374 | mul_add_c(a[4],b[0],c2,c3,c1); | ||
375 | mul_add_c(a[3],b[1],c2,c3,c1); | ||
376 | mul_add_c(a[2],b[2],c2,c3,c1); | ||
377 | mul_add_c(a[1],b[3],c2,c3,c1); | ||
378 | mul_add_c(a[0],b[4],c2,c3,c1); | ||
379 | r[4]=c2; | ||
380 | c2=0; | ||
381 | mul_add_c(a[0],b[5],c3,c1,c2); | ||
382 | mul_add_c(a[1],b[4],c3,c1,c2); | ||
383 | mul_add_c(a[2],b[3],c3,c1,c2); | ||
384 | mul_add_c(a[3],b[2],c3,c1,c2); | ||
385 | mul_add_c(a[4],b[1],c3,c1,c2); | ||
386 | mul_add_c(a[5],b[0],c3,c1,c2); | ||
387 | r[5]=c3; | ||
388 | c3=0; | ||
389 | mul_add_c(a[6],b[0],c1,c2,c3); | ||
390 | mul_add_c(a[5],b[1],c1,c2,c3); | ||
391 | mul_add_c(a[4],b[2],c1,c2,c3); | ||
392 | mul_add_c(a[3],b[3],c1,c2,c3); | ||
393 | mul_add_c(a[2],b[4],c1,c2,c3); | ||
394 | mul_add_c(a[1],b[5],c1,c2,c3); | ||
395 | mul_add_c(a[0],b[6],c1,c2,c3); | ||
396 | r[6]=c1; | ||
397 | c1=0; | ||
398 | mul_add_c(a[0],b[7],c2,c3,c1); | ||
399 | mul_add_c(a[1],b[6],c2,c3,c1); | ||
400 | mul_add_c(a[2],b[5],c2,c3,c1); | ||
401 | mul_add_c(a[3],b[4],c2,c3,c1); | ||
402 | mul_add_c(a[4],b[3],c2,c3,c1); | ||
403 | mul_add_c(a[5],b[2],c2,c3,c1); | ||
404 | mul_add_c(a[6],b[1],c2,c3,c1); | ||
405 | mul_add_c(a[7],b[0],c2,c3,c1); | ||
406 | r[7]=c2; | ||
407 | c2=0; | ||
408 | mul_add_c(a[7],b[1],c3,c1,c2); | ||
409 | mul_add_c(a[6],b[2],c3,c1,c2); | ||
410 | mul_add_c(a[5],b[3],c3,c1,c2); | ||
411 | mul_add_c(a[4],b[4],c3,c1,c2); | ||
412 | mul_add_c(a[3],b[5],c3,c1,c2); | ||
413 | mul_add_c(a[2],b[6],c3,c1,c2); | ||
414 | mul_add_c(a[1],b[7],c3,c1,c2); | ||
415 | r[8]=c3; | ||
416 | c3=0; | ||
417 | mul_add_c(a[2],b[7],c1,c2,c3); | ||
418 | mul_add_c(a[3],b[6],c1,c2,c3); | ||
419 | mul_add_c(a[4],b[5],c1,c2,c3); | ||
420 | mul_add_c(a[5],b[4],c1,c2,c3); | ||
421 | mul_add_c(a[6],b[3],c1,c2,c3); | ||
422 | mul_add_c(a[7],b[2],c1,c2,c3); | ||
423 | r[9]=c1; | ||
424 | c1=0; | ||
425 | mul_add_c(a[7],b[3],c2,c3,c1); | ||
426 | mul_add_c(a[6],b[4],c2,c3,c1); | ||
427 | mul_add_c(a[5],b[5],c2,c3,c1); | ||
428 | mul_add_c(a[4],b[6],c2,c3,c1); | ||
429 | mul_add_c(a[3],b[7],c2,c3,c1); | ||
430 | r[10]=c2; | ||
431 | c2=0; | ||
432 | mul_add_c(a[4],b[7],c3,c1,c2); | ||
433 | mul_add_c(a[5],b[6],c3,c1,c2); | ||
434 | mul_add_c(a[6],b[5],c3,c1,c2); | ||
435 | mul_add_c(a[7],b[4],c3,c1,c2); | ||
436 | r[11]=c3; | ||
437 | c3=0; | ||
438 | mul_add_c(a[7],b[5],c1,c2,c3); | ||
439 | mul_add_c(a[6],b[6],c1,c2,c3); | ||
440 | mul_add_c(a[5],b[7],c1,c2,c3); | ||
441 | r[12]=c1; | ||
442 | c1=0; | ||
443 | mul_add_c(a[6],b[7],c2,c3,c1); | ||
444 | mul_add_c(a[7],b[6],c2,c3,c1); | ||
445 | r[13]=c2; | ||
446 | c2=0; | ||
447 | mul_add_c(a[7],b[7],c3,c1,c2); | ||
448 | r[14]=c3; | ||
449 | r[15]=c1; | ||
450 | } | ||
451 | |||
452 | void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b) | ||
453 | { | ||
454 | BN_ULONG c1,c2,c3; | ||
455 | |||
456 | c1=0; | ||
457 | c2=0; | ||
458 | c3=0; | ||
459 | mul_add_c(a[0],b[0],c1,c2,c3); | ||
460 | r[0]=c1; | ||
461 | c1=0; | ||
462 | mul_add_c(a[0],b[1],c2,c3,c1); | ||
463 | mul_add_c(a[1],b[0],c2,c3,c1); | ||
464 | r[1]=c2; | ||
465 | c2=0; | ||
466 | mul_add_c(a[2],b[0],c3,c1,c2); | ||
467 | mul_add_c(a[1],b[1],c3,c1,c2); | ||
468 | mul_add_c(a[0],b[2],c3,c1,c2); | ||
469 | r[2]=c3; | ||
470 | c3=0; | ||
471 | mul_add_c(a[0],b[3],c1,c2,c3); | ||
472 | mul_add_c(a[1],b[2],c1,c2,c3); | ||
473 | mul_add_c(a[2],b[1],c1,c2,c3); | ||
474 | mul_add_c(a[3],b[0],c1,c2,c3); | ||
475 | r[3]=c1; | ||
476 | c1=0; | ||
477 | mul_add_c(a[3],b[1],c2,c3,c1); | ||
478 | mul_add_c(a[2],b[2],c2,c3,c1); | ||
479 | mul_add_c(a[1],b[3],c2,c3,c1); | ||
480 | r[4]=c2; | ||
481 | c2=0; | ||
482 | mul_add_c(a[2],b[3],c3,c1,c2); | ||
483 | mul_add_c(a[3],b[2],c3,c1,c2); | ||
484 | r[5]=c3; | ||
485 | c3=0; | ||
486 | mul_add_c(a[3],b[3],c1,c2,c3); | ||
487 | r[6]=c1; | ||
488 | r[7]=c2; | ||
489 | } | ||
490 | |||
491 | void bn_sqr_comba8(BN_ULONG *r, const BN_ULONG *a) | ||
492 | { | ||
493 | BN_ULONG c1,c2,c3; | ||
494 | |||
495 | c1=0; | ||
496 | c2=0; | ||
497 | c3=0; | ||
498 | sqr_add_c(a,0,c1,c2,c3); | ||
499 | r[0]=c1; | ||
500 | c1=0; | ||
501 | sqr_add_c2(a,1,0,c2,c3,c1); | ||
502 | r[1]=c2; | ||
503 | c2=0; | ||
504 | sqr_add_c(a,1,c3,c1,c2); | ||
505 | sqr_add_c2(a,2,0,c3,c1,c2); | ||
506 | r[2]=c3; | ||
507 | c3=0; | ||
508 | sqr_add_c2(a,3,0,c1,c2,c3); | ||
509 | sqr_add_c2(a,2,1,c1,c2,c3); | ||
510 | r[3]=c1; | ||
511 | c1=0; | ||
512 | sqr_add_c(a,2,c2,c3,c1); | ||
513 | sqr_add_c2(a,3,1,c2,c3,c1); | ||
514 | sqr_add_c2(a,4,0,c2,c3,c1); | ||
515 | r[4]=c2; | ||
516 | c2=0; | ||
517 | sqr_add_c2(a,5,0,c3,c1,c2); | ||
518 | sqr_add_c2(a,4,1,c3,c1,c2); | ||
519 | sqr_add_c2(a,3,2,c3,c1,c2); | ||
520 | r[5]=c3; | ||
521 | c3=0; | ||
522 | sqr_add_c(a,3,c1,c2,c3); | ||
523 | sqr_add_c2(a,4,2,c1,c2,c3); | ||
524 | sqr_add_c2(a,5,1,c1,c2,c3); | ||
525 | sqr_add_c2(a,6,0,c1,c2,c3); | ||
526 | r[6]=c1; | ||
527 | c1=0; | ||
528 | sqr_add_c2(a,7,0,c2,c3,c1); | ||
529 | sqr_add_c2(a,6,1,c2,c3,c1); | ||
530 | sqr_add_c2(a,5,2,c2,c3,c1); | ||
531 | sqr_add_c2(a,4,3,c2,c3,c1); | ||
532 | r[7]=c2; | ||
533 | c2=0; | ||
534 | sqr_add_c(a,4,c3,c1,c2); | ||
535 | sqr_add_c2(a,5,3,c3,c1,c2); | ||
536 | sqr_add_c2(a,6,2,c3,c1,c2); | ||
537 | sqr_add_c2(a,7,1,c3,c1,c2); | ||
538 | r[8]=c3; | ||
539 | c3=0; | ||
540 | sqr_add_c2(a,7,2,c1,c2,c3); | ||
541 | sqr_add_c2(a,6,3,c1,c2,c3); | ||
542 | sqr_add_c2(a,5,4,c1,c2,c3); | ||
543 | r[9]=c1; | ||
544 | c1=0; | ||
545 | sqr_add_c(a,5,c2,c3,c1); | ||
546 | sqr_add_c2(a,6,4,c2,c3,c1); | ||
547 | sqr_add_c2(a,7,3,c2,c3,c1); | ||
548 | r[10]=c2; | ||
549 | c2=0; | ||
550 | sqr_add_c2(a,7,4,c3,c1,c2); | ||
551 | sqr_add_c2(a,6,5,c3,c1,c2); | ||
552 | r[11]=c3; | ||
553 | c3=0; | ||
554 | sqr_add_c(a,6,c1,c2,c3); | ||
555 | sqr_add_c2(a,7,5,c1,c2,c3); | ||
556 | r[12]=c1; | ||
557 | c1=0; | ||
558 | sqr_add_c2(a,7,6,c2,c3,c1); | ||
559 | r[13]=c2; | ||
560 | c2=0; | ||
561 | sqr_add_c(a,7,c3,c1,c2); | ||
562 | r[14]=c3; | ||
563 | r[15]=c1; | ||
564 | } | ||
565 | |||
566 | void bn_sqr_comba4(BN_ULONG *r, const BN_ULONG *a) | ||
567 | { | ||
568 | BN_ULONG c1,c2,c3; | ||
569 | |||
570 | c1=0; | ||
571 | c2=0; | ||
572 | c3=0; | ||
573 | sqr_add_c(a,0,c1,c2,c3); | ||
574 | r[0]=c1; | ||
575 | c1=0; | ||
576 | sqr_add_c2(a,1,0,c2,c3,c1); | ||
577 | r[1]=c2; | ||
578 | c2=0; | ||
579 | sqr_add_c(a,1,c3,c1,c2); | ||
580 | sqr_add_c2(a,2,0,c3,c1,c2); | ||
581 | r[2]=c3; | ||
582 | c3=0; | ||
583 | sqr_add_c2(a,3,0,c1,c2,c3); | ||
584 | sqr_add_c2(a,2,1,c1,c2,c3); | ||
585 | r[3]=c1; | ||
586 | c1=0; | ||
587 | sqr_add_c(a,2,c2,c3,c1); | ||
588 | sqr_add_c2(a,3,1,c2,c3,c1); | ||
589 | r[4]=c2; | ||
590 | c2=0; | ||
591 | sqr_add_c2(a,3,2,c3,c1,c2); | ||
592 | r[5]=c3; | ||
593 | c3=0; | ||
594 | sqr_add_c(a,3,c1,c2,c3); | ||
595 | r[6]=c1; | ||
596 | r[7]=c2; | ||
597 | } | ||
598 | #endif | ||
diff --git a/src/lib/libcrypto/bn/asm/x86_64-gf2m.pl b/src/lib/libcrypto/bn/asm/x86_64-gf2m.pl deleted file mode 100644 index 226c66c35e..0000000000 --- a/src/lib/libcrypto/bn/asm/x86_64-gf2m.pl +++ /dev/null | |||
@@ -1,390 +0,0 @@ | |||
1 | #!/usr/bin/env perl | ||
2 | # | ||
3 | # ==================================================================== | ||
4 | # Written by Andy Polyakov <appro@openssl.org> for the OpenSSL | ||
5 | # project. The module is, however, dual licensed under OpenSSL and | ||
6 | # CRYPTOGAMS licenses depending on where you obtain it. For further | ||
7 | # details see http://www.openssl.org/~appro/cryptogams/. | ||
8 | # ==================================================================== | ||
9 | # | ||
10 | # May 2011 | ||
11 | # | ||
12 | # The module implements bn_GF2m_mul_2x2 polynomial multiplication used | ||
13 | # in bn_gf2m.c. It's kind of low-hanging mechanical port from C for | ||
14 | # the time being... Except that it has two code paths: code suitable | ||
15 | # for any x86_64 CPU and PCLMULQDQ one suitable for Westmere and | ||
16 | # later. Improvement varies from one benchmark and µ-arch to another. | ||
17 | # Vanilla code path is at most 20% faster than compiler-generated code | ||
18 | # [not very impressive], while PCLMULQDQ - whole 85%-160% better on | ||
19 | # 163- and 571-bit ECDH benchmarks on Intel CPUs. Keep in mind that | ||
20 | # these coefficients are not ones for bn_GF2m_mul_2x2 itself, as not | ||
21 | # all CPU time is burnt in it... | ||
22 | |||
23 | $flavour = shift; | ||
24 | $output = shift; | ||
25 | if ($flavour =~ /\./) { $output = $flavour; undef $flavour; } | ||
26 | |||
27 | $win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/); | ||
28 | |||
29 | $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; | ||
30 | ( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or | ||
31 | ( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or | ||
32 | die "can't locate x86_64-xlate.pl"; | ||
33 | |||
34 | open OUT,"| \"$^X\" $xlate $flavour $output"; | ||
35 | *STDOUT=*OUT; | ||
36 | |||
37 | ($lo,$hi)=("%rax","%rdx"); $a=$lo; | ||
38 | ($i0,$i1)=("%rsi","%rdi"); | ||
39 | ($t0,$t1)=("%rbx","%rcx"); | ||
40 | ($b,$mask)=("%rbp","%r8"); | ||
41 | ($a1,$a2,$a4,$a8,$a12,$a48)=map("%r$_",(9..15)); | ||
42 | ($R,$Tx)=("%xmm0","%xmm1"); | ||
43 | |||
44 | $code.=<<___; | ||
45 | .text | ||
46 | |||
47 | .type _mul_1x1,\@abi-omnipotent | ||
48 | .align 16 | ||
49 | _mul_1x1: | ||
50 | sub \$128+8,%rsp | ||
51 | mov \$-1,$a1 | ||
52 | lea ($a,$a),$i0 | ||
53 | shr \$3,$a1 | ||
54 | lea (,$a,4),$i1 | ||
55 | and $a,$a1 # a1=a&0x1fffffffffffffff | ||
56 | lea (,$a,8),$a8 | ||
57 | sar \$63,$a # broadcast 63rd bit | ||
58 | lea ($a1,$a1),$a2 | ||
59 | sar \$63,$i0 # broadcast 62nd bit | ||
60 | lea (,$a1,4),$a4 | ||
61 | and $b,$a | ||
62 | sar \$63,$i1 # boardcast 61st bit | ||
63 | mov $a,$hi # $a is $lo | ||
64 | shl \$63,$lo | ||
65 | and $b,$i0 | ||
66 | shr \$1,$hi | ||
67 | mov $i0,$t1 | ||
68 | shl \$62,$i0 | ||
69 | and $b,$i1 | ||
70 | shr \$2,$t1 | ||
71 | xor $i0,$lo | ||
72 | mov $i1,$t0 | ||
73 | shl \$61,$i1 | ||
74 | xor $t1,$hi | ||
75 | shr \$3,$t0 | ||
76 | xor $i1,$lo | ||
77 | xor $t0,$hi | ||
78 | |||
79 | mov $a1,$a12 | ||
80 | movq \$0,0(%rsp) # tab[0]=0 | ||
81 | xor $a2,$a12 # a1^a2 | ||
82 | mov $a1,8(%rsp) # tab[1]=a1 | ||
83 | mov $a4,$a48 | ||
84 | mov $a2,16(%rsp) # tab[2]=a2 | ||
85 | xor $a8,$a48 # a4^a8 | ||
86 | mov $a12,24(%rsp) # tab[3]=a1^a2 | ||
87 | |||
88 | xor $a4,$a1 | ||
89 | mov $a4,32(%rsp) # tab[4]=a4 | ||
90 | xor $a4,$a2 | ||
91 | mov $a1,40(%rsp) # tab[5]=a1^a4 | ||
92 | xor $a4,$a12 | ||
93 | mov $a2,48(%rsp) # tab[6]=a2^a4 | ||
94 | xor $a48,$a1 # a1^a4^a4^a8=a1^a8 | ||
95 | mov $a12,56(%rsp) # tab[7]=a1^a2^a4 | ||
96 | xor $a48,$a2 # a2^a4^a4^a8=a1^a8 | ||
97 | |||
98 | mov $a8,64(%rsp) # tab[8]=a8 | ||
99 | xor $a48,$a12 # a1^a2^a4^a4^a8=a1^a2^a8 | ||
100 | mov $a1,72(%rsp) # tab[9]=a1^a8 | ||
101 | xor $a4,$a1 # a1^a8^a4 | ||
102 | mov $a2,80(%rsp) # tab[10]=a2^a8 | ||
103 | xor $a4,$a2 # a2^a8^a4 | ||
104 | mov $a12,88(%rsp) # tab[11]=a1^a2^a8 | ||
105 | |||
106 | xor $a4,$a12 # a1^a2^a8^a4 | ||
107 | mov $a48,96(%rsp) # tab[12]=a4^a8 | ||
108 | mov $mask,$i0 | ||
109 | mov $a1,104(%rsp) # tab[13]=a1^a4^a8 | ||
110 | and $b,$i0 | ||
111 | mov $a2,112(%rsp) # tab[14]=a2^a4^a8 | ||
112 | shr \$4,$b | ||
113 | mov $a12,120(%rsp) # tab[15]=a1^a2^a4^a8 | ||
114 | mov $mask,$i1 | ||
115 | and $b,$i1 | ||
116 | shr \$4,$b | ||
117 | |||
118 | movq (%rsp,$i0,8),$R # half of calculations is done in SSE2 | ||
119 | mov $mask,$i0 | ||
120 | and $b,$i0 | ||
121 | shr \$4,$b | ||
122 | ___ | ||
123 | for ($n=1;$n<8;$n++) { | ||
124 | $code.=<<___; | ||
125 | mov (%rsp,$i1,8),$t1 | ||
126 | mov $mask,$i1 | ||
127 | mov $t1,$t0 | ||
128 | shl \$`8*$n-4`,$t1 | ||
129 | and $b,$i1 | ||
130 | movq (%rsp,$i0,8),$Tx | ||
131 | shr \$`64-(8*$n-4)`,$t0 | ||
132 | xor $t1,$lo | ||
133 | pslldq \$$n,$Tx | ||
134 | mov $mask,$i0 | ||
135 | shr \$4,$b | ||
136 | xor $t0,$hi | ||
137 | and $b,$i0 | ||
138 | shr \$4,$b | ||
139 | pxor $Tx,$R | ||
140 | ___ | ||
141 | } | ||
142 | $code.=<<___; | ||
143 | mov (%rsp,$i1,8),$t1 | ||
144 | mov $t1,$t0 | ||
145 | shl \$`8*$n-4`,$t1 | ||
146 | movq $R,$i0 | ||
147 | shr \$`64-(8*$n-4)`,$t0 | ||
148 | xor $t1,$lo | ||
149 | psrldq \$8,$R | ||
150 | xor $t0,$hi | ||
151 | movq $R,$i1 | ||
152 | xor $i0,$lo | ||
153 | xor $i1,$hi | ||
154 | |||
155 | add \$128+8,%rsp | ||
156 | ret | ||
157 | .Lend_mul_1x1: | ||
158 | .size _mul_1x1,.-_mul_1x1 | ||
159 | ___ | ||
160 | |||
161 | ($rp,$a1,$a0,$b1,$b0) = $win64? ("%rcx","%rdx","%r8", "%r9","%r10") : # Win64 order | ||
162 | ("%rdi","%rsi","%rdx","%rcx","%r8"); # Unix order | ||
163 | |||
164 | $code.=<<___; | ||
165 | .extern OPENSSL_ia32cap_P | ||
166 | .globl bn_GF2m_mul_2x2 | ||
167 | .type bn_GF2m_mul_2x2,\@abi-omnipotent | ||
168 | .align 16 | ||
169 | bn_GF2m_mul_2x2: | ||
170 | mov OPENSSL_ia32cap_P(%rip),%rax | ||
171 | bt \$33,%rax | ||
172 | jnc .Lvanilla_mul_2x2 | ||
173 | |||
174 | movq $a1,%xmm0 | ||
175 | movq $b1,%xmm1 | ||
176 | movq $a0,%xmm2 | ||
177 | ___ | ||
178 | $code.=<<___ if ($win64); | ||
179 | movq 40(%rsp),%xmm3 | ||
180 | ___ | ||
181 | $code.=<<___ if (!$win64); | ||
182 | movq $b0,%xmm3 | ||
183 | ___ | ||
184 | $code.=<<___; | ||
185 | movdqa %xmm0,%xmm4 | ||
186 | movdqa %xmm1,%xmm5 | ||
187 | pclmulqdq \$0,%xmm1,%xmm0 # a1·b1 | ||
188 | pxor %xmm2,%xmm4 | ||
189 | pxor %xmm3,%xmm5 | ||
190 | pclmulqdq \$0,%xmm3,%xmm2 # a0·b0 | ||
191 | pclmulqdq \$0,%xmm5,%xmm4 # (a0+a1)·(b0+b1) | ||
192 | xorps %xmm0,%xmm4 | ||
193 | xorps %xmm2,%xmm4 # (a0+a1)·(b0+b1)-a0·b0-a1·b1 | ||
194 | movdqa %xmm4,%xmm5 | ||
195 | pslldq \$8,%xmm4 | ||
196 | psrldq \$8,%xmm5 | ||
197 | pxor %xmm4,%xmm2 | ||
198 | pxor %xmm5,%xmm0 | ||
199 | movdqu %xmm2,0($rp) | ||
200 | movdqu %xmm0,16($rp) | ||
201 | ret | ||
202 | |||
203 | .align 16 | ||
204 | .Lvanilla_mul_2x2: | ||
205 | lea -8*17(%rsp),%rsp | ||
206 | ___ | ||
207 | $code.=<<___ if ($win64); | ||
208 | mov `8*17+40`(%rsp),$b0 | ||
209 | mov %rdi,8*15(%rsp) | ||
210 | mov %rsi,8*16(%rsp) | ||
211 | ___ | ||
212 | $code.=<<___; | ||
213 | mov %r14,8*10(%rsp) | ||
214 | mov %r13,8*11(%rsp) | ||
215 | mov %r12,8*12(%rsp) | ||
216 | mov %rbp,8*13(%rsp) | ||
217 | mov %rbx,8*14(%rsp) | ||
218 | .Lbody_mul_2x2: | ||
219 | mov $rp,32(%rsp) # save the arguments | ||
220 | mov $a1,40(%rsp) | ||
221 | mov $a0,48(%rsp) | ||
222 | mov $b1,56(%rsp) | ||
223 | mov $b0,64(%rsp) | ||
224 | |||
225 | mov \$0xf,$mask | ||
226 | mov $a1,$a | ||
227 | mov $b1,$b | ||
228 | call _mul_1x1 # a1·b1 | ||
229 | mov $lo,16(%rsp) | ||
230 | mov $hi,24(%rsp) | ||
231 | |||
232 | mov 48(%rsp),$a | ||
233 | mov 64(%rsp),$b | ||
234 | call _mul_1x1 # a0·b0 | ||
235 | mov $lo,0(%rsp) | ||
236 | mov $hi,8(%rsp) | ||
237 | |||
238 | mov 40(%rsp),$a | ||
239 | mov 56(%rsp),$b | ||
240 | xor 48(%rsp),$a | ||
241 | xor 64(%rsp),$b | ||
242 | call _mul_1x1 # (a0+a1)·(b0+b1) | ||
243 | ___ | ||
244 | @r=("%rbx","%rcx","%rdi","%rsi"); | ||
245 | $code.=<<___; | ||
246 | mov 0(%rsp),@r[0] | ||
247 | mov 8(%rsp),@r[1] | ||
248 | mov 16(%rsp),@r[2] | ||
249 | mov 24(%rsp),@r[3] | ||
250 | mov 32(%rsp),%rbp | ||
251 | |||
252 | xor $hi,$lo | ||
253 | xor @r[1],$hi | ||
254 | xor @r[0],$lo | ||
255 | mov @r[0],0(%rbp) | ||
256 | xor @r[2],$hi | ||
257 | mov @r[3],24(%rbp) | ||
258 | xor @r[3],$lo | ||
259 | xor @r[3],$hi | ||
260 | xor $hi,$lo | ||
261 | mov $hi,16(%rbp) | ||
262 | mov $lo,8(%rbp) | ||
263 | |||
264 | mov 8*10(%rsp),%r14 | ||
265 | mov 8*11(%rsp),%r13 | ||
266 | mov 8*12(%rsp),%r12 | ||
267 | mov 8*13(%rsp),%rbp | ||
268 | mov 8*14(%rsp),%rbx | ||
269 | ___ | ||
270 | $code.=<<___ if ($win64); | ||
271 | mov 8*15(%rsp),%rdi | ||
272 | mov 8*16(%rsp),%rsi | ||
273 | ___ | ||
274 | $code.=<<___; | ||
275 | lea 8*17(%rsp),%rsp | ||
276 | ret | ||
277 | .Lend_mul_2x2: | ||
278 | .size bn_GF2m_mul_2x2,.-bn_GF2m_mul_2x2 | ||
279 | .asciz "GF(2^m) Multiplication for x86_64, CRYPTOGAMS by <appro\@openssl.org>" | ||
280 | .align 16 | ||
281 | ___ | ||
282 | |||
283 | # EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame, | ||
284 | # CONTEXT *context,DISPATCHER_CONTEXT *disp) | ||
285 | if ($win64) { | ||
286 | $rec="%rcx"; | ||
287 | $frame="%rdx"; | ||
288 | $context="%r8"; | ||
289 | $disp="%r9"; | ||
290 | |||
291 | $code.=<<___; | ||
292 | .extern __imp_RtlVirtualUnwind | ||
293 | |||
294 | .type se_handler,\@abi-omnipotent | ||
295 | .align 16 | ||
296 | se_handler: | ||
297 | push %rsi | ||
298 | push %rdi | ||
299 | push %rbx | ||
300 | push %rbp | ||
301 | push %r12 | ||
302 | push %r13 | ||
303 | push %r14 | ||
304 | push %r15 | ||
305 | pushfq | ||
306 | sub \$64,%rsp | ||
307 | |||
308 | mov 152($context),%rax # pull context->Rsp | ||
309 | mov 248($context),%rbx # pull context->Rip | ||
310 | |||
311 | lea .Lbody_mul_2x2(%rip),%r10 | ||
312 | cmp %r10,%rbx # context->Rip<"prologue" label | ||
313 | jb .Lin_prologue | ||
314 | |||
315 | mov 8*10(%rax),%r14 # mimic epilogue | ||
316 | mov 8*11(%rax),%r13 | ||
317 | mov 8*12(%rax),%r12 | ||
318 | mov 8*13(%rax),%rbp | ||
319 | mov 8*14(%rax),%rbx | ||
320 | mov 8*15(%rax),%rdi | ||
321 | mov 8*16(%rax),%rsi | ||
322 | |||
323 | mov %rbx,144($context) # restore context->Rbx | ||
324 | mov %rbp,160($context) # restore context->Rbp | ||
325 | mov %rsi,168($context) # restore context->Rsi | ||
326 | mov %rdi,176($context) # restore context->Rdi | ||
327 | mov %r12,216($context) # restore context->R12 | ||
328 | mov %r13,224($context) # restore context->R13 | ||
329 | mov %r14,232($context) # restore context->R14 | ||
330 | |||
331 | .Lin_prologue: | ||
332 | lea 8*17(%rax),%rax | ||
333 | mov %rax,152($context) # restore context->Rsp | ||
334 | |||
335 | mov 40($disp),%rdi # disp->ContextRecord | ||
336 | mov $context,%rsi # context | ||
337 | mov \$154,%ecx # sizeof(CONTEXT) | ||
338 | .long 0xa548f3fc # cld; rep movsq | ||
339 | |||
340 | mov $disp,%rsi | ||
341 | xor %rcx,%rcx # arg1, UNW_FLAG_NHANDLER | ||
342 | mov 8(%rsi),%rdx # arg2, disp->ImageBase | ||
343 | mov 0(%rsi),%r8 # arg3, disp->ControlPc | ||
344 | mov 16(%rsi),%r9 # arg4, disp->FunctionEntry | ||
345 | mov 40(%rsi),%r10 # disp->ContextRecord | ||
346 | lea 56(%rsi),%r11 # &disp->HandlerData | ||
347 | lea 24(%rsi),%r12 # &disp->EstablisherFrame | ||
348 | mov %r10,32(%rsp) # arg5 | ||
349 | mov %r11,40(%rsp) # arg6 | ||
350 | mov %r12,48(%rsp) # arg7 | ||
351 | mov %rcx,56(%rsp) # arg8, (NULL) | ||
352 | call *__imp_RtlVirtualUnwind(%rip) | ||
353 | |||
354 | mov \$1,%eax # ExceptionContinueSearch | ||
355 | add \$64,%rsp | ||
356 | popfq | ||
357 | pop %r15 | ||
358 | pop %r14 | ||
359 | pop %r13 | ||
360 | pop %r12 | ||
361 | pop %rbp | ||
362 | pop %rbx | ||
363 | pop %rdi | ||
364 | pop %rsi | ||
365 | ret | ||
366 | .size se_handler,.-se_handler | ||
367 | |||
368 | .section .pdata | ||
369 | .align 4 | ||
370 | .rva _mul_1x1 | ||
371 | .rva .Lend_mul_1x1 | ||
372 | .rva .LSEH_info_1x1 | ||
373 | |||
374 | .rva .Lvanilla_mul_2x2 | ||
375 | .rva .Lend_mul_2x2 | ||
376 | .rva .LSEH_info_2x2 | ||
377 | .section .xdata | ||
378 | .align 8 | ||
379 | .LSEH_info_1x1: | ||
380 | .byte 0x01,0x07,0x02,0x00 | ||
381 | .byte 0x07,0x01,0x11,0x00 # sub rsp,128+8 | ||
382 | .LSEH_info_2x2: | ||
383 | .byte 9,0,0,0 | ||
384 | .rva se_handler | ||
385 | ___ | ||
386 | } | ||
387 | |||
388 | $code =~ s/\`([^\`]*)\`/eval($1)/gem; | ||
389 | print $code; | ||
390 | close STDOUT; | ||
diff --git a/src/lib/libcrypto/bn/asm/x86_64-mont.pl b/src/lib/libcrypto/bn/asm/x86_64-mont.pl deleted file mode 100755 index c35493e80a..0000000000 --- a/src/lib/libcrypto/bn/asm/x86_64-mont.pl +++ /dev/null | |||
@@ -1,1504 +0,0 @@ | |||
1 | #!/usr/bin/env perl | ||
2 | |||
3 | # ==================================================================== | ||
4 | # Written by Andy Polyakov <appro@openssl.org> for the OpenSSL | ||
5 | # project. The module is, however, dual licensed under OpenSSL and | ||
6 | # CRYPTOGAMS licenses depending on where you obtain it. For further | ||
7 | # details see http://www.openssl.org/~appro/cryptogams/. | ||
8 | # ==================================================================== | ||
9 | |||
10 | # October 2005. | ||
11 | # | ||
12 | # Montgomery multiplication routine for x86_64. While it gives modest | ||
13 | # 9% improvement of rsa4096 sign on Opteron, rsa512 sign runs more | ||
14 | # than twice, >2x, as fast. Most common rsa1024 sign is improved by | ||
15 | # respectful 50%. It remains to be seen if loop unrolling and | ||
16 | # dedicated squaring routine can provide further improvement... | ||
17 | |||
18 | # July 2011. | ||
19 | # | ||
20 | # Add dedicated squaring procedure. Performance improvement varies | ||
21 | # from platform to platform, but in average it's ~5%/15%/25%/33% | ||
22 | # for 512-/1024-/2048-/4096-bit RSA *sign* benchmarks respectively. | ||
23 | |||
24 | # August 2011. | ||
25 | # | ||
26 | # Unroll and modulo-schedule inner loops in such manner that they | ||
27 | # are "fallen through" for input lengths of 8, which is critical for | ||
28 | # 1024-bit RSA *sign*. Average performance improvement in comparison | ||
29 | # to *initial* version of this module from 2005 is ~0%/30%/40%/45% | ||
30 | # for 512-/1024-/2048-/4096-bit RSA *sign* benchmarks respectively. | ||
31 | |||
32 | $flavour = shift; | ||
33 | $output = shift; | ||
34 | if ($flavour =~ /\./) { $output = $flavour; undef $flavour; } | ||
35 | |||
36 | $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; | ||
37 | ( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or | ||
38 | ( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or | ||
39 | die "can't locate x86_64-xlate.pl"; | ||
40 | |||
41 | open OUT,"| \"$^X\" $xlate $flavour $output"; | ||
42 | *STDOUT=*OUT; | ||
43 | |||
44 | # int bn_mul_mont( | ||
45 | $rp="%rdi"; # BN_ULONG *rp, | ||
46 | $ap="%rsi"; # const BN_ULONG *ap, | ||
47 | $bp="%rdx"; # const BN_ULONG *bp, | ||
48 | $np="%rcx"; # const BN_ULONG *np, | ||
49 | $n0="%r8"; # const BN_ULONG *n0, | ||
50 | $num="%r9"; # int num); | ||
51 | $lo0="%r10"; | ||
52 | $hi0="%r11"; | ||
53 | $hi1="%r13"; | ||
54 | $i="%r14"; | ||
55 | $j="%r15"; | ||
56 | $m0="%rbx"; | ||
57 | $m1="%rbp"; | ||
58 | |||
59 | $code=<<___; | ||
60 | .text | ||
61 | |||
62 | .globl bn_mul_mont | ||
63 | .type bn_mul_mont,\@function,6 | ||
64 | .align 16 | ||
65 | bn_mul_mont: | ||
66 | test \$3,${num}d | ||
67 | jnz .Lmul_enter | ||
68 | cmp \$8,${num}d | ||
69 | jb .Lmul_enter | ||
70 | cmp $ap,$bp | ||
71 | jne .Lmul4x_enter | ||
72 | jmp .Lsqr4x_enter | ||
73 | |||
74 | .align 16 | ||
75 | .Lmul_enter: | ||
76 | push %rbx | ||
77 | push %rbp | ||
78 | push %r12 | ||
79 | push %r13 | ||
80 | push %r14 | ||
81 | push %r15 | ||
82 | |||
83 | mov ${num}d,${num}d | ||
84 | lea 2($num),%r10 | ||
85 | mov %rsp,%r11 | ||
86 | neg %r10 | ||
87 | lea (%rsp,%r10,8),%rsp # tp=alloca(8*(num+2)) | ||
88 | and \$-1024,%rsp # minimize TLB usage | ||
89 | |||
90 | mov %r11,8(%rsp,$num,8) # tp[num+1]=%rsp | ||
91 | .Lmul_body: | ||
92 | mov $bp,%r12 # reassign $bp | ||
93 | ___ | ||
94 | $bp="%r12"; | ||
95 | $code.=<<___; | ||
96 | mov ($n0),$n0 # pull n0[0] value | ||
97 | mov ($bp),$m0 # m0=bp[0] | ||
98 | mov ($ap),%rax | ||
99 | |||
100 | xor $i,$i # i=0 | ||
101 | xor $j,$j # j=0 | ||
102 | |||
103 | mov $n0,$m1 | ||
104 | mulq $m0 # ap[0]*bp[0] | ||
105 | mov %rax,$lo0 | ||
106 | mov ($np),%rax | ||
107 | |||
108 | imulq $lo0,$m1 # "tp[0]"*n0 | ||
109 | mov %rdx,$hi0 | ||
110 | |||
111 | mulq $m1 # np[0]*m1 | ||
112 | add %rax,$lo0 # discarded | ||
113 | mov 8($ap),%rax | ||
114 | adc \$0,%rdx | ||
115 | mov %rdx,$hi1 | ||
116 | |||
117 | lea 1($j),$j # j++ | ||
118 | jmp .L1st_enter | ||
119 | |||
120 | .align 16 | ||
121 | .L1st: | ||
122 | add %rax,$hi1 | ||
123 | mov ($ap,$j,8),%rax | ||
124 | adc \$0,%rdx | ||
125 | add $hi0,$hi1 # np[j]*m1+ap[j]*bp[0] | ||
126 | mov $lo0,$hi0 | ||
127 | adc \$0,%rdx | ||
128 | mov $hi1,-16(%rsp,$j,8) # tp[j-1] | ||
129 | mov %rdx,$hi1 | ||
130 | |||
131 | .L1st_enter: | ||
132 | mulq $m0 # ap[j]*bp[0] | ||
133 | add %rax,$hi0 | ||
134 | mov ($np,$j,8),%rax | ||
135 | adc \$0,%rdx | ||
136 | lea 1($j),$j # j++ | ||
137 | mov %rdx,$lo0 | ||
138 | |||
139 | mulq $m1 # np[j]*m1 | ||
140 | cmp $num,$j | ||
141 | jl .L1st | ||
142 | |||
143 | add %rax,$hi1 | ||
144 | mov ($ap),%rax # ap[0] | ||
145 | adc \$0,%rdx | ||
146 | add $hi0,$hi1 # np[j]*m1+ap[j]*bp[0] | ||
147 | adc \$0,%rdx | ||
148 | mov $hi1,-16(%rsp,$j,8) # tp[j-1] | ||
149 | mov %rdx,$hi1 | ||
150 | mov $lo0,$hi0 | ||
151 | |||
152 | xor %rdx,%rdx | ||
153 | add $hi0,$hi1 | ||
154 | adc \$0,%rdx | ||
155 | mov $hi1,-8(%rsp,$num,8) | ||
156 | mov %rdx,(%rsp,$num,8) # store upmost overflow bit | ||
157 | |||
158 | lea 1($i),$i # i++ | ||
159 | jmp .Louter | ||
160 | .align 16 | ||
161 | .Louter: | ||
162 | mov ($bp,$i,8),$m0 # m0=bp[i] | ||
163 | xor $j,$j # j=0 | ||
164 | mov $n0,$m1 | ||
165 | mov (%rsp),$lo0 | ||
166 | mulq $m0 # ap[0]*bp[i] | ||
167 | add %rax,$lo0 # ap[0]*bp[i]+tp[0] | ||
168 | mov ($np),%rax | ||
169 | adc \$0,%rdx | ||
170 | |||
171 | imulq $lo0,$m1 # tp[0]*n0 | ||
172 | mov %rdx,$hi0 | ||
173 | |||
174 | mulq $m1 # np[0]*m1 | ||
175 | add %rax,$lo0 # discarded | ||
176 | mov 8($ap),%rax | ||
177 | adc \$0,%rdx | ||
178 | mov 8(%rsp),$lo0 # tp[1] | ||
179 | mov %rdx,$hi1 | ||
180 | |||
181 | lea 1($j),$j # j++ | ||
182 | jmp .Linner_enter | ||
183 | |||
184 | .align 16 | ||
185 | .Linner: | ||
186 | add %rax,$hi1 | ||
187 | mov ($ap,$j,8),%rax | ||
188 | adc \$0,%rdx | ||
189 | add $lo0,$hi1 # np[j]*m1+ap[j]*bp[i]+tp[j] | ||
190 | mov (%rsp,$j,8),$lo0 | ||
191 | adc \$0,%rdx | ||
192 | mov $hi1,-16(%rsp,$j,8) # tp[j-1] | ||
193 | mov %rdx,$hi1 | ||
194 | |||
195 | .Linner_enter: | ||
196 | mulq $m0 # ap[j]*bp[i] | ||
197 | add %rax,$hi0 | ||
198 | mov ($np,$j,8),%rax | ||
199 | adc \$0,%rdx | ||
200 | add $hi0,$lo0 # ap[j]*bp[i]+tp[j] | ||
201 | mov %rdx,$hi0 | ||
202 | adc \$0,$hi0 | ||
203 | lea 1($j),$j # j++ | ||
204 | |||
205 | mulq $m1 # np[j]*m1 | ||
206 | cmp $num,$j | ||
207 | jl .Linner | ||
208 | |||
209 | add %rax,$hi1 | ||
210 | mov ($ap),%rax # ap[0] | ||
211 | adc \$0,%rdx | ||
212 | add $lo0,$hi1 # np[j]*m1+ap[j]*bp[i]+tp[j] | ||
213 | mov (%rsp,$j,8),$lo0 | ||
214 | adc \$0,%rdx | ||
215 | mov $hi1,-16(%rsp,$j,8) # tp[j-1] | ||
216 | mov %rdx,$hi1 | ||
217 | |||
218 | xor %rdx,%rdx | ||
219 | add $hi0,$hi1 | ||
220 | adc \$0,%rdx | ||
221 | add $lo0,$hi1 # pull upmost overflow bit | ||
222 | adc \$0,%rdx | ||
223 | mov $hi1,-8(%rsp,$num,8) | ||
224 | mov %rdx,(%rsp,$num,8) # store upmost overflow bit | ||
225 | |||
226 | lea 1($i),$i # i++ | ||
227 | cmp $num,$i | ||
228 | jl .Louter | ||
229 | |||
230 | xor $i,$i # i=0 and clear CF! | ||
231 | mov (%rsp),%rax # tp[0] | ||
232 | lea (%rsp),$ap # borrow ap for tp | ||
233 | mov $num,$j # j=num | ||
234 | jmp .Lsub | ||
235 | .align 16 | ||
236 | .Lsub: sbb ($np,$i,8),%rax | ||
237 | mov %rax,($rp,$i,8) # rp[i]=tp[i]-np[i] | ||
238 | mov 8($ap,$i,8),%rax # tp[i+1] | ||
239 | lea 1($i),$i # i++ | ||
240 | dec $j # doesnn't affect CF! | ||
241 | jnz .Lsub | ||
242 | |||
243 | sbb \$0,%rax # handle upmost overflow bit | ||
244 | xor $i,$i | ||
245 | and %rax,$ap | ||
246 | not %rax | ||
247 | mov $rp,$np | ||
248 | and %rax,$np | ||
249 | mov $num,$j # j=num | ||
250 | or $np,$ap # ap=borrow?tp:rp | ||
251 | .align 16 | ||
252 | .Lcopy: # copy or in-place refresh | ||
253 | mov ($ap,$i,8),%rax | ||
254 | mov $i,(%rsp,$i,8) # zap temporary vector | ||
255 | mov %rax,($rp,$i,8) # rp[i]=tp[i] | ||
256 | lea 1($i),$i | ||
257 | sub \$1,$j | ||
258 | jnz .Lcopy | ||
259 | |||
260 | mov 8(%rsp,$num,8),%rsi # restore %rsp | ||
261 | mov \$1,%rax | ||
262 | mov (%rsi),%r15 | ||
263 | mov 8(%rsi),%r14 | ||
264 | mov 16(%rsi),%r13 | ||
265 | mov 24(%rsi),%r12 | ||
266 | mov 32(%rsi),%rbp | ||
267 | mov 40(%rsi),%rbx | ||
268 | lea 48(%rsi),%rsp | ||
269 | .Lmul_epilogue: | ||
270 | ret | ||
271 | .size bn_mul_mont,.-bn_mul_mont | ||
272 | ___ | ||
273 | {{{ | ||
274 | my @A=("%r10","%r11"); | ||
275 | my @N=("%r13","%rdi"); | ||
276 | $code.=<<___; | ||
277 | .type bn_mul4x_mont,\@function,6 | ||
278 | .align 16 | ||
279 | bn_mul4x_mont: | ||
280 | .Lmul4x_enter: | ||
281 | push %rbx | ||
282 | push %rbp | ||
283 | push %r12 | ||
284 | push %r13 | ||
285 | push %r14 | ||
286 | push %r15 | ||
287 | |||
288 | mov ${num}d,${num}d | ||
289 | lea 4($num),%r10 | ||
290 | mov %rsp,%r11 | ||
291 | neg %r10 | ||
292 | lea (%rsp,%r10,8),%rsp # tp=alloca(8*(num+4)) | ||
293 | and \$-1024,%rsp # minimize TLB usage | ||
294 | |||
295 | mov %r11,8(%rsp,$num,8) # tp[num+1]=%rsp | ||
296 | .Lmul4x_body: | ||
297 | mov $rp,16(%rsp,$num,8) # tp[num+2]=$rp | ||
298 | mov %rdx,%r12 # reassign $bp | ||
299 | ___ | ||
300 | $bp="%r12"; | ||
301 | $code.=<<___; | ||
302 | mov ($n0),$n0 # pull n0[0] value | ||
303 | mov ($bp),$m0 # m0=bp[0] | ||
304 | mov ($ap),%rax | ||
305 | |||
306 | xor $i,$i # i=0 | ||
307 | xor $j,$j # j=0 | ||
308 | |||
309 | mov $n0,$m1 | ||
310 | mulq $m0 # ap[0]*bp[0] | ||
311 | mov %rax,$A[0] | ||
312 | mov ($np),%rax | ||
313 | |||
314 | imulq $A[0],$m1 # "tp[0]"*n0 | ||
315 | mov %rdx,$A[1] | ||
316 | |||
317 | mulq $m1 # np[0]*m1 | ||
318 | add %rax,$A[0] # discarded | ||
319 | mov 8($ap),%rax | ||
320 | adc \$0,%rdx | ||
321 | mov %rdx,$N[1] | ||
322 | |||
323 | mulq $m0 | ||
324 | add %rax,$A[1] | ||
325 | mov 8($np),%rax | ||
326 | adc \$0,%rdx | ||
327 | mov %rdx,$A[0] | ||
328 | |||
329 | mulq $m1 | ||
330 | add %rax,$N[1] | ||
331 | mov 16($ap),%rax | ||
332 | adc \$0,%rdx | ||
333 | add $A[1],$N[1] | ||
334 | lea 4($j),$j # j++ | ||
335 | adc \$0,%rdx | ||
336 | mov $N[1],(%rsp) | ||
337 | mov %rdx,$N[0] | ||
338 | jmp .L1st4x | ||
339 | .align 16 | ||
340 | .L1st4x: | ||
341 | mulq $m0 # ap[j]*bp[0] | ||
342 | add %rax,$A[0] | ||
343 | mov -16($np,$j,8),%rax | ||
344 | adc \$0,%rdx | ||
345 | mov %rdx,$A[1] | ||
346 | |||
347 | mulq $m1 # np[j]*m1 | ||
348 | add %rax,$N[0] | ||
349 | mov -8($ap,$j,8),%rax | ||
350 | adc \$0,%rdx | ||
351 | add $A[0],$N[0] # np[j]*m1+ap[j]*bp[0] | ||
352 | adc \$0,%rdx | ||
353 | mov $N[0],-24(%rsp,$j,8) # tp[j-1] | ||
354 | mov %rdx,$N[1] | ||
355 | |||
356 | mulq $m0 # ap[j]*bp[0] | ||
357 | add %rax,$A[1] | ||
358 | mov -8($np,$j,8),%rax | ||
359 | adc \$0,%rdx | ||
360 | mov %rdx,$A[0] | ||
361 | |||
362 | mulq $m1 # np[j]*m1 | ||
363 | add %rax,$N[1] | ||
364 | mov ($ap,$j,8),%rax | ||
365 | adc \$0,%rdx | ||
366 | add $A[1],$N[1] # np[j]*m1+ap[j]*bp[0] | ||
367 | adc \$0,%rdx | ||
368 | mov $N[1],-16(%rsp,$j,8) # tp[j-1] | ||
369 | mov %rdx,$N[0] | ||
370 | |||
371 | mulq $m0 # ap[j]*bp[0] | ||
372 | add %rax,$A[0] | ||
373 | mov ($np,$j,8),%rax | ||
374 | adc \$0,%rdx | ||
375 | mov %rdx,$A[1] | ||
376 | |||
377 | mulq $m1 # np[j]*m1 | ||
378 | add %rax,$N[0] | ||
379 | mov 8($ap,$j,8),%rax | ||
380 | adc \$0,%rdx | ||
381 | add $A[0],$N[0] # np[j]*m1+ap[j]*bp[0] | ||
382 | adc \$0,%rdx | ||
383 | mov $N[0],-8(%rsp,$j,8) # tp[j-1] | ||
384 | mov %rdx,$N[1] | ||
385 | |||
386 | mulq $m0 # ap[j]*bp[0] | ||
387 | add %rax,$A[1] | ||
388 | mov 8($np,$j,8),%rax | ||
389 | adc \$0,%rdx | ||
390 | lea 4($j),$j # j++ | ||
391 | mov %rdx,$A[0] | ||
392 | |||
393 | mulq $m1 # np[j]*m1 | ||
394 | add %rax,$N[1] | ||
395 | mov -16($ap,$j,8),%rax | ||
396 | adc \$0,%rdx | ||
397 | add $A[1],$N[1] # np[j]*m1+ap[j]*bp[0] | ||
398 | adc \$0,%rdx | ||
399 | mov $N[1],-32(%rsp,$j,8) # tp[j-1] | ||
400 | mov %rdx,$N[0] | ||
401 | cmp $num,$j | ||
402 | jl .L1st4x | ||
403 | |||
404 | mulq $m0 # ap[j]*bp[0] | ||
405 | add %rax,$A[0] | ||
406 | mov -16($np,$j,8),%rax | ||
407 | adc \$0,%rdx | ||
408 | mov %rdx,$A[1] | ||
409 | |||
410 | mulq $m1 # np[j]*m1 | ||
411 | add %rax,$N[0] | ||
412 | mov -8($ap,$j,8),%rax | ||
413 | adc \$0,%rdx | ||
414 | add $A[0],$N[0] # np[j]*m1+ap[j]*bp[0] | ||
415 | adc \$0,%rdx | ||
416 | mov $N[0],-24(%rsp,$j,8) # tp[j-1] | ||
417 | mov %rdx,$N[1] | ||
418 | |||
419 | mulq $m0 # ap[j]*bp[0] | ||
420 | add %rax,$A[1] | ||
421 | mov -8($np,$j,8),%rax | ||
422 | adc \$0,%rdx | ||
423 | mov %rdx,$A[0] | ||
424 | |||
425 | mulq $m1 # np[j]*m1 | ||
426 | add %rax,$N[1] | ||
427 | mov ($ap),%rax # ap[0] | ||
428 | adc \$0,%rdx | ||
429 | add $A[1],$N[1] # np[j]*m1+ap[j]*bp[0] | ||
430 | adc \$0,%rdx | ||
431 | mov $N[1],-16(%rsp,$j,8) # tp[j-1] | ||
432 | mov %rdx,$N[0] | ||
433 | |||
434 | xor $N[1],$N[1] | ||
435 | add $A[0],$N[0] | ||
436 | adc \$0,$N[1] | ||
437 | mov $N[0],-8(%rsp,$j,8) | ||
438 | mov $N[1],(%rsp,$j,8) # store upmost overflow bit | ||
439 | |||
440 | lea 1($i),$i # i++ | ||
441 | .align 4 | ||
442 | .Louter4x: | ||
443 | mov ($bp,$i,8),$m0 # m0=bp[i] | ||
444 | xor $j,$j # j=0 | ||
445 | mov (%rsp),$A[0] | ||
446 | mov $n0,$m1 | ||
447 | mulq $m0 # ap[0]*bp[i] | ||
448 | add %rax,$A[0] # ap[0]*bp[i]+tp[0] | ||
449 | mov ($np),%rax | ||
450 | adc \$0,%rdx | ||
451 | |||
452 | imulq $A[0],$m1 # tp[0]*n0 | ||
453 | mov %rdx,$A[1] | ||
454 | |||
455 | mulq $m1 # np[0]*m1 | ||
456 | add %rax,$A[0] # "$N[0]", discarded | ||
457 | mov 8($ap),%rax | ||
458 | adc \$0,%rdx | ||
459 | mov %rdx,$N[1] | ||
460 | |||
461 | mulq $m0 # ap[j]*bp[i] | ||
462 | add %rax,$A[1] | ||
463 | mov 8($np),%rax | ||
464 | adc \$0,%rdx | ||
465 | add 8(%rsp),$A[1] # +tp[1] | ||
466 | adc \$0,%rdx | ||
467 | mov %rdx,$A[0] | ||
468 | |||
469 | mulq $m1 # np[j]*m1 | ||
470 | add %rax,$N[1] | ||
471 | mov 16($ap),%rax | ||
472 | adc \$0,%rdx | ||
473 | add $A[1],$N[1] # np[j]*m1+ap[j]*bp[i]+tp[j] | ||
474 | lea 4($j),$j # j+=2 | ||
475 | adc \$0,%rdx | ||
476 | mov $N[1],(%rsp) # tp[j-1] | ||
477 | mov %rdx,$N[0] | ||
478 | jmp .Linner4x | ||
479 | .align 16 | ||
480 | .Linner4x: | ||
481 | mulq $m0 # ap[j]*bp[i] | ||
482 | add %rax,$A[0] | ||
483 | mov -16($np,$j,8),%rax | ||
484 | adc \$0,%rdx | ||
485 | add -16(%rsp,$j,8),$A[0] # ap[j]*bp[i]+tp[j] | ||
486 | adc \$0,%rdx | ||
487 | mov %rdx,$A[1] | ||
488 | |||
489 | mulq $m1 # np[j]*m1 | ||
490 | add %rax,$N[0] | ||
491 | mov -8($ap,$j,8),%rax | ||
492 | adc \$0,%rdx | ||
493 | add $A[0],$N[0] | ||
494 | adc \$0,%rdx | ||
495 | mov $N[0],-24(%rsp,$j,8) # tp[j-1] | ||
496 | mov %rdx,$N[1] | ||
497 | |||
498 | mulq $m0 # ap[j]*bp[i] | ||
499 | add %rax,$A[1] | ||
500 | mov -8($np,$j,8),%rax | ||
501 | adc \$0,%rdx | ||
502 | add -8(%rsp,$j,8),$A[1] | ||
503 | adc \$0,%rdx | ||
504 | mov %rdx,$A[0] | ||
505 | |||
506 | mulq $m1 # np[j]*m1 | ||
507 | add %rax,$N[1] | ||
508 | mov ($ap,$j,8),%rax | ||
509 | adc \$0,%rdx | ||
510 | add $A[1],$N[1] | ||
511 | adc \$0,%rdx | ||
512 | mov $N[1],-16(%rsp,$j,8) # tp[j-1] | ||
513 | mov %rdx,$N[0] | ||
514 | |||
515 | mulq $m0 # ap[j]*bp[i] | ||
516 | add %rax,$A[0] | ||
517 | mov ($np,$j,8),%rax | ||
518 | adc \$0,%rdx | ||
519 | add (%rsp,$j,8),$A[0] # ap[j]*bp[i]+tp[j] | ||
520 | adc \$0,%rdx | ||
521 | mov %rdx,$A[1] | ||
522 | |||
523 | mulq $m1 # np[j]*m1 | ||
524 | add %rax,$N[0] | ||
525 | mov 8($ap,$j,8),%rax | ||
526 | adc \$0,%rdx | ||
527 | add $A[0],$N[0] | ||
528 | adc \$0,%rdx | ||
529 | mov $N[0],-8(%rsp,$j,8) # tp[j-1] | ||
530 | mov %rdx,$N[1] | ||
531 | |||
532 | mulq $m0 # ap[j]*bp[i] | ||
533 | add %rax,$A[1] | ||
534 | mov 8($np,$j,8),%rax | ||
535 | adc \$0,%rdx | ||
536 | add 8(%rsp,$j,8),$A[1] | ||
537 | adc \$0,%rdx | ||
538 | lea 4($j),$j # j++ | ||
539 | mov %rdx,$A[0] | ||
540 | |||
541 | mulq $m1 # np[j]*m1 | ||
542 | add %rax,$N[1] | ||
543 | mov -16($ap,$j,8),%rax | ||
544 | adc \$0,%rdx | ||
545 | add $A[1],$N[1] | ||
546 | adc \$0,%rdx | ||
547 | mov $N[1],-32(%rsp,$j,8) # tp[j-1] | ||
548 | mov %rdx,$N[0] | ||
549 | cmp $num,$j | ||
550 | jl .Linner4x | ||
551 | |||
552 | mulq $m0 # ap[j]*bp[i] | ||
553 | add %rax,$A[0] | ||
554 | mov -16($np,$j,8),%rax | ||
555 | adc \$0,%rdx | ||
556 | add -16(%rsp,$j,8),$A[0] # ap[j]*bp[i]+tp[j] | ||
557 | adc \$0,%rdx | ||
558 | mov %rdx,$A[1] | ||
559 | |||
560 | mulq $m1 # np[j]*m1 | ||
561 | add %rax,$N[0] | ||
562 | mov -8($ap,$j,8),%rax | ||
563 | adc \$0,%rdx | ||
564 | add $A[0],$N[0] | ||
565 | adc \$0,%rdx | ||
566 | mov $N[0],-24(%rsp,$j,8) # tp[j-1] | ||
567 | mov %rdx,$N[1] | ||
568 | |||
569 | mulq $m0 # ap[j]*bp[i] | ||
570 | add %rax,$A[1] | ||
571 | mov -8($np,$j,8),%rax | ||
572 | adc \$0,%rdx | ||
573 | add -8(%rsp,$j,8),$A[1] | ||
574 | adc \$0,%rdx | ||
575 | lea 1($i),$i # i++ | ||
576 | mov %rdx,$A[0] | ||
577 | |||
578 | mulq $m1 # np[j]*m1 | ||
579 | add %rax,$N[1] | ||
580 | mov ($ap),%rax # ap[0] | ||
581 | adc \$0,%rdx | ||
582 | add $A[1],$N[1] | ||
583 | adc \$0,%rdx | ||
584 | mov $N[1],-16(%rsp,$j,8) # tp[j-1] | ||
585 | mov %rdx,$N[0] | ||
586 | |||
587 | xor $N[1],$N[1] | ||
588 | add $A[0],$N[0] | ||
589 | adc \$0,$N[1] | ||
590 | add (%rsp,$num,8),$N[0] # pull upmost overflow bit | ||
591 | adc \$0,$N[1] | ||
592 | mov $N[0],-8(%rsp,$j,8) | ||
593 | mov $N[1],(%rsp,$j,8) # store upmost overflow bit | ||
594 | |||
595 | cmp $num,$i | ||
596 | jl .Louter4x | ||
597 | ___ | ||
598 | { | ||
599 | my @ri=("%rax","%rdx",$m0,$m1); | ||
600 | $code.=<<___; | ||
601 | mov 16(%rsp,$num,8),$rp # restore $rp | ||
602 | mov 0(%rsp),@ri[0] # tp[0] | ||
603 | pxor %xmm0,%xmm0 | ||
604 | mov 8(%rsp),@ri[1] # tp[1] | ||
605 | shr \$2,$num # num/=4 | ||
606 | lea (%rsp),$ap # borrow ap for tp | ||
607 | xor $i,$i # i=0 and clear CF! | ||
608 | |||
609 | sub 0($np),@ri[0] | ||
610 | mov 16($ap),@ri[2] # tp[2] | ||
611 | mov 24($ap),@ri[3] # tp[3] | ||
612 | sbb 8($np),@ri[1] | ||
613 | lea -1($num),$j # j=num/4-1 | ||
614 | jmp .Lsub4x | ||
615 | .align 16 | ||
616 | .Lsub4x: | ||
617 | mov @ri[0],0($rp,$i,8) # rp[i]=tp[i]-np[i] | ||
618 | mov @ri[1],8($rp,$i,8) # rp[i]=tp[i]-np[i] | ||
619 | sbb 16($np,$i,8),@ri[2] | ||
620 | mov 32($ap,$i,8),@ri[0] # tp[i+1] | ||
621 | mov 40($ap,$i,8),@ri[1] | ||
622 | sbb 24($np,$i,8),@ri[3] | ||
623 | mov @ri[2],16($rp,$i,8) # rp[i]=tp[i]-np[i] | ||
624 | mov @ri[3],24($rp,$i,8) # rp[i]=tp[i]-np[i] | ||
625 | sbb 32($np,$i,8),@ri[0] | ||
626 | mov 48($ap,$i,8),@ri[2] | ||
627 | mov 56($ap,$i,8),@ri[3] | ||
628 | sbb 40($np,$i,8),@ri[1] | ||
629 | lea 4($i),$i # i++ | ||
630 | dec $j # doesnn't affect CF! | ||
631 | jnz .Lsub4x | ||
632 | |||
633 | mov @ri[0],0($rp,$i,8) # rp[i]=tp[i]-np[i] | ||
634 | mov 32($ap,$i,8),@ri[0] # load overflow bit | ||
635 | sbb 16($np,$i,8),@ri[2] | ||
636 | mov @ri[1],8($rp,$i,8) # rp[i]=tp[i]-np[i] | ||
637 | sbb 24($np,$i,8),@ri[3] | ||
638 | mov @ri[2],16($rp,$i,8) # rp[i]=tp[i]-np[i] | ||
639 | |||
640 | sbb \$0,@ri[0] # handle upmost overflow bit | ||
641 | mov @ri[3],24($rp,$i,8) # rp[i]=tp[i]-np[i] | ||
642 | xor $i,$i # i=0 | ||
643 | and @ri[0],$ap | ||
644 | not @ri[0] | ||
645 | mov $rp,$np | ||
646 | and @ri[0],$np | ||
647 | lea -1($num),$j | ||
648 | or $np,$ap # ap=borrow?tp:rp | ||
649 | |||
650 | movdqu ($ap),%xmm1 | ||
651 | movdqa %xmm0,(%rsp) | ||
652 | movdqu %xmm1,($rp) | ||
653 | jmp .Lcopy4x | ||
654 | .align 16 | ||
655 | .Lcopy4x: # copy or in-place refresh | ||
656 | movdqu 16($ap,$i),%xmm2 | ||
657 | movdqu 32($ap,$i),%xmm1 | ||
658 | movdqa %xmm0,16(%rsp,$i) | ||
659 | movdqu %xmm2,16($rp,$i) | ||
660 | movdqa %xmm0,32(%rsp,$i) | ||
661 | movdqu %xmm1,32($rp,$i) | ||
662 | lea 32($i),$i | ||
663 | dec $j | ||
664 | jnz .Lcopy4x | ||
665 | |||
666 | shl \$2,$num | ||
667 | movdqu 16($ap,$i),%xmm2 | ||
668 | movdqa %xmm0,16(%rsp,$i) | ||
669 | movdqu %xmm2,16($rp,$i) | ||
670 | ___ | ||
671 | } | ||
672 | $code.=<<___; | ||
673 | mov 8(%rsp,$num,8),%rsi # restore %rsp | ||
674 | mov \$1,%rax | ||
675 | mov (%rsi),%r15 | ||
676 | mov 8(%rsi),%r14 | ||
677 | mov 16(%rsi),%r13 | ||
678 | mov 24(%rsi),%r12 | ||
679 | mov 32(%rsi),%rbp | ||
680 | mov 40(%rsi),%rbx | ||
681 | lea 48(%rsi),%rsp | ||
682 | .Lmul4x_epilogue: | ||
683 | ret | ||
684 | .size bn_mul4x_mont,.-bn_mul4x_mont | ||
685 | ___ | ||
686 | }}} | ||
687 | {{{ | ||
688 | ###################################################################### | ||
689 | # void bn_sqr4x_mont( | ||
690 | my $rptr="%rdi"; # const BN_ULONG *rptr, | ||
691 | my $aptr="%rsi"; # const BN_ULONG *aptr, | ||
692 | my $bptr="%rdx"; # not used | ||
693 | my $nptr="%rcx"; # const BN_ULONG *nptr, | ||
694 | my $n0 ="%r8"; # const BN_ULONG *n0); | ||
695 | my $num ="%r9"; # int num, has to be divisible by 4 and | ||
696 | # not less than 8 | ||
697 | |||
698 | my ($i,$j,$tptr)=("%rbp","%rcx",$rptr); | ||
699 | my @A0=("%r10","%r11"); | ||
700 | my @A1=("%r12","%r13"); | ||
701 | my ($a0,$a1,$ai)=("%r14","%r15","%rbx"); | ||
702 | |||
703 | $code.=<<___; | ||
704 | .type bn_sqr4x_mont,\@function,6 | ||
705 | .align 16 | ||
706 | bn_sqr4x_mont: | ||
707 | .Lsqr4x_enter: | ||
708 | push %rbx | ||
709 | push %rbp | ||
710 | push %r12 | ||
711 | push %r13 | ||
712 | push %r14 | ||
713 | push %r15 | ||
714 | |||
715 | shl \$3,${num}d # convert $num to bytes | ||
716 | xor %r10,%r10 | ||
717 | mov %rsp,%r11 # put aside %rsp | ||
718 | sub $num,%r10 # -$num | ||
719 | mov ($n0),$n0 # *n0 | ||
720 | lea -72(%rsp,%r10,2),%rsp # alloca(frame+2*$num) | ||
721 | and \$-1024,%rsp # minimize TLB usage | ||
722 | ############################################################## | ||
723 | # Stack layout | ||
724 | # | ||
725 | # +0 saved $num, used in reduction section | ||
726 | # +8 &t[2*$num], used in reduction section | ||
727 | # +32 saved $rptr | ||
728 | # +40 saved $nptr | ||
729 | # +48 saved *n0 | ||
730 | # +56 saved %rsp | ||
731 | # +64 t[2*$num] | ||
732 | # | ||
733 | mov $rptr,32(%rsp) # save $rptr | ||
734 | mov $nptr,40(%rsp) | ||
735 | mov $n0, 48(%rsp) | ||
736 | mov %r11, 56(%rsp) # save original %rsp | ||
737 | .Lsqr4x_body: | ||
738 | ############################################################## | ||
739 | # Squaring part: | ||
740 | # | ||
741 | # a) multiply-n-add everything but a[i]*a[i]; | ||
742 | # b) shift result of a) by 1 to the left and accumulate | ||
743 | # a[i]*a[i] products; | ||
744 | # | ||
745 | lea 32(%r10),$i # $i=-($num-32) | ||
746 | lea ($aptr,$num),$aptr # end of a[] buffer, ($aptr,$i)=&ap[2] | ||
747 | |||
748 | mov $num,$j # $j=$num | ||
749 | |||
750 | # comments apply to $num==8 case | ||
751 | mov -32($aptr,$i),$a0 # a[0] | ||
752 | lea 64(%rsp,$num,2),$tptr # end of tp[] buffer, &tp[2*$num] | ||
753 | mov -24($aptr,$i),%rax # a[1] | ||
754 | lea -32($tptr,$i),$tptr # end of tp[] window, &tp[2*$num-"$i"] | ||
755 | mov -16($aptr,$i),$ai # a[2] | ||
756 | mov %rax,$a1 | ||
757 | |||
758 | mul $a0 # a[1]*a[0] | ||
759 | mov %rax,$A0[0] # a[1]*a[0] | ||
760 | mov $ai,%rax # a[2] | ||
761 | mov %rdx,$A0[1] | ||
762 | mov $A0[0],-24($tptr,$i) # t[1] | ||
763 | |||
764 | xor $A0[0],$A0[0] | ||
765 | mul $a0 # a[2]*a[0] | ||
766 | add %rax,$A0[1] | ||
767 | mov $ai,%rax | ||
768 | adc %rdx,$A0[0] | ||
769 | mov $A0[1],-16($tptr,$i) # t[2] | ||
770 | |||
771 | lea -16($i),$j # j=-16 | ||
772 | |||
773 | |||
774 | mov 8($aptr,$j),$ai # a[3] | ||
775 | mul $a1 # a[2]*a[1] | ||
776 | mov %rax,$A1[0] # a[2]*a[1]+t[3] | ||
777 | mov $ai,%rax | ||
778 | mov %rdx,$A1[1] | ||
779 | |||
780 | xor $A0[1],$A0[1] | ||
781 | add $A1[0],$A0[0] | ||
782 | lea 16($j),$j | ||
783 | adc \$0,$A0[1] | ||
784 | mul $a0 # a[3]*a[0] | ||
785 | add %rax,$A0[0] # a[3]*a[0]+a[2]*a[1]+t[3] | ||
786 | mov $ai,%rax | ||
787 | adc %rdx,$A0[1] | ||
788 | mov $A0[0],-8($tptr,$j) # t[3] | ||
789 | jmp .Lsqr4x_1st | ||
790 | |||
791 | .align 16 | ||
792 | .Lsqr4x_1st: | ||
793 | mov ($aptr,$j),$ai # a[4] | ||
794 | xor $A1[0],$A1[0] | ||
795 | mul $a1 # a[3]*a[1] | ||
796 | add %rax,$A1[1] # a[3]*a[1]+t[4] | ||
797 | mov $ai,%rax | ||
798 | adc %rdx,$A1[0] | ||
799 | |||
800 | xor $A0[0],$A0[0] | ||
801 | add $A1[1],$A0[1] | ||
802 | adc \$0,$A0[0] | ||
803 | mul $a0 # a[4]*a[0] | ||
804 | add %rax,$A0[1] # a[4]*a[0]+a[3]*a[1]+t[4] | ||
805 | mov $ai,%rax # a[3] | ||
806 | adc %rdx,$A0[0] | ||
807 | mov $A0[1],($tptr,$j) # t[4] | ||
808 | |||
809 | |||
810 | mov 8($aptr,$j),$ai # a[5] | ||
811 | xor $A1[1],$A1[1] | ||
812 | mul $a1 # a[4]*a[3] | ||
813 | add %rax,$A1[0] # a[4]*a[3]+t[5] | ||
814 | mov $ai,%rax | ||
815 | adc %rdx,$A1[1] | ||
816 | |||
817 | xor $A0[1],$A0[1] | ||
818 | add $A1[0],$A0[0] | ||
819 | adc \$0,$A0[1] | ||
820 | mul $a0 # a[5]*a[2] | ||
821 | add %rax,$A0[0] # a[5]*a[2]+a[4]*a[3]+t[5] | ||
822 | mov $ai,%rax | ||
823 | adc %rdx,$A0[1] | ||
824 | mov $A0[0],8($tptr,$j) # t[5] | ||
825 | |||
826 | mov 16($aptr,$j),$ai # a[6] | ||
827 | xor $A1[0],$A1[0] | ||
828 | mul $a1 # a[5]*a[3] | ||
829 | add %rax,$A1[1] # a[5]*a[3]+t[6] | ||
830 | mov $ai,%rax | ||
831 | adc %rdx,$A1[0] | ||
832 | |||
833 | xor $A0[0],$A0[0] | ||
834 | add $A1[1],$A0[1] | ||
835 | adc \$0,$A0[0] | ||
836 | mul $a0 # a[6]*a[2] | ||
837 | add %rax,$A0[1] # a[6]*a[2]+a[5]*a[3]+t[6] | ||
838 | mov $ai,%rax # a[3] | ||
839 | adc %rdx,$A0[0] | ||
840 | mov $A0[1],16($tptr,$j) # t[6] | ||
841 | |||
842 | |||
843 | mov 24($aptr,$j),$ai # a[7] | ||
844 | xor $A1[1],$A1[1] | ||
845 | mul $a1 # a[6]*a[5] | ||
846 | add %rax,$A1[0] # a[6]*a[5]+t[7] | ||
847 | mov $ai,%rax | ||
848 | adc %rdx,$A1[1] | ||
849 | |||
850 | xor $A0[1],$A0[1] | ||
851 | add $A1[0],$A0[0] | ||
852 | lea 32($j),$j | ||
853 | adc \$0,$A0[1] | ||
854 | mul $a0 # a[7]*a[4] | ||
855 | add %rax,$A0[0] # a[7]*a[4]+a[6]*a[5]+t[6] | ||
856 | mov $ai,%rax | ||
857 | adc %rdx,$A0[1] | ||
858 | mov $A0[0],-8($tptr,$j) # t[7] | ||
859 | |||
860 | cmp \$0,$j | ||
861 | jne .Lsqr4x_1st | ||
862 | |||
863 | xor $A1[0],$A1[0] | ||
864 | add $A0[1],$A1[1] | ||
865 | adc \$0,$A1[0] | ||
866 | mul $a1 # a[7]*a[5] | ||
867 | add %rax,$A1[1] | ||
868 | adc %rdx,$A1[0] | ||
869 | |||
870 | mov $A1[1],($tptr) # t[8] | ||
871 | lea 16($i),$i | ||
872 | mov $A1[0],8($tptr) # t[9] | ||
873 | jmp .Lsqr4x_outer | ||
874 | |||
875 | .align 16 | ||
876 | .Lsqr4x_outer: # comments apply to $num==6 case | ||
877 | mov -32($aptr,$i),$a0 # a[0] | ||
878 | lea 64(%rsp,$num,2),$tptr # end of tp[] buffer, &tp[2*$num] | ||
879 | mov -24($aptr,$i),%rax # a[1] | ||
880 | lea -32($tptr,$i),$tptr # end of tp[] window, &tp[2*$num-"$i"] | ||
881 | mov -16($aptr,$i),$ai # a[2] | ||
882 | mov %rax,$a1 | ||
883 | |||
884 | mov -24($tptr,$i),$A0[0] # t[1] | ||
885 | xor $A0[1],$A0[1] | ||
886 | mul $a0 # a[1]*a[0] | ||
887 | add %rax,$A0[0] # a[1]*a[0]+t[1] | ||
888 | mov $ai,%rax # a[2] | ||
889 | adc %rdx,$A0[1] | ||
890 | mov $A0[0],-24($tptr,$i) # t[1] | ||
891 | |||
892 | xor $A0[0],$A0[0] | ||
893 | add -16($tptr,$i),$A0[1] # a[2]*a[0]+t[2] | ||
894 | adc \$0,$A0[0] | ||
895 | mul $a0 # a[2]*a[0] | ||
896 | add %rax,$A0[1] | ||
897 | mov $ai,%rax | ||
898 | adc %rdx,$A0[0] | ||
899 | mov $A0[1],-16($tptr,$i) # t[2] | ||
900 | |||
901 | lea -16($i),$j # j=-16 | ||
902 | xor $A1[0],$A1[0] | ||
903 | |||
904 | |||
905 | mov 8($aptr,$j),$ai # a[3] | ||
906 | xor $A1[1],$A1[1] | ||
907 | add 8($tptr,$j),$A1[0] | ||
908 | adc \$0,$A1[1] | ||
909 | mul $a1 # a[2]*a[1] | ||
910 | add %rax,$A1[0] # a[2]*a[1]+t[3] | ||
911 | mov $ai,%rax | ||
912 | adc %rdx,$A1[1] | ||
913 | |||
914 | xor $A0[1],$A0[1] | ||
915 | add $A1[0],$A0[0] | ||
916 | adc \$0,$A0[1] | ||
917 | mul $a0 # a[3]*a[0] | ||
918 | add %rax,$A0[0] # a[3]*a[0]+a[2]*a[1]+t[3] | ||
919 | mov $ai,%rax | ||
920 | adc %rdx,$A0[1] | ||
921 | mov $A0[0],8($tptr,$j) # t[3] | ||
922 | |||
923 | lea 16($j),$j | ||
924 | jmp .Lsqr4x_inner | ||
925 | |||
926 | .align 16 | ||
927 | .Lsqr4x_inner: | ||
928 | mov ($aptr,$j),$ai # a[4] | ||
929 | xor $A1[0],$A1[0] | ||
930 | add ($tptr,$j),$A1[1] | ||
931 | adc \$0,$A1[0] | ||
932 | mul $a1 # a[3]*a[1] | ||
933 | add %rax,$A1[1] # a[3]*a[1]+t[4] | ||
934 | mov $ai,%rax | ||
935 | adc %rdx,$A1[0] | ||
936 | |||
937 | xor $A0[0],$A0[0] | ||
938 | add $A1[1],$A0[1] | ||
939 | adc \$0,$A0[0] | ||
940 | mul $a0 # a[4]*a[0] | ||
941 | add %rax,$A0[1] # a[4]*a[0]+a[3]*a[1]+t[4] | ||
942 | mov $ai,%rax # a[3] | ||
943 | adc %rdx,$A0[0] | ||
944 | mov $A0[1],($tptr,$j) # t[4] | ||
945 | |||
946 | mov 8($aptr,$j),$ai # a[5] | ||
947 | xor $A1[1],$A1[1] | ||
948 | add 8($tptr,$j),$A1[0] | ||
949 | adc \$0,$A1[1] | ||
950 | mul $a1 # a[4]*a[3] | ||
951 | add %rax,$A1[0] # a[4]*a[3]+t[5] | ||
952 | mov $ai,%rax | ||
953 | adc %rdx,$A1[1] | ||
954 | |||
955 | xor $A0[1],$A0[1] | ||
956 | add $A1[0],$A0[0] | ||
957 | lea 16($j),$j # j++ | ||
958 | adc \$0,$A0[1] | ||
959 | mul $a0 # a[5]*a[2] | ||
960 | add %rax,$A0[0] # a[5]*a[2]+a[4]*a[3]+t[5] | ||
961 | mov $ai,%rax | ||
962 | adc %rdx,$A0[1] | ||
963 | mov $A0[0],-8($tptr,$j) # t[5], "preloaded t[1]" below | ||
964 | |||
965 | cmp \$0,$j | ||
966 | jne .Lsqr4x_inner | ||
967 | |||
968 | xor $A1[0],$A1[0] | ||
969 | add $A0[1],$A1[1] | ||
970 | adc \$0,$A1[0] | ||
971 | mul $a1 # a[5]*a[3] | ||
972 | add %rax,$A1[1] | ||
973 | adc %rdx,$A1[0] | ||
974 | |||
975 | mov $A1[1],($tptr) # t[6], "preloaded t[2]" below | ||
976 | mov $A1[0],8($tptr) # t[7], "preloaded t[3]" below | ||
977 | |||
978 | add \$16,$i | ||
979 | jnz .Lsqr4x_outer | ||
980 | |||
981 | # comments apply to $num==4 case | ||
982 | mov -32($aptr),$a0 # a[0] | ||
983 | lea 64(%rsp,$num,2),$tptr # end of tp[] buffer, &tp[2*$num] | ||
984 | mov -24($aptr),%rax # a[1] | ||
985 | lea -32($tptr,$i),$tptr # end of tp[] window, &tp[2*$num-"$i"] | ||
986 | mov -16($aptr),$ai # a[2] | ||
987 | mov %rax,$a1 | ||
988 | |||
989 | xor $A0[1],$A0[1] | ||
990 | mul $a0 # a[1]*a[0] | ||
991 | add %rax,$A0[0] # a[1]*a[0]+t[1], preloaded t[1] | ||
992 | mov $ai,%rax # a[2] | ||
993 | adc %rdx,$A0[1] | ||
994 | mov $A0[0],-24($tptr) # t[1] | ||
995 | |||
996 | xor $A0[0],$A0[0] | ||
997 | add $A1[1],$A0[1] # a[2]*a[0]+t[2], preloaded t[2] | ||
998 | adc \$0,$A0[0] | ||
999 | mul $a0 # a[2]*a[0] | ||
1000 | add %rax,$A0[1] | ||
1001 | mov $ai,%rax | ||
1002 | adc %rdx,$A0[0] | ||
1003 | mov $A0[1],-16($tptr) # t[2] | ||
1004 | |||
1005 | mov -8($aptr),$ai # a[3] | ||
1006 | mul $a1 # a[2]*a[1] | ||
1007 | add %rax,$A1[0] # a[2]*a[1]+t[3], preloaded t[3] | ||
1008 | mov $ai,%rax | ||
1009 | adc \$0,%rdx | ||
1010 | |||
1011 | xor $A0[1],$A0[1] | ||
1012 | add $A1[0],$A0[0] | ||
1013 | mov %rdx,$A1[1] | ||
1014 | adc \$0,$A0[1] | ||
1015 | mul $a0 # a[3]*a[0] | ||
1016 | add %rax,$A0[0] # a[3]*a[0]+a[2]*a[1]+t[3] | ||
1017 | mov $ai,%rax | ||
1018 | adc %rdx,$A0[1] | ||
1019 | mov $A0[0],-8($tptr) # t[3] | ||
1020 | |||
1021 | xor $A1[0],$A1[0] | ||
1022 | add $A0[1],$A1[1] | ||
1023 | adc \$0,$A1[0] | ||
1024 | mul $a1 # a[3]*a[1] | ||
1025 | add %rax,$A1[1] | ||
1026 | mov -16($aptr),%rax # a[2] | ||
1027 | adc %rdx,$A1[0] | ||
1028 | |||
1029 | mov $A1[1],($tptr) # t[4] | ||
1030 | mov $A1[0],8($tptr) # t[5] | ||
1031 | |||
1032 | mul $ai # a[2]*a[3] | ||
1033 | ___ | ||
1034 | { | ||
1035 | my ($shift,$carry)=($a0,$a1); | ||
1036 | my @S=(@A1,$ai,$n0); | ||
1037 | $code.=<<___; | ||
1038 | add \$16,$i | ||
1039 | xor $shift,$shift | ||
1040 | sub $num,$i # $i=16-$num | ||
1041 | xor $carry,$carry | ||
1042 | |||
1043 | add $A1[0],%rax # t[5] | ||
1044 | adc \$0,%rdx | ||
1045 | mov %rax,8($tptr) # t[5] | ||
1046 | mov %rdx,16($tptr) # t[6] | ||
1047 | mov $carry,24($tptr) # t[7] | ||
1048 | |||
1049 | mov -16($aptr,$i),%rax # a[0] | ||
1050 | lea 64(%rsp,$num,2),$tptr | ||
1051 | xor $A0[0],$A0[0] # t[0] | ||
1052 | mov -24($tptr,$i,2),$A0[1] # t[1] | ||
1053 | |||
1054 | lea ($shift,$A0[0],2),$S[0] # t[2*i]<<1 | shift | ||
1055 | shr \$63,$A0[0] | ||
1056 | lea ($j,$A0[1],2),$S[1] # t[2*i+1]<<1 | | ||
1057 | shr \$63,$A0[1] | ||
1058 | or $A0[0],$S[1] # | t[2*i]>>63 | ||
1059 | mov -16($tptr,$i,2),$A0[0] # t[2*i+2] # prefetch | ||
1060 | mov $A0[1],$shift # shift=t[2*i+1]>>63 | ||
1061 | mul %rax # a[i]*a[i] | ||
1062 | neg $carry # mov $carry,cf | ||
1063 | mov -8($tptr,$i,2),$A0[1] # t[2*i+2+1] # prefetch | ||
1064 | adc %rax,$S[0] | ||
1065 | mov -8($aptr,$i),%rax # a[i+1] # prefetch | ||
1066 | mov $S[0],-32($tptr,$i,2) | ||
1067 | adc %rdx,$S[1] | ||
1068 | |||
1069 | lea ($shift,$A0[0],2),$S[2] # t[2*i]<<1 | shift | ||
1070 | mov $S[1],-24($tptr,$i,2) | ||
1071 | sbb $carry,$carry # mov cf,$carry | ||
1072 | shr \$63,$A0[0] | ||
1073 | lea ($j,$A0[1],2),$S[3] # t[2*i+1]<<1 | | ||
1074 | shr \$63,$A0[1] | ||
1075 | or $A0[0],$S[3] # | t[2*i]>>63 | ||
1076 | mov 0($tptr,$i,2),$A0[0] # t[2*i+2] # prefetch | ||
1077 | mov $A0[1],$shift # shift=t[2*i+1]>>63 | ||
1078 | mul %rax # a[i]*a[i] | ||
1079 | neg $carry # mov $carry,cf | ||
1080 | mov 8($tptr,$i,2),$A0[1] # t[2*i+2+1] # prefetch | ||
1081 | adc %rax,$S[2] | ||
1082 | mov 0($aptr,$i),%rax # a[i+1] # prefetch | ||
1083 | mov $S[2],-16($tptr,$i,2) | ||
1084 | adc %rdx,$S[3] | ||
1085 | lea 16($i),$i | ||
1086 | mov $S[3],-40($tptr,$i,2) | ||
1087 | sbb $carry,$carry # mov cf,$carry | ||
1088 | jmp .Lsqr4x_shift_n_add | ||
1089 | |||
1090 | .align 16 | ||
1091 | .Lsqr4x_shift_n_add: | ||
1092 | lea ($shift,$A0[0],2),$S[0] # t[2*i]<<1 | shift | ||
1093 | shr \$63,$A0[0] | ||
1094 | lea ($j,$A0[1],2),$S[1] # t[2*i+1]<<1 | | ||
1095 | shr \$63,$A0[1] | ||
1096 | or $A0[0],$S[1] # | t[2*i]>>63 | ||
1097 | mov -16($tptr,$i,2),$A0[0] # t[2*i+2] # prefetch | ||
1098 | mov $A0[1],$shift # shift=t[2*i+1]>>63 | ||
1099 | mul %rax # a[i]*a[i] | ||
1100 | neg $carry # mov $carry,cf | ||
1101 | mov -8($tptr,$i,2),$A0[1] # t[2*i+2+1] # prefetch | ||
1102 | adc %rax,$S[0] | ||
1103 | mov -8($aptr,$i),%rax # a[i+1] # prefetch | ||
1104 | mov $S[0],-32($tptr,$i,2) | ||
1105 | adc %rdx,$S[1] | ||
1106 | |||
1107 | lea ($shift,$A0[0],2),$S[2] # t[2*i]<<1 | shift | ||
1108 | mov $S[1],-24($tptr,$i,2) | ||
1109 | sbb $carry,$carry # mov cf,$carry | ||
1110 | shr \$63,$A0[0] | ||
1111 | lea ($j,$A0[1],2),$S[3] # t[2*i+1]<<1 | | ||
1112 | shr \$63,$A0[1] | ||
1113 | or $A0[0],$S[3] # | t[2*i]>>63 | ||
1114 | mov 0($tptr,$i,2),$A0[0] # t[2*i+2] # prefetch | ||
1115 | mov $A0[1],$shift # shift=t[2*i+1]>>63 | ||
1116 | mul %rax # a[i]*a[i] | ||
1117 | neg $carry # mov $carry,cf | ||
1118 | mov 8($tptr,$i,2),$A0[1] # t[2*i+2+1] # prefetch | ||
1119 | adc %rax,$S[2] | ||
1120 | mov 0($aptr,$i),%rax # a[i+1] # prefetch | ||
1121 | mov $S[2],-16($tptr,$i,2) | ||
1122 | adc %rdx,$S[3] | ||
1123 | |||
1124 | lea ($shift,$A0[0],2),$S[0] # t[2*i]<<1 | shift | ||
1125 | mov $S[3],-8($tptr,$i,2) | ||
1126 | sbb $carry,$carry # mov cf,$carry | ||
1127 | shr \$63,$A0[0] | ||
1128 | lea ($j,$A0[1],2),$S[1] # t[2*i+1]<<1 | | ||
1129 | shr \$63,$A0[1] | ||
1130 | or $A0[0],$S[1] # | t[2*i]>>63 | ||
1131 | mov 16($tptr,$i,2),$A0[0] # t[2*i+2] # prefetch | ||
1132 | mov $A0[1],$shift # shift=t[2*i+1]>>63 | ||
1133 | mul %rax # a[i]*a[i] | ||
1134 | neg $carry # mov $carry,cf | ||
1135 | mov 24($tptr,$i,2),$A0[1] # t[2*i+2+1] # prefetch | ||
1136 | adc %rax,$S[0] | ||
1137 | mov 8($aptr,$i),%rax # a[i+1] # prefetch | ||
1138 | mov $S[0],0($tptr,$i,2) | ||
1139 | adc %rdx,$S[1] | ||
1140 | |||
1141 | lea ($shift,$A0[0],2),$S[2] # t[2*i]<<1 | shift | ||
1142 | mov $S[1],8($tptr,$i,2) | ||
1143 | sbb $carry,$carry # mov cf,$carry | ||
1144 | shr \$63,$A0[0] | ||
1145 | lea ($j,$A0[1],2),$S[3] # t[2*i+1]<<1 | | ||
1146 | shr \$63,$A0[1] | ||
1147 | or $A0[0],$S[3] # | t[2*i]>>63 | ||
1148 | mov 32($tptr,$i,2),$A0[0] # t[2*i+2] # prefetch | ||
1149 | mov $A0[1],$shift # shift=t[2*i+1]>>63 | ||
1150 | mul %rax # a[i]*a[i] | ||
1151 | neg $carry # mov $carry,cf | ||
1152 | mov 40($tptr,$i,2),$A0[1] # t[2*i+2+1] # prefetch | ||
1153 | adc %rax,$S[2] | ||
1154 | mov 16($aptr,$i),%rax # a[i+1] # prefetch | ||
1155 | mov $S[2],16($tptr,$i,2) | ||
1156 | adc %rdx,$S[3] | ||
1157 | mov $S[3],24($tptr,$i,2) | ||
1158 | sbb $carry,$carry # mov cf,$carry | ||
1159 | add \$32,$i | ||
1160 | jnz .Lsqr4x_shift_n_add | ||
1161 | |||
1162 | lea ($shift,$A0[0],2),$S[0] # t[2*i]<<1 | shift | ||
1163 | shr \$63,$A0[0] | ||
1164 | lea ($j,$A0[1],2),$S[1] # t[2*i+1]<<1 | | ||
1165 | shr \$63,$A0[1] | ||
1166 | or $A0[0],$S[1] # | t[2*i]>>63 | ||
1167 | mov -16($tptr),$A0[0] # t[2*i+2] # prefetch | ||
1168 | mov $A0[1],$shift # shift=t[2*i+1]>>63 | ||
1169 | mul %rax # a[i]*a[i] | ||
1170 | neg $carry # mov $carry,cf | ||
1171 | mov -8($tptr),$A0[1] # t[2*i+2+1] # prefetch | ||
1172 | adc %rax,$S[0] | ||
1173 | mov -8($aptr),%rax # a[i+1] # prefetch | ||
1174 | mov $S[0],-32($tptr) | ||
1175 | adc %rdx,$S[1] | ||
1176 | |||
1177 | lea ($shift,$A0[0],2),$S[2] # t[2*i]<<1|shift | ||
1178 | mov $S[1],-24($tptr) | ||
1179 | sbb $carry,$carry # mov cf,$carry | ||
1180 | shr \$63,$A0[0] | ||
1181 | lea ($j,$A0[1],2),$S[3] # t[2*i+1]<<1 | | ||
1182 | shr \$63,$A0[1] | ||
1183 | or $A0[0],$S[3] # | t[2*i]>>63 | ||
1184 | mul %rax # a[i]*a[i] | ||
1185 | neg $carry # mov $carry,cf | ||
1186 | adc %rax,$S[2] | ||
1187 | adc %rdx,$S[3] | ||
1188 | mov $S[2],-16($tptr) | ||
1189 | mov $S[3],-8($tptr) | ||
1190 | ___ | ||
1191 | } | ||
1192 | ############################################################## | ||
1193 | # Montgomery reduction part, "word-by-word" algorithm. | ||
1194 | # | ||
1195 | { | ||
1196 | my ($topbit,$nptr)=("%rbp",$aptr); | ||
1197 | my ($m0,$m1)=($a0,$a1); | ||
1198 | my @Ni=("%rbx","%r9"); | ||
1199 | $code.=<<___; | ||
1200 | mov 40(%rsp),$nptr # restore $nptr | ||
1201 | mov 48(%rsp),$n0 # restore *n0 | ||
1202 | xor $j,$j | ||
1203 | mov $num,0(%rsp) # save $num | ||
1204 | sub $num,$j # $j=-$num | ||
1205 | mov 64(%rsp),$A0[0] # t[0] # modsched # | ||
1206 | mov $n0,$m0 # # modsched # | ||
1207 | lea 64(%rsp,$num,2),%rax # end of t[] buffer | ||
1208 | lea 64(%rsp,$num),$tptr # end of t[] window | ||
1209 | mov %rax,8(%rsp) # save end of t[] buffer | ||
1210 | lea ($nptr,$num),$nptr # end of n[] buffer | ||
1211 | xor $topbit,$topbit # $topbit=0 | ||
1212 | |||
1213 | mov 0($nptr,$j),%rax # n[0] # modsched # | ||
1214 | mov 8($nptr,$j),$Ni[1] # n[1] # modsched # | ||
1215 | imulq $A0[0],$m0 # m0=t[0]*n0 # modsched # | ||
1216 | mov %rax,$Ni[0] # # modsched # | ||
1217 | jmp .Lsqr4x_mont_outer | ||
1218 | |||
1219 | .align 16 | ||
1220 | .Lsqr4x_mont_outer: | ||
1221 | xor $A0[1],$A0[1] | ||
1222 | mul $m0 # n[0]*m0 | ||
1223 | add %rax,$A0[0] # n[0]*m0+t[0] | ||
1224 | mov $Ni[1],%rax | ||
1225 | adc %rdx,$A0[1] | ||
1226 | mov $n0,$m1 | ||
1227 | |||
1228 | xor $A0[0],$A0[0] | ||
1229 | add 8($tptr,$j),$A0[1] | ||
1230 | adc \$0,$A0[0] | ||
1231 | mul $m0 # n[1]*m0 | ||
1232 | add %rax,$A0[1] # n[1]*m0+t[1] | ||
1233 | mov $Ni[0],%rax | ||
1234 | adc %rdx,$A0[0] | ||
1235 | |||
1236 | imulq $A0[1],$m1 | ||
1237 | |||
1238 | mov 16($nptr,$j),$Ni[0] # n[2] | ||
1239 | xor $A1[1],$A1[1] | ||
1240 | add $A0[1],$A1[0] | ||
1241 | adc \$0,$A1[1] | ||
1242 | mul $m1 # n[0]*m1 | ||
1243 | add %rax,$A1[0] # n[0]*m1+"t[1]" | ||
1244 | mov $Ni[0],%rax | ||
1245 | adc %rdx,$A1[1] | ||
1246 | mov $A1[0],8($tptr,$j) # "t[1]" | ||
1247 | |||
1248 | xor $A0[1],$A0[1] | ||
1249 | add 16($tptr,$j),$A0[0] | ||
1250 | adc \$0,$A0[1] | ||
1251 | mul $m0 # n[2]*m0 | ||
1252 | add %rax,$A0[0] # n[2]*m0+t[2] | ||
1253 | mov $Ni[1],%rax | ||
1254 | adc %rdx,$A0[1] | ||
1255 | |||
1256 | mov 24($nptr,$j),$Ni[1] # n[3] | ||
1257 | xor $A1[0],$A1[0] | ||
1258 | add $A0[0],$A1[1] | ||
1259 | adc \$0,$A1[0] | ||
1260 | mul $m1 # n[1]*m1 | ||
1261 | add %rax,$A1[1] # n[1]*m1+"t[2]" | ||
1262 | mov $Ni[1],%rax | ||
1263 | adc %rdx,$A1[0] | ||
1264 | mov $A1[1],16($tptr,$j) # "t[2]" | ||
1265 | |||
1266 | xor $A0[0],$A0[0] | ||
1267 | add 24($tptr,$j),$A0[1] | ||
1268 | lea 32($j),$j | ||
1269 | adc \$0,$A0[0] | ||
1270 | mul $m0 # n[3]*m0 | ||
1271 | add %rax,$A0[1] # n[3]*m0+t[3] | ||
1272 | mov $Ni[0],%rax | ||
1273 | adc %rdx,$A0[0] | ||
1274 | jmp .Lsqr4x_mont_inner | ||
1275 | |||
1276 | .align 16 | ||
1277 | .Lsqr4x_mont_inner: | ||
1278 | mov ($nptr,$j),$Ni[0] # n[4] | ||
1279 | xor $A1[1],$A1[1] | ||
1280 | add $A0[1],$A1[0] | ||
1281 | adc \$0,$A1[1] | ||
1282 | mul $m1 # n[2]*m1 | ||
1283 | add %rax,$A1[0] # n[2]*m1+"t[3]" | ||
1284 | mov $Ni[0],%rax | ||
1285 | adc %rdx,$A1[1] | ||
1286 | mov $A1[0],-8($tptr,$j) # "t[3]" | ||
1287 | |||
1288 | xor $A0[1],$A0[1] | ||
1289 | add ($tptr,$j),$A0[0] | ||
1290 | adc \$0,$A0[1] | ||
1291 | mul $m0 # n[4]*m0 | ||
1292 | add %rax,$A0[0] # n[4]*m0+t[4] | ||
1293 | mov $Ni[1],%rax | ||
1294 | adc %rdx,$A0[1] | ||
1295 | |||
1296 | mov 8($nptr,$j),$Ni[1] # n[5] | ||
1297 | xor $A1[0],$A1[0] | ||
1298 | add $A0[0],$A1[1] | ||
1299 | adc \$0,$A1[0] | ||
1300 | mul $m1 # n[3]*m1 | ||
1301 | add %rax,$A1[1] # n[3]*m1+"t[4]" | ||
1302 | mov $Ni[1],%rax | ||
1303 | adc %rdx,$A1[0] | ||
1304 | mov $A1[1],($tptr,$j) # "t[4]" | ||
1305 | |||
1306 | xor $A0[0],$A0[0] | ||
1307 | add 8($tptr,$j),$A0[1] | ||
1308 | adc \$0,$A0[0] | ||
1309 | mul $m0 # n[5]*m0 | ||
1310 | add %rax,$A0[1] # n[5]*m0+t[5] | ||
1311 | mov $Ni[0],%rax | ||
1312 | adc %rdx,$A0[0] | ||
1313 | |||
1314 | |||
1315 | mov 16($nptr,$j),$Ni[0] # n[6] | ||
1316 | xor $A1[1],$A1[1] | ||
1317 | add $A0[1],$A1[0] | ||
1318 | adc \$0,$A1[1] | ||
1319 | mul $m1 # n[4]*m1 | ||
1320 | add %rax,$A1[0] # n[4]*m1+"t[5]" | ||
1321 | mov $Ni[0],%rax | ||
1322 | adc %rdx,$A1[1] | ||
1323 | mov $A1[0],8($tptr,$j) # "t[5]" | ||
1324 | |||
1325 | xor $A0[1],$A0[1] | ||
1326 | add 16($tptr,$j),$A0[0] | ||
1327 | adc \$0,$A0[1] | ||
1328 | mul $m0 # n[6]*m0 | ||
1329 | add %rax,$A0[0] # n[6]*m0+t[6] | ||
1330 | mov $Ni[1],%rax | ||
1331 | adc %rdx,$A0[1] | ||
1332 | |||
1333 | mov 24($nptr,$j),$Ni[1] # n[7] | ||
1334 | xor $A1[0],$A1[0] | ||
1335 | add $A0[0],$A1[1] | ||
1336 | adc \$0,$A1[0] | ||
1337 | mul $m1 # n[5]*m1 | ||
1338 | add %rax,$A1[1] # n[5]*m1+"t[6]" | ||
1339 | mov $Ni[1],%rax | ||
1340 | adc %rdx,$A1[0] | ||
1341 | mov $A1[1],16($tptr,$j) # "t[6]" | ||
1342 | |||
1343 | xor $A0[0],$A0[0] | ||
1344 | add 24($tptr,$j),$A0[1] | ||
1345 | lea 32($j),$j | ||
1346 | adc \$0,$A0[0] | ||
1347 | mul $m0 # n[7]*m0 | ||
1348 | add %rax,$A0[1] # n[7]*m0+t[7] | ||
1349 | mov $Ni[0],%rax | ||
1350 | adc %rdx,$A0[0] | ||
1351 | cmp \$0,$j | ||
1352 | jne .Lsqr4x_mont_inner | ||
1353 | |||
1354 | sub 0(%rsp),$j # $j=-$num # modsched # | ||
1355 | mov $n0,$m0 # # modsched # | ||
1356 | |||
1357 | xor $A1[1],$A1[1] | ||
1358 | add $A0[1],$A1[0] | ||
1359 | adc \$0,$A1[1] | ||
1360 | mul $m1 # n[6]*m1 | ||
1361 | add %rax,$A1[0] # n[6]*m1+"t[7]" | ||
1362 | mov $Ni[1],%rax | ||
1363 | adc %rdx,$A1[1] | ||
1364 | mov $A1[0],-8($tptr) # "t[7]" | ||
1365 | |||
1366 | xor $A0[1],$A0[1] | ||
1367 | add ($tptr),$A0[0] # +t[8] | ||
1368 | adc \$0,$A0[1] | ||
1369 | mov 0($nptr,$j),$Ni[0] # n[0] # modsched # | ||
1370 | add $topbit,$A0[0] | ||
1371 | adc \$0,$A0[1] | ||
1372 | |||
1373 | imulq 16($tptr,$j),$m0 # m0=t[0]*n0 # modsched # | ||
1374 | xor $A1[0],$A1[0] | ||
1375 | mov 8($nptr,$j),$Ni[1] # n[1] # modsched # | ||
1376 | add $A0[0],$A1[1] | ||
1377 | mov 16($tptr,$j),$A0[0] # t[0] # modsched # | ||
1378 | adc \$0,$A1[0] | ||
1379 | mul $m1 # n[7]*m1 | ||
1380 | add %rax,$A1[1] # n[7]*m1+"t[8]" | ||
1381 | mov $Ni[0],%rax # # modsched # | ||
1382 | adc %rdx,$A1[0] | ||
1383 | mov $A1[1],($tptr) # "t[8]" | ||
1384 | |||
1385 | xor $topbit,$topbit | ||
1386 | add 8($tptr),$A1[0] # +t[9] | ||
1387 | adc $topbit,$topbit | ||
1388 | add $A0[1],$A1[0] | ||
1389 | lea 16($tptr),$tptr # "t[$num]>>128" | ||
1390 | adc \$0,$topbit | ||
1391 | mov $A1[0],-8($tptr) # "t[9]" | ||
1392 | cmp 8(%rsp),$tptr # are we done? | ||
1393 | jb .Lsqr4x_mont_outer | ||
1394 | |||
1395 | mov 0(%rsp),$num # restore $num | ||
1396 | mov $topbit,($tptr) # save $topbit | ||
1397 | ___ | ||
1398 | } | ||
1399 | ############################################################## | ||
1400 | # Post-condition, 4x unrolled copy from bn_mul_mont | ||
1401 | # | ||
1402 | { | ||
1403 | my ($tptr,$nptr)=("%rbx",$aptr); | ||
1404 | my @ri=("%rax","%rdx","%r10","%r11"); | ||
1405 | $code.=<<___; | ||
1406 | mov 64(%rsp,$num),@ri[0] # tp[0] | ||
1407 | lea 64(%rsp,$num),$tptr # upper half of t[2*$num] holds result | ||
1408 | mov 40(%rsp),$nptr # restore $nptr | ||
1409 | shr \$5,$num # num/4 | ||
1410 | mov 8($tptr),@ri[1] # t[1] | ||
1411 | xor $i,$i # i=0 and clear CF! | ||
1412 | |||
1413 | mov 32(%rsp),$rptr # restore $rptr | ||
1414 | sub 0($nptr),@ri[0] | ||
1415 | mov 16($tptr),@ri[2] # t[2] | ||
1416 | mov 24($tptr),@ri[3] # t[3] | ||
1417 | sbb 8($nptr),@ri[1] | ||
1418 | lea -1($num),$j # j=num/4-1 | ||
1419 | jmp .Lsqr4x_sub | ||
1420 | .align 16 | ||
1421 | .Lsqr4x_sub: | ||
1422 | mov @ri[0],0($rptr,$i,8) # rp[i]=tp[i]-np[i] | ||
1423 | mov @ri[1],8($rptr,$i,8) # rp[i]=tp[i]-np[i] | ||
1424 | sbb 16($nptr,$i,8),@ri[2] | ||
1425 | mov 32($tptr,$i,8),@ri[0] # tp[i+1] | ||
1426 | mov 40($tptr,$i,8),@ri[1] | ||
1427 | sbb 24($nptr,$i,8),@ri[3] | ||
1428 | mov @ri[2],16($rptr,$i,8) # rp[i]=tp[i]-np[i] | ||
1429 | mov @ri[3],24($rptr,$i,8) # rp[i]=tp[i]-np[i] | ||
1430 | sbb 32($nptr,$i,8),@ri[0] | ||
1431 | mov 48($tptr,$i,8),@ri[2] | ||
1432 | mov 56($tptr,$i,8),@ri[3] | ||
1433 | sbb 40($nptr,$i,8),@ri[1] | ||
1434 | lea 4($i),$i # i++ | ||
1435 | dec $j # doesn't affect CF! | ||
1436 | jnz .Lsqr4x_sub | ||
1437 | |||
1438 | mov @ri[0],0($rptr,$i,8) # rp[i]=tp[i]-np[i] | ||
1439 | mov 32($tptr,$i,8),@ri[0] # load overflow bit | ||
1440 | sbb 16($nptr,$i,8),@ri[2] | ||
1441 | mov @ri[1],8($rptr,$i,8) # rp[i]=tp[i]-np[i] | ||
1442 | sbb 24($nptr,$i,8),@ri[3] | ||
1443 | mov @ri[2],16($rptr,$i,8) # rp[i]=tp[i]-np[i] | ||
1444 | |||
1445 | sbb \$0,@ri[0] # handle upmost overflow bit | ||
1446 | mov @ri[3],24($rptr,$i,8) # rp[i]=tp[i]-np[i] | ||
1447 | xor $i,$i # i=0 | ||
1448 | and @ri[0],$tptr | ||
1449 | not @ri[0] | ||
1450 | mov $rptr,$nptr | ||
1451 | and @ri[0],$nptr | ||
1452 | lea -1($num),$j | ||
1453 | or $nptr,$tptr # tp=borrow?tp:rp | ||
1454 | |||
1455 | pxor %xmm0,%xmm0 | ||
1456 | lea 64(%rsp,$num,8),$nptr | ||
1457 | movdqu ($tptr),%xmm1 | ||
1458 | lea ($nptr,$num,8),$nptr | ||
1459 | movdqa %xmm0,64(%rsp) # zap lower half of temporary vector | ||
1460 | movdqa %xmm0,($nptr) # zap upper half of temporary vector | ||
1461 | movdqu %xmm1,($rptr) | ||
1462 | jmp .Lsqr4x_copy | ||
1463 | .align 16 | ||
1464 | .Lsqr4x_copy: # copy or in-place refresh | ||
1465 | movdqu 16($tptr,$i),%xmm2 | ||
1466 | movdqu 32($tptr,$i),%xmm1 | ||
1467 | movdqa %xmm0,80(%rsp,$i) # zap lower half of temporary vector | ||
1468 | movdqa %xmm0,96(%rsp,$i) # zap lower half of temporary vector | ||
1469 | movdqa %xmm0,16($nptr,$i) # zap upper half of temporary vector | ||
1470 | movdqa %xmm0,32($nptr,$i) # zap upper half of temporary vector | ||
1471 | movdqu %xmm2,16($rptr,$i) | ||
1472 | movdqu %xmm1,32($rptr,$i) | ||
1473 | lea 32($i),$i | ||
1474 | dec $j | ||
1475 | jnz .Lsqr4x_copy | ||
1476 | |||
1477 | movdqu 16($tptr,$i),%xmm2 | ||
1478 | movdqa %xmm0,80(%rsp,$i) # zap lower half of temporary vector | ||
1479 | movdqa %xmm0,16($nptr,$i) # zap upper half of temporary vector | ||
1480 | movdqu %xmm2,16($rptr,$i) | ||
1481 | ___ | ||
1482 | } | ||
1483 | $code.=<<___; | ||
1484 | mov 56(%rsp),%rsi # restore %rsp | ||
1485 | mov \$1,%rax | ||
1486 | mov 0(%rsi),%r15 | ||
1487 | mov 8(%rsi),%r14 | ||
1488 | mov 16(%rsi),%r13 | ||
1489 | mov 24(%rsi),%r12 | ||
1490 | mov 32(%rsi),%rbp | ||
1491 | mov 40(%rsi),%rbx | ||
1492 | lea 48(%rsi),%rsp | ||
1493 | .Lsqr4x_epilogue: | ||
1494 | ret | ||
1495 | .size bn_sqr4x_mont,.-bn_sqr4x_mont | ||
1496 | ___ | ||
1497 | }}} | ||
1498 | $code.=<<___; | ||
1499 | .asciz "Montgomery Multiplication for x86_64, CRYPTOGAMS by <appro\@openssl.org>" | ||
1500 | .align 16 | ||
1501 | ___ | ||
1502 | |||
1503 | print $code; | ||
1504 | close STDOUT; | ||
diff --git a/src/lib/libcrypto/bn/asm/x86_64-mont5.pl b/src/lib/libcrypto/bn/asm/x86_64-mont5.pl deleted file mode 100755 index 9c88884d42..0000000000 --- a/src/lib/libcrypto/bn/asm/x86_64-mont5.pl +++ /dev/null | |||
@@ -1,1071 +0,0 @@ | |||
1 | #!/usr/bin/env perl | ||
2 | |||
3 | # ==================================================================== | ||
4 | # Written by Andy Polyakov <appro@openssl.org> for the OpenSSL | ||
5 | # project. The module is, however, dual licensed under OpenSSL and | ||
6 | # CRYPTOGAMS licenses depending on where you obtain it. For further | ||
7 | # details see http://www.openssl.org/~appro/cryptogams/. | ||
8 | # ==================================================================== | ||
9 | |||
10 | # August 2011. | ||
11 | # | ||
12 | # Companion to x86_64-mont.pl that optimizes cache-timing attack | ||
13 | # countermeasures. The subroutines are produced by replacing bp[i] | ||
14 | # references in their x86_64-mont.pl counterparts with cache-neutral | ||
15 | # references to powers table computed in BN_mod_exp_mont_consttime. | ||
16 | # In addition subroutine that scatters elements of the powers table | ||
17 | # is implemented, so that scatter-/gathering can be tuned without | ||
18 | # bn_exp.c modifications. | ||
19 | |||
20 | $flavour = shift; | ||
21 | $output = shift; | ||
22 | if ($flavour =~ /\./) { $output = $flavour; undef $flavour; } | ||
23 | |||
24 | $win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/); | ||
25 | |||
26 | $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; | ||
27 | ( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or | ||
28 | ( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or | ||
29 | die "can't locate x86_64-xlate.pl"; | ||
30 | |||
31 | open OUT,"| \"$^X\" $xlate $flavour $output"; | ||
32 | *STDOUT=*OUT; | ||
33 | |||
34 | # int bn_mul_mont_gather5( | ||
35 | $rp="%rdi"; # BN_ULONG *rp, | ||
36 | $ap="%rsi"; # const BN_ULONG *ap, | ||
37 | $bp="%rdx"; # const BN_ULONG *bp, | ||
38 | $np="%rcx"; # const BN_ULONG *np, | ||
39 | $n0="%r8"; # const BN_ULONG *n0, | ||
40 | $num="%r9"; # int num, | ||
41 | # int idx); # 0 to 2^5-1, "index" in $bp holding | ||
42 | # pre-computed powers of a', interlaced | ||
43 | # in such manner that b[0] is $bp[idx], | ||
44 | # b[1] is [2^5+idx], etc. | ||
45 | $lo0="%r10"; | ||
46 | $hi0="%r11"; | ||
47 | $hi1="%r13"; | ||
48 | $i="%r14"; | ||
49 | $j="%r15"; | ||
50 | $m0="%rbx"; | ||
51 | $m1="%rbp"; | ||
52 | |||
53 | $code=<<___; | ||
54 | .text | ||
55 | |||
56 | .globl bn_mul_mont_gather5 | ||
57 | .type bn_mul_mont_gather5,\@function,6 | ||
58 | .align 64 | ||
59 | bn_mul_mont_gather5: | ||
60 | test \$3,${num}d | ||
61 | jnz .Lmul_enter | ||
62 | cmp \$8,${num}d | ||
63 | jb .Lmul_enter | ||
64 | jmp .Lmul4x_enter | ||
65 | |||
66 | .align 16 | ||
67 | .Lmul_enter: | ||
68 | mov ${num}d,${num}d | ||
69 | mov `($win64?56:8)`(%rsp),%r10d # load 7th argument | ||
70 | push %rbx | ||
71 | push %rbp | ||
72 | push %r12 | ||
73 | push %r13 | ||
74 | push %r14 | ||
75 | push %r15 | ||
76 | ___ | ||
77 | $code.=<<___ if ($win64); | ||
78 | lea -0x28(%rsp),%rsp | ||
79 | movaps %xmm6,(%rsp) | ||
80 | movaps %xmm7,0x10(%rsp) | ||
81 | .Lmul_alloca: | ||
82 | ___ | ||
83 | $code.=<<___; | ||
84 | mov %rsp,%rax | ||
85 | lea 2($num),%r11 | ||
86 | neg %r11 | ||
87 | lea (%rsp,%r11,8),%rsp # tp=alloca(8*(num+2)) | ||
88 | and \$-1024,%rsp # minimize TLB usage | ||
89 | |||
90 | mov %rax,8(%rsp,$num,8) # tp[num+1]=%rsp | ||
91 | .Lmul_body: | ||
92 | mov $bp,%r12 # reassign $bp | ||
93 | ___ | ||
94 | $bp="%r12"; | ||
95 | $STRIDE=2**5*8; # 5 is "window size" | ||
96 | $N=$STRIDE/4; # should match cache line size | ||
97 | $code.=<<___; | ||
98 | mov %r10,%r11 | ||
99 | shr \$`log($N/8)/log(2)`,%r10 | ||
100 | and \$`$N/8-1`,%r11 | ||
101 | not %r10 | ||
102 | lea .Lmagic_masks(%rip),%rax | ||
103 | and \$`2**5/($N/8)-1`,%r10 # 5 is "window size" | ||
104 | lea 96($bp,%r11,8),$bp # pointer within 1st cache line | ||
105 | movq 0(%rax,%r10,8),%xmm4 # set of masks denoting which | ||
106 | movq 8(%rax,%r10,8),%xmm5 # cache line contains element | ||
107 | movq 16(%rax,%r10,8),%xmm6 # denoted by 7th argument | ||
108 | movq 24(%rax,%r10,8),%xmm7 | ||
109 | |||
110 | movq `0*$STRIDE/4-96`($bp),%xmm0 | ||
111 | movq `1*$STRIDE/4-96`($bp),%xmm1 | ||
112 | pand %xmm4,%xmm0 | ||
113 | movq `2*$STRIDE/4-96`($bp),%xmm2 | ||
114 | pand %xmm5,%xmm1 | ||
115 | movq `3*$STRIDE/4-96`($bp),%xmm3 | ||
116 | pand %xmm6,%xmm2 | ||
117 | por %xmm1,%xmm0 | ||
118 | pand %xmm7,%xmm3 | ||
119 | por %xmm2,%xmm0 | ||
120 | lea $STRIDE($bp),$bp | ||
121 | por %xmm3,%xmm0 | ||
122 | |||
123 | movq %xmm0,$m0 # m0=bp[0] | ||
124 | |||
125 | mov ($n0),$n0 # pull n0[0] value | ||
126 | mov ($ap),%rax | ||
127 | |||
128 | xor $i,$i # i=0 | ||
129 | xor $j,$j # j=0 | ||
130 | |||
131 | movq `0*$STRIDE/4-96`($bp),%xmm0 | ||
132 | movq `1*$STRIDE/4-96`($bp),%xmm1 | ||
133 | pand %xmm4,%xmm0 | ||
134 | movq `2*$STRIDE/4-96`($bp),%xmm2 | ||
135 | pand %xmm5,%xmm1 | ||
136 | |||
137 | mov $n0,$m1 | ||
138 | mulq $m0 # ap[0]*bp[0] | ||
139 | mov %rax,$lo0 | ||
140 | mov ($np),%rax | ||
141 | |||
142 | movq `3*$STRIDE/4-96`($bp),%xmm3 | ||
143 | pand %xmm6,%xmm2 | ||
144 | por %xmm1,%xmm0 | ||
145 | pand %xmm7,%xmm3 | ||
146 | |||
147 | imulq $lo0,$m1 # "tp[0]"*n0 | ||
148 | mov %rdx,$hi0 | ||
149 | |||
150 | por %xmm2,%xmm0 | ||
151 | lea $STRIDE($bp),$bp | ||
152 | por %xmm3,%xmm0 | ||
153 | |||
154 | mulq $m1 # np[0]*m1 | ||
155 | add %rax,$lo0 # discarded | ||
156 | mov 8($ap),%rax | ||
157 | adc \$0,%rdx | ||
158 | mov %rdx,$hi1 | ||
159 | |||
160 | lea 1($j),$j # j++ | ||
161 | jmp .L1st_enter | ||
162 | |||
163 | .align 16 | ||
164 | .L1st: | ||
165 | add %rax,$hi1 | ||
166 | mov ($ap,$j,8),%rax | ||
167 | adc \$0,%rdx | ||
168 | add $hi0,$hi1 # np[j]*m1+ap[j]*bp[0] | ||
169 | mov $lo0,$hi0 | ||
170 | adc \$0,%rdx | ||
171 | mov $hi1,-16(%rsp,$j,8) # tp[j-1] | ||
172 | mov %rdx,$hi1 | ||
173 | |||
174 | .L1st_enter: | ||
175 | mulq $m0 # ap[j]*bp[0] | ||
176 | add %rax,$hi0 | ||
177 | mov ($np,$j,8),%rax | ||
178 | adc \$0,%rdx | ||
179 | lea 1($j),$j # j++ | ||
180 | mov %rdx,$lo0 | ||
181 | |||
182 | mulq $m1 # np[j]*m1 | ||
183 | cmp $num,$j | ||
184 | jl .L1st | ||
185 | |||
186 | movq %xmm0,$m0 # bp[1] | ||
187 | |||
188 | add %rax,$hi1 | ||
189 | mov ($ap),%rax # ap[0] | ||
190 | adc \$0,%rdx | ||
191 | add $hi0,$hi1 # np[j]*m1+ap[j]*bp[0] | ||
192 | adc \$0,%rdx | ||
193 | mov $hi1,-16(%rsp,$j,8) # tp[j-1] | ||
194 | mov %rdx,$hi1 | ||
195 | mov $lo0,$hi0 | ||
196 | |||
197 | xor %rdx,%rdx | ||
198 | add $hi0,$hi1 | ||
199 | adc \$0,%rdx | ||
200 | mov $hi1,-8(%rsp,$num,8) | ||
201 | mov %rdx,(%rsp,$num,8) # store upmost overflow bit | ||
202 | |||
203 | lea 1($i),$i # i++ | ||
204 | jmp .Louter | ||
205 | .align 16 | ||
206 | .Louter: | ||
207 | xor $j,$j # j=0 | ||
208 | mov $n0,$m1 | ||
209 | mov (%rsp),$lo0 | ||
210 | |||
211 | movq `0*$STRIDE/4-96`($bp),%xmm0 | ||
212 | movq `1*$STRIDE/4-96`($bp),%xmm1 | ||
213 | pand %xmm4,%xmm0 | ||
214 | movq `2*$STRIDE/4-96`($bp),%xmm2 | ||
215 | pand %xmm5,%xmm1 | ||
216 | |||
217 | mulq $m0 # ap[0]*bp[i] | ||
218 | add %rax,$lo0 # ap[0]*bp[i]+tp[0] | ||
219 | mov ($np),%rax | ||
220 | adc \$0,%rdx | ||
221 | |||
222 | movq `3*$STRIDE/4-96`($bp),%xmm3 | ||
223 | pand %xmm6,%xmm2 | ||
224 | por %xmm1,%xmm0 | ||
225 | pand %xmm7,%xmm3 | ||
226 | |||
227 | imulq $lo0,$m1 # tp[0]*n0 | ||
228 | mov %rdx,$hi0 | ||
229 | |||
230 | por %xmm2,%xmm0 | ||
231 | lea $STRIDE($bp),$bp | ||
232 | por %xmm3,%xmm0 | ||
233 | |||
234 | mulq $m1 # np[0]*m1 | ||
235 | add %rax,$lo0 # discarded | ||
236 | mov 8($ap),%rax | ||
237 | adc \$0,%rdx | ||
238 | mov 8(%rsp),$lo0 # tp[1] | ||
239 | mov %rdx,$hi1 | ||
240 | |||
241 | lea 1($j),$j # j++ | ||
242 | jmp .Linner_enter | ||
243 | |||
244 | .align 16 | ||
245 | .Linner: | ||
246 | add %rax,$hi1 | ||
247 | mov ($ap,$j,8),%rax | ||
248 | adc \$0,%rdx | ||
249 | add $lo0,$hi1 # np[j]*m1+ap[j]*bp[i]+tp[j] | ||
250 | mov (%rsp,$j,8),$lo0 | ||
251 | adc \$0,%rdx | ||
252 | mov $hi1,-16(%rsp,$j,8) # tp[j-1] | ||
253 | mov %rdx,$hi1 | ||
254 | |||
255 | .Linner_enter: | ||
256 | mulq $m0 # ap[j]*bp[i] | ||
257 | add %rax,$hi0 | ||
258 | mov ($np,$j,8),%rax | ||
259 | adc \$0,%rdx | ||
260 | add $hi0,$lo0 # ap[j]*bp[i]+tp[j] | ||
261 | mov %rdx,$hi0 | ||
262 | adc \$0,$hi0 | ||
263 | lea 1($j),$j # j++ | ||
264 | |||
265 | mulq $m1 # np[j]*m1 | ||
266 | cmp $num,$j | ||
267 | jl .Linner | ||
268 | |||
269 | movq %xmm0,$m0 # bp[i+1] | ||
270 | |||
271 | add %rax,$hi1 | ||
272 | mov ($ap),%rax # ap[0] | ||
273 | adc \$0,%rdx | ||
274 | add $lo0,$hi1 # np[j]*m1+ap[j]*bp[i]+tp[j] | ||
275 | mov (%rsp,$j,8),$lo0 | ||
276 | adc \$0,%rdx | ||
277 | mov $hi1,-16(%rsp,$j,8) # tp[j-1] | ||
278 | mov %rdx,$hi1 | ||
279 | |||
280 | xor %rdx,%rdx | ||
281 | add $hi0,$hi1 | ||
282 | adc \$0,%rdx | ||
283 | add $lo0,$hi1 # pull upmost overflow bit | ||
284 | adc \$0,%rdx | ||
285 | mov $hi1,-8(%rsp,$num,8) | ||
286 | mov %rdx,(%rsp,$num,8) # store upmost overflow bit | ||
287 | |||
288 | lea 1($i),$i # i++ | ||
289 | cmp $num,$i | ||
290 | jl .Louter | ||
291 | |||
292 | xor $i,$i # i=0 and clear CF! | ||
293 | mov (%rsp),%rax # tp[0] | ||
294 | lea (%rsp),$ap # borrow ap for tp | ||
295 | mov $num,$j # j=num | ||
296 | jmp .Lsub | ||
297 | .align 16 | ||
298 | .Lsub: sbb ($np,$i,8),%rax | ||
299 | mov %rax,($rp,$i,8) # rp[i]=tp[i]-np[i] | ||
300 | mov 8($ap,$i,8),%rax # tp[i+1] | ||
301 | lea 1($i),$i # i++ | ||
302 | dec $j # doesnn't affect CF! | ||
303 | jnz .Lsub | ||
304 | |||
305 | sbb \$0,%rax # handle upmost overflow bit | ||
306 | xor $i,$i | ||
307 | and %rax,$ap | ||
308 | not %rax | ||
309 | mov $rp,$np | ||
310 | and %rax,$np | ||
311 | mov $num,$j # j=num | ||
312 | or $np,$ap # ap=borrow?tp:rp | ||
313 | .align 16 | ||
314 | .Lcopy: # copy or in-place refresh | ||
315 | mov ($ap,$i,8),%rax | ||
316 | mov $i,(%rsp,$i,8) # zap temporary vector | ||
317 | mov %rax,($rp,$i,8) # rp[i]=tp[i] | ||
318 | lea 1($i),$i | ||
319 | sub \$1,$j | ||
320 | jnz .Lcopy | ||
321 | |||
322 | mov 8(%rsp,$num,8),%rsi # restore %rsp | ||
323 | mov \$1,%rax | ||
324 | ___ | ||
325 | $code.=<<___ if ($win64); | ||
326 | movaps (%rsi),%xmm6 | ||
327 | movaps 0x10(%rsi),%xmm7 | ||
328 | lea 0x28(%rsi),%rsi | ||
329 | ___ | ||
330 | $code.=<<___; | ||
331 | mov (%rsi),%r15 | ||
332 | mov 8(%rsi),%r14 | ||
333 | mov 16(%rsi),%r13 | ||
334 | mov 24(%rsi),%r12 | ||
335 | mov 32(%rsi),%rbp | ||
336 | mov 40(%rsi),%rbx | ||
337 | lea 48(%rsi),%rsp | ||
338 | .Lmul_epilogue: | ||
339 | ret | ||
340 | .size bn_mul_mont_gather5,.-bn_mul_mont_gather5 | ||
341 | ___ | ||
342 | {{{ | ||
343 | my @A=("%r10","%r11"); | ||
344 | my @N=("%r13","%rdi"); | ||
345 | $code.=<<___; | ||
346 | .type bn_mul4x_mont_gather5,\@function,6 | ||
347 | .align 16 | ||
348 | bn_mul4x_mont_gather5: | ||
349 | .Lmul4x_enter: | ||
350 | mov ${num}d,${num}d | ||
351 | mov `($win64?56:8)`(%rsp),%r10d # load 7th argument | ||
352 | push %rbx | ||
353 | push %rbp | ||
354 | push %r12 | ||
355 | push %r13 | ||
356 | push %r14 | ||
357 | push %r15 | ||
358 | ___ | ||
359 | $code.=<<___ if ($win64); | ||
360 | lea -0x28(%rsp),%rsp | ||
361 | movaps %xmm6,(%rsp) | ||
362 | movaps %xmm7,0x10(%rsp) | ||
363 | .Lmul4x_alloca: | ||
364 | ___ | ||
365 | $code.=<<___; | ||
366 | mov %rsp,%rax | ||
367 | lea 4($num),%r11 | ||
368 | neg %r11 | ||
369 | lea (%rsp,%r11,8),%rsp # tp=alloca(8*(num+4)) | ||
370 | and \$-1024,%rsp # minimize TLB usage | ||
371 | |||
372 | mov %rax,8(%rsp,$num,8) # tp[num+1]=%rsp | ||
373 | .Lmul4x_body: | ||
374 | mov $rp,16(%rsp,$num,8) # tp[num+2]=$rp | ||
375 | mov %rdx,%r12 # reassign $bp | ||
376 | ___ | ||
377 | $bp="%r12"; | ||
378 | $STRIDE=2**5*8; # 5 is "window size" | ||
379 | $N=$STRIDE/4; # should match cache line size | ||
380 | $code.=<<___; | ||
381 | mov %r10,%r11 | ||
382 | shr \$`log($N/8)/log(2)`,%r10 | ||
383 | and \$`$N/8-1`,%r11 | ||
384 | not %r10 | ||
385 | lea .Lmagic_masks(%rip),%rax | ||
386 | and \$`2**5/($N/8)-1`,%r10 # 5 is "window size" | ||
387 | lea 96($bp,%r11,8),$bp # pointer within 1st cache line | ||
388 | movq 0(%rax,%r10,8),%xmm4 # set of masks denoting which | ||
389 | movq 8(%rax,%r10,8),%xmm5 # cache line contains element | ||
390 | movq 16(%rax,%r10,8),%xmm6 # denoted by 7th argument | ||
391 | movq 24(%rax,%r10,8),%xmm7 | ||
392 | |||
393 | movq `0*$STRIDE/4-96`($bp),%xmm0 | ||
394 | movq `1*$STRIDE/4-96`($bp),%xmm1 | ||
395 | pand %xmm4,%xmm0 | ||
396 | movq `2*$STRIDE/4-96`($bp),%xmm2 | ||
397 | pand %xmm5,%xmm1 | ||
398 | movq `3*$STRIDE/4-96`($bp),%xmm3 | ||
399 | pand %xmm6,%xmm2 | ||
400 | por %xmm1,%xmm0 | ||
401 | pand %xmm7,%xmm3 | ||
402 | por %xmm2,%xmm0 | ||
403 | lea $STRIDE($bp),$bp | ||
404 | por %xmm3,%xmm0 | ||
405 | |||
406 | movq %xmm0,$m0 # m0=bp[0] | ||
407 | mov ($n0),$n0 # pull n0[0] value | ||
408 | mov ($ap),%rax | ||
409 | |||
410 | xor $i,$i # i=0 | ||
411 | xor $j,$j # j=0 | ||
412 | |||
413 | movq `0*$STRIDE/4-96`($bp),%xmm0 | ||
414 | movq `1*$STRIDE/4-96`($bp),%xmm1 | ||
415 | pand %xmm4,%xmm0 | ||
416 | movq `2*$STRIDE/4-96`($bp),%xmm2 | ||
417 | pand %xmm5,%xmm1 | ||
418 | |||
419 | mov $n0,$m1 | ||
420 | mulq $m0 # ap[0]*bp[0] | ||
421 | mov %rax,$A[0] | ||
422 | mov ($np),%rax | ||
423 | |||
424 | movq `3*$STRIDE/4-96`($bp),%xmm3 | ||
425 | pand %xmm6,%xmm2 | ||
426 | por %xmm1,%xmm0 | ||
427 | pand %xmm7,%xmm3 | ||
428 | |||
429 | imulq $A[0],$m1 # "tp[0]"*n0 | ||
430 | mov %rdx,$A[1] | ||
431 | |||
432 | por %xmm2,%xmm0 | ||
433 | lea $STRIDE($bp),$bp | ||
434 | por %xmm3,%xmm0 | ||
435 | |||
436 | mulq $m1 # np[0]*m1 | ||
437 | add %rax,$A[0] # discarded | ||
438 | mov 8($ap),%rax | ||
439 | adc \$0,%rdx | ||
440 | mov %rdx,$N[1] | ||
441 | |||
442 | mulq $m0 | ||
443 | add %rax,$A[1] | ||
444 | mov 8($np),%rax | ||
445 | adc \$0,%rdx | ||
446 | mov %rdx,$A[0] | ||
447 | |||
448 | mulq $m1 | ||
449 | add %rax,$N[1] | ||
450 | mov 16($ap),%rax | ||
451 | adc \$0,%rdx | ||
452 | add $A[1],$N[1] | ||
453 | lea 4($j),$j # j++ | ||
454 | adc \$0,%rdx | ||
455 | mov $N[1],(%rsp) | ||
456 | mov %rdx,$N[0] | ||
457 | jmp .L1st4x | ||
458 | .align 16 | ||
459 | .L1st4x: | ||
460 | mulq $m0 # ap[j]*bp[0] | ||
461 | add %rax,$A[0] | ||
462 | mov -16($np,$j,8),%rax | ||
463 | adc \$0,%rdx | ||
464 | mov %rdx,$A[1] | ||
465 | |||
466 | mulq $m1 # np[j]*m1 | ||
467 | add %rax,$N[0] | ||
468 | mov -8($ap,$j,8),%rax | ||
469 | adc \$0,%rdx | ||
470 | add $A[0],$N[0] # np[j]*m1+ap[j]*bp[0] | ||
471 | adc \$0,%rdx | ||
472 | mov $N[0],-24(%rsp,$j,8) # tp[j-1] | ||
473 | mov %rdx,$N[1] | ||
474 | |||
475 | mulq $m0 # ap[j]*bp[0] | ||
476 | add %rax,$A[1] | ||
477 | mov -8($np,$j,8),%rax | ||
478 | adc \$0,%rdx | ||
479 | mov %rdx,$A[0] | ||
480 | |||
481 | mulq $m1 # np[j]*m1 | ||
482 | add %rax,$N[1] | ||
483 | mov ($ap,$j,8),%rax | ||
484 | adc \$0,%rdx | ||
485 | add $A[1],$N[1] # np[j]*m1+ap[j]*bp[0] | ||
486 | adc \$0,%rdx | ||
487 | mov $N[1],-16(%rsp,$j,8) # tp[j-1] | ||
488 | mov %rdx,$N[0] | ||
489 | |||
490 | mulq $m0 # ap[j]*bp[0] | ||
491 | add %rax,$A[0] | ||
492 | mov ($np,$j,8),%rax | ||
493 | adc \$0,%rdx | ||
494 | mov %rdx,$A[1] | ||
495 | |||
496 | mulq $m1 # np[j]*m1 | ||
497 | add %rax,$N[0] | ||
498 | mov 8($ap,$j,8),%rax | ||
499 | adc \$0,%rdx | ||
500 | add $A[0],$N[0] # np[j]*m1+ap[j]*bp[0] | ||
501 | adc \$0,%rdx | ||
502 | mov $N[0],-8(%rsp,$j,8) # tp[j-1] | ||
503 | mov %rdx,$N[1] | ||
504 | |||
505 | mulq $m0 # ap[j]*bp[0] | ||
506 | add %rax,$A[1] | ||
507 | mov 8($np,$j,8),%rax | ||
508 | adc \$0,%rdx | ||
509 | lea 4($j),$j # j++ | ||
510 | mov %rdx,$A[0] | ||
511 | |||
512 | mulq $m1 # np[j]*m1 | ||
513 | add %rax,$N[1] | ||
514 | mov -16($ap,$j,8),%rax | ||
515 | adc \$0,%rdx | ||
516 | add $A[1],$N[1] # np[j]*m1+ap[j]*bp[0] | ||
517 | adc \$0,%rdx | ||
518 | mov $N[1],-32(%rsp,$j,8) # tp[j-1] | ||
519 | mov %rdx,$N[0] | ||
520 | cmp $num,$j | ||
521 | jl .L1st4x | ||
522 | |||
523 | mulq $m0 # ap[j]*bp[0] | ||
524 | add %rax,$A[0] | ||
525 | mov -16($np,$j,8),%rax | ||
526 | adc \$0,%rdx | ||
527 | mov %rdx,$A[1] | ||
528 | |||
529 | mulq $m1 # np[j]*m1 | ||
530 | add %rax,$N[0] | ||
531 | mov -8($ap,$j,8),%rax | ||
532 | adc \$0,%rdx | ||
533 | add $A[0],$N[0] # np[j]*m1+ap[j]*bp[0] | ||
534 | adc \$0,%rdx | ||
535 | mov $N[0],-24(%rsp,$j,8) # tp[j-1] | ||
536 | mov %rdx,$N[1] | ||
537 | |||
538 | mulq $m0 # ap[j]*bp[0] | ||
539 | add %rax,$A[1] | ||
540 | mov -8($np,$j,8),%rax | ||
541 | adc \$0,%rdx | ||
542 | mov %rdx,$A[0] | ||
543 | |||
544 | mulq $m1 # np[j]*m1 | ||
545 | add %rax,$N[1] | ||
546 | mov ($ap),%rax # ap[0] | ||
547 | adc \$0,%rdx | ||
548 | add $A[1],$N[1] # np[j]*m1+ap[j]*bp[0] | ||
549 | adc \$0,%rdx | ||
550 | mov $N[1],-16(%rsp,$j,8) # tp[j-1] | ||
551 | mov %rdx,$N[0] | ||
552 | |||
553 | movq %xmm0,$m0 # bp[1] | ||
554 | |||
555 | xor $N[1],$N[1] | ||
556 | add $A[0],$N[0] | ||
557 | adc \$0,$N[1] | ||
558 | mov $N[0],-8(%rsp,$j,8) | ||
559 | mov $N[1],(%rsp,$j,8) # store upmost overflow bit | ||
560 | |||
561 | lea 1($i),$i # i++ | ||
562 | .align 4 | ||
563 | .Louter4x: | ||
564 | xor $j,$j # j=0 | ||
565 | movq `0*$STRIDE/4-96`($bp),%xmm0 | ||
566 | movq `1*$STRIDE/4-96`($bp),%xmm1 | ||
567 | pand %xmm4,%xmm0 | ||
568 | movq `2*$STRIDE/4-96`($bp),%xmm2 | ||
569 | pand %xmm5,%xmm1 | ||
570 | |||
571 | mov (%rsp),$A[0] | ||
572 | mov $n0,$m1 | ||
573 | mulq $m0 # ap[0]*bp[i] | ||
574 | add %rax,$A[0] # ap[0]*bp[i]+tp[0] | ||
575 | mov ($np),%rax | ||
576 | adc \$0,%rdx | ||
577 | |||
578 | movq `3*$STRIDE/4-96`($bp),%xmm3 | ||
579 | pand %xmm6,%xmm2 | ||
580 | por %xmm1,%xmm0 | ||
581 | pand %xmm7,%xmm3 | ||
582 | |||
583 | imulq $A[0],$m1 # tp[0]*n0 | ||
584 | mov %rdx,$A[1] | ||
585 | |||
586 | por %xmm2,%xmm0 | ||
587 | lea $STRIDE($bp),$bp | ||
588 | por %xmm3,%xmm0 | ||
589 | |||
590 | mulq $m1 # np[0]*m1 | ||
591 | add %rax,$A[0] # "$N[0]", discarded | ||
592 | mov 8($ap),%rax | ||
593 | adc \$0,%rdx | ||
594 | mov %rdx,$N[1] | ||
595 | |||
596 | mulq $m0 # ap[j]*bp[i] | ||
597 | add %rax,$A[1] | ||
598 | mov 8($np),%rax | ||
599 | adc \$0,%rdx | ||
600 | add 8(%rsp),$A[1] # +tp[1] | ||
601 | adc \$0,%rdx | ||
602 | mov %rdx,$A[0] | ||
603 | |||
604 | mulq $m1 # np[j]*m1 | ||
605 | add %rax,$N[1] | ||
606 | mov 16($ap),%rax | ||
607 | adc \$0,%rdx | ||
608 | add $A[1],$N[1] # np[j]*m1+ap[j]*bp[i]+tp[j] | ||
609 | lea 4($j),$j # j+=2 | ||
610 | adc \$0,%rdx | ||
611 | mov %rdx,$N[0] | ||
612 | jmp .Linner4x | ||
613 | .align 16 | ||
614 | .Linner4x: | ||
615 | mulq $m0 # ap[j]*bp[i] | ||
616 | add %rax,$A[0] | ||
617 | mov -16($np,$j,8),%rax | ||
618 | adc \$0,%rdx | ||
619 | add -16(%rsp,$j,8),$A[0] # ap[j]*bp[i]+tp[j] | ||
620 | adc \$0,%rdx | ||
621 | mov %rdx,$A[1] | ||
622 | |||
623 | mulq $m1 # np[j]*m1 | ||
624 | add %rax,$N[0] | ||
625 | mov -8($ap,$j,8),%rax | ||
626 | adc \$0,%rdx | ||
627 | add $A[0],$N[0] | ||
628 | adc \$0,%rdx | ||
629 | mov $N[1],-32(%rsp,$j,8) # tp[j-1] | ||
630 | mov %rdx,$N[1] | ||
631 | |||
632 | mulq $m0 # ap[j]*bp[i] | ||
633 | add %rax,$A[1] | ||
634 | mov -8($np,$j,8),%rax | ||
635 | adc \$0,%rdx | ||
636 | add -8(%rsp,$j,8),$A[1] | ||
637 | adc \$0,%rdx | ||
638 | mov %rdx,$A[0] | ||
639 | |||
640 | mulq $m1 # np[j]*m1 | ||
641 | add %rax,$N[1] | ||
642 | mov ($ap,$j,8),%rax | ||
643 | adc \$0,%rdx | ||
644 | add $A[1],$N[1] | ||
645 | adc \$0,%rdx | ||
646 | mov $N[0],-24(%rsp,$j,8) # tp[j-1] | ||
647 | mov %rdx,$N[0] | ||
648 | |||
649 | mulq $m0 # ap[j]*bp[i] | ||
650 | add %rax,$A[0] | ||
651 | mov ($np,$j,8),%rax | ||
652 | adc \$0,%rdx | ||
653 | add (%rsp,$j,8),$A[0] # ap[j]*bp[i]+tp[j] | ||
654 | adc \$0,%rdx | ||
655 | mov %rdx,$A[1] | ||
656 | |||
657 | mulq $m1 # np[j]*m1 | ||
658 | add %rax,$N[0] | ||
659 | mov 8($ap,$j,8),%rax | ||
660 | adc \$0,%rdx | ||
661 | add $A[0],$N[0] | ||
662 | adc \$0,%rdx | ||
663 | mov $N[1],-16(%rsp,$j,8) # tp[j-1] | ||
664 | mov %rdx,$N[1] | ||
665 | |||
666 | mulq $m0 # ap[j]*bp[i] | ||
667 | add %rax,$A[1] | ||
668 | mov 8($np,$j,8),%rax | ||
669 | adc \$0,%rdx | ||
670 | add 8(%rsp,$j,8),$A[1] | ||
671 | adc \$0,%rdx | ||
672 | lea 4($j),$j # j++ | ||
673 | mov %rdx,$A[0] | ||
674 | |||
675 | mulq $m1 # np[j]*m1 | ||
676 | add %rax,$N[1] | ||
677 | mov -16($ap,$j,8),%rax | ||
678 | adc \$0,%rdx | ||
679 | add $A[1],$N[1] | ||
680 | adc \$0,%rdx | ||
681 | mov $N[0],-40(%rsp,$j,8) # tp[j-1] | ||
682 | mov %rdx,$N[0] | ||
683 | cmp $num,$j | ||
684 | jl .Linner4x | ||
685 | |||
686 | mulq $m0 # ap[j]*bp[i] | ||
687 | add %rax,$A[0] | ||
688 | mov -16($np,$j,8),%rax | ||
689 | adc \$0,%rdx | ||
690 | add -16(%rsp,$j,8),$A[0] # ap[j]*bp[i]+tp[j] | ||
691 | adc \$0,%rdx | ||
692 | mov %rdx,$A[1] | ||
693 | |||
694 | mulq $m1 # np[j]*m1 | ||
695 | add %rax,$N[0] | ||
696 | mov -8($ap,$j,8),%rax | ||
697 | adc \$0,%rdx | ||
698 | add $A[0],$N[0] | ||
699 | adc \$0,%rdx | ||
700 | mov $N[1],-32(%rsp,$j,8) # tp[j-1] | ||
701 | mov %rdx,$N[1] | ||
702 | |||
703 | mulq $m0 # ap[j]*bp[i] | ||
704 | add %rax,$A[1] | ||
705 | mov -8($np,$j,8),%rax | ||
706 | adc \$0,%rdx | ||
707 | add -8(%rsp,$j,8),$A[1] | ||
708 | adc \$0,%rdx | ||
709 | lea 1($i),$i # i++ | ||
710 | mov %rdx,$A[0] | ||
711 | |||
712 | mulq $m1 # np[j]*m1 | ||
713 | add %rax,$N[1] | ||
714 | mov ($ap),%rax # ap[0] | ||
715 | adc \$0,%rdx | ||
716 | add $A[1],$N[1] | ||
717 | adc \$0,%rdx | ||
718 | mov $N[0],-24(%rsp,$j,8) # tp[j-1] | ||
719 | mov %rdx,$N[0] | ||
720 | |||
721 | movq %xmm0,$m0 # bp[i+1] | ||
722 | mov $N[1],-16(%rsp,$j,8) # tp[j-1] | ||
723 | |||
724 | xor $N[1],$N[1] | ||
725 | add $A[0],$N[0] | ||
726 | adc \$0,$N[1] | ||
727 | add (%rsp,$num,8),$N[0] # pull upmost overflow bit | ||
728 | adc \$0,$N[1] | ||
729 | mov $N[0],-8(%rsp,$j,8) | ||
730 | mov $N[1],(%rsp,$j,8) # store upmost overflow bit | ||
731 | |||
732 | cmp $num,$i | ||
733 | jl .Louter4x | ||
734 | ___ | ||
735 | { | ||
736 | my @ri=("%rax","%rdx",$m0,$m1); | ||
737 | $code.=<<___; | ||
738 | mov 16(%rsp,$num,8),$rp # restore $rp | ||
739 | mov 0(%rsp),@ri[0] # tp[0] | ||
740 | pxor %xmm0,%xmm0 | ||
741 | mov 8(%rsp),@ri[1] # tp[1] | ||
742 | shr \$2,$num # num/=4 | ||
743 | lea (%rsp),$ap # borrow ap for tp | ||
744 | xor $i,$i # i=0 and clear CF! | ||
745 | |||
746 | sub 0($np),@ri[0] | ||
747 | mov 16($ap),@ri[2] # tp[2] | ||
748 | mov 24($ap),@ri[3] # tp[3] | ||
749 | sbb 8($np),@ri[1] | ||
750 | lea -1($num),$j # j=num/4-1 | ||
751 | jmp .Lsub4x | ||
752 | .align 16 | ||
753 | .Lsub4x: | ||
754 | mov @ri[0],0($rp,$i,8) # rp[i]=tp[i]-np[i] | ||
755 | mov @ri[1],8($rp,$i,8) # rp[i]=tp[i]-np[i] | ||
756 | sbb 16($np,$i,8),@ri[2] | ||
757 | mov 32($ap,$i,8),@ri[0] # tp[i+1] | ||
758 | mov 40($ap,$i,8),@ri[1] | ||
759 | sbb 24($np,$i,8),@ri[3] | ||
760 | mov @ri[2],16($rp,$i,8) # rp[i]=tp[i]-np[i] | ||
761 | mov @ri[3],24($rp,$i,8) # rp[i]=tp[i]-np[i] | ||
762 | sbb 32($np,$i,8),@ri[0] | ||
763 | mov 48($ap,$i,8),@ri[2] | ||
764 | mov 56($ap,$i,8),@ri[3] | ||
765 | sbb 40($np,$i,8),@ri[1] | ||
766 | lea 4($i),$i # i++ | ||
767 | dec $j # doesnn't affect CF! | ||
768 | jnz .Lsub4x | ||
769 | |||
770 | mov @ri[0],0($rp,$i,8) # rp[i]=tp[i]-np[i] | ||
771 | mov 32($ap,$i,8),@ri[0] # load overflow bit | ||
772 | sbb 16($np,$i,8),@ri[2] | ||
773 | mov @ri[1],8($rp,$i,8) # rp[i]=tp[i]-np[i] | ||
774 | sbb 24($np,$i,8),@ri[3] | ||
775 | mov @ri[2],16($rp,$i,8) # rp[i]=tp[i]-np[i] | ||
776 | |||
777 | sbb \$0,@ri[0] # handle upmost overflow bit | ||
778 | mov @ri[3],24($rp,$i,8) # rp[i]=tp[i]-np[i] | ||
779 | xor $i,$i # i=0 | ||
780 | and @ri[0],$ap | ||
781 | not @ri[0] | ||
782 | mov $rp,$np | ||
783 | and @ri[0],$np | ||
784 | lea -1($num),$j | ||
785 | or $np,$ap # ap=borrow?tp:rp | ||
786 | |||
787 | movdqu ($ap),%xmm1 | ||
788 | movdqa %xmm0,(%rsp) | ||
789 | movdqu %xmm1,($rp) | ||
790 | jmp .Lcopy4x | ||
791 | .align 16 | ||
792 | .Lcopy4x: # copy or in-place refresh | ||
793 | movdqu 16($ap,$i),%xmm2 | ||
794 | movdqu 32($ap,$i),%xmm1 | ||
795 | movdqa %xmm0,16(%rsp,$i) | ||
796 | movdqu %xmm2,16($rp,$i) | ||
797 | movdqa %xmm0,32(%rsp,$i) | ||
798 | movdqu %xmm1,32($rp,$i) | ||
799 | lea 32($i),$i | ||
800 | dec $j | ||
801 | jnz .Lcopy4x | ||
802 | |||
803 | shl \$2,$num | ||
804 | movdqu 16($ap,$i),%xmm2 | ||
805 | movdqa %xmm0,16(%rsp,$i) | ||
806 | movdqu %xmm2,16($rp,$i) | ||
807 | ___ | ||
808 | } | ||
809 | $code.=<<___; | ||
810 | mov 8(%rsp,$num,8),%rsi # restore %rsp | ||
811 | mov \$1,%rax | ||
812 | ___ | ||
813 | $code.=<<___ if ($win64); | ||
814 | movaps (%rsi),%xmm6 | ||
815 | movaps 0x10(%rsi),%xmm7 | ||
816 | lea 0x28(%rsi),%rsi | ||
817 | ___ | ||
818 | $code.=<<___; | ||
819 | mov (%rsi),%r15 | ||
820 | mov 8(%rsi),%r14 | ||
821 | mov 16(%rsi),%r13 | ||
822 | mov 24(%rsi),%r12 | ||
823 | mov 32(%rsi),%rbp | ||
824 | mov 40(%rsi),%rbx | ||
825 | lea 48(%rsi),%rsp | ||
826 | .Lmul4x_epilogue: | ||
827 | ret | ||
828 | .size bn_mul4x_mont_gather5,.-bn_mul4x_mont_gather5 | ||
829 | ___ | ||
830 | }}} | ||
831 | |||
832 | { | ||
833 | my ($inp,$num,$tbl,$idx)=$win64?("%rcx","%rdx","%r8", "%r9") : # Win64 order | ||
834 | ("%rdi","%rsi","%rdx","%rcx"); # Unix order | ||
835 | my $out=$inp; | ||
836 | my $STRIDE=2**5*8; | ||
837 | my $N=$STRIDE/4; | ||
838 | |||
839 | $code.=<<___; | ||
840 | .globl bn_scatter5 | ||
841 | .type bn_scatter5,\@abi-omnipotent | ||
842 | .align 16 | ||
843 | bn_scatter5: | ||
844 | cmp \$0, $num | ||
845 | jz .Lscatter_epilogue | ||
846 | lea ($tbl,$idx,8),$tbl | ||
847 | .Lscatter: | ||
848 | mov ($inp),%rax | ||
849 | lea 8($inp),$inp | ||
850 | mov %rax,($tbl) | ||
851 | lea 32*8($tbl),$tbl | ||
852 | sub \$1,$num | ||
853 | jnz .Lscatter | ||
854 | .Lscatter_epilogue: | ||
855 | ret | ||
856 | .size bn_scatter5,.-bn_scatter5 | ||
857 | |||
858 | .globl bn_gather5 | ||
859 | .type bn_gather5,\@abi-omnipotent | ||
860 | .align 16 | ||
861 | bn_gather5: | ||
862 | ___ | ||
863 | $code.=<<___ if ($win64); | ||
864 | .LSEH_begin_bn_gather5: | ||
865 | # I can't trust assembler to use specific encoding:-( | ||
866 | .byte 0x48,0x83,0xec,0x28 #sub \$0x28,%rsp | ||
867 | .byte 0x0f,0x29,0x34,0x24 #movaps %xmm6,(%rsp) | ||
868 | .byte 0x0f,0x29,0x7c,0x24,0x10 #movdqa %xmm7,0x10(%rsp) | ||
869 | ___ | ||
870 | $code.=<<___; | ||
871 | mov $idx,%r11 | ||
872 | shr \$`log($N/8)/log(2)`,$idx | ||
873 | and \$`$N/8-1`,%r11 | ||
874 | not $idx | ||
875 | lea .Lmagic_masks(%rip),%rax | ||
876 | and \$`2**5/($N/8)-1`,$idx # 5 is "window size" | ||
877 | lea 96($tbl,%r11,8),$tbl # pointer within 1st cache line | ||
878 | movq 0(%rax,$idx,8),%xmm4 # set of masks denoting which | ||
879 | movq 8(%rax,$idx,8),%xmm5 # cache line contains element | ||
880 | movq 16(%rax,$idx,8),%xmm6 # denoted by 7th argument | ||
881 | movq 24(%rax,$idx,8),%xmm7 | ||
882 | jmp .Lgather | ||
883 | .align 16 | ||
884 | .Lgather: | ||
885 | movq `0*$STRIDE/4-96`($tbl),%xmm0 | ||
886 | movq `1*$STRIDE/4-96`($tbl),%xmm1 | ||
887 | pand %xmm4,%xmm0 | ||
888 | movq `2*$STRIDE/4-96`($tbl),%xmm2 | ||
889 | pand %xmm5,%xmm1 | ||
890 | movq `3*$STRIDE/4-96`($tbl),%xmm3 | ||
891 | pand %xmm6,%xmm2 | ||
892 | por %xmm1,%xmm0 | ||
893 | pand %xmm7,%xmm3 | ||
894 | por %xmm2,%xmm0 | ||
895 | lea $STRIDE($tbl),$tbl | ||
896 | por %xmm3,%xmm0 | ||
897 | |||
898 | movq %xmm0,($out) # m0=bp[0] | ||
899 | lea 8($out),$out | ||
900 | sub \$1,$num | ||
901 | jnz .Lgather | ||
902 | ___ | ||
903 | $code.=<<___ if ($win64); | ||
904 | movaps (%rsp),%xmm6 | ||
905 | movaps 0x10(%rsp),%xmm7 | ||
906 | lea 0x28(%rsp),%rsp | ||
907 | ___ | ||
908 | $code.=<<___; | ||
909 | ret | ||
910 | .LSEH_end_bn_gather5: | ||
911 | .size bn_gather5,.-bn_gather5 | ||
912 | ___ | ||
913 | } | ||
914 | $code.=<<___; | ||
915 | .align 64 | ||
916 | .Lmagic_masks: | ||
917 | .long 0,0, 0,0, 0,0, -1,-1 | ||
918 | .long 0,0, 0,0, 0,0, 0,0 | ||
919 | .asciz "Montgomery Multiplication with scatter/gather for x86_64, CRYPTOGAMS by <appro\@openssl.org>" | ||
920 | ___ | ||
921 | |||
922 | # EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame, | ||
923 | # CONTEXT *context,DISPATCHER_CONTEXT *disp) | ||
924 | if ($win64) { | ||
925 | $rec="%rcx"; | ||
926 | $frame="%rdx"; | ||
927 | $context="%r8"; | ||
928 | $disp="%r9"; | ||
929 | |||
930 | $code.=<<___; | ||
931 | .extern __imp_RtlVirtualUnwind | ||
932 | .type mul_handler,\@abi-omnipotent | ||
933 | .align 16 | ||
934 | mul_handler: | ||
935 | push %rsi | ||
936 | push %rdi | ||
937 | push %rbx | ||
938 | push %rbp | ||
939 | push %r12 | ||
940 | push %r13 | ||
941 | push %r14 | ||
942 | push %r15 | ||
943 | pushfq | ||
944 | sub \$64,%rsp | ||
945 | |||
946 | mov 120($context),%rax # pull context->Rax | ||
947 | mov 248($context),%rbx # pull context->Rip | ||
948 | |||
949 | mov 8($disp),%rsi # disp->ImageBase | ||
950 | mov 56($disp),%r11 # disp->HandlerData | ||
951 | |||
952 | mov 0(%r11),%r10d # HandlerData[0] | ||
953 | lea (%rsi,%r10),%r10 # end of prologue label | ||
954 | cmp %r10,%rbx # context->Rip<end of prologue label | ||
955 | jb .Lcommon_seh_tail | ||
956 | |||
957 | lea `40+48`(%rax),%rax | ||
958 | |||
959 | mov 4(%r11),%r10d # HandlerData[1] | ||
960 | lea (%rsi,%r10),%r10 # end of alloca label | ||
961 | cmp %r10,%rbx # context->Rip<end of alloca label | ||
962 | jb .Lcommon_seh_tail | ||
963 | |||
964 | mov 152($context),%rax # pull context->Rsp | ||
965 | |||
966 | mov 8(%r11),%r10d # HandlerData[2] | ||
967 | lea (%rsi,%r10),%r10 # epilogue label | ||
968 | cmp %r10,%rbx # context->Rip>=epilogue label | ||
969 | jae .Lcommon_seh_tail | ||
970 | |||
971 | mov 192($context),%r10 # pull $num | ||
972 | mov 8(%rax,%r10,8),%rax # pull saved stack pointer | ||
973 | |||
974 | movaps (%rax),%xmm0 | ||
975 | movaps 16(%rax),%xmm1 | ||
976 | lea `40+48`(%rax),%rax | ||
977 | |||
978 | mov -8(%rax),%rbx | ||
979 | mov -16(%rax),%rbp | ||
980 | mov -24(%rax),%r12 | ||
981 | mov -32(%rax),%r13 | ||
982 | mov -40(%rax),%r14 | ||
983 | mov -48(%rax),%r15 | ||
984 | mov %rbx,144($context) # restore context->Rbx | ||
985 | mov %rbp,160($context) # restore context->Rbp | ||
986 | mov %r12,216($context) # restore context->R12 | ||
987 | mov %r13,224($context) # restore context->R13 | ||
988 | mov %r14,232($context) # restore context->R14 | ||
989 | mov %r15,240($context) # restore context->R15 | ||
990 | movups %xmm0,512($context) # restore context->Xmm6 | ||
991 | movups %xmm1,528($context) # restore context->Xmm7 | ||
992 | |||
993 | .Lcommon_seh_tail: | ||
994 | mov 8(%rax),%rdi | ||
995 | mov 16(%rax),%rsi | ||
996 | mov %rax,152($context) # restore context->Rsp | ||
997 | mov %rsi,168($context) # restore context->Rsi | ||
998 | mov %rdi,176($context) # restore context->Rdi | ||
999 | |||
1000 | mov 40($disp),%rdi # disp->ContextRecord | ||
1001 | mov $context,%rsi # context | ||
1002 | mov \$154,%ecx # sizeof(CONTEXT) | ||
1003 | .long 0xa548f3fc # cld; rep movsq | ||
1004 | |||
1005 | mov $disp,%rsi | ||
1006 | xor %rcx,%rcx # arg1, UNW_FLAG_NHANDLER | ||
1007 | mov 8(%rsi),%rdx # arg2, disp->ImageBase | ||
1008 | mov 0(%rsi),%r8 # arg3, disp->ControlPc | ||
1009 | mov 16(%rsi),%r9 # arg4, disp->FunctionEntry | ||
1010 | mov 40(%rsi),%r10 # disp->ContextRecord | ||
1011 | lea 56(%rsi),%r11 # &disp->HandlerData | ||
1012 | lea 24(%rsi),%r12 # &disp->EstablisherFrame | ||
1013 | mov %r10,32(%rsp) # arg5 | ||
1014 | mov %r11,40(%rsp) # arg6 | ||
1015 | mov %r12,48(%rsp) # arg7 | ||
1016 | mov %rcx,56(%rsp) # arg8, (NULL) | ||
1017 | call *__imp_RtlVirtualUnwind(%rip) | ||
1018 | |||
1019 | mov \$1,%eax # ExceptionContinueSearch | ||
1020 | add \$64,%rsp | ||
1021 | popfq | ||
1022 | pop %r15 | ||
1023 | pop %r14 | ||
1024 | pop %r13 | ||
1025 | pop %r12 | ||
1026 | pop %rbp | ||
1027 | pop %rbx | ||
1028 | pop %rdi | ||
1029 | pop %rsi | ||
1030 | ret | ||
1031 | .size mul_handler,.-mul_handler | ||
1032 | |||
1033 | .section .pdata | ||
1034 | .align 4 | ||
1035 | .rva .LSEH_begin_bn_mul_mont_gather5 | ||
1036 | .rva .LSEH_end_bn_mul_mont_gather5 | ||
1037 | .rva .LSEH_info_bn_mul_mont_gather5 | ||
1038 | |||
1039 | .rva .LSEH_begin_bn_mul4x_mont_gather5 | ||
1040 | .rva .LSEH_end_bn_mul4x_mont_gather5 | ||
1041 | .rva .LSEH_info_bn_mul4x_mont_gather5 | ||
1042 | |||
1043 | .rva .LSEH_begin_bn_gather5 | ||
1044 | .rva .LSEH_end_bn_gather5 | ||
1045 | .rva .LSEH_info_bn_gather5 | ||
1046 | |||
1047 | .section .xdata | ||
1048 | .align 8 | ||
1049 | .LSEH_info_bn_mul_mont_gather5: | ||
1050 | .byte 9,0,0,0 | ||
1051 | .rva mul_handler | ||
1052 | .rva .Lmul_alloca,.Lmul_body,.Lmul_epilogue # HandlerData[] | ||
1053 | .align 8 | ||
1054 | .LSEH_info_bn_mul4x_mont_gather5: | ||
1055 | .byte 9,0,0,0 | ||
1056 | .rva mul_handler | ||
1057 | .rva .Lmul4x_alloca,.Lmul4x_body,.Lmul4x_epilogue # HandlerData[] | ||
1058 | .align 8 | ||
1059 | .LSEH_info_bn_gather5: | ||
1060 | .byte 0x01,0x0d,0x05,0x00 | ||
1061 | .byte 0x0d,0x78,0x01,0x00 #movaps 0x10(rsp),xmm7 | ||
1062 | .byte 0x08,0x68,0x00,0x00 #movaps (rsp),xmm6 | ||
1063 | .byte 0x04,0x42,0x00,0x00 #sub rsp,0x28 | ||
1064 | .align 8 | ||
1065 | ___ | ||
1066 | } | ||
1067 | |||
1068 | $code =~ s/\`([^\`]*)\`/eval($1)/gem; | ||
1069 | |||
1070 | print $code; | ||
1071 | close STDOUT; | ||
diff --git a/src/lib/libcrypto/bn/bn.h b/src/lib/libcrypto/bn/bn.h deleted file mode 100644 index d93c9fc059..0000000000 --- a/src/lib/libcrypto/bn/bn.h +++ /dev/null | |||
@@ -1,821 +0,0 @@ | |||
1 | /* $OpenBSD: bn.h,v 1.26 2015/02/07 13:19:15 doug Exp $ */ | ||
2 | /* Copyright (C) 1995-1997 Eric Young (eay@cryptsoft.com) | ||
3 | * All rights reserved. | ||
4 | * | ||
5 | * This package is an SSL implementation written | ||
6 | * by Eric Young (eay@cryptsoft.com). | ||
7 | * The implementation was written so as to conform with Netscapes SSL. | ||
8 | * | ||
9 | * This library is free for commercial and non-commercial use as long as | ||
10 | * the following conditions are aheared to. The following conditions | ||
11 | * apply to all code found in this distribution, be it the RC4, RSA, | ||
12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation | ||
13 | * included with this distribution is covered by the same copyright terms | ||
14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | ||
15 | * | ||
16 | * Copyright remains Eric Young's, and as such any Copyright notices in | ||
17 | * the code are not to be removed. | ||
18 | * If this package is used in a product, Eric Young should be given attribution | ||
19 | * as the author of the parts of the library used. | ||
20 | * This can be in the form of a textual message at program startup or | ||
21 | * in documentation (online or textual) provided with the package. | ||
22 | * | ||
23 | * Redistribution and use in source and binary forms, with or without | ||
24 | * modification, are permitted provided that the following conditions | ||
25 | * are met: | ||
26 | * 1. Redistributions of source code must retain the copyright | ||
27 | * notice, this list of conditions and the following disclaimer. | ||
28 | * 2. Redistributions in binary form must reproduce the above copyright | ||
29 | * notice, this list of conditions and the following disclaimer in the | ||
30 | * documentation and/or other materials provided with the distribution. | ||
31 | * 3. All advertising materials mentioning features or use of this software | ||
32 | * must display the following acknowledgement: | ||
33 | * "This product includes cryptographic software written by | ||
34 | * Eric Young (eay@cryptsoft.com)" | ||
35 | * The word 'cryptographic' can be left out if the rouines from the library | ||
36 | * being used are not cryptographic related :-). | ||
37 | * 4. If you include any Windows specific code (or a derivative thereof) from | ||
38 | * the apps directory (application code) you must include an acknowledgement: | ||
39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | ||
40 | * | ||
41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | ||
42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | ||
44 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | ||
45 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | ||
46 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | ||
47 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
48 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | ||
49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | ||
50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | ||
51 | * SUCH DAMAGE. | ||
52 | * | ||
53 | * The licence and distribution terms for any publically available version or | ||
54 | * derivative of this code cannot be changed. i.e. this code cannot simply be | ||
55 | * copied and put under another distribution licence | ||
56 | * [including the GNU Public Licence.] | ||
57 | */ | ||
58 | /* ==================================================================== | ||
59 | * Copyright (c) 1998-2006 The OpenSSL Project. All rights reserved. | ||
60 | * | ||
61 | * Redistribution and use in source and binary forms, with or without | ||
62 | * modification, are permitted provided that the following conditions | ||
63 | * are met: | ||
64 | * | ||
65 | * 1. Redistributions of source code must retain the above copyright | ||
66 | * notice, this list of conditions and the following disclaimer. | ||
67 | * | ||
68 | * 2. Redistributions in binary form must reproduce the above copyright | ||
69 | * notice, this list of conditions and the following disclaimer in | ||
70 | * the documentation and/or other materials provided with the | ||
71 | * distribution. | ||
72 | * | ||
73 | * 3. All advertising materials mentioning features or use of this | ||
74 | * software must display the following acknowledgment: | ||
75 | * "This product includes software developed by the OpenSSL Project | ||
76 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | ||
77 | * | ||
78 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
79 | * endorse or promote products derived from this software without | ||
80 | * prior written permission. For written permission, please contact | ||
81 | * openssl-core@openssl.org. | ||
82 | * | ||
83 | * 5. Products derived from this software may not be called "OpenSSL" | ||
84 | * nor may "OpenSSL" appear in their names without prior written | ||
85 | * permission of the OpenSSL Project. | ||
86 | * | ||
87 | * 6. Redistributions of any form whatsoever must retain the following | ||
88 | * acknowledgment: | ||
89 | * "This product includes software developed by the OpenSSL Project | ||
90 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" | ||
91 | * | ||
92 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
93 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
94 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
95 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
96 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
97 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
98 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
99 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
100 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
101 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
102 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
103 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
104 | * ==================================================================== | ||
105 | * | ||
106 | * This product includes cryptographic software written by Eric Young | ||
107 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
108 | * Hudson (tjh@cryptsoft.com). | ||
109 | * | ||
110 | */ | ||
111 | /* ==================================================================== | ||
112 | * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. | ||
113 | * | ||
114 | * Portions of the attached software ("Contribution") are developed by | ||
115 | * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project. | ||
116 | * | ||
117 | * The Contribution is licensed pursuant to the Eric Young open source | ||
118 | * license provided above. | ||
119 | * | ||
120 | * The binary polynomial arithmetic software is originally written by | ||
121 | * Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems Laboratories. | ||
122 | * | ||
123 | */ | ||
124 | |||
125 | #ifndef HEADER_BN_H | ||
126 | #define HEADER_BN_H | ||
127 | |||
128 | #include <stdio.h> | ||
129 | #include <stdlib.h> | ||
130 | |||
131 | #include <openssl/opensslconf.h> | ||
132 | |||
133 | #include <openssl/ossl_typ.h> | ||
134 | #include <openssl/crypto.h> | ||
135 | |||
136 | #ifdef __cplusplus | ||
137 | extern "C" { | ||
138 | #endif | ||
139 | |||
140 | /* These preprocessor symbols control various aspects of the bignum headers and | ||
141 | * library code. They're not defined by any "normal" configuration, as they are | ||
142 | * intended for development and testing purposes. NB: defining all three can be | ||
143 | * useful for debugging application code as well as openssl itself. | ||
144 | * | ||
145 | * BN_DEBUG - turn on various debugging alterations to the bignum code | ||
146 | * BN_DEBUG_RAND - uses random poisoning of unused words to trip up | ||
147 | * mismanagement of bignum internals. You must also define BN_DEBUG. | ||
148 | */ | ||
149 | /* #define BN_DEBUG */ | ||
150 | /* #define BN_DEBUG_RAND */ | ||
151 | |||
152 | #ifndef OPENSSL_SMALL_FOOTPRINT | ||
153 | #define BN_MUL_COMBA | ||
154 | #define BN_SQR_COMBA | ||
155 | #define BN_RECURSION | ||
156 | #endif | ||
157 | |||
158 | /* This next option uses the C libraries (2 word)/(1 word) function. | ||
159 | * If it is not defined, I use my C version (which is slower). | ||
160 | * The reason for this flag is that when the particular C compiler | ||
161 | * library routine is used, and the library is linked with a different | ||
162 | * compiler, the library is missing. This mostly happens when the | ||
163 | * library is built with gcc and then linked using normal cc. This would | ||
164 | * be a common occurrence because gcc normally produces code that is | ||
165 | * 2 times faster than system compilers for the big number stuff. | ||
166 | * For machines with only one compiler (or shared libraries), this should | ||
167 | * be on. Again this in only really a problem on machines | ||
168 | * using "long long's", are 32bit, and are not using my assembler code. */ | ||
169 | /* #define BN_DIV2W */ | ||
170 | |||
171 | #ifdef _LP64 | ||
172 | #undef BN_LLONG | ||
173 | #define BN_ULONG unsigned long | ||
174 | #define BN_LONG long | ||
175 | #define BN_BITS 128 | ||
176 | #define BN_BYTES 8 | ||
177 | #define BN_BITS2 64 | ||
178 | #define BN_BITS4 32 | ||
179 | #define BN_MASK2 (0xffffffffffffffffL) | ||
180 | #define BN_MASK2l (0xffffffffL) | ||
181 | #define BN_MASK2h (0xffffffff00000000L) | ||
182 | #define BN_MASK2h1 (0xffffffff80000000L) | ||
183 | #define BN_TBIT (0x8000000000000000L) | ||
184 | #define BN_DEC_CONV (10000000000000000000UL) | ||
185 | #define BN_DEC_FMT1 "%lu" | ||
186 | #define BN_DEC_FMT2 "%019lu" | ||
187 | #define BN_DEC_NUM 19 | ||
188 | #define BN_HEX_FMT1 "%lX" | ||
189 | #define BN_HEX_FMT2 "%016lX" | ||
190 | #else | ||
191 | #define BN_ULLONG unsigned long long | ||
192 | #define BN_LLONG | ||
193 | #define BN_ULONG unsigned int | ||
194 | #define BN_LONG int | ||
195 | #define BN_BITS 64 | ||
196 | #define BN_BYTES 4 | ||
197 | #define BN_BITS2 32 | ||
198 | #define BN_BITS4 16 | ||
199 | #define BN_MASK (0xffffffffffffffffLL) | ||
200 | #define BN_MASK2 (0xffffffffL) | ||
201 | #define BN_MASK2l (0xffff) | ||
202 | #define BN_MASK2h1 (0xffff8000L) | ||
203 | #define BN_MASK2h (0xffff0000L) | ||
204 | #define BN_TBIT (0x80000000L) | ||
205 | #define BN_DEC_CONV (1000000000L) | ||
206 | #define BN_DEC_FMT1 "%u" | ||
207 | #define BN_DEC_FMT2 "%09u" | ||
208 | #define BN_DEC_NUM 9 | ||
209 | #define BN_HEX_FMT1 "%X" | ||
210 | #define BN_HEX_FMT2 "%08X" | ||
211 | #endif | ||
212 | |||
213 | #define BN_FLG_MALLOCED 0x01 | ||
214 | #define BN_FLG_STATIC_DATA 0x02 | ||
215 | #define BN_FLG_CONSTTIME 0x04 /* avoid leaking exponent information through timing, | ||
216 | * BN_mod_exp_mont() will call BN_mod_exp_mont_consttime, | ||
217 | * BN_div() will call BN_div_no_branch, | ||
218 | * BN_mod_inverse() will call BN_mod_inverse_no_branch. | ||
219 | */ | ||
220 | |||
221 | #ifndef OPENSSL_NO_DEPRECATED | ||
222 | #define BN_FLG_EXP_CONSTTIME BN_FLG_CONSTTIME /* deprecated name for the flag */ | ||
223 | /* avoid leaking exponent information through timings | ||
224 | * (BN_mod_exp_mont() will call BN_mod_exp_mont_consttime) */ | ||
225 | #endif | ||
226 | |||
227 | #ifndef OPENSSL_NO_DEPRECATED | ||
228 | #define BN_FLG_FREE 0x8000 /* used for debuging */ | ||
229 | #endif | ||
230 | #define BN_set_flags(b,n) ((b)->flags|=(n)) | ||
231 | #define BN_get_flags(b,n) ((b)->flags&(n)) | ||
232 | |||
233 | /* get a clone of a BIGNUM with changed flags, for *temporary* use only | ||
234 | * (the two BIGNUMs cannot not be used in parallel!) */ | ||
235 | #define BN_with_flags(dest,b,n) ((dest)->d=(b)->d, \ | ||
236 | (dest)->top=(b)->top, \ | ||
237 | (dest)->dmax=(b)->dmax, \ | ||
238 | (dest)->neg=(b)->neg, \ | ||
239 | (dest)->flags=(((dest)->flags & BN_FLG_MALLOCED) \ | ||
240 | | ((b)->flags & ~BN_FLG_MALLOCED) \ | ||
241 | | BN_FLG_STATIC_DATA \ | ||
242 | | (n))) | ||
243 | |||
244 | struct bignum_st { | ||
245 | BN_ULONG *d; /* Pointer to an array of 'BN_BITS2' bit chunks. */ | ||
246 | int top; /* Index of last used d +1. */ | ||
247 | /* The next are internal book keeping for bn_expand. */ | ||
248 | int dmax; /* Size of the d array. */ | ||
249 | int neg; /* one if the number is negative */ | ||
250 | int flags; | ||
251 | }; | ||
252 | |||
253 | /* Used for montgomery multiplication */ | ||
254 | struct bn_mont_ctx_st { | ||
255 | int ri; /* number of bits in R */ | ||
256 | BIGNUM RR; /* used to convert to montgomery form */ | ||
257 | BIGNUM N; /* The modulus */ | ||
258 | BIGNUM Ni; /* R*(1/R mod N) - N*Ni = 1 | ||
259 | * (Ni is only stored for bignum algorithm) */ | ||
260 | BN_ULONG n0[2];/* least significant word(s) of Ni; | ||
261 | (type changed with 0.9.9, was "BN_ULONG n0;" before) */ | ||
262 | int flags; | ||
263 | }; | ||
264 | |||
265 | /* Used for reciprocal division/mod functions | ||
266 | * It cannot be shared between threads | ||
267 | */ | ||
268 | struct bn_recp_ctx_st { | ||
269 | BIGNUM N; /* the divisor */ | ||
270 | BIGNUM Nr; /* the reciprocal */ | ||
271 | int num_bits; | ||
272 | int shift; | ||
273 | int flags; | ||
274 | }; | ||
275 | |||
276 | /* Used for slow "generation" functions. */ | ||
277 | struct bn_gencb_st { | ||
278 | unsigned int ver; /* To handle binary (in)compatibility */ | ||
279 | void *arg; /* callback-specific data */ | ||
280 | union { | ||
281 | /* if(ver==1) - handles old style callbacks */ | ||
282 | void (*cb_1)(int, int, void *); | ||
283 | /* if(ver==2) - new callback style */ | ||
284 | int (*cb_2)(int, int, BN_GENCB *); | ||
285 | } cb; | ||
286 | }; | ||
287 | /* Wrapper function to make using BN_GENCB easier, */ | ||
288 | int BN_GENCB_call(BN_GENCB *cb, int a, int b); | ||
289 | /* Macro to populate a BN_GENCB structure with an "old"-style callback */ | ||
290 | #define BN_GENCB_set_old(gencb, callback, cb_arg) { \ | ||
291 | BN_GENCB *tmp_gencb = (gencb); \ | ||
292 | tmp_gencb->ver = 1; \ | ||
293 | tmp_gencb->arg = (cb_arg); \ | ||
294 | tmp_gencb->cb.cb_1 = (callback); } | ||
295 | /* Macro to populate a BN_GENCB structure with a "new"-style callback */ | ||
296 | #define BN_GENCB_set(gencb, callback, cb_arg) { \ | ||
297 | BN_GENCB *tmp_gencb = (gencb); \ | ||
298 | tmp_gencb->ver = 2; \ | ||
299 | tmp_gencb->arg = (cb_arg); \ | ||
300 | tmp_gencb->cb.cb_2 = (callback); } | ||
301 | |||
302 | #define BN_prime_checks 0 /* default: select number of iterations | ||
303 | based on the size of the number */ | ||
304 | |||
305 | /* number of Miller-Rabin iterations for an error rate of less than 2^-80 | ||
306 | * for random 'b'-bit input, b >= 100 (taken from table 4.4 in the Handbook | ||
307 | * of Applied Cryptography [Menezes, van Oorschot, Vanstone; CRC Press 1996]; | ||
308 | * original paper: Damgaard, Landrock, Pomerance: Average case error estimates | ||
309 | * for the strong probable prime test. -- Math. Comp. 61 (1993) 177-194) */ | ||
310 | #define BN_prime_checks_for_size(b) ((b) >= 1300 ? 2 : \ | ||
311 | (b) >= 850 ? 3 : \ | ||
312 | (b) >= 650 ? 4 : \ | ||
313 | (b) >= 550 ? 5 : \ | ||
314 | (b) >= 450 ? 6 : \ | ||
315 | (b) >= 400 ? 7 : \ | ||
316 | (b) >= 350 ? 8 : \ | ||
317 | (b) >= 300 ? 9 : \ | ||
318 | (b) >= 250 ? 12 : \ | ||
319 | (b) >= 200 ? 15 : \ | ||
320 | (b) >= 150 ? 18 : \ | ||
321 | /* b >= 100 */ 27) | ||
322 | |||
323 | #define BN_num_bytes(a) ((BN_num_bits(a)+7)/8) | ||
324 | |||
325 | /* Note that BN_abs_is_word didn't work reliably for w == 0 until 0.9.8 */ | ||
326 | #define BN_abs_is_word(a,w) ((((a)->top == 1) && ((a)->d[0] == (BN_ULONG)(w))) || \ | ||
327 | (((w) == 0) && ((a)->top == 0))) | ||
328 | #define BN_is_zero(a) ((a)->top == 0) | ||
329 | #define BN_is_one(a) (BN_abs_is_word((a),1) && !(a)->neg) | ||
330 | #define BN_is_word(a,w) (BN_abs_is_word((a),(w)) && (!(w) || !(a)->neg)) | ||
331 | #define BN_is_odd(a) (((a)->top > 0) && ((a)->d[0] & 1)) | ||
332 | |||
333 | #define BN_one(a) (BN_set_word((a),1)) | ||
334 | #define BN_zero_ex(a) \ | ||
335 | do { \ | ||
336 | BIGNUM *_tmp_bn = (a); \ | ||
337 | _tmp_bn->top = 0; \ | ||
338 | _tmp_bn->neg = 0; \ | ||
339 | } while(0) | ||
340 | |||
341 | #ifdef OPENSSL_NO_DEPRECATED | ||
342 | #define BN_zero(a) BN_zero_ex(a) | ||
343 | #else | ||
344 | #define BN_zero(a) (BN_set_word((a),0)) | ||
345 | #endif | ||
346 | |||
347 | const BIGNUM *BN_value_one(void); | ||
348 | char * BN_options(void); | ||
349 | BN_CTX *BN_CTX_new(void); | ||
350 | #ifndef OPENSSL_NO_DEPRECATED | ||
351 | void BN_CTX_init(BN_CTX *c); | ||
352 | #endif | ||
353 | void BN_CTX_free(BN_CTX *c); | ||
354 | void BN_CTX_start(BN_CTX *ctx); | ||
355 | BIGNUM *BN_CTX_get(BN_CTX *ctx); | ||
356 | void BN_CTX_end(BN_CTX *ctx); | ||
357 | int BN_rand(BIGNUM *rnd, int bits, int top, int bottom); | ||
358 | int BN_pseudo_rand(BIGNUM *rnd, int bits, int top, int bottom); | ||
359 | int BN_rand_range(BIGNUM *rnd, const BIGNUM *range); | ||
360 | int BN_pseudo_rand_range(BIGNUM *rnd, const BIGNUM *range); | ||
361 | int BN_num_bits(const BIGNUM *a); | ||
362 | int BN_num_bits_word(BN_ULONG); | ||
363 | BIGNUM *BN_new(void); | ||
364 | void BN_init(BIGNUM *); | ||
365 | void BN_clear_free(BIGNUM *a); | ||
366 | BIGNUM *BN_copy(BIGNUM *a, const BIGNUM *b); | ||
367 | void BN_swap(BIGNUM *a, BIGNUM *b); | ||
368 | BIGNUM *BN_bin2bn(const unsigned char *s, int len, BIGNUM *ret); | ||
369 | int BN_bn2bin(const BIGNUM *a, unsigned char *to); | ||
370 | BIGNUM *BN_mpi2bn(const unsigned char *s, int len, BIGNUM *ret); | ||
371 | int BN_bn2mpi(const BIGNUM *a, unsigned char *to); | ||
372 | int BN_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b); | ||
373 | int BN_usub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b); | ||
374 | int BN_uadd(BIGNUM *r, const BIGNUM *a, const BIGNUM *b); | ||
375 | int BN_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b); | ||
376 | int BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx); | ||
377 | int BN_sqr(BIGNUM *r, const BIGNUM *a, BN_CTX *ctx); | ||
378 | /** BN_set_negative sets sign of a BIGNUM | ||
379 | * \param b pointer to the BIGNUM object | ||
380 | * \param n 0 if the BIGNUM b should be positive and a value != 0 otherwise | ||
381 | */ | ||
382 | void BN_set_negative(BIGNUM *b, int n); | ||
383 | /** BN_is_negative returns 1 if the BIGNUM is negative | ||
384 | * \param a pointer to the BIGNUM object | ||
385 | * \return 1 if a < 0 and 0 otherwise | ||
386 | */ | ||
387 | #define BN_is_negative(a) ((a)->neg != 0) | ||
388 | |||
389 | int BN_div(BIGNUM *dv, BIGNUM *rem, const BIGNUM *m, const BIGNUM *d, | ||
390 | BN_CTX *ctx); | ||
391 | #define BN_mod(rem,m,d,ctx) BN_div(NULL,(rem),(m),(d),(ctx)) | ||
392 | int BN_nnmod(BIGNUM *r, const BIGNUM *m, const BIGNUM *d, BN_CTX *ctx); | ||
393 | int BN_mod_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m, BN_CTX *ctx); | ||
394 | int BN_mod_add_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m); | ||
395 | int BN_mod_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m, BN_CTX *ctx); | ||
396 | int BN_mod_sub_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m); | ||
397 | int BN_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, | ||
398 | const BIGNUM *m, BN_CTX *ctx); | ||
399 | int BN_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx); | ||
400 | int BN_mod_lshift1(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx); | ||
401 | int BN_mod_lshift1_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *m); | ||
402 | int BN_mod_lshift(BIGNUM *r, const BIGNUM *a, int n, const BIGNUM *m, BN_CTX *ctx); | ||
403 | int BN_mod_lshift_quick(BIGNUM *r, const BIGNUM *a, int n, const BIGNUM *m); | ||
404 | |||
405 | BN_ULONG BN_mod_word(const BIGNUM *a, BN_ULONG w); | ||
406 | BN_ULONG BN_div_word(BIGNUM *a, BN_ULONG w); | ||
407 | int BN_mul_word(BIGNUM *a, BN_ULONG w); | ||
408 | int BN_add_word(BIGNUM *a, BN_ULONG w); | ||
409 | int BN_sub_word(BIGNUM *a, BN_ULONG w); | ||
410 | int BN_set_word(BIGNUM *a, BN_ULONG w); | ||
411 | BN_ULONG BN_get_word(const BIGNUM *a); | ||
412 | |||
413 | int BN_cmp(const BIGNUM *a, const BIGNUM *b); | ||
414 | void BN_free(BIGNUM *a); | ||
415 | int BN_is_bit_set(const BIGNUM *a, int n); | ||
416 | int BN_lshift(BIGNUM *r, const BIGNUM *a, int n); | ||
417 | int BN_lshift1(BIGNUM *r, const BIGNUM *a); | ||
418 | int BN_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx); | ||
419 | |||
420 | int BN_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, | ||
421 | const BIGNUM *m, BN_CTX *ctx); | ||
422 | int BN_mod_exp_mont(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, | ||
423 | const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *m_ctx); | ||
424 | int BN_mod_exp_mont_consttime(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p, | ||
425 | const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont); | ||
426 | int BN_mod_exp_mont_word(BIGNUM *r, BN_ULONG a, const BIGNUM *p, | ||
427 | const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *m_ctx); | ||
428 | int BN_mod_exp2_mont(BIGNUM *r, const BIGNUM *a1, const BIGNUM *p1, | ||
429 | const BIGNUM *a2, const BIGNUM *p2, const BIGNUM *m, | ||
430 | BN_CTX *ctx, BN_MONT_CTX *m_ctx); | ||
431 | int BN_mod_exp_simple(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, | ||
432 | const BIGNUM *m, BN_CTX *ctx); | ||
433 | |||
434 | int BN_mask_bits(BIGNUM *a, int n); | ||
435 | int BN_print_fp(FILE *fp, const BIGNUM *a); | ||
436 | #ifdef HEADER_BIO_H | ||
437 | int BN_print(BIO *fp, const BIGNUM *a); | ||
438 | #else | ||
439 | int BN_print(void *fp, const BIGNUM *a); | ||
440 | #endif | ||
441 | int BN_reciprocal(BIGNUM *r, const BIGNUM *m, int len, BN_CTX *ctx); | ||
442 | int BN_rshift(BIGNUM *r, const BIGNUM *a, int n); | ||
443 | int BN_rshift1(BIGNUM *r, const BIGNUM *a); | ||
444 | void BN_clear(BIGNUM *a); | ||
445 | BIGNUM *BN_dup(const BIGNUM *a); | ||
446 | int BN_ucmp(const BIGNUM *a, const BIGNUM *b); | ||
447 | int BN_set_bit(BIGNUM *a, int n); | ||
448 | int BN_clear_bit(BIGNUM *a, int n); | ||
449 | char * BN_bn2hex(const BIGNUM *a); | ||
450 | char * BN_bn2dec(const BIGNUM *a); | ||
451 | int BN_hex2bn(BIGNUM **a, const char *str); | ||
452 | int BN_dec2bn(BIGNUM **a, const char *str); | ||
453 | int BN_asc2bn(BIGNUM **a, const char *str); | ||
454 | int BN_gcd(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx); | ||
455 | int BN_kronecker(const BIGNUM *a,const BIGNUM *b,BN_CTX *ctx); /* returns -2 for error */ | ||
456 | BIGNUM *BN_mod_inverse(BIGNUM *ret, | ||
457 | const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx); | ||
458 | BIGNUM *BN_mod_sqrt(BIGNUM *ret, | ||
459 | const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx); | ||
460 | |||
461 | void BN_consttime_swap(BN_ULONG swap, BIGNUM *a, BIGNUM *b, int nwords); | ||
462 | |||
463 | /* Deprecated versions */ | ||
464 | #ifndef OPENSSL_NO_DEPRECATED | ||
465 | BIGNUM *BN_generate_prime(BIGNUM *ret, int bits, int safe, | ||
466 | const BIGNUM *add, const BIGNUM *rem, | ||
467 | void (*callback)(int, int, void *), void *cb_arg); | ||
468 | int BN_is_prime(const BIGNUM *p, int nchecks, | ||
469 | void (*callback)(int, int, void *), | ||
470 | BN_CTX *ctx, void *cb_arg); | ||
471 | int BN_is_prime_fasttest(const BIGNUM *p, int nchecks, | ||
472 | void (*callback)(int, int, void *), BN_CTX *ctx, void *cb_arg, | ||
473 | int do_trial_division); | ||
474 | #endif /* !defined(OPENSSL_NO_DEPRECATED) */ | ||
475 | |||
476 | /* Newer versions */ | ||
477 | int BN_generate_prime_ex(BIGNUM *ret, int bits, int safe, const BIGNUM *add, | ||
478 | const BIGNUM *rem, BN_GENCB *cb); | ||
479 | int BN_is_prime_ex(const BIGNUM *p, int nchecks, BN_CTX *ctx, BN_GENCB *cb); | ||
480 | int BN_is_prime_fasttest_ex(const BIGNUM *p, int nchecks, BN_CTX *ctx, | ||
481 | int do_trial_division, BN_GENCB *cb); | ||
482 | |||
483 | int BN_X931_generate_Xpq(BIGNUM *Xp, BIGNUM *Xq, int nbits, BN_CTX *ctx); | ||
484 | |||
485 | int BN_X931_derive_prime_ex(BIGNUM *p, BIGNUM *p1, BIGNUM *p2, | ||
486 | const BIGNUM *Xp, const BIGNUM *Xp1, const BIGNUM *Xp2, | ||
487 | const BIGNUM *e, BN_CTX *ctx, BN_GENCB *cb); | ||
488 | int BN_X931_generate_prime_ex(BIGNUM *p, BIGNUM *p1, BIGNUM *p2, | ||
489 | BIGNUM *Xp1, BIGNUM *Xp2, | ||
490 | const BIGNUM *Xp, | ||
491 | const BIGNUM *e, BN_CTX *ctx, | ||
492 | BN_GENCB *cb); | ||
493 | |||
494 | BN_MONT_CTX *BN_MONT_CTX_new(void ); | ||
495 | void BN_MONT_CTX_init(BN_MONT_CTX *ctx); | ||
496 | int BN_mod_mul_montgomery(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, | ||
497 | BN_MONT_CTX *mont, BN_CTX *ctx); | ||
498 | #define BN_to_montgomery(r,a,mont,ctx) BN_mod_mul_montgomery(\ | ||
499 | (r),(a),&((mont)->RR),(mont),(ctx)) | ||
500 | int BN_from_montgomery(BIGNUM *r, const BIGNUM *a, | ||
501 | BN_MONT_CTX *mont, BN_CTX *ctx); | ||
502 | void BN_MONT_CTX_free(BN_MONT_CTX *mont); | ||
503 | int BN_MONT_CTX_set(BN_MONT_CTX *mont, const BIGNUM *mod, BN_CTX *ctx); | ||
504 | BN_MONT_CTX *BN_MONT_CTX_copy(BN_MONT_CTX *to, BN_MONT_CTX *from); | ||
505 | BN_MONT_CTX *BN_MONT_CTX_set_locked(BN_MONT_CTX **pmont, int lock, | ||
506 | const BIGNUM *mod, BN_CTX *ctx); | ||
507 | |||
508 | /* BN_BLINDING flags */ | ||
509 | #define BN_BLINDING_NO_UPDATE 0x00000001 | ||
510 | #define BN_BLINDING_NO_RECREATE 0x00000002 | ||
511 | |||
512 | BN_BLINDING *BN_BLINDING_new(const BIGNUM *A, const BIGNUM *Ai, BIGNUM *mod); | ||
513 | void BN_BLINDING_free(BN_BLINDING *b); | ||
514 | int BN_BLINDING_update(BN_BLINDING *b, BN_CTX *ctx); | ||
515 | int BN_BLINDING_convert(BIGNUM *n, BN_BLINDING *b, BN_CTX *ctx); | ||
516 | int BN_BLINDING_invert(BIGNUM *n, BN_BLINDING *b, BN_CTX *ctx); | ||
517 | int BN_BLINDING_convert_ex(BIGNUM *n, BIGNUM *r, BN_BLINDING *b, BN_CTX *); | ||
518 | int BN_BLINDING_invert_ex(BIGNUM *n, const BIGNUM *r, BN_BLINDING *b, BN_CTX *); | ||
519 | #ifndef OPENSSL_NO_DEPRECATED | ||
520 | unsigned long BN_BLINDING_get_thread_id(const BN_BLINDING *); | ||
521 | void BN_BLINDING_set_thread_id(BN_BLINDING *, unsigned long); | ||
522 | #endif | ||
523 | CRYPTO_THREADID *BN_BLINDING_thread_id(BN_BLINDING *); | ||
524 | unsigned long BN_BLINDING_get_flags(const BN_BLINDING *); | ||
525 | void BN_BLINDING_set_flags(BN_BLINDING *, unsigned long); | ||
526 | BN_BLINDING *BN_BLINDING_create_param(BN_BLINDING *b, | ||
527 | const BIGNUM *e, BIGNUM *m, BN_CTX *ctx, | ||
528 | int (*bn_mod_exp)(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, | ||
529 | const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *m_ctx), | ||
530 | BN_MONT_CTX *m_ctx); | ||
531 | |||
532 | #ifndef OPENSSL_NO_DEPRECATED | ||
533 | void BN_set_params(int mul, int high, int low, int mont); | ||
534 | int BN_get_params(int which); /* 0, mul, 1 high, 2 low, 3 mont */ | ||
535 | #endif | ||
536 | |||
537 | void BN_RECP_CTX_init(BN_RECP_CTX *recp); | ||
538 | BN_RECP_CTX *BN_RECP_CTX_new(void); | ||
539 | void BN_RECP_CTX_free(BN_RECP_CTX *recp); | ||
540 | int BN_RECP_CTX_set(BN_RECP_CTX *recp, const BIGNUM *rdiv, BN_CTX *ctx); | ||
541 | int BN_mod_mul_reciprocal(BIGNUM *r, const BIGNUM *x, const BIGNUM *y, | ||
542 | BN_RECP_CTX *recp, BN_CTX *ctx); | ||
543 | int BN_mod_exp_recp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, | ||
544 | const BIGNUM *m, BN_CTX *ctx); | ||
545 | int BN_div_recp(BIGNUM *dv, BIGNUM *rem, const BIGNUM *m, | ||
546 | BN_RECP_CTX *recp, BN_CTX *ctx); | ||
547 | |||
548 | #ifndef OPENSSL_NO_EC2M | ||
549 | |||
550 | /* Functions for arithmetic over binary polynomials represented by BIGNUMs. | ||
551 | * | ||
552 | * The BIGNUM::neg property of BIGNUMs representing binary polynomials is | ||
553 | * ignored. | ||
554 | * | ||
555 | * Note that input arguments are not const so that their bit arrays can | ||
556 | * be expanded to the appropriate size if needed. | ||
557 | */ | ||
558 | |||
559 | int BN_GF2m_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b); /*r = a + b*/ | ||
560 | #define BN_GF2m_sub(r, a, b) BN_GF2m_add(r, a, b) | ||
561 | int BN_GF2m_mod(BIGNUM *r, const BIGNUM *a, const BIGNUM *p); /*r=a mod p*/ | ||
562 | int | ||
563 | BN_GF2m_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, | ||
564 | const BIGNUM *p, BN_CTX *ctx); /* r = (a * b) mod p */ | ||
565 | int | ||
566 | BN_GF2m_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, | ||
567 | BN_CTX *ctx); /* r = (a * a) mod p */ | ||
568 | int | ||
569 | BN_GF2m_mod_inv(BIGNUM *r, const BIGNUM *b, const BIGNUM *p, | ||
570 | BN_CTX *ctx); /* r = (1 / b) mod p */ | ||
571 | int | ||
572 | BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, | ||
573 | const BIGNUM *p, BN_CTX *ctx); /* r = (a / b) mod p */ | ||
574 | int | ||
575 | BN_GF2m_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, | ||
576 | const BIGNUM *p, BN_CTX *ctx); /* r = (a ^ b) mod p */ | ||
577 | int | ||
578 | BN_GF2m_mod_sqrt(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, | ||
579 | BN_CTX *ctx); /* r = sqrt(a) mod p */ | ||
580 | int BN_GF2m_mod_solve_quad(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, | ||
581 | BN_CTX *ctx); /* r^2 + r = a mod p */ | ||
582 | #define BN_GF2m_cmp(a, b) BN_ucmp((a), (b)) | ||
583 | /* Some functions allow for representation of the irreducible polynomials | ||
584 | * as an unsigned int[], say p. The irreducible f(t) is then of the form: | ||
585 | * t^p[0] + t^p[1] + ... + t^p[k] | ||
586 | * where m = p[0] > p[1] > ... > p[k] = 0. | ||
587 | */ | ||
588 | int BN_GF2m_mod_arr(BIGNUM *r, const BIGNUM *a, const int p[]); | ||
589 | /* r = a mod p */ | ||
590 | int BN_GF2m_mod_mul_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, | ||
591 | const int p[], BN_CTX *ctx); /* r = (a * b) mod p */ | ||
592 | int BN_GF2m_mod_sqr_arr(BIGNUM *r, const BIGNUM *a, const int p[], | ||
593 | BN_CTX *ctx); /* r = (a * a) mod p */ | ||
594 | int BN_GF2m_mod_inv_arr(BIGNUM *r, const BIGNUM *b, const int p[], | ||
595 | BN_CTX *ctx); /* r = (1 / b) mod p */ | ||
596 | int BN_GF2m_mod_div_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, | ||
597 | const int p[], BN_CTX *ctx); /* r = (a / b) mod p */ | ||
598 | int BN_GF2m_mod_exp_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, | ||
599 | const int p[], BN_CTX *ctx); /* r = (a ^ b) mod p */ | ||
600 | int BN_GF2m_mod_sqrt_arr(BIGNUM *r, const BIGNUM *a, | ||
601 | const int p[], BN_CTX *ctx); /* r = sqrt(a) mod p */ | ||
602 | int BN_GF2m_mod_solve_quad_arr(BIGNUM *r, const BIGNUM *a, | ||
603 | const int p[], BN_CTX *ctx); /* r^2 + r = a mod p */ | ||
604 | int BN_GF2m_poly2arr(const BIGNUM *a, int p[], int max); | ||
605 | int BN_GF2m_arr2poly(const int p[], BIGNUM *a); | ||
606 | |||
607 | #endif | ||
608 | |||
609 | /* faster mod functions for the 'NIST primes' | ||
610 | * 0 <= a < p^2 */ | ||
611 | int BN_nist_mod_192(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx); | ||
612 | int BN_nist_mod_224(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx); | ||
613 | int BN_nist_mod_256(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx); | ||
614 | int BN_nist_mod_384(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx); | ||
615 | int BN_nist_mod_521(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx); | ||
616 | |||
617 | const BIGNUM *BN_get0_nist_prime_192(void); | ||
618 | const BIGNUM *BN_get0_nist_prime_224(void); | ||
619 | const BIGNUM *BN_get0_nist_prime_256(void); | ||
620 | const BIGNUM *BN_get0_nist_prime_384(void); | ||
621 | const BIGNUM *BN_get0_nist_prime_521(void); | ||
622 | |||
623 | /* library internal functions */ | ||
624 | |||
625 | #define bn_expand(a,bits) ((((((bits+BN_BITS2-1))/BN_BITS2)) <= (a)->dmax)?\ | ||
626 | (a):bn_expand2((a),(bits+BN_BITS2-1)/BN_BITS2)) | ||
627 | #define bn_wexpand(a,words) (((words) <= (a)->dmax)?(a):bn_expand2((a),(words))) | ||
628 | BIGNUM *bn_expand2(BIGNUM *a, int words); | ||
629 | #ifndef OPENSSL_NO_DEPRECATED | ||
630 | BIGNUM *bn_dup_expand(const BIGNUM *a, int words); /* unused */ | ||
631 | #endif | ||
632 | |||
633 | /* Bignum consistency macros | ||
634 | * There is one "API" macro, bn_fix_top(), for stripping leading zeroes from | ||
635 | * bignum data after direct manipulations on the data. There is also an | ||
636 | * "internal" macro, bn_check_top(), for verifying that there are no leading | ||
637 | * zeroes. Unfortunately, some auditing is required due to the fact that | ||
638 | * bn_fix_top() has become an overabused duct-tape because bignum data is | ||
639 | * occasionally passed around in an inconsistent state. So the following | ||
640 | * changes have been made to sort this out; | ||
641 | * - bn_fix_top()s implementation has been moved to bn_correct_top() | ||
642 | * - if BN_DEBUG isn't defined, bn_fix_top() maps to bn_correct_top(), and | ||
643 | * bn_check_top() is as before. | ||
644 | * - if BN_DEBUG *is* defined; | ||
645 | * - bn_check_top() tries to pollute unused words even if the bignum 'top' is | ||
646 | * consistent. (ed: only if BN_DEBUG_RAND is defined) | ||
647 | * - bn_fix_top() maps to bn_check_top() rather than "fixing" anything. | ||
648 | * The idea is to have debug builds flag up inconsistent bignums when they | ||
649 | * occur. If that occurs in a bn_fix_top(), we examine the code in question; if | ||
650 | * the use of bn_fix_top() was appropriate (ie. it follows directly after code | ||
651 | * that manipulates the bignum) it is converted to bn_correct_top(), and if it | ||
652 | * was not appropriate, we convert it permanently to bn_check_top() and track | ||
653 | * down the cause of the bug. Eventually, no internal code should be using the | ||
654 | * bn_fix_top() macro. External applications and libraries should try this with | ||
655 | * their own code too, both in terms of building against the openssl headers | ||
656 | * with BN_DEBUG defined *and* linking with a version of OpenSSL built with it | ||
657 | * defined. This not only improves external code, it provides more test | ||
658 | * coverage for openssl's own code. | ||
659 | */ | ||
660 | |||
661 | #ifdef BN_DEBUG | ||
662 | |||
663 | /* We only need assert() when debugging */ | ||
664 | #include <assert.h> | ||
665 | |||
666 | #ifdef BN_DEBUG_RAND | ||
667 | #define bn_pollute(a) \ | ||
668 | do { \ | ||
669 | const BIGNUM *_bnum1 = (a); \ | ||
670 | if(_bnum1->top < _bnum1->dmax) { \ | ||
671 | unsigned char _tmp_char; \ | ||
672 | /* We cast away const without the compiler knowing, any \ | ||
673 | * *genuinely* constant variables that aren't mutable \ | ||
674 | * wouldn't be constructed with top!=dmax. */ \ | ||
675 | BN_ULONG *_not_const; \ | ||
676 | memcpy(&_not_const, &_bnum1->d, sizeof(BN_ULONG*)); \ | ||
677 | arc4random_buf(&_tmp_char, 1); \ | ||
678 | memset((unsigned char *)(_not_const + _bnum1->top), _tmp_char, \ | ||
679 | (_bnum1->dmax - _bnum1->top) * sizeof(BN_ULONG)); \ | ||
680 | } \ | ||
681 | } while(0) | ||
682 | #else | ||
683 | #define bn_pollute(a) | ||
684 | #endif | ||
685 | |||
686 | #define bn_check_top(a) \ | ||
687 | do { \ | ||
688 | const BIGNUM *_bnum2 = (a); \ | ||
689 | if (_bnum2 != NULL) { \ | ||
690 | assert((_bnum2->top == 0) || \ | ||
691 | (_bnum2->d[_bnum2->top - 1] != 0)); \ | ||
692 | bn_pollute(_bnum2); \ | ||
693 | } \ | ||
694 | } while(0) | ||
695 | |||
696 | #define bn_fix_top(a) bn_check_top(a) | ||
697 | |||
698 | #define bn_check_size(bn, bits) bn_wcheck_size(bn, ((bits+BN_BITS2-1))/BN_BITS2) | ||
699 | #define bn_wcheck_size(bn, words) \ | ||
700 | do { \ | ||
701 | const BIGNUM *_bnum2 = (bn); \ | ||
702 | assert(words <= (_bnum2)->dmax && words >= (_bnum2)->top); \ | ||
703 | } while(0) | ||
704 | |||
705 | #else /* !BN_DEBUG */ | ||
706 | |||
707 | #define bn_pollute(a) | ||
708 | #define bn_check_top(a) | ||
709 | #define bn_fix_top(a) bn_correct_top(a) | ||
710 | #define bn_check_size(bn, bits) | ||
711 | #define bn_wcheck_size(bn, words) | ||
712 | |||
713 | #endif | ||
714 | |||
715 | #define bn_correct_top(a) \ | ||
716 | { \ | ||
717 | BN_ULONG *ftl; \ | ||
718 | int tmp_top = (a)->top; \ | ||
719 | if (tmp_top > 0) \ | ||
720 | { \ | ||
721 | for (ftl= &((a)->d[tmp_top-1]); tmp_top > 0; tmp_top--) \ | ||
722 | if (*(ftl--)) break; \ | ||
723 | (a)->top = tmp_top; \ | ||
724 | } \ | ||
725 | bn_pollute(a); \ | ||
726 | } | ||
727 | |||
728 | BN_ULONG bn_mul_add_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w); | ||
729 | BN_ULONG bn_mul_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w); | ||
730 | void bn_sqr_words(BN_ULONG *rp, const BN_ULONG *ap, int num); | ||
731 | BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d); | ||
732 | BN_ULONG bn_add_words(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, int num); | ||
733 | BN_ULONG bn_sub_words(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, int num); | ||
734 | |||
735 | /* Primes from RFC 2409 */ | ||
736 | BIGNUM *get_rfc2409_prime_768(BIGNUM *bn); | ||
737 | BIGNUM *get_rfc2409_prime_1024(BIGNUM *bn); | ||
738 | |||
739 | /* Primes from RFC 3526 */ | ||
740 | BIGNUM *get_rfc3526_prime_1536(BIGNUM *bn); | ||
741 | BIGNUM *get_rfc3526_prime_2048(BIGNUM *bn); | ||
742 | BIGNUM *get_rfc3526_prime_3072(BIGNUM *bn); | ||
743 | BIGNUM *get_rfc3526_prime_4096(BIGNUM *bn); | ||
744 | BIGNUM *get_rfc3526_prime_6144(BIGNUM *bn); | ||
745 | BIGNUM *get_rfc3526_prime_8192(BIGNUM *bn); | ||
746 | |||
747 | int BN_bntest_rand(BIGNUM *rnd, int bits, int top, int bottom); | ||
748 | |||
749 | /* BEGIN ERROR CODES */ | ||
750 | /* The following lines are auto generated by the script mkerr.pl. Any changes | ||
751 | * made after this point may be overwritten when the script is next run. | ||
752 | */ | ||
753 | void ERR_load_BN_strings(void); | ||
754 | |||
755 | /* Error codes for the BN functions. */ | ||
756 | |||
757 | /* Function codes. */ | ||
758 | #define BN_F_BNRAND 127 | ||
759 | #define BN_F_BN_BLINDING_CONVERT_EX 100 | ||
760 | #define BN_F_BN_BLINDING_CREATE_PARAM 128 | ||
761 | #define BN_F_BN_BLINDING_INVERT_EX 101 | ||
762 | #define BN_F_BN_BLINDING_NEW 102 | ||
763 | #define BN_F_BN_BLINDING_UPDATE 103 | ||
764 | #define BN_F_BN_BN2DEC 104 | ||
765 | #define BN_F_BN_BN2HEX 105 | ||
766 | #define BN_F_BN_CTX_GET 116 | ||
767 | #define BN_F_BN_CTX_NEW 106 | ||
768 | #define BN_F_BN_CTX_START 129 | ||
769 | #define BN_F_BN_DIV 107 | ||
770 | #define BN_F_BN_DIV_NO_BRANCH 138 | ||
771 | #define BN_F_BN_DIV_RECP 130 | ||
772 | #define BN_F_BN_EXP 123 | ||
773 | #define BN_F_BN_EXPAND2 108 | ||
774 | #define BN_F_BN_EXPAND_INTERNAL 120 | ||
775 | #define BN_F_BN_GF2M_MOD 131 | ||
776 | #define BN_F_BN_GF2M_MOD_EXP 132 | ||
777 | #define BN_F_BN_GF2M_MOD_MUL 133 | ||
778 | #define BN_F_BN_GF2M_MOD_SOLVE_QUAD 134 | ||
779 | #define BN_F_BN_GF2M_MOD_SOLVE_QUAD_ARR 135 | ||
780 | #define BN_F_BN_GF2M_MOD_SQR 136 | ||
781 | #define BN_F_BN_GF2M_MOD_SQRT 137 | ||
782 | #define BN_F_BN_MOD_EXP2_MONT 118 | ||
783 | #define BN_F_BN_MOD_EXP_MONT 109 | ||
784 | #define BN_F_BN_MOD_EXP_MONT_CONSTTIME 124 | ||
785 | #define BN_F_BN_MOD_EXP_MONT_WORD 117 | ||
786 | #define BN_F_BN_MOD_EXP_RECP 125 | ||
787 | #define BN_F_BN_MOD_EXP_SIMPLE 126 | ||
788 | #define BN_F_BN_MOD_INVERSE 110 | ||
789 | #define BN_F_BN_MOD_INVERSE_NO_BRANCH 139 | ||
790 | #define BN_F_BN_MOD_LSHIFT_QUICK 119 | ||
791 | #define BN_F_BN_MOD_MUL_RECIPROCAL 111 | ||
792 | #define BN_F_BN_MOD_SQRT 121 | ||
793 | #define BN_F_BN_MPI2BN 112 | ||
794 | #define BN_F_BN_NEW 113 | ||
795 | #define BN_F_BN_RAND 114 | ||
796 | #define BN_F_BN_RAND_RANGE 122 | ||
797 | #define BN_F_BN_USUB 115 | ||
798 | |||
799 | /* Reason codes. */ | ||
800 | #define BN_R_ARG2_LT_ARG3 100 | ||
801 | #define BN_R_BAD_RECIPROCAL 101 | ||
802 | #define BN_R_BIGNUM_TOO_LONG 114 | ||
803 | #define BN_R_CALLED_WITH_EVEN_MODULUS 102 | ||
804 | #define BN_R_DIV_BY_ZERO 103 | ||
805 | #define BN_R_ENCODING_ERROR 104 | ||
806 | #define BN_R_EXPAND_ON_STATIC_BIGNUM_DATA 105 | ||
807 | #define BN_R_INPUT_NOT_REDUCED 110 | ||
808 | #define BN_R_INVALID_LENGTH 106 | ||
809 | #define BN_R_INVALID_RANGE 115 | ||
810 | #define BN_R_NOT_A_SQUARE 111 | ||
811 | #define BN_R_NOT_INITIALIZED 107 | ||
812 | #define BN_R_NO_INVERSE 108 | ||
813 | #define BN_R_NO_SOLUTION 116 | ||
814 | #define BN_R_P_IS_NOT_PRIME 112 | ||
815 | #define BN_R_TOO_MANY_ITERATIONS 113 | ||
816 | #define BN_R_TOO_MANY_TEMPORARY_VARIABLES 109 | ||
817 | |||
818 | #ifdef __cplusplus | ||
819 | } | ||
820 | #endif | ||
821 | #endif | ||
diff --git a/src/lib/libcrypto/bn/bn_add.c b/src/lib/libcrypto/bn/bn_add.c deleted file mode 100644 index ebc9b9b56b..0000000000 --- a/src/lib/libcrypto/bn/bn_add.c +++ /dev/null | |||
@@ -1,313 +0,0 @@ | |||
1 | /* $OpenBSD: bn_add.c,v 1.10 2014/10/28 07:35:58 jsg Exp $ */ | ||
2 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) | ||
3 | * All rights reserved. | ||
4 | * | ||
5 | * This package is an SSL implementation written | ||
6 | * by Eric Young (eay@cryptsoft.com). | ||
7 | * The implementation was written so as to conform with Netscapes SSL. | ||
8 | * | ||
9 | * This library is free for commercial and non-commercial use as long as | ||
10 | * the following conditions are aheared to. The following conditions | ||
11 | * apply to all code found in this distribution, be it the RC4, RSA, | ||
12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation | ||
13 | * included with this distribution is covered by the same copyright terms | ||
14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | ||
15 | * | ||
16 | * Copyright remains Eric Young's, and as such any Copyright notices in | ||
17 | * the code are not to be removed. | ||
18 | * If this package is used in a product, Eric Young should be given attribution | ||
19 | * as the author of the parts of the library used. | ||
20 | * This can be in the form of a textual message at program startup or | ||
21 | * in documentation (online or textual) provided with the package. | ||
22 | * | ||
23 | * Redistribution and use in source and binary forms, with or without | ||
24 | * modification, are permitted provided that the following conditions | ||
25 | * are met: | ||
26 | * 1. Redistributions of source code must retain the copyright | ||
27 | * notice, this list of conditions and the following disclaimer. | ||
28 | * 2. Redistributions in binary form must reproduce the above copyright | ||
29 | * notice, this list of conditions and the following disclaimer in the | ||
30 | * documentation and/or other materials provided with the distribution. | ||
31 | * 3. All advertising materials mentioning features or use of this software | ||
32 | * must display the following acknowledgement: | ||
33 | * "This product includes cryptographic software written by | ||
34 | * Eric Young (eay@cryptsoft.com)" | ||
35 | * The word 'cryptographic' can be left out if the rouines from the library | ||
36 | * being used are not cryptographic related :-). | ||
37 | * 4. If you include any Windows specific code (or a derivative thereof) from | ||
38 | * the apps directory (application code) you must include an acknowledgement: | ||
39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | ||
40 | * | ||
41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | ||
42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | ||
44 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | ||
45 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | ||
46 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | ||
47 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
48 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | ||
49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | ||
50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | ||
51 | * SUCH DAMAGE. | ||
52 | * | ||
53 | * The licence and distribution terms for any publically available version or | ||
54 | * derivative of this code cannot be changed. i.e. this code cannot simply be | ||
55 | * copied and put under another distribution licence | ||
56 | * [including the GNU Public Licence.] | ||
57 | */ | ||
58 | |||
59 | #include <stdio.h> | ||
60 | |||
61 | #include <openssl/err.h> | ||
62 | |||
63 | #include "bn_lcl.h" | ||
64 | |||
65 | /* r can == a or b */ | ||
66 | int | ||
67 | BN_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b) | ||
68 | { | ||
69 | const BIGNUM *tmp; | ||
70 | int a_neg = a->neg, ret; | ||
71 | |||
72 | bn_check_top(a); | ||
73 | bn_check_top(b); | ||
74 | |||
75 | /* a + b a+b | ||
76 | * a + -b a-b | ||
77 | * -a + b b-a | ||
78 | * -a + -b -(a+b) | ||
79 | */ | ||
80 | if (a_neg ^ b->neg) { | ||
81 | /* only one is negative */ | ||
82 | if (a_neg) | ||
83 | { tmp = a; | ||
84 | a = b; | ||
85 | b = tmp; | ||
86 | } | ||
87 | |||
88 | /* we are now a - b */ | ||
89 | |||
90 | if (BN_ucmp(a, b) < 0) { | ||
91 | if (!BN_usub(r, b, a)) | ||
92 | return (0); | ||
93 | r->neg = 1; | ||
94 | } else { | ||
95 | if (!BN_usub(r, a, b)) | ||
96 | return (0); | ||
97 | r->neg = 0; | ||
98 | } | ||
99 | return (1); | ||
100 | } | ||
101 | |||
102 | ret = BN_uadd(r, a, b); | ||
103 | r->neg = a_neg; | ||
104 | bn_check_top(r); | ||
105 | return ret; | ||
106 | } | ||
107 | |||
108 | /* unsigned add of b to a */ | ||
109 | int | ||
110 | BN_uadd(BIGNUM *r, const BIGNUM *a, const BIGNUM *b) | ||
111 | { | ||
112 | int max, min, dif; | ||
113 | BN_ULONG *ap, *bp, *rp, carry, t1, t2; | ||
114 | const BIGNUM *tmp; | ||
115 | |||
116 | bn_check_top(a); | ||
117 | bn_check_top(b); | ||
118 | |||
119 | if (a->top < b->top) { | ||
120 | tmp = a; | ||
121 | a = b; | ||
122 | b = tmp; | ||
123 | } | ||
124 | max = a->top; | ||
125 | min = b->top; | ||
126 | dif = max - min; | ||
127 | |||
128 | if (bn_wexpand(r, max + 1) == NULL) | ||
129 | return 0; | ||
130 | |||
131 | r->top = max; | ||
132 | |||
133 | ap = a->d; | ||
134 | bp = b->d; | ||
135 | rp = r->d; | ||
136 | |||
137 | carry = bn_add_words(rp, ap, bp, min); | ||
138 | rp += min; | ||
139 | ap += min; | ||
140 | bp += min; | ||
141 | |||
142 | if (carry) { | ||
143 | while (dif) { | ||
144 | dif--; | ||
145 | t1 = *(ap++); | ||
146 | t2 = (t1 + 1) & BN_MASK2; | ||
147 | *(rp++) = t2; | ||
148 | if (t2) { | ||
149 | carry = 0; | ||
150 | break; | ||
151 | } | ||
152 | } | ||
153 | if (carry) { | ||
154 | /* carry != 0 => dif == 0 */ | ||
155 | *rp = 1; | ||
156 | r->top++; | ||
157 | } | ||
158 | } | ||
159 | if (dif && rp != ap) | ||
160 | while (dif--) | ||
161 | /* copy remaining words if ap != rp */ | ||
162 | *(rp++) = *(ap++); | ||
163 | r->neg = 0; | ||
164 | bn_check_top(r); | ||
165 | return 1; | ||
166 | } | ||
167 | |||
168 | /* unsigned subtraction of b from a, a must be larger than b. */ | ||
169 | int | ||
170 | BN_usub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b) | ||
171 | { | ||
172 | int max, min, dif; | ||
173 | BN_ULONG t1, t2, *ap, *bp, *rp; | ||
174 | int i, carry; | ||
175 | |||
176 | bn_check_top(a); | ||
177 | bn_check_top(b); | ||
178 | |||
179 | max = a->top; | ||
180 | min = b->top; | ||
181 | dif = max - min; | ||
182 | |||
183 | if (dif < 0) /* hmm... should not be happening */ | ||
184 | { | ||
185 | BNerr(BN_F_BN_USUB, BN_R_ARG2_LT_ARG3); | ||
186 | return (0); | ||
187 | } | ||
188 | |||
189 | if (bn_wexpand(r, max) == NULL) | ||
190 | return (0); | ||
191 | |||
192 | ap = a->d; | ||
193 | bp = b->d; | ||
194 | rp = r->d; | ||
195 | |||
196 | #if 1 | ||
197 | carry = 0; | ||
198 | for (i = min; i != 0; i--) { | ||
199 | t1= *(ap++); | ||
200 | t2= *(bp++); | ||
201 | if (carry) { | ||
202 | carry = (t1 <= t2); | ||
203 | t1 = (t1 - t2 - 1)&BN_MASK2; | ||
204 | } else { | ||
205 | carry = (t1 < t2); | ||
206 | t1 = (t1 - t2)&BN_MASK2; | ||
207 | } | ||
208 | *(rp++) = t1&BN_MASK2; | ||
209 | } | ||
210 | #else | ||
211 | carry = bn_sub_words(rp, ap, bp, min); | ||
212 | ap += min; | ||
213 | bp += min; | ||
214 | rp += min; | ||
215 | #endif | ||
216 | if (carry) /* subtracted */ | ||
217 | { | ||
218 | if (!dif) | ||
219 | /* error: a < b */ | ||
220 | return 0; | ||
221 | while (dif) { | ||
222 | dif--; | ||
223 | t1 = *(ap++); | ||
224 | t2 = (t1 - 1)&BN_MASK2; | ||
225 | *(rp++) = t2; | ||
226 | if (t1) | ||
227 | break; | ||
228 | } | ||
229 | } | ||
230 | #if 0 | ||
231 | memcpy(rp, ap, sizeof(*rp)*(max - i)); | ||
232 | #else | ||
233 | if (rp != ap) { | ||
234 | for (;;) { | ||
235 | if (!dif--) | ||
236 | break; | ||
237 | rp[0] = ap[0]; | ||
238 | if (!dif--) | ||
239 | break; | ||
240 | rp[1] = ap[1]; | ||
241 | if (!dif--) | ||
242 | break; | ||
243 | rp[2] = ap[2]; | ||
244 | if (!dif--) | ||
245 | break; | ||
246 | rp[3] = ap[3]; | ||
247 | rp += 4; | ||
248 | ap += 4; | ||
249 | } | ||
250 | } | ||
251 | #endif | ||
252 | |||
253 | r->top = max; | ||
254 | r->neg = 0; | ||
255 | bn_correct_top(r); | ||
256 | return (1); | ||
257 | } | ||
258 | |||
259 | int | ||
260 | BN_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b) | ||
261 | { | ||
262 | int max; | ||
263 | int add = 0, neg = 0; | ||
264 | const BIGNUM *tmp; | ||
265 | |||
266 | bn_check_top(a); | ||
267 | bn_check_top(b); | ||
268 | |||
269 | /* a - b a-b | ||
270 | * a - -b a+b | ||
271 | * -a - b -(a+b) | ||
272 | * -a - -b b-a | ||
273 | */ | ||
274 | if (a->neg) { | ||
275 | if (b->neg) { | ||
276 | tmp = a; | ||
277 | a = b; | ||
278 | b = tmp; | ||
279 | } else { | ||
280 | add = 1; | ||
281 | neg = 1; | ||
282 | } | ||
283 | } else { | ||
284 | if (b->neg) { | ||
285 | add = 1; | ||
286 | neg = 0; | ||
287 | } | ||
288 | } | ||
289 | |||
290 | if (add) { | ||
291 | if (!BN_uadd(r, a, b)) | ||
292 | return (0); | ||
293 | r->neg = neg; | ||
294 | return (1); | ||
295 | } | ||
296 | |||
297 | /* We are actually doing a - b :-) */ | ||
298 | |||
299 | max = (a->top > b->top) ? a->top : b->top; | ||
300 | if (bn_wexpand(r, max) == NULL) | ||
301 | return (0); | ||
302 | if (BN_ucmp(a, b) < 0) { | ||
303 | if (!BN_usub(r, b, a)) | ||
304 | return (0); | ||
305 | r->neg = 1; | ||
306 | } else { | ||
307 | if (!BN_usub(r, a, b)) | ||
308 | return (0); | ||
309 | r->neg = 0; | ||
310 | } | ||
311 | bn_check_top(r); | ||
312 | return (1); | ||
313 | } | ||
diff --git a/src/lib/libcrypto/bn/bn_asm.c b/src/lib/libcrypto/bn/bn_asm.c deleted file mode 100644 index 49f0ba5d7b..0000000000 --- a/src/lib/libcrypto/bn/bn_asm.c +++ /dev/null | |||
@@ -1,1098 +0,0 @@ | |||
1 | /* $OpenBSD: bn_asm.c,v 1.14 2015/02/25 15:39:49 bcook Exp $ */ | ||
2 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) | ||
3 | * All rights reserved. | ||
4 | * | ||
5 | * This package is an SSL implementation written | ||
6 | * by Eric Young (eay@cryptsoft.com). | ||
7 | * The implementation was written so as to conform with Netscapes SSL. | ||
8 | * | ||
9 | * This library is free for commercial and non-commercial use as long as | ||
10 | * the following conditions are aheared to. The following conditions | ||
11 | * apply to all code found in this distribution, be it the RC4, RSA, | ||
12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation | ||
13 | * included with this distribution is covered by the same copyright terms | ||
14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | ||
15 | * | ||
16 | * Copyright remains Eric Young's, and as such any Copyright notices in | ||
17 | * the code are not to be removed. | ||
18 | * If this package is used in a product, Eric Young should be given attribution | ||
19 | * as the author of the parts of the library used. | ||
20 | * This can be in the form of a textual message at program startup or | ||
21 | * in documentation (online or textual) provided with the package. | ||
22 | * | ||
23 | * Redistribution and use in source and binary forms, with or without | ||
24 | * modification, are permitted provided that the following conditions | ||
25 | * are met: | ||
26 | * 1. Redistributions of source code must retain the copyright | ||
27 | * notice, this list of conditions and the following disclaimer. | ||
28 | * 2. Redistributions in binary form must reproduce the above copyright | ||
29 | * notice, this list of conditions and the following disclaimer in the | ||
30 | * documentation and/or other materials provided with the distribution. | ||
31 | * 3. All advertising materials mentioning features or use of this software | ||
32 | * must display the following acknowledgement: | ||
33 | * "This product includes cryptographic software written by | ||
34 | * Eric Young (eay@cryptsoft.com)" | ||
35 | * The word 'cryptographic' can be left out if the rouines from the library | ||
36 | * being used are not cryptographic related :-). | ||
37 | * 4. If you include any Windows specific code (or a derivative thereof) from | ||
38 | * the apps directory (application code) you must include an acknowledgement: | ||
39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | ||
40 | * | ||
41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | ||
42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | ||
44 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | ||
45 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | ||
46 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | ||
47 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
48 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | ||
49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | ||
50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | ||
51 | * SUCH DAMAGE. | ||
52 | * | ||
53 | * The licence and distribution terms for any publically available version or | ||
54 | * derivative of this code cannot be changed. i.e. this code cannot simply be | ||
55 | * copied and put under another distribution licence | ||
56 | * [including the GNU Public Licence.] | ||
57 | */ | ||
58 | |||
59 | #ifndef BN_DEBUG | ||
60 | # undef NDEBUG /* avoid conflicting definitions */ | ||
61 | # define NDEBUG | ||
62 | #endif | ||
63 | |||
64 | #include <assert.h> | ||
65 | #include <stdio.h> | ||
66 | |||
67 | #include <openssl/opensslconf.h> | ||
68 | |||
69 | #include "bn_lcl.h" | ||
70 | |||
71 | #if defined(BN_LLONG) || defined(BN_UMULT_HIGH) | ||
72 | |||
73 | BN_ULONG | ||
74 | bn_mul_add_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w) | ||
75 | { | ||
76 | BN_ULONG c1 = 0; | ||
77 | |||
78 | assert(num >= 0); | ||
79 | if (num <= 0) | ||
80 | return (c1); | ||
81 | |||
82 | #ifndef OPENSSL_SMALL_FOOTPRINT | ||
83 | while (num & ~3) { | ||
84 | mul_add(rp[0], ap[0], w, c1); | ||
85 | mul_add(rp[1], ap[1], w, c1); | ||
86 | mul_add(rp[2], ap[2], w, c1); | ||
87 | mul_add(rp[3], ap[3], w, c1); | ||
88 | ap += 4; | ||
89 | rp += 4; | ||
90 | num -= 4; | ||
91 | } | ||
92 | #endif | ||
93 | while (num) { | ||
94 | mul_add(rp[0], ap[0], w, c1); | ||
95 | ap++; | ||
96 | rp++; | ||
97 | num--; | ||
98 | } | ||
99 | |||
100 | return (c1); | ||
101 | } | ||
102 | |||
103 | BN_ULONG | ||
104 | bn_mul_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w) | ||
105 | { | ||
106 | BN_ULONG c1 = 0; | ||
107 | |||
108 | assert(num >= 0); | ||
109 | if (num <= 0) | ||
110 | return (c1); | ||
111 | |||
112 | #ifndef OPENSSL_SMALL_FOOTPRINT | ||
113 | while (num & ~3) { | ||
114 | mul(rp[0], ap[0], w, c1); | ||
115 | mul(rp[1], ap[1], w, c1); | ||
116 | mul(rp[2], ap[2], w, c1); | ||
117 | mul(rp[3], ap[3], w, c1); | ||
118 | ap += 4; | ||
119 | rp += 4; | ||
120 | num -= 4; | ||
121 | } | ||
122 | #endif | ||
123 | while (num) { | ||
124 | mul(rp[0], ap[0], w, c1); | ||
125 | ap++; | ||
126 | rp++; | ||
127 | num--; | ||
128 | } | ||
129 | return (c1); | ||
130 | } | ||
131 | |||
132 | void | ||
133 | bn_sqr_words(BN_ULONG *r, const BN_ULONG *a, int n) | ||
134 | { | ||
135 | assert(n >= 0); | ||
136 | if (n <= 0) | ||
137 | return; | ||
138 | |||
139 | #ifndef OPENSSL_SMALL_FOOTPRINT | ||
140 | while (n & ~3) { | ||
141 | sqr(r[0], r[1], a[0]); | ||
142 | sqr(r[2], r[3], a[1]); | ||
143 | sqr(r[4], r[5], a[2]); | ||
144 | sqr(r[6], r[7], a[3]); | ||
145 | a += 4; | ||
146 | r += 8; | ||
147 | n -= 4; | ||
148 | } | ||
149 | #endif | ||
150 | while (n) { | ||
151 | sqr(r[0], r[1], a[0]); | ||
152 | a++; | ||
153 | r += 2; | ||
154 | n--; | ||
155 | } | ||
156 | } | ||
157 | |||
158 | #else /* !(defined(BN_LLONG) || defined(BN_UMULT_HIGH)) */ | ||
159 | |||
160 | BN_ULONG | ||
161 | bn_mul_add_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w) | ||
162 | { | ||
163 | BN_ULONG c = 0; | ||
164 | BN_ULONG bl, bh; | ||
165 | |||
166 | assert(num >= 0); | ||
167 | if (num <= 0) | ||
168 | return ((BN_ULONG)0); | ||
169 | |||
170 | bl = LBITS(w); | ||
171 | bh = HBITS(w); | ||
172 | |||
173 | #ifndef OPENSSL_SMALL_FOOTPRINT | ||
174 | while (num & ~3) { | ||
175 | mul_add(rp[0], ap[0], bl, bh, c); | ||
176 | mul_add(rp[1], ap[1], bl, bh, c); | ||
177 | mul_add(rp[2], ap[2], bl, bh, c); | ||
178 | mul_add(rp[3], ap[3], bl, bh, c); | ||
179 | ap += 4; | ||
180 | rp += 4; | ||
181 | num -= 4; | ||
182 | } | ||
183 | #endif | ||
184 | while (num) { | ||
185 | mul_add(rp[0], ap[0], bl, bh, c); | ||
186 | ap++; | ||
187 | rp++; | ||
188 | num--; | ||
189 | } | ||
190 | return (c); | ||
191 | } | ||
192 | |||
193 | BN_ULONG | ||
194 | bn_mul_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w) | ||
195 | { | ||
196 | BN_ULONG carry = 0; | ||
197 | BN_ULONG bl, bh; | ||
198 | |||
199 | assert(num >= 0); | ||
200 | if (num <= 0) | ||
201 | return ((BN_ULONG)0); | ||
202 | |||
203 | bl = LBITS(w); | ||
204 | bh = HBITS(w); | ||
205 | |||
206 | #ifndef OPENSSL_SMALL_FOOTPRINT | ||
207 | while (num & ~3) { | ||
208 | mul(rp[0], ap[0], bl, bh, carry); | ||
209 | mul(rp[1], ap[1], bl, bh, carry); | ||
210 | mul(rp[2], ap[2], bl, bh, carry); | ||
211 | mul(rp[3], ap[3], bl, bh, carry); | ||
212 | ap += 4; | ||
213 | rp += 4; | ||
214 | num -= 4; | ||
215 | } | ||
216 | #endif | ||
217 | while (num) { | ||
218 | mul(rp[0], ap[0], bl, bh, carry); | ||
219 | ap++; | ||
220 | rp++; | ||
221 | num--; | ||
222 | } | ||
223 | return (carry); | ||
224 | } | ||
225 | |||
226 | void | ||
227 | bn_sqr_words(BN_ULONG *r, const BN_ULONG *a, int n) | ||
228 | { | ||
229 | assert(n >= 0); | ||
230 | if (n <= 0) | ||
231 | return; | ||
232 | |||
233 | #ifndef OPENSSL_SMALL_FOOTPRINT | ||
234 | while (n & ~3) { | ||
235 | sqr64(r[0], r[1], a[0]); | ||
236 | sqr64(r[2], r[3], a[1]); | ||
237 | sqr64(r[4], r[5], a[2]); | ||
238 | sqr64(r[6], r[7], a[3]); | ||
239 | a += 4; | ||
240 | r += 8; | ||
241 | n -= 4; | ||
242 | } | ||
243 | #endif | ||
244 | while (n) { | ||
245 | sqr64(r[0], r[1], a[0]); | ||
246 | a++; | ||
247 | r += 2; | ||
248 | n--; | ||
249 | } | ||
250 | } | ||
251 | |||
252 | #endif /* !(defined(BN_LLONG) || defined(BN_UMULT_HIGH)) */ | ||
253 | |||
254 | #if defined(BN_LLONG) && defined(BN_DIV2W) | ||
255 | |||
256 | BN_ULONG | ||
257 | bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d) | ||
258 | { | ||
259 | return ((BN_ULONG)(((((BN_ULLONG)h) << BN_BITS2)|l)/(BN_ULLONG)d)); | ||
260 | } | ||
261 | |||
262 | #else | ||
263 | |||
264 | /* Divide h,l by d and return the result. */ | ||
265 | /* I need to test this some more :-( */ | ||
266 | BN_ULONG | ||
267 | bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d) | ||
268 | { | ||
269 | BN_ULONG dh, dl, q,ret = 0, th, tl, t; | ||
270 | int i, count = 2; | ||
271 | |||
272 | if (d == 0) | ||
273 | return (BN_MASK2); | ||
274 | |||
275 | i = BN_num_bits_word(d); | ||
276 | assert((i == BN_BITS2) || (h <= (BN_ULONG)1 << i)); | ||
277 | |||
278 | i = BN_BITS2 - i; | ||
279 | if (h >= d) | ||
280 | h -= d; | ||
281 | |||
282 | if (i) { | ||
283 | d <<= i; | ||
284 | h = (h << i) | (l >> (BN_BITS2 - i)); | ||
285 | l <<= i; | ||
286 | } | ||
287 | dh = (d & BN_MASK2h) >> BN_BITS4; | ||
288 | dl = (d & BN_MASK2l); | ||
289 | for (;;) { | ||
290 | if ((h >> BN_BITS4) == dh) | ||
291 | q = BN_MASK2l; | ||
292 | else | ||
293 | q = h / dh; | ||
294 | |||
295 | th = q * dh; | ||
296 | tl = dl * q; | ||
297 | for (;;) { | ||
298 | t = h - th; | ||
299 | if ((t & BN_MASK2h) || | ||
300 | ((tl) <= ( | ||
301 | (t << BN_BITS4) | | ||
302 | ((l & BN_MASK2h) >> BN_BITS4)))) | ||
303 | break; | ||
304 | q--; | ||
305 | th -= dh; | ||
306 | tl -= dl; | ||
307 | } | ||
308 | t = (tl >> BN_BITS4); | ||
309 | tl = (tl << BN_BITS4) & BN_MASK2h; | ||
310 | th += t; | ||
311 | |||
312 | if (l < tl) | ||
313 | th++; | ||
314 | l -= tl; | ||
315 | if (h < th) { | ||
316 | h += d; | ||
317 | q--; | ||
318 | } | ||
319 | h -= th; | ||
320 | |||
321 | if (--count == 0) | ||
322 | break; | ||
323 | |||
324 | ret = q << BN_BITS4; | ||
325 | h = ((h << BN_BITS4) | (l >> BN_BITS4)) & BN_MASK2; | ||
326 | l = (l & BN_MASK2l) << BN_BITS4; | ||
327 | } | ||
328 | ret |= q; | ||
329 | return (ret); | ||
330 | } | ||
331 | #endif /* !defined(BN_LLONG) && defined(BN_DIV2W) */ | ||
332 | |||
333 | #ifdef BN_LLONG | ||
334 | BN_ULONG | ||
335 | bn_add_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, int n) | ||
336 | { | ||
337 | BN_ULLONG ll = 0; | ||
338 | |||
339 | assert(n >= 0); | ||
340 | if (n <= 0) | ||
341 | return ((BN_ULONG)0); | ||
342 | |||
343 | #ifndef OPENSSL_SMALL_FOOTPRINT | ||
344 | while (n & ~3) { | ||
345 | ll += (BN_ULLONG)a[0] + b[0]; | ||
346 | r[0] = (BN_ULONG)ll & BN_MASK2; | ||
347 | ll >>= BN_BITS2; | ||
348 | ll += (BN_ULLONG)a[1] + b[1]; | ||
349 | r[1] = (BN_ULONG)ll & BN_MASK2; | ||
350 | ll >>= BN_BITS2; | ||
351 | ll += (BN_ULLONG)a[2] + b[2]; | ||
352 | r[2] = (BN_ULONG)ll & BN_MASK2; | ||
353 | ll >>= BN_BITS2; | ||
354 | ll += (BN_ULLONG)a[3] + b[3]; | ||
355 | r[3] = (BN_ULONG)ll & BN_MASK2; | ||
356 | ll >>= BN_BITS2; | ||
357 | a += 4; | ||
358 | b += 4; | ||
359 | r += 4; | ||
360 | n -= 4; | ||
361 | } | ||
362 | #endif | ||
363 | while (n) { | ||
364 | ll += (BN_ULLONG)a[0] + b[0]; | ||
365 | r[0] = (BN_ULONG)ll & BN_MASK2; | ||
366 | ll >>= BN_BITS2; | ||
367 | a++; | ||
368 | b++; | ||
369 | r++; | ||
370 | n--; | ||
371 | } | ||
372 | return ((BN_ULONG)ll); | ||
373 | } | ||
374 | #else /* !BN_LLONG */ | ||
375 | BN_ULONG | ||
376 | bn_add_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, int n) | ||
377 | { | ||
378 | BN_ULONG c, l, t; | ||
379 | |||
380 | assert(n >= 0); | ||
381 | if (n <= 0) | ||
382 | return ((BN_ULONG)0); | ||
383 | |||
384 | c = 0; | ||
385 | #ifndef OPENSSL_SMALL_FOOTPRINT | ||
386 | while (n & ~3) { | ||
387 | t = a[0]; | ||
388 | t = (t + c) & BN_MASK2; | ||
389 | c = (t < c); | ||
390 | l = (t + b[0]) & BN_MASK2; | ||
391 | c += (l < t); | ||
392 | r[0] = l; | ||
393 | t = a[1]; | ||
394 | t = (t + c) & BN_MASK2; | ||
395 | c = (t < c); | ||
396 | l = (t + b[1]) & BN_MASK2; | ||
397 | c += (l < t); | ||
398 | r[1] = l; | ||
399 | t = a[2]; | ||
400 | t = (t + c) & BN_MASK2; | ||
401 | c = (t < c); | ||
402 | l = (t + b[2]) & BN_MASK2; | ||
403 | c += (l < t); | ||
404 | r[2] = l; | ||
405 | t = a[3]; | ||
406 | t = (t + c) & BN_MASK2; | ||
407 | c = (t < c); | ||
408 | l = (t + b[3]) & BN_MASK2; | ||
409 | c += (l < t); | ||
410 | r[3] = l; | ||
411 | a += 4; | ||
412 | b += 4; | ||
413 | r += 4; | ||
414 | n -= 4; | ||
415 | } | ||
416 | #endif | ||
417 | while (n) { | ||
418 | t = a[0]; | ||
419 | t = (t + c) & BN_MASK2; | ||
420 | c = (t < c); | ||
421 | l = (t + b[0]) & BN_MASK2; | ||
422 | c += (l < t); | ||
423 | r[0] = l; | ||
424 | a++; | ||
425 | b++; | ||
426 | r++; | ||
427 | n--; | ||
428 | } | ||
429 | return ((BN_ULONG)c); | ||
430 | } | ||
431 | #endif /* !BN_LLONG */ | ||
432 | |||
433 | BN_ULONG | ||
434 | bn_sub_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, int n) | ||
435 | { | ||
436 | BN_ULONG t1, t2; | ||
437 | int c = 0; | ||
438 | |||
439 | assert(n >= 0); | ||
440 | if (n <= 0) | ||
441 | return ((BN_ULONG)0); | ||
442 | |||
443 | #ifndef OPENSSL_SMALL_FOOTPRINT | ||
444 | while (n&~3) { | ||
445 | t1 = a[0]; | ||
446 | t2 = b[0]; | ||
447 | r[0] = (t1 - t2 - c) & BN_MASK2; | ||
448 | if (t1 != t2) | ||
449 | c = (t1 < t2); | ||
450 | t1 = a[1]; | ||
451 | t2 = b[1]; | ||
452 | r[1] = (t1 - t2 - c) & BN_MASK2; | ||
453 | if (t1 != t2) | ||
454 | c = (t1 < t2); | ||
455 | t1 = a[2]; | ||
456 | t2 = b[2]; | ||
457 | r[2] = (t1 - t2 - c) & BN_MASK2; | ||
458 | if (t1 != t2) | ||
459 | c = (t1 < t2); | ||
460 | t1 = a[3]; | ||
461 | t2 = b[3]; | ||
462 | r[3] = (t1 - t2 - c) & BN_MASK2; | ||
463 | if (t1 != t2) | ||
464 | c = (t1 < t2); | ||
465 | a += 4; | ||
466 | b += 4; | ||
467 | r += 4; | ||
468 | n -= 4; | ||
469 | } | ||
470 | #endif | ||
471 | while (n) { | ||
472 | t1 = a[0]; | ||
473 | t2 = b[0]; | ||
474 | r[0] = (t1 - t2 - c) & BN_MASK2; | ||
475 | if (t1 != t2) | ||
476 | c = (t1 < t2); | ||
477 | a++; | ||
478 | b++; | ||
479 | r++; | ||
480 | n--; | ||
481 | } | ||
482 | return (c); | ||
483 | } | ||
484 | |||
485 | #if defined(BN_MUL_COMBA) && !defined(OPENSSL_SMALL_FOOTPRINT) | ||
486 | |||
487 | #undef bn_mul_comba8 | ||
488 | #undef bn_mul_comba4 | ||
489 | #undef bn_sqr_comba8 | ||
490 | #undef bn_sqr_comba4 | ||
491 | |||
492 | /* mul_add_c(a,b,c0,c1,c2) -- c+=a*b for three word number c=(c2,c1,c0) */ | ||
493 | /* mul_add_c2(a,b,c0,c1,c2) -- c+=2*a*b for three word number c=(c2,c1,c0) */ | ||
494 | /* sqr_add_c(a,i,c0,c1,c2) -- c+=a[i]^2 for three word number c=(c2,c1,c0) */ | ||
495 | /* sqr_add_c2(a,i,c0,c1,c2) -- c+=2*a[i]*a[j] for three word number c=(c2,c1,c0) */ | ||
496 | |||
497 | #ifdef BN_LLONG | ||
498 | /* | ||
499 | * Keep in mind that additions to multiplication result can not | ||
500 | * overflow, because its high half cannot be all-ones. | ||
501 | */ | ||
502 | #define mul_add_c(a,b,c0,c1,c2) do { \ | ||
503 | BN_ULONG hi; \ | ||
504 | BN_ULLONG t = (BN_ULLONG)(a)*(b); \ | ||
505 | t += c0; /* no carry */ \ | ||
506 | c0 = (BN_ULONG)Lw(t); \ | ||
507 | hi = (BN_ULONG)Hw(t); \ | ||
508 | c1 = (c1+hi)&BN_MASK2; if (c1<hi) c2++; \ | ||
509 | } while(0) | ||
510 | |||
511 | #define mul_add_c2(a,b,c0,c1,c2) do { \ | ||
512 | BN_ULONG hi; \ | ||
513 | BN_ULLONG t = (BN_ULLONG)(a)*(b); \ | ||
514 | BN_ULLONG tt = t+c0; /* no carry */ \ | ||
515 | c0 = (BN_ULONG)Lw(tt); \ | ||
516 | hi = (BN_ULONG)Hw(tt); \ | ||
517 | c1 = (c1+hi)&BN_MASK2; if (c1<hi) c2++; \ | ||
518 | t += c0; /* no carry */ \ | ||
519 | c0 = (BN_ULONG)Lw(t); \ | ||
520 | hi = (BN_ULONG)Hw(t); \ | ||
521 | c1 = (c1+hi)&BN_MASK2; if (c1<hi) c2++; \ | ||
522 | } while(0) | ||
523 | |||
524 | #define sqr_add_c(a,i,c0,c1,c2) do { \ | ||
525 | BN_ULONG hi; \ | ||
526 | BN_ULLONG t = (BN_ULLONG)a[i]*a[i]; \ | ||
527 | t += c0; /* no carry */ \ | ||
528 | c0 = (BN_ULONG)Lw(t); \ | ||
529 | hi = (BN_ULONG)Hw(t); \ | ||
530 | c1 = (c1+hi)&BN_MASK2; if (c1<hi) c2++; \ | ||
531 | } while(0) | ||
532 | |||
533 | #define sqr_add_c2(a,i,j,c0,c1,c2) \ | ||
534 | mul_add_c2((a)[i],(a)[j],c0,c1,c2) | ||
535 | |||
536 | #elif defined(BN_UMULT_LOHI) | ||
537 | /* | ||
538 | * Keep in mind that additions to hi can not overflow, because | ||
539 | * the high word of a multiplication result cannot be all-ones. | ||
540 | */ | ||
541 | #define mul_add_c(a,b,c0,c1,c2) do { \ | ||
542 | BN_ULONG ta = (a), tb = (b); \ | ||
543 | BN_ULONG lo, hi; \ | ||
544 | BN_UMULT_LOHI(lo,hi,ta,tb); \ | ||
545 | c0 += lo; hi += (c0<lo)?1:0; \ | ||
546 | c1 += hi; c2 += (c1<hi)?1:0; \ | ||
547 | } while(0) | ||
548 | |||
549 | #define mul_add_c2(a,b,c0,c1,c2) do { \ | ||
550 | BN_ULONG ta = (a), tb = (b); \ | ||
551 | BN_ULONG lo, hi, tt; \ | ||
552 | BN_UMULT_LOHI(lo,hi,ta,tb); \ | ||
553 | c0 += lo; tt = hi+((c0<lo)?1:0); \ | ||
554 | c1 += tt; c2 += (c1<tt)?1:0; \ | ||
555 | c0 += lo; hi += (c0<lo)?1:0; \ | ||
556 | c1 += hi; c2 += (c1<hi)?1:0; \ | ||
557 | } while(0) | ||
558 | |||
559 | #define sqr_add_c(a,i,c0,c1,c2) do { \ | ||
560 | BN_ULONG ta = (a)[i]; \ | ||
561 | BN_ULONG lo, hi; \ | ||
562 | BN_UMULT_LOHI(lo,hi,ta,ta); \ | ||
563 | c0 += lo; hi += (c0<lo)?1:0; \ | ||
564 | c1 += hi; c2 += (c1<hi)?1:0; \ | ||
565 | } while(0) | ||
566 | |||
567 | #define sqr_add_c2(a,i,j,c0,c1,c2) \ | ||
568 | mul_add_c2((a)[i],(a)[j],c0,c1,c2) | ||
569 | |||
570 | #elif defined(BN_UMULT_HIGH) | ||
571 | /* | ||
572 | * Keep in mind that additions to hi can not overflow, because | ||
573 | * the high word of a multiplication result cannot be all-ones. | ||
574 | */ | ||
575 | #define mul_add_c(a,b,c0,c1,c2) do { \ | ||
576 | BN_ULONG ta = (a), tb = (b); \ | ||
577 | BN_ULONG lo = ta * tb; \ | ||
578 | BN_ULONG hi = BN_UMULT_HIGH(ta,tb); \ | ||
579 | c0 += lo; hi += (c0<lo)?1:0; \ | ||
580 | c1 += hi; c2 += (c1<hi)?1:0; \ | ||
581 | } while(0) | ||
582 | |||
583 | #define mul_add_c2(a,b,c0,c1,c2) do { \ | ||
584 | BN_ULONG ta = (a), tb = (b), tt; \ | ||
585 | BN_ULONG lo = ta * tb; \ | ||
586 | BN_ULONG hi = BN_UMULT_HIGH(ta,tb); \ | ||
587 | c0 += lo; tt = hi + ((c0<lo)?1:0); \ | ||
588 | c1 += tt; c2 += (c1<tt)?1:0; \ | ||
589 | c0 += lo; hi += (c0<lo)?1:0; \ | ||
590 | c1 += hi; c2 += (c1<hi)?1:0; \ | ||
591 | } while(0) | ||
592 | |||
593 | #define sqr_add_c(a,i,c0,c1,c2) do { \ | ||
594 | BN_ULONG ta = (a)[i]; \ | ||
595 | BN_ULONG lo = ta * ta; \ | ||
596 | BN_ULONG hi = BN_UMULT_HIGH(ta,ta); \ | ||
597 | c0 += lo; hi += (c0<lo)?1:0; \ | ||
598 | c1 += hi; c2 += (c1<hi)?1:0; \ | ||
599 | } while(0) | ||
600 | |||
601 | #define sqr_add_c2(a,i,j,c0,c1,c2) \ | ||
602 | mul_add_c2((a)[i],(a)[j],c0,c1,c2) | ||
603 | |||
604 | #else /* !BN_LLONG */ | ||
605 | /* | ||
606 | * Keep in mind that additions to hi can not overflow, because | ||
607 | * the high word of a multiplication result cannot be all-ones. | ||
608 | */ | ||
609 | #define mul_add_c(a,b,c0,c1,c2) do { \ | ||
610 | BN_ULONG lo = LBITS(a), hi = HBITS(a); \ | ||
611 | BN_ULONG bl = LBITS(b), bh = HBITS(b); \ | ||
612 | mul64(lo,hi,bl,bh); \ | ||
613 | c0 = (c0+lo)&BN_MASK2; if (c0<lo) hi++; \ | ||
614 | c1 = (c1+hi)&BN_MASK2; if (c1<hi) c2++; \ | ||
615 | } while(0) | ||
616 | |||
617 | #define mul_add_c2(a,b,c0,c1,c2) do { \ | ||
618 | BN_ULONG tt; \ | ||
619 | BN_ULONG lo = LBITS(a), hi = HBITS(a); \ | ||
620 | BN_ULONG bl = LBITS(b), bh = HBITS(b); \ | ||
621 | mul64(lo,hi,bl,bh); \ | ||
622 | tt = hi; \ | ||
623 | c0 = (c0+lo)&BN_MASK2; if (c0<lo) tt++; \ | ||
624 | c1 = (c1+tt)&BN_MASK2; if (c1<tt) c2++; \ | ||
625 | c0 = (c0+lo)&BN_MASK2; if (c0<lo) hi++; \ | ||
626 | c1 = (c1+hi)&BN_MASK2; if (c1<hi) c2++; \ | ||
627 | } while(0) | ||
628 | |||
629 | #define sqr_add_c(a,i,c0,c1,c2) do { \ | ||
630 | BN_ULONG lo, hi; \ | ||
631 | sqr64(lo,hi,(a)[i]); \ | ||
632 | c0 = (c0+lo)&BN_MASK2; if (c0<lo) hi++; \ | ||
633 | c1 = (c1+hi)&BN_MASK2; if (c1<hi) c2++; \ | ||
634 | } while(0) | ||
635 | |||
636 | #define sqr_add_c2(a,i,j,c0,c1,c2) \ | ||
637 | mul_add_c2((a)[i],(a)[j],c0,c1,c2) | ||
638 | #endif /* !BN_LLONG */ | ||
639 | |||
640 | void | ||
641 | bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b) | ||
642 | { | ||
643 | BN_ULONG c1, c2, c3; | ||
644 | |||
645 | c1 = 0; | ||
646 | c2 = 0; | ||
647 | c3 = 0; | ||
648 | mul_add_c(a[0], b[0], c1, c2, c3); | ||
649 | r[0] = c1; | ||
650 | c1 = 0; | ||
651 | mul_add_c(a[0], b[1], c2, c3, c1); | ||
652 | mul_add_c(a[1], b[0], c2, c3, c1); | ||
653 | r[1] = c2; | ||
654 | c2 = 0; | ||
655 | mul_add_c(a[2], b[0], c3, c1, c2); | ||
656 | mul_add_c(a[1], b[1], c3, c1, c2); | ||
657 | mul_add_c(a[0], b[2], c3, c1, c2); | ||
658 | r[2] = c3; | ||
659 | c3 = 0; | ||
660 | mul_add_c(a[0], b[3], c1, c2, c3); | ||
661 | mul_add_c(a[1], b[2], c1, c2, c3); | ||
662 | mul_add_c(a[2], b[1], c1, c2, c3); | ||
663 | mul_add_c(a[3], b[0], c1, c2, c3); | ||
664 | r[3] = c1; | ||
665 | c1 = 0; | ||
666 | mul_add_c(a[4], b[0], c2, c3, c1); | ||
667 | mul_add_c(a[3], b[1], c2, c3, c1); | ||
668 | mul_add_c(a[2], b[2], c2, c3, c1); | ||
669 | mul_add_c(a[1], b[3], c2, c3, c1); | ||
670 | mul_add_c(a[0], b[4], c2, c3, c1); | ||
671 | r[4] = c2; | ||
672 | c2 = 0; | ||
673 | mul_add_c(a[0], b[5], c3, c1, c2); | ||
674 | mul_add_c(a[1], b[4], c3, c1, c2); | ||
675 | mul_add_c(a[2], b[3], c3, c1, c2); | ||
676 | mul_add_c(a[3], b[2], c3, c1, c2); | ||
677 | mul_add_c(a[4], b[1], c3, c1, c2); | ||
678 | mul_add_c(a[5], b[0], c3, c1, c2); | ||
679 | r[5] = c3; | ||
680 | c3 = 0; | ||
681 | mul_add_c(a[6], b[0], c1, c2, c3); | ||
682 | mul_add_c(a[5], b[1], c1, c2, c3); | ||
683 | mul_add_c(a[4], b[2], c1, c2, c3); | ||
684 | mul_add_c(a[3], b[3], c1, c2, c3); | ||
685 | mul_add_c(a[2], b[4], c1, c2, c3); | ||
686 | mul_add_c(a[1], b[5], c1, c2, c3); | ||
687 | mul_add_c(a[0], b[6], c1, c2, c3); | ||
688 | r[6] = c1; | ||
689 | c1 = 0; | ||
690 | mul_add_c(a[0], b[7], c2, c3, c1); | ||
691 | mul_add_c(a[1], b[6], c2, c3, c1); | ||
692 | mul_add_c(a[2], b[5], c2, c3, c1); | ||
693 | mul_add_c(a[3], b[4], c2, c3, c1); | ||
694 | mul_add_c(a[4], b[3], c2, c3, c1); | ||
695 | mul_add_c(a[5], b[2], c2, c3, c1); | ||
696 | mul_add_c(a[6], b[1], c2, c3, c1); | ||
697 | mul_add_c(a[7], b[0], c2, c3, c1); | ||
698 | r[7] = c2; | ||
699 | c2 = 0; | ||
700 | mul_add_c(a[7], b[1], c3, c1, c2); | ||
701 | mul_add_c(a[6], b[2], c3, c1, c2); | ||
702 | mul_add_c(a[5], b[3], c3, c1, c2); | ||
703 | mul_add_c(a[4], b[4], c3, c1, c2); | ||
704 | mul_add_c(a[3], b[5], c3, c1, c2); | ||
705 | mul_add_c(a[2], b[6], c3, c1, c2); | ||
706 | mul_add_c(a[1], b[7], c3, c1, c2); | ||
707 | r[8] = c3; | ||
708 | c3 = 0; | ||
709 | mul_add_c(a[2], b[7], c1, c2, c3); | ||
710 | mul_add_c(a[3], b[6], c1, c2, c3); | ||
711 | mul_add_c(a[4], b[5], c1, c2, c3); | ||
712 | mul_add_c(a[5], b[4], c1, c2, c3); | ||
713 | mul_add_c(a[6], b[3], c1, c2, c3); | ||
714 | mul_add_c(a[7], b[2], c1, c2, c3); | ||
715 | r[9] = c1; | ||
716 | c1 = 0; | ||
717 | mul_add_c(a[7], b[3], c2, c3, c1); | ||
718 | mul_add_c(a[6], b[4], c2, c3, c1); | ||
719 | mul_add_c(a[5], b[5], c2, c3, c1); | ||
720 | mul_add_c(a[4], b[6], c2, c3, c1); | ||
721 | mul_add_c(a[3], b[7], c2, c3, c1); | ||
722 | r[10] = c2; | ||
723 | c2 = 0; | ||
724 | mul_add_c(a[4], b[7], c3, c1, c2); | ||
725 | mul_add_c(a[5], b[6], c3, c1, c2); | ||
726 | mul_add_c(a[6], b[5], c3, c1, c2); | ||
727 | mul_add_c(a[7], b[4], c3, c1, c2); | ||
728 | r[11] = c3; | ||
729 | c3 = 0; | ||
730 | mul_add_c(a[7], b[5], c1, c2, c3); | ||
731 | mul_add_c(a[6], b[6], c1, c2, c3); | ||
732 | mul_add_c(a[5], b[7], c1, c2, c3); | ||
733 | r[12] = c1; | ||
734 | c1 = 0; | ||
735 | mul_add_c(a[6], b[7], c2, c3, c1); | ||
736 | mul_add_c(a[7], b[6], c2, c3, c1); | ||
737 | r[13] = c2; | ||
738 | c2 = 0; | ||
739 | mul_add_c(a[7], b[7], c3, c1, c2); | ||
740 | r[14] = c3; | ||
741 | r[15] = c1; | ||
742 | } | ||
743 | |||
744 | void | ||
745 | bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b) | ||
746 | { | ||
747 | BN_ULONG c1, c2, c3; | ||
748 | |||
749 | c1 = 0; | ||
750 | c2 = 0; | ||
751 | c3 = 0; | ||
752 | mul_add_c(a[0], b[0], c1, c2, c3); | ||
753 | r[0] = c1; | ||
754 | c1 = 0; | ||
755 | mul_add_c(a[0], b[1], c2, c3, c1); | ||
756 | mul_add_c(a[1], b[0], c2, c3, c1); | ||
757 | r[1] = c2; | ||
758 | c2 = 0; | ||
759 | mul_add_c(a[2], b[0], c3, c1, c2); | ||
760 | mul_add_c(a[1], b[1], c3, c1, c2); | ||
761 | mul_add_c(a[0], b[2], c3, c1, c2); | ||
762 | r[2] = c3; | ||
763 | c3 = 0; | ||
764 | mul_add_c(a[0], b[3], c1, c2, c3); | ||
765 | mul_add_c(a[1], b[2], c1, c2, c3); | ||
766 | mul_add_c(a[2], b[1], c1, c2, c3); | ||
767 | mul_add_c(a[3], b[0], c1, c2, c3); | ||
768 | r[3] = c1; | ||
769 | c1 = 0; | ||
770 | mul_add_c(a[3], b[1], c2, c3, c1); | ||
771 | mul_add_c(a[2], b[2], c2, c3, c1); | ||
772 | mul_add_c(a[1], b[3], c2, c3, c1); | ||
773 | r[4] = c2; | ||
774 | c2 = 0; | ||
775 | mul_add_c(a[2], b[3], c3, c1, c2); | ||
776 | mul_add_c(a[3], b[2], c3, c1, c2); | ||
777 | r[5] = c3; | ||
778 | c3 = 0; | ||
779 | mul_add_c(a[3], b[3], c1, c2, c3); | ||
780 | r[6] = c1; | ||
781 | r[7] = c2; | ||
782 | } | ||
783 | |||
784 | void | ||
785 | bn_sqr_comba8(BN_ULONG *r, const BN_ULONG *a) | ||
786 | { | ||
787 | BN_ULONG c1, c2, c3; | ||
788 | |||
789 | c1 = 0; | ||
790 | c2 = 0; | ||
791 | c3 = 0; | ||
792 | sqr_add_c(a, 0, c1, c2, c3); | ||
793 | r[0] = c1; | ||
794 | c1 = 0; | ||
795 | sqr_add_c2(a, 1, 0, c2, c3, c1); | ||
796 | r[1] = c2; | ||
797 | c2 = 0; | ||
798 | sqr_add_c(a, 1, c3, c1, c2); | ||
799 | sqr_add_c2(a, 2, 0, c3, c1, c2); | ||
800 | r[2] = c3; | ||
801 | c3 = 0; | ||
802 | sqr_add_c2(a, 3, 0, c1, c2, c3); | ||
803 | sqr_add_c2(a, 2, 1, c1, c2, c3); | ||
804 | r[3] = c1; | ||
805 | c1 = 0; | ||
806 | sqr_add_c(a, 2, c2, c3, c1); | ||
807 | sqr_add_c2(a, 3, 1, c2, c3, c1); | ||
808 | sqr_add_c2(a, 4, 0, c2, c3, c1); | ||
809 | r[4] = c2; | ||
810 | c2 = 0; | ||
811 | sqr_add_c2(a, 5, 0, c3, c1, c2); | ||
812 | sqr_add_c2(a, 4, 1, c3, c1, c2); | ||
813 | sqr_add_c2(a, 3, 2, c3, c1, c2); | ||
814 | r[5] = c3; | ||
815 | c3 = 0; | ||
816 | sqr_add_c(a, 3, c1, c2, c3); | ||
817 | sqr_add_c2(a, 4, 2, c1, c2, c3); | ||
818 | sqr_add_c2(a, 5, 1, c1, c2, c3); | ||
819 | sqr_add_c2(a, 6, 0, c1, c2, c3); | ||
820 | r[6] = c1; | ||
821 | c1 = 0; | ||
822 | sqr_add_c2(a, 7, 0, c2, c3, c1); | ||
823 | sqr_add_c2(a, 6, 1, c2, c3, c1); | ||
824 | sqr_add_c2(a, 5, 2, c2, c3, c1); | ||
825 | sqr_add_c2(a, 4, 3, c2, c3, c1); | ||
826 | r[7] = c2; | ||
827 | c2 = 0; | ||
828 | sqr_add_c(a, 4, c3, c1, c2); | ||
829 | sqr_add_c2(a, 5, 3, c3, c1, c2); | ||
830 | sqr_add_c2(a, 6, 2, c3, c1, c2); | ||
831 | sqr_add_c2(a, 7, 1, c3, c1, c2); | ||
832 | r[8] = c3; | ||
833 | c3 = 0; | ||
834 | sqr_add_c2(a, 7, 2, c1, c2, c3); | ||
835 | sqr_add_c2(a, 6, 3, c1, c2, c3); | ||
836 | sqr_add_c2(a, 5, 4, c1, c2, c3); | ||
837 | r[9] = c1; | ||
838 | c1 = 0; | ||
839 | sqr_add_c(a, 5, c2, c3, c1); | ||
840 | sqr_add_c2(a, 6, 4, c2, c3, c1); | ||
841 | sqr_add_c2(a, 7, 3, c2, c3, c1); | ||
842 | r[10] = c2; | ||
843 | c2 = 0; | ||
844 | sqr_add_c2(a, 7, 4, c3, c1, c2); | ||
845 | sqr_add_c2(a, 6, 5, c3, c1, c2); | ||
846 | r[11] = c3; | ||
847 | c3 = 0; | ||
848 | sqr_add_c(a, 6, c1, c2, c3); | ||
849 | sqr_add_c2(a, 7, 5, c1, c2, c3); | ||
850 | r[12] = c1; | ||
851 | c1 = 0; | ||
852 | sqr_add_c2(a, 7, 6, c2, c3, c1); | ||
853 | r[13] = c2; | ||
854 | c2 = 0; | ||
855 | sqr_add_c(a, 7, c3, c1, c2); | ||
856 | r[14] = c3; | ||
857 | r[15] = c1; | ||
858 | } | ||
859 | |||
860 | void | ||
861 | bn_sqr_comba4(BN_ULONG *r, const BN_ULONG *a) | ||
862 | { | ||
863 | BN_ULONG c1, c2, c3; | ||
864 | |||
865 | c1 = 0; | ||
866 | c2 = 0; | ||
867 | c3 = 0; | ||
868 | sqr_add_c(a, 0, c1, c2, c3); | ||
869 | r[0] = c1; | ||
870 | c1 = 0; | ||
871 | sqr_add_c2(a, 1, 0, c2, c3, c1); | ||
872 | r[1] = c2; | ||
873 | c2 = 0; | ||
874 | sqr_add_c(a, 1, c3, c1, c2); | ||
875 | sqr_add_c2(a, 2, 0, c3, c1, c2); | ||
876 | r[2] = c3; | ||
877 | c3 = 0; | ||
878 | sqr_add_c2(a, 3, 0, c1, c2, c3); | ||
879 | sqr_add_c2(a, 2, 1, c1, c2, c3); | ||
880 | r[3] = c1; | ||
881 | c1 = 0; | ||
882 | sqr_add_c(a, 2, c2, c3, c1); | ||
883 | sqr_add_c2(a, 3, 1, c2, c3, c1); | ||
884 | r[4] = c2; | ||
885 | c2 = 0; | ||
886 | sqr_add_c2(a, 3, 2, c3, c1, c2); | ||
887 | r[5] = c3; | ||
888 | c3 = 0; | ||
889 | sqr_add_c(a, 3, c1, c2, c3); | ||
890 | r[6] = c1; | ||
891 | r[7] = c2; | ||
892 | } | ||
893 | |||
894 | #ifdef OPENSSL_NO_ASM | ||
895 | #ifdef OPENSSL_BN_ASM_MONT | ||
896 | /* | ||
897 | * This is essentially reference implementation, which may or may not | ||
898 | * result in performance improvement. E.g. on IA-32 this routine was | ||
899 | * observed to give 40% faster rsa1024 private key operations and 10% | ||
900 | * faster rsa4096 ones, while on AMD64 it improves rsa1024 sign only | ||
901 | * by 10% and *worsens* rsa4096 sign by 15%. Once again, it's a | ||
902 | * reference implementation, one to be used as starting point for | ||
903 | * platform-specific assembler. Mentioned numbers apply to compiler | ||
904 | * generated code compiled with and without -DOPENSSL_BN_ASM_MONT and | ||
905 | * can vary not only from platform to platform, but even for compiler | ||
906 | * versions. Assembler vs. assembler improvement coefficients can | ||
907 | * [and are known to] differ and are to be documented elsewhere. | ||
908 | */ | ||
909 | int | ||
910 | bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, const BN_ULONG *np, const BN_ULONG *n0p, int num) | ||
911 | { | ||
912 | BN_ULONG c0, c1, ml, *tp, n0; | ||
913 | #ifdef mul64 | ||
914 | BN_ULONG mh; | ||
915 | #endif | ||
916 | int i = 0, j; | ||
917 | |||
918 | #if 0 /* template for platform-specific implementation */ | ||
919 | if (ap == bp) | ||
920 | return bn_sqr_mont(rp, ap, np, n0p, num); | ||
921 | #endif | ||
922 | tp = reallocarray(NULL, num + 2, sizeof(BN_ULONG)); | ||
923 | if (tp == NULL) | ||
924 | return 0; | ||
925 | |||
926 | n0 = *n0p; | ||
927 | |||
928 | c0 = 0; | ||
929 | ml = bp[0]; | ||
930 | #ifdef mul64 | ||
931 | mh = HBITS(ml); | ||
932 | ml = LBITS(ml); | ||
933 | for (j = 0; j < num; ++j) | ||
934 | mul(tp[j], ap[j], ml, mh, c0); | ||
935 | #else | ||
936 | for (j = 0; j < num; ++j) | ||
937 | mul(tp[j], ap[j], ml, c0); | ||
938 | #endif | ||
939 | |||
940 | tp[num] = c0; | ||
941 | tp[num + 1] = 0; | ||
942 | goto enter; | ||
943 | |||
944 | for (i = 0; i < num; i++) { | ||
945 | c0 = 0; | ||
946 | ml = bp[i]; | ||
947 | #ifdef mul64 | ||
948 | mh = HBITS(ml); | ||
949 | ml = LBITS(ml); | ||
950 | for (j = 0; j < num; ++j) | ||
951 | mul_add(tp[j], ap[j], ml, mh, c0); | ||
952 | #else | ||
953 | for (j = 0; j < num; ++j) | ||
954 | mul_add(tp[j], ap[j], ml, c0); | ||
955 | #endif | ||
956 | c1 = (tp[num] + c0) & BN_MASK2; | ||
957 | tp[num] = c1; | ||
958 | tp[num + 1] = (c1 < c0 ? 1 : 0); | ||
959 | enter: | ||
960 | c1 = tp[0]; | ||
961 | ml = (c1 * n0) & BN_MASK2; | ||
962 | c0 = 0; | ||
963 | #ifdef mul64 | ||
964 | mh = HBITS(ml); | ||
965 | ml = LBITS(ml); | ||
966 | mul_add(c1, np[0], ml, mh, c0); | ||
967 | #else | ||
968 | mul_add(c1, ml, np[0], c0); | ||
969 | #endif | ||
970 | for (j = 1; j < num; j++) { | ||
971 | c1 = tp[j]; | ||
972 | #ifdef mul64 | ||
973 | mul_add(c1, np[j], ml, mh, c0); | ||
974 | #else | ||
975 | mul_add(c1, ml, np[j], c0); | ||
976 | #endif | ||
977 | tp[j - 1] = c1 & BN_MASK2; | ||
978 | } | ||
979 | c1 = (tp[num] + c0) & BN_MASK2; | ||
980 | tp[num - 1] = c1; | ||
981 | tp[num] = tp[num + 1] + (c1 < c0 ? 1 : 0); | ||
982 | } | ||
983 | |||
984 | if (tp[num] != 0 || tp[num - 1] >= np[num - 1]) { | ||
985 | c0 = bn_sub_words(rp, tp, np, num); | ||
986 | if (tp[num] != 0 || c0 == 0) { | ||
987 | goto out; | ||
988 | } | ||
989 | } | ||
990 | memcpy(rp, tp, num * sizeof(BN_ULONG)); | ||
991 | out: | ||
992 | explicit_bzero(tp, (num + 2) * sizeof(BN_ULONG)); | ||
993 | free(tp); | ||
994 | return 1; | ||
995 | } | ||
996 | #else | ||
997 | /* | ||
998 | * Return value of 0 indicates that multiplication/convolution was not | ||
999 | * performed to signal the caller to fall down to alternative/original | ||
1000 | * code-path. | ||
1001 | */ | ||
1002 | int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, const BN_ULONG *np, const BN_ULONG *n0, int num) | ||
1003 | { return 0; | ||
1004 | } | ||
1005 | #endif /* OPENSSL_BN_ASM_MONT */ | ||
1006 | #endif | ||
1007 | |||
1008 | #else /* !BN_MUL_COMBA */ | ||
1009 | |||
1010 | /* hmm... is it faster just to do a multiply? */ | ||
1011 | #undef bn_sqr_comba4 | ||
1012 | void | ||
1013 | bn_sqr_comba4(BN_ULONG *r, const BN_ULONG *a) | ||
1014 | { | ||
1015 | BN_ULONG t[8]; | ||
1016 | bn_sqr_normal(r, a, 4, t); | ||
1017 | } | ||
1018 | |||
1019 | #undef bn_sqr_comba8 | ||
1020 | void | ||
1021 | bn_sqr_comba8(BN_ULONG *r, const BN_ULONG *a) | ||
1022 | { | ||
1023 | BN_ULONG t[16]; | ||
1024 | bn_sqr_normal(r, a, 8, t); | ||
1025 | } | ||
1026 | |||
1027 | void | ||
1028 | bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b) | ||
1029 | { | ||
1030 | r[4] = bn_mul_words(&(r[0]), a, 4, b[0]); | ||
1031 | r[5] = bn_mul_add_words(&(r[1]), a, 4, b[1]); | ||
1032 | r[6] = bn_mul_add_words(&(r[2]), a, 4, b[2]); | ||
1033 | r[7] = bn_mul_add_words(&(r[3]), a, 4, b[3]); | ||
1034 | } | ||
1035 | |||
1036 | void | ||
1037 | bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b) | ||
1038 | { | ||
1039 | r[8] = bn_mul_words(&(r[0]), a, 8, b[0]); | ||
1040 | r[9] = bn_mul_add_words(&(r[1]), a, 8, b[1]); | ||
1041 | r[10] = bn_mul_add_words(&(r[2]), a, 8, b[2]); | ||
1042 | r[11] = bn_mul_add_words(&(r[3]), a, 8, b[3]); | ||
1043 | r[12] = bn_mul_add_words(&(r[4]), a, 8, b[4]); | ||
1044 | r[13] = bn_mul_add_words(&(r[5]), a, 8, b[5]); | ||
1045 | r[14] = bn_mul_add_words(&(r[6]), a, 8, b[6]); | ||
1046 | r[15] = bn_mul_add_words(&(r[7]), a, 8, b[7]); | ||
1047 | } | ||
1048 | |||
1049 | #ifdef OPENSSL_NO_ASM | ||
1050 | #ifdef OPENSSL_BN_ASM_MONT | ||
1051 | int | ||
1052 | bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, | ||
1053 | const BN_ULONG *np, const BN_ULONG *n0p, int num) | ||
1054 | { | ||
1055 | BN_ULONG c0, c1, *tp, n0 = *n0p; | ||
1056 | int i = 0, j; | ||
1057 | |||
1058 | tp = calloc(NULL, num + 2, sizeof(BN_ULONG)); | ||
1059 | if (tp == NULL) | ||
1060 | return 0; | ||
1061 | |||
1062 | for (i = 0; i < num; i++) { | ||
1063 | c0 = bn_mul_add_words(tp, ap, num, bp[i]); | ||
1064 | c1 = (tp[num] + c0) & BN_MASK2; | ||
1065 | tp[num] = c1; | ||
1066 | tp[num + 1] = (c1 < c0 ? 1 : 0); | ||
1067 | |||
1068 | c0 = bn_mul_add_words(tp, np, num, tp[0] * n0); | ||
1069 | c1 = (tp[num] + c0) & BN_MASK2; | ||
1070 | tp[num] = c1; | ||
1071 | tp[num + 1] += (c1 < c0 ? 1 : 0); | ||
1072 | for (j = 0; j <= num; j++) | ||
1073 | tp[j] = tp[j + 1]; | ||
1074 | } | ||
1075 | |||
1076 | if (tp[num] != 0 || tp[num - 1] >= np[num - 1]) { | ||
1077 | c0 = bn_sub_words(rp, tp, np, num); | ||
1078 | if (tp[num] != 0 || c0 == 0) { | ||
1079 | goto out; | ||
1080 | } | ||
1081 | } | ||
1082 | memcpy(rp, tp, num * sizeof(BN_ULONG)); | ||
1083 | out: | ||
1084 | explicit_bzero(tp, (num + 2) * sizeof(BN_ULONG)); | ||
1085 | free(tp); | ||
1086 | return 1; | ||
1087 | } | ||
1088 | #else | ||
1089 | int | ||
1090 | bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, | ||
1091 | const BN_ULONG *np, const BN_ULONG *n0, int num) | ||
1092 | { | ||
1093 | return 0; | ||
1094 | } | ||
1095 | #endif /* OPENSSL_BN_ASM_MONT */ | ||
1096 | #endif | ||
1097 | |||
1098 | #endif /* !BN_MUL_COMBA */ | ||
diff --git a/src/lib/libcrypto/bn/bn_blind.c b/src/lib/libcrypto/bn/bn_blind.c deleted file mode 100644 index c842f76c6f..0000000000 --- a/src/lib/libcrypto/bn/bn_blind.c +++ /dev/null | |||
@@ -1,388 +0,0 @@ | |||
1 | /* $OpenBSD: bn_blind.c,v 1.14 2014/07/12 16:03:36 miod Exp $ */ | ||
2 | /* ==================================================================== | ||
3 | * Copyright (c) 1998-2006 The OpenSSL Project. All rights reserved. | ||
4 | * | ||
5 | * Redistribution and use in source and binary forms, with or without | ||
6 | * modification, are permitted provided that the following conditions | ||
7 | * are met: | ||
8 | * | ||
9 | * 1. Redistributions of source code must retain the above copyright | ||
10 | * notice, this list of conditions and the following disclaimer. | ||
11 | * | ||
12 | * 2. Redistributions in binary form must reproduce the above copyright | ||
13 | * notice, this list of conditions and the following disclaimer in | ||
14 | * the documentation and/or other materials provided with the | ||
15 | * distribution. | ||
16 | * | ||
17 | * 3. All advertising materials mentioning features or use of this | ||
18 | * software must display the following acknowledgment: | ||
19 | * "This product includes software developed by the OpenSSL Project | ||
20 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | ||
21 | * | ||
22 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
23 | * endorse or promote products derived from this software without | ||
24 | * prior written permission. For written permission, please contact | ||
25 | * openssl-core@openssl.org. | ||
26 | * | ||
27 | * 5. Products derived from this software may not be called "OpenSSL" | ||
28 | * nor may "OpenSSL" appear in their names without prior written | ||
29 | * permission of the OpenSSL Project. | ||
30 | * | ||
31 | * 6. Redistributions of any form whatsoever must retain the following | ||
32 | * acknowledgment: | ||
33 | * "This product includes software developed by the OpenSSL Project | ||
34 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" | ||
35 | * | ||
36 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
37 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
38 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
39 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
40 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
41 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
42 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
43 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
44 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
45 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
46 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
47 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
48 | * ==================================================================== | ||
49 | * | ||
50 | * This product includes cryptographic software written by Eric Young | ||
51 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
52 | * Hudson (tjh@cryptsoft.com). | ||
53 | * | ||
54 | */ | ||
55 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) | ||
56 | * All rights reserved. | ||
57 | * | ||
58 | * This package is an SSL implementation written | ||
59 | * by Eric Young (eay@cryptsoft.com). | ||
60 | * The implementation was written so as to conform with Netscapes SSL. | ||
61 | * | ||
62 | * This library is free for commercial and non-commercial use as long as | ||
63 | * the following conditions are aheared to. The following conditions | ||
64 | * apply to all code found in this distribution, be it the RC4, RSA, | ||
65 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation | ||
66 | * included with this distribution is covered by the same copyright terms | ||
67 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | ||
68 | * | ||
69 | * Copyright remains Eric Young's, and as such any Copyright notices in | ||
70 | * the code are not to be removed. | ||
71 | * If this package is used in a product, Eric Young should be given attribution | ||
72 | * as the author of the parts of the library used. | ||
73 | * This can be in the form of a textual message at program startup or | ||
74 | * in documentation (online or textual) provided with the package. | ||
75 | * | ||
76 | * Redistribution and use in source and binary forms, with or without | ||
77 | * modification, are permitted provided that the following conditions | ||
78 | * are met: | ||
79 | * 1. Redistributions of source code must retain the copyright | ||
80 | * notice, this list of conditions and the following disclaimer. | ||
81 | * 2. Redistributions in binary form must reproduce the above copyright | ||
82 | * notice, this list of conditions and the following disclaimer in the | ||
83 | * documentation and/or other materials provided with the distribution. | ||
84 | * 3. All advertising materials mentioning features or use of this software | ||
85 | * must display the following acknowledgement: | ||
86 | * "This product includes cryptographic software written by | ||
87 | * Eric Young (eay@cryptsoft.com)" | ||
88 | * The word 'cryptographic' can be left out if the rouines from the library | ||
89 | * being used are not cryptographic related :-). | ||
90 | * 4. If you include any Windows specific code (or a derivative thereof) from | ||
91 | * the apps directory (application code) you must include an acknowledgement: | ||
92 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | ||
93 | * | ||
94 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | ||
95 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
96 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | ||
97 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | ||
98 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | ||
99 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | ||
100 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
101 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | ||
102 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | ||
103 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | ||
104 | * SUCH DAMAGE. | ||
105 | * | ||
106 | * The licence and distribution terms for any publically available version or | ||
107 | * derivative of this code cannot be changed. i.e. this code cannot simply be | ||
108 | * copied and put under another distribution licence | ||
109 | * [including the GNU Public Licence.] | ||
110 | */ | ||
111 | |||
112 | #include <stdio.h> | ||
113 | |||
114 | #include <openssl/opensslconf.h> | ||
115 | |||
116 | #include <openssl/err.h> | ||
117 | |||
118 | #include "bn_lcl.h" | ||
119 | |||
120 | #define BN_BLINDING_COUNTER 32 | ||
121 | |||
122 | struct bn_blinding_st { | ||
123 | BIGNUM *A; | ||
124 | BIGNUM *Ai; | ||
125 | BIGNUM *e; | ||
126 | BIGNUM *mod; /* just a reference */ | ||
127 | #ifndef OPENSSL_NO_DEPRECATED | ||
128 | unsigned long thread_id; /* added in OpenSSL 0.9.6j and 0.9.7b; | ||
129 | * used only by crypto/rsa/rsa_eay.c, rsa_lib.c */ | ||
130 | #endif | ||
131 | CRYPTO_THREADID tid; | ||
132 | int counter; | ||
133 | unsigned long flags; | ||
134 | BN_MONT_CTX *m_ctx; | ||
135 | int (*bn_mod_exp)(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, | ||
136 | const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *m_ctx); | ||
137 | }; | ||
138 | |||
139 | BN_BLINDING * | ||
140 | BN_BLINDING_new(const BIGNUM *A, const BIGNUM *Ai, BIGNUM *mod) | ||
141 | { | ||
142 | BN_BLINDING *ret = NULL; | ||
143 | |||
144 | bn_check_top(mod); | ||
145 | |||
146 | if ((ret = calloc(1, sizeof(BN_BLINDING))) == NULL) { | ||
147 | BNerr(BN_F_BN_BLINDING_NEW, ERR_R_MALLOC_FAILURE); | ||
148 | return (NULL); | ||
149 | } | ||
150 | if (A != NULL) { | ||
151 | if ((ret->A = BN_dup(A)) == NULL) | ||
152 | goto err; | ||
153 | } | ||
154 | if (Ai != NULL) { | ||
155 | if ((ret->Ai = BN_dup(Ai)) == NULL) | ||
156 | goto err; | ||
157 | } | ||
158 | |||
159 | /* save a copy of mod in the BN_BLINDING structure */ | ||
160 | if ((ret->mod = BN_dup(mod)) == NULL) | ||
161 | goto err; | ||
162 | if (BN_get_flags(mod, BN_FLG_CONSTTIME) != 0) | ||
163 | BN_set_flags(ret->mod, BN_FLG_CONSTTIME); | ||
164 | |||
165 | /* Set the counter to the special value -1 | ||
166 | * to indicate that this is never-used fresh blinding | ||
167 | * that does not need updating before first use. */ | ||
168 | ret->counter = -1; | ||
169 | CRYPTO_THREADID_current(&ret->tid); | ||
170 | return (ret); | ||
171 | |||
172 | err: | ||
173 | if (ret != NULL) | ||
174 | BN_BLINDING_free(ret); | ||
175 | return (NULL); | ||
176 | } | ||
177 | |||
178 | void | ||
179 | BN_BLINDING_free(BN_BLINDING *r) | ||
180 | { | ||
181 | if (r == NULL) | ||
182 | return; | ||
183 | |||
184 | BN_clear_free(r->A); | ||
185 | BN_clear_free(r->Ai); | ||
186 | BN_clear_free(r->e); | ||
187 | BN_clear_free(r->mod); | ||
188 | free(r); | ||
189 | } | ||
190 | |||
191 | int | ||
192 | BN_BLINDING_update(BN_BLINDING *b, BN_CTX *ctx) | ||
193 | { | ||
194 | int ret = 0; | ||
195 | |||
196 | if ((b->A == NULL) || (b->Ai == NULL)) { | ||
197 | BNerr(BN_F_BN_BLINDING_UPDATE, BN_R_NOT_INITIALIZED); | ||
198 | goto err; | ||
199 | } | ||
200 | |||
201 | if (b->counter == -1) | ||
202 | b->counter = 0; | ||
203 | |||
204 | if (++b->counter == BN_BLINDING_COUNTER && b->e != NULL && | ||
205 | !(b->flags & BN_BLINDING_NO_RECREATE)) { | ||
206 | /* re-create blinding parameters */ | ||
207 | if (!BN_BLINDING_create_param(b, NULL, NULL, ctx, NULL, NULL)) | ||
208 | goto err; | ||
209 | } else if (!(b->flags & BN_BLINDING_NO_UPDATE)) { | ||
210 | if (!BN_mod_mul(b->A, b->A, b->A, b->mod, ctx)) | ||
211 | goto err; | ||
212 | if (!BN_mod_mul(b->Ai, b->Ai, b->Ai, b->mod, ctx)) | ||
213 | goto err; | ||
214 | } | ||
215 | |||
216 | ret = 1; | ||
217 | |||
218 | err: | ||
219 | if (b->counter == BN_BLINDING_COUNTER) | ||
220 | b->counter = 0; | ||
221 | return (ret); | ||
222 | } | ||
223 | |||
224 | int | ||
225 | BN_BLINDING_convert(BIGNUM *n, BN_BLINDING *b, BN_CTX *ctx) | ||
226 | { | ||
227 | return BN_BLINDING_convert_ex(n, NULL, b, ctx); | ||
228 | } | ||
229 | |||
230 | int | ||
231 | BN_BLINDING_convert_ex(BIGNUM *n, BIGNUM *r, BN_BLINDING *b, BN_CTX *ctx) | ||
232 | { | ||
233 | int ret = 1; | ||
234 | |||
235 | bn_check_top(n); | ||
236 | |||
237 | if ((b->A == NULL) || (b->Ai == NULL)) { | ||
238 | BNerr(BN_F_BN_BLINDING_CONVERT_EX, BN_R_NOT_INITIALIZED); | ||
239 | return (0); | ||
240 | } | ||
241 | |||
242 | if (b->counter == -1) | ||
243 | /* Fresh blinding, doesn't need updating. */ | ||
244 | b->counter = 0; | ||
245 | else if (!BN_BLINDING_update(b, ctx)) | ||
246 | return (0); | ||
247 | |||
248 | if (r != NULL) { | ||
249 | if (!BN_copy(r, b->Ai)) | ||
250 | ret = 0; | ||
251 | } | ||
252 | |||
253 | if (!BN_mod_mul(n, n,b->A, b->mod, ctx)) | ||
254 | ret = 0; | ||
255 | |||
256 | return ret; | ||
257 | } | ||
258 | |||
259 | int | ||
260 | BN_BLINDING_invert(BIGNUM *n, BN_BLINDING *b, BN_CTX *ctx) | ||
261 | { | ||
262 | return BN_BLINDING_invert_ex(n, NULL, b, ctx); | ||
263 | } | ||
264 | |||
265 | int | ||
266 | BN_BLINDING_invert_ex(BIGNUM *n, const BIGNUM *r, BN_BLINDING *b, BN_CTX *ctx) | ||
267 | { | ||
268 | int ret; | ||
269 | |||
270 | bn_check_top(n); | ||
271 | |||
272 | if (r != NULL) | ||
273 | ret = BN_mod_mul(n, n, r, b->mod, ctx); | ||
274 | else { | ||
275 | if (b->Ai == NULL) { | ||
276 | BNerr(BN_F_BN_BLINDING_INVERT_EX, BN_R_NOT_INITIALIZED); | ||
277 | return (0); | ||
278 | } | ||
279 | ret = BN_mod_mul(n, n, b->Ai, b->mod, ctx); | ||
280 | } | ||
281 | |||
282 | bn_check_top(n); | ||
283 | return (ret); | ||
284 | } | ||
285 | |||
286 | #ifndef OPENSSL_NO_DEPRECATED | ||
287 | unsigned long | ||
288 | BN_BLINDING_get_thread_id(const BN_BLINDING *b) | ||
289 | { | ||
290 | return b->thread_id; | ||
291 | } | ||
292 | |||
293 | void | ||
294 | BN_BLINDING_set_thread_id(BN_BLINDING *b, unsigned long n) | ||
295 | { | ||
296 | b->thread_id = n; | ||
297 | } | ||
298 | #endif | ||
299 | |||
300 | CRYPTO_THREADID * | ||
301 | BN_BLINDING_thread_id(BN_BLINDING *b) | ||
302 | { | ||
303 | return &b->tid; | ||
304 | } | ||
305 | |||
306 | unsigned long | ||
307 | BN_BLINDING_get_flags(const BN_BLINDING *b) | ||
308 | { | ||
309 | return b->flags; | ||
310 | } | ||
311 | |||
312 | void | ||
313 | BN_BLINDING_set_flags(BN_BLINDING *b, unsigned long flags) | ||
314 | { | ||
315 | b->flags = flags; | ||
316 | } | ||
317 | |||
318 | BN_BLINDING * | ||
319 | BN_BLINDING_create_param(BN_BLINDING *b, const BIGNUM *e, BIGNUM *m, | ||
320 | BN_CTX *ctx, int (*bn_mod_exp)(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, | ||
321 | const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *m_ctx), BN_MONT_CTX *m_ctx) | ||
322 | { | ||
323 | int retry_counter = 32; | ||
324 | BN_BLINDING *ret = NULL; | ||
325 | |||
326 | if (b == NULL) | ||
327 | ret = BN_BLINDING_new(NULL, NULL, m); | ||
328 | else | ||
329 | ret = b; | ||
330 | |||
331 | if (ret == NULL) | ||
332 | goto err; | ||
333 | |||
334 | if (ret->A == NULL && (ret->A = BN_new()) == NULL) | ||
335 | goto err; | ||
336 | if (ret->Ai == NULL && (ret->Ai = BN_new()) == NULL) | ||
337 | goto err; | ||
338 | |||
339 | if (e != NULL) { | ||
340 | BN_free(ret->e); | ||
341 | ret->e = BN_dup(e); | ||
342 | } | ||
343 | if (ret->e == NULL) | ||
344 | goto err; | ||
345 | |||
346 | if (bn_mod_exp != NULL) | ||
347 | ret->bn_mod_exp = bn_mod_exp; | ||
348 | if (m_ctx != NULL) | ||
349 | ret->m_ctx = m_ctx; | ||
350 | |||
351 | do { | ||
352 | if (!BN_rand_range(ret->A, ret->mod)) | ||
353 | goto err; | ||
354 | if (BN_mod_inverse(ret->Ai, ret->A, ret->mod, ctx) == NULL) { | ||
355 | /* this should almost never happen for good RSA keys */ | ||
356 | unsigned long error = ERR_peek_last_error(); | ||
357 | if (ERR_GET_REASON(error) == BN_R_NO_INVERSE) { | ||
358 | if (retry_counter-- == 0) { | ||
359 | BNerr(BN_F_BN_BLINDING_CREATE_PARAM, | ||
360 | BN_R_TOO_MANY_ITERATIONS); | ||
361 | goto err; | ||
362 | } | ||
363 | ERR_clear_error(); | ||
364 | } else | ||
365 | goto err; | ||
366 | } else | ||
367 | break; | ||
368 | } while (1); | ||
369 | |||
370 | if (ret->bn_mod_exp != NULL && ret->m_ctx != NULL) { | ||
371 | if (!ret->bn_mod_exp(ret->A, ret->A, ret->e, ret->mod, | ||
372 | ctx, ret->m_ctx)) | ||
373 | goto err; | ||
374 | } else { | ||
375 | if (!BN_mod_exp(ret->A, ret->A, ret->e, ret->mod, ctx)) | ||
376 | goto err; | ||
377 | } | ||
378 | |||
379 | return ret; | ||
380 | |||
381 | err: | ||
382 | if (b == NULL && ret != NULL) { | ||
383 | BN_BLINDING_free(ret); | ||
384 | ret = NULL; | ||
385 | } | ||
386 | |||
387 | return ret; | ||
388 | } | ||
diff --git a/src/lib/libcrypto/bn/bn_const.c b/src/lib/libcrypto/bn/bn_const.c deleted file mode 100644 index 4be9f4f791..0000000000 --- a/src/lib/libcrypto/bn/bn_const.c +++ /dev/null | |||
@@ -1,409 +0,0 @@ | |||
1 | /* $OpenBSD: bn_const.c,v 1.4 2014/06/12 15:49:28 deraadt Exp $ */ | ||
2 | /* Insert boilerplate */ | ||
3 | |||
4 | #include <openssl/bn.h> | ||
5 | |||
6 | /* "First Oakley Default Group" from RFC2409, section 6.1. | ||
7 | * | ||
8 | * The prime is: 2^768 - 2 ^704 - 1 + 2^64 * { [2^638 pi] + 149686 } | ||
9 | * | ||
10 | * RFC2409 specifies a generator of 2. | ||
11 | * RFC2412 specifies a generator of of 22. | ||
12 | */ | ||
13 | |||
14 | BIGNUM * | ||
15 | get_rfc2409_prime_768(BIGNUM *bn) | ||
16 | { | ||
17 | static const unsigned char RFC2409_PRIME_768[] = { | ||
18 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xC9, 0x0F, 0xDA, 0xA2, | ||
19 | 0x21, 0x68, 0xC2, 0x34, 0xC4, 0xC6, 0x62, 0x8B, 0x80, 0xDC, 0x1C, 0xD1, | ||
20 | 0x29, 0x02, 0x4E, 0x08, 0x8A, 0x67, 0xCC, 0x74, 0x02, 0x0B, 0xBE, 0xA6, | ||
21 | 0x3B, 0x13, 0x9B, 0x22, 0x51, 0x4A, 0x08, 0x79, 0x8E, 0x34, 0x04, 0xDD, | ||
22 | 0xEF, 0x95, 0x19, 0xB3, 0xCD, 0x3A, 0x43, 0x1B, 0x30, 0x2B, 0x0A, 0x6D, | ||
23 | 0xF2, 0x5F, 0x14, 0x37, 0x4F, 0xE1, 0x35, 0x6D, 0x6D, 0x51, 0xC2, 0x45, | ||
24 | 0xE4, 0x85, 0xB5, 0x76, 0x62, 0x5E, 0x7E, 0xC6, 0xF4, 0x4C, 0x42, 0xE9, | ||
25 | 0xA6, 0x3A, 0x36, 0x20, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, | ||
26 | }; | ||
27 | return BN_bin2bn(RFC2409_PRIME_768, sizeof(RFC2409_PRIME_768), bn); | ||
28 | } | ||
29 | |||
30 | /* "Second Oakley Default Group" from RFC2409, section 6.2. | ||
31 | * | ||
32 | * The prime is: 2^1024 - 2^960 - 1 + 2^64 * { [2^894 pi] + 129093 }. | ||
33 | * | ||
34 | * RFC2409 specifies a generator of 2. | ||
35 | * RFC2412 specifies a generator of 22. | ||
36 | */ | ||
37 | |||
38 | BIGNUM * | ||
39 | get_rfc2409_prime_1024(BIGNUM *bn) | ||
40 | { | ||
41 | static const unsigned char RFC2409_PRIME_1024[] = { | ||
42 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xC9, 0x0F, 0xDA, 0xA2, | ||
43 | 0x21, 0x68, 0xC2, 0x34, 0xC4, 0xC6, 0x62, 0x8B, 0x80, 0xDC, 0x1C, 0xD1, | ||
44 | 0x29, 0x02, 0x4E, 0x08, 0x8A, 0x67, 0xCC, 0x74, 0x02, 0x0B, 0xBE, 0xA6, | ||
45 | 0x3B, 0x13, 0x9B, 0x22, 0x51, 0x4A, 0x08, 0x79, 0x8E, 0x34, 0x04, 0xDD, | ||
46 | 0xEF, 0x95, 0x19, 0xB3, 0xCD, 0x3A, 0x43, 0x1B, 0x30, 0x2B, 0x0A, 0x6D, | ||
47 | 0xF2, 0x5F, 0x14, 0x37, 0x4F, 0xE1, 0x35, 0x6D, 0x6D, 0x51, 0xC2, 0x45, | ||
48 | 0xE4, 0x85, 0xB5, 0x76, 0x62, 0x5E, 0x7E, 0xC6, 0xF4, 0x4C, 0x42, 0xE9, | ||
49 | 0xA6, 0x37, 0xED, 0x6B, 0x0B, 0xFF, 0x5C, 0xB6, 0xF4, 0x06, 0xB7, 0xED, | ||
50 | 0xEE, 0x38, 0x6B, 0xFB, 0x5A, 0x89, 0x9F, 0xA5, 0xAE, 0x9F, 0x24, 0x11, | ||
51 | 0x7C, 0x4B, 0x1F, 0xE6, 0x49, 0x28, 0x66, 0x51, 0xEC, 0xE6, 0x53, 0x81, | ||
52 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, | ||
53 | }; | ||
54 | return BN_bin2bn(RFC2409_PRIME_1024, sizeof(RFC2409_PRIME_1024), bn); | ||
55 | } | ||
56 | |||
57 | /* "1536-bit MODP Group" from RFC3526, Section 2. | ||
58 | * | ||
59 | * The prime is: 2^1536 - 2^1472 - 1 + 2^64 * { [2^1406 pi] + 741804 } | ||
60 | * | ||
61 | * RFC3526 specifies a generator of 2. | ||
62 | * RFC2312 specifies a generator of 22. | ||
63 | */ | ||
64 | |||
65 | BIGNUM * | ||
66 | get_rfc3526_prime_1536(BIGNUM *bn) | ||
67 | { | ||
68 | static const unsigned char RFC3526_PRIME_1536[] = { | ||
69 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xC9, 0x0F, 0xDA, 0xA2, | ||
70 | 0x21, 0x68, 0xC2, 0x34, 0xC4, 0xC6, 0x62, 0x8B, 0x80, 0xDC, 0x1C, 0xD1, | ||
71 | 0x29, 0x02, 0x4E, 0x08, 0x8A, 0x67, 0xCC, 0x74, 0x02, 0x0B, 0xBE, 0xA6, | ||
72 | 0x3B, 0x13, 0x9B, 0x22, 0x51, 0x4A, 0x08, 0x79, 0x8E, 0x34, 0x04, 0xDD, | ||
73 | 0xEF, 0x95, 0x19, 0xB3, 0xCD, 0x3A, 0x43, 0x1B, 0x30, 0x2B, 0x0A, 0x6D, | ||
74 | 0xF2, 0x5F, 0x14, 0x37, 0x4F, 0xE1, 0x35, 0x6D, 0x6D, 0x51, 0xC2, 0x45, | ||
75 | 0xE4, 0x85, 0xB5, 0x76, 0x62, 0x5E, 0x7E, 0xC6, 0xF4, 0x4C, 0x42, 0xE9, | ||
76 | 0xA6, 0x37, 0xED, 0x6B, 0x0B, 0xFF, 0x5C, 0xB6, 0xF4, 0x06, 0xB7, 0xED, | ||
77 | 0xEE, 0x38, 0x6B, 0xFB, 0x5A, 0x89, 0x9F, 0xA5, 0xAE, 0x9F, 0x24, 0x11, | ||
78 | 0x7C, 0x4B, 0x1F, 0xE6, 0x49, 0x28, 0x66, 0x51, 0xEC, 0xE4, 0x5B, 0x3D, | ||
79 | 0xC2, 0x00, 0x7C, 0xB8, 0xA1, 0x63, 0xBF, 0x05, 0x98, 0xDA, 0x48, 0x36, | ||
80 | 0x1C, 0x55, 0xD3, 0x9A, 0x69, 0x16, 0x3F, 0xA8, 0xFD, 0x24, 0xCF, 0x5F, | ||
81 | 0x83, 0x65, 0x5D, 0x23, 0xDC, 0xA3, 0xAD, 0x96, 0x1C, 0x62, 0xF3, 0x56, | ||
82 | 0x20, 0x85, 0x52, 0xBB, 0x9E, 0xD5, 0x29, 0x07, 0x70, 0x96, 0x96, 0x6D, | ||
83 | 0x67, 0x0C, 0x35, 0x4E, 0x4A, 0xBC, 0x98, 0x04, 0xF1, 0x74, 0x6C, 0x08, | ||
84 | 0xCA, 0x23, 0x73, 0x27, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, | ||
85 | }; | ||
86 | return BN_bin2bn(RFC3526_PRIME_1536, sizeof(RFC3526_PRIME_1536), bn); | ||
87 | } | ||
88 | |||
89 | /* "2048-bit MODP Group" from RFC3526, Section 3. | ||
90 | * | ||
91 | * The prime is: 2^2048 - 2^1984 - 1 + 2^64 * { [2^1918 pi] + 124476 } | ||
92 | * | ||
93 | * RFC3526 specifies a generator of 2. | ||
94 | */ | ||
95 | |||
96 | BIGNUM * | ||
97 | get_rfc3526_prime_2048(BIGNUM *bn) | ||
98 | { | ||
99 | static const unsigned char RFC3526_PRIME_2048[] = { | ||
100 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xC9, 0x0F, 0xDA, 0xA2, | ||
101 | 0x21, 0x68, 0xC2, 0x34, 0xC4, 0xC6, 0x62, 0x8B, 0x80, 0xDC, 0x1C, 0xD1, | ||
102 | 0x29, 0x02, 0x4E, 0x08, 0x8A, 0x67, 0xCC, 0x74, 0x02, 0x0B, 0xBE, 0xA6, | ||
103 | 0x3B, 0x13, 0x9B, 0x22, 0x51, 0x4A, 0x08, 0x79, 0x8E, 0x34, 0x04, 0xDD, | ||
104 | 0xEF, 0x95, 0x19, 0xB3, 0xCD, 0x3A, 0x43, 0x1B, 0x30, 0x2B, 0x0A, 0x6D, | ||
105 | 0xF2, 0x5F, 0x14, 0x37, 0x4F, 0xE1, 0x35, 0x6D, 0x6D, 0x51, 0xC2, 0x45, | ||
106 | 0xE4, 0x85, 0xB5, 0x76, 0x62, 0x5E, 0x7E, 0xC6, 0xF4, 0x4C, 0x42, 0xE9, | ||
107 | 0xA6, 0x37, 0xED, 0x6B, 0x0B, 0xFF, 0x5C, 0xB6, 0xF4, 0x06, 0xB7, 0xED, | ||
108 | 0xEE, 0x38, 0x6B, 0xFB, 0x5A, 0x89, 0x9F, 0xA5, 0xAE, 0x9F, 0x24, 0x11, | ||
109 | 0x7C, 0x4B, 0x1F, 0xE6, 0x49, 0x28, 0x66, 0x51, 0xEC, 0xE4, 0x5B, 0x3D, | ||
110 | 0xC2, 0x00, 0x7C, 0xB8, 0xA1, 0x63, 0xBF, 0x05, 0x98, 0xDA, 0x48, 0x36, | ||
111 | 0x1C, 0x55, 0xD3, 0x9A, 0x69, 0x16, 0x3F, 0xA8, 0xFD, 0x24, 0xCF, 0x5F, | ||
112 | 0x83, 0x65, 0x5D, 0x23, 0xDC, 0xA3, 0xAD, 0x96, 0x1C, 0x62, 0xF3, 0x56, | ||
113 | 0x20, 0x85, 0x52, 0xBB, 0x9E, 0xD5, 0x29, 0x07, 0x70, 0x96, 0x96, 0x6D, | ||
114 | 0x67, 0x0C, 0x35, 0x4E, 0x4A, 0xBC, 0x98, 0x04, 0xF1, 0x74, 0x6C, 0x08, | ||
115 | 0xCA, 0x18, 0x21, 0x7C, 0x32, 0x90, 0x5E, 0x46, 0x2E, 0x36, 0xCE, 0x3B, | ||
116 | 0xE3, 0x9E, 0x77, 0x2C, 0x18, 0x0E, 0x86, 0x03, 0x9B, 0x27, 0x83, 0xA2, | ||
117 | 0xEC, 0x07, 0xA2, 0x8F, 0xB5, 0xC5, 0x5D, 0xF0, 0x6F, 0x4C, 0x52, 0xC9, | ||
118 | 0xDE, 0x2B, 0xCB, 0xF6, 0x95, 0x58, 0x17, 0x18, 0x39, 0x95, 0x49, 0x7C, | ||
119 | 0xEA, 0x95, 0x6A, 0xE5, 0x15, 0xD2, 0x26, 0x18, 0x98, 0xFA, 0x05, 0x10, | ||
120 | 0x15, 0x72, 0x8E, 0x5A, 0x8A, 0xAC, 0xAA, 0x68, 0xFF, 0xFF, 0xFF, 0xFF, | ||
121 | 0xFF, 0xFF, 0xFF, 0xFF, | ||
122 | }; | ||
123 | return BN_bin2bn(RFC3526_PRIME_2048, sizeof(RFC3526_PRIME_2048), bn); | ||
124 | } | ||
125 | |||
126 | /* "3072-bit MODP Group" from RFC3526, Section 4. | ||
127 | * | ||
128 | * The prime is: 2^3072 - 2^3008 - 1 + 2^64 * { [2^2942 pi] + 1690314 } | ||
129 | * | ||
130 | * RFC3526 specifies a generator of 2. | ||
131 | */ | ||
132 | |||
133 | BIGNUM * | ||
134 | get_rfc3526_prime_3072(BIGNUM *bn) | ||
135 | { | ||
136 | static const unsigned char RFC3526_PRIME_3072[] = { | ||
137 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xC9, 0x0F, 0xDA, 0xA2, | ||
138 | 0x21, 0x68, 0xC2, 0x34, 0xC4, 0xC6, 0x62, 0x8B, 0x80, 0xDC, 0x1C, 0xD1, | ||
139 | 0x29, 0x02, 0x4E, 0x08, 0x8A, 0x67, 0xCC, 0x74, 0x02, 0x0B, 0xBE, 0xA6, | ||
140 | 0x3B, 0x13, 0x9B, 0x22, 0x51, 0x4A, 0x08, 0x79, 0x8E, 0x34, 0x04, 0xDD, | ||
141 | 0xEF, 0x95, 0x19, 0xB3, 0xCD, 0x3A, 0x43, 0x1B, 0x30, 0x2B, 0x0A, 0x6D, | ||
142 | 0xF2, 0x5F, 0x14, 0x37, 0x4F, 0xE1, 0x35, 0x6D, 0x6D, 0x51, 0xC2, 0x45, | ||
143 | 0xE4, 0x85, 0xB5, 0x76, 0x62, 0x5E, 0x7E, 0xC6, 0xF4, 0x4C, 0x42, 0xE9, | ||
144 | 0xA6, 0x37, 0xED, 0x6B, 0x0B, 0xFF, 0x5C, 0xB6, 0xF4, 0x06, 0xB7, 0xED, | ||
145 | 0xEE, 0x38, 0x6B, 0xFB, 0x5A, 0x89, 0x9F, 0xA5, 0xAE, 0x9F, 0x24, 0x11, | ||
146 | 0x7C, 0x4B, 0x1F, 0xE6, 0x49, 0x28, 0x66, 0x51, 0xEC, 0xE4, 0x5B, 0x3D, | ||
147 | 0xC2, 0x00, 0x7C, 0xB8, 0xA1, 0x63, 0xBF, 0x05, 0x98, 0xDA, 0x48, 0x36, | ||
148 | 0x1C, 0x55, 0xD3, 0x9A, 0x69, 0x16, 0x3F, 0xA8, 0xFD, 0x24, 0xCF, 0x5F, | ||
149 | 0x83, 0x65, 0x5D, 0x23, 0xDC, 0xA3, 0xAD, 0x96, 0x1C, 0x62, 0xF3, 0x56, | ||
150 | 0x20, 0x85, 0x52, 0xBB, 0x9E, 0xD5, 0x29, 0x07, 0x70, 0x96, 0x96, 0x6D, | ||
151 | 0x67, 0x0C, 0x35, 0x4E, 0x4A, 0xBC, 0x98, 0x04, 0xF1, 0x74, 0x6C, 0x08, | ||
152 | 0xCA, 0x18, 0x21, 0x7C, 0x32, 0x90, 0x5E, 0x46, 0x2E, 0x36, 0xCE, 0x3B, | ||
153 | 0xE3, 0x9E, 0x77, 0x2C, 0x18, 0x0E, 0x86, 0x03, 0x9B, 0x27, 0x83, 0xA2, | ||
154 | 0xEC, 0x07, 0xA2, 0x8F, 0xB5, 0xC5, 0x5D, 0xF0, 0x6F, 0x4C, 0x52, 0xC9, | ||
155 | 0xDE, 0x2B, 0xCB, 0xF6, 0x95, 0x58, 0x17, 0x18, 0x39, 0x95, 0x49, 0x7C, | ||
156 | 0xEA, 0x95, 0x6A, 0xE5, 0x15, 0xD2, 0x26, 0x18, 0x98, 0xFA, 0x05, 0x10, | ||
157 | 0x15, 0x72, 0x8E, 0x5A, 0x8A, 0xAA, 0xC4, 0x2D, 0xAD, 0x33, 0x17, 0x0D, | ||
158 | 0x04, 0x50, 0x7A, 0x33, 0xA8, 0x55, 0x21, 0xAB, 0xDF, 0x1C, 0xBA, 0x64, | ||
159 | 0xEC, 0xFB, 0x85, 0x04, 0x58, 0xDB, 0xEF, 0x0A, 0x8A, 0xEA, 0x71, 0x57, | ||
160 | 0x5D, 0x06, 0x0C, 0x7D, 0xB3, 0x97, 0x0F, 0x85, 0xA6, 0xE1, 0xE4, 0xC7, | ||
161 | 0xAB, 0xF5, 0xAE, 0x8C, 0xDB, 0x09, 0x33, 0xD7, 0x1E, 0x8C, 0x94, 0xE0, | ||
162 | 0x4A, 0x25, 0x61, 0x9D, 0xCE, 0xE3, 0xD2, 0x26, 0x1A, 0xD2, 0xEE, 0x6B, | ||
163 | 0xF1, 0x2F, 0xFA, 0x06, 0xD9, 0x8A, 0x08, 0x64, 0xD8, 0x76, 0x02, 0x73, | ||
164 | 0x3E, 0xC8, 0x6A, 0x64, 0x52, 0x1F, 0x2B, 0x18, 0x17, 0x7B, 0x20, 0x0C, | ||
165 | 0xBB, 0xE1, 0x17, 0x57, 0x7A, 0x61, 0x5D, 0x6C, 0x77, 0x09, 0x88, 0xC0, | ||
166 | 0xBA, 0xD9, 0x46, 0xE2, 0x08, 0xE2, 0x4F, 0xA0, 0x74, 0xE5, 0xAB, 0x31, | ||
167 | 0x43, 0xDB, 0x5B, 0xFC, 0xE0, 0xFD, 0x10, 0x8E, 0x4B, 0x82, 0xD1, 0x20, | ||
168 | 0xA9, 0x3A, 0xD2, 0xCA, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, | ||
169 | }; | ||
170 | return BN_bin2bn(RFC3526_PRIME_3072, sizeof(RFC3526_PRIME_3072), bn); | ||
171 | } | ||
172 | |||
173 | /* "4096-bit MODP Group" from RFC3526, Section 5. | ||
174 | * | ||
175 | * The prime is: 2^4096 - 2^4032 - 1 + 2^64 * { [2^3966 pi] + 240904 } | ||
176 | * | ||
177 | * RFC3526 specifies a generator of 2. | ||
178 | */ | ||
179 | |||
180 | BIGNUM * | ||
181 | get_rfc3526_prime_4096(BIGNUM *bn) | ||
182 | { | ||
183 | static const unsigned char RFC3526_PRIME_4096[] = { | ||
184 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xC9, 0x0F, 0xDA, 0xA2, | ||
185 | 0x21, 0x68, 0xC2, 0x34, 0xC4, 0xC6, 0x62, 0x8B, 0x80, 0xDC, 0x1C, 0xD1, | ||
186 | 0x29, 0x02, 0x4E, 0x08, 0x8A, 0x67, 0xCC, 0x74, 0x02, 0x0B, 0xBE, 0xA6, | ||
187 | 0x3B, 0x13, 0x9B, 0x22, 0x51, 0x4A, 0x08, 0x79, 0x8E, 0x34, 0x04, 0xDD, | ||
188 | 0xEF, 0x95, 0x19, 0xB3, 0xCD, 0x3A, 0x43, 0x1B, 0x30, 0x2B, 0x0A, 0x6D, | ||
189 | 0xF2, 0x5F, 0x14, 0x37, 0x4F, 0xE1, 0x35, 0x6D, 0x6D, 0x51, 0xC2, 0x45, | ||
190 | 0xE4, 0x85, 0xB5, 0x76, 0x62, 0x5E, 0x7E, 0xC6, 0xF4, 0x4C, 0x42, 0xE9, | ||
191 | 0xA6, 0x37, 0xED, 0x6B, 0x0B, 0xFF, 0x5C, 0xB6, 0xF4, 0x06, 0xB7, 0xED, | ||
192 | 0xEE, 0x38, 0x6B, 0xFB, 0x5A, 0x89, 0x9F, 0xA5, 0xAE, 0x9F, 0x24, 0x11, | ||
193 | 0x7C, 0x4B, 0x1F, 0xE6, 0x49, 0x28, 0x66, 0x51, 0xEC, 0xE4, 0x5B, 0x3D, | ||
194 | 0xC2, 0x00, 0x7C, 0xB8, 0xA1, 0x63, 0xBF, 0x05, 0x98, 0xDA, 0x48, 0x36, | ||
195 | 0x1C, 0x55, 0xD3, 0x9A, 0x69, 0x16, 0x3F, 0xA8, 0xFD, 0x24, 0xCF, 0x5F, | ||
196 | 0x83, 0x65, 0x5D, 0x23, 0xDC, 0xA3, 0xAD, 0x96, 0x1C, 0x62, 0xF3, 0x56, | ||
197 | 0x20, 0x85, 0x52, 0xBB, 0x9E, 0xD5, 0x29, 0x07, 0x70, 0x96, 0x96, 0x6D, | ||
198 | 0x67, 0x0C, 0x35, 0x4E, 0x4A, 0xBC, 0x98, 0x04, 0xF1, 0x74, 0x6C, 0x08, | ||
199 | 0xCA, 0x18, 0x21, 0x7C, 0x32, 0x90, 0x5E, 0x46, 0x2E, 0x36, 0xCE, 0x3B, | ||
200 | 0xE3, 0x9E, 0x77, 0x2C, 0x18, 0x0E, 0x86, 0x03, 0x9B, 0x27, 0x83, 0xA2, | ||
201 | 0xEC, 0x07, 0xA2, 0x8F, 0xB5, 0xC5, 0x5D, 0xF0, 0x6F, 0x4C, 0x52, 0xC9, | ||
202 | 0xDE, 0x2B, 0xCB, 0xF6, 0x95, 0x58, 0x17, 0x18, 0x39, 0x95, 0x49, 0x7C, | ||
203 | 0xEA, 0x95, 0x6A, 0xE5, 0x15, 0xD2, 0x26, 0x18, 0x98, 0xFA, 0x05, 0x10, | ||
204 | 0x15, 0x72, 0x8E, 0x5A, 0x8A, 0xAA, 0xC4, 0x2D, 0xAD, 0x33, 0x17, 0x0D, | ||
205 | 0x04, 0x50, 0x7A, 0x33, 0xA8, 0x55, 0x21, 0xAB, 0xDF, 0x1C, 0xBA, 0x64, | ||
206 | 0xEC, 0xFB, 0x85, 0x04, 0x58, 0xDB, 0xEF, 0x0A, 0x8A, 0xEA, 0x71, 0x57, | ||
207 | 0x5D, 0x06, 0x0C, 0x7D, 0xB3, 0x97, 0x0F, 0x85, 0xA6, 0xE1, 0xE4, 0xC7, | ||
208 | 0xAB, 0xF5, 0xAE, 0x8C, 0xDB, 0x09, 0x33, 0xD7, 0x1E, 0x8C, 0x94, 0xE0, | ||
209 | 0x4A, 0x25, 0x61, 0x9D, 0xCE, 0xE3, 0xD2, 0x26, 0x1A, 0xD2, 0xEE, 0x6B, | ||
210 | 0xF1, 0x2F, 0xFA, 0x06, 0xD9, 0x8A, 0x08, 0x64, 0xD8, 0x76, 0x02, 0x73, | ||
211 | 0x3E, 0xC8, 0x6A, 0x64, 0x52, 0x1F, 0x2B, 0x18, 0x17, 0x7B, 0x20, 0x0C, | ||
212 | 0xBB, 0xE1, 0x17, 0x57, 0x7A, 0x61, 0x5D, 0x6C, 0x77, 0x09, 0x88, 0xC0, | ||
213 | 0xBA, 0xD9, 0x46, 0xE2, 0x08, 0xE2, 0x4F, 0xA0, 0x74, 0xE5, 0xAB, 0x31, | ||
214 | 0x43, 0xDB, 0x5B, 0xFC, 0xE0, 0xFD, 0x10, 0x8E, 0x4B, 0x82, 0xD1, 0x20, | ||
215 | 0xA9, 0x21, 0x08, 0x01, 0x1A, 0x72, 0x3C, 0x12, 0xA7, 0x87, 0xE6, 0xD7, | ||
216 | 0x88, 0x71, 0x9A, 0x10, 0xBD, 0xBA, 0x5B, 0x26, 0x99, 0xC3, 0x27, 0x18, | ||
217 | 0x6A, 0xF4, 0xE2, 0x3C, 0x1A, 0x94, 0x68, 0x34, 0xB6, 0x15, 0x0B, 0xDA, | ||
218 | 0x25, 0x83, 0xE9, 0xCA, 0x2A, 0xD4, 0x4C, 0xE8, 0xDB, 0xBB, 0xC2, 0xDB, | ||
219 | 0x04, 0xDE, 0x8E, 0xF9, 0x2E, 0x8E, 0xFC, 0x14, 0x1F, 0xBE, 0xCA, 0xA6, | ||
220 | 0x28, 0x7C, 0x59, 0x47, 0x4E, 0x6B, 0xC0, 0x5D, 0x99, 0xB2, 0x96, 0x4F, | ||
221 | 0xA0, 0x90, 0xC3, 0xA2, 0x23, 0x3B, 0xA1, 0x86, 0x51, 0x5B, 0xE7, 0xED, | ||
222 | 0x1F, 0x61, 0x29, 0x70, 0xCE, 0xE2, 0xD7, 0xAF, 0xB8, 0x1B, 0xDD, 0x76, | ||
223 | 0x21, 0x70, 0x48, 0x1C, 0xD0, 0x06, 0x91, 0x27, 0xD5, 0xB0, 0x5A, 0xA9, | ||
224 | 0x93, 0xB4, 0xEA, 0x98, 0x8D, 0x8F, 0xDD, 0xC1, 0x86, 0xFF, 0xB7, 0xDC, | ||
225 | 0x90, 0xA6, 0xC0, 0x8F, 0x4D, 0xF4, 0x35, 0xC9, 0x34, 0x06, 0x31, 0x99, | ||
226 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, | ||
227 | }; | ||
228 | return BN_bin2bn(RFC3526_PRIME_4096, sizeof(RFC3526_PRIME_4096), bn); | ||
229 | } | ||
230 | |||
231 | /* "6144-bit MODP Group" from RFC3526, Section 6. | ||
232 | * | ||
233 | * The prime is: 2^6144 - 2^6080 - 1 + 2^64 * { [2^6014 pi] + 929484 } | ||
234 | * | ||
235 | * RFC3526 specifies a generator of 2. | ||
236 | */ | ||
237 | |||
238 | BIGNUM * | ||
239 | get_rfc3526_prime_6144(BIGNUM *bn) | ||
240 | { | ||
241 | static const unsigned char RFC3526_PRIME_6144[] = { | ||
242 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xC9, 0x0F, 0xDA, 0xA2, | ||
243 | 0x21, 0x68, 0xC2, 0x34, 0xC4, 0xC6, 0x62, 0x8B, 0x80, 0xDC, 0x1C, 0xD1, | ||
244 | 0x29, 0x02, 0x4E, 0x08, 0x8A, 0x67, 0xCC, 0x74, 0x02, 0x0B, 0xBE, 0xA6, | ||
245 | 0x3B, 0x13, 0x9B, 0x22, 0x51, 0x4A, 0x08, 0x79, 0x8E, 0x34, 0x04, 0xDD, | ||
246 | 0xEF, 0x95, 0x19, 0xB3, 0xCD, 0x3A, 0x43, 0x1B, 0x30, 0x2B, 0x0A, 0x6D, | ||
247 | 0xF2, 0x5F, 0x14, 0x37, 0x4F, 0xE1, 0x35, 0x6D, 0x6D, 0x51, 0xC2, 0x45, | ||
248 | 0xE4, 0x85, 0xB5, 0x76, 0x62, 0x5E, 0x7E, 0xC6, 0xF4, 0x4C, 0x42, 0xE9, | ||
249 | 0xA6, 0x37, 0xED, 0x6B, 0x0B, 0xFF, 0x5C, 0xB6, 0xF4, 0x06, 0xB7, 0xED, | ||
250 | 0xEE, 0x38, 0x6B, 0xFB, 0x5A, 0x89, 0x9F, 0xA5, 0xAE, 0x9F, 0x24, 0x11, | ||
251 | 0x7C, 0x4B, 0x1F, 0xE6, 0x49, 0x28, 0x66, 0x51, 0xEC, 0xE4, 0x5B, 0x3D, | ||
252 | 0xC2, 0x00, 0x7C, 0xB8, 0xA1, 0x63, 0xBF, 0x05, 0x98, 0xDA, 0x48, 0x36, | ||
253 | 0x1C, 0x55, 0xD3, 0x9A, 0x69, 0x16, 0x3F, 0xA8, 0xFD, 0x24, 0xCF, 0x5F, | ||
254 | 0x83, 0x65, 0x5D, 0x23, 0xDC, 0xA3, 0xAD, 0x96, 0x1C, 0x62, 0xF3, 0x56, | ||
255 | 0x20, 0x85, 0x52, 0xBB, 0x9E, 0xD5, 0x29, 0x07, 0x70, 0x96, 0x96, 0x6D, | ||
256 | 0x67, 0x0C, 0x35, 0x4E, 0x4A, 0xBC, 0x98, 0x04, 0xF1, 0x74, 0x6C, 0x08, | ||
257 | 0xCA, 0x18, 0x21, 0x7C, 0x32, 0x90, 0x5E, 0x46, 0x2E, 0x36, 0xCE, 0x3B, | ||
258 | 0xE3, 0x9E, 0x77, 0x2C, 0x18, 0x0E, 0x86, 0x03, 0x9B, 0x27, 0x83, 0xA2, | ||
259 | 0xEC, 0x07, 0xA2, 0x8F, 0xB5, 0xC5, 0x5D, 0xF0, 0x6F, 0x4C, 0x52, 0xC9, | ||
260 | 0xDE, 0x2B, 0xCB, 0xF6, 0x95, 0x58, 0x17, 0x18, 0x39, 0x95, 0x49, 0x7C, | ||
261 | 0xEA, 0x95, 0x6A, 0xE5, 0x15, 0xD2, 0x26, 0x18, 0x98, 0xFA, 0x05, 0x10, | ||
262 | 0x15, 0x72, 0x8E, 0x5A, 0x8A, 0xAA, 0xC4, 0x2D, 0xAD, 0x33, 0x17, 0x0D, | ||
263 | 0x04, 0x50, 0x7A, 0x33, 0xA8, 0x55, 0x21, 0xAB, 0xDF, 0x1C, 0xBA, 0x64, | ||
264 | 0xEC, 0xFB, 0x85, 0x04, 0x58, 0xDB, 0xEF, 0x0A, 0x8A, 0xEA, 0x71, 0x57, | ||
265 | 0x5D, 0x06, 0x0C, 0x7D, 0xB3, 0x97, 0x0F, 0x85, 0xA6, 0xE1, 0xE4, 0xC7, | ||
266 | 0xAB, 0xF5, 0xAE, 0x8C, 0xDB, 0x09, 0x33, 0xD7, 0x1E, 0x8C, 0x94, 0xE0, | ||
267 | 0x4A, 0x25, 0x61, 0x9D, 0xCE, 0xE3, 0xD2, 0x26, 0x1A, 0xD2, 0xEE, 0x6B, | ||
268 | 0xF1, 0x2F, 0xFA, 0x06, 0xD9, 0x8A, 0x08, 0x64, 0xD8, 0x76, 0x02, 0x73, | ||
269 | 0x3E, 0xC8, 0x6A, 0x64, 0x52, 0x1F, 0x2B, 0x18, 0x17, 0x7B, 0x20, 0x0C, | ||
270 | 0xBB, 0xE1, 0x17, 0x57, 0x7A, 0x61, 0x5D, 0x6C, 0x77, 0x09, 0x88, 0xC0, | ||
271 | 0xBA, 0xD9, 0x46, 0xE2, 0x08, 0xE2, 0x4F, 0xA0, 0x74, 0xE5, 0xAB, 0x31, | ||
272 | 0x43, 0xDB, 0x5B, 0xFC, 0xE0, 0xFD, 0x10, 0x8E, 0x4B, 0x82, 0xD1, 0x20, | ||
273 | 0xA9, 0x21, 0x08, 0x01, 0x1A, 0x72, 0x3C, 0x12, 0xA7, 0x87, 0xE6, 0xD7, | ||
274 | 0x88, 0x71, 0x9A, 0x10, 0xBD, 0xBA, 0x5B, 0x26, 0x99, 0xC3, 0x27, 0x18, | ||
275 | 0x6A, 0xF4, 0xE2, 0x3C, 0x1A, 0x94, 0x68, 0x34, 0xB6, 0x15, 0x0B, 0xDA, | ||
276 | 0x25, 0x83, 0xE9, 0xCA, 0x2A, 0xD4, 0x4C, 0xE8, 0xDB, 0xBB, 0xC2, 0xDB, | ||
277 | 0x04, 0xDE, 0x8E, 0xF9, 0x2E, 0x8E, 0xFC, 0x14, 0x1F, 0xBE, 0xCA, 0xA6, | ||
278 | 0x28, 0x7C, 0x59, 0x47, 0x4E, 0x6B, 0xC0, 0x5D, 0x99, 0xB2, 0x96, 0x4F, | ||
279 | 0xA0, 0x90, 0xC3, 0xA2, 0x23, 0x3B, 0xA1, 0x86, 0x51, 0x5B, 0xE7, 0xED, | ||
280 | 0x1F, 0x61, 0x29, 0x70, 0xCE, 0xE2, 0xD7, 0xAF, 0xB8, 0x1B, 0xDD, 0x76, | ||
281 | 0x21, 0x70, 0x48, 0x1C, 0xD0, 0x06, 0x91, 0x27, 0xD5, 0xB0, 0x5A, 0xA9, | ||
282 | 0x93, 0xB4, 0xEA, 0x98, 0x8D, 0x8F, 0xDD, 0xC1, 0x86, 0xFF, 0xB7, 0xDC, | ||
283 | 0x90, 0xA6, 0xC0, 0x8F, 0x4D, 0xF4, 0x35, 0xC9, 0x34, 0x02, 0x84, 0x92, | ||
284 | 0x36, 0xC3, 0xFA, 0xB4, 0xD2, 0x7C, 0x70, 0x26, 0xC1, 0xD4, 0xDC, 0xB2, | ||
285 | 0x60, 0x26, 0x46, 0xDE, 0xC9, 0x75, 0x1E, 0x76, 0x3D, 0xBA, 0x37, 0xBD, | ||
286 | 0xF8, 0xFF, 0x94, 0x06, 0xAD, 0x9E, 0x53, 0x0E, 0xE5, 0xDB, 0x38, 0x2F, | ||
287 | 0x41, 0x30, 0x01, 0xAE, 0xB0, 0x6A, 0x53, 0xED, 0x90, 0x27, 0xD8, 0x31, | ||
288 | 0x17, 0x97, 0x27, 0xB0, 0x86, 0x5A, 0x89, 0x18, 0xDA, 0x3E, 0xDB, 0xEB, | ||
289 | 0xCF, 0x9B, 0x14, 0xED, 0x44, 0xCE, 0x6C, 0xBA, 0xCE, 0xD4, 0xBB, 0x1B, | ||
290 | 0xDB, 0x7F, 0x14, 0x47, 0xE6, 0xCC, 0x25, 0x4B, 0x33, 0x20, 0x51, 0x51, | ||
291 | 0x2B, 0xD7, 0xAF, 0x42, 0x6F, 0xB8, 0xF4, 0x01, 0x37, 0x8C, 0xD2, 0xBF, | ||
292 | 0x59, 0x83, 0xCA, 0x01, 0xC6, 0x4B, 0x92, 0xEC, 0xF0, 0x32, 0xEA, 0x15, | ||
293 | 0xD1, 0x72, 0x1D, 0x03, 0xF4, 0x82, 0xD7, 0xCE, 0x6E, 0x74, 0xFE, 0xF6, | ||
294 | 0xD5, 0x5E, 0x70, 0x2F, 0x46, 0x98, 0x0C, 0x82, 0xB5, 0xA8, 0x40, 0x31, | ||
295 | 0x90, 0x0B, 0x1C, 0x9E, 0x59, 0xE7, 0xC9, 0x7F, 0xBE, 0xC7, 0xE8, 0xF3, | ||
296 | 0x23, 0xA9, 0x7A, 0x7E, 0x36, 0xCC, 0x88, 0xBE, 0x0F, 0x1D, 0x45, 0xB7, | ||
297 | 0xFF, 0x58, 0x5A, 0xC5, 0x4B, 0xD4, 0x07, 0xB2, 0x2B, 0x41, 0x54, 0xAA, | ||
298 | 0xCC, 0x8F, 0x6D, 0x7E, 0xBF, 0x48, 0xE1, 0xD8, 0x14, 0xCC, 0x5E, 0xD2, | ||
299 | 0x0F, 0x80, 0x37, 0xE0, 0xA7, 0x97, 0x15, 0xEE, 0xF2, 0x9B, 0xE3, 0x28, | ||
300 | 0x06, 0xA1, 0xD5, 0x8B, 0xB7, 0xC5, 0xDA, 0x76, 0xF5, 0x50, 0xAA, 0x3D, | ||
301 | 0x8A, 0x1F, 0xBF, 0xF0, 0xEB, 0x19, 0xCC, 0xB1, 0xA3, 0x13, 0xD5, 0x5C, | ||
302 | 0xDA, 0x56, 0xC9, 0xEC, 0x2E, 0xF2, 0x96, 0x32, 0x38, 0x7F, 0xE8, 0xD7, | ||
303 | 0x6E, 0x3C, 0x04, 0x68, 0x04, 0x3E, 0x8F, 0x66, 0x3F, 0x48, 0x60, 0xEE, | ||
304 | 0x12, 0xBF, 0x2D, 0x5B, 0x0B, 0x74, 0x74, 0xD6, 0xE6, 0x94, 0xF9, 0x1E, | ||
305 | 0x6D, 0xCC, 0x40, 0x24, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, | ||
306 | }; | ||
307 | return BN_bin2bn(RFC3526_PRIME_6144, sizeof(RFC3526_PRIME_6144), bn); | ||
308 | } | ||
309 | |||
310 | /* "8192-bit MODP Group" from RFC3526, Section 7. | ||
311 | * | ||
312 | * The prime is: 2^8192 - 2^8128 - 1 + 2^64 * { [2^8062 pi] + 4743158 } | ||
313 | * | ||
314 | * RFC3526 specifies a generator of 2. | ||
315 | */ | ||
316 | |||
317 | BIGNUM * | ||
318 | get_rfc3526_prime_8192(BIGNUM *bn) | ||
319 | { | ||
320 | static const unsigned char RFC3526_PRIME_8192[] = { | ||
321 | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xC9, 0x0F, 0xDA, 0xA2, | ||
322 | 0x21, 0x68, 0xC2, 0x34, 0xC4, 0xC6, 0x62, 0x8B, 0x80, 0xDC, 0x1C, 0xD1, | ||
323 | 0x29, 0x02, 0x4E, 0x08, 0x8A, 0x67, 0xCC, 0x74, 0x02, 0x0B, 0xBE, 0xA6, | ||
324 | 0x3B, 0x13, 0x9B, 0x22, 0x51, 0x4A, 0x08, 0x79, 0x8E, 0x34, 0x04, 0xDD, | ||
325 | 0xEF, 0x95, 0x19, 0xB3, 0xCD, 0x3A, 0x43, 0x1B, 0x30, 0x2B, 0x0A, 0x6D, | ||
326 | 0xF2, 0x5F, 0x14, 0x37, 0x4F, 0xE1, 0x35, 0x6D, 0x6D, 0x51, 0xC2, 0x45, | ||
327 | 0xE4, 0x85, 0xB5, 0x76, 0x62, 0x5E, 0x7E, 0xC6, 0xF4, 0x4C, 0x42, 0xE9, | ||
328 | 0xA6, 0x37, 0xED, 0x6B, 0x0B, 0xFF, 0x5C, 0xB6, 0xF4, 0x06, 0xB7, 0xED, | ||
329 | 0xEE, 0x38, 0x6B, 0xFB, 0x5A, 0x89, 0x9F, 0xA5, 0xAE, 0x9F, 0x24, 0x11, | ||
330 | 0x7C, 0x4B, 0x1F, 0xE6, 0x49, 0x28, 0x66, 0x51, 0xEC, 0xE4, 0x5B, 0x3D, | ||
331 | 0xC2, 0x00, 0x7C, 0xB8, 0xA1, 0x63, 0xBF, 0x05, 0x98, 0xDA, 0x48, 0x36, | ||
332 | 0x1C, 0x55, 0xD3, 0x9A, 0x69, 0x16, 0x3F, 0xA8, 0xFD, 0x24, 0xCF, 0x5F, | ||
333 | 0x83, 0x65, 0x5D, 0x23, 0xDC, 0xA3, 0xAD, 0x96, 0x1C, 0x62, 0xF3, 0x56, | ||
334 | 0x20, 0x85, 0x52, 0xBB, 0x9E, 0xD5, 0x29, 0x07, 0x70, 0x96, 0x96, 0x6D, | ||
335 | 0x67, 0x0C, 0x35, 0x4E, 0x4A, 0xBC, 0x98, 0x04, 0xF1, 0x74, 0x6C, 0x08, | ||
336 | 0xCA, 0x18, 0x21, 0x7C, 0x32, 0x90, 0x5E, 0x46, 0x2E, 0x36, 0xCE, 0x3B, | ||
337 | 0xE3, 0x9E, 0x77, 0x2C, 0x18, 0x0E, 0x86, 0x03, 0x9B, 0x27, 0x83, 0xA2, | ||
338 | 0xEC, 0x07, 0xA2, 0x8F, 0xB5, 0xC5, 0x5D, 0xF0, 0x6F, 0x4C, 0x52, 0xC9, | ||
339 | 0xDE, 0x2B, 0xCB, 0xF6, 0x95, 0x58, 0x17, 0x18, 0x39, 0x95, 0x49, 0x7C, | ||
340 | 0xEA, 0x95, 0x6A, 0xE5, 0x15, 0xD2, 0x26, 0x18, 0x98, 0xFA, 0x05, 0x10, | ||
341 | 0x15, 0x72, 0x8E, 0x5A, 0x8A, 0xAA, 0xC4, 0x2D, 0xAD, 0x33, 0x17, 0x0D, | ||
342 | 0x04, 0x50, 0x7A, 0x33, 0xA8, 0x55, 0x21, 0xAB, 0xDF, 0x1C, 0xBA, 0x64, | ||
343 | 0xEC, 0xFB, 0x85, 0x04, 0x58, 0xDB, 0xEF, 0x0A, 0x8A, 0xEA, 0x71, 0x57, | ||
344 | 0x5D, 0x06, 0x0C, 0x7D, 0xB3, 0x97, 0x0F, 0x85, 0xA6, 0xE1, 0xE4, 0xC7, | ||
345 | 0xAB, 0xF5, 0xAE, 0x8C, 0xDB, 0x09, 0x33, 0xD7, 0x1E, 0x8C, 0x94, 0xE0, | ||
346 | 0x4A, 0x25, 0x61, 0x9D, 0xCE, 0xE3, 0xD2, 0x26, 0x1A, 0xD2, 0xEE, 0x6B, | ||
347 | 0xF1, 0x2F, 0xFA, 0x06, 0xD9, 0x8A, 0x08, 0x64, 0xD8, 0x76, 0x02, 0x73, | ||
348 | 0x3E, 0xC8, 0x6A, 0x64, 0x52, 0x1F, 0x2B, 0x18, 0x17, 0x7B, 0x20, 0x0C, | ||
349 | 0xBB, 0xE1, 0x17, 0x57, 0x7A, 0x61, 0x5D, 0x6C, 0x77, 0x09, 0x88, 0xC0, | ||
350 | 0xBA, 0xD9, 0x46, 0xE2, 0x08, 0xE2, 0x4F, 0xA0, 0x74, 0xE5, 0xAB, 0x31, | ||
351 | 0x43, 0xDB, 0x5B, 0xFC, 0xE0, 0xFD, 0x10, 0x8E, 0x4B, 0x82, 0xD1, 0x20, | ||
352 | 0xA9, 0x21, 0x08, 0x01, 0x1A, 0x72, 0x3C, 0x12, 0xA7, 0x87, 0xE6, 0xD7, | ||
353 | 0x88, 0x71, 0x9A, 0x10, 0xBD, 0xBA, 0x5B, 0x26, 0x99, 0xC3, 0x27, 0x18, | ||
354 | 0x6A, 0xF4, 0xE2, 0x3C, 0x1A, 0x94, 0x68, 0x34, 0xB6, 0x15, 0x0B, 0xDA, | ||
355 | 0x25, 0x83, 0xE9, 0xCA, 0x2A, 0xD4, 0x4C, 0xE8, 0xDB, 0xBB, 0xC2, 0xDB, | ||
356 | 0x04, 0xDE, 0x8E, 0xF9, 0x2E, 0x8E, 0xFC, 0x14, 0x1F, 0xBE, 0xCA, 0xA6, | ||
357 | 0x28, 0x7C, 0x59, 0x47, 0x4E, 0x6B, 0xC0, 0x5D, 0x99, 0xB2, 0x96, 0x4F, | ||
358 | 0xA0, 0x90, 0xC3, 0xA2, 0x23, 0x3B, 0xA1, 0x86, 0x51, 0x5B, 0xE7, 0xED, | ||
359 | 0x1F, 0x61, 0x29, 0x70, 0xCE, 0xE2, 0xD7, 0xAF, 0xB8, 0x1B, 0xDD, 0x76, | ||
360 | 0x21, 0x70, 0x48, 0x1C, 0xD0, 0x06, 0x91, 0x27, 0xD5, 0xB0, 0x5A, 0xA9, | ||
361 | 0x93, 0xB4, 0xEA, 0x98, 0x8D, 0x8F, 0xDD, 0xC1, 0x86, 0xFF, 0xB7, 0xDC, | ||
362 | 0x90, 0xA6, 0xC0, 0x8F, 0x4D, 0xF4, 0x35, 0xC9, 0x34, 0x02, 0x84, 0x92, | ||
363 | 0x36, 0xC3, 0xFA, 0xB4, 0xD2, 0x7C, 0x70, 0x26, 0xC1, 0xD4, 0xDC, 0xB2, | ||
364 | 0x60, 0x26, 0x46, 0xDE, 0xC9, 0x75, 0x1E, 0x76, 0x3D, 0xBA, 0x37, 0xBD, | ||
365 | 0xF8, 0xFF, 0x94, 0x06, 0xAD, 0x9E, 0x53, 0x0E, 0xE5, 0xDB, 0x38, 0x2F, | ||
366 | 0x41, 0x30, 0x01, 0xAE, 0xB0, 0x6A, 0x53, 0xED, 0x90, 0x27, 0xD8, 0x31, | ||
367 | 0x17, 0x97, 0x27, 0xB0, 0x86, 0x5A, 0x89, 0x18, 0xDA, 0x3E, 0xDB, 0xEB, | ||
368 | 0xCF, 0x9B, 0x14, 0xED, 0x44, 0xCE, 0x6C, 0xBA, 0xCE, 0xD4, 0xBB, 0x1B, | ||
369 | 0xDB, 0x7F, 0x14, 0x47, 0xE6, 0xCC, 0x25, 0x4B, 0x33, 0x20, 0x51, 0x51, | ||
370 | 0x2B, 0xD7, 0xAF, 0x42, 0x6F, 0xB8, 0xF4, 0x01, 0x37, 0x8C, 0xD2, 0xBF, | ||
371 | 0x59, 0x83, 0xCA, 0x01, 0xC6, 0x4B, 0x92, 0xEC, 0xF0, 0x32, 0xEA, 0x15, | ||
372 | 0xD1, 0x72, 0x1D, 0x03, 0xF4, 0x82, 0xD7, 0xCE, 0x6E, 0x74, 0xFE, 0xF6, | ||
373 | 0xD5, 0x5E, 0x70, 0x2F, 0x46, 0x98, 0x0C, 0x82, 0xB5, 0xA8, 0x40, 0x31, | ||
374 | 0x90, 0x0B, 0x1C, 0x9E, 0x59, 0xE7, 0xC9, 0x7F, 0xBE, 0xC7, 0xE8, 0xF3, | ||
375 | 0x23, 0xA9, 0x7A, 0x7E, 0x36, 0xCC, 0x88, 0xBE, 0x0F, 0x1D, 0x45, 0xB7, | ||
376 | 0xFF, 0x58, 0x5A, 0xC5, 0x4B, 0xD4, 0x07, 0xB2, 0x2B, 0x41, 0x54, 0xAA, | ||
377 | 0xCC, 0x8F, 0x6D, 0x7E, 0xBF, 0x48, 0xE1, 0xD8, 0x14, 0xCC, 0x5E, 0xD2, | ||
378 | 0x0F, 0x80, 0x37, 0xE0, 0xA7, 0x97, 0x15, 0xEE, 0xF2, 0x9B, 0xE3, 0x28, | ||
379 | 0x06, 0xA1, 0xD5, 0x8B, 0xB7, 0xC5, 0xDA, 0x76, 0xF5, 0x50, 0xAA, 0x3D, | ||
380 | 0x8A, 0x1F, 0xBF, 0xF0, 0xEB, 0x19, 0xCC, 0xB1, 0xA3, 0x13, 0xD5, 0x5C, | ||
381 | 0xDA, 0x56, 0xC9, 0xEC, 0x2E, 0xF2, 0x96, 0x32, 0x38, 0x7F, 0xE8, 0xD7, | ||
382 | 0x6E, 0x3C, 0x04, 0x68, 0x04, 0x3E, 0x8F, 0x66, 0x3F, 0x48, 0x60, 0xEE, | ||
383 | 0x12, 0xBF, 0x2D, 0x5B, 0x0B, 0x74, 0x74, 0xD6, 0xE6, 0x94, 0xF9, 0x1E, | ||
384 | 0x6D, 0xBE, 0x11, 0x59, 0x74, 0xA3, 0x92, 0x6F, 0x12, 0xFE, 0xE5, 0xE4, | ||
385 | 0x38, 0x77, 0x7C, 0xB6, 0xA9, 0x32, 0xDF, 0x8C, 0xD8, 0xBE, 0xC4, 0xD0, | ||
386 | 0x73, 0xB9, 0x31, 0xBA, 0x3B, 0xC8, 0x32, 0xB6, 0x8D, 0x9D, 0xD3, 0x00, | ||
387 | 0x74, 0x1F, 0xA7, 0xBF, 0x8A, 0xFC, 0x47, 0xED, 0x25, 0x76, 0xF6, 0x93, | ||
388 | 0x6B, 0xA4, 0x24, 0x66, 0x3A, 0xAB, 0x63, 0x9C, 0x5A, 0xE4, 0xF5, 0x68, | ||
389 | 0x34, 0x23, 0xB4, 0x74, 0x2B, 0xF1, 0xC9, 0x78, 0x23, 0x8F, 0x16, 0xCB, | ||
390 | 0xE3, 0x9D, 0x65, 0x2D, 0xE3, 0xFD, 0xB8, 0xBE, 0xFC, 0x84, 0x8A, 0xD9, | ||
391 | 0x22, 0x22, 0x2E, 0x04, 0xA4, 0x03, 0x7C, 0x07, 0x13, 0xEB, 0x57, 0xA8, | ||
392 | 0x1A, 0x23, 0xF0, 0xC7, 0x34, 0x73, 0xFC, 0x64, 0x6C, 0xEA, 0x30, 0x6B, | ||
393 | 0x4B, 0xCB, 0xC8, 0x86, 0x2F, 0x83, 0x85, 0xDD, 0xFA, 0x9D, 0x4B, 0x7F, | ||
394 | 0xA2, 0xC0, 0x87, 0xE8, 0x79, 0x68, 0x33, 0x03, 0xED, 0x5B, 0xDD, 0x3A, | ||
395 | 0x06, 0x2B, 0x3C, 0xF5, 0xB3, 0xA2, 0x78, 0xA6, 0x6D, 0x2A, 0x13, 0xF8, | ||
396 | 0x3F, 0x44, 0xF8, 0x2D, 0xDF, 0x31, 0x0E, 0xE0, 0x74, 0xAB, 0x6A, 0x36, | ||
397 | 0x45, 0x97, 0xE8, 0x99, 0xA0, 0x25, 0x5D, 0xC1, 0x64, 0xF3, 0x1C, 0xC5, | ||
398 | 0x08, 0x46, 0x85, 0x1D, 0xF9, 0xAB, 0x48, 0x19, 0x5D, 0xED, 0x7E, 0xA1, | ||
399 | 0xB1, 0xD5, 0x10, 0xBD, 0x7E, 0xE7, 0x4D, 0x73, 0xFA, 0xF3, 0x6B, 0xC3, | ||
400 | 0x1E, 0xCF, 0xA2, 0x68, 0x35, 0x90, 0x46, 0xF4, 0xEB, 0x87, 0x9F, 0x92, | ||
401 | 0x40, 0x09, 0x43, 0x8B, 0x48, 0x1C, 0x6C, 0xD7, 0x88, 0x9A, 0x00, 0x2E, | ||
402 | 0xD5, 0xEE, 0x38, 0x2B, 0xC9, 0x19, 0x0D, 0xA6, 0xFC, 0x02, 0x6E, 0x47, | ||
403 | 0x95, 0x58, 0xE4, 0x47, 0x56, 0x77, 0xE9, 0xAA, 0x9E, 0x30, 0x50, 0xE2, | ||
404 | 0x76, 0x56, 0x94, 0xDF, 0xC8, 0x1F, 0x56, 0xE8, 0x80, 0xB9, 0x6E, 0x71, | ||
405 | 0x60, 0xC9, 0x80, 0xDD, 0x98, 0xED, 0xD3, 0xDF, 0xFF, 0xFF, 0xFF, 0xFF, | ||
406 | 0xFF, 0xFF, 0xFF, 0xFF, | ||
407 | }; | ||
408 | return BN_bin2bn(RFC3526_PRIME_8192, sizeof(RFC3526_PRIME_8192), bn); | ||
409 | } | ||
diff --git a/src/lib/libcrypto/bn/bn_ctx.c b/src/lib/libcrypto/bn/bn_ctx.c deleted file mode 100644 index eb2d6a43b3..0000000000 --- a/src/lib/libcrypto/bn/bn_ctx.c +++ /dev/null | |||
@@ -1,478 +0,0 @@ | |||
1 | /* $OpenBSD: bn_ctx.c,v 1.14 2015/02/10 09:50:12 miod Exp $ */ | ||
2 | /* Written by Ulf Moeller for the OpenSSL project. */ | ||
3 | /* ==================================================================== | ||
4 | * Copyright (c) 1998-2004 The OpenSSL Project. All rights reserved. | ||
5 | * | ||
6 | * Redistribution and use in source and binary forms, with or without | ||
7 | * modification, are permitted provided that the following conditions | ||
8 | * are met: | ||
9 | * | ||
10 | * 1. Redistributions of source code must retain the above copyright | ||
11 | * notice, this list of conditions and the following disclaimer. | ||
12 | * | ||
13 | * 2. Redistributions in binary form must reproduce the above copyright | ||
14 | * notice, this list of conditions and the following disclaimer in | ||
15 | * the documentation and/or other materials provided with the | ||
16 | * distribution. | ||
17 | * | ||
18 | * 3. All advertising materials mentioning features or use of this | ||
19 | * software must display the following acknowledgment: | ||
20 | * "This product includes software developed by the OpenSSL Project | ||
21 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | ||
22 | * | ||
23 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
24 | * endorse or promote products derived from this software without | ||
25 | * prior written permission. For written permission, please contact | ||
26 | * openssl-core@openssl.org. | ||
27 | * | ||
28 | * 5. Products derived from this software may not be called "OpenSSL" | ||
29 | * nor may "OpenSSL" appear in their names without prior written | ||
30 | * permission of the OpenSSL Project. | ||
31 | * | ||
32 | * 6. Redistributions of any form whatsoever must retain the following | ||
33 | * acknowledgment: | ||
34 | * "This product includes software developed by the OpenSSL Project | ||
35 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" | ||
36 | * | ||
37 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
38 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
39 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
40 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
41 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
42 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
43 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
44 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
45 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
46 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
47 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
48 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
49 | * ==================================================================== | ||
50 | * | ||
51 | * This product includes cryptographic software written by Eric Young | ||
52 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
53 | * Hudson (tjh@cryptsoft.com). | ||
54 | * | ||
55 | */ | ||
56 | |||
57 | #if !defined(BN_CTX_DEBUG) && !defined(BN_DEBUG) | ||
58 | #ifndef NDEBUG | ||
59 | #define NDEBUG | ||
60 | #endif | ||
61 | #endif | ||
62 | |||
63 | #include <stdio.h> | ||
64 | #include <string.h> | ||
65 | |||
66 | #include <openssl/opensslconf.h> | ||
67 | |||
68 | #include <openssl/err.h> | ||
69 | |||
70 | #include "bn_lcl.h" | ||
71 | |||
72 | /* TODO list | ||
73 | * | ||
74 | * 1. Check a bunch of "(words+1)" type hacks in various bignum functions and | ||
75 | * check they can be safely removed. | ||
76 | * - Check +1 and other ugliness in BN_from_montgomery() | ||
77 | * | ||
78 | * 2. Consider allowing a BN_new_ex() that, at least, lets you specify an | ||
79 | * appropriate 'block' size that will be honoured by bn_expand_internal() to | ||
80 | * prevent piddly little reallocations. OTOH, profiling bignum expansions in | ||
81 | * BN_CTX doesn't show this to be a big issue. | ||
82 | */ | ||
83 | |||
84 | /* How many bignums are in each "pool item"; */ | ||
85 | #define BN_CTX_POOL_SIZE 16 | ||
86 | /* The stack frame info is resizing, set a first-time expansion size; */ | ||
87 | #define BN_CTX_START_FRAMES 32 | ||
88 | |||
89 | /***********/ | ||
90 | /* BN_POOL */ | ||
91 | /***********/ | ||
92 | |||
93 | /* A bundle of bignums that can be linked with other bundles */ | ||
94 | typedef struct bignum_pool_item { | ||
95 | /* The bignum values */ | ||
96 | BIGNUM vals[BN_CTX_POOL_SIZE]; | ||
97 | /* Linked-list admin */ | ||
98 | struct bignum_pool_item *prev, *next; | ||
99 | } BN_POOL_ITEM; | ||
100 | |||
101 | /* A linked-list of bignums grouped in bundles */ | ||
102 | typedef struct bignum_pool { | ||
103 | /* Linked-list admin */ | ||
104 | BN_POOL_ITEM *head, *current, *tail; | ||
105 | /* Stack depth and allocation size */ | ||
106 | unsigned used, size; | ||
107 | } BN_POOL; | ||
108 | |||
109 | static void BN_POOL_init(BN_POOL *); | ||
110 | static void BN_POOL_finish(BN_POOL *); | ||
111 | #ifndef OPENSSL_NO_DEPRECATED | ||
112 | static void BN_POOL_reset(BN_POOL *); | ||
113 | #endif | ||
114 | static BIGNUM * BN_POOL_get(BN_POOL *); | ||
115 | static void BN_POOL_release(BN_POOL *, unsigned int); | ||
116 | |||
117 | /************/ | ||
118 | /* BN_STACK */ | ||
119 | /************/ | ||
120 | |||
121 | /* A wrapper to manage the "stack frames" */ | ||
122 | typedef struct bignum_ctx_stack { | ||
123 | /* Array of indexes into the bignum stack */ | ||
124 | unsigned int *indexes; | ||
125 | /* Number of stack frames, and the size of the allocated array */ | ||
126 | unsigned int depth, size; | ||
127 | } BN_STACK; | ||
128 | |||
129 | static void BN_STACK_init(BN_STACK *); | ||
130 | static void BN_STACK_finish(BN_STACK *); | ||
131 | #ifndef OPENSSL_NO_DEPRECATED | ||
132 | static void BN_STACK_reset(BN_STACK *); | ||
133 | #endif | ||
134 | static int BN_STACK_push(BN_STACK *, unsigned int); | ||
135 | static unsigned int BN_STACK_pop(BN_STACK *); | ||
136 | |||
137 | /**********/ | ||
138 | /* BN_CTX */ | ||
139 | /**********/ | ||
140 | |||
141 | /* The opaque BN_CTX type */ | ||
142 | struct bignum_ctx { | ||
143 | /* The bignum bundles */ | ||
144 | BN_POOL pool; | ||
145 | /* The "stack frames", if you will */ | ||
146 | BN_STACK stack; | ||
147 | /* The number of bignums currently assigned */ | ||
148 | unsigned int used; | ||
149 | /* Depth of stack overflow */ | ||
150 | int err_stack; | ||
151 | /* Block "gets" until an "end" (compatibility behaviour) */ | ||
152 | int too_many; | ||
153 | }; | ||
154 | |||
155 | /* Enable this to find BN_CTX bugs */ | ||
156 | #ifdef BN_CTX_DEBUG | ||
157 | static const char *ctxdbg_cur = NULL; | ||
158 | |||
159 | static void | ||
160 | ctxdbg(BN_CTX *ctx) | ||
161 | { | ||
162 | unsigned int bnidx = 0, fpidx = 0; | ||
163 | BN_POOL_ITEM *item = ctx->pool.head; | ||
164 | BN_STACK *stack = &ctx->stack; | ||
165 | |||
166 | fprintf(stderr, "(%08x): ", (unsigned int)ctx); | ||
167 | while (bnidx < ctx->used) { | ||
168 | fprintf(stderr, "%03x ", | ||
169 | item->vals[bnidx++ % BN_CTX_POOL_SIZE].dmax); | ||
170 | if (!(bnidx % BN_CTX_POOL_SIZE)) | ||
171 | item = item->next; | ||
172 | } | ||
173 | fprintf(stderr, "\n"); | ||
174 | bnidx = 0; | ||
175 | fprintf(stderr, " : "); | ||
176 | while (fpidx < stack->depth) { | ||
177 | while (bnidx++ < stack->indexes[fpidx]) | ||
178 | fprintf(stderr, " "); | ||
179 | fprintf(stderr, "^^^ "); | ||
180 | bnidx++; | ||
181 | fpidx++; | ||
182 | } | ||
183 | fprintf(stderr, "\n"); | ||
184 | } | ||
185 | #define CTXDBG_ENTRY(str, ctx) \ | ||
186 | do { \ | ||
187 | ctxdbg_cur = (str); \ | ||
188 | fprintf(stderr, "Starting %s\n", ctxdbg_cur); \ | ||
189 | ctxdbg(ctx); \ | ||
190 | } while(0) | ||
191 | |||
192 | #define CTXDBG_EXIT(ctx) \ | ||
193 | do { \ | ||
194 | fprintf(stderr, "Ending %s\n", ctxdbg_cur); \ | ||
195 | ctxdbg(ctx); \ | ||
196 | } while(0) | ||
197 | |||
198 | #define CTXDBG_RET(ctx,ret) | ||
199 | #else | ||
200 | #define CTXDBG_ENTRY(str, ctx) | ||
201 | #define CTXDBG_EXIT(ctx) | ||
202 | #define CTXDBG_RET(ctx,ret) | ||
203 | #endif | ||
204 | |||
205 | /* This function is an evil legacy and should not be used. This implementation | ||
206 | * is WYSIWYG, though I've done my best. */ | ||
207 | #ifndef OPENSSL_NO_DEPRECATED | ||
208 | void | ||
209 | BN_CTX_init(BN_CTX *ctx) | ||
210 | { | ||
211 | /* Assume the caller obtained the context via BN_CTX_new() and so is | ||
212 | * trying to reset it for use. Nothing else makes sense, least of all | ||
213 | * binary compatibility from a time when they could declare a static | ||
214 | * variable. */ | ||
215 | BN_POOL_reset(&ctx->pool); | ||
216 | BN_STACK_reset(&ctx->stack); | ||
217 | ctx->used = 0; | ||
218 | ctx->err_stack = 0; | ||
219 | ctx->too_many = 0; | ||
220 | } | ||
221 | #endif | ||
222 | |||
223 | BN_CTX * | ||
224 | BN_CTX_new(void) | ||
225 | { | ||
226 | BN_CTX *ret = malloc(sizeof(BN_CTX)); | ||
227 | if (!ret) { | ||
228 | BNerr(BN_F_BN_CTX_NEW, ERR_R_MALLOC_FAILURE); | ||
229 | return NULL; | ||
230 | } | ||
231 | |||
232 | /* Initialise the structure */ | ||
233 | BN_POOL_init(&ret->pool); | ||
234 | BN_STACK_init(&ret->stack); | ||
235 | ret->used = 0; | ||
236 | ret->err_stack = 0; | ||
237 | ret->too_many = 0; | ||
238 | return ret; | ||
239 | } | ||
240 | |||
241 | void | ||
242 | BN_CTX_free(BN_CTX *ctx) | ||
243 | { | ||
244 | if (ctx == NULL) | ||
245 | return; | ||
246 | #ifdef BN_CTX_DEBUG | ||
247 | { | ||
248 | BN_POOL_ITEM *pool = ctx->pool.head; | ||
249 | fprintf(stderr, "BN_CTX_free, stack-size=%d, pool-bignums=%d\n", | ||
250 | ctx->stack.size, ctx->pool.size); | ||
251 | fprintf(stderr, "dmaxs: "); | ||
252 | while (pool) { | ||
253 | unsigned loop = 0; | ||
254 | while (loop < BN_CTX_POOL_SIZE) | ||
255 | fprintf(stderr, "%02x ", | ||
256 | pool->vals[loop++].dmax); | ||
257 | pool = pool->next; | ||
258 | } | ||
259 | fprintf(stderr, "\n"); | ||
260 | } | ||
261 | #endif | ||
262 | BN_STACK_finish(&ctx->stack); | ||
263 | BN_POOL_finish(&ctx->pool); | ||
264 | free(ctx); | ||
265 | } | ||
266 | |||
267 | void | ||
268 | BN_CTX_start(BN_CTX *ctx) | ||
269 | { | ||
270 | CTXDBG_ENTRY("BN_CTX_start", ctx); | ||
271 | |||
272 | /* If we're already overflowing ... */ | ||
273 | if (ctx->err_stack || ctx->too_many) | ||
274 | ctx->err_stack++; | ||
275 | /* (Try to) get a new frame pointer */ | ||
276 | else if (!BN_STACK_push(&ctx->stack, ctx->used)) { | ||
277 | BNerr(BN_F_BN_CTX_START, BN_R_TOO_MANY_TEMPORARY_VARIABLES); | ||
278 | ctx->err_stack++; | ||
279 | } | ||
280 | CTXDBG_EXIT(ctx); | ||
281 | } | ||
282 | |||
283 | void | ||
284 | BN_CTX_end(BN_CTX *ctx) | ||
285 | { | ||
286 | CTXDBG_ENTRY("BN_CTX_end", ctx); | ||
287 | |||
288 | if (ctx->err_stack) | ||
289 | ctx->err_stack--; | ||
290 | else { | ||
291 | unsigned int fp = BN_STACK_pop(&ctx->stack); | ||
292 | /* Does this stack frame have anything to release? */ | ||
293 | if (fp < ctx->used) | ||
294 | BN_POOL_release(&ctx->pool, ctx->used - fp); | ||
295 | ctx->used = fp; | ||
296 | /* Unjam "too_many" in case "get" had failed */ | ||
297 | ctx->too_many = 0; | ||
298 | } | ||
299 | CTXDBG_EXIT(ctx); | ||
300 | } | ||
301 | |||
302 | BIGNUM * | ||
303 | BN_CTX_get(BN_CTX *ctx) | ||
304 | { | ||
305 | BIGNUM *ret; | ||
306 | |||
307 | CTXDBG_ENTRY("BN_CTX_get", ctx); | ||
308 | |||
309 | if (ctx->err_stack || ctx->too_many) | ||
310 | return NULL; | ||
311 | if ((ret = BN_POOL_get(&ctx->pool)) == NULL) { | ||
312 | /* Setting too_many prevents repeated "get" attempts from | ||
313 | * cluttering the error stack. */ | ||
314 | ctx->too_many = 1; | ||
315 | BNerr(BN_F_BN_CTX_GET, BN_R_TOO_MANY_TEMPORARY_VARIABLES); | ||
316 | return NULL; | ||
317 | } | ||
318 | /* OK, make sure the returned bignum is "zero" */ | ||
319 | BN_zero(ret); | ||
320 | ctx->used++; | ||
321 | CTXDBG_RET(ctx, ret); | ||
322 | return ret; | ||
323 | } | ||
324 | |||
325 | /************/ | ||
326 | /* BN_STACK */ | ||
327 | /************/ | ||
328 | |||
329 | static void | ||
330 | BN_STACK_init(BN_STACK *st) | ||
331 | { | ||
332 | st->indexes = NULL; | ||
333 | st->depth = st->size = 0; | ||
334 | } | ||
335 | |||
336 | static void | ||
337 | BN_STACK_finish(BN_STACK *st) | ||
338 | { | ||
339 | if (st->size) | ||
340 | free(st->indexes); | ||
341 | } | ||
342 | |||
343 | #ifndef OPENSSL_NO_DEPRECATED | ||
344 | static void | ||
345 | BN_STACK_reset(BN_STACK *st) | ||
346 | { | ||
347 | st->depth = 0; | ||
348 | } | ||
349 | #endif | ||
350 | |||
351 | static int | ||
352 | BN_STACK_push(BN_STACK *st, unsigned int idx) | ||
353 | { | ||
354 | if (st->depth == st->size) | ||
355 | /* Need to expand */ | ||
356 | { | ||
357 | unsigned int newsize = (st->size ? | ||
358 | (st->size * 3 / 2) : BN_CTX_START_FRAMES); | ||
359 | unsigned int *newitems = reallocarray(NULL, | ||
360 | newsize, sizeof(unsigned int)); | ||
361 | if (!newitems) | ||
362 | return 0; | ||
363 | if (st->depth) | ||
364 | memcpy(newitems, st->indexes, st->depth * | ||
365 | sizeof(unsigned int)); | ||
366 | if (st->size) | ||
367 | free(st->indexes); | ||
368 | st->indexes = newitems; | ||
369 | st->size = newsize; | ||
370 | } | ||
371 | st->indexes[(st->depth)++] = idx; | ||
372 | return 1; | ||
373 | } | ||
374 | |||
375 | static unsigned int | ||
376 | BN_STACK_pop(BN_STACK *st) | ||
377 | { | ||
378 | return st->indexes[--(st->depth)]; | ||
379 | } | ||
380 | |||
381 | /***********/ | ||
382 | /* BN_POOL */ | ||
383 | /***********/ | ||
384 | |||
385 | static void | ||
386 | BN_POOL_init(BN_POOL *p) | ||
387 | { | ||
388 | p->head = p->current = p->tail = NULL; | ||
389 | p->used = p->size = 0; | ||
390 | } | ||
391 | |||
392 | static void | ||
393 | BN_POOL_finish(BN_POOL *p) | ||
394 | { | ||
395 | while (p->head) { | ||
396 | unsigned int loop = 0; | ||
397 | BIGNUM *bn = p->head->vals; | ||
398 | while (loop++ < BN_CTX_POOL_SIZE) { | ||
399 | if (bn->d) | ||
400 | BN_clear_free(bn); | ||
401 | bn++; | ||
402 | } | ||
403 | p->current = p->head->next; | ||
404 | free(p->head); | ||
405 | p->head = p->current; | ||
406 | } | ||
407 | } | ||
408 | |||
409 | #ifndef OPENSSL_NO_DEPRECATED | ||
410 | static void | ||
411 | BN_POOL_reset(BN_POOL *p) | ||
412 | { | ||
413 | BN_POOL_ITEM *item = p->head; | ||
414 | while (item) { | ||
415 | unsigned int loop = 0; | ||
416 | BIGNUM *bn = item->vals; | ||
417 | while (loop++ < BN_CTX_POOL_SIZE) { | ||
418 | if (bn->d) | ||
419 | BN_clear(bn); | ||
420 | bn++; | ||
421 | } | ||
422 | item = item->next; | ||
423 | } | ||
424 | p->current = p->head; | ||
425 | p->used = 0; | ||
426 | } | ||
427 | #endif | ||
428 | |||
429 | static BIGNUM * | ||
430 | BN_POOL_get(BN_POOL *p) | ||
431 | { | ||
432 | if (p->used == p->size) { | ||
433 | BIGNUM *bn; | ||
434 | unsigned int loop = 0; | ||
435 | BN_POOL_ITEM *item = malloc(sizeof(BN_POOL_ITEM)); | ||
436 | if (!item) | ||
437 | return NULL; | ||
438 | /* Initialise the structure */ | ||
439 | bn = item->vals; | ||
440 | while (loop++ < BN_CTX_POOL_SIZE) | ||
441 | BN_init(bn++); | ||
442 | item->prev = p->tail; | ||
443 | item->next = NULL; | ||
444 | /* Link it in */ | ||
445 | if (!p->head) | ||
446 | p->head = p->current = p->tail = item; | ||
447 | else { | ||
448 | p->tail->next = item; | ||
449 | p->tail = item; | ||
450 | p->current = item; | ||
451 | } | ||
452 | p->size += BN_CTX_POOL_SIZE; | ||
453 | p->used++; | ||
454 | /* Return the first bignum from the new pool */ | ||
455 | return item->vals; | ||
456 | } | ||
457 | if (!p->used) | ||
458 | p->current = p->head; | ||
459 | else if ((p->used % BN_CTX_POOL_SIZE) == 0) | ||
460 | p->current = p->current->next; | ||
461 | return p->current->vals + ((p->used++) % BN_CTX_POOL_SIZE); | ||
462 | } | ||
463 | |||
464 | static void | ||
465 | BN_POOL_release(BN_POOL *p, unsigned int num) | ||
466 | { | ||
467 | unsigned int offset = (p->used - 1) % BN_CTX_POOL_SIZE; | ||
468 | |||
469 | p->used -= num; | ||
470 | while (num--) { | ||
471 | bn_check_top(p->current->vals + offset); | ||
472 | if (!offset) { | ||
473 | offset = BN_CTX_POOL_SIZE - 1; | ||
474 | p->current = p->current->prev; | ||
475 | } else | ||
476 | offset--; | ||
477 | } | ||
478 | } | ||
diff --git a/src/lib/libcrypto/bn/bn_depr.c b/src/lib/libcrypto/bn/bn_depr.c deleted file mode 100644 index dc5c2abee0..0000000000 --- a/src/lib/libcrypto/bn/bn_depr.c +++ /dev/null | |||
@@ -1,115 +0,0 @@ | |||
1 | /* $OpenBSD: bn_depr.c,v 1.7 2014/10/18 17:20:40 jsing Exp $ */ | ||
2 | /* ==================================================================== | ||
3 | * Copyright (c) 1998-2002 The OpenSSL Project. All rights reserved. | ||
4 | * | ||
5 | * Redistribution and use in source and binary forms, with or without | ||
6 | * modification, are permitted provided that the following conditions | ||
7 | * are met: | ||
8 | * | ||
9 | * 1. Redistributions of source code must retain the above copyright | ||
10 | * notice, this list of conditions and the following disclaimer. | ||
11 | * | ||
12 | * 2. Redistributions in binary form must reproduce the above copyright | ||
13 | * notice, this list of conditions and the following disclaimer in | ||
14 | * the documentation and/or other materials provided with the | ||
15 | * distribution. | ||
16 | * | ||
17 | * 3. All advertising materials mentioning features or use of this | ||
18 | * software must display the following acknowledgment: | ||
19 | * "This product includes software developed by the OpenSSL Project | ||
20 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | ||
21 | * | ||
22 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
23 | * endorse or promote products derived from this software without | ||
24 | * prior written permission. For written permission, please contact | ||
25 | * openssl-core@openssl.org. | ||
26 | * | ||
27 | * 5. Products derived from this software may not be called "OpenSSL" | ||
28 | * nor may "OpenSSL" appear in their names without prior written | ||
29 | * permission of the OpenSSL Project. | ||
30 | * | ||
31 | * 6. Redistributions of any form whatsoever must retain the following | ||
32 | * acknowledgment: | ||
33 | * "This product includes software developed by the OpenSSL Project | ||
34 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" | ||
35 | * | ||
36 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
37 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
38 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
39 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
40 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
41 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
42 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
43 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
44 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
45 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
46 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
47 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
48 | * ==================================================================== | ||
49 | * | ||
50 | * This product includes cryptographic software written by Eric Young | ||
51 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
52 | * Hudson (tjh@cryptsoft.com). | ||
53 | * | ||
54 | */ | ||
55 | |||
56 | /* Support for deprecated functions goes here - static linkage will only slurp | ||
57 | * this code if applications are using them directly. */ | ||
58 | |||
59 | #include <stdio.h> | ||
60 | #include <time.h> | ||
61 | |||
62 | #include <openssl/opensslconf.h> | ||
63 | |||
64 | #include "bn_lcl.h" | ||
65 | |||
66 | #ifndef OPENSSL_NO_DEPRECATED | ||
67 | BIGNUM * | ||
68 | BN_generate_prime(BIGNUM *ret, int bits, int safe, const BIGNUM *add, | ||
69 | const BIGNUM *rem, void (*callback)(int, int, void *), void *cb_arg) | ||
70 | { | ||
71 | BN_GENCB cb; | ||
72 | BIGNUM *rnd = NULL; | ||
73 | int found = 0; | ||
74 | |||
75 | BN_GENCB_set_old(&cb, callback, cb_arg); | ||
76 | |||
77 | if (ret == NULL) { | ||
78 | if ((rnd = BN_new()) == NULL) | ||
79 | goto err; | ||
80 | } else | ||
81 | rnd = ret; | ||
82 | if (!BN_generate_prime_ex(rnd, bits, safe, add, rem, &cb)) | ||
83 | goto err; | ||
84 | |||
85 | /* we have a prime :-) */ | ||
86 | found = 1; | ||
87 | |||
88 | err: | ||
89 | if (!found && (ret == NULL) && (rnd != NULL)) | ||
90 | BN_free(rnd); | ||
91 | return (found ? rnd : NULL); | ||
92 | } | ||
93 | |||
94 | int | ||
95 | BN_is_prime(const BIGNUM *a, int checks, void (*callback)(int, int, void *), | ||
96 | BN_CTX *ctx_passed, void *cb_arg) | ||
97 | { | ||
98 | BN_GENCB cb; | ||
99 | |||
100 | BN_GENCB_set_old(&cb, callback, cb_arg); | ||
101 | return BN_is_prime_ex(a, checks, ctx_passed, &cb); | ||
102 | } | ||
103 | |||
104 | int | ||
105 | BN_is_prime_fasttest(const BIGNUM *a, int checks, | ||
106 | void (*callback)(int, int, void *), BN_CTX *ctx_passed, void *cb_arg, | ||
107 | int do_trial_division) | ||
108 | { | ||
109 | BN_GENCB cb; | ||
110 | |||
111 | BN_GENCB_set_old(&cb, callback, cb_arg); | ||
112 | return BN_is_prime_fasttest_ex(a, checks, ctx_passed, | ||
113 | do_trial_division, &cb); | ||
114 | } | ||
115 | #endif | ||
diff --git a/src/lib/libcrypto/bn/bn_div.c b/src/lib/libcrypto/bn/bn_div.c deleted file mode 100644 index fefc53f9fa..0000000000 --- a/src/lib/libcrypto/bn/bn_div.c +++ /dev/null | |||
@@ -1,381 +0,0 @@ | |||
1 | /* $OpenBSD: bn_div.c,v 1.23 2015/02/09 15:49:22 jsing Exp $ */ | ||
2 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) | ||
3 | * All rights reserved. | ||
4 | * | ||
5 | * This package is an SSL implementation written | ||
6 | * by Eric Young (eay@cryptsoft.com). | ||
7 | * The implementation was written so as to conform with Netscapes SSL. | ||
8 | * | ||
9 | * This library is free for commercial and non-commercial use as long as | ||
10 | * the following conditions are aheared to. The following conditions | ||
11 | * apply to all code found in this distribution, be it the RC4, RSA, | ||
12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation | ||
13 | * included with this distribution is covered by the same copyright terms | ||
14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | ||
15 | * | ||
16 | * Copyright remains Eric Young's, and as such any Copyright notices in | ||
17 | * the code are not to be removed. | ||
18 | * If this package is used in a product, Eric Young should be given attribution | ||
19 | * as the author of the parts of the library used. | ||
20 | * This can be in the form of a textual message at program startup or | ||
21 | * in documentation (online or textual) provided with the package. | ||
22 | * | ||
23 | * Redistribution and use in source and binary forms, with or without | ||
24 | * modification, are permitted provided that the following conditions | ||
25 | * are met: | ||
26 | * 1. Redistributions of source code must retain the copyright | ||
27 | * notice, this list of conditions and the following disclaimer. | ||
28 | * 2. Redistributions in binary form must reproduce the above copyright | ||
29 | * notice, this list of conditions and the following disclaimer in the | ||
30 | * documentation and/or other materials provided with the distribution. | ||
31 | * 3. All advertising materials mentioning features or use of this software | ||
32 | * must display the following acknowledgement: | ||
33 | * "This product includes cryptographic software written by | ||
34 | * Eric Young (eay@cryptsoft.com)" | ||
35 | * The word 'cryptographic' can be left out if the rouines from the library | ||
36 | * being used are not cryptographic related :-). | ||
37 | * 4. If you include any Windows specific code (or a derivative thereof) from | ||
38 | * the apps directory (application code) you must include an acknowledgement: | ||
39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | ||
40 | * | ||
41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | ||
42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | ||
44 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | ||
45 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | ||
46 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | ||
47 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
48 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | ||
49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | ||
50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | ||
51 | * SUCH DAMAGE. | ||
52 | * | ||
53 | * The licence and distribution terms for any publically available version or | ||
54 | * derivative of this code cannot be changed. i.e. this code cannot simply be | ||
55 | * copied and put under another distribution licence | ||
56 | * [including the GNU Public Licence.] | ||
57 | */ | ||
58 | |||
59 | #include <stdio.h> | ||
60 | |||
61 | #include <openssl/opensslconf.h> | ||
62 | |||
63 | #include <openssl/bn.h> | ||
64 | #include <openssl/err.h> | ||
65 | |||
66 | #include "bn_lcl.h" | ||
67 | |||
68 | #if !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM) \ | ||
69 | && !defined(BN_DIV3W) | ||
70 | # if defined(__GNUC__) && __GNUC__>=2 | ||
71 | # if defined(__i386) || defined (__i386__) | ||
72 | /* | ||
73 | * There were two reasons for implementing this template: | ||
74 | * - GNU C generates a call to a function (__udivdi3 to be exact) | ||
75 | * in reply to ((((BN_ULLONG)n0)<<BN_BITS2)|n1)/d0 (I fail to | ||
76 | * understand why...); | ||
77 | * - divl doesn't only calculate quotient, but also leaves | ||
78 | * remainder in %edx which we can definitely use here:-) | ||
79 | * | ||
80 | * <appro@fy.chalmers.se> | ||
81 | */ | ||
82 | #undef bn_div_words | ||
83 | # define bn_div_words(n0,n1,d0) \ | ||
84 | ({ asm volatile ( \ | ||
85 | "divl %4" \ | ||
86 | : "=a"(q), "=d"(rem) \ | ||
87 | : "a"(n1), "d"(n0), "g"(d0) \ | ||
88 | : "cc"); \ | ||
89 | q; \ | ||
90 | }) | ||
91 | # define REMAINDER_IS_ALREADY_CALCULATED | ||
92 | # elif defined(__x86_64) | ||
93 | /* | ||
94 | * Same story here, but it's 128-bit by 64-bit division. Wow! | ||
95 | * <appro@fy.chalmers.se> | ||
96 | */ | ||
97 | # undef bn_div_words | ||
98 | # define bn_div_words(n0,n1,d0) \ | ||
99 | ({ asm volatile ( \ | ||
100 | "divq %4" \ | ||
101 | : "=a"(q), "=d"(rem) \ | ||
102 | : "a"(n1), "d"(n0), "g"(d0) \ | ||
103 | : "cc"); \ | ||
104 | q; \ | ||
105 | }) | ||
106 | # define REMAINDER_IS_ALREADY_CALCULATED | ||
107 | # endif /* __<cpu> */ | ||
108 | # endif /* __GNUC__ */ | ||
109 | #endif /* OPENSSL_NO_ASM */ | ||
110 | |||
111 | |||
112 | /* BN_div computes dv := num / divisor, rounding towards | ||
113 | * zero, and sets up rm such that dv*divisor + rm = num holds. | ||
114 | * Thus: | ||
115 | * dv->neg == num->neg ^ divisor->neg (unless the result is zero) | ||
116 | * rm->neg == num->neg (unless the remainder is zero) | ||
117 | * If 'dv' or 'rm' is NULL, the respective value is not returned. | ||
118 | */ | ||
119 | int | ||
120 | BN_div(BIGNUM *dv, BIGNUM *rm, const BIGNUM *num, const BIGNUM *divisor, | ||
121 | BN_CTX *ctx) | ||
122 | { | ||
123 | int norm_shift, i, loop; | ||
124 | BIGNUM *tmp, wnum, *snum, *sdiv, *res; | ||
125 | BN_ULONG *resp, *wnump; | ||
126 | BN_ULONG d0, d1; | ||
127 | int num_n, div_n; | ||
128 | int no_branch = 0; | ||
129 | |||
130 | /* Invalid zero-padding would have particularly bad consequences | ||
131 | * in the case of 'num', so don't just rely on bn_check_top() for this one | ||
132 | * (bn_check_top() works only for BN_DEBUG builds) */ | ||
133 | if (num->top > 0 && num->d[num->top - 1] == 0) { | ||
134 | BNerr(BN_F_BN_DIV, BN_R_NOT_INITIALIZED); | ||
135 | return 0; | ||
136 | } | ||
137 | |||
138 | bn_check_top(num); | ||
139 | |||
140 | if ((BN_get_flags(num, BN_FLG_CONSTTIME) != 0) || | ||
141 | (BN_get_flags(divisor, BN_FLG_CONSTTIME) != 0)) { | ||
142 | no_branch = 1; | ||
143 | } | ||
144 | |||
145 | bn_check_top(dv); | ||
146 | bn_check_top(rm); | ||
147 | /* bn_check_top(num); */ /* 'num' has been checked already */ | ||
148 | bn_check_top(divisor); | ||
149 | |||
150 | if (BN_is_zero(divisor)) { | ||
151 | BNerr(BN_F_BN_DIV, BN_R_DIV_BY_ZERO); | ||
152 | return (0); | ||
153 | } | ||
154 | |||
155 | if (!no_branch && BN_ucmp(num, divisor) < 0) { | ||
156 | if (rm != NULL) { | ||
157 | if (BN_copy(rm, num) == NULL) | ||
158 | return (0); | ||
159 | } | ||
160 | if (dv != NULL) | ||
161 | BN_zero(dv); | ||
162 | return (1); | ||
163 | } | ||
164 | |||
165 | BN_CTX_start(ctx); | ||
166 | tmp = BN_CTX_get(ctx); | ||
167 | snum = BN_CTX_get(ctx); | ||
168 | sdiv = BN_CTX_get(ctx); | ||
169 | if (dv == NULL) | ||
170 | res = BN_CTX_get(ctx); | ||
171 | else | ||
172 | res = dv; | ||
173 | if (tmp == NULL || snum == NULL || sdiv == NULL || res == NULL) | ||
174 | goto err; | ||
175 | |||
176 | /* First we normalise the numbers */ | ||
177 | norm_shift = BN_BITS2 - ((BN_num_bits(divisor)) % BN_BITS2); | ||
178 | if (!(BN_lshift(sdiv, divisor, norm_shift))) | ||
179 | goto err; | ||
180 | sdiv->neg = 0; | ||
181 | norm_shift += BN_BITS2; | ||
182 | if (!(BN_lshift(snum, num, norm_shift))) | ||
183 | goto err; | ||
184 | snum->neg = 0; | ||
185 | |||
186 | if (no_branch) { | ||
187 | /* Since we don't know whether snum is larger than sdiv, | ||
188 | * we pad snum with enough zeroes without changing its | ||
189 | * value. | ||
190 | */ | ||
191 | if (snum->top <= sdiv->top + 1) { | ||
192 | if (bn_wexpand(snum, sdiv->top + 2) == NULL) | ||
193 | goto err; | ||
194 | for (i = snum->top; i < sdiv->top + 2; i++) | ||
195 | snum->d[i] = 0; | ||
196 | snum->top = sdiv->top + 2; | ||
197 | } else { | ||
198 | if (bn_wexpand(snum, snum->top + 1) == NULL) | ||
199 | goto err; | ||
200 | snum->d[snum->top] = 0; | ||
201 | snum->top ++; | ||
202 | } | ||
203 | } | ||
204 | |||
205 | div_n = sdiv->top; | ||
206 | num_n = snum->top; | ||
207 | loop = num_n - div_n; | ||
208 | /* Lets setup a 'window' into snum | ||
209 | * This is the part that corresponds to the current | ||
210 | * 'area' being divided */ | ||
211 | wnum.neg = 0; | ||
212 | wnum.d = &(snum->d[loop]); | ||
213 | wnum.top = div_n; | ||
214 | /* only needed when BN_ucmp messes up the values between top and max */ | ||
215 | wnum.dmax = snum->dmax - loop; /* so we don't step out of bounds */ | ||
216 | wnum.flags = snum->flags | BN_FLG_STATIC_DATA; | ||
217 | |||
218 | /* Get the top 2 words of sdiv */ | ||
219 | /* div_n=sdiv->top; */ | ||
220 | d0 = sdiv->d[div_n - 1]; | ||
221 | d1 = (div_n == 1) ? 0 : sdiv->d[div_n - 2]; | ||
222 | |||
223 | /* pointer to the 'top' of snum */ | ||
224 | wnump = &(snum->d[num_n - 1]); | ||
225 | |||
226 | /* Setup to 'res' */ | ||
227 | res->neg = (num->neg ^ divisor->neg); | ||
228 | if (!bn_wexpand(res, (loop + 1))) | ||
229 | goto err; | ||
230 | res->top = loop - no_branch; | ||
231 | resp = &(res->d[loop - 1]); | ||
232 | |||
233 | /* space for temp */ | ||
234 | if (!bn_wexpand(tmp, (div_n + 1))) | ||
235 | goto err; | ||
236 | |||
237 | if (!no_branch) { | ||
238 | if (BN_ucmp(&wnum, sdiv) >= 0) { | ||
239 | /* If BN_DEBUG_RAND is defined BN_ucmp changes (via | ||
240 | * bn_pollute) the const bignum arguments => | ||
241 | * clean the values between top and max again */ | ||
242 | bn_clear_top2max(&wnum); | ||
243 | bn_sub_words(wnum.d, wnum.d, sdiv->d, div_n); | ||
244 | *resp = 1; | ||
245 | } else | ||
246 | res->top--; | ||
247 | } | ||
248 | |||
249 | /* if res->top == 0 then clear the neg value otherwise decrease | ||
250 | * the resp pointer */ | ||
251 | if (res->top == 0) | ||
252 | res->neg = 0; | ||
253 | else | ||
254 | resp--; | ||
255 | |||
256 | for (i = 0; i < loop - 1; i++, wnump--, resp--) { | ||
257 | BN_ULONG q, l0; | ||
258 | /* the first part of the loop uses the top two words of | ||
259 | * snum and sdiv to calculate a BN_ULONG q such that | ||
260 | * | wnum - sdiv * q | < sdiv */ | ||
261 | #if defined(BN_DIV3W) && !defined(OPENSSL_NO_ASM) | ||
262 | BN_ULONG bn_div_3_words(BN_ULONG*, BN_ULONG, BN_ULONG); | ||
263 | q = bn_div_3_words(wnump, d1, d0); | ||
264 | #else | ||
265 | BN_ULONG n0, n1, rem = 0; | ||
266 | |||
267 | n0 = wnump[0]; | ||
268 | n1 = wnump[-1]; | ||
269 | if (n0 == d0) | ||
270 | q = BN_MASK2; | ||
271 | else /* n0 < d0 */ | ||
272 | { | ||
273 | #ifdef BN_LLONG | ||
274 | BN_ULLONG t2; | ||
275 | |||
276 | #if defined(BN_DIV2W) && !defined(bn_div_words) | ||
277 | q = (BN_ULONG)(((((BN_ULLONG)n0) << BN_BITS2)|n1)/d0); | ||
278 | #else | ||
279 | q = bn_div_words(n0, n1, d0); | ||
280 | #endif | ||
281 | |||
282 | #ifndef REMAINDER_IS_ALREADY_CALCULATED | ||
283 | /* | ||
284 | * rem doesn't have to be BN_ULLONG. The least we | ||
285 | * know it's less that d0, isn't it? | ||
286 | */ | ||
287 | rem = (n1 - q * d0) & BN_MASK2; | ||
288 | #endif | ||
289 | t2 = (BN_ULLONG)d1*q; | ||
290 | |||
291 | for (;;) { | ||
292 | if (t2 <= ((((BN_ULLONG)rem) << BN_BITS2) | | ||
293 | wnump[-2])) | ||
294 | break; | ||
295 | q--; | ||
296 | rem += d0; | ||
297 | if (rem < d0) break; /* don't let rem overflow */ | ||
298 | t2 -= d1; | ||
299 | } | ||
300 | #else /* !BN_LLONG */ | ||
301 | BN_ULONG t2l, t2h; | ||
302 | |||
303 | q = bn_div_words(n0, n1, d0); | ||
304 | #ifndef REMAINDER_IS_ALREADY_CALCULATED | ||
305 | rem = (n1 - q*d0)&BN_MASK2; | ||
306 | #endif | ||
307 | |||
308 | #if defined(BN_UMULT_LOHI) | ||
309 | BN_UMULT_LOHI(t2l, t2h, d1, q); | ||
310 | #elif defined(BN_UMULT_HIGH) | ||
311 | t2l = d1 * q; | ||
312 | t2h = BN_UMULT_HIGH(d1, q); | ||
313 | #else | ||
314 | { | ||
315 | BN_ULONG ql, qh; | ||
316 | t2l = LBITS(d1); | ||
317 | t2h = HBITS(d1); | ||
318 | ql = LBITS(q); | ||
319 | qh = HBITS(q); | ||
320 | mul64(t2l, t2h, ql, qh); /* t2=(BN_ULLONG)d1*q; */ | ||
321 | } | ||
322 | #endif | ||
323 | |||
324 | for (;;) { | ||
325 | if ((t2h < rem) || | ||
326 | ((t2h == rem) && (t2l <= wnump[-2]))) | ||
327 | break; | ||
328 | q--; | ||
329 | rem += d0; | ||
330 | if (rem < d0) | ||
331 | break; /* don't let rem overflow */ | ||
332 | if (t2l < d1) | ||
333 | t2h--; | ||
334 | t2l -= d1; | ||
335 | } | ||
336 | #endif /* !BN_LLONG */ | ||
337 | } | ||
338 | #endif /* !BN_DIV3W */ | ||
339 | |||
340 | l0 = bn_mul_words(tmp->d, sdiv->d, div_n, q); | ||
341 | tmp->d[div_n] = l0; | ||
342 | wnum.d--; | ||
343 | /* ingore top values of the bignums just sub the two | ||
344 | * BN_ULONG arrays with bn_sub_words */ | ||
345 | if (bn_sub_words(wnum.d, wnum.d, tmp->d, div_n + 1)) { | ||
346 | /* Note: As we have considered only the leading | ||
347 | * two BN_ULONGs in the calculation of q, sdiv * q | ||
348 | * might be greater than wnum (but then (q-1) * sdiv | ||
349 | * is less or equal than wnum) | ||
350 | */ | ||
351 | q--; | ||
352 | if (bn_add_words(wnum.d, wnum.d, sdiv->d, div_n)) | ||
353 | /* we can't have an overflow here (assuming | ||
354 | * that q != 0, but if q == 0 then tmp is | ||
355 | * zero anyway) */ | ||
356 | (*wnump)++; | ||
357 | } | ||
358 | /* store part of the result */ | ||
359 | *resp = q; | ||
360 | } | ||
361 | bn_correct_top(snum); | ||
362 | if (rm != NULL) { | ||
363 | /* Keep a copy of the neg flag in num because if rm==num | ||
364 | * BN_rshift() will overwrite it. | ||
365 | */ | ||
366 | int neg = num->neg; | ||
367 | BN_rshift(rm, snum, norm_shift); | ||
368 | if (!BN_is_zero(rm)) | ||
369 | rm->neg = neg; | ||
370 | bn_check_top(rm); | ||
371 | } | ||
372 | if (no_branch) | ||
373 | bn_correct_top(res); | ||
374 | BN_CTX_end(ctx); | ||
375 | return (1); | ||
376 | |||
377 | err: | ||
378 | bn_check_top(rm); | ||
379 | BN_CTX_end(ctx); | ||
380 | return (0); | ||
381 | } | ||
diff --git a/src/lib/libcrypto/bn/bn_err.c b/src/lib/libcrypto/bn/bn_err.c deleted file mode 100644 index 5a0f359d86..0000000000 --- a/src/lib/libcrypto/bn/bn_err.c +++ /dev/null | |||
@@ -1,150 +0,0 @@ | |||
1 | /* $OpenBSD: bn_err.c,v 1.12 2014/07/10 22:45:56 jsing Exp $ */ | ||
2 | /* ==================================================================== | ||
3 | * Copyright (c) 1999-2007 The OpenSSL Project. All rights reserved. | ||
4 | * | ||
5 | * Redistribution and use in source and binary forms, with or without | ||
6 | * modification, are permitted provided that the following conditions | ||
7 | * are met: | ||
8 | * | ||
9 | * 1. Redistributions of source code must retain the above copyright | ||
10 | * notice, this list of conditions and the following disclaimer. | ||
11 | * | ||
12 | * 2. Redistributions in binary form must reproduce the above copyright | ||
13 | * notice, this list of conditions and the following disclaimer in | ||
14 | * the documentation and/or other materials provided with the | ||
15 | * distribution. | ||
16 | * | ||
17 | * 3. All advertising materials mentioning features or use of this | ||
18 | * software must display the following acknowledgment: | ||
19 | * "This product includes software developed by the OpenSSL Project | ||
20 | * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" | ||
21 | * | ||
22 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
23 | * endorse or promote products derived from this software without | ||
24 | * prior written permission. For written permission, please contact | ||
25 | * openssl-core@OpenSSL.org. | ||
26 | * | ||
27 | * 5. Products derived from this software may not be called "OpenSSL" | ||
28 | * nor may "OpenSSL" appear in their names without prior written | ||
29 | * permission of the OpenSSL Project. | ||
30 | * | ||
31 | * 6. Redistributions of any form whatsoever must retain the following | ||
32 | * acknowledgment: | ||
33 | * "This product includes software developed by the OpenSSL Project | ||
34 | * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" | ||
35 | * | ||
36 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
37 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
38 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
39 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
40 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
41 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
42 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
43 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
44 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
45 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
46 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
47 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
48 | * ==================================================================== | ||
49 | * | ||
50 | * This product includes cryptographic software written by Eric Young | ||
51 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
52 | * Hudson (tjh@cryptsoft.com). | ||
53 | * | ||
54 | */ | ||
55 | |||
56 | /* NOTE: this file was auto generated by the mkerr.pl script: any changes | ||
57 | * made to it will be overwritten when the script next updates this file, | ||
58 | * only reason strings will be preserved. | ||
59 | */ | ||
60 | |||
61 | #include <stdio.h> | ||
62 | |||
63 | #include <openssl/opensslconf.h> | ||
64 | |||
65 | #include <openssl/err.h> | ||
66 | #include <openssl/bn.h> | ||
67 | |||
68 | /* BEGIN ERROR CODES */ | ||
69 | #ifndef OPENSSL_NO_ERR | ||
70 | |||
71 | #define ERR_FUNC(func) ERR_PACK(ERR_LIB_BN,func,0) | ||
72 | #define ERR_REASON(reason) ERR_PACK(ERR_LIB_BN,0,reason) | ||
73 | |||
74 | static ERR_STRING_DATA BN_str_functs[]= { | ||
75 | {ERR_FUNC(BN_F_BNRAND), "BNRAND"}, | ||
76 | {ERR_FUNC(BN_F_BN_BLINDING_CONVERT_EX), "BN_BLINDING_convert_ex"}, | ||
77 | {ERR_FUNC(BN_F_BN_BLINDING_CREATE_PARAM), "BN_BLINDING_create_param"}, | ||
78 | {ERR_FUNC(BN_F_BN_BLINDING_INVERT_EX), "BN_BLINDING_invert_ex"}, | ||
79 | {ERR_FUNC(BN_F_BN_BLINDING_NEW), "BN_BLINDING_new"}, | ||
80 | {ERR_FUNC(BN_F_BN_BLINDING_UPDATE), "BN_BLINDING_update"}, | ||
81 | {ERR_FUNC(BN_F_BN_BN2DEC), "BN_bn2dec"}, | ||
82 | {ERR_FUNC(BN_F_BN_BN2HEX), "BN_bn2hex"}, | ||
83 | {ERR_FUNC(BN_F_BN_CTX_GET), "BN_CTX_get"}, | ||
84 | {ERR_FUNC(BN_F_BN_CTX_NEW), "BN_CTX_new"}, | ||
85 | {ERR_FUNC(BN_F_BN_CTX_START), "BN_CTX_start"}, | ||
86 | {ERR_FUNC(BN_F_BN_DIV), "BN_div"}, | ||
87 | {ERR_FUNC(BN_F_BN_DIV_NO_BRANCH), "BN_div_no_branch"}, | ||
88 | {ERR_FUNC(BN_F_BN_DIV_RECP), "BN_div_recp"}, | ||
89 | {ERR_FUNC(BN_F_BN_EXP), "BN_exp"}, | ||
90 | {ERR_FUNC(BN_F_BN_EXPAND2), "bn_expand2"}, | ||
91 | {ERR_FUNC(BN_F_BN_EXPAND_INTERNAL), "BN_EXPAND_INTERNAL"}, | ||
92 | {ERR_FUNC(BN_F_BN_GF2M_MOD), "BN_GF2m_mod"}, | ||
93 | {ERR_FUNC(BN_F_BN_GF2M_MOD_EXP), "BN_GF2m_mod_exp"}, | ||
94 | {ERR_FUNC(BN_F_BN_GF2M_MOD_MUL), "BN_GF2m_mod_mul"}, | ||
95 | {ERR_FUNC(BN_F_BN_GF2M_MOD_SOLVE_QUAD), "BN_GF2m_mod_solve_quad"}, | ||
96 | {ERR_FUNC(BN_F_BN_GF2M_MOD_SOLVE_QUAD_ARR), "BN_GF2m_mod_solve_quad_arr"}, | ||
97 | {ERR_FUNC(BN_F_BN_GF2M_MOD_SQR), "BN_GF2m_mod_sqr"}, | ||
98 | {ERR_FUNC(BN_F_BN_GF2M_MOD_SQRT), "BN_GF2m_mod_sqrt"}, | ||
99 | {ERR_FUNC(BN_F_BN_MOD_EXP2_MONT), "BN_mod_exp2_mont"}, | ||
100 | {ERR_FUNC(BN_F_BN_MOD_EXP_MONT), "BN_mod_exp_mont"}, | ||
101 | {ERR_FUNC(BN_F_BN_MOD_EXP_MONT_CONSTTIME), "BN_mod_exp_mont_consttime"}, | ||
102 | {ERR_FUNC(BN_F_BN_MOD_EXP_MONT_WORD), "BN_mod_exp_mont_word"}, | ||
103 | {ERR_FUNC(BN_F_BN_MOD_EXP_RECP), "BN_mod_exp_recp"}, | ||
104 | {ERR_FUNC(BN_F_BN_MOD_EXP_SIMPLE), "BN_mod_exp_simple"}, | ||
105 | {ERR_FUNC(BN_F_BN_MOD_INVERSE), "BN_mod_inverse"}, | ||
106 | {ERR_FUNC(BN_F_BN_MOD_INVERSE_NO_BRANCH), "BN_mod_inverse_no_branch"}, | ||
107 | {ERR_FUNC(BN_F_BN_MOD_LSHIFT_QUICK), "BN_mod_lshift_quick"}, | ||
108 | {ERR_FUNC(BN_F_BN_MOD_MUL_RECIPROCAL), "BN_mod_mul_reciprocal"}, | ||
109 | {ERR_FUNC(BN_F_BN_MOD_SQRT), "BN_mod_sqrt"}, | ||
110 | {ERR_FUNC(BN_F_BN_MPI2BN), "BN_mpi2bn"}, | ||
111 | {ERR_FUNC(BN_F_BN_NEW), "BN_new"}, | ||
112 | {ERR_FUNC(BN_F_BN_RAND), "BN_rand"}, | ||
113 | {ERR_FUNC(BN_F_BN_RAND_RANGE), "BN_rand_range"}, | ||
114 | {ERR_FUNC(BN_F_BN_USUB), "BN_usub"}, | ||
115 | {0, NULL} | ||
116 | }; | ||
117 | |||
118 | static ERR_STRING_DATA BN_str_reasons[]= { | ||
119 | {ERR_REASON(BN_R_ARG2_LT_ARG3) , "arg2 lt arg3"}, | ||
120 | {ERR_REASON(BN_R_BAD_RECIPROCAL) , "bad reciprocal"}, | ||
121 | {ERR_REASON(BN_R_BIGNUM_TOO_LONG) , "bignum too long"}, | ||
122 | {ERR_REASON(BN_R_CALLED_WITH_EVEN_MODULUS), "called with even modulus"}, | ||
123 | {ERR_REASON(BN_R_DIV_BY_ZERO) , "div by zero"}, | ||
124 | {ERR_REASON(BN_R_ENCODING_ERROR) , "encoding error"}, | ||
125 | {ERR_REASON(BN_R_EXPAND_ON_STATIC_BIGNUM_DATA), "expand on static bignum data"}, | ||
126 | {ERR_REASON(BN_R_INPUT_NOT_REDUCED) , "input not reduced"}, | ||
127 | {ERR_REASON(BN_R_INVALID_LENGTH) , "invalid length"}, | ||
128 | {ERR_REASON(BN_R_INVALID_RANGE) , "invalid range"}, | ||
129 | {ERR_REASON(BN_R_NOT_A_SQUARE) , "not a square"}, | ||
130 | {ERR_REASON(BN_R_NOT_INITIALIZED) , "not initialized"}, | ||
131 | {ERR_REASON(BN_R_NO_INVERSE) , "no inverse"}, | ||
132 | {ERR_REASON(BN_R_NO_SOLUTION) , "no solution"}, | ||
133 | {ERR_REASON(BN_R_P_IS_NOT_PRIME) , "p is not prime"}, | ||
134 | {ERR_REASON(BN_R_TOO_MANY_ITERATIONS) , "too many iterations"}, | ||
135 | {ERR_REASON(BN_R_TOO_MANY_TEMPORARY_VARIABLES), "too many temporary variables"}, | ||
136 | {0, NULL} | ||
137 | }; | ||
138 | |||
139 | #endif | ||
140 | |||
141 | void | ||
142 | ERR_load_BN_strings(void) | ||
143 | { | ||
144 | #ifndef OPENSSL_NO_ERR | ||
145 | if (ERR_func_error_string(BN_str_functs[0].error) == NULL) { | ||
146 | ERR_load_strings(0, BN_str_functs); | ||
147 | ERR_load_strings(0, BN_str_reasons); | ||
148 | } | ||
149 | #endif | ||
150 | } | ||
diff --git a/src/lib/libcrypto/bn/bn_exp.c b/src/lib/libcrypto/bn/bn_exp.c deleted file mode 100644 index 4a28c2c605..0000000000 --- a/src/lib/libcrypto/bn/bn_exp.c +++ /dev/null | |||
@@ -1,1097 +0,0 @@ | |||
1 | /* $OpenBSD: bn_exp.c,v 1.22 2015/03/21 08:05:20 doug Exp $ */ | ||
2 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) | ||
3 | * All rights reserved. | ||
4 | * | ||
5 | * This package is an SSL implementation written | ||
6 | * by Eric Young (eay@cryptsoft.com). | ||
7 | * The implementation was written so as to conform with Netscapes SSL. | ||
8 | * | ||
9 | * This library is free for commercial and non-commercial use as long as | ||
10 | * the following conditions are aheared to. The following conditions | ||
11 | * apply to all code found in this distribution, be it the RC4, RSA, | ||
12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation | ||
13 | * included with this distribution is covered by the same copyright terms | ||
14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | ||
15 | * | ||
16 | * Copyright remains Eric Young's, and as such any Copyright notices in | ||
17 | * the code are not to be removed. | ||
18 | * If this package is used in a product, Eric Young should be given attribution | ||
19 | * as the author of the parts of the library used. | ||
20 | * This can be in the form of a textual message at program startup or | ||
21 | * in documentation (online or textual) provided with the package. | ||
22 | * | ||
23 | * Redistribution and use in source and binary forms, with or without | ||
24 | * modification, are permitted provided that the following conditions | ||
25 | * are met: | ||
26 | * 1. Redistributions of source code must retain the copyright | ||
27 | * notice, this list of conditions and the following disclaimer. | ||
28 | * 2. Redistributions in binary form must reproduce the above copyright | ||
29 | * notice, this list of conditions and the following disclaimer in the | ||
30 | * documentation and/or other materials provided with the distribution. | ||
31 | * 3. All advertising materials mentioning features or use of this software | ||
32 | * must display the following acknowledgement: | ||
33 | * "This product includes cryptographic software written by | ||
34 | * Eric Young (eay@cryptsoft.com)" | ||
35 | * The word 'cryptographic' can be left out if the rouines from the library | ||
36 | * being used are not cryptographic related :-). | ||
37 | * 4. If you include any Windows specific code (or a derivative thereof) from | ||
38 | * the apps directory (application code) you must include an acknowledgement: | ||
39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | ||
40 | * | ||
41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | ||
42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | ||
44 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | ||
45 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | ||
46 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | ||
47 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
48 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | ||
49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | ||
50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | ||
51 | * SUCH DAMAGE. | ||
52 | * | ||
53 | * The licence and distribution terms for any publically available version or | ||
54 | * derivative of this code cannot be changed. i.e. this code cannot simply be | ||
55 | * copied and put under another distribution licence | ||
56 | * [including the GNU Public Licence.] | ||
57 | */ | ||
58 | /* ==================================================================== | ||
59 | * Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved. | ||
60 | * | ||
61 | * Redistribution and use in source and binary forms, with or without | ||
62 | * modification, are permitted provided that the following conditions | ||
63 | * are met: | ||
64 | * | ||
65 | * 1. Redistributions of source code must retain the above copyright | ||
66 | * notice, this list of conditions and the following disclaimer. | ||
67 | * | ||
68 | * 2. Redistributions in binary form must reproduce the above copyright | ||
69 | * notice, this list of conditions and the following disclaimer in | ||
70 | * the documentation and/or other materials provided with the | ||
71 | * distribution. | ||
72 | * | ||
73 | * 3. All advertising materials mentioning features or use of this | ||
74 | * software must display the following acknowledgment: | ||
75 | * "This product includes software developed by the OpenSSL Project | ||
76 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | ||
77 | * | ||
78 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
79 | * endorse or promote products derived from this software without | ||
80 | * prior written permission. For written permission, please contact | ||
81 | * openssl-core@openssl.org. | ||
82 | * | ||
83 | * 5. Products derived from this software may not be called "OpenSSL" | ||
84 | * nor may "OpenSSL" appear in their names without prior written | ||
85 | * permission of the OpenSSL Project. | ||
86 | * | ||
87 | * 6. Redistributions of any form whatsoever must retain the following | ||
88 | * acknowledgment: | ||
89 | * "This product includes software developed by the OpenSSL Project | ||
90 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" | ||
91 | * | ||
92 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
93 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
94 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
95 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
96 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
97 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
98 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
99 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
100 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
101 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
102 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
103 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
104 | * ==================================================================== | ||
105 | * | ||
106 | * This product includes cryptographic software written by Eric Young | ||
107 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
108 | * Hudson (tjh@cryptsoft.com). | ||
109 | * | ||
110 | */ | ||
111 | |||
112 | #include <stdlib.h> | ||
113 | #include <string.h> | ||
114 | |||
115 | #include <openssl/err.h> | ||
116 | |||
117 | #include "bn_lcl.h" | ||
118 | |||
119 | /* maximum precomputation table size for *variable* sliding windows */ | ||
120 | #define TABLE_SIZE 32 | ||
121 | |||
122 | /* this one works - simple but works */ | ||
123 | int | ||
124 | BN_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) | ||
125 | { | ||
126 | int i, bits, ret = 0; | ||
127 | BIGNUM *v, *rr; | ||
128 | |||
129 | if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0) { | ||
130 | /* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */ | ||
131 | BNerr(BN_F_BN_EXP, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | ||
132 | return -1; | ||
133 | } | ||
134 | |||
135 | BN_CTX_start(ctx); | ||
136 | if ((r == a) || (r == p)) | ||
137 | rr = BN_CTX_get(ctx); | ||
138 | else | ||
139 | rr = r; | ||
140 | v = BN_CTX_get(ctx); | ||
141 | if (rr == NULL || v == NULL) | ||
142 | goto err; | ||
143 | |||
144 | if (BN_copy(v, a) == NULL) | ||
145 | goto err; | ||
146 | bits = BN_num_bits(p); | ||
147 | |||
148 | if (BN_is_odd(p)) { | ||
149 | if (BN_copy(rr, a) == NULL) | ||
150 | goto err; | ||
151 | } else { | ||
152 | if (!BN_one(rr)) | ||
153 | goto err; | ||
154 | } | ||
155 | |||
156 | for (i = 1; i < bits; i++) { | ||
157 | if (!BN_sqr(v, v, ctx)) | ||
158 | goto err; | ||
159 | if (BN_is_bit_set(p, i)) { | ||
160 | if (!BN_mul(rr, rr, v, ctx)) | ||
161 | goto err; | ||
162 | } | ||
163 | } | ||
164 | ret = 1; | ||
165 | |||
166 | err: | ||
167 | if (r != rr && rr != NULL) | ||
168 | BN_copy(r, rr); | ||
169 | BN_CTX_end(ctx); | ||
170 | bn_check_top(r); | ||
171 | return (ret); | ||
172 | } | ||
173 | |||
174 | int | ||
175 | BN_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m, | ||
176 | BN_CTX *ctx) | ||
177 | { | ||
178 | int ret; | ||
179 | |||
180 | bn_check_top(a); | ||
181 | bn_check_top(p); | ||
182 | bn_check_top(m); | ||
183 | |||
184 | /* For even modulus m = 2^k*m_odd, it might make sense to compute | ||
185 | * a^p mod m_odd and a^p mod 2^k separately (with Montgomery | ||
186 | * exponentiation for the odd part), using appropriate exponent | ||
187 | * reductions, and combine the results using the CRT. | ||
188 | * | ||
189 | * For now, we use Montgomery only if the modulus is odd; otherwise, | ||
190 | * exponentiation using the reciprocal-based quick remaindering | ||
191 | * algorithm is used. | ||
192 | * | ||
193 | * (Timing obtained with expspeed.c [computations a^p mod m | ||
194 | * where a, p, m are of the same length: 256, 512, 1024, 2048, | ||
195 | * 4096, 8192 bits], compared to the running time of the | ||
196 | * standard algorithm: | ||
197 | * | ||
198 | * BN_mod_exp_mont 33 .. 40 % [AMD K6-2, Linux, debug configuration] | ||
199 | * 55 .. 77 % [UltraSparc processor, but | ||
200 | * debug-solaris-sparcv8-gcc conf.] | ||
201 | * | ||
202 | * BN_mod_exp_recp 50 .. 70 % [AMD K6-2, Linux, debug configuration] | ||
203 | * 62 .. 118 % [UltraSparc, debug-solaris-sparcv8-gcc] | ||
204 | * | ||
205 | * On the Sparc, BN_mod_exp_recp was faster than BN_mod_exp_mont | ||
206 | * at 2048 and more bits, but at 512 and 1024 bits, it was | ||
207 | * slower even than the standard algorithm! | ||
208 | * | ||
209 | * "Real" timings [linux-elf, solaris-sparcv9-gcc configurations] | ||
210 | * should be obtained when the new Montgomery reduction code | ||
211 | * has been integrated into OpenSSL.) | ||
212 | */ | ||
213 | |||
214 | #define MONT_MUL_MOD | ||
215 | #define MONT_EXP_WORD | ||
216 | #define RECP_MUL_MOD | ||
217 | |||
218 | #ifdef MONT_MUL_MOD | ||
219 | /* I have finally been able to take out this pre-condition of | ||
220 | * the top bit being set. It was caused by an error in BN_div | ||
221 | * with negatives. There was also another problem when for a^b%m | ||
222 | * a >= m. eay 07-May-97 */ | ||
223 | /* if ((m->d[m->top-1]&BN_TBIT) && BN_is_odd(m)) */ | ||
224 | |||
225 | if (BN_is_odd(m)) { | ||
226 | # ifdef MONT_EXP_WORD | ||
227 | if (a->top == 1 && !a->neg && | ||
228 | (BN_get_flags(p, BN_FLG_CONSTTIME) == 0)) { | ||
229 | BN_ULONG A = a->d[0]; | ||
230 | ret = BN_mod_exp_mont_word(r, A,p, m,ctx, NULL); | ||
231 | } else | ||
232 | # endif | ||
233 | ret = BN_mod_exp_mont(r, a,p, m,ctx, NULL); | ||
234 | } else | ||
235 | #endif | ||
236 | #ifdef RECP_MUL_MOD | ||
237 | { | ||
238 | ret = BN_mod_exp_recp(r, a,p, m, ctx); | ||
239 | } | ||
240 | #else | ||
241 | { | ||
242 | ret = BN_mod_exp_simple(r, a,p, m, ctx); | ||
243 | } | ||
244 | #endif | ||
245 | |||
246 | bn_check_top(r); | ||
247 | return (ret); | ||
248 | } | ||
249 | |||
250 | int | ||
251 | BN_mod_exp_recp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m, | ||
252 | BN_CTX *ctx) | ||
253 | { | ||
254 | int i, j, bits, ret = 0, wstart, wend, window, wvalue; | ||
255 | int start = 1; | ||
256 | BIGNUM *aa; | ||
257 | /* Table of variables obtained from 'ctx' */ | ||
258 | BIGNUM *val[TABLE_SIZE]; | ||
259 | BN_RECP_CTX recp; | ||
260 | |||
261 | if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0) { | ||
262 | /* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */ | ||
263 | BNerr(BN_F_BN_MOD_EXP_RECP, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | ||
264 | return -1; | ||
265 | } | ||
266 | |||
267 | bits = BN_num_bits(p); | ||
268 | |||
269 | if (bits == 0) { | ||
270 | ret = BN_one(r); | ||
271 | return ret; | ||
272 | } | ||
273 | |||
274 | BN_CTX_start(ctx); | ||
275 | if ((aa = BN_CTX_get(ctx)) == NULL) | ||
276 | goto err; | ||
277 | if ((val[0] = BN_CTX_get(ctx)) == NULL) | ||
278 | goto err; | ||
279 | |||
280 | BN_RECP_CTX_init(&recp); | ||
281 | if (m->neg) { | ||
282 | /* ignore sign of 'm' */ | ||
283 | if (!BN_copy(aa, m)) | ||
284 | goto err; | ||
285 | aa->neg = 0; | ||
286 | if (BN_RECP_CTX_set(&recp, aa, ctx) <= 0) | ||
287 | goto err; | ||
288 | } else { | ||
289 | if (BN_RECP_CTX_set(&recp, m, ctx) <= 0) | ||
290 | goto err; | ||
291 | } | ||
292 | |||
293 | if (!BN_nnmod(val[0], a, m, ctx)) | ||
294 | goto err; /* 1 */ | ||
295 | if (BN_is_zero(val[0])) { | ||
296 | BN_zero(r); | ||
297 | ret = 1; | ||
298 | goto err; | ||
299 | } | ||
300 | |||
301 | window = BN_window_bits_for_exponent_size(bits); | ||
302 | if (window > 1) { | ||
303 | if (!BN_mod_mul_reciprocal(aa, val[0], val[0], &recp, ctx)) | ||
304 | goto err; /* 2 */ | ||
305 | j = 1 << (window - 1); | ||
306 | for (i = 1; i < j; i++) { | ||
307 | if (((val[i] = BN_CTX_get(ctx)) == NULL) || | ||
308 | !BN_mod_mul_reciprocal(val[i], val[i - 1], | ||
309 | aa, &recp, ctx)) | ||
310 | goto err; | ||
311 | } | ||
312 | } | ||
313 | |||
314 | start = 1; /* This is used to avoid multiplication etc | ||
315 | * when there is only the value '1' in the | ||
316 | * buffer. */ | ||
317 | wvalue = 0; /* The 'value' of the window */ | ||
318 | wstart = bits - 1; /* The top bit of the window */ | ||
319 | wend = 0; /* The bottom bit of the window */ | ||
320 | |||
321 | if (!BN_one(r)) | ||
322 | goto err; | ||
323 | |||
324 | for (;;) { | ||
325 | if (BN_is_bit_set(p, wstart) == 0) { | ||
326 | if (!start) | ||
327 | if (!BN_mod_mul_reciprocal(r, r,r, &recp, ctx)) | ||
328 | goto err; | ||
329 | if (wstart == 0) | ||
330 | break; | ||
331 | wstart--; | ||
332 | continue; | ||
333 | } | ||
334 | /* We now have wstart on a 'set' bit, we now need to work out | ||
335 | * how bit a window to do. To do this we need to scan | ||
336 | * forward until the last set bit before the end of the | ||
337 | * window */ | ||
338 | j = wstart; | ||
339 | wvalue = 1; | ||
340 | wend = 0; | ||
341 | for (i = 1; i < window; i++) { | ||
342 | if (wstart - i < 0) | ||
343 | break; | ||
344 | if (BN_is_bit_set(p, wstart - i)) { | ||
345 | wvalue <<= (i - wend); | ||
346 | wvalue |= 1; | ||
347 | wend = i; | ||
348 | } | ||
349 | } | ||
350 | |||
351 | /* wend is the size of the current window */ | ||
352 | j = wend + 1; | ||
353 | /* add the 'bytes above' */ | ||
354 | if (!start) | ||
355 | for (i = 0; i < j; i++) { | ||
356 | if (!BN_mod_mul_reciprocal(r, r,r, &recp, ctx)) | ||
357 | goto err; | ||
358 | } | ||
359 | |||
360 | /* wvalue will be an odd number < 2^window */ | ||
361 | if (!BN_mod_mul_reciprocal(r, r,val[wvalue >> 1], &recp, ctx)) | ||
362 | goto err; | ||
363 | |||
364 | /* move the 'window' down further */ | ||
365 | wstart -= wend + 1; | ||
366 | wvalue = 0; | ||
367 | start = 0; | ||
368 | if (wstart < 0) | ||
369 | break; | ||
370 | } | ||
371 | ret = 1; | ||
372 | |||
373 | err: | ||
374 | BN_CTX_end(ctx); | ||
375 | BN_RECP_CTX_free(&recp); | ||
376 | bn_check_top(r); | ||
377 | return (ret); | ||
378 | } | ||
379 | |||
380 | int | ||
381 | BN_mod_exp_mont(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m, | ||
382 | BN_CTX *ctx, BN_MONT_CTX *in_mont) | ||
383 | { | ||
384 | int i, j, bits, ret = 0, wstart, wend, window, wvalue; | ||
385 | int start = 1; | ||
386 | BIGNUM *d, *r; | ||
387 | const BIGNUM *aa; | ||
388 | /* Table of variables obtained from 'ctx' */ | ||
389 | BIGNUM *val[TABLE_SIZE]; | ||
390 | BN_MONT_CTX *mont = NULL; | ||
391 | |||
392 | if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0) { | ||
393 | return BN_mod_exp_mont_consttime(rr, a, p, m, ctx, in_mont); | ||
394 | } | ||
395 | |||
396 | bn_check_top(a); | ||
397 | bn_check_top(p); | ||
398 | bn_check_top(m); | ||
399 | |||
400 | if (!BN_is_odd(m)) { | ||
401 | BNerr(BN_F_BN_MOD_EXP_MONT, BN_R_CALLED_WITH_EVEN_MODULUS); | ||
402 | return (0); | ||
403 | } | ||
404 | bits = BN_num_bits(p); | ||
405 | if (bits == 0) { | ||
406 | ret = BN_one(rr); | ||
407 | return ret; | ||
408 | } | ||
409 | |||
410 | BN_CTX_start(ctx); | ||
411 | if ((d = BN_CTX_get(ctx)) == NULL) | ||
412 | goto err; | ||
413 | if ((r = BN_CTX_get(ctx)) == NULL) | ||
414 | goto err; | ||
415 | if ((val[0] = BN_CTX_get(ctx)) == NULL) | ||
416 | goto err; | ||
417 | |||
418 | /* If this is not done, things will break in the montgomery | ||
419 | * part */ | ||
420 | |||
421 | if (in_mont != NULL) | ||
422 | mont = in_mont; | ||
423 | else { | ||
424 | if ((mont = BN_MONT_CTX_new()) == NULL) | ||
425 | goto err; | ||
426 | if (!BN_MONT_CTX_set(mont, m, ctx)) | ||
427 | goto err; | ||
428 | } | ||
429 | |||
430 | if (a->neg || BN_ucmp(a, m) >= 0) { | ||
431 | if (!BN_nnmod(val[0], a,m, ctx)) | ||
432 | goto err; | ||
433 | aa = val[0]; | ||
434 | } else | ||
435 | aa = a; | ||
436 | if (BN_is_zero(aa)) { | ||
437 | BN_zero(rr); | ||
438 | ret = 1; | ||
439 | goto err; | ||
440 | } | ||
441 | if (!BN_to_montgomery(val[0], aa, mont, ctx)) | ||
442 | goto err; /* 1 */ | ||
443 | |||
444 | window = BN_window_bits_for_exponent_size(bits); | ||
445 | if (window > 1) { | ||
446 | if (!BN_mod_mul_montgomery(d, val[0], val[0], mont, ctx)) | ||
447 | goto err; /* 2 */ | ||
448 | j = 1 << (window - 1); | ||
449 | for (i = 1; i < j; i++) { | ||
450 | if (((val[i] = BN_CTX_get(ctx)) == NULL) || | ||
451 | !BN_mod_mul_montgomery(val[i], val[i - 1], | ||
452 | d, mont, ctx)) | ||
453 | goto err; | ||
454 | } | ||
455 | } | ||
456 | |||
457 | start = 1; /* This is used to avoid multiplication etc | ||
458 | * when there is only the value '1' in the | ||
459 | * buffer. */ | ||
460 | wvalue = 0; /* The 'value' of the window */ | ||
461 | wstart = bits - 1; /* The top bit of the window */ | ||
462 | wend = 0; /* The bottom bit of the window */ | ||
463 | |||
464 | if (!BN_to_montgomery(r, BN_value_one(), mont, ctx)) | ||
465 | goto err; | ||
466 | for (;;) { | ||
467 | if (BN_is_bit_set(p, wstart) == 0) { | ||
468 | if (!start) { | ||
469 | if (!BN_mod_mul_montgomery(r, r, r, mont, ctx)) | ||
470 | goto err; | ||
471 | } | ||
472 | if (wstart == 0) | ||
473 | break; | ||
474 | wstart--; | ||
475 | continue; | ||
476 | } | ||
477 | /* We now have wstart on a 'set' bit, we now need to work out | ||
478 | * how bit a window to do. To do this we need to scan | ||
479 | * forward until the last set bit before the end of the | ||
480 | * window */ | ||
481 | j = wstart; | ||
482 | wvalue = 1; | ||
483 | wend = 0; | ||
484 | for (i = 1; i < window; i++) { | ||
485 | if (wstart - i < 0) | ||
486 | break; | ||
487 | if (BN_is_bit_set(p, wstart - i)) { | ||
488 | wvalue <<= (i - wend); | ||
489 | wvalue |= 1; | ||
490 | wend = i; | ||
491 | } | ||
492 | } | ||
493 | |||
494 | /* wend is the size of the current window */ | ||
495 | j = wend + 1; | ||
496 | /* add the 'bytes above' */ | ||
497 | if (!start) | ||
498 | for (i = 0; i < j; i++) { | ||
499 | if (!BN_mod_mul_montgomery(r, r, r, mont, ctx)) | ||
500 | goto err; | ||
501 | } | ||
502 | |||
503 | /* wvalue will be an odd number < 2^window */ | ||
504 | if (!BN_mod_mul_montgomery(r, r, val[wvalue >> 1], mont, ctx)) | ||
505 | goto err; | ||
506 | |||
507 | /* move the 'window' down further */ | ||
508 | wstart -= wend + 1; | ||
509 | wvalue = 0; | ||
510 | start = 0; | ||
511 | if (wstart < 0) | ||
512 | break; | ||
513 | } | ||
514 | if (!BN_from_montgomery(rr, r,mont, ctx)) | ||
515 | goto err; | ||
516 | ret = 1; | ||
517 | |||
518 | err: | ||
519 | if ((in_mont == NULL) && (mont != NULL)) | ||
520 | BN_MONT_CTX_free(mont); | ||
521 | BN_CTX_end(ctx); | ||
522 | bn_check_top(rr); | ||
523 | return (ret); | ||
524 | } | ||
525 | |||
526 | |||
527 | /* BN_mod_exp_mont_consttime() stores the precomputed powers in a specific layout | ||
528 | * so that accessing any of these table values shows the same access pattern as far | ||
529 | * as cache lines are concerned. The following functions are used to transfer a BIGNUM | ||
530 | * from/to that table. */ | ||
531 | |||
532 | static int | ||
533 | MOD_EXP_CTIME_COPY_TO_PREBUF(const BIGNUM *b, int top, unsigned char *buf, | ||
534 | int idx, int width) | ||
535 | { | ||
536 | size_t i, j; | ||
537 | |||
538 | if (top > b->top) | ||
539 | top = b->top; /* this works because 'buf' is explicitly zeroed */ | ||
540 | for (i = 0, j = idx; i < top * sizeof b->d[0]; i++, j += width) { | ||
541 | buf[j] = ((unsigned char*)b->d)[i]; | ||
542 | } | ||
543 | |||
544 | return 1; | ||
545 | } | ||
546 | |||
547 | static int | ||
548 | MOD_EXP_CTIME_COPY_FROM_PREBUF(BIGNUM *b, int top, unsigned char *buf, int idx, | ||
549 | int width) | ||
550 | { | ||
551 | size_t i, j; | ||
552 | |||
553 | if (bn_wexpand(b, top) == NULL) | ||
554 | return 0; | ||
555 | |||
556 | for (i = 0, j = idx; i < top * sizeof b->d[0]; i++, j += width) { | ||
557 | ((unsigned char*)b->d)[i] = buf[j]; | ||
558 | } | ||
559 | |||
560 | b->top = top; | ||
561 | bn_correct_top(b); | ||
562 | return 1; | ||
563 | } | ||
564 | |||
565 | /* Given a pointer value, compute the next address that is a cache line multiple. */ | ||
566 | #define MOD_EXP_CTIME_ALIGN(x_) \ | ||
567 | ((unsigned char*)(x_) + (MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH - (((size_t)(x_)) & (MOD_EXP_CTIME_MIN_CACHE_LINE_MASK)))) | ||
568 | |||
569 | /* This variant of BN_mod_exp_mont() uses fixed windows and the special | ||
570 | * precomputation memory layout to limit data-dependency to a minimum | ||
571 | * to protect secret exponents (cf. the hyper-threading timing attacks | ||
572 | * pointed out by Colin Percival, | ||
573 | * http://www.daemonology.net/hyperthreading-considered-harmful/) | ||
574 | */ | ||
575 | int | ||
576 | BN_mod_exp_mont_consttime(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p, | ||
577 | const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont) | ||
578 | { | ||
579 | int i, bits, ret = 0, window, wvalue; | ||
580 | int top; | ||
581 | BN_MONT_CTX *mont = NULL; | ||
582 | int numPowers; | ||
583 | unsigned char *powerbufFree = NULL; | ||
584 | int powerbufLen = 0; | ||
585 | unsigned char *powerbuf = NULL; | ||
586 | BIGNUM tmp, am; | ||
587 | |||
588 | bn_check_top(a); | ||
589 | bn_check_top(p); | ||
590 | bn_check_top(m); | ||
591 | |||
592 | top = m->top; | ||
593 | |||
594 | if (!(m->d[0] & 1)) { | ||
595 | BNerr(BN_F_BN_MOD_EXP_MONT_CONSTTIME, | ||
596 | BN_R_CALLED_WITH_EVEN_MODULUS); | ||
597 | return (0); | ||
598 | } | ||
599 | bits = BN_num_bits(p); | ||
600 | if (bits == 0) { | ||
601 | ret = BN_one(rr); | ||
602 | return ret; | ||
603 | } | ||
604 | |||
605 | BN_CTX_start(ctx); | ||
606 | |||
607 | /* Allocate a montgomery context if it was not supplied by the caller. | ||
608 | * If this is not done, things will break in the montgomery part. | ||
609 | */ | ||
610 | if (in_mont != NULL) | ||
611 | mont = in_mont; | ||
612 | else { | ||
613 | if ((mont = BN_MONT_CTX_new()) == NULL) | ||
614 | goto err; | ||
615 | if (!BN_MONT_CTX_set(mont, m, ctx)) | ||
616 | goto err; | ||
617 | } | ||
618 | |||
619 | /* Get the window size to use with size of p. */ | ||
620 | window = BN_window_bits_for_ctime_exponent_size(bits); | ||
621 | #if defined(OPENSSL_BN_ASM_MONT5) | ||
622 | if (window == 6 && bits <= 1024) | ||
623 | window = 5; /* ~5% improvement of 2048-bit RSA sign */ | ||
624 | #endif | ||
625 | |||
626 | /* Allocate a buffer large enough to hold all of the pre-computed | ||
627 | * powers of am, am itself and tmp. | ||
628 | */ | ||
629 | numPowers = 1 << window; | ||
630 | powerbufLen = sizeof(m->d[0]) * (top * numPowers + | ||
631 | ((2*top) > numPowers ? (2*top) : numPowers)); | ||
632 | if ((powerbufFree = malloc(powerbufLen + | ||
633 | MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH)) == NULL) | ||
634 | goto err; | ||
635 | |||
636 | powerbuf = MOD_EXP_CTIME_ALIGN(powerbufFree); | ||
637 | memset(powerbuf, 0, powerbufLen); | ||
638 | |||
639 | /* lay down tmp and am right after powers table */ | ||
640 | tmp.d = (BN_ULONG *)(powerbuf + sizeof(m->d[0]) * top * numPowers); | ||
641 | am.d = tmp.d + top; | ||
642 | tmp.top = am.top = 0; | ||
643 | tmp.dmax = am.dmax = top; | ||
644 | tmp.neg = am.neg = 0; | ||
645 | tmp.flags = am.flags = BN_FLG_STATIC_DATA; | ||
646 | |||
647 | /* prepare a^0 in Montgomery domain */ | ||
648 | #if 1 | ||
649 | if (!BN_to_montgomery(&tmp, BN_value_one(), mont, ctx)) | ||
650 | goto err; | ||
651 | #else | ||
652 | tmp.d[0] = (0 - m - >d[0]) & BN_MASK2; /* 2^(top*BN_BITS2) - m */ | ||
653 | for (i = 1; i < top; i++) | ||
654 | tmp.d[i] = (~m->d[i]) & BN_MASK2; | ||
655 | tmp.top = top; | ||
656 | #endif | ||
657 | |||
658 | /* prepare a^1 in Montgomery domain */ | ||
659 | if (a->neg || BN_ucmp(a, m) >= 0) { | ||
660 | if (!BN_mod(&am, a,m, ctx)) | ||
661 | goto err; | ||
662 | if (!BN_to_montgomery(&am, &am, mont, ctx)) | ||
663 | goto err; | ||
664 | } else if (!BN_to_montgomery(&am, a,mont, ctx)) | ||
665 | goto err; | ||
666 | |||
667 | #if defined(OPENSSL_BN_ASM_MONT5) | ||
668 | /* This optimization uses ideas from http://eprint.iacr.org/2011/239, | ||
669 | * specifically optimization of cache-timing attack countermeasures | ||
670 | * and pre-computation optimization. */ | ||
671 | |||
672 | /* Dedicated window==4 case improves 512-bit RSA sign by ~15%, but as | ||
673 | * 512-bit RSA is hardly relevant, we omit it to spare size... */ | ||
674 | if (window == 5 && top > 1) { | ||
675 | void bn_mul_mont_gather5(BN_ULONG *rp, const BN_ULONG *ap, | ||
676 | const void *table, const BN_ULONG *np, | ||
677 | const BN_ULONG *n0, int num, int power); | ||
678 | void bn_scatter5(const BN_ULONG *inp, size_t num, | ||
679 | void *table, size_t power); | ||
680 | void bn_gather5(BN_ULONG *out, size_t num, | ||
681 | void *table, size_t power); | ||
682 | |||
683 | BN_ULONG *np = mont->N.d, *n0 = mont->n0; | ||
684 | |||
685 | /* BN_to_montgomery can contaminate words above .top | ||
686 | * [in BN_DEBUG[_DEBUG] build]... */ | ||
687 | for (i = am.top; i < top; i++) | ||
688 | am.d[i] = 0; | ||
689 | for (i = tmp.top; i < top; i++) | ||
690 | tmp.d[i] = 0; | ||
691 | |||
692 | bn_scatter5(tmp.d, top, powerbuf, 0); | ||
693 | bn_scatter5(am.d, am.top, powerbuf, 1); | ||
694 | bn_mul_mont(tmp.d, am.d, am.d, np, n0, top); | ||
695 | bn_scatter5(tmp.d, top, powerbuf, 2); | ||
696 | |||
697 | #if 0 | ||
698 | for (i = 3; i < 32; i++) { | ||
699 | /* Calculate a^i = a^(i-1) * a */ | ||
700 | bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np, | ||
701 | n0, top, i - 1); | ||
702 | bn_scatter5(tmp.d, top, powerbuf, i); | ||
703 | } | ||
704 | #else | ||
705 | /* same as above, but uses squaring for 1/2 of operations */ | ||
706 | for (i = 4; i < 32; i*=2) { | ||
707 | bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top); | ||
708 | bn_scatter5(tmp.d, top, powerbuf, i); | ||
709 | } | ||
710 | for (i = 3; i < 8; i += 2) { | ||
711 | int j; | ||
712 | bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np, | ||
713 | n0, top, i - 1); | ||
714 | bn_scatter5(tmp.d, top, powerbuf, i); | ||
715 | for (j = 2 * i; j < 32; j *= 2) { | ||
716 | bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top); | ||
717 | bn_scatter5(tmp.d, top, powerbuf, j); | ||
718 | } | ||
719 | } | ||
720 | for (; i < 16; i += 2) { | ||
721 | bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np, | ||
722 | n0, top, i - 1); | ||
723 | bn_scatter5(tmp.d, top, powerbuf, i); | ||
724 | bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top); | ||
725 | bn_scatter5(tmp.d, top, powerbuf, 2*i); | ||
726 | } | ||
727 | for (; i < 32; i += 2) { | ||
728 | bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np, | ||
729 | n0, top, i - 1); | ||
730 | bn_scatter5(tmp.d, top, powerbuf, i); | ||
731 | } | ||
732 | #endif | ||
733 | bits--; | ||
734 | for (wvalue = 0, i = bits % 5; i >= 0; i--, bits--) | ||
735 | wvalue = (wvalue << 1) + BN_is_bit_set(p, bits); | ||
736 | bn_gather5(tmp.d, top, powerbuf, wvalue); | ||
737 | |||
738 | /* Scan the exponent one window at a time starting from the most | ||
739 | * significant bits. | ||
740 | */ | ||
741 | while (bits >= 0) { | ||
742 | for (wvalue = 0, i = 0; i < 5; i++, bits--) | ||
743 | wvalue = (wvalue << 1) + BN_is_bit_set(p, bits); | ||
744 | |||
745 | bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top); | ||
746 | bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top); | ||
747 | bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top); | ||
748 | bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top); | ||
749 | bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top); | ||
750 | bn_mul_mont_gather5(tmp.d, tmp.d, powerbuf, np, n0, top, wvalue); | ||
751 | } | ||
752 | |||
753 | tmp.top = top; | ||
754 | bn_correct_top(&tmp); | ||
755 | } else | ||
756 | #endif | ||
757 | { | ||
758 | if (!MOD_EXP_CTIME_COPY_TO_PREBUF(&tmp, top, powerbuf, 0, | ||
759 | numPowers)) | ||
760 | goto err; | ||
761 | if (!MOD_EXP_CTIME_COPY_TO_PREBUF(&am, top, powerbuf, 1, | ||
762 | numPowers)) | ||
763 | goto err; | ||
764 | |||
765 | /* If the window size is greater than 1, then calculate | ||
766 | * val[i=2..2^winsize-1]. Powers are computed as a*a^(i-1) | ||
767 | * (even powers could instead be computed as (a^(i/2))^2 | ||
768 | * to use the slight performance advantage of sqr over mul). | ||
769 | */ | ||
770 | if (window > 1) { | ||
771 | if (!BN_mod_mul_montgomery(&tmp, &am, &am, mont, ctx)) | ||
772 | goto err; | ||
773 | if (!MOD_EXP_CTIME_COPY_TO_PREBUF(&tmp, top, powerbuf, | ||
774 | 2, numPowers)) | ||
775 | goto err; | ||
776 | for (i = 3; i < numPowers; i++) { | ||
777 | /* Calculate a^i = a^(i-1) * a */ | ||
778 | if (!BN_mod_mul_montgomery(&tmp, &am, &tmp, | ||
779 | mont, ctx)) | ||
780 | goto err; | ||
781 | if (!MOD_EXP_CTIME_COPY_TO_PREBUF(&tmp, top, | ||
782 | powerbuf, i, numPowers)) | ||
783 | goto err; | ||
784 | } | ||
785 | } | ||
786 | |||
787 | bits--; | ||
788 | for (wvalue = 0, i = bits % window; i >= 0; i--, bits--) | ||
789 | wvalue = (wvalue << 1) + BN_is_bit_set(p, bits); | ||
790 | if (!MOD_EXP_CTIME_COPY_FROM_PREBUF(&tmp, top, powerbuf, | ||
791 | wvalue, numPowers)) | ||
792 | goto err; | ||
793 | |||
794 | /* Scan the exponent one window at a time starting from the most | ||
795 | * significant bits. | ||
796 | */ | ||
797 | while (bits >= 0) { | ||
798 | wvalue = 0; /* The 'value' of the window */ | ||
799 | |||
800 | /* Scan the window, squaring the result as we go */ | ||
801 | for (i = 0; i < window; i++, bits--) { | ||
802 | if (!BN_mod_mul_montgomery(&tmp, &tmp, &tmp, | ||
803 | mont, ctx)) | ||
804 | goto err; | ||
805 | wvalue = (wvalue << 1) + BN_is_bit_set(p, bits); | ||
806 | } | ||
807 | |||
808 | /* Fetch the appropriate pre-computed value from the pre-buf */ | ||
809 | if (!MOD_EXP_CTIME_COPY_FROM_PREBUF(&am, top, powerbuf, | ||
810 | wvalue, numPowers)) | ||
811 | goto err; | ||
812 | |||
813 | /* Multiply the result into the intermediate result */ | ||
814 | if (!BN_mod_mul_montgomery(&tmp, &tmp, &am, mont, ctx)) | ||
815 | goto err; | ||
816 | } | ||
817 | } | ||
818 | |||
819 | /* Convert the final result from montgomery to standard format */ | ||
820 | if (!BN_from_montgomery(rr, &tmp, mont, ctx)) | ||
821 | goto err; | ||
822 | ret = 1; | ||
823 | |||
824 | err: | ||
825 | if ((in_mont == NULL) && (mont != NULL)) | ||
826 | BN_MONT_CTX_free(mont); | ||
827 | if (powerbuf != NULL) { | ||
828 | OPENSSL_cleanse(powerbuf, powerbufLen); | ||
829 | free(powerbufFree); | ||
830 | } | ||
831 | BN_CTX_end(ctx); | ||
832 | return (ret); | ||
833 | } | ||
834 | |||
835 | int | ||
836 | BN_mod_exp_mont_word(BIGNUM *rr, BN_ULONG a, const BIGNUM *p, const BIGNUM *m, | ||
837 | BN_CTX *ctx, BN_MONT_CTX *in_mont) | ||
838 | { | ||
839 | BN_MONT_CTX *mont = NULL; | ||
840 | int b, bits, ret = 0; | ||
841 | int r_is_one; | ||
842 | BN_ULONG w, next_w; | ||
843 | BIGNUM *d, *r, *t; | ||
844 | BIGNUM *swap_tmp; | ||
845 | |||
846 | #define BN_MOD_MUL_WORD(r, w, m) \ | ||
847 | (BN_mul_word(r, (w)) && \ | ||
848 | (/* BN_ucmp(r, (m)) < 0 ? 1 :*/ \ | ||
849 | (BN_mod(t, r, m, ctx) && (swap_tmp = r, r = t, t = swap_tmp, 1)))) | ||
850 | /* BN_MOD_MUL_WORD is only used with 'w' large, | ||
851 | * so the BN_ucmp test is probably more overhead | ||
852 | * than always using BN_mod (which uses BN_copy if | ||
853 | * a similar test returns true). */ | ||
854 | /* We can use BN_mod and do not need BN_nnmod because our | ||
855 | * accumulator is never negative (the result of BN_mod does | ||
856 | * not depend on the sign of the modulus). | ||
857 | */ | ||
858 | #define BN_TO_MONTGOMERY_WORD(r, w, mont) \ | ||
859 | (BN_set_word(r, (w)) && BN_to_montgomery(r, r, (mont), ctx)) | ||
860 | |||
861 | if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0) { | ||
862 | /* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */ | ||
863 | BNerr(BN_F_BN_MOD_EXP_MONT_WORD, | ||
864 | ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | ||
865 | return -1; | ||
866 | } | ||
867 | |||
868 | bn_check_top(p); | ||
869 | bn_check_top(m); | ||
870 | |||
871 | if (!BN_is_odd(m)) { | ||
872 | BNerr(BN_F_BN_MOD_EXP_MONT_WORD, BN_R_CALLED_WITH_EVEN_MODULUS); | ||
873 | return (0); | ||
874 | } | ||
875 | if (m->top == 1) | ||
876 | a %= m->d[0]; /* make sure that 'a' is reduced */ | ||
877 | |||
878 | bits = BN_num_bits(p); | ||
879 | if (bits == 0) { | ||
880 | ret = BN_one(rr); | ||
881 | return ret; | ||
882 | } | ||
883 | if (a == 0) { | ||
884 | BN_zero(rr); | ||
885 | ret = 1; | ||
886 | return ret; | ||
887 | } | ||
888 | |||
889 | BN_CTX_start(ctx); | ||
890 | if ((d = BN_CTX_get(ctx)) == NULL) | ||
891 | goto err; | ||
892 | if ((r = BN_CTX_get(ctx)) == NULL) | ||
893 | goto err; | ||
894 | if ((t = BN_CTX_get(ctx)) == NULL) | ||
895 | goto err; | ||
896 | |||
897 | if (in_mont != NULL) | ||
898 | mont = in_mont; | ||
899 | else { | ||
900 | if ((mont = BN_MONT_CTX_new()) == NULL) | ||
901 | goto err; | ||
902 | if (!BN_MONT_CTX_set(mont, m, ctx)) | ||
903 | goto err; | ||
904 | } | ||
905 | |||
906 | r_is_one = 1; /* except for Montgomery factor */ | ||
907 | |||
908 | /* bits-1 >= 0 */ | ||
909 | |||
910 | /* The result is accumulated in the product r*w. */ | ||
911 | w = a; /* bit 'bits-1' of 'p' is always set */ | ||
912 | for (b = bits - 2; b >= 0; b--) { | ||
913 | /* First, square r*w. */ | ||
914 | next_w = w * w; | ||
915 | if ((next_w / w) != w) /* overflow */ | ||
916 | { | ||
917 | if (r_is_one) { | ||
918 | if (!BN_TO_MONTGOMERY_WORD(r, w, mont)) | ||
919 | goto err; | ||
920 | r_is_one = 0; | ||
921 | } else { | ||
922 | if (!BN_MOD_MUL_WORD(r, w, m)) | ||
923 | goto err; | ||
924 | } | ||
925 | next_w = 1; | ||
926 | } | ||
927 | w = next_w; | ||
928 | if (!r_is_one) { | ||
929 | if (!BN_mod_mul_montgomery(r, r, r, mont, ctx)) | ||
930 | goto err; | ||
931 | } | ||
932 | |||
933 | /* Second, multiply r*w by 'a' if exponent bit is set. */ | ||
934 | if (BN_is_bit_set(p, b)) { | ||
935 | next_w = w * a; | ||
936 | if ((next_w / a) != w) /* overflow */ | ||
937 | { | ||
938 | if (r_is_one) { | ||
939 | if (!BN_TO_MONTGOMERY_WORD(r, w, mont)) | ||
940 | goto err; | ||
941 | r_is_one = 0; | ||
942 | } else { | ||
943 | if (!BN_MOD_MUL_WORD(r, w, m)) | ||
944 | goto err; | ||
945 | } | ||
946 | next_w = a; | ||
947 | } | ||
948 | w = next_w; | ||
949 | } | ||
950 | } | ||
951 | |||
952 | /* Finally, set r:=r*w. */ | ||
953 | if (w != 1) { | ||
954 | if (r_is_one) { | ||
955 | if (!BN_TO_MONTGOMERY_WORD(r, w, mont)) | ||
956 | goto err; | ||
957 | r_is_one = 0; | ||
958 | } else { | ||
959 | if (!BN_MOD_MUL_WORD(r, w, m)) | ||
960 | goto err; | ||
961 | } | ||
962 | } | ||
963 | |||
964 | if (r_is_one) /* can happen only if a == 1*/ | ||
965 | { | ||
966 | if (!BN_one(rr)) | ||
967 | goto err; | ||
968 | } else { | ||
969 | if (!BN_from_montgomery(rr, r, mont, ctx)) | ||
970 | goto err; | ||
971 | } | ||
972 | ret = 1; | ||
973 | |||
974 | err: | ||
975 | if ((in_mont == NULL) && (mont != NULL)) | ||
976 | BN_MONT_CTX_free(mont); | ||
977 | BN_CTX_end(ctx); | ||
978 | bn_check_top(rr); | ||
979 | return (ret); | ||
980 | } | ||
981 | |||
982 | |||
983 | /* The old fallback, simple version :-) */ | ||
984 | int | ||
985 | BN_mod_exp_simple(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m, | ||
986 | BN_CTX *ctx) | ||
987 | { | ||
988 | int i, j,bits, ret = 0, wstart, wend, window, wvalue; | ||
989 | int start = 1; | ||
990 | BIGNUM *d; | ||
991 | /* Table of variables obtained from 'ctx' */ | ||
992 | BIGNUM *val[TABLE_SIZE]; | ||
993 | |||
994 | if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0) { | ||
995 | /* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */ | ||
996 | BNerr(BN_F_BN_MOD_EXP_SIMPLE, | ||
997 | ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | ||
998 | return -1; | ||
999 | } | ||
1000 | |||
1001 | bits = BN_num_bits(p); | ||
1002 | |||
1003 | if (bits == 0) { | ||
1004 | ret = BN_one(r); | ||
1005 | return ret; | ||
1006 | } | ||
1007 | |||
1008 | BN_CTX_start(ctx); | ||
1009 | if ((d = BN_CTX_get(ctx)) == NULL) | ||
1010 | goto err; | ||
1011 | if ((val[0] = BN_CTX_get(ctx)) == NULL) | ||
1012 | goto err; | ||
1013 | |||
1014 | if (!BN_nnmod(val[0],a,m,ctx)) | ||
1015 | goto err; /* 1 */ | ||
1016 | if (BN_is_zero(val[0])) { | ||
1017 | BN_zero(r); | ||
1018 | ret = 1; | ||
1019 | goto err; | ||
1020 | } | ||
1021 | |||
1022 | window = BN_window_bits_for_exponent_size(bits); | ||
1023 | if (window > 1) { | ||
1024 | if (!BN_mod_mul(d, val[0], val[0], m, ctx)) | ||
1025 | goto err; /* 2 */ | ||
1026 | j = 1 << (window - 1); | ||
1027 | for (i = 1; i < j; i++) { | ||
1028 | if (((val[i] = BN_CTX_get(ctx)) == NULL) || | ||
1029 | !BN_mod_mul(val[i], val[i - 1], d,m, ctx)) | ||
1030 | goto err; | ||
1031 | } | ||
1032 | } | ||
1033 | |||
1034 | start = 1; /* This is used to avoid multiplication etc | ||
1035 | * when there is only the value '1' in the | ||
1036 | * buffer. */ | ||
1037 | wvalue = 0; /* The 'value' of the window */ | ||
1038 | wstart = bits - 1; /* The top bit of the window */ | ||
1039 | wend = 0; /* The bottom bit of the window */ | ||
1040 | |||
1041 | if (!BN_one(r)) | ||
1042 | goto err; | ||
1043 | |||
1044 | for (;;) { | ||
1045 | if (BN_is_bit_set(p, wstart) == 0) { | ||
1046 | if (!start) | ||
1047 | if (!BN_mod_mul(r, r, r, m, ctx)) | ||
1048 | goto err; | ||
1049 | if (wstart == 0) | ||
1050 | break; | ||
1051 | wstart--; | ||
1052 | continue; | ||
1053 | } | ||
1054 | /* We now have wstart on a 'set' bit, we now need to work out | ||
1055 | * how bit a window to do. To do this we need to scan | ||
1056 | * forward until the last set bit before the end of the | ||
1057 | * window */ | ||
1058 | j = wstart; | ||
1059 | wvalue = 1; | ||
1060 | wend = 0; | ||
1061 | for (i = 1; i < window; i++) { | ||
1062 | if (wstart - i < 0) | ||
1063 | break; | ||
1064 | if (BN_is_bit_set(p, wstart - i)) { | ||
1065 | wvalue <<= (i - wend); | ||
1066 | wvalue |= 1; | ||
1067 | wend = i; | ||
1068 | } | ||
1069 | } | ||
1070 | |||
1071 | /* wend is the size of the current window */ | ||
1072 | j = wend + 1; | ||
1073 | /* add the 'bytes above' */ | ||
1074 | if (!start) | ||
1075 | for (i = 0; i < j; i++) { | ||
1076 | if (!BN_mod_mul(r, r, r, m, ctx)) | ||
1077 | goto err; | ||
1078 | } | ||
1079 | |||
1080 | /* wvalue will be an odd number < 2^window */ | ||
1081 | if (!BN_mod_mul(r, r, val[wvalue >> 1], m, ctx)) | ||
1082 | goto err; | ||
1083 | |||
1084 | /* move the 'window' down further */ | ||
1085 | wstart -= wend + 1; | ||
1086 | wvalue = 0; | ||
1087 | start = 0; | ||
1088 | if (wstart < 0) | ||
1089 | break; | ||
1090 | } | ||
1091 | ret = 1; | ||
1092 | |||
1093 | err: | ||
1094 | BN_CTX_end(ctx); | ||
1095 | bn_check_top(r); | ||
1096 | return (ret); | ||
1097 | } | ||
diff --git a/src/lib/libcrypto/bn/bn_exp2.c b/src/lib/libcrypto/bn/bn_exp2.c deleted file mode 100644 index 38bf467a38..0000000000 --- a/src/lib/libcrypto/bn/bn_exp2.c +++ /dev/null | |||
@@ -1,308 +0,0 @@ | |||
1 | /* $OpenBSD: bn_exp2.c,v 1.10 2015/02/09 15:49:22 jsing Exp $ */ | ||
2 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) | ||
3 | * All rights reserved. | ||
4 | * | ||
5 | * This package is an SSL implementation written | ||
6 | * by Eric Young (eay@cryptsoft.com). | ||
7 | * The implementation was written so as to conform with Netscapes SSL. | ||
8 | * | ||
9 | * This library is free for commercial and non-commercial use as long as | ||
10 | * the following conditions are aheared to. The following conditions | ||
11 | * apply to all code found in this distribution, be it the RC4, RSA, | ||
12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation | ||
13 | * included with this distribution is covered by the same copyright terms | ||
14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | ||
15 | * | ||
16 | * Copyright remains Eric Young's, and as such any Copyright notices in | ||
17 | * the code are not to be removed. | ||
18 | * If this package is used in a product, Eric Young should be given attribution | ||
19 | * as the author of the parts of the library used. | ||
20 | * This can be in the form of a textual message at program startup or | ||
21 | * in documentation (online or textual) provided with the package. | ||
22 | * | ||
23 | * Redistribution and use in source and binary forms, with or without | ||
24 | * modification, are permitted provided that the following conditions | ||
25 | * are met: | ||
26 | * 1. Redistributions of source code must retain the copyright | ||
27 | * notice, this list of conditions and the following disclaimer. | ||
28 | * 2. Redistributions in binary form must reproduce the above copyright | ||
29 | * notice, this list of conditions and the following disclaimer in the | ||
30 | * documentation and/or other materials provided with the distribution. | ||
31 | * 3. All advertising materials mentioning features or use of this software | ||
32 | * must display the following acknowledgement: | ||
33 | * "This product includes cryptographic software written by | ||
34 | * Eric Young (eay@cryptsoft.com)" | ||
35 | * The word 'cryptographic' can be left out if the rouines from the library | ||
36 | * being used are not cryptographic related :-). | ||
37 | * 4. If you include any Windows specific code (or a derivative thereof) from | ||
38 | * the apps directory (application code) you must include an acknowledgement: | ||
39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | ||
40 | * | ||
41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | ||
42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | ||
44 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | ||
45 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | ||
46 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | ||
47 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
48 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | ||
49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | ||
50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | ||
51 | * SUCH DAMAGE. | ||
52 | * | ||
53 | * The licence and distribution terms for any publically available version or | ||
54 | * derivative of this code cannot be changed. i.e. this code cannot simply be | ||
55 | * copied and put under another distribution licence | ||
56 | * [including the GNU Public Licence.] | ||
57 | */ | ||
58 | /* ==================================================================== | ||
59 | * Copyright (c) 1998-2000 The OpenSSL Project. All rights reserved. | ||
60 | * | ||
61 | * Redistribution and use in source and binary forms, with or without | ||
62 | * modification, are permitted provided that the following conditions | ||
63 | * are met: | ||
64 | * | ||
65 | * 1. Redistributions of source code must retain the above copyright | ||
66 | * notice, this list of conditions and the following disclaimer. | ||
67 | * | ||
68 | * 2. Redistributions in binary form must reproduce the above copyright | ||
69 | * notice, this list of conditions and the following disclaimer in | ||
70 | * the documentation and/or other materials provided with the | ||
71 | * distribution. | ||
72 | * | ||
73 | * 3. All advertising materials mentioning features or use of this | ||
74 | * software must display the following acknowledgment: | ||
75 | * "This product includes software developed by the OpenSSL Project | ||
76 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | ||
77 | * | ||
78 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
79 | * endorse or promote products derived from this software without | ||
80 | * prior written permission. For written permission, please contact | ||
81 | * openssl-core@openssl.org. | ||
82 | * | ||
83 | * 5. Products derived from this software may not be called "OpenSSL" | ||
84 | * nor may "OpenSSL" appear in their names without prior written | ||
85 | * permission of the OpenSSL Project. | ||
86 | * | ||
87 | * 6. Redistributions of any form whatsoever must retain the following | ||
88 | * acknowledgment: | ||
89 | * "This product includes software developed by the OpenSSL Project | ||
90 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" | ||
91 | * | ||
92 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
93 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
94 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
95 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
96 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
97 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
98 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
99 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
100 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
101 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
102 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
103 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
104 | * ==================================================================== | ||
105 | * | ||
106 | * This product includes cryptographic software written by Eric Young | ||
107 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
108 | * Hudson (tjh@cryptsoft.com). | ||
109 | * | ||
110 | */ | ||
111 | |||
112 | #include <stdio.h> | ||
113 | |||
114 | #include <openssl/err.h> | ||
115 | |||
116 | #include "bn_lcl.h" | ||
117 | |||
118 | #define TABLE_SIZE 32 | ||
119 | |||
120 | int | ||
121 | BN_mod_exp2_mont(BIGNUM *rr, const BIGNUM *a1, const BIGNUM *p1, | ||
122 | const BIGNUM *a2, const BIGNUM *p2, const BIGNUM *m, BN_CTX *ctx, | ||
123 | BN_MONT_CTX *in_mont) | ||
124 | { | ||
125 | int i, j, bits, b, bits1, bits2, ret = 0, wpos1, wpos2, window1, window2, wvalue1, wvalue2; | ||
126 | int r_is_one = 1; | ||
127 | BIGNUM *d, *r; | ||
128 | const BIGNUM *a_mod_m; | ||
129 | /* Tables of variables obtained from 'ctx' */ | ||
130 | BIGNUM *val1[TABLE_SIZE], *val2[TABLE_SIZE]; | ||
131 | BN_MONT_CTX *mont = NULL; | ||
132 | |||
133 | bn_check_top(a1); | ||
134 | bn_check_top(p1); | ||
135 | bn_check_top(a2); | ||
136 | bn_check_top(p2); | ||
137 | bn_check_top(m); | ||
138 | |||
139 | if (!(m->d[0] & 1)) { | ||
140 | BNerr(BN_F_BN_MOD_EXP2_MONT, BN_R_CALLED_WITH_EVEN_MODULUS); | ||
141 | return (0); | ||
142 | } | ||
143 | bits1 = BN_num_bits(p1); | ||
144 | bits2 = BN_num_bits(p2); | ||
145 | if ((bits1 == 0) && (bits2 == 0)) { | ||
146 | ret = BN_one(rr); | ||
147 | return ret; | ||
148 | } | ||
149 | |||
150 | bits = (bits1 > bits2) ? bits1 : bits2; | ||
151 | |||
152 | BN_CTX_start(ctx); | ||
153 | if ((d = BN_CTX_get(ctx)) == NULL) | ||
154 | goto err; | ||
155 | if ((r = BN_CTX_get(ctx)) == NULL) | ||
156 | goto err; | ||
157 | if ((val1[0] = BN_CTX_get(ctx)) == NULL) | ||
158 | goto err; | ||
159 | if ((val2[0] = BN_CTX_get(ctx)) == NULL) | ||
160 | goto err; | ||
161 | |||
162 | if (in_mont != NULL) | ||
163 | mont = in_mont; | ||
164 | else { | ||
165 | if ((mont = BN_MONT_CTX_new()) == NULL) | ||
166 | goto err; | ||
167 | if (!BN_MONT_CTX_set(mont, m, ctx)) | ||
168 | goto err; | ||
169 | } | ||
170 | |||
171 | window1 = BN_window_bits_for_exponent_size(bits1); | ||
172 | window2 = BN_window_bits_for_exponent_size(bits2); | ||
173 | |||
174 | /* | ||
175 | * Build table for a1: val1[i] := a1^(2*i + 1) mod m for i = 0 .. 2^(window1-1) | ||
176 | */ | ||
177 | if (a1->neg || BN_ucmp(a1, m) >= 0) { | ||
178 | if (!BN_mod(val1[0], a1, m, ctx)) | ||
179 | goto err; | ||
180 | a_mod_m = val1[0]; | ||
181 | } else | ||
182 | a_mod_m = a1; | ||
183 | if (BN_is_zero(a_mod_m)) { | ||
184 | BN_zero(rr); | ||
185 | ret = 1; | ||
186 | goto err; | ||
187 | } | ||
188 | |||
189 | if (!BN_to_montgomery(val1[0], a_mod_m, mont, ctx)) | ||
190 | goto err; | ||
191 | if (window1 > 1) { | ||
192 | if (!BN_mod_mul_montgomery(d, val1[0], val1[0], mont, ctx)) | ||
193 | goto err; | ||
194 | |||
195 | j = 1 << (window1 - 1); | ||
196 | for (i = 1; i < j; i++) { | ||
197 | if (((val1[i] = BN_CTX_get(ctx)) == NULL) || | ||
198 | !BN_mod_mul_montgomery(val1[i], val1[i - 1], | ||
199 | d, mont, ctx)) | ||
200 | goto err; | ||
201 | } | ||
202 | } | ||
203 | |||
204 | |||
205 | /* | ||
206 | * Build table for a2: val2[i] := a2^(2*i + 1) mod m for i = 0 .. 2^(window2-1) | ||
207 | */ | ||
208 | if (a2->neg || BN_ucmp(a2, m) >= 0) { | ||
209 | if (!BN_mod(val2[0], a2, m, ctx)) | ||
210 | goto err; | ||
211 | a_mod_m = val2[0]; | ||
212 | } else | ||
213 | a_mod_m = a2; | ||
214 | if (BN_is_zero(a_mod_m)) { | ||
215 | BN_zero(rr); | ||
216 | ret = 1; | ||
217 | goto err; | ||
218 | } | ||
219 | if (!BN_to_montgomery(val2[0], a_mod_m, mont, ctx)) | ||
220 | goto err; | ||
221 | if (window2 > 1) { | ||
222 | if (!BN_mod_mul_montgomery(d, val2[0], val2[0], mont, ctx)) | ||
223 | goto err; | ||
224 | |||
225 | j = 1 << (window2 - 1); | ||
226 | for (i = 1; i < j; i++) { | ||
227 | if (((val2[i] = BN_CTX_get(ctx)) == NULL) || | ||
228 | !BN_mod_mul_montgomery(val2[i], val2[i - 1], | ||
229 | d, mont, ctx)) | ||
230 | goto err; | ||
231 | } | ||
232 | } | ||
233 | |||
234 | |||
235 | /* Now compute the power product, using independent windows. */ | ||
236 | r_is_one = 1; | ||
237 | wvalue1 = 0; /* The 'value' of the first window */ | ||
238 | wvalue2 = 0; /* The 'value' of the second window */ | ||
239 | wpos1 = 0; /* If wvalue1 > 0, the bottom bit of the first window */ | ||
240 | wpos2 = 0; /* If wvalue2 > 0, the bottom bit of the second window */ | ||
241 | |||
242 | if (!BN_to_montgomery(r, BN_value_one(), mont, ctx)) | ||
243 | goto err; | ||
244 | for (b = bits - 1; b >= 0; b--) { | ||
245 | if (!r_is_one) { | ||
246 | if (!BN_mod_mul_montgomery(r, r,r, mont, ctx)) | ||
247 | goto err; | ||
248 | } | ||
249 | |||
250 | if (!wvalue1) | ||
251 | if (BN_is_bit_set(p1, b)) { | ||
252 | /* consider bits b-window1+1 .. b for this window */ | ||
253 | i = b - window1 + 1; | ||
254 | while (!BN_is_bit_set(p1, i)) /* works for i<0 */ | ||
255 | i++; | ||
256 | wpos1 = i; | ||
257 | wvalue1 = 1; | ||
258 | for (i = b - 1; i >= wpos1; i--) { | ||
259 | wvalue1 <<= 1; | ||
260 | if (BN_is_bit_set(p1, i)) | ||
261 | wvalue1++; | ||
262 | } | ||
263 | } | ||
264 | |||
265 | if (!wvalue2) | ||
266 | if (BN_is_bit_set(p2, b)) { | ||
267 | /* consider bits b-window2+1 .. b for this window */ | ||
268 | i = b - window2 + 1; | ||
269 | while (!BN_is_bit_set(p2, i)) | ||
270 | i++; | ||
271 | wpos2 = i; | ||
272 | wvalue2 = 1; | ||
273 | for (i = b - 1; i >= wpos2; i--) { | ||
274 | wvalue2 <<= 1; | ||
275 | if (BN_is_bit_set(p2, i)) | ||
276 | wvalue2++; | ||
277 | } | ||
278 | } | ||
279 | |||
280 | if (wvalue1 && b == wpos1) { | ||
281 | /* wvalue1 is odd and < 2^window1 */ | ||
282 | if (!BN_mod_mul_montgomery(r, r, val1[wvalue1 >> 1], | ||
283 | mont, ctx)) | ||
284 | goto err; | ||
285 | wvalue1 = 0; | ||
286 | r_is_one = 0; | ||
287 | } | ||
288 | |||
289 | if (wvalue2 && b == wpos2) { | ||
290 | /* wvalue2 is odd and < 2^window2 */ | ||
291 | if (!BN_mod_mul_montgomery(r, r, val2[wvalue2 >> 1], | ||
292 | mont, ctx)) | ||
293 | goto err; | ||
294 | wvalue2 = 0; | ||
295 | r_is_one = 0; | ||
296 | } | ||
297 | } | ||
298 | if (!BN_from_montgomery(rr, r,mont, ctx)) | ||
299 | goto err; | ||
300 | ret = 1; | ||
301 | |||
302 | err: | ||
303 | if ((in_mont == NULL) && (mont != NULL)) | ||
304 | BN_MONT_CTX_free(mont); | ||
305 | BN_CTX_end(ctx); | ||
306 | bn_check_top(rr); | ||
307 | return (ret); | ||
308 | } | ||
diff --git a/src/lib/libcrypto/bn/bn_gcd.c b/src/lib/libcrypto/bn/bn_gcd.c deleted file mode 100644 index da9c29a8e5..0000000000 --- a/src/lib/libcrypto/bn/bn_gcd.c +++ /dev/null | |||
@@ -1,688 +0,0 @@ | |||
1 | /* $OpenBSD: bn_gcd.c,v 1.10 2015/02/09 15:49:22 jsing Exp $ */ | ||
2 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) | ||
3 | * All rights reserved. | ||
4 | * | ||
5 | * This package is an SSL implementation written | ||
6 | * by Eric Young (eay@cryptsoft.com). | ||
7 | * The implementation was written so as to conform with Netscapes SSL. | ||
8 | * | ||
9 | * This library is free for commercial and non-commercial use as long as | ||
10 | * the following conditions are aheared to. The following conditions | ||
11 | * apply to all code found in this distribution, be it the RC4, RSA, | ||
12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation | ||
13 | * included with this distribution is covered by the same copyright terms | ||
14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | ||
15 | * | ||
16 | * Copyright remains Eric Young's, and as such any Copyright notices in | ||
17 | * the code are not to be removed. | ||
18 | * If this package is used in a product, Eric Young should be given attribution | ||
19 | * as the author of the parts of the library used. | ||
20 | * This can be in the form of a textual message at program startup or | ||
21 | * in documentation (online or textual) provided with the package. | ||
22 | * | ||
23 | * Redistribution and use in source and binary forms, with or without | ||
24 | * modification, are permitted provided that the following conditions | ||
25 | * are met: | ||
26 | * 1. Redistributions of source code must retain the copyright | ||
27 | * notice, this list of conditions and the following disclaimer. | ||
28 | * 2. Redistributions in binary form must reproduce the above copyright | ||
29 | * notice, this list of conditions and the following disclaimer in the | ||
30 | * documentation and/or other materials provided with the distribution. | ||
31 | * 3. All advertising materials mentioning features or use of this software | ||
32 | * must display the following acknowledgement: | ||
33 | * "This product includes cryptographic software written by | ||
34 | * Eric Young (eay@cryptsoft.com)" | ||
35 | * The word 'cryptographic' can be left out if the rouines from the library | ||
36 | * being used are not cryptographic related :-). | ||
37 | * 4. If you include any Windows specific code (or a derivative thereof) from | ||
38 | * the apps directory (application code) you must include an acknowledgement: | ||
39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | ||
40 | * | ||
41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | ||
42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | ||
44 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | ||
45 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | ||
46 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | ||
47 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
48 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | ||
49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | ||
50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | ||
51 | * SUCH DAMAGE. | ||
52 | * | ||
53 | * The licence and distribution terms for any publically available version or | ||
54 | * derivative of this code cannot be changed. i.e. this code cannot simply be | ||
55 | * copied and put under another distribution licence | ||
56 | * [including the GNU Public Licence.] | ||
57 | */ | ||
58 | /* ==================================================================== | ||
59 | * Copyright (c) 1998-2001 The OpenSSL Project. All rights reserved. | ||
60 | * | ||
61 | * Redistribution and use in source and binary forms, with or without | ||
62 | * modification, are permitted provided that the following conditions | ||
63 | * are met: | ||
64 | * | ||
65 | * 1. Redistributions of source code must retain the above copyright | ||
66 | * notice, this list of conditions and the following disclaimer. | ||
67 | * | ||
68 | * 2. Redistributions in binary form must reproduce the above copyright | ||
69 | * notice, this list of conditions and the following disclaimer in | ||
70 | * the documentation and/or other materials provided with the | ||
71 | * distribution. | ||
72 | * | ||
73 | * 3. All advertising materials mentioning features or use of this | ||
74 | * software must display the following acknowledgment: | ||
75 | * "This product includes software developed by the OpenSSL Project | ||
76 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | ||
77 | * | ||
78 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
79 | * endorse or promote products derived from this software without | ||
80 | * prior written permission. For written permission, please contact | ||
81 | * openssl-core@openssl.org. | ||
82 | * | ||
83 | * 5. Products derived from this software may not be called "OpenSSL" | ||
84 | * nor may "OpenSSL" appear in their names without prior written | ||
85 | * permission of the OpenSSL Project. | ||
86 | * | ||
87 | * 6. Redistributions of any form whatsoever must retain the following | ||
88 | * acknowledgment: | ||
89 | * "This product includes software developed by the OpenSSL Project | ||
90 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" | ||
91 | * | ||
92 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
93 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
94 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
95 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
96 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
97 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
98 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
99 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
100 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
101 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
102 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
103 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
104 | * ==================================================================== | ||
105 | * | ||
106 | * This product includes cryptographic software written by Eric Young | ||
107 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
108 | * Hudson (tjh@cryptsoft.com). | ||
109 | * | ||
110 | */ | ||
111 | |||
112 | #include <openssl/err.h> | ||
113 | |||
114 | #include "bn_lcl.h" | ||
115 | |||
116 | static BIGNUM *euclid(BIGNUM *a, BIGNUM *b); | ||
117 | |||
118 | int | ||
119 | BN_gcd(BIGNUM *r, const BIGNUM *in_a, const BIGNUM *in_b, BN_CTX *ctx) | ||
120 | { | ||
121 | BIGNUM *a, *b, *t; | ||
122 | int ret = 0; | ||
123 | |||
124 | bn_check_top(in_a); | ||
125 | bn_check_top(in_b); | ||
126 | |||
127 | BN_CTX_start(ctx); | ||
128 | if ((a = BN_CTX_get(ctx)) == NULL) | ||
129 | goto err; | ||
130 | if ((b = BN_CTX_get(ctx)) == NULL) | ||
131 | goto err; | ||
132 | |||
133 | if (BN_copy(a, in_a) == NULL) | ||
134 | goto err; | ||
135 | if (BN_copy(b, in_b) == NULL) | ||
136 | goto err; | ||
137 | a->neg = 0; | ||
138 | b->neg = 0; | ||
139 | |||
140 | if (BN_cmp(a, b) < 0) { | ||
141 | t = a; | ||
142 | a = b; | ||
143 | b = t; | ||
144 | } | ||
145 | t = euclid(a, b); | ||
146 | if (t == NULL) | ||
147 | goto err; | ||
148 | |||
149 | if (BN_copy(r, t) == NULL) | ||
150 | goto err; | ||
151 | ret = 1; | ||
152 | |||
153 | err: | ||
154 | BN_CTX_end(ctx); | ||
155 | bn_check_top(r); | ||
156 | return (ret); | ||
157 | } | ||
158 | |||
159 | static BIGNUM * | ||
160 | euclid(BIGNUM *a, BIGNUM *b) | ||
161 | { | ||
162 | BIGNUM *t; | ||
163 | int shifts = 0; | ||
164 | |||
165 | bn_check_top(a); | ||
166 | bn_check_top(b); | ||
167 | |||
168 | /* 0 <= b <= a */ | ||
169 | while (!BN_is_zero(b)) { | ||
170 | /* 0 < b <= a */ | ||
171 | |||
172 | if (BN_is_odd(a)) { | ||
173 | if (BN_is_odd(b)) { | ||
174 | if (!BN_sub(a, a, b)) | ||
175 | goto err; | ||
176 | if (!BN_rshift1(a, a)) | ||
177 | goto err; | ||
178 | if (BN_cmp(a, b) < 0) { | ||
179 | t = a; | ||
180 | a = b; | ||
181 | b = t; | ||
182 | } | ||
183 | } | ||
184 | else /* a odd - b even */ | ||
185 | { | ||
186 | if (!BN_rshift1(b, b)) | ||
187 | goto err; | ||
188 | if (BN_cmp(a, b) < 0) { | ||
189 | t = a; | ||
190 | a = b; | ||
191 | b = t; | ||
192 | } | ||
193 | } | ||
194 | } | ||
195 | else /* a is even */ | ||
196 | { | ||
197 | if (BN_is_odd(b)) { | ||
198 | if (!BN_rshift1(a, a)) | ||
199 | goto err; | ||
200 | if (BN_cmp(a, b) < 0) { | ||
201 | t = a; | ||
202 | a = b; | ||
203 | b = t; | ||
204 | } | ||
205 | } | ||
206 | else /* a even - b even */ | ||
207 | { | ||
208 | if (!BN_rshift1(a, a)) | ||
209 | goto err; | ||
210 | if (!BN_rshift1(b, b)) | ||
211 | goto err; | ||
212 | shifts++; | ||
213 | } | ||
214 | } | ||
215 | /* 0 <= b <= a */ | ||
216 | } | ||
217 | |||
218 | if (shifts) { | ||
219 | if (!BN_lshift(a, a, shifts)) | ||
220 | goto err; | ||
221 | } | ||
222 | bn_check_top(a); | ||
223 | return (a); | ||
224 | |||
225 | err: | ||
226 | return (NULL); | ||
227 | } | ||
228 | |||
229 | |||
230 | /* solves ax == 1 (mod n) */ | ||
231 | static BIGNUM *BN_mod_inverse_no_branch(BIGNUM *in, const BIGNUM *a, | ||
232 | const BIGNUM *n, BN_CTX *ctx); | ||
233 | |||
234 | BIGNUM * | ||
235 | BN_mod_inverse(BIGNUM *in, const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx) | ||
236 | { | ||
237 | BIGNUM *A, *B, *X, *Y, *M, *D, *T, *R = NULL; | ||
238 | BIGNUM *ret = NULL; | ||
239 | int sign; | ||
240 | |||
241 | if ((BN_get_flags(a, BN_FLG_CONSTTIME) != 0) || | ||
242 | (BN_get_flags(n, BN_FLG_CONSTTIME) != 0)) { | ||
243 | return BN_mod_inverse_no_branch(in, a, n, ctx); | ||
244 | } | ||
245 | |||
246 | bn_check_top(a); | ||
247 | bn_check_top(n); | ||
248 | |||
249 | BN_CTX_start(ctx); | ||
250 | if ((A = BN_CTX_get(ctx)) == NULL) | ||
251 | goto err; | ||
252 | if ((B = BN_CTX_get(ctx)) == NULL) | ||
253 | goto err; | ||
254 | if ((X = BN_CTX_get(ctx)) == NULL) | ||
255 | goto err; | ||
256 | if ((D = BN_CTX_get(ctx)) == NULL) | ||
257 | goto err; | ||
258 | if ((M = BN_CTX_get(ctx)) == NULL) | ||
259 | goto err; | ||
260 | if ((Y = BN_CTX_get(ctx)) == NULL) | ||
261 | goto err; | ||
262 | if ((T = BN_CTX_get(ctx)) == NULL) | ||
263 | goto err; | ||
264 | |||
265 | if (in == NULL) | ||
266 | R = BN_new(); | ||
267 | else | ||
268 | R = in; | ||
269 | if (R == NULL) | ||
270 | goto err; | ||
271 | |||
272 | BN_one(X); | ||
273 | BN_zero(Y); | ||
274 | if (BN_copy(B, a) == NULL) | ||
275 | goto err; | ||
276 | if (BN_copy(A, n) == NULL) | ||
277 | goto err; | ||
278 | A->neg = 0; | ||
279 | if (B->neg || (BN_ucmp(B, A) >= 0)) { | ||
280 | if (!BN_nnmod(B, B, A, ctx)) | ||
281 | goto err; | ||
282 | } | ||
283 | sign = -1; | ||
284 | /* From B = a mod |n|, A = |n| it follows that | ||
285 | * | ||
286 | * 0 <= B < A, | ||
287 | * -sign*X*a == B (mod |n|), | ||
288 | * sign*Y*a == A (mod |n|). | ||
289 | */ | ||
290 | |||
291 | if (BN_is_odd(n) && (BN_num_bits(n) <= (BN_BITS <= 32 ? 450 : 2048))) { | ||
292 | /* Binary inversion algorithm; requires odd modulus. | ||
293 | * This is faster than the general algorithm if the modulus | ||
294 | * is sufficiently small (about 400 .. 500 bits on 32-bit | ||
295 | * sytems, but much more on 64-bit systems) */ | ||
296 | int shift; | ||
297 | |||
298 | while (!BN_is_zero(B)) { | ||
299 | /* | ||
300 | * 0 < B < |n|, | ||
301 | * 0 < A <= |n|, | ||
302 | * (1) -sign*X*a == B (mod |n|), | ||
303 | * (2) sign*Y*a == A (mod |n|) | ||
304 | */ | ||
305 | |||
306 | /* Now divide B by the maximum possible power of two in the integers, | ||
307 | * and divide X by the same value mod |n|. | ||
308 | * When we're done, (1) still holds. */ | ||
309 | shift = 0; | ||
310 | while (!BN_is_bit_set(B, shift)) /* note that 0 < B */ | ||
311 | { | ||
312 | shift++; | ||
313 | |||
314 | if (BN_is_odd(X)) { | ||
315 | if (!BN_uadd(X, X, n)) | ||
316 | goto err; | ||
317 | } | ||
318 | /* now X is even, so we can easily divide it by two */ | ||
319 | if (!BN_rshift1(X, X)) | ||
320 | goto err; | ||
321 | } | ||
322 | if (shift > 0) { | ||
323 | if (!BN_rshift(B, B, shift)) | ||
324 | goto err; | ||
325 | } | ||
326 | |||
327 | |||
328 | /* Same for A and Y. Afterwards, (2) still holds. */ | ||
329 | shift = 0; | ||
330 | while (!BN_is_bit_set(A, shift)) /* note that 0 < A */ | ||
331 | { | ||
332 | shift++; | ||
333 | |||
334 | if (BN_is_odd(Y)) { | ||
335 | if (!BN_uadd(Y, Y, n)) | ||
336 | goto err; | ||
337 | } | ||
338 | /* now Y is even */ | ||
339 | if (!BN_rshift1(Y, Y)) | ||
340 | goto err; | ||
341 | } | ||
342 | if (shift > 0) { | ||
343 | if (!BN_rshift(A, A, shift)) | ||
344 | goto err; | ||
345 | } | ||
346 | |||
347 | |||
348 | /* We still have (1) and (2). | ||
349 | * Both A and B are odd. | ||
350 | * The following computations ensure that | ||
351 | * | ||
352 | * 0 <= B < |n|, | ||
353 | * 0 < A < |n|, | ||
354 | * (1) -sign*X*a == B (mod |n|), | ||
355 | * (2) sign*Y*a == A (mod |n|), | ||
356 | * | ||
357 | * and that either A or B is even in the next iteration. | ||
358 | */ | ||
359 | if (BN_ucmp(B, A) >= 0) { | ||
360 | /* -sign*(X + Y)*a == B - A (mod |n|) */ | ||
361 | if (!BN_uadd(X, X, Y)) | ||
362 | goto err; | ||
363 | /* NB: we could use BN_mod_add_quick(X, X, Y, n), but that | ||
364 | * actually makes the algorithm slower */ | ||
365 | if (!BN_usub(B, B, A)) | ||
366 | goto err; | ||
367 | } else { | ||
368 | /* sign*(X + Y)*a == A - B (mod |n|) */ | ||
369 | if (!BN_uadd(Y, Y, X)) | ||
370 | goto err; | ||
371 | /* as above, BN_mod_add_quick(Y, Y, X, n) would slow things down */ | ||
372 | if (!BN_usub(A, A, B)) | ||
373 | goto err; | ||
374 | } | ||
375 | } | ||
376 | } else { | ||
377 | /* general inversion algorithm */ | ||
378 | |||
379 | while (!BN_is_zero(B)) { | ||
380 | BIGNUM *tmp; | ||
381 | |||
382 | /* | ||
383 | * 0 < B < A, | ||
384 | * (*) -sign*X*a == B (mod |n|), | ||
385 | * sign*Y*a == A (mod |n|) | ||
386 | */ | ||
387 | |||
388 | /* (D, M) := (A/B, A%B) ... */ | ||
389 | if (BN_num_bits(A) == BN_num_bits(B)) { | ||
390 | if (!BN_one(D)) | ||
391 | goto err; | ||
392 | if (!BN_sub(M, A, B)) | ||
393 | goto err; | ||
394 | } else if (BN_num_bits(A) == BN_num_bits(B) + 1) { | ||
395 | /* A/B is 1, 2, or 3 */ | ||
396 | if (!BN_lshift1(T, B)) | ||
397 | goto err; | ||
398 | if (BN_ucmp(A, T) < 0) { | ||
399 | /* A < 2*B, so D=1 */ | ||
400 | if (!BN_one(D)) | ||
401 | goto err; | ||
402 | if (!BN_sub(M, A, B)) | ||
403 | goto err; | ||
404 | } else { | ||
405 | /* A >= 2*B, so D=2 or D=3 */ | ||
406 | if (!BN_sub(M, A, T)) | ||
407 | goto err; | ||
408 | if (!BN_add(D,T,B)) goto err; /* use D (:= 3*B) as temp */ | ||
409 | if (BN_ucmp(A, D) < 0) { | ||
410 | /* A < 3*B, so D=2 */ | ||
411 | if (!BN_set_word(D, 2)) | ||
412 | goto err; | ||
413 | /* M (= A - 2*B) already has the correct value */ | ||
414 | } else { | ||
415 | /* only D=3 remains */ | ||
416 | if (!BN_set_word(D, 3)) | ||
417 | goto err; | ||
418 | /* currently M = A - 2*B, but we need M = A - 3*B */ | ||
419 | if (!BN_sub(M, M, B)) | ||
420 | goto err; | ||
421 | } | ||
422 | } | ||
423 | } else { | ||
424 | if (!BN_div(D, M, A, B, ctx)) | ||
425 | goto err; | ||
426 | } | ||
427 | |||
428 | /* Now | ||
429 | * A = D*B + M; | ||
430 | * thus we have | ||
431 | * (**) sign*Y*a == D*B + M (mod |n|). | ||
432 | */ | ||
433 | tmp = A; /* keep the BIGNUM object, the value does not matter */ | ||
434 | |||
435 | /* (A, B) := (B, A mod B) ... */ | ||
436 | A = B; | ||
437 | B = M; | ||
438 | /* ... so we have 0 <= B < A again */ | ||
439 | |||
440 | /* Since the former M is now B and the former B is now A, | ||
441 | * (**) translates into | ||
442 | * sign*Y*a == D*A + B (mod |n|), | ||
443 | * i.e. | ||
444 | * sign*Y*a - D*A == B (mod |n|). | ||
445 | * Similarly, (*) translates into | ||
446 | * -sign*X*a == A (mod |n|). | ||
447 | * | ||
448 | * Thus, | ||
449 | * sign*Y*a + D*sign*X*a == B (mod |n|), | ||
450 | * i.e. | ||
451 | * sign*(Y + D*X)*a == B (mod |n|). | ||
452 | * | ||
453 | * So if we set (X, Y, sign) := (Y + D*X, X, -sign), we arrive back at | ||
454 | * -sign*X*a == B (mod |n|), | ||
455 | * sign*Y*a == A (mod |n|). | ||
456 | * Note that X and Y stay non-negative all the time. | ||
457 | */ | ||
458 | |||
459 | /* most of the time D is very small, so we can optimize tmp := D*X+Y */ | ||
460 | if (BN_is_one(D)) { | ||
461 | if (!BN_add(tmp, X, Y)) | ||
462 | goto err; | ||
463 | } else { | ||
464 | if (BN_is_word(D, 2)) { | ||
465 | if (!BN_lshift1(tmp, X)) | ||
466 | goto err; | ||
467 | } else if (BN_is_word(D, 4)) { | ||
468 | if (!BN_lshift(tmp, X, 2)) | ||
469 | goto err; | ||
470 | } else if (D->top == 1) { | ||
471 | if (!BN_copy(tmp, X)) | ||
472 | goto err; | ||
473 | if (!BN_mul_word(tmp, D->d[0])) | ||
474 | goto err; | ||
475 | } else { | ||
476 | if (!BN_mul(tmp, D,X, ctx)) | ||
477 | goto err; | ||
478 | } | ||
479 | if (!BN_add(tmp, tmp, Y)) | ||
480 | goto err; | ||
481 | } | ||
482 | |||
483 | M = Y; /* keep the BIGNUM object, the value does not matter */ | ||
484 | Y = X; | ||
485 | X = tmp; | ||
486 | sign = -sign; | ||
487 | } | ||
488 | } | ||
489 | |||
490 | /* | ||
491 | * The while loop (Euclid's algorithm) ends when | ||
492 | * A == gcd(a,n); | ||
493 | * we have | ||
494 | * sign*Y*a == A (mod |n|), | ||
495 | * where Y is non-negative. | ||
496 | */ | ||
497 | |||
498 | if (sign < 0) { | ||
499 | if (!BN_sub(Y, n, Y)) | ||
500 | goto err; | ||
501 | } | ||
502 | /* Now Y*a == A (mod |n|). */ | ||
503 | |||
504 | if (BN_is_one(A)) { | ||
505 | /* Y*a == 1 (mod |n|) */ | ||
506 | if (!Y->neg && BN_ucmp(Y, n) < 0) { | ||
507 | if (!BN_copy(R, Y)) | ||
508 | goto err; | ||
509 | } else { | ||
510 | if (!BN_nnmod(R, Y,n, ctx)) | ||
511 | goto err; | ||
512 | } | ||
513 | } else { | ||
514 | BNerr(BN_F_BN_MOD_INVERSE, BN_R_NO_INVERSE); | ||
515 | goto err; | ||
516 | } | ||
517 | ret = R; | ||
518 | |||
519 | err: | ||
520 | if ((ret == NULL) && (in == NULL)) | ||
521 | BN_free(R); | ||
522 | BN_CTX_end(ctx); | ||
523 | bn_check_top(ret); | ||
524 | return (ret); | ||
525 | } | ||
526 | |||
527 | |||
528 | /* BN_mod_inverse_no_branch is a special version of BN_mod_inverse. | ||
529 | * It does not contain branches that may leak sensitive information. | ||
530 | */ | ||
531 | static BIGNUM * | ||
532 | BN_mod_inverse_no_branch(BIGNUM *in, const BIGNUM *a, const BIGNUM *n, | ||
533 | BN_CTX *ctx) | ||
534 | { | ||
535 | BIGNUM *A, *B, *X, *Y, *M, *D, *T, *R = NULL; | ||
536 | BIGNUM local_A, local_B; | ||
537 | BIGNUM *pA, *pB; | ||
538 | BIGNUM *ret = NULL; | ||
539 | int sign; | ||
540 | |||
541 | bn_check_top(a); | ||
542 | bn_check_top(n); | ||
543 | |||
544 | BN_CTX_start(ctx); | ||
545 | if ((A = BN_CTX_get(ctx)) == NULL) | ||
546 | goto err; | ||
547 | if ((B = BN_CTX_get(ctx)) == NULL) | ||
548 | goto err; | ||
549 | if ((X = BN_CTX_get(ctx)) == NULL) | ||
550 | goto err; | ||
551 | if ((D = BN_CTX_get(ctx)) == NULL) | ||
552 | goto err; | ||
553 | if ((M = BN_CTX_get(ctx)) == NULL) | ||
554 | goto err; | ||
555 | if ((Y = BN_CTX_get(ctx)) == NULL) | ||
556 | goto err; | ||
557 | if ((T = BN_CTX_get(ctx)) == NULL) | ||
558 | goto err; | ||
559 | |||
560 | if (in == NULL) | ||
561 | R = BN_new(); | ||
562 | else | ||
563 | R = in; | ||
564 | if (R == NULL) | ||
565 | goto err; | ||
566 | |||
567 | BN_one(X); | ||
568 | BN_zero(Y); | ||
569 | if (BN_copy(B, a) == NULL) | ||
570 | goto err; | ||
571 | if (BN_copy(A, n) == NULL) | ||
572 | goto err; | ||
573 | A->neg = 0; | ||
574 | |||
575 | if (B->neg || (BN_ucmp(B, A) >= 0)) { | ||
576 | /* Turn BN_FLG_CONSTTIME flag on, so that when BN_div is invoked, | ||
577 | * BN_div_no_branch will be called eventually. | ||
578 | */ | ||
579 | pB = &local_B; | ||
580 | BN_with_flags(pB, B, BN_FLG_CONSTTIME); | ||
581 | if (!BN_nnmod(B, pB, A, ctx)) | ||
582 | goto err; | ||
583 | } | ||
584 | sign = -1; | ||
585 | /* From B = a mod |n|, A = |n| it follows that | ||
586 | * | ||
587 | * 0 <= B < A, | ||
588 | * -sign*X*a == B (mod |n|), | ||
589 | * sign*Y*a == A (mod |n|). | ||
590 | */ | ||
591 | |||
592 | while (!BN_is_zero(B)) { | ||
593 | BIGNUM *tmp; | ||
594 | |||
595 | /* | ||
596 | * 0 < B < A, | ||
597 | * (*) -sign*X*a == B (mod |n|), | ||
598 | * sign*Y*a == A (mod |n|) | ||
599 | */ | ||
600 | |||
601 | /* Turn BN_FLG_CONSTTIME flag on, so that when BN_div is invoked, | ||
602 | * BN_div_no_branch will be called eventually. | ||
603 | */ | ||
604 | pA = &local_A; | ||
605 | BN_with_flags(pA, A, BN_FLG_CONSTTIME); | ||
606 | |||
607 | /* (D, M) := (A/B, A%B) ... */ | ||
608 | if (!BN_div(D, M, pA, B, ctx)) | ||
609 | goto err; | ||
610 | |||
611 | /* Now | ||
612 | * A = D*B + M; | ||
613 | * thus we have | ||
614 | * (**) sign*Y*a == D*B + M (mod |n|). | ||
615 | */ | ||
616 | tmp = A; /* keep the BIGNUM object, the value does not matter */ | ||
617 | |||
618 | /* (A, B) := (B, A mod B) ... */ | ||
619 | A = B; | ||
620 | B = M; | ||
621 | /* ... so we have 0 <= B < A again */ | ||
622 | |||
623 | /* Since the former M is now B and the former B is now A, | ||
624 | * (**) translates into | ||
625 | * sign*Y*a == D*A + B (mod |n|), | ||
626 | * i.e. | ||
627 | * sign*Y*a - D*A == B (mod |n|). | ||
628 | * Similarly, (*) translates into | ||
629 | * -sign*X*a == A (mod |n|). | ||
630 | * | ||
631 | * Thus, | ||
632 | * sign*Y*a + D*sign*X*a == B (mod |n|), | ||
633 | * i.e. | ||
634 | * sign*(Y + D*X)*a == B (mod |n|). | ||
635 | * | ||
636 | * So if we set (X, Y, sign) := (Y + D*X, X, -sign), we arrive back at | ||
637 | * -sign*X*a == B (mod |n|), | ||
638 | * sign*Y*a == A (mod |n|). | ||
639 | * Note that X and Y stay non-negative all the time. | ||
640 | */ | ||
641 | |||
642 | if (!BN_mul(tmp, D, X, ctx)) | ||
643 | goto err; | ||
644 | if (!BN_add(tmp, tmp, Y)) | ||
645 | goto err; | ||
646 | |||
647 | M = Y; /* keep the BIGNUM object, the value does not matter */ | ||
648 | Y = X; | ||
649 | X = tmp; | ||
650 | sign = -sign; | ||
651 | } | ||
652 | |||
653 | /* | ||
654 | * The while loop (Euclid's algorithm) ends when | ||
655 | * A == gcd(a,n); | ||
656 | * we have | ||
657 | * sign*Y*a == A (mod |n|), | ||
658 | * where Y is non-negative. | ||
659 | */ | ||
660 | |||
661 | if (sign < 0) { | ||
662 | if (!BN_sub(Y, n, Y)) | ||
663 | goto err; | ||
664 | } | ||
665 | /* Now Y*a == A (mod |n|). */ | ||
666 | |||
667 | if (BN_is_one(A)) { | ||
668 | /* Y*a == 1 (mod |n|) */ | ||
669 | if (!Y->neg && BN_ucmp(Y, n) < 0) { | ||
670 | if (!BN_copy(R, Y)) | ||
671 | goto err; | ||
672 | } else { | ||
673 | if (!BN_nnmod(R, Y, n, ctx)) | ||
674 | goto err; | ||
675 | } | ||
676 | } else { | ||
677 | BNerr(BN_F_BN_MOD_INVERSE_NO_BRANCH, BN_R_NO_INVERSE); | ||
678 | goto err; | ||
679 | } | ||
680 | ret = R; | ||
681 | |||
682 | err: | ||
683 | if ((ret == NULL) && (in == NULL)) | ||
684 | BN_free(R); | ||
685 | BN_CTX_end(ctx); | ||
686 | bn_check_top(ret); | ||
687 | return (ret); | ||
688 | } | ||
diff --git a/src/lib/libcrypto/bn/bn_gf2m.c b/src/lib/libcrypto/bn/bn_gf2m.c deleted file mode 100644 index 40c1a94220..0000000000 --- a/src/lib/libcrypto/bn/bn_gf2m.c +++ /dev/null | |||
@@ -1,1320 +0,0 @@ | |||
1 | /* $OpenBSD: bn_gf2m.c,v 1.20 2015/06/11 15:55:28 jsing Exp $ */ | ||
2 | /* ==================================================================== | ||
3 | * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. | ||
4 | * | ||
5 | * The Elliptic Curve Public-Key Crypto Library (ECC Code) included | ||
6 | * herein is developed by SUN MICROSYSTEMS, INC., and is contributed | ||
7 | * to the OpenSSL project. | ||
8 | * | ||
9 | * The ECC Code is licensed pursuant to the OpenSSL open source | ||
10 | * license provided below. | ||
11 | * | ||
12 | * In addition, Sun covenants to all licensees who provide a reciprocal | ||
13 | * covenant with respect to their own patents if any, not to sue under | ||
14 | * current and future patent claims necessarily infringed by the making, | ||
15 | * using, practicing, selling, offering for sale and/or otherwise | ||
16 | * disposing of the ECC Code as delivered hereunder (or portions thereof), | ||
17 | * provided that such covenant shall not apply: | ||
18 | * 1) for code that a licensee deletes from the ECC Code; | ||
19 | * 2) separates from the ECC Code; or | ||
20 | * 3) for infringements caused by: | ||
21 | * i) the modification of the ECC Code or | ||
22 | * ii) the combination of the ECC Code with other software or | ||
23 | * devices where such combination causes the infringement. | ||
24 | * | ||
25 | * The software is originally written by Sheueling Chang Shantz and | ||
26 | * Douglas Stebila of Sun Microsystems Laboratories. | ||
27 | * | ||
28 | */ | ||
29 | |||
30 | /* NOTE: This file is licensed pursuant to the OpenSSL license below | ||
31 | * and may be modified; but after modifications, the above covenant | ||
32 | * may no longer apply! In such cases, the corresponding paragraph | ||
33 | * ["In addition, Sun covenants ... causes the infringement."] and | ||
34 | * this note can be edited out; but please keep the Sun copyright | ||
35 | * notice and attribution. */ | ||
36 | |||
37 | /* ==================================================================== | ||
38 | * Copyright (c) 1998-2002 The OpenSSL Project. All rights reserved. | ||
39 | * | ||
40 | * Redistribution and use in source and binary forms, with or without | ||
41 | * modification, are permitted provided that the following conditions | ||
42 | * are met: | ||
43 | * | ||
44 | * 1. Redistributions of source code must retain the above copyright | ||
45 | * notice, this list of conditions and the following disclaimer. | ||
46 | * | ||
47 | * 2. Redistributions in binary form must reproduce the above copyright | ||
48 | * notice, this list of conditions and the following disclaimer in | ||
49 | * the documentation and/or other materials provided with the | ||
50 | * distribution. | ||
51 | * | ||
52 | * 3. All advertising materials mentioning features or use of this | ||
53 | * software must display the following acknowledgment: | ||
54 | * "This product includes software developed by the OpenSSL Project | ||
55 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | ||
56 | * | ||
57 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
58 | * endorse or promote products derived from this software without | ||
59 | * prior written permission. For written permission, please contact | ||
60 | * openssl-core@openssl.org. | ||
61 | * | ||
62 | * 5. Products derived from this software may not be called "OpenSSL" | ||
63 | * nor may "OpenSSL" appear in their names without prior written | ||
64 | * permission of the OpenSSL Project. | ||
65 | * | ||
66 | * 6. Redistributions of any form whatsoever must retain the following | ||
67 | * acknowledgment: | ||
68 | * "This product includes software developed by the OpenSSL Project | ||
69 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" | ||
70 | * | ||
71 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
72 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
73 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
74 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
75 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
76 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
77 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
78 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
79 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
80 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
81 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
82 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
83 | * ==================================================================== | ||
84 | * | ||
85 | * This product includes cryptographic software written by Eric Young | ||
86 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
87 | * Hudson (tjh@cryptsoft.com). | ||
88 | * | ||
89 | */ | ||
90 | |||
91 | #include <limits.h> | ||
92 | #include <stdio.h> | ||
93 | |||
94 | #include <openssl/opensslconf.h> | ||
95 | |||
96 | #include <openssl/err.h> | ||
97 | |||
98 | #include "bn_lcl.h" | ||
99 | |||
100 | #ifndef OPENSSL_NO_EC2M | ||
101 | |||
102 | /* Maximum number of iterations before BN_GF2m_mod_solve_quad_arr should fail. */ | ||
103 | #define MAX_ITERATIONS 50 | ||
104 | |||
105 | static const BN_ULONG SQR_tb[16] = | ||
106 | { 0, 1, 4, 5, 16, 17, 20, 21, | ||
107 | 64, 65, 68, 69, 80, 81, 84, 85 }; | ||
108 | /* Platform-specific macros to accelerate squaring. */ | ||
109 | #ifdef _LP64 | ||
110 | #define SQR1(w) \ | ||
111 | SQR_tb[(w) >> 60 & 0xF] << 56 | SQR_tb[(w) >> 56 & 0xF] << 48 | \ | ||
112 | SQR_tb[(w) >> 52 & 0xF] << 40 | SQR_tb[(w) >> 48 & 0xF] << 32 | \ | ||
113 | SQR_tb[(w) >> 44 & 0xF] << 24 | SQR_tb[(w) >> 40 & 0xF] << 16 | \ | ||
114 | SQR_tb[(w) >> 36 & 0xF] << 8 | SQR_tb[(w) >> 32 & 0xF] | ||
115 | #define SQR0(w) \ | ||
116 | SQR_tb[(w) >> 28 & 0xF] << 56 | SQR_tb[(w) >> 24 & 0xF] << 48 | \ | ||
117 | SQR_tb[(w) >> 20 & 0xF] << 40 | SQR_tb[(w) >> 16 & 0xF] << 32 | \ | ||
118 | SQR_tb[(w) >> 12 & 0xF] << 24 | SQR_tb[(w) >> 8 & 0xF] << 16 | \ | ||
119 | SQR_tb[(w) >> 4 & 0xF] << 8 | SQR_tb[(w) & 0xF] | ||
120 | #else | ||
121 | #define SQR1(w) \ | ||
122 | SQR_tb[(w) >> 28 & 0xF] << 24 | SQR_tb[(w) >> 24 & 0xF] << 16 | \ | ||
123 | SQR_tb[(w) >> 20 & 0xF] << 8 | SQR_tb[(w) >> 16 & 0xF] | ||
124 | #define SQR0(w) \ | ||
125 | SQR_tb[(w) >> 12 & 0xF] << 24 | SQR_tb[(w) >> 8 & 0xF] << 16 | \ | ||
126 | SQR_tb[(w) >> 4 & 0xF] << 8 | SQR_tb[(w) & 0xF] | ||
127 | #endif | ||
128 | |||
129 | #if !defined(OPENSSL_BN_ASM_GF2m) | ||
130 | /* Product of two polynomials a, b each with degree < BN_BITS2 - 1, | ||
131 | * result is a polynomial r with degree < 2 * BN_BITS - 1 | ||
132 | * The caller MUST ensure that the variables have the right amount | ||
133 | * of space allocated. | ||
134 | */ | ||
135 | static void | ||
136 | bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, const BN_ULONG b) | ||
137 | { | ||
138 | #ifndef _LP64 | ||
139 | BN_ULONG h, l, s; | ||
140 | BN_ULONG tab[8], top2b = a >> 30; | ||
141 | BN_ULONG a1, a2, a4; | ||
142 | |||
143 | a1 = a & (0x3FFFFFFF); | ||
144 | a2 = a1 << 1; | ||
145 | a4 = a2 << 1; | ||
146 | |||
147 | tab[0] = 0; | ||
148 | tab[1] = a1; | ||
149 | tab[2] = a2; | ||
150 | tab[3] = a1 ^ a2; | ||
151 | tab[4] = a4; | ||
152 | tab[5] = a1 ^ a4; | ||
153 | tab[6] = a2 ^ a4; | ||
154 | tab[7] = a1 ^ a2 ^ a4; | ||
155 | |||
156 | s = tab[b & 0x7]; | ||
157 | l = s; | ||
158 | s = tab[b >> 3 & 0x7]; | ||
159 | l ^= s << 3; | ||
160 | h = s >> 29; | ||
161 | s = tab[b >> 6 & 0x7]; | ||
162 | l ^= s << 6; | ||
163 | h ^= s >> 26; | ||
164 | s = tab[b >> 9 & 0x7]; | ||
165 | l ^= s << 9; | ||
166 | h ^= s >> 23; | ||
167 | s = tab[b >> 12 & 0x7]; | ||
168 | l ^= s << 12; | ||
169 | h ^= s >> 20; | ||
170 | s = tab[b >> 15 & 0x7]; | ||
171 | l ^= s << 15; | ||
172 | h ^= s >> 17; | ||
173 | s = tab[b >> 18 & 0x7]; | ||
174 | l ^= s << 18; | ||
175 | h ^= s >> 14; | ||
176 | s = tab[b >> 21 & 0x7]; | ||
177 | l ^= s << 21; | ||
178 | h ^= s >> 11; | ||
179 | s = tab[b >> 24 & 0x7]; | ||
180 | l ^= s << 24; | ||
181 | h ^= s >> 8; | ||
182 | s = tab[b >> 27 & 0x7]; | ||
183 | l ^= s << 27; | ||
184 | h ^= s >> 5; | ||
185 | s = tab[b >> 30]; | ||
186 | l ^= s << 30; | ||
187 | h ^= s >> 2; | ||
188 | |||
189 | /* compensate for the top two bits of a */ | ||
190 | if (top2b & 01) { | ||
191 | l ^= b << 30; | ||
192 | h ^= b >> 2; | ||
193 | } | ||
194 | if (top2b & 02) { | ||
195 | l ^= b << 31; | ||
196 | h ^= b >> 1; | ||
197 | } | ||
198 | |||
199 | *r1 = h; | ||
200 | *r0 = l; | ||
201 | #else | ||
202 | BN_ULONG h, l, s; | ||
203 | BN_ULONG tab[16], top3b = a >> 61; | ||
204 | BN_ULONG a1, a2, a4, a8; | ||
205 | |||
206 | a1 = a & (0x1FFFFFFFFFFFFFFFULL); | ||
207 | a2 = a1 << 1; | ||
208 | a4 = a2 << 1; | ||
209 | a8 = a4 << 1; | ||
210 | |||
211 | tab[0] = 0; | ||
212 | tab[1] = a1; | ||
213 | tab[2] = a2; | ||
214 | tab[3] = a1 ^ a2; | ||
215 | tab[4] = a4; | ||
216 | tab[5] = a1 ^ a4; | ||
217 | tab[6] = a2 ^ a4; | ||
218 | tab[7] = a1 ^ a2 ^ a4; | ||
219 | tab[8] = a8; | ||
220 | tab[9] = a1 ^ a8; | ||
221 | tab[10] = a2 ^ a8; | ||
222 | tab[11] = a1 ^ a2 ^ a8; | ||
223 | tab[12] = a4 ^ a8; | ||
224 | tab[13] = a1 ^ a4 ^ a8; | ||
225 | tab[14] = a2 ^ a4 ^ a8; | ||
226 | tab[15] = a1 ^ a2 ^ a4 ^ a8; | ||
227 | |||
228 | s = tab[b & 0xF]; | ||
229 | l = s; | ||
230 | s = tab[b >> 4 & 0xF]; | ||
231 | l ^= s << 4; | ||
232 | h = s >> 60; | ||
233 | s = tab[b >> 8 & 0xF]; | ||
234 | l ^= s << 8; | ||
235 | h ^= s >> 56; | ||
236 | s = tab[b >> 12 & 0xF]; | ||
237 | l ^= s << 12; | ||
238 | h ^= s >> 52; | ||
239 | s = tab[b >> 16 & 0xF]; | ||
240 | l ^= s << 16; | ||
241 | h ^= s >> 48; | ||
242 | s = tab[b >> 20 & 0xF]; | ||
243 | l ^= s << 20; | ||
244 | h ^= s >> 44; | ||
245 | s = tab[b >> 24 & 0xF]; | ||
246 | l ^= s << 24; | ||
247 | h ^= s >> 40; | ||
248 | s = tab[b >> 28 & 0xF]; | ||
249 | l ^= s << 28; | ||
250 | h ^= s >> 36; | ||
251 | s = tab[b >> 32 & 0xF]; | ||
252 | l ^= s << 32; | ||
253 | h ^= s >> 32; | ||
254 | s = tab[b >> 36 & 0xF]; | ||
255 | l ^= s << 36; | ||
256 | h ^= s >> 28; | ||
257 | s = tab[b >> 40 & 0xF]; | ||
258 | l ^= s << 40; | ||
259 | h ^= s >> 24; | ||
260 | s = tab[b >> 44 & 0xF]; | ||
261 | l ^= s << 44; | ||
262 | h ^= s >> 20; | ||
263 | s = tab[b >> 48 & 0xF]; | ||
264 | l ^= s << 48; | ||
265 | h ^= s >> 16; | ||
266 | s = tab[b >> 52 & 0xF]; | ||
267 | l ^= s << 52; | ||
268 | h ^= s >> 12; | ||
269 | s = tab[b >> 56 & 0xF]; | ||
270 | l ^= s << 56; | ||
271 | h ^= s >> 8; | ||
272 | s = tab[b >> 60]; | ||
273 | l ^= s << 60; | ||
274 | h ^= s >> 4; | ||
275 | |||
276 | /* compensate for the top three bits of a */ | ||
277 | if (top3b & 01) { | ||
278 | l ^= b << 61; | ||
279 | h ^= b >> 3; | ||
280 | } | ||
281 | if (top3b & 02) { | ||
282 | l ^= b << 62; | ||
283 | h ^= b >> 2; | ||
284 | } | ||
285 | if (top3b & 04) { | ||
286 | l ^= b << 63; | ||
287 | h ^= b >> 1; | ||
288 | } | ||
289 | |||
290 | *r1 = h; | ||
291 | *r0 = l; | ||
292 | #endif | ||
293 | } | ||
294 | |||
295 | /* Product of two polynomials a, b each with degree < 2 * BN_BITS2 - 1, | ||
296 | * result is a polynomial r with degree < 4 * BN_BITS2 - 1 | ||
297 | * The caller MUST ensure that the variables have the right amount | ||
298 | * of space allocated. | ||
299 | */ | ||
300 | static void | ||
301 | bn_GF2m_mul_2x2(BN_ULONG *r, const BN_ULONG a1, const BN_ULONG a0, | ||
302 | const BN_ULONG b1, const BN_ULONG b0) | ||
303 | { | ||
304 | BN_ULONG m1, m0; | ||
305 | |||
306 | /* r[3] = h1, r[2] = h0; r[1] = l1; r[0] = l0 */ | ||
307 | bn_GF2m_mul_1x1(r + 3, r + 2, a1, b1); | ||
308 | bn_GF2m_mul_1x1(r + 1, r, a0, b0); | ||
309 | bn_GF2m_mul_1x1(&m1, &m0, a0 ^ a1, b0 ^ b1); | ||
310 | /* Correction on m1 ^= l1 ^ h1; m0 ^= l0 ^ h0; */ | ||
311 | r[2] ^= m1 ^ r[1] ^ r[3]; /* h0 ^= m1 ^ l1 ^ h1; */ | ||
312 | r[1] = r[3] ^ r[2] ^ r[0] ^ m1 ^ m0; /* l1 ^= l0 ^ h0 ^ m0; */ | ||
313 | } | ||
314 | #else | ||
315 | void bn_GF2m_mul_2x2(BN_ULONG *r, BN_ULONG a1, BN_ULONG a0, BN_ULONG b1, | ||
316 | BN_ULONG b0); | ||
317 | #endif | ||
318 | |||
319 | /* Add polynomials a and b and store result in r; r could be a or b, a and b | ||
320 | * could be equal; r is the bitwise XOR of a and b. | ||
321 | */ | ||
322 | int | ||
323 | BN_GF2m_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b) | ||
324 | { | ||
325 | int i; | ||
326 | const BIGNUM *at, *bt; | ||
327 | |||
328 | bn_check_top(a); | ||
329 | bn_check_top(b); | ||
330 | |||
331 | if (a->top < b->top) { | ||
332 | at = b; | ||
333 | bt = a; | ||
334 | } else { | ||
335 | at = a; | ||
336 | bt = b; | ||
337 | } | ||
338 | |||
339 | if (bn_wexpand(r, at->top) == NULL) | ||
340 | return 0; | ||
341 | |||
342 | for (i = 0; i < bt->top; i++) { | ||
343 | r->d[i] = at->d[i] ^ bt->d[i]; | ||
344 | } | ||
345 | for (; i < at->top; i++) { | ||
346 | r->d[i] = at->d[i]; | ||
347 | } | ||
348 | |||
349 | r->top = at->top; | ||
350 | bn_correct_top(r); | ||
351 | |||
352 | return 1; | ||
353 | } | ||
354 | |||
355 | |||
356 | /* Some functions allow for representation of the irreducible polynomials | ||
357 | * as an int[], say p. The irreducible f(t) is then of the form: | ||
358 | * t^p[0] + t^p[1] + ... + t^p[k] | ||
359 | * where m = p[0] > p[1] > ... > p[k] = 0. | ||
360 | */ | ||
361 | |||
362 | |||
363 | /* Performs modular reduction of a and store result in r. r could be a. */ | ||
364 | int | ||
365 | BN_GF2m_mod_arr(BIGNUM *r, const BIGNUM *a, const int p[]) | ||
366 | { | ||
367 | int j, k; | ||
368 | int n, dN, d0, d1; | ||
369 | BN_ULONG zz, *z; | ||
370 | |||
371 | bn_check_top(a); | ||
372 | |||
373 | if (!p[0]) { | ||
374 | /* reduction mod 1 => return 0 */ | ||
375 | BN_zero(r); | ||
376 | return 1; | ||
377 | } | ||
378 | |||
379 | /* Since the algorithm does reduction in the r value, if a != r, copy | ||
380 | * the contents of a into r so we can do reduction in r. | ||
381 | */ | ||
382 | if (a != r) { | ||
383 | if (!bn_wexpand(r, a->top)) | ||
384 | return 0; | ||
385 | for (j = 0; j < a->top; j++) { | ||
386 | r->d[j] = a->d[j]; | ||
387 | } | ||
388 | r->top = a->top; | ||
389 | } | ||
390 | z = r->d; | ||
391 | |||
392 | /* start reduction */ | ||
393 | dN = p[0] / BN_BITS2; | ||
394 | for (j = r->top - 1; j > dN; ) { | ||
395 | zz = z[j]; | ||
396 | if (z[j] == 0) { | ||
397 | j--; | ||
398 | continue; | ||
399 | } | ||
400 | z[j] = 0; | ||
401 | |||
402 | for (k = 1; p[k] != 0; k++) { | ||
403 | /* reducing component t^p[k] */ | ||
404 | n = p[0] - p[k]; | ||
405 | d0 = n % BN_BITS2; | ||
406 | d1 = BN_BITS2 - d0; | ||
407 | n /= BN_BITS2; | ||
408 | z[j - n] ^= (zz >> d0); | ||
409 | if (d0) | ||
410 | z[j - n - 1] ^= (zz << d1); | ||
411 | } | ||
412 | |||
413 | /* reducing component t^0 */ | ||
414 | n = dN; | ||
415 | d0 = p[0] % BN_BITS2; | ||
416 | d1 = BN_BITS2 - d0; | ||
417 | z[j - n] ^= (zz >> d0); | ||
418 | if (d0) | ||
419 | z[j - n - 1] ^= (zz << d1); | ||
420 | } | ||
421 | |||
422 | /* final round of reduction */ | ||
423 | while (j == dN) { | ||
424 | |||
425 | d0 = p[0] % BN_BITS2; | ||
426 | zz = z[dN] >> d0; | ||
427 | if (zz == 0) | ||
428 | break; | ||
429 | d1 = BN_BITS2 - d0; | ||
430 | |||
431 | /* clear up the top d1 bits */ | ||
432 | if (d0) | ||
433 | z[dN] = (z[dN] << d1) >> d1; | ||
434 | else | ||
435 | z[dN] = 0; | ||
436 | z[0] ^= zz; /* reduction t^0 component */ | ||
437 | |||
438 | for (k = 1; p[k] != 0; k++) { | ||
439 | BN_ULONG tmp_ulong; | ||
440 | |||
441 | /* reducing component t^p[k]*/ | ||
442 | n = p[k] / BN_BITS2; | ||
443 | d0 = p[k] % BN_BITS2; | ||
444 | d1 = BN_BITS2 - d0; | ||
445 | z[n] ^= (zz << d0); | ||
446 | tmp_ulong = zz >> d1; | ||
447 | if (d0 && tmp_ulong) | ||
448 | z[n + 1] ^= tmp_ulong; | ||
449 | } | ||
450 | |||
451 | |||
452 | } | ||
453 | |||
454 | bn_correct_top(r); | ||
455 | return 1; | ||
456 | } | ||
457 | |||
458 | /* Performs modular reduction of a by p and store result in r. r could be a. | ||
459 | * | ||
460 | * This function calls down to the BN_GF2m_mod_arr implementation; this wrapper | ||
461 | * function is only provided for convenience; for best performance, use the | ||
462 | * BN_GF2m_mod_arr function. | ||
463 | */ | ||
464 | int | ||
465 | BN_GF2m_mod(BIGNUM *r, const BIGNUM *a, const BIGNUM *p) | ||
466 | { | ||
467 | int ret = 0; | ||
468 | int arr[6]; | ||
469 | |||
470 | bn_check_top(a); | ||
471 | bn_check_top(p); | ||
472 | ret = BN_GF2m_poly2arr(p, arr, sizeof(arr) / sizeof(arr[0])); | ||
473 | if (!ret || ret > (int)(sizeof(arr) / sizeof(arr[0]))) { | ||
474 | BNerr(BN_F_BN_GF2M_MOD, BN_R_INVALID_LENGTH); | ||
475 | return 0; | ||
476 | } | ||
477 | ret = BN_GF2m_mod_arr(r, a, arr); | ||
478 | bn_check_top(r); | ||
479 | return ret; | ||
480 | } | ||
481 | |||
482 | |||
483 | /* Compute the product of two polynomials a and b, reduce modulo p, and store | ||
484 | * the result in r. r could be a or b; a could be b. | ||
485 | */ | ||
486 | int | ||
487 | BN_GF2m_mod_mul_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const int p[], | ||
488 | BN_CTX *ctx) | ||
489 | { | ||
490 | int zlen, i, j, k, ret = 0; | ||
491 | BIGNUM *s; | ||
492 | BN_ULONG x1, x0, y1, y0, zz[4]; | ||
493 | |||
494 | bn_check_top(a); | ||
495 | bn_check_top(b); | ||
496 | |||
497 | if (a == b) { | ||
498 | return BN_GF2m_mod_sqr_arr(r, a, p, ctx); | ||
499 | } | ||
500 | |||
501 | BN_CTX_start(ctx); | ||
502 | if ((s = BN_CTX_get(ctx)) == NULL) | ||
503 | goto err; | ||
504 | |||
505 | zlen = a->top + b->top + 4; | ||
506 | if (!bn_wexpand(s, zlen)) | ||
507 | goto err; | ||
508 | s->top = zlen; | ||
509 | |||
510 | for (i = 0; i < zlen; i++) | ||
511 | s->d[i] = 0; | ||
512 | |||
513 | for (j = 0; j < b->top; j += 2) { | ||
514 | y0 = b->d[j]; | ||
515 | y1 = ((j + 1) == b->top) ? 0 : b->d[j + 1]; | ||
516 | for (i = 0; i < a->top; i += 2) { | ||
517 | x0 = a->d[i]; | ||
518 | x1 = ((i + 1) == a->top) ? 0 : a->d[i + 1]; | ||
519 | bn_GF2m_mul_2x2(zz, x1, x0, y1, y0); | ||
520 | for (k = 0; k < 4; k++) | ||
521 | s->d[i + j + k] ^= zz[k]; | ||
522 | } | ||
523 | } | ||
524 | |||
525 | bn_correct_top(s); | ||
526 | if (BN_GF2m_mod_arr(r, s, p)) | ||
527 | ret = 1; | ||
528 | bn_check_top(r); | ||
529 | |||
530 | err: | ||
531 | BN_CTX_end(ctx); | ||
532 | return ret; | ||
533 | } | ||
534 | |||
535 | /* Compute the product of two polynomials a and b, reduce modulo p, and store | ||
536 | * the result in r. r could be a or b; a could equal b. | ||
537 | * | ||
538 | * This function calls down to the BN_GF2m_mod_mul_arr implementation; this wrapper | ||
539 | * function is only provided for convenience; for best performance, use the | ||
540 | * BN_GF2m_mod_mul_arr function. | ||
541 | */ | ||
542 | int | ||
543 | BN_GF2m_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *p, | ||
544 | BN_CTX *ctx) | ||
545 | { | ||
546 | int ret = 0; | ||
547 | const int max = BN_num_bits(p) + 1; | ||
548 | int *arr = NULL; | ||
549 | |||
550 | bn_check_top(a); | ||
551 | bn_check_top(b); | ||
552 | bn_check_top(p); | ||
553 | if ((arr = reallocarray(NULL, max, sizeof(int))) == NULL) | ||
554 | goto err; | ||
555 | ret = BN_GF2m_poly2arr(p, arr, max); | ||
556 | if (!ret || ret > max) { | ||
557 | BNerr(BN_F_BN_GF2M_MOD_MUL, BN_R_INVALID_LENGTH); | ||
558 | goto err; | ||
559 | } | ||
560 | ret = BN_GF2m_mod_mul_arr(r, a, b, arr, ctx); | ||
561 | bn_check_top(r); | ||
562 | |||
563 | err: | ||
564 | free(arr); | ||
565 | return ret; | ||
566 | } | ||
567 | |||
568 | |||
569 | /* Square a, reduce the result mod p, and store it in a. r could be a. */ | ||
570 | int | ||
571 | BN_GF2m_mod_sqr_arr(BIGNUM *r, const BIGNUM *a, const int p[], BN_CTX *ctx) | ||
572 | { | ||
573 | int i, ret = 0; | ||
574 | BIGNUM *s; | ||
575 | |||
576 | bn_check_top(a); | ||
577 | BN_CTX_start(ctx); | ||
578 | if ((s = BN_CTX_get(ctx)) == NULL) | ||
579 | goto err; | ||
580 | if (!bn_wexpand(s, 2 * a->top)) | ||
581 | goto err; | ||
582 | |||
583 | for (i = a->top - 1; i >= 0; i--) { | ||
584 | s->d[2 * i + 1] = SQR1(a->d[i]); | ||
585 | s->d[2 * i] = SQR0(a->d[i]); | ||
586 | } | ||
587 | |||
588 | s->top = 2 * a->top; | ||
589 | bn_correct_top(s); | ||
590 | if (!BN_GF2m_mod_arr(r, s, p)) | ||
591 | goto err; | ||
592 | bn_check_top(r); | ||
593 | ret = 1; | ||
594 | |||
595 | err: | ||
596 | BN_CTX_end(ctx); | ||
597 | return ret; | ||
598 | } | ||
599 | |||
600 | /* Square a, reduce the result mod p, and store it in a. r could be a. | ||
601 | * | ||
602 | * This function calls down to the BN_GF2m_mod_sqr_arr implementation; this wrapper | ||
603 | * function is only provided for convenience; for best performance, use the | ||
604 | * BN_GF2m_mod_sqr_arr function. | ||
605 | */ | ||
606 | int | ||
607 | BN_GF2m_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) | ||
608 | { | ||
609 | int ret = 0; | ||
610 | const int max = BN_num_bits(p) + 1; | ||
611 | int *arr = NULL; | ||
612 | |||
613 | bn_check_top(a); | ||
614 | bn_check_top(p); | ||
615 | if ((arr = reallocarray(NULL, max, sizeof(int))) == NULL) | ||
616 | goto err; | ||
617 | ret = BN_GF2m_poly2arr(p, arr, max); | ||
618 | if (!ret || ret > max) { | ||
619 | BNerr(BN_F_BN_GF2M_MOD_SQR, BN_R_INVALID_LENGTH); | ||
620 | goto err; | ||
621 | } | ||
622 | ret = BN_GF2m_mod_sqr_arr(r, a, arr, ctx); | ||
623 | bn_check_top(r); | ||
624 | |||
625 | err: | ||
626 | free(arr); | ||
627 | return ret; | ||
628 | } | ||
629 | |||
630 | |||
631 | /* Invert a, reduce modulo p, and store the result in r. r could be a. | ||
632 | * Uses Modified Almost Inverse Algorithm (Algorithm 10) from | ||
633 | * Hankerson, D., Hernandez, J.L., and Menezes, A. "Software Implementation | ||
634 | * of Elliptic Curve Cryptography Over Binary Fields". | ||
635 | */ | ||
636 | int | ||
637 | BN_GF2m_mod_inv(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) | ||
638 | { | ||
639 | BIGNUM *b, *c = NULL, *u = NULL, *v = NULL, *tmp; | ||
640 | int ret = 0; | ||
641 | |||
642 | bn_check_top(a); | ||
643 | bn_check_top(p); | ||
644 | |||
645 | BN_CTX_start(ctx); | ||
646 | |||
647 | if ((b = BN_CTX_get(ctx)) == NULL) | ||
648 | goto err; | ||
649 | if ((c = BN_CTX_get(ctx)) == NULL) | ||
650 | goto err; | ||
651 | if ((u = BN_CTX_get(ctx)) == NULL) | ||
652 | goto err; | ||
653 | if ((v = BN_CTX_get(ctx)) == NULL) | ||
654 | goto err; | ||
655 | |||
656 | if (!BN_GF2m_mod(u, a, p)) | ||
657 | goto err; | ||
658 | if (BN_is_zero(u)) | ||
659 | goto err; | ||
660 | |||
661 | if (!BN_copy(v, p)) | ||
662 | goto err; | ||
663 | #if 0 | ||
664 | if (!BN_one(b)) | ||
665 | goto err; | ||
666 | |||
667 | while (1) { | ||
668 | while (!BN_is_odd(u)) { | ||
669 | if (BN_is_zero(u)) | ||
670 | goto err; | ||
671 | if (!BN_rshift1(u, u)) | ||
672 | goto err; | ||
673 | if (BN_is_odd(b)) { | ||
674 | if (!BN_GF2m_add(b, b, p)) | ||
675 | goto err; | ||
676 | } | ||
677 | if (!BN_rshift1(b, b)) | ||
678 | goto err; | ||
679 | } | ||
680 | |||
681 | if (BN_abs_is_word(u, 1)) | ||
682 | break; | ||
683 | |||
684 | if (BN_num_bits(u) < BN_num_bits(v)) { | ||
685 | tmp = u; | ||
686 | u = v; | ||
687 | v = tmp; | ||
688 | tmp = b; | ||
689 | b = c; | ||
690 | c = tmp; | ||
691 | } | ||
692 | |||
693 | if (!BN_GF2m_add(u, u, v)) | ||
694 | goto err; | ||
695 | if (!BN_GF2m_add(b, b, c)) | ||
696 | goto err; | ||
697 | } | ||
698 | #else | ||
699 | { | ||
700 | int i, ubits = BN_num_bits(u), | ||
701 | vbits = BN_num_bits(v), /* v is copy of p */ | ||
702 | top = p->top; | ||
703 | BN_ULONG *udp, *bdp, *vdp, *cdp; | ||
704 | |||
705 | bn_wexpand(u, top); | ||
706 | udp = u->d; | ||
707 | for (i = u->top; i < top; i++) | ||
708 | udp[i] = 0; | ||
709 | u->top = top; | ||
710 | bn_wexpand(b, top); | ||
711 | bdp = b->d; | ||
712 | bdp[0] = 1; | ||
713 | for (i = 1; i < top; i++) | ||
714 | bdp[i] = 0; | ||
715 | b->top = top; | ||
716 | bn_wexpand(c, top); | ||
717 | cdp = c->d; | ||
718 | for (i = 0; i < top; i++) | ||
719 | cdp[i] = 0; | ||
720 | c->top = top; | ||
721 | vdp = v->d; /* It pays off to "cache" *->d pointers, because | ||
722 | * it allows optimizer to be more aggressive. | ||
723 | * But we don't have to "cache" p->d, because *p | ||
724 | * is declared 'const'... */ | ||
725 | while (1) { | ||
726 | while (ubits && !(udp[0]&1)) { | ||
727 | BN_ULONG u0, u1, b0, b1, mask; | ||
728 | |||
729 | u0 = udp[0]; | ||
730 | b0 = bdp[0]; | ||
731 | mask = (BN_ULONG)0 - (b0 & 1); | ||
732 | b0 ^= p->d[0] & mask; | ||
733 | for (i = 0; i < top - 1; i++) { | ||
734 | u1 = udp[i + 1]; | ||
735 | udp[i] = ((u0 >> 1) | | ||
736 | (u1 << (BN_BITS2 - 1))) & BN_MASK2; | ||
737 | u0 = u1; | ||
738 | b1 = bdp[i + 1] ^ (p->d[i + 1] & mask); | ||
739 | bdp[i] = ((b0 >> 1) | | ||
740 | (b1 << (BN_BITS2 - 1))) & BN_MASK2; | ||
741 | b0 = b1; | ||
742 | } | ||
743 | udp[i] = u0 >> 1; | ||
744 | bdp[i] = b0 >> 1; | ||
745 | ubits--; | ||
746 | } | ||
747 | |||
748 | if (ubits <= BN_BITS2) { | ||
749 | /* See if poly was reducible. */ | ||
750 | if (udp[0] == 0) | ||
751 | goto err; | ||
752 | if (udp[0] == 1) | ||
753 | break; | ||
754 | } | ||
755 | |||
756 | if (ubits < vbits) { | ||
757 | i = ubits; | ||
758 | ubits = vbits; | ||
759 | vbits = i; | ||
760 | tmp = u; | ||
761 | u = v; | ||
762 | v = tmp; | ||
763 | tmp = b; | ||
764 | b = c; | ||
765 | c = tmp; | ||
766 | udp = vdp; | ||
767 | vdp = v->d; | ||
768 | bdp = cdp; | ||
769 | cdp = c->d; | ||
770 | } | ||
771 | for (i = 0; i < top; i++) { | ||
772 | udp[i] ^= vdp[i]; | ||
773 | bdp[i] ^= cdp[i]; | ||
774 | } | ||
775 | if (ubits == vbits) { | ||
776 | BN_ULONG ul; | ||
777 | int utop = (ubits - 1) / BN_BITS2; | ||
778 | |||
779 | while ((ul = udp[utop]) == 0 && utop) | ||
780 | utop--; | ||
781 | ubits = utop*BN_BITS2 + BN_num_bits_word(ul); | ||
782 | } | ||
783 | } | ||
784 | bn_correct_top(b); | ||
785 | } | ||
786 | #endif | ||
787 | |||
788 | if (!BN_copy(r, b)) | ||
789 | goto err; | ||
790 | bn_check_top(r); | ||
791 | ret = 1; | ||
792 | |||
793 | err: | ||
794 | #ifdef BN_DEBUG /* BN_CTX_end would complain about the expanded form */ | ||
795 | bn_correct_top(c); | ||
796 | bn_correct_top(u); | ||
797 | bn_correct_top(v); | ||
798 | #endif | ||
799 | BN_CTX_end(ctx); | ||
800 | return ret; | ||
801 | } | ||
802 | |||
803 | /* Invert xx, reduce modulo p, and store the result in r. r could be xx. | ||
804 | * | ||
805 | * This function calls down to the BN_GF2m_mod_inv implementation; this wrapper | ||
806 | * function is only provided for convenience; for best performance, use the | ||
807 | * BN_GF2m_mod_inv function. | ||
808 | */ | ||
809 | int | ||
810 | BN_GF2m_mod_inv_arr(BIGNUM *r, const BIGNUM *xx, const int p[], BN_CTX *ctx) | ||
811 | { | ||
812 | BIGNUM *field; | ||
813 | int ret = 0; | ||
814 | |||
815 | bn_check_top(xx); | ||
816 | BN_CTX_start(ctx); | ||
817 | if ((field = BN_CTX_get(ctx)) == NULL) | ||
818 | goto err; | ||
819 | if (!BN_GF2m_arr2poly(p, field)) | ||
820 | goto err; | ||
821 | |||
822 | ret = BN_GF2m_mod_inv(r, xx, field, ctx); | ||
823 | bn_check_top(r); | ||
824 | |||
825 | err: | ||
826 | BN_CTX_end(ctx); | ||
827 | return ret; | ||
828 | } | ||
829 | |||
830 | |||
831 | #ifndef OPENSSL_SUN_GF2M_DIV | ||
832 | /* Divide y by x, reduce modulo p, and store the result in r. r could be x | ||
833 | * or y, x could equal y. | ||
834 | */ | ||
835 | int | ||
836 | BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x, const BIGNUM *p, | ||
837 | BN_CTX *ctx) | ||
838 | { | ||
839 | BIGNUM *xinv = NULL; | ||
840 | int ret = 0; | ||
841 | |||
842 | bn_check_top(y); | ||
843 | bn_check_top(x); | ||
844 | bn_check_top(p); | ||
845 | |||
846 | BN_CTX_start(ctx); | ||
847 | if ((xinv = BN_CTX_get(ctx)) == NULL) | ||
848 | goto err; | ||
849 | |||
850 | if (!BN_GF2m_mod_inv(xinv, x, p, ctx)) | ||
851 | goto err; | ||
852 | if (!BN_GF2m_mod_mul(r, y, xinv, p, ctx)) | ||
853 | goto err; | ||
854 | bn_check_top(r); | ||
855 | ret = 1; | ||
856 | |||
857 | err: | ||
858 | BN_CTX_end(ctx); | ||
859 | return ret; | ||
860 | } | ||
861 | #else | ||
862 | /* Divide y by x, reduce modulo p, and store the result in r. r could be x | ||
863 | * or y, x could equal y. | ||
864 | * Uses algorithm Modular_Division_GF(2^m) from | ||
865 | * Chang-Shantz, S. "From Euclid's GCD to Montgomery Multiplication to | ||
866 | * the Great Divide". | ||
867 | */ | ||
868 | int | ||
869 | BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x, const BIGNUM *p, | ||
870 | BN_CTX *ctx) | ||
871 | { | ||
872 | BIGNUM *a, *b, *u, *v; | ||
873 | int ret = 0; | ||
874 | |||
875 | bn_check_top(y); | ||
876 | bn_check_top(x); | ||
877 | bn_check_top(p); | ||
878 | |||
879 | BN_CTX_start(ctx); | ||
880 | |||
881 | if ((a = BN_CTX_get(ctx)) == NULL) | ||
882 | goto err; | ||
883 | if ((b = BN_CTX_get(ctx)) == NULL) | ||
884 | goto err; | ||
885 | if ((u = BN_CTX_get(ctx)) == NULL) | ||
886 | goto err; | ||
887 | if ((v = BN_CTX_get(ctx)) == NULL) | ||
888 | goto err; | ||
889 | |||
890 | /* reduce x and y mod p */ | ||
891 | if (!BN_GF2m_mod(u, y, p)) | ||
892 | goto err; | ||
893 | if (!BN_GF2m_mod(a, x, p)) | ||
894 | goto err; | ||
895 | if (!BN_copy(b, p)) | ||
896 | goto err; | ||
897 | |||
898 | while (!BN_is_odd(a)) { | ||
899 | if (!BN_rshift1(a, a)) | ||
900 | goto err; | ||
901 | if (BN_is_odd(u)) | ||
902 | if (!BN_GF2m_add(u, u, p)) | ||
903 | goto err; | ||
904 | if (!BN_rshift1(u, u)) | ||
905 | goto err; | ||
906 | } | ||
907 | |||
908 | do { | ||
909 | if (BN_GF2m_cmp(b, a) > 0) { | ||
910 | if (!BN_GF2m_add(b, b, a)) | ||
911 | goto err; | ||
912 | if (!BN_GF2m_add(v, v, u)) | ||
913 | goto err; | ||
914 | do { | ||
915 | if (!BN_rshift1(b, b)) | ||
916 | goto err; | ||
917 | if (BN_is_odd(v)) | ||
918 | if (!BN_GF2m_add(v, v, p)) | ||
919 | goto err; | ||
920 | if (!BN_rshift1(v, v)) | ||
921 | goto err; | ||
922 | } while (!BN_is_odd(b)); | ||
923 | } else if (BN_abs_is_word(a, 1)) | ||
924 | break; | ||
925 | else { | ||
926 | if (!BN_GF2m_add(a, a, b)) | ||
927 | goto err; | ||
928 | if (!BN_GF2m_add(u, u, v)) | ||
929 | goto err; | ||
930 | do { | ||
931 | if (!BN_rshift1(a, a)) | ||
932 | goto err; | ||
933 | if (BN_is_odd(u)) | ||
934 | if (!BN_GF2m_add(u, u, p)) | ||
935 | goto err; | ||
936 | if (!BN_rshift1(u, u)) | ||
937 | goto err; | ||
938 | } while (!BN_is_odd(a)); | ||
939 | } | ||
940 | } while (1); | ||
941 | |||
942 | if (!BN_copy(r, u)) | ||
943 | goto err; | ||
944 | bn_check_top(r); | ||
945 | ret = 1; | ||
946 | |||
947 | err: | ||
948 | BN_CTX_end(ctx); | ||
949 | return ret; | ||
950 | } | ||
951 | #endif | ||
952 | |||
953 | /* Divide yy by xx, reduce modulo p, and store the result in r. r could be xx | ||
954 | * or yy, xx could equal yy. | ||
955 | * | ||
956 | * This function calls down to the BN_GF2m_mod_div implementation; this wrapper | ||
957 | * function is only provided for convenience; for best performance, use the | ||
958 | * BN_GF2m_mod_div function. | ||
959 | */ | ||
960 | int | ||
961 | BN_GF2m_mod_div_arr(BIGNUM *r, const BIGNUM *yy, const BIGNUM *xx, | ||
962 | const int p[], BN_CTX *ctx) | ||
963 | { | ||
964 | BIGNUM *field; | ||
965 | int ret = 0; | ||
966 | |||
967 | bn_check_top(yy); | ||
968 | bn_check_top(xx); | ||
969 | |||
970 | BN_CTX_start(ctx); | ||
971 | if ((field = BN_CTX_get(ctx)) == NULL) | ||
972 | goto err; | ||
973 | if (!BN_GF2m_arr2poly(p, field)) | ||
974 | goto err; | ||
975 | |||
976 | ret = BN_GF2m_mod_div(r, yy, xx, field, ctx); | ||
977 | bn_check_top(r); | ||
978 | |||
979 | err: | ||
980 | BN_CTX_end(ctx); | ||
981 | return ret; | ||
982 | } | ||
983 | |||
984 | |||
985 | /* Compute the bth power of a, reduce modulo p, and store | ||
986 | * the result in r. r could be a. | ||
987 | * Uses simple square-and-multiply algorithm A.5.1 from IEEE P1363. | ||
988 | */ | ||
989 | int | ||
990 | BN_GF2m_mod_exp_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const int p[], | ||
991 | BN_CTX *ctx) | ||
992 | { | ||
993 | int ret = 0, i, n; | ||
994 | BIGNUM *u; | ||
995 | |||
996 | bn_check_top(a); | ||
997 | bn_check_top(b); | ||
998 | |||
999 | if (BN_is_zero(b)) | ||
1000 | return (BN_one(r)); | ||
1001 | |||
1002 | if (BN_abs_is_word(b, 1)) | ||
1003 | return (BN_copy(r, a) != NULL); | ||
1004 | |||
1005 | BN_CTX_start(ctx); | ||
1006 | if ((u = BN_CTX_get(ctx)) == NULL) | ||
1007 | goto err; | ||
1008 | |||
1009 | if (!BN_GF2m_mod_arr(u, a, p)) | ||
1010 | goto err; | ||
1011 | |||
1012 | n = BN_num_bits(b) - 1; | ||
1013 | for (i = n - 1; i >= 0; i--) { | ||
1014 | if (!BN_GF2m_mod_sqr_arr(u, u, p, ctx)) | ||
1015 | goto err; | ||
1016 | if (BN_is_bit_set(b, i)) { | ||
1017 | if (!BN_GF2m_mod_mul_arr(u, u, a, p, ctx)) | ||
1018 | goto err; | ||
1019 | } | ||
1020 | } | ||
1021 | if (!BN_copy(r, u)) | ||
1022 | goto err; | ||
1023 | bn_check_top(r); | ||
1024 | ret = 1; | ||
1025 | |||
1026 | err: | ||
1027 | BN_CTX_end(ctx); | ||
1028 | return ret; | ||
1029 | } | ||
1030 | |||
1031 | /* Compute the bth power of a, reduce modulo p, and store | ||
1032 | * the result in r. r could be a. | ||
1033 | * | ||
1034 | * This function calls down to the BN_GF2m_mod_exp_arr implementation; this wrapper | ||
1035 | * function is only provided for convenience; for best performance, use the | ||
1036 | * BN_GF2m_mod_exp_arr function. | ||
1037 | */ | ||
1038 | int | ||
1039 | BN_GF2m_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *p, | ||
1040 | BN_CTX *ctx) | ||
1041 | { | ||
1042 | int ret = 0; | ||
1043 | const int max = BN_num_bits(p) + 1; | ||
1044 | int *arr = NULL; | ||
1045 | |||
1046 | bn_check_top(a); | ||
1047 | bn_check_top(b); | ||
1048 | bn_check_top(p); | ||
1049 | if ((arr = reallocarray(NULL, max, sizeof(int))) == NULL) | ||
1050 | goto err; | ||
1051 | ret = BN_GF2m_poly2arr(p, arr, max); | ||
1052 | if (!ret || ret > max) { | ||
1053 | BNerr(BN_F_BN_GF2M_MOD_EXP, BN_R_INVALID_LENGTH); | ||
1054 | goto err; | ||
1055 | } | ||
1056 | ret = BN_GF2m_mod_exp_arr(r, a, b, arr, ctx); | ||
1057 | bn_check_top(r); | ||
1058 | |||
1059 | err: | ||
1060 | free(arr); | ||
1061 | return ret; | ||
1062 | } | ||
1063 | |||
1064 | /* Compute the square root of a, reduce modulo p, and store | ||
1065 | * the result in r. r could be a. | ||
1066 | * Uses exponentiation as in algorithm A.4.1 from IEEE P1363. | ||
1067 | */ | ||
1068 | int | ||
1069 | BN_GF2m_mod_sqrt_arr(BIGNUM *r, const BIGNUM *a, const int p[], BN_CTX *ctx) | ||
1070 | { | ||
1071 | int ret = 0; | ||
1072 | BIGNUM *u; | ||
1073 | |||
1074 | bn_check_top(a); | ||
1075 | |||
1076 | if (!p[0]) { | ||
1077 | /* reduction mod 1 => return 0 */ | ||
1078 | BN_zero(r); | ||
1079 | return 1; | ||
1080 | } | ||
1081 | |||
1082 | BN_CTX_start(ctx); | ||
1083 | if ((u = BN_CTX_get(ctx)) == NULL) | ||
1084 | goto err; | ||
1085 | |||
1086 | if (!BN_set_bit(u, p[0] - 1)) | ||
1087 | goto err; | ||
1088 | ret = BN_GF2m_mod_exp_arr(r, a, u, p, ctx); | ||
1089 | bn_check_top(r); | ||
1090 | |||
1091 | err: | ||
1092 | BN_CTX_end(ctx); | ||
1093 | return ret; | ||
1094 | } | ||
1095 | |||
1096 | /* Compute the square root of a, reduce modulo p, and store | ||
1097 | * the result in r. r could be a. | ||
1098 | * | ||
1099 | * This function calls down to the BN_GF2m_mod_sqrt_arr implementation; this wrapper | ||
1100 | * function is only provided for convenience; for best performance, use the | ||
1101 | * BN_GF2m_mod_sqrt_arr function. | ||
1102 | */ | ||
1103 | int | ||
1104 | BN_GF2m_mod_sqrt(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) | ||
1105 | { | ||
1106 | int ret = 0; | ||
1107 | const int max = BN_num_bits(p) + 1; | ||
1108 | int *arr = NULL; | ||
1109 | bn_check_top(a); | ||
1110 | bn_check_top(p); | ||
1111 | if ((arr = reallocarray(NULL, max, sizeof(int))) == NULL) | ||
1112 | goto err; | ||
1113 | ret = BN_GF2m_poly2arr(p, arr, max); | ||
1114 | if (!ret || ret > max) { | ||
1115 | BNerr(BN_F_BN_GF2M_MOD_SQRT, BN_R_INVALID_LENGTH); | ||
1116 | goto err; | ||
1117 | } | ||
1118 | ret = BN_GF2m_mod_sqrt_arr(r, a, arr, ctx); | ||
1119 | bn_check_top(r); | ||
1120 | |||
1121 | err: | ||
1122 | free(arr); | ||
1123 | return ret; | ||
1124 | } | ||
1125 | |||
1126 | /* Find r such that r^2 + r = a mod p. r could be a. If no r exists returns 0. | ||
1127 | * Uses algorithms A.4.7 and A.4.6 from IEEE P1363. | ||
1128 | */ | ||
1129 | int | ||
1130 | BN_GF2m_mod_solve_quad_arr(BIGNUM *r, const BIGNUM *a_, const int p[], | ||
1131 | BN_CTX *ctx) | ||
1132 | { | ||
1133 | int ret = 0, count = 0, j; | ||
1134 | BIGNUM *a, *z, *rho, *w, *w2, *tmp; | ||
1135 | |||
1136 | bn_check_top(a_); | ||
1137 | |||
1138 | if (!p[0]) { | ||
1139 | /* reduction mod 1 => return 0 */ | ||
1140 | BN_zero(r); | ||
1141 | return 1; | ||
1142 | } | ||
1143 | |||
1144 | BN_CTX_start(ctx); | ||
1145 | if ((a = BN_CTX_get(ctx)) == NULL) | ||
1146 | goto err; | ||
1147 | if ((z = BN_CTX_get(ctx)) == NULL) | ||
1148 | goto err; | ||
1149 | if ((w = BN_CTX_get(ctx)) == NULL) | ||
1150 | goto err; | ||
1151 | |||
1152 | if (!BN_GF2m_mod_arr(a, a_, p)) | ||
1153 | goto err; | ||
1154 | |||
1155 | if (BN_is_zero(a)) { | ||
1156 | BN_zero(r); | ||
1157 | ret = 1; | ||
1158 | goto err; | ||
1159 | } | ||
1160 | |||
1161 | if (p[0] & 0x1) /* m is odd */ | ||
1162 | { | ||
1163 | /* compute half-trace of a */ | ||
1164 | if (!BN_copy(z, a)) | ||
1165 | goto err; | ||
1166 | for (j = 1; j <= (p[0] - 1) / 2; j++) { | ||
1167 | if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) | ||
1168 | goto err; | ||
1169 | if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) | ||
1170 | goto err; | ||
1171 | if (!BN_GF2m_add(z, z, a)) | ||
1172 | goto err; | ||
1173 | } | ||
1174 | |||
1175 | } | ||
1176 | else /* m is even */ | ||
1177 | { | ||
1178 | if ((rho = BN_CTX_get(ctx)) == NULL) | ||
1179 | goto err; | ||
1180 | if ((w2 = BN_CTX_get(ctx)) == NULL) | ||
1181 | goto err; | ||
1182 | if ((tmp = BN_CTX_get(ctx)) == NULL) | ||
1183 | goto err; | ||
1184 | do { | ||
1185 | if (!BN_rand(rho, p[0], 0, 0)) | ||
1186 | goto err; | ||
1187 | if (!BN_GF2m_mod_arr(rho, rho, p)) | ||
1188 | goto err; | ||
1189 | BN_zero(z); | ||
1190 | if (!BN_copy(w, rho)) | ||
1191 | goto err; | ||
1192 | for (j = 1; j <= p[0] - 1; j++) { | ||
1193 | if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) | ||
1194 | goto err; | ||
1195 | if (!BN_GF2m_mod_sqr_arr(w2, w, p, ctx)) | ||
1196 | goto err; | ||
1197 | if (!BN_GF2m_mod_mul_arr(tmp, w2, a, p, ctx)) | ||
1198 | goto err; | ||
1199 | if (!BN_GF2m_add(z, z, tmp)) | ||
1200 | goto err; | ||
1201 | if (!BN_GF2m_add(w, w2, rho)) | ||
1202 | goto err; | ||
1203 | } | ||
1204 | count++; | ||
1205 | } while (BN_is_zero(w) && (count < MAX_ITERATIONS)); | ||
1206 | if (BN_is_zero(w)) { | ||
1207 | BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD_ARR, | ||
1208 | BN_R_TOO_MANY_ITERATIONS); | ||
1209 | goto err; | ||
1210 | } | ||
1211 | } | ||
1212 | |||
1213 | if (!BN_GF2m_mod_sqr_arr(w, z, p, ctx)) | ||
1214 | goto err; | ||
1215 | if (!BN_GF2m_add(w, z, w)) | ||
1216 | goto err; | ||
1217 | if (BN_GF2m_cmp(w, a)) { | ||
1218 | BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD_ARR, BN_R_NO_SOLUTION); | ||
1219 | goto err; | ||
1220 | } | ||
1221 | |||
1222 | if (!BN_copy(r, z)) | ||
1223 | goto err; | ||
1224 | bn_check_top(r); | ||
1225 | |||
1226 | ret = 1; | ||
1227 | |||
1228 | err: | ||
1229 | BN_CTX_end(ctx); | ||
1230 | return ret; | ||
1231 | } | ||
1232 | |||
1233 | /* Find r such that r^2 + r = a mod p. r could be a. If no r exists returns 0. | ||
1234 | * | ||
1235 | * This function calls down to the BN_GF2m_mod_solve_quad_arr implementation; this wrapper | ||
1236 | * function is only provided for convenience; for best performance, use the | ||
1237 | * BN_GF2m_mod_solve_quad_arr function. | ||
1238 | */ | ||
1239 | int | ||
1240 | BN_GF2m_mod_solve_quad(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) | ||
1241 | { | ||
1242 | int ret = 0; | ||
1243 | const int max = BN_num_bits(p) + 1; | ||
1244 | int *arr = NULL; | ||
1245 | |||
1246 | bn_check_top(a); | ||
1247 | bn_check_top(p); | ||
1248 | if ((arr = reallocarray(NULL, max, sizeof(int))) == NULL) | ||
1249 | goto err; | ||
1250 | ret = BN_GF2m_poly2arr(p, arr, max); | ||
1251 | if (!ret || ret > max) { | ||
1252 | BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD, BN_R_INVALID_LENGTH); | ||
1253 | goto err; | ||
1254 | } | ||
1255 | ret = BN_GF2m_mod_solve_quad_arr(r, a, arr, ctx); | ||
1256 | bn_check_top(r); | ||
1257 | |||
1258 | err: | ||
1259 | free(arr); | ||
1260 | return ret; | ||
1261 | } | ||
1262 | |||
1263 | /* Convert the bit-string representation of a polynomial | ||
1264 | * ( \sum_{i=0}^n a_i * x^i) into an array of integers corresponding | ||
1265 | * to the bits with non-zero coefficient. Array is terminated with -1. | ||
1266 | * Up to max elements of the array will be filled. Return value is total | ||
1267 | * number of array elements that would be filled if array was large enough. | ||
1268 | */ | ||
1269 | int | ||
1270 | BN_GF2m_poly2arr(const BIGNUM *a, int p[], int max) | ||
1271 | { | ||
1272 | int i, j, k = 0; | ||
1273 | BN_ULONG mask; | ||
1274 | |||
1275 | if (BN_is_zero(a)) | ||
1276 | return 0; | ||
1277 | |||
1278 | for (i = a->top - 1; i >= 0; i--) { | ||
1279 | if (!a->d[i]) | ||
1280 | /* skip word if a->d[i] == 0 */ | ||
1281 | continue; | ||
1282 | mask = BN_TBIT; | ||
1283 | for (j = BN_BITS2 - 1; j >= 0; j--) { | ||
1284 | if (a->d[i] & mask) { | ||
1285 | if (k < max) | ||
1286 | p[k] = BN_BITS2 * i + j; | ||
1287 | k++; | ||
1288 | } | ||
1289 | mask >>= 1; | ||
1290 | } | ||
1291 | } | ||
1292 | |||
1293 | if (k < max) { | ||
1294 | p[k] = -1; | ||
1295 | k++; | ||
1296 | } | ||
1297 | |||
1298 | return k; | ||
1299 | } | ||
1300 | |||
1301 | /* Convert the coefficient array representation of a polynomial to a | ||
1302 | * bit-string. The array must be terminated by -1. | ||
1303 | */ | ||
1304 | int | ||
1305 | BN_GF2m_arr2poly(const int p[], BIGNUM *a) | ||
1306 | { | ||
1307 | int i; | ||
1308 | |||
1309 | bn_check_top(a); | ||
1310 | BN_zero(a); | ||
1311 | for (i = 0; p[i] != -1; i++) { | ||
1312 | if (BN_set_bit(a, p[i]) == 0) | ||
1313 | return 0; | ||
1314 | } | ||
1315 | bn_check_top(a); | ||
1316 | |||
1317 | return 1; | ||
1318 | } | ||
1319 | |||
1320 | #endif | ||
diff --git a/src/lib/libcrypto/bn/bn_kron.c b/src/lib/libcrypto/bn/bn_kron.c deleted file mode 100644 index 274da5d186..0000000000 --- a/src/lib/libcrypto/bn/bn_kron.c +++ /dev/null | |||
@@ -1,185 +0,0 @@ | |||
1 | /* $OpenBSD: bn_kron.c,v 1.6 2015/02/09 15:49:22 jsing Exp $ */ | ||
2 | /* ==================================================================== | ||
3 | * Copyright (c) 1998-2000 The OpenSSL Project. All rights reserved. | ||
4 | * | ||
5 | * Redistribution and use in source and binary forms, with or without | ||
6 | * modification, are permitted provided that the following conditions | ||
7 | * are met: | ||
8 | * | ||
9 | * 1. Redistributions of source code must retain the above copyright | ||
10 | * notice, this list of conditions and the following disclaimer. | ||
11 | * | ||
12 | * 2. Redistributions in binary form must reproduce the above copyright | ||
13 | * notice, this list of conditions and the following disclaimer in | ||
14 | * the documentation and/or other materials provided with the | ||
15 | * distribution. | ||
16 | * | ||
17 | * 3. All advertising materials mentioning features or use of this | ||
18 | * software must display the following acknowledgment: | ||
19 | * "This product includes software developed by the OpenSSL Project | ||
20 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | ||
21 | * | ||
22 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
23 | * endorse or promote products derived from this software without | ||
24 | * prior written permission. For written permission, please contact | ||
25 | * openssl-core@openssl.org. | ||
26 | * | ||
27 | * 5. Products derived from this software may not be called "OpenSSL" | ||
28 | * nor may "OpenSSL" appear in their names without prior written | ||
29 | * permission of the OpenSSL Project. | ||
30 | * | ||
31 | * 6. Redistributions of any form whatsoever must retain the following | ||
32 | * acknowledgment: | ||
33 | * "This product includes software developed by the OpenSSL Project | ||
34 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" | ||
35 | * | ||
36 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
37 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
38 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
39 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
40 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
41 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
42 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
43 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
44 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
45 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
46 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
47 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
48 | * ==================================================================== | ||
49 | * | ||
50 | * This product includes cryptographic software written by Eric Young | ||
51 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
52 | * Hudson (tjh@cryptsoft.com). | ||
53 | * | ||
54 | */ | ||
55 | |||
56 | #include "bn_lcl.h" | ||
57 | |||
58 | /* least significant word */ | ||
59 | #define BN_lsw(n) (((n)->top == 0) ? (BN_ULONG) 0 : (n)->d[0]) | ||
60 | |||
61 | /* Returns -2 for errors because both -1 and 0 are valid results. */ | ||
62 | int | ||
63 | BN_kronecker(const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) | ||
64 | { | ||
65 | int i; | ||
66 | int ret = -2; /* avoid 'uninitialized' warning */ | ||
67 | int err = 0; | ||
68 | BIGNUM *A, *B, *tmp; | ||
69 | |||
70 | /* In 'tab', only odd-indexed entries are relevant: | ||
71 | * For any odd BIGNUM n, | ||
72 | * tab[BN_lsw(n) & 7] | ||
73 | * is $(-1)^{(n^2-1)/8}$ (using TeX notation). | ||
74 | * Note that the sign of n does not matter. | ||
75 | */ | ||
76 | static const int tab[8] = {0, 1, 0, -1, 0, -1, 0, 1}; | ||
77 | |||
78 | bn_check_top(a); | ||
79 | bn_check_top(b); | ||
80 | |||
81 | BN_CTX_start(ctx); | ||
82 | if ((A = BN_CTX_get(ctx)) == NULL) | ||
83 | goto end; | ||
84 | if ((B = BN_CTX_get(ctx)) == NULL) | ||
85 | goto end; | ||
86 | |||
87 | err = !BN_copy(A, a); | ||
88 | if (err) | ||
89 | goto end; | ||
90 | err = !BN_copy(B, b); | ||
91 | if (err) | ||
92 | goto end; | ||
93 | |||
94 | /* | ||
95 | * Kronecker symbol, imlemented according to Henri Cohen, | ||
96 | * "A Course in Computational Algebraic Number Theory" | ||
97 | * (algorithm 1.4.10). | ||
98 | */ | ||
99 | |||
100 | /* Cohen's step 1: */ | ||
101 | |||
102 | if (BN_is_zero(B)) { | ||
103 | ret = BN_abs_is_word(A, 1); | ||
104 | goto end; | ||
105 | } | ||
106 | |||
107 | /* Cohen's step 2: */ | ||
108 | |||
109 | if (!BN_is_odd(A) && !BN_is_odd(B)) { | ||
110 | ret = 0; | ||
111 | goto end; | ||
112 | } | ||
113 | |||
114 | /* now B is non-zero */ | ||
115 | i = 0; | ||
116 | while (!BN_is_bit_set(B, i)) | ||
117 | i++; | ||
118 | err = !BN_rshift(B, B, i); | ||
119 | if (err) | ||
120 | goto end; | ||
121 | if (i & 1) { | ||
122 | /* i is odd */ | ||
123 | /* (thus B was even, thus A must be odd!) */ | ||
124 | |||
125 | /* set 'ret' to $(-1)^{(A^2-1)/8}$ */ | ||
126 | ret = tab[BN_lsw(A) & 7]; | ||
127 | } else { | ||
128 | /* i is even */ | ||
129 | ret = 1; | ||
130 | } | ||
131 | |||
132 | if (B->neg) { | ||
133 | B->neg = 0; | ||
134 | if (A->neg) | ||
135 | ret = -ret; | ||
136 | } | ||
137 | |||
138 | /* now B is positive and odd, so what remains to be done is | ||
139 | * to compute the Jacobi symbol (A/B) and multiply it by 'ret' */ | ||
140 | |||
141 | while (1) { | ||
142 | /* Cohen's step 3: */ | ||
143 | |||
144 | /* B is positive and odd */ | ||
145 | |||
146 | if (BN_is_zero(A)) { | ||
147 | ret = BN_is_one(B) ? ret : 0; | ||
148 | goto end; | ||
149 | } | ||
150 | |||
151 | /* now A is non-zero */ | ||
152 | i = 0; | ||
153 | while (!BN_is_bit_set(A, i)) | ||
154 | i++; | ||
155 | err = !BN_rshift(A, A, i); | ||
156 | if (err) | ||
157 | goto end; | ||
158 | if (i & 1) { | ||
159 | /* i is odd */ | ||
160 | /* multiply 'ret' by $(-1)^{(B^2-1)/8}$ */ | ||
161 | ret = ret * tab[BN_lsw(B) & 7]; | ||
162 | } | ||
163 | |||
164 | /* Cohen's step 4: */ | ||
165 | /* multiply 'ret' by $(-1)^{(A-1)(B-1)/4}$ */ | ||
166 | if ((A->neg ? ~BN_lsw(A) : BN_lsw(A)) & BN_lsw(B) & 2) | ||
167 | ret = -ret; | ||
168 | |||
169 | /* (A, B) := (B mod |A|, |A|) */ | ||
170 | err = !BN_nnmod(B, B, A, ctx); | ||
171 | if (err) | ||
172 | goto end; | ||
173 | tmp = A; | ||
174 | A = B; | ||
175 | B = tmp; | ||
176 | tmp->neg = 0; | ||
177 | } | ||
178 | |||
179 | end: | ||
180 | BN_CTX_end(ctx); | ||
181 | if (err) | ||
182 | return -2; | ||
183 | else | ||
184 | return ret; | ||
185 | } | ||
diff --git a/src/lib/libcrypto/bn/bn_lcl.h b/src/lib/libcrypto/bn/bn_lcl.h deleted file mode 100644 index a76ba4149f..0000000000 --- a/src/lib/libcrypto/bn/bn_lcl.h +++ /dev/null | |||
@@ -1,484 +0,0 @@ | |||
1 | /* $OpenBSD: bn_lcl.h,v 1.21 2014/10/28 07:35:58 jsg Exp $ */ | ||
2 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) | ||
3 | * All rights reserved. | ||
4 | * | ||
5 | * This package is an SSL implementation written | ||
6 | * by Eric Young (eay@cryptsoft.com). | ||
7 | * The implementation was written so as to conform with Netscapes SSL. | ||
8 | * | ||
9 | * This library is free for commercial and non-commercial use as long as | ||
10 | * the following conditions are aheared to. The following conditions | ||
11 | * apply to all code found in this distribution, be it the RC4, RSA, | ||
12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation | ||
13 | * included with this distribution is covered by the same copyright terms | ||
14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | ||
15 | * | ||
16 | * Copyright remains Eric Young's, and as such any Copyright notices in | ||
17 | * the code are not to be removed. | ||
18 | * If this package is used in a product, Eric Young should be given attribution | ||
19 | * as the author of the parts of the library used. | ||
20 | * This can be in the form of a textual message at program startup or | ||
21 | * in documentation (online or textual) provided with the package. | ||
22 | * | ||
23 | * Redistribution and use in source and binary forms, with or without | ||
24 | * modification, are permitted provided that the following conditions | ||
25 | * are met: | ||
26 | * 1. Redistributions of source code must retain the copyright | ||
27 | * notice, this list of conditions and the following disclaimer. | ||
28 | * 2. Redistributions in binary form must reproduce the above copyright | ||
29 | * notice, this list of conditions and the following disclaimer in the | ||
30 | * documentation and/or other materials provided with the distribution. | ||
31 | * 3. All advertising materials mentioning features or use of this software | ||
32 | * must display the following acknowledgement: | ||
33 | * "This product includes cryptographic software written by | ||
34 | * Eric Young (eay@cryptsoft.com)" | ||
35 | * The word 'cryptographic' can be left out if the rouines from the library | ||
36 | * being used are not cryptographic related :-). | ||
37 | * 4. If you include any Windows specific code (or a derivative thereof) from | ||
38 | * the apps directory (application code) you must include an acknowledgement: | ||
39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | ||
40 | * | ||
41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | ||
42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | ||
44 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | ||
45 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | ||
46 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | ||
47 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
48 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | ||
49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | ||
50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | ||
51 | * SUCH DAMAGE. | ||
52 | * | ||
53 | * The licence and distribution terms for any publically available version or | ||
54 | * derivative of this code cannot be changed. i.e. this code cannot simply be | ||
55 | * copied and put under another distribution licence | ||
56 | * [including the GNU Public Licence.] | ||
57 | */ | ||
58 | /* ==================================================================== | ||
59 | * Copyright (c) 1998-2000 The OpenSSL Project. All rights reserved. | ||
60 | * | ||
61 | * Redistribution and use in source and binary forms, with or without | ||
62 | * modification, are permitted provided that the following conditions | ||
63 | * are met: | ||
64 | * | ||
65 | * 1. Redistributions of source code must retain the above copyright | ||
66 | * notice, this list of conditions and the following disclaimer. | ||
67 | * | ||
68 | * 2. Redistributions in binary form must reproduce the above copyright | ||
69 | * notice, this list of conditions and the following disclaimer in | ||
70 | * the documentation and/or other materials provided with the | ||
71 | * distribution. | ||
72 | * | ||
73 | * 3. All advertising materials mentioning features or use of this | ||
74 | * software must display the following acknowledgment: | ||
75 | * "This product includes software developed by the OpenSSL Project | ||
76 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | ||
77 | * | ||
78 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
79 | * endorse or promote products derived from this software without | ||
80 | * prior written permission. For written permission, please contact | ||
81 | * openssl-core@openssl.org. | ||
82 | * | ||
83 | * 5. Products derived from this software may not be called "OpenSSL" | ||
84 | * nor may "OpenSSL" appear in their names without prior written | ||
85 | * permission of the OpenSSL Project. | ||
86 | * | ||
87 | * 6. Redistributions of any form whatsoever must retain the following | ||
88 | * acknowledgment: | ||
89 | * "This product includes software developed by the OpenSSL Project | ||
90 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" | ||
91 | * | ||
92 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
93 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
94 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
95 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
96 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
97 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
98 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
99 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
100 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
101 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
102 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
103 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
104 | * ==================================================================== | ||
105 | * | ||
106 | * This product includes cryptographic software written by Eric Young | ||
107 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
108 | * Hudson (tjh@cryptsoft.com). | ||
109 | * | ||
110 | */ | ||
111 | |||
112 | #ifndef HEADER_BN_LCL_H | ||
113 | #define HEADER_BN_LCL_H | ||
114 | |||
115 | #include <openssl/opensslconf.h> | ||
116 | |||
117 | #include <openssl/bn.h> | ||
118 | |||
119 | #ifdef __cplusplus | ||
120 | extern "C" { | ||
121 | #endif | ||
122 | |||
123 | |||
124 | /* | ||
125 | * BN_window_bits_for_exponent_size -- macro for sliding window mod_exp functions | ||
126 | * | ||
127 | * | ||
128 | * For window size 'w' (w >= 2) and a random 'b' bits exponent, | ||
129 | * the number of multiplications is a constant plus on average | ||
130 | * | ||
131 | * 2^(w-1) + (b-w)/(w+1); | ||
132 | * | ||
133 | * here 2^(w-1) is for precomputing the table (we actually need | ||
134 | * entries only for windows that have the lowest bit set), and | ||
135 | * (b-w)/(w+1) is an approximation for the expected number of | ||
136 | * w-bit windows, not counting the first one. | ||
137 | * | ||
138 | * Thus we should use | ||
139 | * | ||
140 | * w >= 6 if b > 671 | ||
141 | * w = 5 if 671 > b > 239 | ||
142 | * w = 4 if 239 > b > 79 | ||
143 | * w = 3 if 79 > b > 23 | ||
144 | * w <= 2 if 23 > b | ||
145 | * | ||
146 | * (with draws in between). Very small exponents are often selected | ||
147 | * with low Hamming weight, so we use w = 1 for b <= 23. | ||
148 | */ | ||
149 | #define BN_window_bits_for_exponent_size(b) \ | ||
150 | ((b) > 671 ? 6 : \ | ||
151 | (b) > 239 ? 5 : \ | ||
152 | (b) > 79 ? 4 : \ | ||
153 | (b) > 23 ? 3 : 1) | ||
154 | |||
155 | |||
156 | /* BN_mod_exp_mont_consttime is based on the assumption that the | ||
157 | * L1 data cache line width of the target processor is at least | ||
158 | * the following value. | ||
159 | */ | ||
160 | #define MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH ( 64 ) | ||
161 | #define MOD_EXP_CTIME_MIN_CACHE_LINE_MASK (MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH - 1) | ||
162 | |||
163 | /* Window sizes optimized for fixed window size modular exponentiation | ||
164 | * algorithm (BN_mod_exp_mont_consttime). | ||
165 | * | ||
166 | * To achieve the security goals of BN_mode_exp_mont_consttime, the | ||
167 | * maximum size of the window must not exceed | ||
168 | * log_2(MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH). | ||
169 | * | ||
170 | * Window size thresholds are defined for cache line sizes of 32 and 64, | ||
171 | * cache line sizes where log_2(32)=5 and log_2(64)=6 respectively. A | ||
172 | * window size of 7 should only be used on processors that have a 128 | ||
173 | * byte or greater cache line size. | ||
174 | */ | ||
175 | #if MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH == 64 | ||
176 | |||
177 | # define BN_window_bits_for_ctime_exponent_size(b) \ | ||
178 | ((b) > 937 ? 6 : \ | ||
179 | (b) > 306 ? 5 : \ | ||
180 | (b) > 89 ? 4 : \ | ||
181 | (b) > 22 ? 3 : 1) | ||
182 | # define BN_MAX_WINDOW_BITS_FOR_CTIME_EXPONENT_SIZE (6) | ||
183 | |||
184 | #elif MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH == 32 | ||
185 | |||
186 | # define BN_window_bits_for_ctime_exponent_size(b) \ | ||
187 | ((b) > 306 ? 5 : \ | ||
188 | (b) > 89 ? 4 : \ | ||
189 | (b) > 22 ? 3 : 1) | ||
190 | # define BN_MAX_WINDOW_BITS_FOR_CTIME_EXPONENT_SIZE (5) | ||
191 | |||
192 | #endif | ||
193 | |||
194 | |||
195 | /* Pentium pro 16,16,16,32,64 */ | ||
196 | /* Alpha 16,16,16,16.64 */ | ||
197 | #define BN_MULL_SIZE_NORMAL (16) /* 32 */ | ||
198 | #define BN_MUL_RECURSIVE_SIZE_NORMAL (16) /* 32 less than */ | ||
199 | #define BN_SQR_RECURSIVE_SIZE_NORMAL (16) /* 32 */ | ||
200 | #define BN_MUL_LOW_RECURSIVE_SIZE_NORMAL (32) /* 32 */ | ||
201 | #define BN_MONT_CTX_SET_SIZE_WORD (64) /* 32 */ | ||
202 | |||
203 | #if !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM) | ||
204 | /* | ||
205 | * BN_UMULT_HIGH section. | ||
206 | * | ||
207 | * No, I'm not trying to overwhelm you when stating that the | ||
208 | * product of N-bit numbers is 2*N bits wide:-) No, I don't expect | ||
209 | * you to be impressed when I say that if the compiler doesn't | ||
210 | * support 2*N integer type, then you have to replace every N*N | ||
211 | * multiplication with 4 (N/2)*(N/2) accompanied by some shifts | ||
212 | * and additions which unavoidably results in severe performance | ||
213 | * penalties. Of course provided that the hardware is capable of | ||
214 | * producing 2*N result... That's when you normally start | ||
215 | * considering assembler implementation. However! It should be | ||
216 | * pointed out that some CPUs (most notably Alpha, PowerPC and | ||
217 | * upcoming IA-64 family:-) provide *separate* instruction | ||
218 | * calculating the upper half of the product placing the result | ||
219 | * into a general purpose register. Now *if* the compiler supports | ||
220 | * inline assembler, then it's not impossible to implement the | ||
221 | * "bignum" routines (and have the compiler optimize 'em) | ||
222 | * exhibiting "native" performance in C. That's what BN_UMULT_HIGH | ||
223 | * macro is about:-) | ||
224 | * | ||
225 | * <appro@fy.chalmers.se> | ||
226 | */ | ||
227 | # if defined(__alpha) | ||
228 | # if defined(__GNUC__) && __GNUC__>=2 | ||
229 | # define BN_UMULT_HIGH(a,b) ({ \ | ||
230 | BN_ULONG ret; \ | ||
231 | asm ("umulh %1,%2,%0" \ | ||
232 | : "=r"(ret) \ | ||
233 | : "r"(a), "r"(b)); \ | ||
234 | ret; }) | ||
235 | # endif /* compiler */ | ||
236 | # elif defined(_ARCH_PPC) && defined(_LP64) | ||
237 | # if defined(__GNUC__) && __GNUC__>=2 | ||
238 | # define BN_UMULT_HIGH(a,b) ({ \ | ||
239 | BN_ULONG ret; \ | ||
240 | asm ("mulhdu %0,%1,%2" \ | ||
241 | : "=r"(ret) \ | ||
242 | : "r"(a), "r"(b)); \ | ||
243 | ret; }) | ||
244 | # endif /* compiler */ | ||
245 | # elif defined(__x86_64) || defined(__x86_64__) | ||
246 | # if defined(__GNUC__) && __GNUC__>=2 | ||
247 | # define BN_UMULT_HIGH(a,b) ({ \ | ||
248 | BN_ULONG ret,discard; \ | ||
249 | asm ("mulq %3" \ | ||
250 | : "=a"(discard),"=d"(ret) \ | ||
251 | : "a"(a), "g"(b) \ | ||
252 | : "cc"); \ | ||
253 | ret; }) | ||
254 | # define BN_UMULT_LOHI(low,high,a,b) \ | ||
255 | asm ("mulq %3" \ | ||
256 | : "=a"(low),"=d"(high) \ | ||
257 | : "a"(a),"g"(b) \ | ||
258 | : "cc"); | ||
259 | # endif | ||
260 | # elif defined(__mips) && defined(_LP64) | ||
261 | # if defined(__GNUC__) && __GNUC__>=2 | ||
262 | # if __GNUC__>=4 && __GNUC_MINOR__>=4 /* "h" constraint is no more since 4.4 */ | ||
263 | # define BN_UMULT_HIGH(a,b) (((__uint128_t)(a)*(b))>>64) | ||
264 | # define BN_UMULT_LOHI(low,high,a,b) ({ \ | ||
265 | __uint128_t ret=(__uint128_t)(a)*(b); \ | ||
266 | (high)=ret>>64; (low)=ret; }) | ||
267 | # else | ||
268 | # define BN_UMULT_HIGH(a,b) ({ \ | ||
269 | BN_ULONG ret; \ | ||
270 | asm ("dmultu %1,%2" \ | ||
271 | : "=h"(ret) \ | ||
272 | : "r"(a), "r"(b) : "l"); \ | ||
273 | ret; }) | ||
274 | # define BN_UMULT_LOHI(low,high,a,b)\ | ||
275 | asm ("dmultu %2,%3" \ | ||
276 | : "=l"(low),"=h"(high) \ | ||
277 | : "r"(a), "r"(b)); | ||
278 | # endif | ||
279 | # endif | ||
280 | # endif /* cpu */ | ||
281 | #endif /* OPENSSL_NO_ASM */ | ||
282 | |||
283 | /************************************************************* | ||
284 | * Using the long long type | ||
285 | */ | ||
286 | #define Lw(t) (((BN_ULONG)(t))&BN_MASK2) | ||
287 | #define Hw(t) (((BN_ULONG)((t)>>BN_BITS2))&BN_MASK2) | ||
288 | |||
289 | #ifdef BN_DEBUG_RAND | ||
290 | #define bn_clear_top2max(a) \ | ||
291 | { \ | ||
292 | int ind = (a)->dmax - (a)->top; \ | ||
293 | BN_ULONG *ftl = &(a)->d[(a)->top-1]; \ | ||
294 | for (; ind != 0; ind--) \ | ||
295 | *(++ftl) = 0x0; \ | ||
296 | } | ||
297 | #else | ||
298 | #define bn_clear_top2max(a) | ||
299 | #endif | ||
300 | |||
301 | #ifdef BN_LLONG | ||
302 | #define mul_add(r,a,w,c) { \ | ||
303 | BN_ULLONG t; \ | ||
304 | t=(BN_ULLONG)w * (a) + (r) + (c); \ | ||
305 | (r)= Lw(t); \ | ||
306 | (c)= Hw(t); \ | ||
307 | } | ||
308 | |||
309 | #define mul(r,a,w,c) { \ | ||
310 | BN_ULLONG t; \ | ||
311 | t=(BN_ULLONG)w * (a) + (c); \ | ||
312 | (r)= Lw(t); \ | ||
313 | (c)= Hw(t); \ | ||
314 | } | ||
315 | |||
316 | #define sqr(r0,r1,a) { \ | ||
317 | BN_ULLONG t; \ | ||
318 | t=(BN_ULLONG)(a)*(a); \ | ||
319 | (r0)=Lw(t); \ | ||
320 | (r1)=Hw(t); \ | ||
321 | } | ||
322 | |||
323 | #elif defined(BN_UMULT_LOHI) | ||
324 | #define mul_add(r,a,w,c) { \ | ||
325 | BN_ULONG high,low,ret,tmp=(a); \ | ||
326 | ret = (r); \ | ||
327 | BN_UMULT_LOHI(low,high,w,tmp); \ | ||
328 | ret += (c); \ | ||
329 | (c) = (ret<(c))?1:0; \ | ||
330 | (c) += high; \ | ||
331 | ret += low; \ | ||
332 | (c) += (ret<low)?1:0; \ | ||
333 | (r) = ret; \ | ||
334 | } | ||
335 | |||
336 | #define mul(r,a,w,c) { \ | ||
337 | BN_ULONG high,low,ret,ta=(a); \ | ||
338 | BN_UMULT_LOHI(low,high,w,ta); \ | ||
339 | ret = low + (c); \ | ||
340 | (c) = high; \ | ||
341 | (c) += (ret<low)?1:0; \ | ||
342 | (r) = ret; \ | ||
343 | } | ||
344 | |||
345 | #define sqr(r0,r1,a) { \ | ||
346 | BN_ULONG tmp=(a); \ | ||
347 | BN_UMULT_LOHI(r0,r1,tmp,tmp); \ | ||
348 | } | ||
349 | |||
350 | #elif defined(BN_UMULT_HIGH) | ||
351 | #define mul_add(r,a,w,c) { \ | ||
352 | BN_ULONG high,low,ret,tmp=(a); \ | ||
353 | ret = (r); \ | ||
354 | high= BN_UMULT_HIGH(w,tmp); \ | ||
355 | ret += (c); \ | ||
356 | low = (w) * tmp; \ | ||
357 | (c) = (ret<(c))?1:0; \ | ||
358 | (c) += high; \ | ||
359 | ret += low; \ | ||
360 | (c) += (ret<low)?1:0; \ | ||
361 | (r) = ret; \ | ||
362 | } | ||
363 | |||
364 | #define mul(r,a,w,c) { \ | ||
365 | BN_ULONG high,low,ret,ta=(a); \ | ||
366 | low = (w) * ta; \ | ||
367 | high= BN_UMULT_HIGH(w,ta); \ | ||
368 | ret = low + (c); \ | ||
369 | (c) = high; \ | ||
370 | (c) += (ret<low)?1:0; \ | ||
371 | (r) = ret; \ | ||
372 | } | ||
373 | |||
374 | #define sqr(r0,r1,a) { \ | ||
375 | BN_ULONG tmp=(a); \ | ||
376 | (r0) = tmp * tmp; \ | ||
377 | (r1) = BN_UMULT_HIGH(tmp,tmp); \ | ||
378 | } | ||
379 | |||
380 | #else | ||
381 | /************************************************************* | ||
382 | * No long long type | ||
383 | */ | ||
384 | |||
385 | #define LBITS(a) ((a)&BN_MASK2l) | ||
386 | #define HBITS(a) (((a)>>BN_BITS4)&BN_MASK2l) | ||
387 | #define L2HBITS(a) (((a)<<BN_BITS4)&BN_MASK2) | ||
388 | |||
389 | #define mul64(l,h,bl,bh) \ | ||
390 | { \ | ||
391 | BN_ULONG m,m1,lt,ht; \ | ||
392 | \ | ||
393 | lt=l; \ | ||
394 | ht=h; \ | ||
395 | m =(bh)*(lt); \ | ||
396 | lt=(bl)*(lt); \ | ||
397 | m1=(bl)*(ht); \ | ||
398 | ht =(bh)*(ht); \ | ||
399 | m=(m+m1)&BN_MASK2; if (m < m1) ht+=L2HBITS((BN_ULONG)1); \ | ||
400 | ht+=HBITS(m); \ | ||
401 | m1=L2HBITS(m); \ | ||
402 | lt=(lt+m1)&BN_MASK2; if (lt < m1) ht++; \ | ||
403 | (l)=lt; \ | ||
404 | (h)=ht; \ | ||
405 | } | ||
406 | |||
407 | #define sqr64(lo,ho,in) \ | ||
408 | { \ | ||
409 | BN_ULONG l,h,m; \ | ||
410 | \ | ||
411 | h=(in); \ | ||
412 | l=LBITS(h); \ | ||
413 | h=HBITS(h); \ | ||
414 | m =(l)*(h); \ | ||
415 | l*=l; \ | ||
416 | h*=h; \ | ||
417 | h+=(m&BN_MASK2h1)>>(BN_BITS4-1); \ | ||
418 | m =(m&BN_MASK2l)<<(BN_BITS4+1); \ | ||
419 | l=(l+m)&BN_MASK2; if (l < m) h++; \ | ||
420 | (lo)=l; \ | ||
421 | (ho)=h; \ | ||
422 | } | ||
423 | |||
424 | #define mul_add(r,a,bl,bh,c) { \ | ||
425 | BN_ULONG l,h; \ | ||
426 | \ | ||
427 | h= (a); \ | ||
428 | l=LBITS(h); \ | ||
429 | h=HBITS(h); \ | ||
430 | mul64(l,h,(bl),(bh)); \ | ||
431 | \ | ||
432 | /* non-multiply part */ \ | ||
433 | l=(l+(c))&BN_MASK2; if (l < (c)) h++; \ | ||
434 | (c)=(r); \ | ||
435 | l=(l+(c))&BN_MASK2; if (l < (c)) h++; \ | ||
436 | (c)=h&BN_MASK2; \ | ||
437 | (r)=l; \ | ||
438 | } | ||
439 | |||
440 | #define mul(r,a,bl,bh,c) { \ | ||
441 | BN_ULONG l,h; \ | ||
442 | \ | ||
443 | h= (a); \ | ||
444 | l=LBITS(h); \ | ||
445 | h=HBITS(h); \ | ||
446 | mul64(l,h,(bl),(bh)); \ | ||
447 | \ | ||
448 | /* non-multiply part */ \ | ||
449 | l+=(c); if ((l&BN_MASK2) < (c)) h++; \ | ||
450 | (c)=h&BN_MASK2; \ | ||
451 | (r)=l&BN_MASK2; \ | ||
452 | } | ||
453 | #endif /* !BN_LLONG */ | ||
454 | |||
455 | void bn_mul_normal(BN_ULONG *r, BN_ULONG *a, int na, BN_ULONG *b, int nb); | ||
456 | void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b); | ||
457 | void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b); | ||
458 | void bn_sqr_normal(BN_ULONG *r, const BN_ULONG *a, int n, BN_ULONG *tmp); | ||
459 | void bn_sqr_comba8(BN_ULONG *r, const BN_ULONG *a); | ||
460 | void bn_sqr_comba4(BN_ULONG *r, const BN_ULONG *a); | ||
461 | int bn_cmp_words(const BN_ULONG *a, const BN_ULONG *b, int n); | ||
462 | int bn_cmp_part_words(const BN_ULONG *a, const BN_ULONG *b, | ||
463 | int cl, int dl); | ||
464 | void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2, | ||
465 | int dna, int dnb, BN_ULONG *t); | ||
466 | void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, | ||
467 | int n, int tna, int tnb, BN_ULONG *t); | ||
468 | void bn_sqr_recursive(BN_ULONG *r, const BN_ULONG *a, int n2, BN_ULONG *t); | ||
469 | void bn_mul_low_normal(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n); | ||
470 | void bn_mul_low_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2, | ||
471 | BN_ULONG *t); | ||
472 | void bn_mul_high(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, BN_ULONG *l, int n2, | ||
473 | BN_ULONG *t); | ||
474 | BN_ULONG bn_add_part_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, | ||
475 | int cl, int dl); | ||
476 | BN_ULONG bn_sub_part_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, | ||
477 | int cl, int dl); | ||
478 | int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, const BN_ULONG *np, const BN_ULONG *n0, int num); | ||
479 | |||
480 | #ifdef __cplusplus | ||
481 | } | ||
482 | #endif | ||
483 | |||
484 | #endif | ||
diff --git a/src/lib/libcrypto/bn/bn_lib.c b/src/lib/libcrypto/bn/bn_lib.c deleted file mode 100644 index d0cb49cd1e..0000000000 --- a/src/lib/libcrypto/bn/bn_lib.c +++ /dev/null | |||
@@ -1,883 +0,0 @@ | |||
1 | /* $OpenBSD: bn_lib.c,v 1.33 2014/07/12 16:03:36 miod Exp $ */ | ||
2 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) | ||
3 | * All rights reserved. | ||
4 | * | ||
5 | * This package is an SSL implementation written | ||
6 | * by Eric Young (eay@cryptsoft.com). | ||
7 | * The implementation was written so as to conform with Netscapes SSL. | ||
8 | * | ||
9 | * This library is free for commercial and non-commercial use as long as | ||
10 | * the following conditions are aheared to. The following conditions | ||
11 | * apply to all code found in this distribution, be it the RC4, RSA, | ||
12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation | ||
13 | * included with this distribution is covered by the same copyright terms | ||
14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | ||
15 | * | ||
16 | * Copyright remains Eric Young's, and as such any Copyright notices in | ||
17 | * the code are not to be removed. | ||
18 | * If this package is used in a product, Eric Young should be given attribution | ||
19 | * as the author of the parts of the library used. | ||
20 | * This can be in the form of a textual message at program startup or | ||
21 | * in documentation (online or textual) provided with the package. | ||
22 | * | ||
23 | * Redistribution and use in source and binary forms, with or without | ||
24 | * modification, are permitted provided that the following conditions | ||
25 | * are met: | ||
26 | * 1. Redistributions of source code must retain the copyright | ||
27 | * notice, this list of conditions and the following disclaimer. | ||
28 | * 2. Redistributions in binary form must reproduce the above copyright | ||
29 | * notice, this list of conditions and the following disclaimer in the | ||
30 | * documentation and/or other materials provided with the distribution. | ||
31 | * 3. All advertising materials mentioning features or use of this software | ||
32 | * must display the following acknowledgement: | ||
33 | * "This product includes cryptographic software written by | ||
34 | * Eric Young (eay@cryptsoft.com)" | ||
35 | * The word 'cryptographic' can be left out if the rouines from the library | ||
36 | * being used are not cryptographic related :-). | ||
37 | * 4. If you include any Windows specific code (or a derivative thereof) from | ||
38 | * the apps directory (application code) you must include an acknowledgement: | ||
39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | ||
40 | * | ||
41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | ||
42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | ||
44 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | ||
45 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | ||
46 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | ||
47 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
48 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | ||
49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | ||
50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | ||
51 | * SUCH DAMAGE. | ||
52 | * | ||
53 | * The licence and distribution terms for any publically available version or | ||
54 | * derivative of this code cannot be changed. i.e. this code cannot simply be | ||
55 | * copied and put under another distribution licence | ||
56 | * [including the GNU Public Licence.] | ||
57 | */ | ||
58 | |||
59 | #ifndef BN_DEBUG | ||
60 | # undef NDEBUG /* avoid conflicting definitions */ | ||
61 | # define NDEBUG | ||
62 | #endif | ||
63 | |||
64 | #include <assert.h> | ||
65 | #include <limits.h> | ||
66 | #include <stdio.h> | ||
67 | #include <string.h> | ||
68 | |||
69 | #include <openssl/opensslconf.h> | ||
70 | |||
71 | #include <openssl/err.h> | ||
72 | |||
73 | #include "bn_lcl.h" | ||
74 | |||
75 | /* This stuff appears to be completely unused, so is deprecated */ | ||
76 | #ifndef OPENSSL_NO_DEPRECATED | ||
77 | /* For a 32 bit machine | ||
78 | * 2 - 4 == 128 | ||
79 | * 3 - 8 == 256 | ||
80 | * 4 - 16 == 512 | ||
81 | * 5 - 32 == 1024 | ||
82 | * 6 - 64 == 2048 | ||
83 | * 7 - 128 == 4096 | ||
84 | * 8 - 256 == 8192 | ||
85 | */ | ||
86 | static int bn_limit_bits = 0; | ||
87 | static int bn_limit_num = 8; /* (1<<bn_limit_bits) */ | ||
88 | static int bn_limit_bits_low = 0; | ||
89 | static int bn_limit_num_low = 8; /* (1<<bn_limit_bits_low) */ | ||
90 | static int bn_limit_bits_high = 0; | ||
91 | static int bn_limit_num_high = 8; /* (1<<bn_limit_bits_high) */ | ||
92 | static int bn_limit_bits_mont = 0; | ||
93 | static int bn_limit_num_mont = 8; /* (1<<bn_limit_bits_mont) */ | ||
94 | |||
95 | void | ||
96 | BN_set_params(int mult, int high, int low, int mont) | ||
97 | { | ||
98 | if (mult >= 0) { | ||
99 | if (mult > (int)(sizeof(int) * 8) - 1) | ||
100 | mult = sizeof(int) * 8 - 1; | ||
101 | bn_limit_bits = mult; | ||
102 | bn_limit_num = 1 << mult; | ||
103 | } | ||
104 | if (high >= 0) { | ||
105 | if (high > (int)(sizeof(int) * 8) - 1) | ||
106 | high = sizeof(int) * 8 - 1; | ||
107 | bn_limit_bits_high = high; | ||
108 | bn_limit_num_high = 1 << high; | ||
109 | } | ||
110 | if (low >= 0) { | ||
111 | if (low > (int)(sizeof(int) * 8) - 1) | ||
112 | low = sizeof(int) * 8 - 1; | ||
113 | bn_limit_bits_low = low; | ||
114 | bn_limit_num_low = 1 << low; | ||
115 | } | ||
116 | if (mont >= 0) { | ||
117 | if (mont > (int)(sizeof(int) * 8) - 1) | ||
118 | mont = sizeof(int) * 8 - 1; | ||
119 | bn_limit_bits_mont = mont; | ||
120 | bn_limit_num_mont = 1 << mont; | ||
121 | } | ||
122 | } | ||
123 | |||
124 | int | ||
125 | BN_get_params(int which) | ||
126 | { | ||
127 | if (which == 0) | ||
128 | return (bn_limit_bits); | ||
129 | else if (which == 1) | ||
130 | return (bn_limit_bits_high); | ||
131 | else if (which == 2) | ||
132 | return (bn_limit_bits_low); | ||
133 | else if (which == 3) | ||
134 | return (bn_limit_bits_mont); | ||
135 | else | ||
136 | return (0); | ||
137 | } | ||
138 | #endif | ||
139 | |||
140 | const BIGNUM * | ||
141 | BN_value_one(void) | ||
142 | { | ||
143 | static const BN_ULONG data_one = 1L; | ||
144 | static const BIGNUM const_one = { | ||
145 | (BN_ULONG *)&data_one, 1, 1, 0, BN_FLG_STATIC_DATA | ||
146 | }; | ||
147 | |||
148 | return (&const_one); | ||
149 | } | ||
150 | |||
151 | int | ||
152 | BN_num_bits_word(BN_ULONG l) | ||
153 | { | ||
154 | static const unsigned char bits[256] = { | ||
155 | 0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, | ||
156 | 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, | ||
157 | 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, | ||
158 | 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, | ||
159 | 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, | ||
160 | 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, | ||
161 | 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, | ||
162 | 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, | ||
163 | 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, | ||
164 | 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, | ||
165 | 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, | ||
166 | 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, | ||
167 | 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, | ||
168 | 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, | ||
169 | 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, | ||
170 | 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, | ||
171 | }; | ||
172 | |||
173 | #ifdef _LP64 | ||
174 | if (l & 0xffffffff00000000L) { | ||
175 | if (l & 0xffff000000000000L) { | ||
176 | if (l & 0xff00000000000000L) { | ||
177 | return (bits[(int)(l >> 56)] + 56); | ||
178 | } else | ||
179 | return (bits[(int)(l >> 48)] + 48); | ||
180 | } else { | ||
181 | if (l & 0x0000ff0000000000L) { | ||
182 | return (bits[(int)(l >> 40)] + 40); | ||
183 | } else | ||
184 | return (bits[(int)(l >> 32)] + 32); | ||
185 | } | ||
186 | } else | ||
187 | #endif | ||
188 | { | ||
189 | if (l & 0xffff0000L) { | ||
190 | if (l & 0xff000000L) | ||
191 | return (bits[(int)(l >> 24L)] + 24); | ||
192 | else | ||
193 | return (bits[(int)(l >> 16L)] + 16); | ||
194 | } else { | ||
195 | if (l & 0xff00L) | ||
196 | return (bits[(int)(l >> 8)] + 8); | ||
197 | else | ||
198 | return (bits[(int)(l)]); | ||
199 | } | ||
200 | } | ||
201 | } | ||
202 | |||
203 | int | ||
204 | BN_num_bits(const BIGNUM *a) | ||
205 | { | ||
206 | int i = a->top - 1; | ||
207 | |||
208 | bn_check_top(a); | ||
209 | |||
210 | if (BN_is_zero(a)) | ||
211 | return 0; | ||
212 | return ((i * BN_BITS2) + BN_num_bits_word(a->d[i])); | ||
213 | } | ||
214 | |||
215 | void | ||
216 | BN_clear_free(BIGNUM *a) | ||
217 | { | ||
218 | int i; | ||
219 | |||
220 | if (a == NULL) | ||
221 | return; | ||
222 | bn_check_top(a); | ||
223 | if (a->d != NULL && !(BN_get_flags(a, BN_FLG_STATIC_DATA))) { | ||
224 | OPENSSL_cleanse(a->d, a->dmax * sizeof(a->d[0])); | ||
225 | free(a->d); | ||
226 | } | ||
227 | i = BN_get_flags(a, BN_FLG_MALLOCED); | ||
228 | OPENSSL_cleanse(a, sizeof(BIGNUM)); | ||
229 | if (i) | ||
230 | free(a); | ||
231 | } | ||
232 | |||
233 | void | ||
234 | BN_free(BIGNUM *a) | ||
235 | { | ||
236 | BN_clear_free(a); | ||
237 | } | ||
238 | |||
239 | void | ||
240 | BN_init(BIGNUM *a) | ||
241 | { | ||
242 | memset(a, 0, sizeof(BIGNUM)); | ||
243 | bn_check_top(a); | ||
244 | } | ||
245 | |||
246 | BIGNUM * | ||
247 | BN_new(void) | ||
248 | { | ||
249 | BIGNUM *ret; | ||
250 | |||
251 | if ((ret = malloc(sizeof(BIGNUM))) == NULL) { | ||
252 | BNerr(BN_F_BN_NEW, ERR_R_MALLOC_FAILURE); | ||
253 | return (NULL); | ||
254 | } | ||
255 | ret->flags = BN_FLG_MALLOCED; | ||
256 | ret->top = 0; | ||
257 | ret->neg = 0; | ||
258 | ret->dmax = 0; | ||
259 | ret->d = NULL; | ||
260 | bn_check_top(ret); | ||
261 | return (ret); | ||
262 | } | ||
263 | |||
264 | /* This is used both by bn_expand2() and bn_dup_expand() */ | ||
265 | /* The caller MUST check that words > b->dmax before calling this */ | ||
266 | static BN_ULONG * | ||
267 | bn_expand_internal(const BIGNUM *b, int words) | ||
268 | { | ||
269 | BN_ULONG *A, *a = NULL; | ||
270 | const BN_ULONG *B; | ||
271 | int i; | ||
272 | |||
273 | bn_check_top(b); | ||
274 | |||
275 | if (words > (INT_MAX/(4*BN_BITS2))) { | ||
276 | BNerr(BN_F_BN_EXPAND_INTERNAL, BN_R_BIGNUM_TOO_LONG); | ||
277 | return NULL; | ||
278 | } | ||
279 | if (BN_get_flags(b, BN_FLG_STATIC_DATA)) { | ||
280 | BNerr(BN_F_BN_EXPAND_INTERNAL, | ||
281 | BN_R_EXPAND_ON_STATIC_BIGNUM_DATA); | ||
282 | return (NULL); | ||
283 | } | ||
284 | a = A = reallocarray(NULL, words, sizeof(BN_ULONG)); | ||
285 | if (A == NULL) { | ||
286 | BNerr(BN_F_BN_EXPAND_INTERNAL, ERR_R_MALLOC_FAILURE); | ||
287 | return (NULL); | ||
288 | } | ||
289 | #if 1 | ||
290 | B = b->d; | ||
291 | /* Check if the previous number needs to be copied */ | ||
292 | if (B != NULL) { | ||
293 | for (i = b->top >> 2; i > 0; i--, A += 4, B += 4) { | ||
294 | /* | ||
295 | * The fact that the loop is unrolled | ||
296 | * 4-wise is a tribute to Intel. It's | ||
297 | * the one that doesn't have enough | ||
298 | * registers to accomodate more data. | ||
299 | * I'd unroll it 8-wise otherwise:-) | ||
300 | * | ||
301 | * <appro@fy.chalmers.se> | ||
302 | */ | ||
303 | BN_ULONG a0, a1, a2, a3; | ||
304 | a0 = B[0]; | ||
305 | a1 = B[1]; | ||
306 | a2 = B[2]; | ||
307 | a3 = B[3]; | ||
308 | A[0] = a0; | ||
309 | A[1] = a1; | ||
310 | A[2] = a2; | ||
311 | A[3] = a3; | ||
312 | } | ||
313 | switch (b->top & 3) { | ||
314 | case 3: | ||
315 | A[2] = B[2]; | ||
316 | case 2: | ||
317 | A[1] = B[1]; | ||
318 | case 1: | ||
319 | A[0] = B[0]; | ||
320 | } | ||
321 | } | ||
322 | |||
323 | #else | ||
324 | memset(A, 0, sizeof(BN_ULONG) * words); | ||
325 | memcpy(A, b->d, sizeof(b->d[0]) * b->top); | ||
326 | #endif | ||
327 | |||
328 | return (a); | ||
329 | } | ||
330 | |||
331 | /* This is an internal function that can be used instead of bn_expand2() | ||
332 | * when there is a need to copy BIGNUMs instead of only expanding the | ||
333 | * data part, while still expanding them. | ||
334 | * Especially useful when needing to expand BIGNUMs that are declared | ||
335 | * 'const' and should therefore not be changed. | ||
336 | * The reason to use this instead of a BN_dup() followed by a bn_expand2() | ||
337 | * is memory allocation overhead. A BN_dup() followed by a bn_expand2() | ||
338 | * will allocate new memory for the BIGNUM data twice, and free it once, | ||
339 | * while bn_dup_expand() makes sure allocation is made only once. | ||
340 | */ | ||
341 | |||
342 | #ifndef OPENSSL_NO_DEPRECATED | ||
343 | BIGNUM * | ||
344 | bn_dup_expand(const BIGNUM *b, int words) | ||
345 | { | ||
346 | BIGNUM *r = NULL; | ||
347 | |||
348 | bn_check_top(b); | ||
349 | |||
350 | /* This function does not work if | ||
351 | * words <= b->dmax && top < words | ||
352 | * because BN_dup() does not preserve 'dmax'! | ||
353 | * (But bn_dup_expand() is not used anywhere yet.) | ||
354 | */ | ||
355 | |||
356 | if (words > b->dmax) { | ||
357 | BN_ULONG *a = bn_expand_internal(b, words); | ||
358 | |||
359 | if (a) { | ||
360 | r = BN_new(); | ||
361 | if (r) { | ||
362 | r->top = b->top; | ||
363 | r->dmax = words; | ||
364 | r->neg = b->neg; | ||
365 | r->d = a; | ||
366 | } else { | ||
367 | /* r == NULL, BN_new failure */ | ||
368 | free(a); | ||
369 | } | ||
370 | } | ||
371 | /* If a == NULL, there was an error in allocation in | ||
372 | bn_expand_internal(), and NULL should be returned */ | ||
373 | } else { | ||
374 | r = BN_dup(b); | ||
375 | } | ||
376 | |||
377 | bn_check_top(r); | ||
378 | return r; | ||
379 | } | ||
380 | #endif | ||
381 | |||
382 | /* This is an internal function that should not be used in applications. | ||
383 | * It ensures that 'b' has enough room for a 'words' word number | ||
384 | * and initialises any unused part of b->d with leading zeros. | ||
385 | * It is mostly used by the various BIGNUM routines. If there is an error, | ||
386 | * NULL is returned. If not, 'b' is returned. */ | ||
387 | |||
388 | BIGNUM * | ||
389 | bn_expand2(BIGNUM *b, int words) | ||
390 | { | ||
391 | bn_check_top(b); | ||
392 | |||
393 | if (words > b->dmax) { | ||
394 | BN_ULONG *a = bn_expand_internal(b, words); | ||
395 | if (!a) | ||
396 | return NULL; | ||
397 | if (b->d) { | ||
398 | OPENSSL_cleanse(b->d, b->dmax * sizeof(b->d[0])); | ||
399 | free(b->d); | ||
400 | } | ||
401 | b->d = a; | ||
402 | b->dmax = words; | ||
403 | } | ||
404 | |||
405 | /* None of this should be necessary because of what b->top means! */ | ||
406 | #if 0 | ||
407 | /* NB: bn_wexpand() calls this only if the BIGNUM really has to grow */ | ||
408 | if (b->top < b->dmax) { | ||
409 | int i; | ||
410 | BN_ULONG *A = &(b->d[b->top]); | ||
411 | for (i = (b->dmax - b->top) >> 3; i > 0; i--, A += 8) { | ||
412 | A[0] = 0; | ||
413 | A[1] = 0; | ||
414 | A[2] = 0; | ||
415 | A[3] = 0; | ||
416 | A[4] = 0; | ||
417 | A[5] = 0; | ||
418 | A[6] = 0; | ||
419 | A[7] = 0; | ||
420 | } | ||
421 | for (i = (b->dmax - b->top)&7; i > 0; i--, A++) | ||
422 | A[0] = 0; | ||
423 | assert(A == &(b->d[b->dmax])); | ||
424 | } | ||
425 | #endif | ||
426 | bn_check_top(b); | ||
427 | return b; | ||
428 | } | ||
429 | |||
430 | BIGNUM * | ||
431 | BN_dup(const BIGNUM *a) | ||
432 | { | ||
433 | BIGNUM *t; | ||
434 | |||
435 | if (a == NULL) | ||
436 | return NULL; | ||
437 | bn_check_top(a); | ||
438 | |||
439 | t = BN_new(); | ||
440 | if (t == NULL) | ||
441 | return NULL; | ||
442 | if (!BN_copy(t, a)) { | ||
443 | BN_free(t); | ||
444 | return NULL; | ||
445 | } | ||
446 | bn_check_top(t); | ||
447 | return t; | ||
448 | } | ||
449 | |||
450 | BIGNUM * | ||
451 | BN_copy(BIGNUM *a, const BIGNUM *b) | ||
452 | { | ||
453 | int i; | ||
454 | BN_ULONG *A; | ||
455 | const BN_ULONG *B; | ||
456 | |||
457 | bn_check_top(b); | ||
458 | |||
459 | if (a == b) | ||
460 | return (a); | ||
461 | if (bn_wexpand(a, b->top) == NULL) | ||
462 | return (NULL); | ||
463 | |||
464 | #if 1 | ||
465 | A = a->d; | ||
466 | B = b->d; | ||
467 | for (i = b->top >> 2; i > 0; i--, A += 4, B += 4) { | ||
468 | BN_ULONG a0, a1, a2, a3; | ||
469 | a0 = B[0]; | ||
470 | a1 = B[1]; | ||
471 | a2 = B[2]; | ||
472 | a3 = B[3]; | ||
473 | A[0] = a0; | ||
474 | A[1] = a1; | ||
475 | A[2] = a2; | ||
476 | A[3] = a3; | ||
477 | } | ||
478 | switch (b->top & 3) { | ||
479 | case 3: | ||
480 | A[2] = B[2]; | ||
481 | case 2: | ||
482 | A[1] = B[1]; | ||
483 | case 1: | ||
484 | A[0] = B[0]; | ||
485 | } | ||
486 | #else | ||
487 | memcpy(a->d, b->d, sizeof(b->d[0]) * b->top); | ||
488 | #endif | ||
489 | |||
490 | a->top = b->top; | ||
491 | a->neg = b->neg; | ||
492 | bn_check_top(a); | ||
493 | return (a); | ||
494 | } | ||
495 | |||
496 | void | ||
497 | BN_swap(BIGNUM *a, BIGNUM *b) | ||
498 | { | ||
499 | int flags_old_a, flags_old_b; | ||
500 | BN_ULONG *tmp_d; | ||
501 | int tmp_top, tmp_dmax, tmp_neg; | ||
502 | |||
503 | bn_check_top(a); | ||
504 | bn_check_top(b); | ||
505 | |||
506 | flags_old_a = a->flags; | ||
507 | flags_old_b = b->flags; | ||
508 | |||
509 | tmp_d = a->d; | ||
510 | tmp_top = a->top; | ||
511 | tmp_dmax = a->dmax; | ||
512 | tmp_neg = a->neg; | ||
513 | |||
514 | a->d = b->d; | ||
515 | a->top = b->top; | ||
516 | a->dmax = b->dmax; | ||
517 | a->neg = b->neg; | ||
518 | |||
519 | b->d = tmp_d; | ||
520 | b->top = tmp_top; | ||
521 | b->dmax = tmp_dmax; | ||
522 | b->neg = tmp_neg; | ||
523 | |||
524 | a->flags = (flags_old_a & BN_FLG_MALLOCED) | | ||
525 | (flags_old_b & BN_FLG_STATIC_DATA); | ||
526 | b->flags = (flags_old_b & BN_FLG_MALLOCED) | | ||
527 | (flags_old_a & BN_FLG_STATIC_DATA); | ||
528 | bn_check_top(a); | ||
529 | bn_check_top(b); | ||
530 | } | ||
531 | |||
532 | void | ||
533 | BN_clear(BIGNUM *a) | ||
534 | { | ||
535 | bn_check_top(a); | ||
536 | if (a->d != NULL) | ||
537 | memset(a->d, 0, a->dmax * sizeof(a->d[0])); | ||
538 | a->top = 0; | ||
539 | a->neg = 0; | ||
540 | } | ||
541 | |||
542 | BN_ULONG | ||
543 | BN_get_word(const BIGNUM *a) | ||
544 | { | ||
545 | if (a->top > 1) | ||
546 | return BN_MASK2; | ||
547 | else if (a->top == 1) | ||
548 | return a->d[0]; | ||
549 | /* a->top == 0 */ | ||
550 | return 0; | ||
551 | } | ||
552 | |||
553 | int | ||
554 | BN_set_word(BIGNUM *a, BN_ULONG w) | ||
555 | { | ||
556 | bn_check_top(a); | ||
557 | if (bn_expand(a, (int)sizeof(BN_ULONG) * 8) == NULL) | ||
558 | return (0); | ||
559 | a->neg = 0; | ||
560 | a->d[0] = w; | ||
561 | a->top = (w ? 1 : 0); | ||
562 | bn_check_top(a); | ||
563 | return (1); | ||
564 | } | ||
565 | |||
566 | BIGNUM * | ||
567 | BN_bin2bn(const unsigned char *s, int len, BIGNUM *ret) | ||
568 | { | ||
569 | unsigned int i, m; | ||
570 | unsigned int n; | ||
571 | BN_ULONG l; | ||
572 | BIGNUM *bn = NULL; | ||
573 | |||
574 | if (ret == NULL) | ||
575 | ret = bn = BN_new(); | ||
576 | if (ret == NULL) | ||
577 | return (NULL); | ||
578 | bn_check_top(ret); | ||
579 | l = 0; | ||
580 | n = len; | ||
581 | if (n == 0) { | ||
582 | ret->top = 0; | ||
583 | return (ret); | ||
584 | } | ||
585 | i = ((n - 1) / BN_BYTES) + 1; | ||
586 | m = ((n - 1) % (BN_BYTES)); | ||
587 | if (bn_wexpand(ret, (int)i) == NULL) { | ||
588 | BN_free(bn); | ||
589 | return NULL; | ||
590 | } | ||
591 | ret->top = i; | ||
592 | ret->neg = 0; | ||
593 | while (n--) { | ||
594 | l = (l << 8L) | *(s++); | ||
595 | if (m-- == 0) { | ||
596 | ret->d[--i] = l; | ||
597 | l = 0; | ||
598 | m = BN_BYTES - 1; | ||
599 | } | ||
600 | } | ||
601 | /* need to call this due to clear byte at top if avoiding | ||
602 | * having the top bit set (-ve number) */ | ||
603 | bn_correct_top(ret); | ||
604 | return (ret); | ||
605 | } | ||
606 | |||
607 | /* ignore negative */ | ||
608 | int | ||
609 | BN_bn2bin(const BIGNUM *a, unsigned char *to) | ||
610 | { | ||
611 | int n, i; | ||
612 | BN_ULONG l; | ||
613 | |||
614 | bn_check_top(a); | ||
615 | n = i=BN_num_bytes(a); | ||
616 | while (i--) { | ||
617 | l = a->d[i / BN_BYTES]; | ||
618 | *(to++) = (unsigned char)(l >> (8 * (i % BN_BYTES))) & 0xff; | ||
619 | } | ||
620 | return (n); | ||
621 | } | ||
622 | |||
623 | int | ||
624 | BN_ucmp(const BIGNUM *a, const BIGNUM *b) | ||
625 | { | ||
626 | int i; | ||
627 | BN_ULONG t1, t2, *ap, *bp; | ||
628 | |||
629 | bn_check_top(a); | ||
630 | bn_check_top(b); | ||
631 | |||
632 | i = a->top - b->top; | ||
633 | if (i != 0) | ||
634 | return (i); | ||
635 | ap = a->d; | ||
636 | bp = b->d; | ||
637 | for (i = a->top - 1; i >= 0; i--) { | ||
638 | t1 = ap[i]; | ||
639 | t2 = bp[i]; | ||
640 | if (t1 != t2) | ||
641 | return ((t1 > t2) ? 1 : -1); | ||
642 | } | ||
643 | return (0); | ||
644 | } | ||
645 | |||
646 | int | ||
647 | BN_cmp(const BIGNUM *a, const BIGNUM *b) | ||
648 | { | ||
649 | int i; | ||
650 | int gt, lt; | ||
651 | BN_ULONG t1, t2; | ||
652 | |||
653 | if ((a == NULL) || (b == NULL)) { | ||
654 | if (a != NULL) | ||
655 | return (-1); | ||
656 | else if (b != NULL) | ||
657 | return (1); | ||
658 | else | ||
659 | return (0); | ||
660 | } | ||
661 | |||
662 | bn_check_top(a); | ||
663 | bn_check_top(b); | ||
664 | |||
665 | if (a->neg != b->neg) { | ||
666 | if (a->neg) | ||
667 | return (-1); | ||
668 | else | ||
669 | return (1); | ||
670 | } | ||
671 | if (a->neg == 0) { | ||
672 | gt = 1; | ||
673 | lt = -1; | ||
674 | } else { | ||
675 | gt = -1; | ||
676 | lt = 1; | ||
677 | } | ||
678 | |||
679 | if (a->top > b->top) | ||
680 | return (gt); | ||
681 | if (a->top < b->top) | ||
682 | return (lt); | ||
683 | for (i = a->top - 1; i >= 0; i--) { | ||
684 | t1 = a->d[i]; | ||
685 | t2 = b->d[i]; | ||
686 | if (t1 > t2) | ||
687 | return (gt); | ||
688 | if (t1 < t2) | ||
689 | return (lt); | ||
690 | } | ||
691 | return (0); | ||
692 | } | ||
693 | |||
694 | int | ||
695 | BN_set_bit(BIGNUM *a, int n) | ||
696 | { | ||
697 | int i, j, k; | ||
698 | |||
699 | if (n < 0) | ||
700 | return 0; | ||
701 | |||
702 | i = n / BN_BITS2; | ||
703 | j = n % BN_BITS2; | ||
704 | if (a->top <= i) { | ||
705 | if (bn_wexpand(a, i + 1) == NULL) | ||
706 | return (0); | ||
707 | for (k = a->top; k < i + 1; k++) | ||
708 | a->d[k] = 0; | ||
709 | a->top = i + 1; | ||
710 | } | ||
711 | |||
712 | a->d[i] |= (((BN_ULONG)1) << j); | ||
713 | bn_check_top(a); | ||
714 | return (1); | ||
715 | } | ||
716 | |||
717 | int | ||
718 | BN_clear_bit(BIGNUM *a, int n) | ||
719 | { | ||
720 | int i, j; | ||
721 | |||
722 | bn_check_top(a); | ||
723 | if (n < 0) | ||
724 | return 0; | ||
725 | |||
726 | i = n / BN_BITS2; | ||
727 | j = n % BN_BITS2; | ||
728 | if (a->top <= i) | ||
729 | return (0); | ||
730 | |||
731 | a->d[i] &= (~(((BN_ULONG)1) << j)); | ||
732 | bn_correct_top(a); | ||
733 | return (1); | ||
734 | } | ||
735 | |||
736 | int | ||
737 | BN_is_bit_set(const BIGNUM *a, int n) | ||
738 | { | ||
739 | int i, j; | ||
740 | |||
741 | bn_check_top(a); | ||
742 | if (n < 0) | ||
743 | return 0; | ||
744 | i = n / BN_BITS2; | ||
745 | j = n % BN_BITS2; | ||
746 | if (a->top <= i) | ||
747 | return 0; | ||
748 | return (int)(((a->d[i]) >> j) & ((BN_ULONG)1)); | ||
749 | } | ||
750 | |||
751 | int | ||
752 | BN_mask_bits(BIGNUM *a, int n) | ||
753 | { | ||
754 | int b, w; | ||
755 | |||
756 | bn_check_top(a); | ||
757 | if (n < 0) | ||
758 | return 0; | ||
759 | |||
760 | w = n / BN_BITS2; | ||
761 | b = n % BN_BITS2; | ||
762 | if (w >= a->top) | ||
763 | return 0; | ||
764 | if (b == 0) | ||
765 | a->top = w; | ||
766 | else { | ||
767 | a->top = w + 1; | ||
768 | a->d[w] &= ~(BN_MASK2 << b); | ||
769 | } | ||
770 | bn_correct_top(a); | ||
771 | return (1); | ||
772 | } | ||
773 | |||
774 | void | ||
775 | BN_set_negative(BIGNUM *a, int b) | ||
776 | { | ||
777 | if (b && !BN_is_zero(a)) | ||
778 | a->neg = 1; | ||
779 | else | ||
780 | a->neg = 0; | ||
781 | } | ||
782 | |||
783 | int | ||
784 | bn_cmp_words(const BN_ULONG *a, const BN_ULONG *b, int n) | ||
785 | { | ||
786 | int i; | ||
787 | BN_ULONG aa, bb; | ||
788 | |||
789 | aa = a[n - 1]; | ||
790 | bb = b[n - 1]; | ||
791 | if (aa != bb) | ||
792 | return ((aa > bb) ? 1 : -1); | ||
793 | for (i = n - 2; i >= 0; i--) { | ||
794 | aa = a[i]; | ||
795 | bb = b[i]; | ||
796 | if (aa != bb) | ||
797 | return ((aa > bb) ? 1 : -1); | ||
798 | } | ||
799 | return (0); | ||
800 | } | ||
801 | |||
802 | /* Here follows a specialised variants of bn_cmp_words(). It has the | ||
803 | property of performing the operation on arrays of different sizes. | ||
804 | The sizes of those arrays is expressed through cl, which is the | ||
805 | common length ( basicall, min(len(a),len(b)) ), and dl, which is the | ||
806 | delta between the two lengths, calculated as len(a)-len(b). | ||
807 | All lengths are the number of BN_ULONGs... */ | ||
808 | |||
809 | int | ||
810 | bn_cmp_part_words(const BN_ULONG *a, const BN_ULONG *b, int cl, int dl) | ||
811 | { | ||
812 | int n, i; | ||
813 | |||
814 | n = cl - 1; | ||
815 | |||
816 | if (dl < 0) { | ||
817 | for (i = dl; i < 0; i++) { | ||
818 | if (b[n - i] != 0) | ||
819 | return -1; /* a < b */ | ||
820 | } | ||
821 | } | ||
822 | if (dl > 0) { | ||
823 | for (i = dl; i > 0; i--) { | ||
824 | if (a[n + i] != 0) | ||
825 | return 1; /* a > b */ | ||
826 | } | ||
827 | } | ||
828 | return bn_cmp_words(a, b, cl); | ||
829 | } | ||
830 | |||
831 | /* | ||
832 | * Constant-time conditional swap of a and b. | ||
833 | * a and b are swapped if condition is not 0. The code assumes that at most one bit of condition is set. | ||
834 | * nwords is the number of words to swap. The code assumes that at least nwords are allocated in both a and b, | ||
835 | * and that no more than nwords are used by either a or b. | ||
836 | * a and b cannot be the same number | ||
837 | */ | ||
838 | void | ||
839 | BN_consttime_swap(BN_ULONG condition, BIGNUM *a, BIGNUM *b, int nwords) | ||
840 | { | ||
841 | BN_ULONG t; | ||
842 | int i; | ||
843 | |||
844 | bn_wcheck_size(a, nwords); | ||
845 | bn_wcheck_size(b, nwords); | ||
846 | |||
847 | assert(a != b); | ||
848 | assert((condition & (condition - 1)) == 0); | ||
849 | assert(sizeof(BN_ULONG) >= sizeof(int)); | ||
850 | |||
851 | condition = ((condition - 1) >> (BN_BITS2 - 1)) - 1; | ||
852 | |||
853 | t = (a->top^b->top) & condition; | ||
854 | a->top ^= t; | ||
855 | b->top ^= t; | ||
856 | |||
857 | #define BN_CONSTTIME_SWAP(ind) \ | ||
858 | do { \ | ||
859 | t = (a->d[ind] ^ b->d[ind]) & condition; \ | ||
860 | a->d[ind] ^= t; \ | ||
861 | b->d[ind] ^= t; \ | ||
862 | } while (0) | ||
863 | |||
864 | |||
865 | switch (nwords) { | ||
866 | default: | ||
867 | for (i = 10; i < nwords; i++) | ||
868 | BN_CONSTTIME_SWAP(i); | ||
869 | /* Fallthrough */ | ||
870 | case 10: BN_CONSTTIME_SWAP(9); /* Fallthrough */ | ||
871 | case 9: BN_CONSTTIME_SWAP(8); /* Fallthrough */ | ||
872 | case 8: BN_CONSTTIME_SWAP(7); /* Fallthrough */ | ||
873 | case 7: BN_CONSTTIME_SWAP(6); /* Fallthrough */ | ||
874 | case 6: BN_CONSTTIME_SWAP(5); /* Fallthrough */ | ||
875 | case 5: BN_CONSTTIME_SWAP(4); /* Fallthrough */ | ||
876 | case 4: BN_CONSTTIME_SWAP(3); /* Fallthrough */ | ||
877 | case 3: BN_CONSTTIME_SWAP(2); /* Fallthrough */ | ||
878 | case 2: BN_CONSTTIME_SWAP(1); /* Fallthrough */ | ||
879 | case 1: | ||
880 | BN_CONSTTIME_SWAP(0); | ||
881 | } | ||
882 | #undef BN_CONSTTIME_SWAP | ||
883 | } | ||
diff --git a/src/lib/libcrypto/bn/bn_mod.c b/src/lib/libcrypto/bn/bn_mod.c deleted file mode 100644 index 67bd3541b0..0000000000 --- a/src/lib/libcrypto/bn/bn_mod.c +++ /dev/null | |||
@@ -1,305 +0,0 @@ | |||
1 | /* $OpenBSD: bn_mod.c,v 1.9 2014/07/12 16:03:36 miod Exp $ */ | ||
2 | /* Includes code written by Lenka Fibikova <fibikova@exp-math.uni-essen.de> | ||
3 | * for the OpenSSL project. */ | ||
4 | /* ==================================================================== | ||
5 | * Copyright (c) 1998-2000 The OpenSSL Project. All rights reserved. | ||
6 | * | ||
7 | * Redistribution and use in source and binary forms, with or without | ||
8 | * modification, are permitted provided that the following conditions | ||
9 | * are met: | ||
10 | * | ||
11 | * 1. Redistributions of source code must retain the above copyright | ||
12 | * notice, this list of conditions and the following disclaimer. | ||
13 | * | ||
14 | * 2. Redistributions in binary form must reproduce the above copyright | ||
15 | * notice, this list of conditions and the following disclaimer in | ||
16 | * the documentation and/or other materials provided with the | ||
17 | * distribution. | ||
18 | * | ||
19 | * 3. All advertising materials mentioning features or use of this | ||
20 | * software must display the following acknowledgment: | ||
21 | * "This product includes software developed by the OpenSSL Project | ||
22 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | ||
23 | * | ||
24 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
25 | * endorse or promote products derived from this software without | ||
26 | * prior written permission. For written permission, please contact | ||
27 | * openssl-core@openssl.org. | ||
28 | * | ||
29 | * 5. Products derived from this software may not be called "OpenSSL" | ||
30 | * nor may "OpenSSL" appear in their names without prior written | ||
31 | * permission of the OpenSSL Project. | ||
32 | * | ||
33 | * 6. Redistributions of any form whatsoever must retain the following | ||
34 | * acknowledgment: | ||
35 | * "This product includes software developed by the OpenSSL Project | ||
36 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" | ||
37 | * | ||
38 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
39 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
40 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
41 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
42 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
43 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
44 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
45 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
46 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
47 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
48 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
49 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
50 | * ==================================================================== | ||
51 | * | ||
52 | * This product includes cryptographic software written by Eric Young | ||
53 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
54 | * Hudson (tjh@cryptsoft.com). | ||
55 | * | ||
56 | */ | ||
57 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) | ||
58 | * All rights reserved. | ||
59 | * | ||
60 | * This package is an SSL implementation written | ||
61 | * by Eric Young (eay@cryptsoft.com). | ||
62 | * The implementation was written so as to conform with Netscapes SSL. | ||
63 | * | ||
64 | * This library is free for commercial and non-commercial use as long as | ||
65 | * the following conditions are aheared to. The following conditions | ||
66 | * apply to all code found in this distribution, be it the RC4, RSA, | ||
67 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation | ||
68 | * included with this distribution is covered by the same copyright terms | ||
69 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | ||
70 | * | ||
71 | * Copyright remains Eric Young's, and as such any Copyright notices in | ||
72 | * the code are not to be removed. | ||
73 | * If this package is used in a product, Eric Young should be given attribution | ||
74 | * as the author of the parts of the library used. | ||
75 | * This can be in the form of a textual message at program startup or | ||
76 | * in documentation (online or textual) provided with the package. | ||
77 | * | ||
78 | * Redistribution and use in source and binary forms, with or without | ||
79 | * modification, are permitted provided that the following conditions | ||
80 | * are met: | ||
81 | * 1. Redistributions of source code must retain the copyright | ||
82 | * notice, this list of conditions and the following disclaimer. | ||
83 | * 2. Redistributions in binary form must reproduce the above copyright | ||
84 | * notice, this list of conditions and the following disclaimer in the | ||
85 | * documentation and/or other materials provided with the distribution. | ||
86 | * 3. All advertising materials mentioning features or use of this software | ||
87 | * must display the following acknowledgement: | ||
88 | * "This product includes cryptographic software written by | ||
89 | * Eric Young (eay@cryptsoft.com)" | ||
90 | * The word 'cryptographic' can be left out if the rouines from the library | ||
91 | * being used are not cryptographic related :-). | ||
92 | * 4. If you include any Windows specific code (or a derivative thereof) from | ||
93 | * the apps directory (application code) you must include an acknowledgement: | ||
94 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | ||
95 | * | ||
96 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | ||
97 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
98 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | ||
99 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | ||
100 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | ||
101 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | ||
102 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
103 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | ||
104 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | ||
105 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | ||
106 | * SUCH DAMAGE. | ||
107 | * | ||
108 | * The licence and distribution terms for any publically available version or | ||
109 | * derivative of this code cannot be changed. i.e. this code cannot simply be | ||
110 | * copied and put under another distribution licence | ||
111 | * [including the GNU Public Licence.] | ||
112 | */ | ||
113 | |||
114 | #include <openssl/err.h> | ||
115 | |||
116 | #include "bn_lcl.h" | ||
117 | |||
118 | int | ||
119 | BN_nnmod(BIGNUM *r, const BIGNUM *m, const BIGNUM *d, BN_CTX *ctx) | ||
120 | { | ||
121 | /* like BN_mod, but returns non-negative remainder | ||
122 | * (i.e., 0 <= r < |d| always holds) */ | ||
123 | |||
124 | if (!(BN_mod(r, m,d, ctx))) | ||
125 | return 0; | ||
126 | if (!r->neg) | ||
127 | return 1; | ||
128 | /* now -|d| < r < 0, so we have to set r := r + |d| */ | ||
129 | return (d->neg ? BN_sub : BN_add)(r, r, d); | ||
130 | } | ||
131 | |||
132 | int | ||
133 | BN_mod_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m, | ||
134 | BN_CTX *ctx) | ||
135 | { | ||
136 | if (!BN_add(r, a, b)) | ||
137 | return 0; | ||
138 | return BN_nnmod(r, r, m, ctx); | ||
139 | } | ||
140 | |||
141 | /* BN_mod_add variant that may be used if both a and b are non-negative | ||
142 | * and less than m */ | ||
143 | int | ||
144 | BN_mod_add_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m) | ||
145 | { | ||
146 | if (!BN_uadd(r, a, b)) | ||
147 | return 0; | ||
148 | if (BN_ucmp(r, m) >= 0) | ||
149 | return BN_usub(r, r, m); | ||
150 | return 1; | ||
151 | } | ||
152 | |||
153 | int | ||
154 | BN_mod_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m, | ||
155 | BN_CTX *ctx) | ||
156 | { | ||
157 | if (!BN_sub(r, a, b)) | ||
158 | return 0; | ||
159 | return BN_nnmod(r, r, m, ctx); | ||
160 | } | ||
161 | |||
162 | /* BN_mod_sub variant that may be used if both a and b are non-negative | ||
163 | * and less than m */ | ||
164 | int | ||
165 | BN_mod_sub_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m) | ||
166 | { | ||
167 | if (!BN_sub(r, a, b)) | ||
168 | return 0; | ||
169 | if (r->neg) | ||
170 | return BN_add(r, r, m); | ||
171 | return 1; | ||
172 | } | ||
173 | |||
174 | /* slow but works */ | ||
175 | int | ||
176 | BN_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m, | ||
177 | BN_CTX *ctx) | ||
178 | { | ||
179 | BIGNUM *t; | ||
180 | int ret = 0; | ||
181 | |||
182 | bn_check_top(a); | ||
183 | bn_check_top(b); | ||
184 | bn_check_top(m); | ||
185 | |||
186 | BN_CTX_start(ctx); | ||
187 | if ((t = BN_CTX_get(ctx)) == NULL) | ||
188 | goto err; | ||
189 | if (a == b) { | ||
190 | if (!BN_sqr(t, a, ctx)) | ||
191 | goto err; | ||
192 | } else { | ||
193 | if (!BN_mul(t, a,b, ctx)) | ||
194 | goto err; | ||
195 | } | ||
196 | if (!BN_nnmod(r, t,m, ctx)) | ||
197 | goto err; | ||
198 | bn_check_top(r); | ||
199 | ret = 1; | ||
200 | |||
201 | err: | ||
202 | BN_CTX_end(ctx); | ||
203 | return (ret); | ||
204 | } | ||
205 | |||
206 | int | ||
207 | BN_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx) | ||
208 | { | ||
209 | if (!BN_sqr(r, a, ctx)) | ||
210 | return 0; | ||
211 | /* r->neg == 0, thus we don't need BN_nnmod */ | ||
212 | return BN_mod(r, r, m, ctx); | ||
213 | } | ||
214 | |||
215 | int | ||
216 | BN_mod_lshift1(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx) | ||
217 | { | ||
218 | if (!BN_lshift1(r, a)) | ||
219 | return 0; | ||
220 | bn_check_top(r); | ||
221 | return BN_nnmod(r, r, m, ctx); | ||
222 | } | ||
223 | |||
224 | /* BN_mod_lshift1 variant that may be used if a is non-negative | ||
225 | * and less than m */ | ||
226 | int | ||
227 | BN_mod_lshift1_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *m) | ||
228 | { | ||
229 | if (!BN_lshift1(r, a)) | ||
230 | return 0; | ||
231 | bn_check_top(r); | ||
232 | if (BN_cmp(r, m) >= 0) | ||
233 | return BN_sub(r, r, m); | ||
234 | return 1; | ||
235 | } | ||
236 | |||
237 | int | ||
238 | BN_mod_lshift(BIGNUM *r, const BIGNUM *a, int n, const BIGNUM *m, BN_CTX *ctx) | ||
239 | { | ||
240 | BIGNUM *abs_m = NULL; | ||
241 | int ret; | ||
242 | |||
243 | if (!BN_nnmod(r, a, m, ctx)) | ||
244 | return 0; | ||
245 | |||
246 | if (m->neg) { | ||
247 | abs_m = BN_dup(m); | ||
248 | if (abs_m == NULL) | ||
249 | return 0; | ||
250 | abs_m->neg = 0; | ||
251 | } | ||
252 | |||
253 | ret = BN_mod_lshift_quick(r, r, n, (abs_m ? abs_m : m)); | ||
254 | bn_check_top(r); | ||
255 | |||
256 | BN_free(abs_m); | ||
257 | return ret; | ||
258 | } | ||
259 | |||
260 | /* BN_mod_lshift variant that may be used if a is non-negative | ||
261 | * and less than m */ | ||
262 | int | ||
263 | BN_mod_lshift_quick(BIGNUM *r, const BIGNUM *a, int n, const BIGNUM *m) | ||
264 | { | ||
265 | if (r != a) { | ||
266 | if (BN_copy(r, a) == NULL) | ||
267 | return 0; | ||
268 | } | ||
269 | |||
270 | while (n > 0) { | ||
271 | int max_shift; | ||
272 | |||
273 | /* 0 < r < m */ | ||
274 | max_shift = BN_num_bits(m) - BN_num_bits(r); | ||
275 | /* max_shift >= 0 */ | ||
276 | |||
277 | if (max_shift < 0) { | ||
278 | BNerr(BN_F_BN_MOD_LSHIFT_QUICK, BN_R_INPUT_NOT_REDUCED); | ||
279 | return 0; | ||
280 | } | ||
281 | |||
282 | if (max_shift > n) | ||
283 | max_shift = n; | ||
284 | |||
285 | if (max_shift) { | ||
286 | if (!BN_lshift(r, r, max_shift)) | ||
287 | return 0; | ||
288 | n -= max_shift; | ||
289 | } else { | ||
290 | if (!BN_lshift1(r, r)) | ||
291 | return 0; | ||
292 | --n; | ||
293 | } | ||
294 | |||
295 | /* BN_num_bits(r) <= BN_num_bits(m) */ | ||
296 | |||
297 | if (BN_cmp(r, m) >= 0) { | ||
298 | if (!BN_sub(r, r, m)) | ||
299 | return 0; | ||
300 | } | ||
301 | } | ||
302 | bn_check_top(r); | ||
303 | |||
304 | return 1; | ||
305 | } | ||
diff --git a/src/lib/libcrypto/bn/bn_mont.c b/src/lib/libcrypto/bn/bn_mont.c deleted file mode 100644 index 3eb9913a9e..0000000000 --- a/src/lib/libcrypto/bn/bn_mont.c +++ /dev/null | |||
@@ -1,538 +0,0 @@ | |||
1 | /* $OpenBSD: bn_mont.c,v 1.24 2015/02/09 15:49:22 jsing Exp $ */ | ||
2 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) | ||
3 | * All rights reserved. | ||
4 | * | ||
5 | * This package is an SSL implementation written | ||
6 | * by Eric Young (eay@cryptsoft.com). | ||
7 | * The implementation was written so as to conform with Netscapes SSL. | ||
8 | * | ||
9 | * This library is free for commercial and non-commercial use as long as | ||
10 | * the following conditions are aheared to. The following conditions | ||
11 | * apply to all code found in this distribution, be it the RC4, RSA, | ||
12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation | ||
13 | * included with this distribution is covered by the same copyright terms | ||
14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | ||
15 | * | ||
16 | * Copyright remains Eric Young's, and as such any Copyright notices in | ||
17 | * the code are not to be removed. | ||
18 | * If this package is used in a product, Eric Young should be given attribution | ||
19 | * as the author of the parts of the library used. | ||
20 | * This can be in the form of a textual message at program startup or | ||
21 | * in documentation (online or textual) provided with the package. | ||
22 | * | ||
23 | * Redistribution and use in source and binary forms, with or without | ||
24 | * modification, are permitted provided that the following conditions | ||
25 | * are met: | ||
26 | * 1. Redistributions of source code must retain the copyright | ||
27 | * notice, this list of conditions and the following disclaimer. | ||
28 | * 2. Redistributions in binary form must reproduce the above copyright | ||
29 | * notice, this list of conditions and the following disclaimer in the | ||
30 | * documentation and/or other materials provided with the distribution. | ||
31 | * 3. All advertising materials mentioning features or use of this software | ||
32 | * must display the following acknowledgement: | ||
33 | * "This product includes cryptographic software written by | ||
34 | * Eric Young (eay@cryptsoft.com)" | ||
35 | * The word 'cryptographic' can be left out if the rouines from the library | ||
36 | * being used are not cryptographic related :-). | ||
37 | * 4. If you include any Windows specific code (or a derivative thereof) from | ||
38 | * the apps directory (application code) you must include an acknowledgement: | ||
39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | ||
40 | * | ||
41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | ||
42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | ||
44 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | ||
45 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | ||
46 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | ||
47 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
48 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | ||
49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | ||
50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | ||
51 | * SUCH DAMAGE. | ||
52 | * | ||
53 | * The licence and distribution terms for any publically available version or | ||
54 | * derivative of this code cannot be changed. i.e. this code cannot simply be | ||
55 | * copied and put under another distribution licence | ||
56 | * [including the GNU Public Licence.] | ||
57 | */ | ||
58 | /* ==================================================================== | ||
59 | * Copyright (c) 1998-2006 The OpenSSL Project. All rights reserved. | ||
60 | * | ||
61 | * Redistribution and use in source and binary forms, with or without | ||
62 | * modification, are permitted provided that the following conditions | ||
63 | * are met: | ||
64 | * | ||
65 | * 1. Redistributions of source code must retain the above copyright | ||
66 | * notice, this list of conditions and the following disclaimer. | ||
67 | * | ||
68 | * 2. Redistributions in binary form must reproduce the above copyright | ||
69 | * notice, this list of conditions and the following disclaimer in | ||
70 | * the documentation and/or other materials provided with the | ||
71 | * distribution. | ||
72 | * | ||
73 | * 3. All advertising materials mentioning features or use of this | ||
74 | * software must display the following acknowledgment: | ||
75 | * "This product includes software developed by the OpenSSL Project | ||
76 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | ||
77 | * | ||
78 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
79 | * endorse or promote products derived from this software without | ||
80 | * prior written permission. For written permission, please contact | ||
81 | * openssl-core@openssl.org. | ||
82 | * | ||
83 | * 5. Products derived from this software may not be called "OpenSSL" | ||
84 | * nor may "OpenSSL" appear in their names without prior written | ||
85 | * permission of the OpenSSL Project. | ||
86 | * | ||
87 | * 6. Redistributions of any form whatsoever must retain the following | ||
88 | * acknowledgment: | ||
89 | * "This product includes software developed by the OpenSSL Project | ||
90 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" | ||
91 | * | ||
92 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
93 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
94 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
95 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
96 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
97 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
98 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
99 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
100 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
101 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
102 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
103 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
104 | * ==================================================================== | ||
105 | * | ||
106 | * This product includes cryptographic software written by Eric Young | ||
107 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
108 | * Hudson (tjh@cryptsoft.com). | ||
109 | * | ||
110 | */ | ||
111 | |||
112 | /* | ||
113 | * Details about Montgomery multiplication algorithms can be found at | ||
114 | * http://security.ece.orst.edu/publications.html, e.g. | ||
115 | * http://security.ece.orst.edu/koc/papers/j37acmon.pdf and | ||
116 | * sections 3.8 and 4.2 in http://security.ece.orst.edu/koc/papers/r01rsasw.pdf | ||
117 | */ | ||
118 | |||
119 | #include <stdio.h> | ||
120 | #include <stdint.h> | ||
121 | |||
122 | #include "bn_lcl.h" | ||
123 | |||
124 | #define MONT_WORD /* use the faster word-based algorithm */ | ||
125 | |||
126 | #ifdef MONT_WORD | ||
127 | static int BN_from_montgomery_word(BIGNUM *ret, BIGNUM *r, BN_MONT_CTX *mont); | ||
128 | #endif | ||
129 | |||
130 | int | ||
131 | BN_mod_mul_montgomery(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, | ||
132 | BN_MONT_CTX *mont, BN_CTX *ctx) | ||
133 | { | ||
134 | BIGNUM *tmp; | ||
135 | int ret = 0; | ||
136 | #if defined(OPENSSL_BN_ASM_MONT) && defined(MONT_WORD) | ||
137 | int num = mont->N.top; | ||
138 | |||
139 | if (num > 1 && a->top == num && b->top == num) { | ||
140 | if (bn_wexpand(r, num) == NULL) | ||
141 | return (0); | ||
142 | if (bn_mul_mont(r->d, a->d, b->d, mont->N.d, mont->n0, num)) { | ||
143 | r->neg = a->neg^b->neg; | ||
144 | r->top = num; | ||
145 | bn_correct_top(r); | ||
146 | return (1); | ||
147 | } | ||
148 | } | ||
149 | #endif | ||
150 | |||
151 | BN_CTX_start(ctx); | ||
152 | if ((tmp = BN_CTX_get(ctx)) == NULL) | ||
153 | goto err; | ||
154 | |||
155 | bn_check_top(tmp); | ||
156 | if (a == b) { | ||
157 | if (!BN_sqr(tmp, a, ctx)) | ||
158 | goto err; | ||
159 | } else { | ||
160 | if (!BN_mul(tmp, a,b, ctx)) | ||
161 | goto err; | ||
162 | } | ||
163 | /* reduce from aRR to aR */ | ||
164 | #ifdef MONT_WORD | ||
165 | if (!BN_from_montgomery_word(r, tmp, mont)) | ||
166 | goto err; | ||
167 | #else | ||
168 | if (!BN_from_montgomery(r, tmp, mont, ctx)) | ||
169 | goto err; | ||
170 | #endif | ||
171 | bn_check_top(r); | ||
172 | ret = 1; | ||
173 | err: | ||
174 | BN_CTX_end(ctx); | ||
175 | return (ret); | ||
176 | } | ||
177 | |||
178 | #ifdef MONT_WORD | ||
179 | static int | ||
180 | BN_from_montgomery_word(BIGNUM *ret, BIGNUM *r, BN_MONT_CTX *mont) | ||
181 | { | ||
182 | BIGNUM *n; | ||
183 | BN_ULONG *ap, *np, *rp, n0, v, carry; | ||
184 | int nl, max, i; | ||
185 | |||
186 | n = &(mont->N); | ||
187 | nl = n->top; | ||
188 | if (nl == 0) { | ||
189 | ret->top = 0; | ||
190 | return (1); | ||
191 | } | ||
192 | |||
193 | max = (2 * nl); /* carry is stored separately */ | ||
194 | if (bn_wexpand(r, max) == NULL) | ||
195 | return (0); | ||
196 | |||
197 | r->neg ^= n->neg; | ||
198 | np = n->d; | ||
199 | rp = r->d; | ||
200 | |||
201 | /* clear the top words of T */ | ||
202 | #if 1 | ||
203 | for (i=r->top; i<max; i++) /* memset? XXX */ | ||
204 | rp[i] = 0; | ||
205 | #else | ||
206 | memset(&(rp[r->top]), 0, (max - r->top) * sizeof(BN_ULONG)); | ||
207 | #endif | ||
208 | |||
209 | r->top = max; | ||
210 | n0 = mont->n0[0]; | ||
211 | |||
212 | #ifdef BN_COUNT | ||
213 | fprintf(stderr, "word BN_from_montgomery_word %d * %d\n", nl, nl); | ||
214 | #endif | ||
215 | for (carry = 0, i = 0; i < nl; i++, rp++) { | ||
216 | v = bn_mul_add_words(rp, np, nl, (rp[0] * n0) & BN_MASK2); | ||
217 | v = (v + carry + rp[nl]) & BN_MASK2; | ||
218 | carry |= (v != rp[nl]); | ||
219 | carry &= (v <= rp[nl]); | ||
220 | rp[nl] = v; | ||
221 | } | ||
222 | |||
223 | if (bn_wexpand(ret, nl) == NULL) | ||
224 | return (0); | ||
225 | ret->top = nl; | ||
226 | ret->neg = r->neg; | ||
227 | |||
228 | rp = ret->d; | ||
229 | ap = &(r->d[nl]); | ||
230 | |||
231 | #define BRANCH_FREE 1 | ||
232 | #if BRANCH_FREE | ||
233 | { | ||
234 | BN_ULONG *nrp; | ||
235 | size_t m; | ||
236 | |||
237 | v = bn_sub_words(rp, ap, np, nl) - carry; | ||
238 | /* if subtraction result is real, then | ||
239 | * trick unconditional memcpy below to perform in-place | ||
240 | * "refresh" instead of actual copy. */ | ||
241 | m = (0 - (size_t)v); | ||
242 | nrp = (BN_ULONG *)(((uintptr_t)rp & ~m)|((uintptr_t)ap & m)); | ||
243 | |||
244 | for (i = 0, nl -= 4; i < nl; i += 4) { | ||
245 | BN_ULONG t1, t2, t3, t4; | ||
246 | |||
247 | t1 = nrp[i + 0]; | ||
248 | t2 = nrp[i + 1]; | ||
249 | t3 = nrp[i + 2]; | ||
250 | ap[i + 0] = 0; | ||
251 | t4 = nrp[i + 3]; | ||
252 | ap[i + 1] = 0; | ||
253 | rp[i + 0] = t1; | ||
254 | ap[i + 2] = 0; | ||
255 | rp[i + 1] = t2; | ||
256 | ap[i + 3] = 0; | ||
257 | rp[i + 2] = t3; | ||
258 | rp[i + 3] = t4; | ||
259 | } | ||
260 | for (nl += 4; i < nl; i++) | ||
261 | rp[i] = nrp[i], ap[i] = 0; | ||
262 | } | ||
263 | #else | ||
264 | if (bn_sub_words (rp, ap, np, nl) - carry) | ||
265 | memcpy(rp, ap, nl*sizeof(BN_ULONG)); | ||
266 | #endif | ||
267 | bn_correct_top(r); | ||
268 | bn_correct_top(ret); | ||
269 | bn_check_top(ret); | ||
270 | |||
271 | return (1); | ||
272 | } | ||
273 | #endif /* MONT_WORD */ | ||
274 | |||
275 | int | ||
276 | BN_from_montgomery(BIGNUM *ret, const BIGNUM *a, BN_MONT_CTX *mont, BN_CTX *ctx) | ||
277 | { | ||
278 | int retn = 0; | ||
279 | #ifdef MONT_WORD | ||
280 | BIGNUM *t; | ||
281 | |||
282 | BN_CTX_start(ctx); | ||
283 | if ((t = BN_CTX_get(ctx)) && BN_copy(t, a)) | ||
284 | retn = BN_from_montgomery_word(ret, t, mont); | ||
285 | BN_CTX_end(ctx); | ||
286 | #else /* !MONT_WORD */ | ||
287 | BIGNUM *t1, *t2; | ||
288 | |||
289 | BN_CTX_start(ctx); | ||
290 | if ((t1 = BN_CTX_get(ctx)) == NULL) | ||
291 | goto err; | ||
292 | if ((t2 = BN_CTX_get(ctx)) == NULL) | ||
293 | goto err; | ||
294 | |||
295 | if (!BN_copy(t1, a)) | ||
296 | goto err; | ||
297 | BN_mask_bits(t1, mont->ri); | ||
298 | |||
299 | if (!BN_mul(t2, t1, &mont->Ni, ctx)) | ||
300 | goto err; | ||
301 | BN_mask_bits(t2, mont->ri); | ||
302 | |||
303 | if (!BN_mul(t1, t2, &mont->N, ctx)) | ||
304 | goto err; | ||
305 | if (!BN_add(t2, a, t1)) | ||
306 | goto err; | ||
307 | if (!BN_rshift(ret, t2, mont->ri)) | ||
308 | goto err; | ||
309 | |||
310 | if (BN_ucmp(ret, &(mont->N)) >= 0) { | ||
311 | if (!BN_usub(ret, ret, &(mont->N))) | ||
312 | goto err; | ||
313 | } | ||
314 | retn = 1; | ||
315 | bn_check_top(ret); | ||
316 | |||
317 | err: | ||
318 | BN_CTX_end(ctx); | ||
319 | #endif /* MONT_WORD */ | ||
320 | return (retn); | ||
321 | } | ||
322 | |||
323 | BN_MONT_CTX * | ||
324 | BN_MONT_CTX_new(void) | ||
325 | { | ||
326 | BN_MONT_CTX *ret; | ||
327 | |||
328 | if ((ret = malloc(sizeof(BN_MONT_CTX))) == NULL) | ||
329 | return (NULL); | ||
330 | |||
331 | BN_MONT_CTX_init(ret); | ||
332 | ret->flags = BN_FLG_MALLOCED; | ||
333 | return (ret); | ||
334 | } | ||
335 | |||
336 | void | ||
337 | BN_MONT_CTX_init(BN_MONT_CTX *ctx) | ||
338 | { | ||
339 | ctx->ri = 0; | ||
340 | BN_init(&(ctx->RR)); | ||
341 | BN_init(&(ctx->N)); | ||
342 | BN_init(&(ctx->Ni)); | ||
343 | ctx->n0[0] = ctx->n0[1] = 0; | ||
344 | ctx->flags = 0; | ||
345 | } | ||
346 | |||
347 | void | ||
348 | BN_MONT_CTX_free(BN_MONT_CTX *mont) | ||
349 | { | ||
350 | if (mont == NULL) | ||
351 | return; | ||
352 | |||
353 | BN_clear_free(&(mont->RR)); | ||
354 | BN_clear_free(&(mont->N)); | ||
355 | BN_clear_free(&(mont->Ni)); | ||
356 | if (mont->flags & BN_FLG_MALLOCED) | ||
357 | free(mont); | ||
358 | } | ||
359 | |||
360 | int | ||
361 | BN_MONT_CTX_set(BN_MONT_CTX *mont, const BIGNUM *mod, BN_CTX *ctx) | ||
362 | { | ||
363 | int ret = 0; | ||
364 | BIGNUM *Ri, *R; | ||
365 | |||
366 | BN_CTX_start(ctx); | ||
367 | if ((Ri = BN_CTX_get(ctx)) == NULL) | ||
368 | goto err; | ||
369 | R = &(mont->RR); /* grab RR as a temp */ | ||
370 | if (!BN_copy(&(mont->N), mod)) | ||
371 | goto err; /* Set N */ | ||
372 | mont->N.neg = 0; | ||
373 | |||
374 | #ifdef MONT_WORD | ||
375 | { | ||
376 | BIGNUM tmod; | ||
377 | BN_ULONG buf[2]; | ||
378 | |||
379 | BN_init(&tmod); | ||
380 | tmod.d = buf; | ||
381 | tmod.dmax = 2; | ||
382 | tmod.neg = 0; | ||
383 | |||
384 | mont->ri = (BN_num_bits(mod) + | ||
385 | (BN_BITS2 - 1)) / BN_BITS2 * BN_BITS2; | ||
386 | |||
387 | #if defined(OPENSSL_BN_ASM_MONT) && (BN_BITS2<=32) | ||
388 | /* Only certain BN_BITS2<=32 platforms actually make use of | ||
389 | * n0[1], and we could use the #else case (with a shorter R | ||
390 | * value) for the others. However, currently only the assembler | ||
391 | * files do know which is which. */ | ||
392 | |||
393 | BN_zero(R); | ||
394 | if (!(BN_set_bit(R, 2 * BN_BITS2))) | ||
395 | goto err; | ||
396 | |||
397 | tmod.top = 0; | ||
398 | if ((buf[0] = mod->d[0])) | ||
399 | tmod.top = 1; | ||
400 | if ((buf[1] = mod->top > 1 ? mod->d[1] : 0)) | ||
401 | tmod.top = 2; | ||
402 | |||
403 | if ((BN_mod_inverse(Ri, R, &tmod, ctx)) == NULL) | ||
404 | goto err; | ||
405 | if (!BN_lshift(Ri, Ri, 2 * BN_BITS2)) | ||
406 | goto err; /* R*Ri */ | ||
407 | if (!BN_is_zero(Ri)) { | ||
408 | if (!BN_sub_word(Ri, 1)) | ||
409 | goto err; | ||
410 | } | ||
411 | else /* if N mod word size == 1 */ | ||
412 | { | ||
413 | if (bn_expand(Ri, (int)sizeof(BN_ULONG) * 2) == NULL) | ||
414 | goto err; | ||
415 | /* Ri-- (mod double word size) */ | ||
416 | Ri->neg = 0; | ||
417 | Ri->d[0] = BN_MASK2; | ||
418 | Ri->d[1] = BN_MASK2; | ||
419 | Ri->top = 2; | ||
420 | } | ||
421 | if (!BN_div(Ri, NULL, Ri, &tmod, ctx)) | ||
422 | goto err; | ||
423 | /* Ni = (R*Ri-1)/N, | ||
424 | * keep only couple of least significant words: */ | ||
425 | mont->n0[0] = (Ri->top > 0) ? Ri->d[0] : 0; | ||
426 | mont->n0[1] = (Ri->top > 1) ? Ri->d[1] : 0; | ||
427 | #else | ||
428 | BN_zero(R); | ||
429 | if (!(BN_set_bit(R, BN_BITS2))) | ||
430 | goto err; /* R */ | ||
431 | |||
432 | buf[0] = mod->d[0]; /* tmod = N mod word size */ | ||
433 | buf[1] = 0; | ||
434 | tmod.top = buf[0] != 0 ? 1 : 0; | ||
435 | /* Ri = R^-1 mod N*/ | ||
436 | if ((BN_mod_inverse(Ri, R, &tmod, ctx)) == NULL) | ||
437 | goto err; | ||
438 | if (!BN_lshift(Ri, Ri, BN_BITS2)) | ||
439 | goto err; /* R*Ri */ | ||
440 | if (!BN_is_zero(Ri)) { | ||
441 | if (!BN_sub_word(Ri, 1)) | ||
442 | goto err; | ||
443 | } | ||
444 | else /* if N mod word size == 1 */ | ||
445 | { | ||
446 | if (!BN_set_word(Ri, BN_MASK2)) | ||
447 | goto err; /* Ri-- (mod word size) */ | ||
448 | } | ||
449 | if (!BN_div(Ri, NULL, Ri, &tmod, ctx)) | ||
450 | goto err; | ||
451 | /* Ni = (R*Ri-1)/N, | ||
452 | * keep only least significant word: */ | ||
453 | mont->n0[0] = (Ri->top > 0) ? Ri->d[0] : 0; | ||
454 | mont->n0[1] = 0; | ||
455 | #endif | ||
456 | } | ||
457 | #else /* !MONT_WORD */ | ||
458 | { /* bignum version */ | ||
459 | mont->ri = BN_num_bits(&mont->N); | ||
460 | BN_zero(R); | ||
461 | if (!BN_set_bit(R, mont->ri)) | ||
462 | goto err; /* R = 2^ri */ | ||
463 | /* Ri = R^-1 mod N*/ | ||
464 | if ((BN_mod_inverse(Ri, R, &mont->N, ctx)) == NULL) | ||
465 | goto err; | ||
466 | if (!BN_lshift(Ri, Ri, mont->ri)) | ||
467 | goto err; /* R*Ri */ | ||
468 | if (!BN_sub_word(Ri, 1)) | ||
469 | goto err; | ||
470 | /* Ni = (R*Ri-1) / N */ | ||
471 | if (!BN_div(&(mont->Ni), NULL, Ri, &mont->N, ctx)) | ||
472 | goto err; | ||
473 | } | ||
474 | #endif | ||
475 | |||
476 | /* setup RR for conversions */ | ||
477 | BN_zero(&(mont->RR)); | ||
478 | if (!BN_set_bit(&(mont->RR), mont->ri*2)) | ||
479 | goto err; | ||
480 | if (!BN_mod(&(mont->RR), &(mont->RR), &(mont->N), ctx)) | ||
481 | goto err; | ||
482 | |||
483 | ret = 1; | ||
484 | |||
485 | err: | ||
486 | BN_CTX_end(ctx); | ||
487 | return ret; | ||
488 | } | ||
489 | |||
490 | BN_MONT_CTX * | ||
491 | BN_MONT_CTX_copy(BN_MONT_CTX *to, BN_MONT_CTX *from) | ||
492 | { | ||
493 | if (to == from) | ||
494 | return (to); | ||
495 | |||
496 | if (!BN_copy(&(to->RR), &(from->RR))) | ||
497 | return NULL; | ||
498 | if (!BN_copy(&(to->N), &(from->N))) | ||
499 | return NULL; | ||
500 | if (!BN_copy(&(to->Ni), &(from->Ni))) | ||
501 | return NULL; | ||
502 | to->ri = from->ri; | ||
503 | to->n0[0] = from->n0[0]; | ||
504 | to->n0[1] = from->n0[1]; | ||
505 | return (to); | ||
506 | } | ||
507 | |||
508 | BN_MONT_CTX * | ||
509 | BN_MONT_CTX_set_locked(BN_MONT_CTX **pmont, int lock, const BIGNUM *mod, | ||
510 | BN_CTX *ctx) | ||
511 | { | ||
512 | int got_write_lock = 0; | ||
513 | BN_MONT_CTX *ret; | ||
514 | |||
515 | CRYPTO_r_lock(lock); | ||
516 | if (!*pmont) { | ||
517 | CRYPTO_r_unlock(lock); | ||
518 | CRYPTO_w_lock(lock); | ||
519 | got_write_lock = 1; | ||
520 | |||
521 | if (!*pmont) { | ||
522 | ret = BN_MONT_CTX_new(); | ||
523 | if (ret && !BN_MONT_CTX_set(ret, mod, ctx)) | ||
524 | BN_MONT_CTX_free(ret); | ||
525 | else | ||
526 | *pmont = ret; | ||
527 | } | ||
528 | } | ||
529 | |||
530 | ret = *pmont; | ||
531 | |||
532 | if (got_write_lock) | ||
533 | CRYPTO_w_unlock(lock); | ||
534 | else | ||
535 | CRYPTO_r_unlock(lock); | ||
536 | |||
537 | return ret; | ||
538 | } | ||
diff --git a/src/lib/libcrypto/bn/bn_mpi.c b/src/lib/libcrypto/bn/bn_mpi.c deleted file mode 100644 index cf4c7d8d24..0000000000 --- a/src/lib/libcrypto/bn/bn_mpi.c +++ /dev/null | |||
@@ -1,132 +0,0 @@ | |||
1 | /* $OpenBSD: bn_mpi.c,v 1.7 2014/07/11 08:44:48 jsing Exp $ */ | ||
2 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) | ||
3 | * All rights reserved. | ||
4 | * | ||
5 | * This package is an SSL implementation written | ||
6 | * by Eric Young (eay@cryptsoft.com). | ||
7 | * The implementation was written so as to conform with Netscapes SSL. | ||
8 | * | ||
9 | * This library is free for commercial and non-commercial use as long as | ||
10 | * the following conditions are aheared to. The following conditions | ||
11 | * apply to all code found in this distribution, be it the RC4, RSA, | ||
12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation | ||
13 | * included with this distribution is covered by the same copyright terms | ||
14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | ||
15 | * | ||
16 | * Copyright remains Eric Young's, and as such any Copyright notices in | ||
17 | * the code are not to be removed. | ||
18 | * If this package is used in a product, Eric Young should be given attribution | ||
19 | * as the author of the parts of the library used. | ||
20 | * This can be in the form of a textual message at program startup or | ||
21 | * in documentation (online or textual) provided with the package. | ||
22 | * | ||
23 | * Redistribution and use in source and binary forms, with or without | ||
24 | * modification, are permitted provided that the following conditions | ||
25 | * are met: | ||
26 | * 1. Redistributions of source code must retain the copyright | ||
27 | * notice, this list of conditions and the following disclaimer. | ||
28 | * 2. Redistributions in binary form must reproduce the above copyright | ||
29 | * notice, this list of conditions and the following disclaimer in the | ||
30 | * documentation and/or other materials provided with the distribution. | ||
31 | * 3. All advertising materials mentioning features or use of this software | ||
32 | * must display the following acknowledgement: | ||
33 | * "This product includes cryptographic software written by | ||
34 | * Eric Young (eay@cryptsoft.com)" | ||
35 | * The word 'cryptographic' can be left out if the rouines from the library | ||
36 | * being used are not cryptographic related :-). | ||
37 | * 4. If you include any Windows specific code (or a derivative thereof) from | ||
38 | * the apps directory (application code) you must include an acknowledgement: | ||
39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | ||
40 | * | ||
41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | ||
42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | ||
44 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | ||
45 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | ||
46 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | ||
47 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
48 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | ||
49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | ||
50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | ||
51 | * SUCH DAMAGE. | ||
52 | * | ||
53 | * The licence and distribution terms for any publically available version or | ||
54 | * derivative of this code cannot be changed. i.e. this code cannot simply be | ||
55 | * copied and put under another distribution licence | ||
56 | * [including the GNU Public Licence.] | ||
57 | */ | ||
58 | |||
59 | #include <stdio.h> | ||
60 | |||
61 | #include <openssl/err.h> | ||
62 | |||
63 | #include "bn_lcl.h" | ||
64 | |||
65 | int | ||
66 | BN_bn2mpi(const BIGNUM *a, unsigned char *d) | ||
67 | { | ||
68 | int bits; | ||
69 | int num = 0; | ||
70 | int ext = 0; | ||
71 | long l; | ||
72 | |||
73 | bits = BN_num_bits(a); | ||
74 | num = (bits + 7) / 8; | ||
75 | if (bits > 0) { | ||
76 | ext = ((bits & 0x07) == 0); | ||
77 | } | ||
78 | if (d == NULL) | ||
79 | return (num + 4 + ext); | ||
80 | |||
81 | l = num + ext; | ||
82 | d[0] = (unsigned char)(l >> 24) & 0xff; | ||
83 | d[1] = (unsigned char)(l >> 16) & 0xff; | ||
84 | d[2] = (unsigned char)(l >> 8) & 0xff; | ||
85 | d[3] = (unsigned char)(l) & 0xff; | ||
86 | if (ext) | ||
87 | d[4] = 0; | ||
88 | num = BN_bn2bin(a, &(d[4 + ext])); | ||
89 | if (a->neg) | ||
90 | d[4] |= 0x80; | ||
91 | return (num + 4 + ext); | ||
92 | } | ||
93 | |||
94 | BIGNUM * | ||
95 | BN_mpi2bn(const unsigned char *d, int n, BIGNUM *a) | ||
96 | { | ||
97 | long len; | ||
98 | int neg = 0; | ||
99 | |||
100 | if (n < 4) { | ||
101 | BNerr(BN_F_BN_MPI2BN, BN_R_INVALID_LENGTH); | ||
102 | return (NULL); | ||
103 | } | ||
104 | len = ((long)d[0] << 24) | ((long)d[1] << 16) | ((int)d[2] << 8) | | ||
105 | (int)d[3]; | ||
106 | if ((len + 4) != n) { | ||
107 | BNerr(BN_F_BN_MPI2BN, BN_R_ENCODING_ERROR); | ||
108 | return (NULL); | ||
109 | } | ||
110 | |||
111 | if (a == NULL) | ||
112 | a = BN_new(); | ||
113 | if (a == NULL) | ||
114 | return (NULL); | ||
115 | |||
116 | if (len == 0) { | ||
117 | a->neg = 0; | ||
118 | a->top = 0; | ||
119 | return (a); | ||
120 | } | ||
121 | d += 4; | ||
122 | if ((*d) & 0x80) | ||
123 | neg = 1; | ||
124 | if (BN_bin2bn(d, (int)len, a) == NULL) | ||
125 | return (NULL); | ||
126 | a->neg = neg; | ||
127 | if (neg) { | ||
128 | BN_clear_bit(a, BN_num_bits(a) - 1); | ||
129 | } | ||
130 | bn_check_top(a); | ||
131 | return (a); | ||
132 | } | ||
diff --git a/src/lib/libcrypto/bn/bn_mul.c b/src/lib/libcrypto/bn/bn_mul.c deleted file mode 100644 index 7794d59707..0000000000 --- a/src/lib/libcrypto/bn/bn_mul.c +++ /dev/null | |||
@@ -1,1171 +0,0 @@ | |||
1 | /* $OpenBSD: bn_mul.c,v 1.20 2015/02/09 15:49:22 jsing Exp $ */ | ||
2 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) | ||
3 | * All rights reserved. | ||
4 | * | ||
5 | * This package is an SSL implementation written | ||
6 | * by Eric Young (eay@cryptsoft.com). | ||
7 | * The implementation was written so as to conform with Netscapes SSL. | ||
8 | * | ||
9 | * This library is free for commercial and non-commercial use as long as | ||
10 | * the following conditions are aheared to. The following conditions | ||
11 | * apply to all code found in this distribution, be it the RC4, RSA, | ||
12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation | ||
13 | * included with this distribution is covered by the same copyright terms | ||
14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | ||
15 | * | ||
16 | * Copyright remains Eric Young's, and as such any Copyright notices in | ||
17 | * the code are not to be removed. | ||
18 | * If this package is used in a product, Eric Young should be given attribution | ||
19 | * as the author of the parts of the library used. | ||
20 | * This can be in the form of a textual message at program startup or | ||
21 | * in documentation (online or textual) provided with the package. | ||
22 | * | ||
23 | * Redistribution and use in source and binary forms, with or without | ||
24 | * modification, are permitted provided that the following conditions | ||
25 | * are met: | ||
26 | * 1. Redistributions of source code must retain the copyright | ||
27 | * notice, this list of conditions and the following disclaimer. | ||
28 | * 2. Redistributions in binary form must reproduce the above copyright | ||
29 | * notice, this list of conditions and the following disclaimer in the | ||
30 | * documentation and/or other materials provided with the distribution. | ||
31 | * 3. All advertising materials mentioning features or use of this software | ||
32 | * must display the following acknowledgement: | ||
33 | * "This product includes cryptographic software written by | ||
34 | * Eric Young (eay@cryptsoft.com)" | ||
35 | * The word 'cryptographic' can be left out if the rouines from the library | ||
36 | * being used are not cryptographic related :-). | ||
37 | * 4. If you include any Windows specific code (or a derivative thereof) from | ||
38 | * the apps directory (application code) you must include an acknowledgement: | ||
39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | ||
40 | * | ||
41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | ||
42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | ||
44 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | ||
45 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | ||
46 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | ||
47 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
48 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | ||
49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | ||
50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | ||
51 | * SUCH DAMAGE. | ||
52 | * | ||
53 | * The licence and distribution terms for any publically available version or | ||
54 | * derivative of this code cannot be changed. i.e. this code cannot simply be | ||
55 | * copied and put under another distribution licence | ||
56 | * [including the GNU Public Licence.] | ||
57 | */ | ||
58 | |||
59 | #ifndef BN_DEBUG | ||
60 | # undef NDEBUG /* avoid conflicting definitions */ | ||
61 | # define NDEBUG | ||
62 | #endif | ||
63 | |||
64 | #include <assert.h> | ||
65 | #include <stdio.h> | ||
66 | #include <string.h> | ||
67 | |||
68 | #include <openssl/opensslconf.h> | ||
69 | |||
70 | #include "bn_lcl.h" | ||
71 | |||
72 | #if defined(OPENSSL_NO_ASM) || !defined(OPENSSL_BN_ASM_PART_WORDS) | ||
73 | /* Here follows specialised variants of bn_add_words() and | ||
74 | bn_sub_words(). They have the property performing operations on | ||
75 | arrays of different sizes. The sizes of those arrays is expressed through | ||
76 | cl, which is the common length ( basicall, min(len(a),len(b)) ), and dl, | ||
77 | which is the delta between the two lengths, calculated as len(a)-len(b). | ||
78 | All lengths are the number of BN_ULONGs... For the operations that require | ||
79 | a result array as parameter, it must have the length cl+abs(dl). | ||
80 | These functions should probably end up in bn_asm.c as soon as there are | ||
81 | assembler counterparts for the systems that use assembler files. */ | ||
82 | |||
83 | BN_ULONG | ||
84 | bn_sub_part_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, int cl, | ||
85 | int dl) | ||
86 | { | ||
87 | BN_ULONG c, t; | ||
88 | |||
89 | assert(cl >= 0); | ||
90 | c = bn_sub_words(r, a, b, cl); | ||
91 | |||
92 | if (dl == 0) | ||
93 | return c; | ||
94 | |||
95 | r += cl; | ||
96 | a += cl; | ||
97 | b += cl; | ||
98 | |||
99 | if (dl < 0) { | ||
100 | #ifdef BN_COUNT | ||
101 | fprintf(stderr, | ||
102 | " bn_sub_part_words %d + %d (dl < 0, c = %d)\n", | ||
103 | cl, dl, c); | ||
104 | #endif | ||
105 | for (;;) { | ||
106 | t = b[0]; | ||
107 | r[0] = (0 - t - c) & BN_MASK2; | ||
108 | if (t != 0) | ||
109 | c = 1; | ||
110 | if (++dl >= 0) | ||
111 | break; | ||
112 | |||
113 | t = b[1]; | ||
114 | r[1] = (0 - t - c) & BN_MASK2; | ||
115 | if (t != 0) | ||
116 | c = 1; | ||
117 | if (++dl >= 0) | ||
118 | break; | ||
119 | |||
120 | t = b[2]; | ||
121 | r[2] = (0 - t - c) & BN_MASK2; | ||
122 | if (t != 0) | ||
123 | c = 1; | ||
124 | if (++dl >= 0) | ||
125 | break; | ||
126 | |||
127 | t = b[3]; | ||
128 | r[3] = (0 - t - c) & BN_MASK2; | ||
129 | if (t != 0) | ||
130 | c = 1; | ||
131 | if (++dl >= 0) | ||
132 | break; | ||
133 | |||
134 | b += 4; | ||
135 | r += 4; | ||
136 | } | ||
137 | } else { | ||
138 | int save_dl = dl; | ||
139 | #ifdef BN_COUNT | ||
140 | fprintf(stderr, | ||
141 | " bn_sub_part_words %d + %d (dl > 0, c = %d)\n", | ||
142 | cl, dl, c); | ||
143 | #endif | ||
144 | while (c) { | ||
145 | t = a[0]; | ||
146 | r[0] = (t - c) & BN_MASK2; | ||
147 | if (t != 0) | ||
148 | c = 0; | ||
149 | if (--dl <= 0) | ||
150 | break; | ||
151 | |||
152 | t = a[1]; | ||
153 | r[1] = (t - c) & BN_MASK2; | ||
154 | if (t != 0) | ||
155 | c = 0; | ||
156 | if (--dl <= 0) | ||
157 | break; | ||
158 | |||
159 | t = a[2]; | ||
160 | r[2] = (t - c) & BN_MASK2; | ||
161 | if (t != 0) | ||
162 | c = 0; | ||
163 | if (--dl <= 0) | ||
164 | break; | ||
165 | |||
166 | t = a[3]; | ||
167 | r[3] = (t - c) & BN_MASK2; | ||
168 | if (t != 0) | ||
169 | c = 0; | ||
170 | if (--dl <= 0) | ||
171 | break; | ||
172 | |||
173 | save_dl = dl; | ||
174 | a += 4; | ||
175 | r += 4; | ||
176 | } | ||
177 | if (dl > 0) { | ||
178 | #ifdef BN_COUNT | ||
179 | fprintf(stderr, | ||
180 | " bn_sub_part_words %d + %d (dl > 0, c == 0)\n", | ||
181 | cl, dl); | ||
182 | #endif | ||
183 | if (save_dl > dl) { | ||
184 | switch (save_dl - dl) { | ||
185 | case 1: | ||
186 | r[1] = a[1]; | ||
187 | if (--dl <= 0) | ||
188 | break; | ||
189 | case 2: | ||
190 | r[2] = a[2]; | ||
191 | if (--dl <= 0) | ||
192 | break; | ||
193 | case 3: | ||
194 | r[3] = a[3]; | ||
195 | if (--dl <= 0) | ||
196 | break; | ||
197 | } | ||
198 | a += 4; | ||
199 | r += 4; | ||
200 | } | ||
201 | } | ||
202 | if (dl > 0) { | ||
203 | #ifdef BN_COUNT | ||
204 | fprintf(stderr, | ||
205 | " bn_sub_part_words %d + %d (dl > 0, copy)\n", | ||
206 | cl, dl); | ||
207 | #endif | ||
208 | for (;;) { | ||
209 | r[0] = a[0]; | ||
210 | if (--dl <= 0) | ||
211 | break; | ||
212 | r[1] = a[1]; | ||
213 | if (--dl <= 0) | ||
214 | break; | ||
215 | r[2] = a[2]; | ||
216 | if (--dl <= 0) | ||
217 | break; | ||
218 | r[3] = a[3]; | ||
219 | if (--dl <= 0) | ||
220 | break; | ||
221 | |||
222 | a += 4; | ||
223 | r += 4; | ||
224 | } | ||
225 | } | ||
226 | } | ||
227 | return c; | ||
228 | } | ||
229 | #endif | ||
230 | |||
231 | BN_ULONG | ||
232 | bn_add_part_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, int cl, | ||
233 | int dl) | ||
234 | { | ||
235 | BN_ULONG c, l, t; | ||
236 | |||
237 | assert(cl >= 0); | ||
238 | c = bn_add_words(r, a, b, cl); | ||
239 | |||
240 | if (dl == 0) | ||
241 | return c; | ||
242 | |||
243 | r += cl; | ||
244 | a += cl; | ||
245 | b += cl; | ||
246 | |||
247 | if (dl < 0) { | ||
248 | int save_dl = dl; | ||
249 | #ifdef BN_COUNT | ||
250 | fprintf(stderr, | ||
251 | " bn_add_part_words %d + %d (dl < 0, c = %d)\n", | ||
252 | cl, dl, c); | ||
253 | #endif | ||
254 | while (c) { | ||
255 | l = (c + b[0]) & BN_MASK2; | ||
256 | c = (l < c); | ||
257 | r[0] = l; | ||
258 | if (++dl >= 0) | ||
259 | break; | ||
260 | |||
261 | l = (c + b[1]) & BN_MASK2; | ||
262 | c = (l < c); | ||
263 | r[1] = l; | ||
264 | if (++dl >= 0) | ||
265 | break; | ||
266 | |||
267 | l = (c + b[2]) & BN_MASK2; | ||
268 | c = (l < c); | ||
269 | r[2] = l; | ||
270 | if (++dl >= 0) | ||
271 | break; | ||
272 | |||
273 | l = (c + b[3]) & BN_MASK2; | ||
274 | c = (l < c); | ||
275 | r[3] = l; | ||
276 | if (++dl >= 0) | ||
277 | break; | ||
278 | |||
279 | save_dl = dl; | ||
280 | b += 4; | ||
281 | r += 4; | ||
282 | } | ||
283 | if (dl < 0) { | ||
284 | #ifdef BN_COUNT | ||
285 | fprintf(stderr, | ||
286 | " bn_add_part_words %d + %d (dl < 0, c == 0)\n", | ||
287 | cl, dl); | ||
288 | #endif | ||
289 | if (save_dl < dl) { | ||
290 | switch (dl - save_dl) { | ||
291 | case 1: | ||
292 | r[1] = b[1]; | ||
293 | if (++dl >= 0) | ||
294 | break; | ||
295 | case 2: | ||
296 | r[2] = b[2]; | ||
297 | if (++dl >= 0) | ||
298 | break; | ||
299 | case 3: | ||
300 | r[3] = b[3]; | ||
301 | if (++dl >= 0) | ||
302 | break; | ||
303 | } | ||
304 | b += 4; | ||
305 | r += 4; | ||
306 | } | ||
307 | } | ||
308 | if (dl < 0) { | ||
309 | #ifdef BN_COUNT | ||
310 | fprintf(stderr, | ||
311 | " bn_add_part_words %d + %d (dl < 0, copy)\n", | ||
312 | cl, dl); | ||
313 | #endif | ||
314 | for (;;) { | ||
315 | r[0] = b[0]; | ||
316 | if (++dl >= 0) | ||
317 | break; | ||
318 | r[1] = b[1]; | ||
319 | if (++dl >= 0) | ||
320 | break; | ||
321 | r[2] = b[2]; | ||
322 | if (++dl >= 0) | ||
323 | break; | ||
324 | r[3] = b[3]; | ||
325 | if (++dl >= 0) | ||
326 | break; | ||
327 | |||
328 | b += 4; | ||
329 | r += 4; | ||
330 | } | ||
331 | } | ||
332 | } else { | ||
333 | int save_dl = dl; | ||
334 | #ifdef BN_COUNT | ||
335 | fprintf(stderr, | ||
336 | " bn_add_part_words %d + %d (dl > 0)\n", cl, dl); | ||
337 | #endif | ||
338 | while (c) { | ||
339 | t = (a[0] + c) & BN_MASK2; | ||
340 | c = (t < c); | ||
341 | r[0] = t; | ||
342 | if (--dl <= 0) | ||
343 | break; | ||
344 | |||
345 | t = (a[1] + c) & BN_MASK2; | ||
346 | c = (t < c); | ||
347 | r[1] = t; | ||
348 | if (--dl <= 0) | ||
349 | break; | ||
350 | |||
351 | t = (a[2] + c) & BN_MASK2; | ||
352 | c = (t < c); | ||
353 | r[2] = t; | ||
354 | if (--dl <= 0) | ||
355 | break; | ||
356 | |||
357 | t = (a[3] + c) & BN_MASK2; | ||
358 | c = (t < c); | ||
359 | r[3] = t; | ||
360 | if (--dl <= 0) | ||
361 | break; | ||
362 | |||
363 | save_dl = dl; | ||
364 | a += 4; | ||
365 | r += 4; | ||
366 | } | ||
367 | #ifdef BN_COUNT | ||
368 | fprintf(stderr, | ||
369 | " bn_add_part_words %d + %d (dl > 0, c == 0)\n", cl, dl); | ||
370 | #endif | ||
371 | if (dl > 0) { | ||
372 | if (save_dl > dl) { | ||
373 | switch (save_dl - dl) { | ||
374 | case 1: | ||
375 | r[1] = a[1]; | ||
376 | if (--dl <= 0) | ||
377 | break; | ||
378 | case 2: | ||
379 | r[2] = a[2]; | ||
380 | if (--dl <= 0) | ||
381 | break; | ||
382 | case 3: | ||
383 | r[3] = a[3]; | ||
384 | if (--dl <= 0) | ||
385 | break; | ||
386 | } | ||
387 | a += 4; | ||
388 | r += 4; | ||
389 | } | ||
390 | } | ||
391 | if (dl > 0) { | ||
392 | #ifdef BN_COUNT | ||
393 | fprintf(stderr, | ||
394 | " bn_add_part_words %d + %d (dl > 0, copy)\n", | ||
395 | cl, dl); | ||
396 | #endif | ||
397 | for (;;) { | ||
398 | r[0] = a[0]; | ||
399 | if (--dl <= 0) | ||
400 | break; | ||
401 | r[1] = a[1]; | ||
402 | if (--dl <= 0) | ||
403 | break; | ||
404 | r[2] = a[2]; | ||
405 | if (--dl <= 0) | ||
406 | break; | ||
407 | r[3] = a[3]; | ||
408 | if (--dl <= 0) | ||
409 | break; | ||
410 | |||
411 | a += 4; | ||
412 | r += 4; | ||
413 | } | ||
414 | } | ||
415 | } | ||
416 | return c; | ||
417 | } | ||
418 | |||
419 | #ifdef BN_RECURSION | ||
420 | /* Karatsuba recursive multiplication algorithm | ||
421 | * (cf. Knuth, The Art of Computer Programming, Vol. 2) */ | ||
422 | |||
423 | /* r is 2*n2 words in size, | ||
424 | * a and b are both n2 words in size. | ||
425 | * n2 must be a power of 2. | ||
426 | * We multiply and return the result. | ||
427 | * t must be 2*n2 words in size | ||
428 | * We calculate | ||
429 | * a[0]*b[0] | ||
430 | * a[0]*b[0]+a[1]*b[1]+(a[0]-a[1])*(b[1]-b[0]) | ||
431 | * a[1]*b[1] | ||
432 | */ | ||
433 | /* dnX may not be positive, but n2/2+dnX has to be */ | ||
434 | void | ||
435 | bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2, int dna, | ||
436 | int dnb, BN_ULONG *t) | ||
437 | { | ||
438 | int n = n2 / 2, c1, c2; | ||
439 | int tna = n + dna, tnb = n + dnb; | ||
440 | unsigned int neg, zero; | ||
441 | BN_ULONG ln, lo, *p; | ||
442 | |||
443 | # ifdef BN_COUNT | ||
444 | fprintf(stderr, " bn_mul_recursive %d%+d * %d%+d\n",n2,dna,n2,dnb); | ||
445 | # endif | ||
446 | # ifdef BN_MUL_COMBA | ||
447 | # if 0 | ||
448 | if (n2 == 4) { | ||
449 | bn_mul_comba4(r, a, b); | ||
450 | return; | ||
451 | } | ||
452 | # endif | ||
453 | /* Only call bn_mul_comba 8 if n2 == 8 and the | ||
454 | * two arrays are complete [steve] | ||
455 | */ | ||
456 | if (n2 == 8 && dna == 0 && dnb == 0) { | ||
457 | bn_mul_comba8(r, a, b); | ||
458 | return; | ||
459 | } | ||
460 | # endif /* BN_MUL_COMBA */ | ||
461 | /* Else do normal multiply */ | ||
462 | if (n2 < BN_MUL_RECURSIVE_SIZE_NORMAL) { | ||
463 | bn_mul_normal(r, a, n2 + dna, b, n2 + dnb); | ||
464 | if ((dna + dnb) < 0) | ||
465 | memset(&r[2*n2 + dna + dnb], 0, | ||
466 | sizeof(BN_ULONG) * -(dna + dnb)); | ||
467 | return; | ||
468 | } | ||
469 | /* r=(a[0]-a[1])*(b[1]-b[0]) */ | ||
470 | c1 = bn_cmp_part_words(a, &(a[n]), tna, n - tna); | ||
471 | c2 = bn_cmp_part_words(&(b[n]), b,tnb, tnb - n); | ||
472 | zero = neg = 0; | ||
473 | switch (c1 * 3 + c2) { | ||
474 | case -4: | ||
475 | bn_sub_part_words(t, &(a[n]), a, tna, tna - n); /* - */ | ||
476 | bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); /* - */ | ||
477 | break; | ||
478 | case -3: | ||
479 | zero = 1; | ||
480 | break; | ||
481 | case -2: | ||
482 | bn_sub_part_words(t, &(a[n]), a, tna, tna - n); /* - */ | ||
483 | bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n); /* + */ | ||
484 | neg = 1; | ||
485 | break; | ||
486 | case -1: | ||
487 | case 0: | ||
488 | case 1: | ||
489 | zero = 1; | ||
490 | break; | ||
491 | case 2: | ||
492 | bn_sub_part_words(t, a, &(a[n]), tna, n - tna); /* + */ | ||
493 | bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); /* - */ | ||
494 | neg = 1; | ||
495 | break; | ||
496 | case 3: | ||
497 | zero = 1; | ||
498 | break; | ||
499 | case 4: | ||
500 | bn_sub_part_words(t, a, &(a[n]), tna, n - tna); | ||
501 | bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n); | ||
502 | break; | ||
503 | } | ||
504 | |||
505 | # ifdef BN_MUL_COMBA | ||
506 | if (n == 4 && dna == 0 && dnb == 0) /* XXX: bn_mul_comba4 could take | ||
507 | extra args to do this well */ | ||
508 | { | ||
509 | if (!zero) | ||
510 | bn_mul_comba4(&(t[n2]), t, &(t[n])); | ||
511 | else | ||
512 | memset(&(t[n2]), 0, 8 * sizeof(BN_ULONG)); | ||
513 | |||
514 | bn_mul_comba4(r, a, b); | ||
515 | bn_mul_comba4(&(r[n2]), &(a[n]), &(b[n])); | ||
516 | } else if (n == 8 && dna == 0 && dnb == 0) /* XXX: bn_mul_comba8 could | ||
517 | take extra args to do this | ||
518 | well */ | ||
519 | { | ||
520 | if (!zero) | ||
521 | bn_mul_comba8(&(t[n2]), t, &(t[n])); | ||
522 | else | ||
523 | memset(&(t[n2]), 0, 16 * sizeof(BN_ULONG)); | ||
524 | |||
525 | bn_mul_comba8(r, a, b); | ||
526 | bn_mul_comba8(&(r[n2]), &(a[n]), &(b[n])); | ||
527 | } else | ||
528 | # endif /* BN_MUL_COMBA */ | ||
529 | { | ||
530 | p = &(t[n2 * 2]); | ||
531 | if (!zero) | ||
532 | bn_mul_recursive(&(t[n2]), t, &(t[n]), n, 0, 0, p); | ||
533 | else | ||
534 | memset(&(t[n2]), 0, n2 * sizeof(BN_ULONG)); | ||
535 | bn_mul_recursive(r, a, b, n, 0, 0, p); | ||
536 | bn_mul_recursive(&(r[n2]), &(a[n]), &(b[n]), n, dna, dnb, p); | ||
537 | } | ||
538 | |||
539 | /* t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign | ||
540 | * r[10] holds (a[0]*b[0]) | ||
541 | * r[32] holds (b[1]*b[1]) | ||
542 | */ | ||
543 | |||
544 | c1 = (int)(bn_add_words(t, r, &(r[n2]), n2)); | ||
545 | |||
546 | if (neg) /* if t[32] is negative */ | ||
547 | { | ||
548 | c1 -= (int)(bn_sub_words(&(t[n2]), t, &(t[n2]), n2)); | ||
549 | } else { | ||
550 | /* Might have a carry */ | ||
551 | c1 += (int)(bn_add_words(&(t[n2]), &(t[n2]), t, n2)); | ||
552 | } | ||
553 | |||
554 | /* t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1]) | ||
555 | * r[10] holds (a[0]*b[0]) | ||
556 | * r[32] holds (b[1]*b[1]) | ||
557 | * c1 holds the carry bits | ||
558 | */ | ||
559 | c1 += (int)(bn_add_words(&(r[n]), &(r[n]), &(t[n2]), n2)); | ||
560 | if (c1) { | ||
561 | p = &(r[n + n2]); | ||
562 | lo= *p; | ||
563 | ln = (lo + c1) & BN_MASK2; | ||
564 | *p = ln; | ||
565 | |||
566 | /* The overflow will stop before we over write | ||
567 | * words we should not overwrite */ | ||
568 | if (ln < (BN_ULONG)c1) { | ||
569 | do { | ||
570 | p++; | ||
571 | lo= *p; | ||
572 | ln = (lo + 1) & BN_MASK2; | ||
573 | *p = ln; | ||
574 | } while (ln == 0); | ||
575 | } | ||
576 | } | ||
577 | } | ||
578 | |||
579 | /* n+tn is the word length | ||
580 | * t needs to be n*4 is size, as does r */ | ||
581 | /* tnX may not be negative but less than n */ | ||
582 | void | ||
583 | bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n, int tna, | ||
584 | int tnb, BN_ULONG *t) | ||
585 | { | ||
586 | int i, j, n2 = n * 2; | ||
587 | int c1, c2, neg; | ||
588 | BN_ULONG ln, lo, *p; | ||
589 | |||
590 | # ifdef BN_COUNT | ||
591 | fprintf(stderr, " bn_mul_part_recursive (%d%+d) * (%d%+d)\n", | ||
592 | n, tna, n, tnb); | ||
593 | # endif | ||
594 | if (n < 8) { | ||
595 | bn_mul_normal(r, a, n + tna, b, n + tnb); | ||
596 | return; | ||
597 | } | ||
598 | |||
599 | /* r=(a[0]-a[1])*(b[1]-b[0]) */ | ||
600 | c1 = bn_cmp_part_words(a, &(a[n]), tna, n - tna); | ||
601 | c2 = bn_cmp_part_words(&(b[n]), b, tnb, tnb - n); | ||
602 | neg = 0; | ||
603 | switch (c1 * 3 + c2) { | ||
604 | case -4: | ||
605 | bn_sub_part_words(t, &(a[n]), a, tna, tna - n); /* - */ | ||
606 | bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); /* - */ | ||
607 | break; | ||
608 | case -3: | ||
609 | /* break; */ | ||
610 | case -2: | ||
611 | bn_sub_part_words(t, &(a[n]), a, tna, tna - n); /* - */ | ||
612 | bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n); /* + */ | ||
613 | neg = 1; | ||
614 | break; | ||
615 | case -1: | ||
616 | case 0: | ||
617 | case 1: | ||
618 | /* break; */ | ||
619 | case 2: | ||
620 | bn_sub_part_words(t, a, &(a[n]), tna, n - tna); /* + */ | ||
621 | bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); /* - */ | ||
622 | neg = 1; | ||
623 | break; | ||
624 | case 3: | ||
625 | /* break; */ | ||
626 | case 4: | ||
627 | bn_sub_part_words(t, a, &(a[n]), tna, n - tna); | ||
628 | bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n); | ||
629 | break; | ||
630 | } | ||
631 | /* The zero case isn't yet implemented here. The speedup | ||
632 | would probably be negligible. */ | ||
633 | # if 0 | ||
634 | if (n == 4) { | ||
635 | bn_mul_comba4(&(t[n2]), t, &(t[n])); | ||
636 | bn_mul_comba4(r, a, b); | ||
637 | bn_mul_normal(&(r[n2]), &(a[n]), tn, &(b[n]), tn); | ||
638 | memset(&(r[n2 + tn * 2]), 0, sizeof(BN_ULONG) * (n2 - tn * 2)); | ||
639 | } else | ||
640 | # endif | ||
641 | if (n == 8) { | ||
642 | bn_mul_comba8(&(t[n2]), t, &(t[n])); | ||
643 | bn_mul_comba8(r, a, b); | ||
644 | bn_mul_normal(&(r[n2]), &(a[n]), tna, &(b[n]), tnb); | ||
645 | memset(&(r[n2 + tna + tnb]), 0, | ||
646 | sizeof(BN_ULONG) * (n2 - tna - tnb)); | ||
647 | } else { | ||
648 | p = &(t[n2*2]); | ||
649 | bn_mul_recursive(&(t[n2]), t, &(t[n]), n, 0, 0, p); | ||
650 | bn_mul_recursive(r, a, b, n, 0, 0, p); | ||
651 | i = n / 2; | ||
652 | /* If there is only a bottom half to the number, | ||
653 | * just do it */ | ||
654 | if (tna > tnb) | ||
655 | j = tna - i; | ||
656 | else | ||
657 | j = tnb - i; | ||
658 | if (j == 0) { | ||
659 | bn_mul_recursive(&(r[n2]), &(a[n]), &(b[n]), | ||
660 | i, tna - i, tnb - i, p); | ||
661 | memset(&(r[n2 + i * 2]), 0, | ||
662 | sizeof(BN_ULONG) * (n2 - i * 2)); | ||
663 | } | ||
664 | else if (j > 0) /* eg, n == 16, i == 8 and tn == 11 */ | ||
665 | { | ||
666 | bn_mul_part_recursive(&(r[n2]), &(a[n]), &(b[n]), | ||
667 | i, tna - i, tnb - i, p); | ||
668 | memset(&(r[n2 + tna + tnb]), 0, | ||
669 | sizeof(BN_ULONG) * (n2 - tna - tnb)); | ||
670 | } | ||
671 | else /* (j < 0) eg, n == 16, i == 8 and tn == 5 */ | ||
672 | { | ||
673 | memset(&(r[n2]), 0, sizeof(BN_ULONG) * n2); | ||
674 | if (tna < BN_MUL_RECURSIVE_SIZE_NORMAL && | ||
675 | tnb < BN_MUL_RECURSIVE_SIZE_NORMAL) { | ||
676 | bn_mul_normal(&(r[n2]), &(a[n]), tna, | ||
677 | &(b[n]), tnb); | ||
678 | } else { | ||
679 | for (;;) { | ||
680 | i /= 2; | ||
681 | /* these simplified conditions work | ||
682 | * exclusively because difference | ||
683 | * between tna and tnb is 1 or 0 */ | ||
684 | if (i < tna || i < tnb) { | ||
685 | bn_mul_part_recursive(&(r[n2]), | ||
686 | &(a[n]), &(b[n]), i, | ||
687 | tna - i, tnb - i, p); | ||
688 | break; | ||
689 | } else if (i == tna || i == tnb) { | ||
690 | bn_mul_recursive(&(r[n2]), | ||
691 | &(a[n]), &(b[n]), i, | ||
692 | tna - i, tnb - i, p); | ||
693 | break; | ||
694 | } | ||
695 | } | ||
696 | } | ||
697 | } | ||
698 | } | ||
699 | |||
700 | /* t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign | ||
701 | * r[10] holds (a[0]*b[0]) | ||
702 | * r[32] holds (b[1]*b[1]) | ||
703 | */ | ||
704 | |||
705 | c1 = (int)(bn_add_words(t, r,&(r[n2]), n2)); | ||
706 | |||
707 | if (neg) /* if t[32] is negative */ | ||
708 | { | ||
709 | c1 -= (int)(bn_sub_words(&(t[n2]), t,&(t[n2]), n2)); | ||
710 | } else { | ||
711 | /* Might have a carry */ | ||
712 | c1 += (int)(bn_add_words(&(t[n2]), &(t[n2]), t, n2)); | ||
713 | } | ||
714 | |||
715 | /* t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1]) | ||
716 | * r[10] holds (a[0]*b[0]) | ||
717 | * r[32] holds (b[1]*b[1]) | ||
718 | * c1 holds the carry bits | ||
719 | */ | ||
720 | c1 += (int)(bn_add_words(&(r[n]), &(r[n]), &(t[n2]), n2)); | ||
721 | if (c1) { | ||
722 | p = &(r[n + n2]); | ||
723 | lo= *p; | ||
724 | ln = (lo + c1)&BN_MASK2; | ||
725 | *p = ln; | ||
726 | |||
727 | /* The overflow will stop before we over write | ||
728 | * words we should not overwrite */ | ||
729 | if (ln < (BN_ULONG)c1) { | ||
730 | do { | ||
731 | p++; | ||
732 | lo= *p; | ||
733 | ln = (lo + 1) & BN_MASK2; | ||
734 | *p = ln; | ||
735 | } while (ln == 0); | ||
736 | } | ||
737 | } | ||
738 | } | ||
739 | |||
740 | /* a and b must be the same size, which is n2. | ||
741 | * r needs to be n2 words and t needs to be n2*2 | ||
742 | */ | ||
743 | void | ||
744 | bn_mul_low_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2, BN_ULONG *t) | ||
745 | { | ||
746 | int n = n2 / 2; | ||
747 | |||
748 | # ifdef BN_COUNT | ||
749 | fprintf(stderr, " bn_mul_low_recursive %d * %d\n",n2,n2); | ||
750 | # endif | ||
751 | |||
752 | bn_mul_recursive(r, a, b, n, 0, 0, &(t[0])); | ||
753 | if (n >= BN_MUL_LOW_RECURSIVE_SIZE_NORMAL) { | ||
754 | bn_mul_low_recursive(&(t[0]), &(a[0]), &(b[n]), n, &(t[n2])); | ||
755 | bn_add_words(&(r[n]), &(r[n]), &(t[0]), n); | ||
756 | bn_mul_low_recursive(&(t[0]), &(a[n]), &(b[0]), n, &(t[n2])); | ||
757 | bn_add_words(&(r[n]), &(r[n]), &(t[0]), n); | ||
758 | } else { | ||
759 | bn_mul_low_normal(&(t[0]), &(a[0]), &(b[n]), n); | ||
760 | bn_mul_low_normal(&(t[n]), &(a[n]), &(b[0]), n); | ||
761 | bn_add_words(&(r[n]), &(r[n]), &(t[0]), n); | ||
762 | bn_add_words(&(r[n]), &(r[n]), &(t[n]), n); | ||
763 | } | ||
764 | } | ||
765 | |||
766 | /* a and b must be the same size, which is n2. | ||
767 | * r needs to be n2 words and t needs to be n2*2 | ||
768 | * l is the low words of the output. | ||
769 | * t needs to be n2*3 | ||
770 | */ | ||
771 | void | ||
772 | bn_mul_high(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, BN_ULONG *l, int n2, | ||
773 | BN_ULONG *t) | ||
774 | { | ||
775 | int i, n; | ||
776 | int c1, c2; | ||
777 | int neg, oneg, zero; | ||
778 | BN_ULONG ll, lc, *lp, *mp; | ||
779 | |||
780 | # ifdef BN_COUNT | ||
781 | fprintf(stderr, " bn_mul_high %d * %d\n",n2,n2); | ||
782 | # endif | ||
783 | n = n2 / 2; | ||
784 | |||
785 | /* Calculate (al-ah)*(bh-bl) */ | ||
786 | neg = zero = 0; | ||
787 | c1 = bn_cmp_words(&(a[0]), &(a[n]), n); | ||
788 | c2 = bn_cmp_words(&(b[n]), &(b[0]), n); | ||
789 | switch (c1 * 3 + c2) { | ||
790 | case -4: | ||
791 | bn_sub_words(&(r[0]), &(a[n]), &(a[0]), n); | ||
792 | bn_sub_words(&(r[n]), &(b[0]), &(b[n]), n); | ||
793 | break; | ||
794 | case -3: | ||
795 | zero = 1; | ||
796 | break; | ||
797 | case -2: | ||
798 | bn_sub_words(&(r[0]), &(a[n]), &(a[0]), n); | ||
799 | bn_sub_words(&(r[n]), &(b[n]), &(b[0]), n); | ||
800 | neg = 1; | ||
801 | break; | ||
802 | case -1: | ||
803 | case 0: | ||
804 | case 1: | ||
805 | zero = 1; | ||
806 | break; | ||
807 | case 2: | ||
808 | bn_sub_words(&(r[0]), &(a[0]), &(a[n]), n); | ||
809 | bn_sub_words(&(r[n]), &(b[0]), &(b[n]), n); | ||
810 | neg = 1; | ||
811 | break; | ||
812 | case 3: | ||
813 | zero = 1; | ||
814 | break; | ||
815 | case 4: | ||
816 | bn_sub_words(&(r[0]), &(a[0]), &(a[n]), n); | ||
817 | bn_sub_words(&(r[n]), &(b[n]), &(b[0]), n); | ||
818 | break; | ||
819 | } | ||
820 | |||
821 | oneg = neg; | ||
822 | /* t[10] = (a[0]-a[1])*(b[1]-b[0]) */ | ||
823 | /* r[10] = (a[1]*b[1]) */ | ||
824 | # ifdef BN_MUL_COMBA | ||
825 | if (n == 8) { | ||
826 | bn_mul_comba8(&(t[0]), &(r[0]), &(r[n])); | ||
827 | bn_mul_comba8(r, &(a[n]), &(b[n])); | ||
828 | } else | ||
829 | # endif | ||
830 | { | ||
831 | bn_mul_recursive(&(t[0]), &(r[0]), &(r[n]), n, 0, 0, &(t[n2])); | ||
832 | bn_mul_recursive(r, &(a[n]), &(b[n]), n, 0, 0, &(t[n2])); | ||
833 | } | ||
834 | |||
835 | /* s0 == low(al*bl) | ||
836 | * s1 == low(ah*bh)+low((al-ah)*(bh-bl))+low(al*bl)+high(al*bl) | ||
837 | * We know s0 and s1 so the only unknown is high(al*bl) | ||
838 | * high(al*bl) == s1 - low(ah*bh+s0+(al-ah)*(bh-bl)) | ||
839 | * high(al*bl) == s1 - (r[0]+l[0]+t[0]) | ||
840 | */ | ||
841 | if (l != NULL) { | ||
842 | lp = &(t[n2 + n]); | ||
843 | c1 = (int)(bn_add_words(lp, &(r[0]), &(l[0]), n)); | ||
844 | } else { | ||
845 | c1 = 0; | ||
846 | lp = &(r[0]); | ||
847 | } | ||
848 | |||
849 | if (neg) | ||
850 | neg = (int)(bn_sub_words(&(t[n2]), lp, &(t[0]), n)); | ||
851 | else { | ||
852 | bn_add_words(&(t[n2]), lp, &(t[0]), n); | ||
853 | neg = 0; | ||
854 | } | ||
855 | |||
856 | if (l != NULL) { | ||
857 | bn_sub_words(&(t[n2 + n]), &(l[n]), &(t[n2]), n); | ||
858 | } else { | ||
859 | lp = &(t[n2 + n]); | ||
860 | mp = &(t[n2]); | ||
861 | for (i = 0; i < n; i++) | ||
862 | lp[i] = ((~mp[i]) + 1) & BN_MASK2; | ||
863 | } | ||
864 | |||
865 | /* s[0] = low(al*bl) | ||
866 | * t[3] = high(al*bl) | ||
867 | * t[10] = (a[0]-a[1])*(b[1]-b[0]) neg is the sign | ||
868 | * r[10] = (a[1]*b[1]) | ||
869 | */ | ||
870 | /* R[10] = al*bl | ||
871 | * R[21] = al*bl + ah*bh + (a[0]-a[1])*(b[1]-b[0]) | ||
872 | * R[32] = ah*bh | ||
873 | */ | ||
874 | /* R[1]=t[3]+l[0]+r[0](+-)t[0] (have carry/borrow) | ||
875 | * R[2]=r[0]+t[3]+r[1](+-)t[1] (have carry/borrow) | ||
876 | * R[3]=r[1]+(carry/borrow) | ||
877 | */ | ||
878 | if (l != NULL) { | ||
879 | lp = &(t[n2]); | ||
880 | c1 = (int)(bn_add_words(lp, &(t[n2 + n]), &(l[0]), n)); | ||
881 | } else { | ||
882 | lp = &(t[n2 + n]); | ||
883 | c1 = 0; | ||
884 | } | ||
885 | c1 += (int)(bn_add_words(&(t[n2]), lp, &(r[0]), n)); | ||
886 | if (oneg) | ||
887 | c1 -= (int)(bn_sub_words(&(t[n2]), &(t[n2]), &(t[0]), n)); | ||
888 | else | ||
889 | c1 += (int)(bn_add_words(&(t[n2]), &(t[n2]), &(t[0]), n)); | ||
890 | |||
891 | c2 = (int)(bn_add_words(&(r[0]), &(r[0]), &(t[n2 + n]), n)); | ||
892 | c2 += (int)(bn_add_words(&(r[0]), &(r[0]), &(r[n]), n)); | ||
893 | if (oneg) | ||
894 | c2 -= (int)(bn_sub_words(&(r[0]), &(r[0]), &(t[n]), n)); | ||
895 | else | ||
896 | c2 += (int)(bn_add_words(&(r[0]), &(r[0]), &(t[n]), n)); | ||
897 | |||
898 | if (c1 != 0) /* Add starting at r[0], could be +ve or -ve */ | ||
899 | { | ||
900 | i = 0; | ||
901 | if (c1 > 0) { | ||
902 | lc = c1; | ||
903 | do { | ||
904 | ll = (r[i] + lc) & BN_MASK2; | ||
905 | r[i++] = ll; | ||
906 | lc = (lc > ll); | ||
907 | } while (lc); | ||
908 | } else { | ||
909 | lc = -c1; | ||
910 | do { | ||
911 | ll = r[i]; | ||
912 | r[i++] = (ll - lc) & BN_MASK2; | ||
913 | lc = (lc > ll); | ||
914 | } while (lc); | ||
915 | } | ||
916 | } | ||
917 | if (c2 != 0) /* Add starting at r[1] */ | ||
918 | { | ||
919 | i = n; | ||
920 | if (c2 > 0) { | ||
921 | lc = c2; | ||
922 | do { | ||
923 | ll = (r[i] + lc) & BN_MASK2; | ||
924 | r[i++] = ll; | ||
925 | lc = (lc > ll); | ||
926 | } while (lc); | ||
927 | } else { | ||
928 | lc = -c2; | ||
929 | do { | ||
930 | ll = r[i]; | ||
931 | r[i++] = (ll - lc) & BN_MASK2; | ||
932 | lc = (lc > ll); | ||
933 | } while (lc); | ||
934 | } | ||
935 | } | ||
936 | } | ||
937 | #endif /* BN_RECURSION */ | ||
938 | |||
939 | int | ||
940 | BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) | ||
941 | { | ||
942 | int ret = 0; | ||
943 | int top, al, bl; | ||
944 | BIGNUM *rr; | ||
945 | #if defined(BN_MUL_COMBA) || defined(BN_RECURSION) | ||
946 | int i; | ||
947 | #endif | ||
948 | #ifdef BN_RECURSION | ||
949 | BIGNUM *t = NULL; | ||
950 | int j = 0, k; | ||
951 | #endif | ||
952 | |||
953 | #ifdef BN_COUNT | ||
954 | fprintf(stderr, "BN_mul %d * %d\n",a->top,b->top); | ||
955 | #endif | ||
956 | |||
957 | bn_check_top(a); | ||
958 | bn_check_top(b); | ||
959 | bn_check_top(r); | ||
960 | |||
961 | al = a->top; | ||
962 | bl = b->top; | ||
963 | |||
964 | if ((al == 0) || (bl == 0)) { | ||
965 | BN_zero(r); | ||
966 | return (1); | ||
967 | } | ||
968 | top = al + bl; | ||
969 | |||
970 | BN_CTX_start(ctx); | ||
971 | if ((r == a) || (r == b)) { | ||
972 | if ((rr = BN_CTX_get(ctx)) == NULL) | ||
973 | goto err; | ||
974 | } else | ||
975 | rr = r; | ||
976 | rr->neg = a->neg ^ b->neg; | ||
977 | |||
978 | #if defined(BN_MUL_COMBA) || defined(BN_RECURSION) | ||
979 | i = al - bl; | ||
980 | #endif | ||
981 | #ifdef BN_MUL_COMBA | ||
982 | if (i == 0) { | ||
983 | # if 0 | ||
984 | if (al == 4) { | ||
985 | if (bn_wexpand(rr, 8) == NULL) | ||
986 | goto err; | ||
987 | rr->top = 8; | ||
988 | bn_mul_comba4(rr->d, a->d, b->d); | ||
989 | goto end; | ||
990 | } | ||
991 | # endif | ||
992 | if (al == 8) { | ||
993 | if (bn_wexpand(rr, 16) == NULL) | ||
994 | goto err; | ||
995 | rr->top = 16; | ||
996 | bn_mul_comba8(rr->d, a->d, b->d); | ||
997 | goto end; | ||
998 | } | ||
999 | } | ||
1000 | #endif /* BN_MUL_COMBA */ | ||
1001 | #ifdef BN_RECURSION | ||
1002 | if ((al >= BN_MULL_SIZE_NORMAL) && (bl >= BN_MULL_SIZE_NORMAL)) { | ||
1003 | if (i >= -1 && i <= 1) { | ||
1004 | /* Find out the power of two lower or equal | ||
1005 | to the longest of the two numbers */ | ||
1006 | if (i >= 0) { | ||
1007 | j = BN_num_bits_word((BN_ULONG)al); | ||
1008 | } | ||
1009 | if (i == -1) { | ||
1010 | j = BN_num_bits_word((BN_ULONG)bl); | ||
1011 | } | ||
1012 | j = 1 << (j - 1); | ||
1013 | assert(j <= al || j <= bl); | ||
1014 | k = j + j; | ||
1015 | if ((t = BN_CTX_get(ctx)) == NULL) | ||
1016 | goto err; | ||
1017 | if (al > j || bl > j) { | ||
1018 | if (bn_wexpand(t, k * 4) == NULL) | ||
1019 | goto err; | ||
1020 | if (bn_wexpand(rr, k * 4) == NULL) | ||
1021 | goto err; | ||
1022 | bn_mul_part_recursive(rr->d, a->d, b->d, | ||
1023 | j, al - j, bl - j, t->d); | ||
1024 | } | ||
1025 | else /* al <= j || bl <= j */ | ||
1026 | { | ||
1027 | if (bn_wexpand(t, k * 2) == NULL) | ||
1028 | goto err; | ||
1029 | if (bn_wexpand(rr, k * 2) == NULL) | ||
1030 | goto err; | ||
1031 | bn_mul_recursive(rr->d, a->d, b->d, | ||
1032 | j, al - j, bl - j, t->d); | ||
1033 | } | ||
1034 | rr->top = top; | ||
1035 | goto end; | ||
1036 | } | ||
1037 | #if 0 | ||
1038 | if (i == 1 && !BN_get_flags(b, BN_FLG_STATIC_DATA)) { | ||
1039 | BIGNUM *tmp_bn = (BIGNUM *)b; | ||
1040 | if (bn_wexpand(tmp_bn, al) == NULL) | ||
1041 | goto err; | ||
1042 | tmp_bn->d[bl] = 0; | ||
1043 | bl++; | ||
1044 | i--; | ||
1045 | } else if (i == -1 && !BN_get_flags(a, BN_FLG_STATIC_DATA)) { | ||
1046 | BIGNUM *tmp_bn = (BIGNUM *)a; | ||
1047 | if (bn_wexpand(tmp_bn, bl) == NULL) | ||
1048 | goto err; | ||
1049 | tmp_bn->d[al] = 0; | ||
1050 | al++; | ||
1051 | i++; | ||
1052 | } | ||
1053 | if (i == 0) { | ||
1054 | /* symmetric and > 4 */ | ||
1055 | /* 16 or larger */ | ||
1056 | j = BN_num_bits_word((BN_ULONG)al); | ||
1057 | j = 1 << (j - 1); | ||
1058 | k = j + j; | ||
1059 | if ((t = BN_CTX_get(ctx)) == NULL) | ||
1060 | goto err; | ||
1061 | if (al == j) /* exact multiple */ | ||
1062 | { | ||
1063 | if (bn_wexpand(t, k * 2) == NULL) | ||
1064 | goto err; | ||
1065 | if (bn_wexpand(rr, k * 2) == NULL) | ||
1066 | goto err; | ||
1067 | bn_mul_recursive(rr->d, a->d, b->d, al, t->d); | ||
1068 | } else { | ||
1069 | if (bn_wexpand(t, k * 4) == NULL) | ||
1070 | goto err; | ||
1071 | if (bn_wexpand(rr, k * 4) == NULL) | ||
1072 | goto err; | ||
1073 | bn_mul_part_recursive(rr->d, a->d, b->d, | ||
1074 | al - j, j, t->d); | ||
1075 | } | ||
1076 | rr->top = top; | ||
1077 | goto end; | ||
1078 | } | ||
1079 | #endif | ||
1080 | } | ||
1081 | #endif /* BN_RECURSION */ | ||
1082 | if (bn_wexpand(rr, top) == NULL) | ||
1083 | goto err; | ||
1084 | rr->top = top; | ||
1085 | bn_mul_normal(rr->d, a->d, al, b->d, bl); | ||
1086 | |||
1087 | #if defined(BN_MUL_COMBA) || defined(BN_RECURSION) | ||
1088 | end: | ||
1089 | #endif | ||
1090 | bn_correct_top(rr); | ||
1091 | if (r != rr) | ||
1092 | BN_copy(r, rr); | ||
1093 | ret = 1; | ||
1094 | err: | ||
1095 | bn_check_top(r); | ||
1096 | BN_CTX_end(ctx); | ||
1097 | return (ret); | ||
1098 | } | ||
1099 | |||
1100 | void | ||
1101 | bn_mul_normal(BN_ULONG *r, BN_ULONG *a, int na, BN_ULONG *b, int nb) | ||
1102 | { | ||
1103 | BN_ULONG *rr; | ||
1104 | |||
1105 | #ifdef BN_COUNT | ||
1106 | fprintf(stderr, " bn_mul_normal %d * %d\n", na, nb); | ||
1107 | #endif | ||
1108 | |||
1109 | if (na < nb) { | ||
1110 | int itmp; | ||
1111 | BN_ULONG *ltmp; | ||
1112 | |||
1113 | itmp = na; | ||
1114 | na = nb; | ||
1115 | nb = itmp; | ||
1116 | ltmp = a; | ||
1117 | a = b; | ||
1118 | b = ltmp; | ||
1119 | |||
1120 | } | ||
1121 | rr = &(r[na]); | ||
1122 | if (nb <= 0) { | ||
1123 | (void)bn_mul_words(r, a, na, 0); | ||
1124 | return; | ||
1125 | } else | ||
1126 | rr[0] = bn_mul_words(r, a, na, b[0]); | ||
1127 | |||
1128 | for (;;) { | ||
1129 | if (--nb <= 0) | ||
1130 | return; | ||
1131 | rr[1] = bn_mul_add_words(&(r[1]), a, na, b[1]); | ||
1132 | if (--nb <= 0) | ||
1133 | return; | ||
1134 | rr[2] = bn_mul_add_words(&(r[2]), a, na, b[2]); | ||
1135 | if (--nb <= 0) | ||
1136 | return; | ||
1137 | rr[3] = bn_mul_add_words(&(r[3]), a, na, b[3]); | ||
1138 | if (--nb <= 0) | ||
1139 | return; | ||
1140 | rr[4] = bn_mul_add_words(&(r[4]), a, na, b[4]); | ||
1141 | rr += 4; | ||
1142 | r += 4; | ||
1143 | b += 4; | ||
1144 | } | ||
1145 | } | ||
1146 | |||
1147 | void | ||
1148 | bn_mul_low_normal(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n) | ||
1149 | { | ||
1150 | #ifdef BN_COUNT | ||
1151 | fprintf(stderr, " bn_mul_low_normal %d * %d\n", n, n); | ||
1152 | #endif | ||
1153 | bn_mul_words(r, a, n, b[0]); | ||
1154 | |||
1155 | for (;;) { | ||
1156 | if (--n <= 0) | ||
1157 | return; | ||
1158 | bn_mul_add_words(&(r[1]), a, n, b[1]); | ||
1159 | if (--n <= 0) | ||
1160 | return; | ||
1161 | bn_mul_add_words(&(r[2]), a, n, b[2]); | ||
1162 | if (--n <= 0) | ||
1163 | return; | ||
1164 | bn_mul_add_words(&(r[3]), a, n, b[3]); | ||
1165 | if (--n <= 0) | ||
1166 | return; | ||
1167 | bn_mul_add_words(&(r[4]), a, n, b[4]); | ||
1168 | r += 4; | ||
1169 | b += 4; | ||
1170 | } | ||
1171 | } | ||
diff --git a/src/lib/libcrypto/bn/bn_nist.c b/src/lib/libcrypto/bn/bn_nist.c deleted file mode 100644 index 693d6f1ed3..0000000000 --- a/src/lib/libcrypto/bn/bn_nist.c +++ /dev/null | |||
@@ -1,1270 +0,0 @@ | |||
1 | /* $OpenBSD: bn_nist.c,v 1.15 2014/10/28 07:35:58 jsg Exp $ */ | ||
2 | /* | ||
3 | * Written by Nils Larsch for the OpenSSL project | ||
4 | */ | ||
5 | /* ==================================================================== | ||
6 | * Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved. | ||
7 | * | ||
8 | * Redistribution and use in source and binary forms, with or without | ||
9 | * modification, are permitted provided that the following conditions | ||
10 | * are met: | ||
11 | * | ||
12 | * 1. Redistributions of source code must retain the above copyright | ||
13 | * notice, this list of conditions and the following disclaimer. | ||
14 | * | ||
15 | * 2. Redistributions in binary form must reproduce the above copyright | ||
16 | * notice, this list of conditions and the following disclaimer in | ||
17 | * the documentation and/or other materials provided with the | ||
18 | * distribution. | ||
19 | * | ||
20 | * 3. All advertising materials mentioning features or use of this | ||
21 | * software must display the following acknowledgment: | ||
22 | * "This product includes software developed by the OpenSSL Project | ||
23 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | ||
24 | * | ||
25 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
26 | * endorse or promote products derived from this software without | ||
27 | * prior written permission. For written permission, please contact | ||
28 | * openssl-core@openssl.org. | ||
29 | * | ||
30 | * 5. Products derived from this software may not be called "OpenSSL" | ||
31 | * nor may "OpenSSL" appear in their names without prior written | ||
32 | * permission of the OpenSSL Project. | ||
33 | * | ||
34 | * 6. Redistributions of any form whatsoever must retain the following | ||
35 | * acknowledgment: | ||
36 | * "This product includes software developed by the OpenSSL Project | ||
37 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" | ||
38 | * | ||
39 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
40 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
41 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
42 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
43 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
44 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
45 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
46 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
47 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
48 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
49 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
50 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
51 | * ==================================================================== | ||
52 | * | ||
53 | * This product includes cryptographic software written by Eric Young | ||
54 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
55 | * Hudson (tjh@cryptsoft.com). | ||
56 | * | ||
57 | */ | ||
58 | |||
59 | #include <machine/endian.h> | ||
60 | |||
61 | #include <stdint.h> | ||
62 | |||
63 | #include "bn_lcl.h" | ||
64 | |||
65 | #define BN_NIST_192_TOP (192+BN_BITS2-1)/BN_BITS2 | ||
66 | #define BN_NIST_224_TOP (224+BN_BITS2-1)/BN_BITS2 | ||
67 | #define BN_NIST_256_TOP (256+BN_BITS2-1)/BN_BITS2 | ||
68 | #define BN_NIST_384_TOP (384+BN_BITS2-1)/BN_BITS2 | ||
69 | #define BN_NIST_521_TOP (521+BN_BITS2-1)/BN_BITS2 | ||
70 | |||
71 | /* pre-computed tables are "carry-less" values of modulus*(i+1) */ | ||
72 | #if BN_BITS2 == 64 | ||
73 | static const BN_ULONG _nist_p_192[][BN_NIST_192_TOP] = { | ||
74 | {0xFFFFFFFFFFFFFFFFULL, 0xFFFFFFFFFFFFFFFEULL, 0xFFFFFFFFFFFFFFFFULL}, | ||
75 | {0xFFFFFFFFFFFFFFFEULL, 0xFFFFFFFFFFFFFFFDULL, 0xFFFFFFFFFFFFFFFFULL}, | ||
76 | {0xFFFFFFFFFFFFFFFDULL, 0xFFFFFFFFFFFFFFFCULL, 0xFFFFFFFFFFFFFFFFULL} | ||
77 | }; | ||
78 | static const BN_ULONG _nist_p_192_sqr[] = { | ||
79 | 0x0000000000000001ULL, 0x0000000000000002ULL, 0x0000000000000001ULL, | ||
80 | 0xFFFFFFFFFFFFFFFEULL, 0xFFFFFFFFFFFFFFFDULL, 0xFFFFFFFFFFFFFFFFULL | ||
81 | }; | ||
82 | static const BN_ULONG _nist_p_224[][BN_NIST_224_TOP] = { | ||
83 | { | ||
84 | 0x0000000000000001ULL, 0xFFFFFFFF00000000ULL, | ||
85 | 0xFFFFFFFFFFFFFFFFULL, 0x00000000FFFFFFFFULL | ||
86 | }, | ||
87 | { | ||
88 | 0x0000000000000002ULL, 0xFFFFFFFE00000000ULL, | ||
89 | 0xFFFFFFFFFFFFFFFFULL, 0x00000001FFFFFFFFULL | ||
90 | } /* this one is "carry-full" */ | ||
91 | }; | ||
92 | static const BN_ULONG _nist_p_224_sqr[] = { | ||
93 | 0x0000000000000001ULL, 0xFFFFFFFE00000000ULL, | ||
94 | 0xFFFFFFFFFFFFFFFFULL, 0x0000000200000000ULL, | ||
95 | 0x0000000000000000ULL, 0xFFFFFFFFFFFFFFFEULL, | ||
96 | 0xFFFFFFFFFFFFFFFFULL | ||
97 | }; | ||
98 | static const BN_ULONG _nist_p_256[][BN_NIST_256_TOP] = { | ||
99 | { | ||
100 | 0xFFFFFFFFFFFFFFFFULL, 0x00000000FFFFFFFFULL, | ||
101 | 0x0000000000000000ULL, 0xFFFFFFFF00000001ULL | ||
102 | }, | ||
103 | { | ||
104 | 0xFFFFFFFFFFFFFFFEULL, 0x00000001FFFFFFFFULL, | ||
105 | 0x0000000000000000ULL, 0xFFFFFFFE00000002ULL | ||
106 | }, | ||
107 | { | ||
108 | 0xFFFFFFFFFFFFFFFDULL, 0x00000002FFFFFFFFULL, | ||
109 | 0x0000000000000000ULL, 0xFFFFFFFD00000003ULL | ||
110 | }, | ||
111 | { | ||
112 | 0xFFFFFFFFFFFFFFFCULL, 0x00000003FFFFFFFFULL, | ||
113 | 0x0000000000000000ULL, 0xFFFFFFFC00000004ULL | ||
114 | }, | ||
115 | { | ||
116 | 0xFFFFFFFFFFFFFFFBULL, 0x00000004FFFFFFFFULL, | ||
117 | 0x0000000000000000ULL, 0xFFFFFFFB00000005ULL | ||
118 | }, | ||
119 | }; | ||
120 | static const BN_ULONG _nist_p_256_sqr[] = { | ||
121 | 0x0000000000000001ULL, 0xFFFFFFFE00000000ULL, | ||
122 | 0xFFFFFFFFFFFFFFFFULL, 0x00000001FFFFFFFEULL, | ||
123 | 0x00000001FFFFFFFEULL, 0x00000001FFFFFFFEULL, | ||
124 | 0xFFFFFFFE00000001ULL, 0xFFFFFFFE00000002ULL | ||
125 | }; | ||
126 | static const BN_ULONG _nist_p_384[][BN_NIST_384_TOP] = { | ||
127 | { | ||
128 | 0x00000000FFFFFFFFULL, 0xFFFFFFFF00000000ULL, | ||
129 | 0xFFFFFFFFFFFFFFFEULL, 0xFFFFFFFFFFFFFFFFULL, | ||
130 | 0xFFFFFFFFFFFFFFFFULL, 0xFFFFFFFFFFFFFFFFULL | ||
131 | }, | ||
132 | { | ||
133 | 0x00000001FFFFFFFEULL, 0xFFFFFFFE00000000ULL, | ||
134 | 0xFFFFFFFFFFFFFFFDULL, 0xFFFFFFFFFFFFFFFFULL, | ||
135 | 0xFFFFFFFFFFFFFFFFULL, 0xFFFFFFFFFFFFFFFFULL | ||
136 | }, | ||
137 | { | ||
138 | 0x00000002FFFFFFFDULL, 0xFFFFFFFD00000000ULL, | ||
139 | 0xFFFFFFFFFFFFFFFCULL, 0xFFFFFFFFFFFFFFFFULL, | ||
140 | 0xFFFFFFFFFFFFFFFFULL, 0xFFFFFFFFFFFFFFFFULL | ||
141 | }, | ||
142 | { | ||
143 | 0x00000003FFFFFFFCULL, 0xFFFFFFFC00000000ULL, | ||
144 | 0xFFFFFFFFFFFFFFFBULL, 0xFFFFFFFFFFFFFFFFULL, | ||
145 | 0xFFFFFFFFFFFFFFFFULL, 0xFFFFFFFFFFFFFFFFULL | ||
146 | }, | ||
147 | { | ||
148 | 0x00000004FFFFFFFBULL, 0xFFFFFFFB00000000ULL, | ||
149 | 0xFFFFFFFFFFFFFFFAULL, 0xFFFFFFFFFFFFFFFFULL, | ||
150 | 0xFFFFFFFFFFFFFFFFULL, 0xFFFFFFFFFFFFFFFFULL | ||
151 | }, | ||
152 | }; | ||
153 | static const BN_ULONG _nist_p_384_sqr[] = { | ||
154 | 0xFFFFFFFE00000001ULL, 0x0000000200000000ULL, 0xFFFFFFFE00000000ULL, | ||
155 | 0x0000000200000000ULL, 0x0000000000000001ULL, 0x0000000000000000ULL, | ||
156 | 0x00000001FFFFFFFEULL, 0xFFFFFFFE00000000ULL, 0xFFFFFFFFFFFFFFFDULL, | ||
157 | 0xFFFFFFFFFFFFFFFFULL, 0xFFFFFFFFFFFFFFFFULL, 0xFFFFFFFFFFFFFFFFULL | ||
158 | }; | ||
159 | static const BN_ULONG _nist_p_521[] = { | ||
160 | 0xFFFFFFFFFFFFFFFFULL, 0xFFFFFFFFFFFFFFFFULL, 0xFFFFFFFFFFFFFFFFULL, | ||
161 | 0xFFFFFFFFFFFFFFFFULL, 0xFFFFFFFFFFFFFFFFULL, 0xFFFFFFFFFFFFFFFFULL, | ||
162 | 0xFFFFFFFFFFFFFFFFULL, 0xFFFFFFFFFFFFFFFFULL, 0x00000000000001FFULL | ||
163 | }; | ||
164 | static const BN_ULONG _nist_p_521_sqr[] = { | ||
165 | 0x0000000000000001ULL, 0x0000000000000000ULL, 0x0000000000000000ULL, | ||
166 | 0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL, | ||
167 | 0x0000000000000000ULL, 0x0000000000000000ULL, 0xFFFFFFFFFFFFFC00ULL, | ||
168 | 0xFFFFFFFFFFFFFFFFULL, 0xFFFFFFFFFFFFFFFFULL, 0xFFFFFFFFFFFFFFFFULL, | ||
169 | 0xFFFFFFFFFFFFFFFFULL, 0xFFFFFFFFFFFFFFFFULL, 0xFFFFFFFFFFFFFFFFULL, | ||
170 | 0xFFFFFFFFFFFFFFFFULL, 0x000000000003FFFFULL | ||
171 | }; | ||
172 | #elif BN_BITS2 == 32 | ||
173 | static const BN_ULONG _nist_p_192[][BN_NIST_192_TOP] = { | ||
174 | { | ||
175 | 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFE, 0xFFFFFFFF, | ||
176 | 0xFFFFFFFF, 0xFFFFFFFF | ||
177 | }, | ||
178 | { | ||
179 | 0xFFFFFFFE, 0xFFFFFFFF, 0xFFFFFFFD, 0xFFFFFFFF, | ||
180 | 0xFFFFFFFF, 0xFFFFFFFF | ||
181 | }, | ||
182 | { | ||
183 | 0xFFFFFFFD, 0xFFFFFFFF, 0xFFFFFFFC, 0xFFFFFFFF, | ||
184 | 0xFFFFFFFF, 0xFFFFFFFF | ||
185 | } | ||
186 | }; | ||
187 | static const BN_ULONG _nist_p_192_sqr[] = { | ||
188 | 0x00000001, 0x00000000, 0x00000002, 0x00000000, 0x00000001, 0x00000000, | ||
189 | 0xFFFFFFFE, 0xFFFFFFFF, 0xFFFFFFFD, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF | ||
190 | }; | ||
191 | static const BN_ULONG _nist_p_224[][BN_NIST_224_TOP] = { | ||
192 | { | ||
193 | 0x00000001, 0x00000000, 0x00000000, 0xFFFFFFFF, | ||
194 | 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF | ||
195 | }, | ||
196 | { | ||
197 | 0x00000002, 0x00000000, 0x00000000, 0xFFFFFFFE, | ||
198 | 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF | ||
199 | } | ||
200 | }; | ||
201 | static const BN_ULONG _nist_p_224_sqr[] = { | ||
202 | 0x00000001, 0x00000000, 0x00000000, 0xFFFFFFFE, | ||
203 | 0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000002, | ||
204 | 0x00000000, 0x00000000, 0xFFFFFFFE, 0xFFFFFFFF, | ||
205 | 0xFFFFFFFF, 0xFFFFFFFF | ||
206 | }; | ||
207 | static const BN_ULONG _nist_p_256[][BN_NIST_256_TOP] = { | ||
208 | { | ||
209 | 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, | ||
210 | 0x00000000, 0x00000000, 0x00000001, 0xFFFFFFFF | ||
211 | }, | ||
212 | { | ||
213 | 0xFFFFFFFE, 0xFFFFFFFF, 0xFFFFFFFF, 0x00000001, | ||
214 | 0x00000000, 0x00000000, 0x00000002, 0xFFFFFFFE | ||
215 | }, | ||
216 | { | ||
217 | 0xFFFFFFFD, 0xFFFFFFFF, 0xFFFFFFFF, 0x00000002, | ||
218 | 0x00000000, 0x00000000, 0x00000003, 0xFFFFFFFD | ||
219 | }, | ||
220 | { | ||
221 | 0xFFFFFFFC, 0xFFFFFFFF, 0xFFFFFFFF, 0x00000003, | ||
222 | 0x00000000, 0x00000000, 0x00000004, 0xFFFFFFFC | ||
223 | }, | ||
224 | { | ||
225 | 0xFFFFFFFB, 0xFFFFFFFF, 0xFFFFFFFF, 0x00000004, | ||
226 | 0x00000000, 0x00000000, 0x00000005, 0xFFFFFFFB | ||
227 | }, | ||
228 | }; | ||
229 | static const BN_ULONG _nist_p_256_sqr[] = { | ||
230 | 0x00000001, 0x00000000, 0x00000000, 0xFFFFFFFE, | ||
231 | 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFE, 0x00000001, | ||
232 | 0xFFFFFFFE, 0x00000001, 0xFFFFFFFE, 0x00000001, | ||
233 | 0x00000001, 0xFFFFFFFE, 0x00000002, 0xFFFFFFFE | ||
234 | }; | ||
235 | static const BN_ULONG _nist_p_384[][BN_NIST_384_TOP] = { | ||
236 | { | ||
237 | 0xFFFFFFFF, 0x00000000, 0x00000000, 0xFFFFFFFF, | ||
238 | 0xFFFFFFFE, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, | ||
239 | 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF | ||
240 | }, | ||
241 | { | ||
242 | 0xFFFFFFFE, 0x00000001, 0x00000000, 0xFFFFFFFE, | ||
243 | 0xFFFFFFFD, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, | ||
244 | 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF | ||
245 | }, | ||
246 | { | ||
247 | 0xFFFFFFFD, 0x00000002, 0x00000000, 0xFFFFFFFD, | ||
248 | 0xFFFFFFFC, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, | ||
249 | 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF | ||
250 | }, | ||
251 | { | ||
252 | 0xFFFFFFFC, 0x00000003, 0x00000000, 0xFFFFFFFC, | ||
253 | 0xFFFFFFFB, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, | ||
254 | 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF | ||
255 | }, | ||
256 | { | ||
257 | 0xFFFFFFFB, 0x00000004, 0x00000000, 0xFFFFFFFB, | ||
258 | 0xFFFFFFFA, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, | ||
259 | 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF | ||
260 | }, | ||
261 | }; | ||
262 | static const BN_ULONG _nist_p_384_sqr[] = { | ||
263 | 0x00000001, 0xFFFFFFFE, 0x00000000, 0x00000002, 0x00000000, 0xFFFFFFFE, | ||
264 | 0x00000000, 0x00000002, 0x00000001, 0x00000000, 0x00000000, 0x00000000, | ||
265 | 0xFFFFFFFE, 0x00000001, 0x00000000, 0xFFFFFFFE, 0xFFFFFFFD, 0xFFFFFFFF, | ||
266 | 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF | ||
267 | }; | ||
268 | static const BN_ULONG _nist_p_521[] = { | ||
269 | 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, | ||
270 | 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, | ||
271 | 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, | ||
272 | 0xFFFFFFFF, 0x000001FF | ||
273 | }; | ||
274 | static const BN_ULONG _nist_p_521_sqr[] = { | ||
275 | 0x00000001, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, | ||
276 | 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, | ||
277 | 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0xFFFFFC00, 0xFFFFFFFF, | ||
278 | 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, | ||
279 | 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, | ||
280 | 0xFFFFFFFF, 0xFFFFFFFF, 0x0003FFFF | ||
281 | }; | ||
282 | #else | ||
283 | #error "unsupported BN_BITS2" | ||
284 | #endif | ||
285 | |||
286 | static const BIGNUM _bignum_nist_p_192 = { | ||
287 | (BN_ULONG *)_nist_p_192[0], | ||
288 | BN_NIST_192_TOP, | ||
289 | BN_NIST_192_TOP, | ||
290 | 0, | ||
291 | BN_FLG_STATIC_DATA | ||
292 | }; | ||
293 | |||
294 | static const BIGNUM _bignum_nist_p_224 = { | ||
295 | (BN_ULONG *)_nist_p_224[0], | ||
296 | BN_NIST_224_TOP, | ||
297 | BN_NIST_224_TOP, | ||
298 | 0, | ||
299 | BN_FLG_STATIC_DATA | ||
300 | }; | ||
301 | |||
302 | static const BIGNUM _bignum_nist_p_256 = { | ||
303 | (BN_ULONG *)_nist_p_256[0], | ||
304 | BN_NIST_256_TOP, | ||
305 | BN_NIST_256_TOP, | ||
306 | 0, | ||
307 | BN_FLG_STATIC_DATA | ||
308 | }; | ||
309 | |||
310 | static const BIGNUM _bignum_nist_p_384 = { | ||
311 | (BN_ULONG *)_nist_p_384[0], | ||
312 | BN_NIST_384_TOP, | ||
313 | BN_NIST_384_TOP, | ||
314 | 0, | ||
315 | BN_FLG_STATIC_DATA | ||
316 | }; | ||
317 | |||
318 | static const BIGNUM _bignum_nist_p_521 = { | ||
319 | (BN_ULONG *)_nist_p_521, | ||
320 | BN_NIST_521_TOP, | ||
321 | BN_NIST_521_TOP, | ||
322 | 0, | ||
323 | BN_FLG_STATIC_DATA | ||
324 | }; | ||
325 | |||
326 | |||
327 | const BIGNUM * | ||
328 | BN_get0_nist_prime_192(void) | ||
329 | { | ||
330 | return &_bignum_nist_p_192; | ||
331 | } | ||
332 | |||
333 | const BIGNUM * | ||
334 | BN_get0_nist_prime_224(void) | ||
335 | { | ||
336 | return &_bignum_nist_p_224; | ||
337 | } | ||
338 | |||
339 | const BIGNUM * | ||
340 | BN_get0_nist_prime_256(void) | ||
341 | { | ||
342 | return &_bignum_nist_p_256; | ||
343 | } | ||
344 | |||
345 | const BIGNUM * | ||
346 | BN_get0_nist_prime_384(void) | ||
347 | { | ||
348 | return &_bignum_nist_p_384; | ||
349 | } | ||
350 | |||
351 | const BIGNUM * | ||
352 | BN_get0_nist_prime_521(void) | ||
353 | { | ||
354 | return &_bignum_nist_p_521; | ||
355 | } | ||
356 | |||
357 | static void | ||
358 | nist_cp_bn_0(BN_ULONG *dst, const BN_ULONG *src, int top, int max) | ||
359 | { | ||
360 | int i; | ||
361 | |||
362 | #ifdef BN_DEBUG | ||
363 | OPENSSL_assert(top <= max); | ||
364 | #endif | ||
365 | for (i = 0; i < top; i++) | ||
366 | dst[i] = src[i]; | ||
367 | for (; i < max; i++) | ||
368 | dst[i] = 0; | ||
369 | } | ||
370 | |||
371 | static void nist_cp_bn(BN_ULONG *dst, const BN_ULONG *src, int top) | ||
372 | { | ||
373 | int i; | ||
374 | |||
375 | for (i = 0; i < top; i++) | ||
376 | dst[i] = src[i]; | ||
377 | } | ||
378 | |||
379 | #if BN_BITS2 == 64 | ||
380 | #define bn_cp_64(to, n, from, m) (to)[n] = (m>=0)?((from)[m]):0; | ||
381 | #define bn_64_set_0(to, n) (to)[n] = (BN_ULONG)0; | ||
382 | /* | ||
383 | * two following macros are implemented under assumption that they | ||
384 | * are called in a sequence with *ascending* n, i.e. as they are... | ||
385 | */ | ||
386 | #define bn_cp_32_naked(to, n, from, m) (((n)&1)?(to[(n)/2]|=((m)&1)?(from[(m)/2]&BN_MASK2h):(from[(m)/2]<<32))\ | ||
387 | :(to[(n)/2] =((m)&1)?(from[(m)/2]>>32):(from[(m)/2]&BN_MASK2l))) | ||
388 | #define bn_32_set_0(to, n) (((n)&1)?(to[(n)/2]&=BN_MASK2l):(to[(n)/2]=0)); | ||
389 | #define bn_cp_32(to,n,from,m) ((m)>=0)?bn_cp_32_naked(to,n,from,m):bn_32_set_0(to,n) | ||
390 | # if BYTE_ORDER == LITTLE_ENDIAN | ||
391 | # if defined(_LP64) | ||
392 | # define NIST_INT64 long | ||
393 | # else | ||
394 | # define NIST_INT64 long long | ||
395 | # endif | ||
396 | # endif | ||
397 | #else | ||
398 | #define bn_cp_64(to, n, from, m) \ | ||
399 | { \ | ||
400 | bn_cp_32(to, (n)*2, from, (m)*2); \ | ||
401 | bn_cp_32(to, (n)*2+1, from, (m)*2+1); \ | ||
402 | } | ||
403 | #define bn_64_set_0(to, n) \ | ||
404 | { \ | ||
405 | bn_32_set_0(to, (n)*2); \ | ||
406 | bn_32_set_0(to, (n)*2+1); \ | ||
407 | } | ||
408 | #define bn_cp_32(to, n, from, m) (to)[n] = (m>=0)?((from)[m]):0; | ||
409 | #define bn_32_set_0(to, n) (to)[n] = (BN_ULONG)0; | ||
410 | # if defined(BN_LLONG) | ||
411 | # define NIST_INT64 long long | ||
412 | # endif | ||
413 | #endif /* BN_BITS2 != 64 */ | ||
414 | |||
415 | #define nist_set_192(to, from, a1, a2, a3) \ | ||
416 | { \ | ||
417 | bn_cp_64(to, 0, from, (a3) - 3) \ | ||
418 | bn_cp_64(to, 1, from, (a2) - 3) \ | ||
419 | bn_cp_64(to, 2, from, (a1) - 3) \ | ||
420 | } | ||
421 | |||
422 | int | ||
423 | BN_nist_mod_192(BIGNUM *r, const BIGNUM *a, const BIGNUM *field, BN_CTX *ctx) | ||
424 | { | ||
425 | int top = a->top, i; | ||
426 | int carry; | ||
427 | BN_ULONG *r_d, *a_d = a->d; | ||
428 | union { | ||
429 | BN_ULONG bn[BN_NIST_192_TOP]; | ||
430 | unsigned int ui[BN_NIST_192_TOP * | ||
431 | sizeof(BN_ULONG) / sizeof(unsigned int)]; | ||
432 | } buf; | ||
433 | BN_ULONG c_d[BN_NIST_192_TOP], *res; | ||
434 | uintptr_t mask; | ||
435 | static const BIGNUM _bignum_nist_p_192_sqr = { | ||
436 | (BN_ULONG *)_nist_p_192_sqr, | ||
437 | sizeof(_nist_p_192_sqr) / sizeof(_nist_p_192_sqr[0]), | ||
438 | sizeof(_nist_p_192_sqr) / sizeof(_nist_p_192_sqr[0]), | ||
439 | 0, | ||
440 | BN_FLG_STATIC_DATA | ||
441 | }; | ||
442 | |||
443 | field = &_bignum_nist_p_192; /* just to make sure */ | ||
444 | |||
445 | if (BN_is_negative(a) || BN_ucmp(a, &_bignum_nist_p_192_sqr) >= 0) | ||
446 | return BN_nnmod(r, a, field, ctx); | ||
447 | |||
448 | i = BN_ucmp(field, a); | ||
449 | if (i == 0) { | ||
450 | BN_zero(r); | ||
451 | return 1; | ||
452 | } else if (i > 0) | ||
453 | return (r == a) ? 1 : (BN_copy(r , a) != NULL); | ||
454 | |||
455 | if (r != a) { | ||
456 | if (!bn_wexpand(r, BN_NIST_192_TOP)) | ||
457 | return 0; | ||
458 | r_d = r->d; | ||
459 | nist_cp_bn(r_d, a_d, BN_NIST_192_TOP); | ||
460 | } else | ||
461 | r_d = a_d; | ||
462 | |||
463 | nist_cp_bn_0(buf.bn, a_d + BN_NIST_192_TOP, top - BN_NIST_192_TOP, | ||
464 | BN_NIST_192_TOP); | ||
465 | |||
466 | #if defined(NIST_INT64) | ||
467 | { | ||
468 | NIST_INT64 acc; /* accumulator */ | ||
469 | unsigned int *rp = (unsigned int *)r_d; | ||
470 | const unsigned int *bp = (const unsigned int *)buf.ui; | ||
471 | |||
472 | acc = rp[0]; | ||
473 | acc += bp[3 * 2 - 6]; | ||
474 | acc += bp[5 * 2 - 6]; | ||
475 | rp[0] = (unsigned int)acc; | ||
476 | acc >>= 32; | ||
477 | |||
478 | acc += rp[1]; | ||
479 | acc += bp[3 * 2 - 5]; | ||
480 | acc += bp[5 * 2 - 5]; | ||
481 | rp[1] = (unsigned int)acc; | ||
482 | acc >>= 32; | ||
483 | |||
484 | acc += rp[2]; | ||
485 | acc += bp[3 * 2 - 6]; | ||
486 | acc += bp[4 * 2 - 6]; | ||
487 | acc += bp[5 * 2 - 6]; | ||
488 | rp[2] = (unsigned int)acc; | ||
489 | acc >>= 32; | ||
490 | |||
491 | acc += rp[3]; | ||
492 | acc += bp[3 * 2 - 5]; | ||
493 | acc += bp[4 * 2 - 5]; | ||
494 | acc += bp[5 * 2 - 5]; | ||
495 | rp[3] = (unsigned int)acc; | ||
496 | acc >>= 32; | ||
497 | |||
498 | acc += rp[4]; | ||
499 | acc += bp[4 * 2 - 6]; | ||
500 | acc += bp[5 * 2 - 6]; | ||
501 | rp[4] = (unsigned int)acc; | ||
502 | acc >>= 32; | ||
503 | |||
504 | acc += rp[5]; | ||
505 | acc += bp[4 * 2 - 5]; | ||
506 | acc += bp[5 * 2 - 5]; | ||
507 | rp[5] = (unsigned int)acc; | ||
508 | |||
509 | carry = (int)(acc >> 32); | ||
510 | } | ||
511 | #else | ||
512 | { | ||
513 | BN_ULONG t_d[BN_NIST_192_TOP]; | ||
514 | |||
515 | nist_set_192(t_d, buf.bn, 0, 3, 3); | ||
516 | carry = (int)bn_add_words(r_d, r_d, t_d, BN_NIST_192_TOP); | ||
517 | nist_set_192(t_d, buf.bn, 4, 4, 0); | ||
518 | carry += (int)bn_add_words(r_d, r_d, t_d, BN_NIST_192_TOP); | ||
519 | nist_set_192(t_d, buf.bn, 5, 5, 5) | ||
520 | carry += (int)bn_add_words(r_d, r_d, t_d, BN_NIST_192_TOP); | ||
521 | } | ||
522 | #endif | ||
523 | if (carry > 0) | ||
524 | carry = (int)bn_sub_words(r_d, r_d, _nist_p_192[carry - 1], | ||
525 | BN_NIST_192_TOP); | ||
526 | else | ||
527 | carry = 1; | ||
528 | |||
529 | /* | ||
530 | * we need 'if (carry==0 || result>=modulus) result-=modulus;' | ||
531 | * as comparison implies subtraction, we can write | ||
532 | * 'tmp=result-modulus; if (!carry || !borrow) result=tmp;' | ||
533 | * this is what happens below, but without explicit if:-) a. | ||
534 | */ | ||
535 | mask = 0 - (uintptr_t)bn_sub_words(c_d, r_d, _nist_p_192[0], | ||
536 | BN_NIST_192_TOP); | ||
537 | mask &= 0 - (uintptr_t)carry; | ||
538 | res = c_d; | ||
539 | res = (BN_ULONG *)(((uintptr_t)res & ~mask) | ((uintptr_t)r_d & mask)); | ||
540 | nist_cp_bn(r_d, res, BN_NIST_192_TOP); | ||
541 | r->top = BN_NIST_192_TOP; | ||
542 | bn_correct_top(r); | ||
543 | |||
544 | return 1; | ||
545 | } | ||
546 | |||
547 | typedef BN_ULONG (*bn_addsub_f)(BN_ULONG *, const BN_ULONG *, | ||
548 | const BN_ULONG *, int); | ||
549 | |||
550 | #define nist_set_224(to, from, a1, a2, a3, a4, a5, a6, a7) \ | ||
551 | { \ | ||
552 | bn_cp_32(to, 0, from, (a7) - 7) \ | ||
553 | bn_cp_32(to, 1, from, (a6) - 7) \ | ||
554 | bn_cp_32(to, 2, from, (a5) - 7) \ | ||
555 | bn_cp_32(to, 3, from, (a4) - 7) \ | ||
556 | bn_cp_32(to, 4, from, (a3) - 7) \ | ||
557 | bn_cp_32(to, 5, from, (a2) - 7) \ | ||
558 | bn_cp_32(to, 6, from, (a1) - 7) \ | ||
559 | } | ||
560 | |||
561 | int | ||
562 | BN_nist_mod_224(BIGNUM *r, const BIGNUM *a, const BIGNUM *field, BN_CTX *ctx) | ||
563 | { | ||
564 | int top = a->top, i; | ||
565 | int carry; | ||
566 | BN_ULONG *r_d, *a_d = a->d; | ||
567 | union { | ||
568 | BN_ULONG bn[BN_NIST_224_TOP]; | ||
569 | unsigned int ui[BN_NIST_224_TOP * | ||
570 | sizeof(BN_ULONG) / sizeof(unsigned int)]; | ||
571 | } buf; | ||
572 | BN_ULONG c_d[BN_NIST_224_TOP], *res; | ||
573 | uintptr_t mask; | ||
574 | union { | ||
575 | bn_addsub_f f; | ||
576 | uintptr_t p; | ||
577 | } u; | ||
578 | static const BIGNUM _bignum_nist_p_224_sqr = { | ||
579 | (BN_ULONG *)_nist_p_224_sqr, | ||
580 | sizeof(_nist_p_224_sqr) / sizeof(_nist_p_224_sqr[0]), | ||
581 | sizeof(_nist_p_224_sqr) / sizeof(_nist_p_224_sqr[0]), | ||
582 | 0, | ||
583 | BN_FLG_STATIC_DATA | ||
584 | }; | ||
585 | |||
586 | field = &_bignum_nist_p_224; /* just to make sure */ | ||
587 | |||
588 | if (BN_is_negative(a) || BN_ucmp(a, &_bignum_nist_p_224_sqr) >= 0) | ||
589 | return BN_nnmod(r, a, field, ctx); | ||
590 | |||
591 | i = BN_ucmp(field, a); | ||
592 | if (i == 0) { | ||
593 | BN_zero(r); | ||
594 | return 1; | ||
595 | } else if (i > 0) | ||
596 | return (r == a) ? 1 : (BN_copy(r, a) != NULL); | ||
597 | |||
598 | if (r != a) { | ||
599 | if (!bn_wexpand(r, BN_NIST_224_TOP)) | ||
600 | return 0; | ||
601 | r_d = r->d; | ||
602 | nist_cp_bn(r_d, a_d, BN_NIST_224_TOP); | ||
603 | } else | ||
604 | r_d = a_d; | ||
605 | |||
606 | #if BN_BITS2==64 | ||
607 | /* copy upper 256 bits of 448 bit number ... */ | ||
608 | nist_cp_bn_0(c_d, a_d + (BN_NIST_224_TOP - 1), | ||
609 | top - (BN_NIST_224_TOP - 1), BN_NIST_224_TOP); | ||
610 | /* ... and right shift by 32 to obtain upper 224 bits */ | ||
611 | nist_set_224(buf.bn, c_d, 14, 13, 12, 11, 10, 9, 8); | ||
612 | /* truncate lower part to 224 bits too */ | ||
613 | r_d[BN_NIST_224_TOP - 1] &= BN_MASK2l; | ||
614 | #else | ||
615 | nist_cp_bn_0(buf.bn, a_d + BN_NIST_224_TOP, | ||
616 | top - BN_NIST_224_TOP, BN_NIST_224_TOP); | ||
617 | #endif | ||
618 | |||
619 | #if defined(NIST_INT64) && BN_BITS2!=64 | ||
620 | { | ||
621 | NIST_INT64 acc; /* accumulator */ | ||
622 | unsigned int *rp = (unsigned int *)r_d; | ||
623 | const unsigned int *bp = (const unsigned int *)buf.ui; | ||
624 | |||
625 | acc = rp[0]; | ||
626 | acc -= bp[7 - 7]; | ||
627 | acc -= bp[11 - 7]; | ||
628 | rp[0] = (unsigned int)acc; | ||
629 | acc >>= 32; | ||
630 | |||
631 | acc += rp[1]; | ||
632 | acc -= bp[8 - 7]; | ||
633 | acc -= bp[12 - 7]; | ||
634 | rp[1] = (unsigned int)acc; | ||
635 | acc >>= 32; | ||
636 | |||
637 | acc += rp[2]; | ||
638 | acc -= bp[9 - 7]; | ||
639 | acc -= bp[13 - 7]; | ||
640 | rp[2] = (unsigned int)acc; | ||
641 | acc >>= 32; | ||
642 | |||
643 | acc += rp[3]; | ||
644 | acc += bp[7 - 7]; | ||
645 | acc += bp[11 - 7]; | ||
646 | acc -= bp[10 - 7]; | ||
647 | rp[3] = (unsigned int)acc; | ||
648 | acc >>= 32; | ||
649 | |||
650 | acc += rp[4]; | ||
651 | acc += bp[8 - 7]; | ||
652 | acc += bp[12 - 7]; | ||
653 | acc -= bp[11 - 7]; | ||
654 | rp[4] = (unsigned int)acc; | ||
655 | acc >>= 32; | ||
656 | |||
657 | acc += rp[5]; | ||
658 | acc += bp[9 - 7]; | ||
659 | acc += bp[13 - 7]; | ||
660 | acc -= bp[12 - 7]; | ||
661 | rp[5] = (unsigned int)acc; | ||
662 | acc >>= 32; | ||
663 | |||
664 | acc += rp[6]; | ||
665 | acc += bp[10 - 7]; | ||
666 | acc -= bp[13 - 7]; | ||
667 | rp[6] = (unsigned int)acc; | ||
668 | |||
669 | carry = (int)(acc >> 32); | ||
670 | # if BN_BITS2==64 | ||
671 | rp[7] = carry; | ||
672 | # endif | ||
673 | } | ||
674 | #else | ||
675 | { | ||
676 | BN_ULONG t_d[BN_NIST_224_TOP]; | ||
677 | |||
678 | nist_set_224(t_d, buf.bn, 10, 9, 8, 7, 0, 0, 0); | ||
679 | carry = (int)bn_add_words(r_d, r_d, t_d, BN_NIST_224_TOP); | ||
680 | nist_set_224(t_d, buf.bn, 0, 13, 12, 11, 0, 0, 0); | ||
681 | carry += (int)bn_add_words(r_d, r_d, t_d, BN_NIST_224_TOP); | ||
682 | nist_set_224(t_d, buf.bn, 13, 12, 11, 10, 9, 8, 7); | ||
683 | carry -= (int)bn_sub_words(r_d, r_d, t_d, BN_NIST_224_TOP); | ||
684 | nist_set_224(t_d, buf.bn, 0, 0, 0, 0, 13, 12, 11); | ||
685 | carry -= (int)bn_sub_words(r_d, r_d, t_d, BN_NIST_224_TOP); | ||
686 | |||
687 | #if BN_BITS2==64 | ||
688 | carry = (int)(r_d[BN_NIST_224_TOP - 1] >> 32); | ||
689 | #endif | ||
690 | } | ||
691 | #endif | ||
692 | u.f = bn_sub_words; | ||
693 | if (carry > 0) { | ||
694 | carry = (int)bn_sub_words(r_d, r_d, _nist_p_224[carry - 1], | ||
695 | BN_NIST_224_TOP); | ||
696 | #if BN_BITS2==64 | ||
697 | carry = (int)(~(r_d[BN_NIST_224_TOP - 1] >> 32)) & 1; | ||
698 | #endif | ||
699 | } else if (carry < 0) { | ||
700 | /* it's a bit more complicated logic in this case. | ||
701 | * if bn_add_words yields no carry, then result | ||
702 | * has to be adjusted by unconditionally *adding* | ||
703 | * the modulus. but if it does, then result has | ||
704 | * to be compared to the modulus and conditionally | ||
705 | * adjusted by *subtracting* the latter. */ | ||
706 | carry = (int)bn_add_words(r_d, r_d, _nist_p_224[-carry - 1], | ||
707 | BN_NIST_224_TOP); | ||
708 | mask = 0 - (uintptr_t)carry; | ||
709 | u.p = ((uintptr_t)bn_sub_words & mask) | | ||
710 | ((uintptr_t)bn_add_words & ~mask); | ||
711 | } else | ||
712 | carry = 1; | ||
713 | |||
714 | /* otherwise it's effectively same as in BN_nist_mod_192... */ | ||
715 | mask = 0 - (uintptr_t)(*u.f)(c_d, r_d, _nist_p_224[0], BN_NIST_224_TOP); | ||
716 | mask &= 0 - (uintptr_t)carry; | ||
717 | res = c_d; | ||
718 | res = (BN_ULONG *)(((uintptr_t)res & ~mask) | ((uintptr_t)r_d & mask)); | ||
719 | nist_cp_bn(r_d, res, BN_NIST_224_TOP); | ||
720 | r->top = BN_NIST_224_TOP; | ||
721 | bn_correct_top(r); | ||
722 | |||
723 | return 1; | ||
724 | } | ||
725 | |||
726 | #define nist_set_256(to, from, a1, a2, a3, a4, a5, a6, a7, a8) \ | ||
727 | { \ | ||
728 | bn_cp_32(to, 0, from, (a8) - 8) \ | ||
729 | bn_cp_32(to, 1, from, (a7) - 8) \ | ||
730 | bn_cp_32(to, 2, from, (a6) - 8) \ | ||
731 | bn_cp_32(to, 3, from, (a5) - 8) \ | ||
732 | bn_cp_32(to, 4, from, (a4) - 8) \ | ||
733 | bn_cp_32(to, 5, from, (a3) - 8) \ | ||
734 | bn_cp_32(to, 6, from, (a2) - 8) \ | ||
735 | bn_cp_32(to, 7, from, (a1) - 8) \ | ||
736 | } | ||
737 | |||
738 | int | ||
739 | BN_nist_mod_256(BIGNUM *r, const BIGNUM *a, const BIGNUM *field, BN_CTX *ctx) | ||
740 | { | ||
741 | int i, top = a->top; | ||
742 | int carry = 0; | ||
743 | BN_ULONG *a_d = a->d, *r_d; | ||
744 | union { | ||
745 | BN_ULONG bn[BN_NIST_256_TOP]; | ||
746 | unsigned int ui[BN_NIST_256_TOP * | ||
747 | sizeof(BN_ULONG) / sizeof(unsigned int)]; | ||
748 | } buf; | ||
749 | BN_ULONG c_d[BN_NIST_256_TOP], *res; | ||
750 | uintptr_t mask; | ||
751 | union { | ||
752 | bn_addsub_f f; | ||
753 | uintptr_t p; | ||
754 | } u; | ||
755 | static const BIGNUM _bignum_nist_p_256_sqr = { | ||
756 | (BN_ULONG *)_nist_p_256_sqr, | ||
757 | sizeof(_nist_p_256_sqr) / sizeof(_nist_p_256_sqr[0]), | ||
758 | sizeof(_nist_p_256_sqr) / sizeof(_nist_p_256_sqr[0]), | ||
759 | 0, | ||
760 | BN_FLG_STATIC_DATA | ||
761 | }; | ||
762 | |||
763 | field = &_bignum_nist_p_256; /* just to make sure */ | ||
764 | |||
765 | if (BN_is_negative(a) || BN_ucmp(a, &_bignum_nist_p_256_sqr) >= 0) | ||
766 | return BN_nnmod(r, a, field, ctx); | ||
767 | |||
768 | i = BN_ucmp(field, a); | ||
769 | if (i == 0) { | ||
770 | BN_zero(r); | ||
771 | return 1; | ||
772 | } else if (i > 0) | ||
773 | return (r == a) ? 1 : (BN_copy(r, a) != NULL); | ||
774 | |||
775 | if (r != a) { | ||
776 | if (!bn_wexpand(r, BN_NIST_256_TOP)) | ||
777 | return 0; | ||
778 | r_d = r->d; | ||
779 | nist_cp_bn(r_d, a_d, BN_NIST_256_TOP); | ||
780 | } else | ||
781 | r_d = a_d; | ||
782 | |||
783 | nist_cp_bn_0(buf.bn, a_d + BN_NIST_256_TOP, | ||
784 | top - BN_NIST_256_TOP, BN_NIST_256_TOP); | ||
785 | |||
786 | #if defined(NIST_INT64) | ||
787 | { | ||
788 | NIST_INT64 acc; /* accumulator */ | ||
789 | unsigned int *rp = (unsigned int *)r_d; | ||
790 | const unsigned int *bp = (const unsigned int *)buf.ui; | ||
791 | |||
792 | acc = rp[0]; | ||
793 | acc += bp[8 - 8]; | ||
794 | acc += bp[9 - 8]; | ||
795 | acc -= bp[11 - 8]; | ||
796 | acc -= bp[12 - 8]; | ||
797 | acc -= bp[13 - 8]; | ||
798 | acc -= bp[14 - 8]; | ||
799 | rp[0] = (unsigned int)acc; | ||
800 | acc >>= 32; | ||
801 | |||
802 | acc += rp[1]; | ||
803 | acc += bp[9 - 8]; | ||
804 | acc += bp[10 - 8]; | ||
805 | acc -= bp[12 - 8]; | ||
806 | acc -= bp[13 - 8]; | ||
807 | acc -= bp[14 - 8]; | ||
808 | acc -= bp[15 - 8]; | ||
809 | rp[1] = (unsigned int)acc; | ||
810 | acc >>= 32; | ||
811 | |||
812 | acc += rp[2]; | ||
813 | acc += bp[10 - 8]; | ||
814 | acc += bp[11 - 8]; | ||
815 | acc -= bp[13 - 8]; | ||
816 | acc -= bp[14 - 8]; | ||
817 | acc -= bp[15 - 8]; | ||
818 | rp[2] = (unsigned int)acc; | ||
819 | acc >>= 32; | ||
820 | |||
821 | acc += rp[3]; | ||
822 | acc += bp[11 - 8]; | ||
823 | acc += bp[11 - 8]; | ||
824 | acc += bp[12 - 8]; | ||
825 | acc += bp[12 - 8]; | ||
826 | acc += bp[13 - 8]; | ||
827 | acc -= bp[15 - 8]; | ||
828 | acc -= bp[8 - 8]; | ||
829 | acc -= bp[9 - 8]; | ||
830 | rp[3] = (unsigned int)acc; | ||
831 | acc >>= 32; | ||
832 | |||
833 | acc += rp[4]; | ||
834 | acc += bp[12 - 8]; | ||
835 | acc += bp[12 - 8]; | ||
836 | acc += bp[13 - 8]; | ||
837 | acc += bp[13 - 8]; | ||
838 | acc += bp[14 - 8]; | ||
839 | acc -= bp[9 - 8]; | ||
840 | acc -= bp[10 - 8]; | ||
841 | rp[4] = (unsigned int)acc; | ||
842 | acc >>= 32; | ||
843 | |||
844 | acc += rp[5]; | ||
845 | acc += bp[13 - 8]; | ||
846 | acc += bp[13 - 8]; | ||
847 | acc += bp[14 - 8]; | ||
848 | acc += bp[14 - 8]; | ||
849 | acc += bp[15 - 8]; | ||
850 | acc -= bp[10 - 8]; | ||
851 | acc -= bp[11 - 8]; | ||
852 | rp[5] = (unsigned int)acc; | ||
853 | acc >>= 32; | ||
854 | |||
855 | acc += rp[6]; | ||
856 | acc += bp[14 - 8]; | ||
857 | acc += bp[14 - 8]; | ||
858 | acc += bp[15 - 8]; | ||
859 | acc += bp[15 - 8]; | ||
860 | acc += bp[14 - 8]; | ||
861 | acc += bp[13 - 8]; | ||
862 | acc -= bp[8 - 8]; | ||
863 | acc -= bp[9 - 8]; | ||
864 | rp[6] = (unsigned int)acc; | ||
865 | acc >>= 32; | ||
866 | |||
867 | acc += rp[7]; | ||
868 | acc += bp[15 - 8]; | ||
869 | acc += bp[15 - 8]; | ||
870 | acc += bp[15 - 8]; | ||
871 | acc += bp[8 - 8]; | ||
872 | acc -= bp[10 - 8]; | ||
873 | acc -= bp[11 - 8]; | ||
874 | acc -= bp[12 - 8]; | ||
875 | acc -= bp[13 - 8]; | ||
876 | rp[7] = (unsigned int)acc; | ||
877 | |||
878 | carry = (int)(acc >> 32); | ||
879 | } | ||
880 | #else | ||
881 | { | ||
882 | BN_ULONG t_d[BN_NIST_256_TOP]; | ||
883 | |||
884 | /*S1*/ | ||
885 | nist_set_256(t_d, buf.bn, 15, 14, 13, 12, 11, 0, 0, 0); | ||
886 | /*S2*/ | ||
887 | nist_set_256(c_d, buf.bn, 0, 15, 14, 13, 12, 0, 0, 0); | ||
888 | carry = (int)bn_add_words(t_d, t_d, c_d, BN_NIST_256_TOP); | ||
889 | /* left shift */ | ||
890 | { | ||
891 | BN_ULONG *ap, t, c; | ||
892 | ap = t_d; | ||
893 | c = 0; | ||
894 | for (i = BN_NIST_256_TOP; i != 0; --i) { | ||
895 | t = *ap; | ||
896 | *(ap++) = ((t << 1) | c) & BN_MASK2; | ||
897 | c = (t & BN_TBIT) ? 1 : 0; | ||
898 | } | ||
899 | carry <<= 1; | ||
900 | carry |= c; | ||
901 | } | ||
902 | carry += (int)bn_add_words(r_d, r_d, t_d, BN_NIST_256_TOP); | ||
903 | /*S3*/ | ||
904 | nist_set_256(t_d, buf.bn, 15, 14, 0, 0, 0, 10, 9, 8); | ||
905 | carry += (int)bn_add_words(r_d, r_d, t_d, BN_NIST_256_TOP); | ||
906 | /*S4*/ | ||
907 | nist_set_256(t_d, buf.bn, 8, 13, 15, 14, 13, 11, 10, 9); | ||
908 | carry += (int)bn_add_words(r_d, r_d, t_d, BN_NIST_256_TOP); | ||
909 | /*D1*/ | ||
910 | nist_set_256(t_d, buf.bn, 10, 8, 0, 0, 0, 13, 12, 11); | ||
911 | carry -= (int)bn_sub_words(r_d, r_d, t_d, BN_NIST_256_TOP); | ||
912 | /*D2*/ | ||
913 | nist_set_256(t_d, buf.bn, 11, 9, 0, 0, 15, 14, 13, 12); | ||
914 | carry -= (int)bn_sub_words(r_d, r_d, t_d, BN_NIST_256_TOP); | ||
915 | /*D3*/ | ||
916 | nist_set_256(t_d, buf.bn, 12, 0, 10, 9, 8, 15, 14, 13); | ||
917 | carry -= (int)bn_sub_words(r_d, r_d, t_d, BN_NIST_256_TOP); | ||
918 | /*D4*/ | ||
919 | nist_set_256(t_d, buf.bn, 13, 0, 11, 10, 9, 0, 15, 14); | ||
920 | carry -= (int)bn_sub_words(r_d, r_d, t_d, BN_NIST_256_TOP); | ||
921 | |||
922 | } | ||
923 | #endif | ||
924 | /* see BN_nist_mod_224 for explanation */ | ||
925 | u.f = bn_sub_words; | ||
926 | if (carry > 0) | ||
927 | carry = (int)bn_sub_words(r_d, r_d, _nist_p_256[carry - 1], | ||
928 | BN_NIST_256_TOP); | ||
929 | else if (carry < 0) { | ||
930 | carry = (int)bn_add_words(r_d, r_d, _nist_p_256[-carry - 1], | ||
931 | BN_NIST_256_TOP); | ||
932 | mask = 0 - (uintptr_t)carry; | ||
933 | u.p = ((uintptr_t)bn_sub_words & mask) | | ||
934 | ((uintptr_t)bn_add_words & ~mask); | ||
935 | } else | ||
936 | carry = 1; | ||
937 | |||
938 | mask = 0 - (uintptr_t)(*u.f)(c_d, r_d, _nist_p_256[0], BN_NIST_256_TOP); | ||
939 | mask &= 0 - (uintptr_t)carry; | ||
940 | res = c_d; | ||
941 | res = (BN_ULONG *)(((uintptr_t)res & ~mask) | ((uintptr_t)r_d & mask)); | ||
942 | nist_cp_bn(r_d, res, BN_NIST_256_TOP); | ||
943 | r->top = BN_NIST_256_TOP; | ||
944 | bn_correct_top(r); | ||
945 | |||
946 | return 1; | ||
947 | } | ||
948 | |||
949 | #define nist_set_384(to,from,a1,a2,a3,a4,a5,a6,a7,a8,a9,a10,a11,a12) \ | ||
950 | { \ | ||
951 | bn_cp_32(to, 0, from, (a12) - 12) \ | ||
952 | bn_cp_32(to, 1, from, (a11) - 12) \ | ||
953 | bn_cp_32(to, 2, from, (a10) - 12) \ | ||
954 | bn_cp_32(to, 3, from, (a9) - 12) \ | ||
955 | bn_cp_32(to, 4, from, (a8) - 12) \ | ||
956 | bn_cp_32(to, 5, from, (a7) - 12) \ | ||
957 | bn_cp_32(to, 6, from, (a6) - 12) \ | ||
958 | bn_cp_32(to, 7, from, (a5) - 12) \ | ||
959 | bn_cp_32(to, 8, from, (a4) - 12) \ | ||
960 | bn_cp_32(to, 9, from, (a3) - 12) \ | ||
961 | bn_cp_32(to, 10, from, (a2) - 12) \ | ||
962 | bn_cp_32(to, 11, from, (a1) - 12) \ | ||
963 | } | ||
964 | |||
965 | int | ||
966 | BN_nist_mod_384(BIGNUM *r, const BIGNUM *a, const BIGNUM *field, BN_CTX *ctx) | ||
967 | { | ||
968 | int i, top = a->top; | ||
969 | int carry = 0; | ||
970 | BN_ULONG *r_d, *a_d = a->d; | ||
971 | union { | ||
972 | BN_ULONG bn[BN_NIST_384_TOP]; | ||
973 | unsigned int ui[BN_NIST_384_TOP * | ||
974 | sizeof(BN_ULONG) / sizeof(unsigned int)]; | ||
975 | } buf; | ||
976 | BN_ULONG c_d[BN_NIST_384_TOP], *res; | ||
977 | uintptr_t mask; | ||
978 | union { | ||
979 | bn_addsub_f f; | ||
980 | uintptr_t p; | ||
981 | } u; | ||
982 | static const BIGNUM _bignum_nist_p_384_sqr = { | ||
983 | (BN_ULONG *)_nist_p_384_sqr, | ||
984 | sizeof(_nist_p_384_sqr) / sizeof(_nist_p_384_sqr[0]), | ||
985 | sizeof(_nist_p_384_sqr) / sizeof(_nist_p_384_sqr[0]), | ||
986 | 0, | ||
987 | BN_FLG_STATIC_DATA | ||
988 | }; | ||
989 | |||
990 | field = &_bignum_nist_p_384; /* just to make sure */ | ||
991 | |||
992 | if (BN_is_negative(a) || BN_ucmp(a, &_bignum_nist_p_384_sqr) >= 0) | ||
993 | return BN_nnmod(r, a, field, ctx); | ||
994 | |||
995 | i = BN_ucmp(field, a); | ||
996 | if (i == 0) { | ||
997 | BN_zero(r); | ||
998 | return 1; | ||
999 | } else if (i > 0) | ||
1000 | return (r == a) ? 1 : (BN_copy(r, a) != NULL); | ||
1001 | |||
1002 | if (r != a) { | ||
1003 | if (!bn_wexpand(r, BN_NIST_384_TOP)) | ||
1004 | return 0; | ||
1005 | r_d = r->d; | ||
1006 | nist_cp_bn(r_d, a_d, BN_NIST_384_TOP); | ||
1007 | } else | ||
1008 | r_d = a_d; | ||
1009 | |||
1010 | nist_cp_bn_0(buf.bn, a_d + BN_NIST_384_TOP, | ||
1011 | top - BN_NIST_384_TOP, BN_NIST_384_TOP); | ||
1012 | |||
1013 | #if defined(NIST_INT64) | ||
1014 | { | ||
1015 | NIST_INT64 acc; /* accumulator */ | ||
1016 | unsigned int *rp = (unsigned int *)r_d; | ||
1017 | const unsigned int *bp = (const unsigned int *)buf.ui; | ||
1018 | |||
1019 | acc = rp[0]; | ||
1020 | acc += bp[12 - 12]; | ||
1021 | acc += bp[21 - 12]; | ||
1022 | acc += bp[20 - 12]; | ||
1023 | acc -= bp[23 - 12]; | ||
1024 | rp[0] = (unsigned int)acc; | ||
1025 | acc >>= 32; | ||
1026 | |||
1027 | acc += rp[1]; | ||
1028 | acc += bp[13 - 12]; | ||
1029 | acc += bp[22 - 12]; | ||
1030 | acc += bp[23 - 12]; | ||
1031 | acc -= bp[12 - 12]; | ||
1032 | acc -= bp[20 - 12]; | ||
1033 | rp[1] = (unsigned int)acc; | ||
1034 | acc >>= 32; | ||
1035 | |||
1036 | acc += rp[2]; | ||
1037 | acc += bp[14 - 12]; | ||
1038 | acc += bp[23 - 12]; | ||
1039 | acc -= bp[13 - 12]; | ||
1040 | acc -= bp[21 - 12]; | ||
1041 | rp[2] = (unsigned int)acc; | ||
1042 | acc >>= 32; | ||
1043 | |||
1044 | acc += rp[3]; | ||
1045 | acc += bp[15 - 12]; | ||
1046 | acc += bp[12 - 12]; | ||
1047 | acc += bp[20 - 12]; | ||
1048 | acc += bp[21 - 12]; | ||
1049 | acc -= bp[14 - 12]; | ||
1050 | acc -= bp[22 - 12]; | ||
1051 | acc -= bp[23 - 12]; | ||
1052 | rp[3] = (unsigned int)acc; | ||
1053 | acc >>= 32; | ||
1054 | |||
1055 | acc += rp[4]; | ||
1056 | acc += bp[21 - 12]; | ||
1057 | acc += bp[21 - 12]; | ||
1058 | acc += bp[16 - 12]; | ||
1059 | acc += bp[13 - 12]; | ||
1060 | acc += bp[12 - 12]; | ||
1061 | acc += bp[20 - 12]; | ||
1062 | acc += bp[22 - 12]; | ||
1063 | acc -= bp[15 - 12]; | ||
1064 | acc -= bp[23 - 12]; | ||
1065 | acc -= bp[23 - 12]; | ||
1066 | rp[4] = (unsigned int)acc; | ||
1067 | acc >>= 32; | ||
1068 | |||
1069 | acc += rp[5]; | ||
1070 | acc += bp[22 - 12]; | ||
1071 | acc += bp[22 - 12]; | ||
1072 | acc += bp[17 - 12]; | ||
1073 | acc += bp[14 - 12]; | ||
1074 | acc += bp[13 - 12]; | ||
1075 | acc += bp[21 - 12]; | ||
1076 | acc += bp[23 - 12]; | ||
1077 | acc -= bp[16 - 12]; | ||
1078 | rp[5] = (unsigned int)acc; | ||
1079 | acc >>= 32; | ||
1080 | |||
1081 | acc += rp[6]; | ||
1082 | acc += bp[23 - 12]; | ||
1083 | acc += bp[23 - 12]; | ||
1084 | acc += bp[18 - 12]; | ||
1085 | acc += bp[15 - 12]; | ||
1086 | acc += bp[14 - 12]; | ||
1087 | acc += bp[22 - 12]; | ||
1088 | acc -= bp[17 - 12]; | ||
1089 | rp[6] = (unsigned int)acc; | ||
1090 | acc >>= 32; | ||
1091 | |||
1092 | acc += rp[7]; | ||
1093 | acc += bp[19 - 12]; | ||
1094 | acc += bp[16 - 12]; | ||
1095 | acc += bp[15 - 12]; | ||
1096 | acc += bp[23 - 12]; | ||
1097 | acc -= bp[18 - 12]; | ||
1098 | rp[7] = (unsigned int)acc; | ||
1099 | acc >>= 32; | ||
1100 | |||
1101 | acc += rp[8]; | ||
1102 | acc += bp[20 - 12]; | ||
1103 | acc += bp[17 - 12]; | ||
1104 | acc += bp[16 - 12]; | ||
1105 | acc -= bp[19 - 12]; | ||
1106 | rp[8] = (unsigned int)acc; | ||
1107 | acc >>= 32; | ||
1108 | |||
1109 | acc += rp[9]; | ||
1110 | acc += bp[21 - 12]; | ||
1111 | acc += bp[18 - 12]; | ||
1112 | acc += bp[17 - 12]; | ||
1113 | acc -= bp[20 - 12]; | ||
1114 | rp[9] = (unsigned int)acc; | ||
1115 | acc >>= 32; | ||
1116 | |||
1117 | acc += rp[10]; | ||
1118 | acc += bp[22 - 12]; | ||
1119 | acc += bp[19 - 12]; | ||
1120 | acc += bp[18 - 12]; | ||
1121 | acc -= bp[21 - 12]; | ||
1122 | rp[10] = (unsigned int)acc; | ||
1123 | acc >>= 32; | ||
1124 | |||
1125 | acc += rp[11]; | ||
1126 | acc += bp[23 - 12]; | ||
1127 | acc += bp[20 - 12]; | ||
1128 | acc += bp[19 - 12]; | ||
1129 | acc -= bp[22 - 12]; | ||
1130 | rp[11] = (unsigned int)acc; | ||
1131 | |||
1132 | carry = (int)(acc >> 32); | ||
1133 | } | ||
1134 | #else | ||
1135 | { | ||
1136 | BN_ULONG t_d[BN_NIST_384_TOP]; | ||
1137 | |||
1138 | /*S1*/ | ||
1139 | nist_set_256(t_d, buf.bn, 0, 0, 0, 0, 0, 23 - 4, 22 - 4, | ||
1140 | 21 - 4); | ||
1141 | /* left shift */ | ||
1142 | { | ||
1143 | BN_ULONG *ap, t, c; | ||
1144 | ap = t_d; | ||
1145 | c = 0; | ||
1146 | for (i = 3; i != 0; --i) { | ||
1147 | t= *ap; | ||
1148 | *(ap++) = ((t << 1)|c) & BN_MASK2; | ||
1149 | c = (t & BN_TBIT) ? 1 : 0; | ||
1150 | } | ||
1151 | *ap = c; | ||
1152 | } | ||
1153 | carry = (int)bn_add_words(r_d + (128 / BN_BITS2), | ||
1154 | r_d + (128 / BN_BITS2), t_d, BN_NIST_256_TOP); | ||
1155 | /*S2 */ | ||
1156 | carry += (int)bn_add_words(r_d, r_d, buf.bn, BN_NIST_384_TOP); | ||
1157 | /*S3*/ | ||
1158 | nist_set_384(t_d, buf.bn, 20, 19, 18, 17, 16, 15, 14, 13, 12, | ||
1159 | 23, 22, 21); | ||
1160 | carry += (int)bn_add_words(r_d, r_d, t_d, BN_NIST_384_TOP); | ||
1161 | /*S4*/ | ||
1162 | nist_set_384(t_d, buf.bn, 19, 18, 17, 16, 15, 14, 13, 12, 20, | ||
1163 | 0, 23, 0); | ||
1164 | carry += (int)bn_add_words(r_d, r_d, t_d, BN_NIST_384_TOP); | ||
1165 | /*S5*/ | ||
1166 | nist_set_384(t_d, buf.bn, 0,0, 0,0, 23, 22, 21, 20, 0,0, 0, 0); | ||
1167 | carry += (int)bn_add_words(r_d, r_d, t_d, BN_NIST_384_TOP); | ||
1168 | /*S6*/ | ||
1169 | nist_set_384(t_d, buf.bn, 0,0, 0,0, 0,0, 23, 22, 21, 0,0, 20); | ||
1170 | carry += (int)bn_add_words(r_d, r_d, t_d, BN_NIST_384_TOP); | ||
1171 | /*D1*/ | ||
1172 | nist_set_384(t_d, buf.bn, 22, 21, 20, 19, 18, 17, 16, 15, 14, | ||
1173 | 13, 12, 23); | ||
1174 | carry -= (int)bn_sub_words(r_d, r_d, t_d, BN_NIST_384_TOP); | ||
1175 | /*D2*/ | ||
1176 | nist_set_384(t_d, buf.bn, 0,0, 0,0, 0,0, 0,23, 22, 21, 20, 0); | ||
1177 | carry -= (int)bn_sub_words(r_d, r_d, t_d, BN_NIST_384_TOP); | ||
1178 | /*D3*/ | ||
1179 | nist_set_384(t_d, buf.bn, 0,0, 0,0, 0,0, 0,23, 23, 0,0, 0); | ||
1180 | carry -= (int)bn_sub_words(r_d, r_d, t_d, BN_NIST_384_TOP); | ||
1181 | |||
1182 | } | ||
1183 | #endif | ||
1184 | /* see BN_nist_mod_224 for explanation */ | ||
1185 | u.f = bn_sub_words; | ||
1186 | if (carry > 0) | ||
1187 | carry = (int)bn_sub_words(r_d, r_d, _nist_p_384[carry - 1], | ||
1188 | BN_NIST_384_TOP); | ||
1189 | else if (carry < 0) { | ||
1190 | carry = (int)bn_add_words(r_d, r_d, _nist_p_384[-carry - 1], | ||
1191 | BN_NIST_384_TOP); | ||
1192 | mask = 0 - (uintptr_t)carry; | ||
1193 | u.p = ((uintptr_t)bn_sub_words & mask) | | ||
1194 | ((uintptr_t)bn_add_words & ~mask); | ||
1195 | } else | ||
1196 | carry = 1; | ||
1197 | |||
1198 | mask = 0 - (uintptr_t)(*u.f)(c_d, r_d, _nist_p_384[0], BN_NIST_384_TOP); | ||
1199 | mask &= 0 - (uintptr_t)carry; | ||
1200 | res = c_d; | ||
1201 | res = (BN_ULONG *)(((uintptr_t)res & ~mask) | ((uintptr_t)r_d & mask)); | ||
1202 | nist_cp_bn(r_d, res, BN_NIST_384_TOP); | ||
1203 | r->top = BN_NIST_384_TOP; | ||
1204 | bn_correct_top(r); | ||
1205 | |||
1206 | return 1; | ||
1207 | } | ||
1208 | |||
1209 | #define BN_NIST_521_RSHIFT (521%BN_BITS2) | ||
1210 | #define BN_NIST_521_LSHIFT (BN_BITS2-BN_NIST_521_RSHIFT) | ||
1211 | #define BN_NIST_521_TOP_MASK ((BN_ULONG)BN_MASK2>>BN_NIST_521_LSHIFT) | ||
1212 | |||
1213 | int | ||
1214 | BN_nist_mod_521(BIGNUM *r, const BIGNUM *a, const BIGNUM *field, BN_CTX *ctx) | ||
1215 | { | ||
1216 | int top = a->top, i; | ||
1217 | BN_ULONG *r_d, *a_d = a->d, t_d[BN_NIST_521_TOP], val, tmp, *res; | ||
1218 | uintptr_t mask; | ||
1219 | static const BIGNUM _bignum_nist_p_521_sqr = { | ||
1220 | (BN_ULONG *)_nist_p_521_sqr, | ||
1221 | sizeof(_nist_p_521_sqr) / sizeof(_nist_p_521_sqr[0]), | ||
1222 | sizeof(_nist_p_521_sqr) / sizeof(_nist_p_521_sqr[0]), | ||
1223 | 0, | ||
1224 | BN_FLG_STATIC_DATA | ||
1225 | }; | ||
1226 | |||
1227 | field = &_bignum_nist_p_521; /* just to make sure */ | ||
1228 | |||
1229 | if (BN_is_negative(a) || BN_ucmp(a, &_bignum_nist_p_521_sqr) >= 0) | ||
1230 | return BN_nnmod(r, a, field, ctx); | ||
1231 | |||
1232 | i = BN_ucmp(field, a); | ||
1233 | if (i == 0) { | ||
1234 | BN_zero(r); | ||
1235 | return 1; | ||
1236 | } else if (i > 0) | ||
1237 | return (r == a) ? 1 : (BN_copy(r, a) != NULL); | ||
1238 | |||
1239 | if (r != a) { | ||
1240 | if (!bn_wexpand(r, BN_NIST_521_TOP)) | ||
1241 | return 0; | ||
1242 | r_d = r->d; | ||
1243 | nist_cp_bn(r_d, a_d, BN_NIST_521_TOP); | ||
1244 | } else | ||
1245 | r_d = a_d; | ||
1246 | |||
1247 | /* upper 521 bits, copy ... */ | ||
1248 | nist_cp_bn_0(t_d, a_d + (BN_NIST_521_TOP - 1), | ||
1249 | top - (BN_NIST_521_TOP - 1), BN_NIST_521_TOP); | ||
1250 | /* ... and right shift */ | ||
1251 | for (val = t_d[0], i = 0; i < BN_NIST_521_TOP - 1; i++) { | ||
1252 | tmp = val >> BN_NIST_521_RSHIFT; | ||
1253 | val = t_d[i + 1]; | ||
1254 | t_d[i] = (tmp | val << BN_NIST_521_LSHIFT) & BN_MASK2; | ||
1255 | } | ||
1256 | t_d[i] = val >> BN_NIST_521_RSHIFT; | ||
1257 | /* lower 521 bits */ | ||
1258 | r_d[i] &= BN_NIST_521_TOP_MASK; | ||
1259 | |||
1260 | bn_add_words(r_d, r_d, t_d, BN_NIST_521_TOP); | ||
1261 | mask = 0 - (uintptr_t)bn_sub_words(t_d, r_d, _nist_p_521, | ||
1262 | BN_NIST_521_TOP); | ||
1263 | res = t_d; | ||
1264 | res = (BN_ULONG *)(((uintptr_t)res & ~mask) | ((uintptr_t)r_d & mask)); | ||
1265 | nist_cp_bn(r_d, res, BN_NIST_521_TOP); | ||
1266 | r->top = BN_NIST_521_TOP; | ||
1267 | bn_correct_top(r); | ||
1268 | |||
1269 | return 1; | ||
1270 | } | ||
diff --git a/src/lib/libcrypto/bn/bn_prime.c b/src/lib/libcrypto/bn/bn_prime.c deleted file mode 100644 index 02780d32e6..0000000000 --- a/src/lib/libcrypto/bn/bn_prime.c +++ /dev/null | |||
@@ -1,518 +0,0 @@ | |||
1 | /* $OpenBSD: bn_prime.c,v 1.13 2015/02/09 15:49:22 jsing Exp $ */ | ||
2 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) | ||
3 | * All rights reserved. | ||
4 | * | ||
5 | * This package is an SSL implementation written | ||
6 | * by Eric Young (eay@cryptsoft.com). | ||
7 | * The implementation was written so as to conform with Netscapes SSL. | ||
8 | * | ||
9 | * This library is free for commercial and non-commercial use as long as | ||
10 | * the following conditions are aheared to. The following conditions | ||
11 | * apply to all code found in this distribution, be it the RC4, RSA, | ||
12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation | ||
13 | * included with this distribution is covered by the same copyright terms | ||
14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | ||
15 | * | ||
16 | * Copyright remains Eric Young's, and as such any Copyright notices in | ||
17 | * the code are not to be removed. | ||
18 | * If this package is used in a product, Eric Young should be given attribution | ||
19 | * as the author of the parts of the library used. | ||
20 | * This can be in the form of a textual message at program startup or | ||
21 | * in documentation (online or textual) provided with the package. | ||
22 | * | ||
23 | * Redistribution and use in source and binary forms, with or without | ||
24 | * modification, are permitted provided that the following conditions | ||
25 | * are met: | ||
26 | * 1. Redistributions of source code must retain the copyright | ||
27 | * notice, this list of conditions and the following disclaimer. | ||
28 | * 2. Redistributions in binary form must reproduce the above copyright | ||
29 | * notice, this list of conditions and the following disclaimer in the | ||
30 | * documentation and/or other materials provided with the distribution. | ||
31 | * 3. All advertising materials mentioning features or use of this software | ||
32 | * must display the following acknowledgement: | ||
33 | * "This product includes cryptographic software written by | ||
34 | * Eric Young (eay@cryptsoft.com)" | ||
35 | * The word 'cryptographic' can be left out if the rouines from the library | ||
36 | * being used are not cryptographic related :-). | ||
37 | * 4. If you include any Windows specific code (or a derivative thereof) from | ||
38 | * the apps directory (application code) you must include an acknowledgement: | ||
39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | ||
40 | * | ||
41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | ||
42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | ||
44 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | ||
45 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | ||
46 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | ||
47 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
48 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | ||
49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | ||
50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | ||
51 | * SUCH DAMAGE. | ||
52 | * | ||
53 | * The licence and distribution terms for any publically available version or | ||
54 | * derivative of this code cannot be changed. i.e. this code cannot simply be | ||
55 | * copied and put under another distribution licence | ||
56 | * [including the GNU Public Licence.] | ||
57 | */ | ||
58 | /* ==================================================================== | ||
59 | * Copyright (c) 1998-2001 The OpenSSL Project. All rights reserved. | ||
60 | * | ||
61 | * Redistribution and use in source and binary forms, with or without | ||
62 | * modification, are permitted provided that the following conditions | ||
63 | * are met: | ||
64 | * | ||
65 | * 1. Redistributions of source code must retain the above copyright | ||
66 | * notice, this list of conditions and the following disclaimer. | ||
67 | * | ||
68 | * 2. Redistributions in binary form must reproduce the above copyright | ||
69 | * notice, this list of conditions and the following disclaimer in | ||
70 | * the documentation and/or other materials provided with the | ||
71 | * distribution. | ||
72 | * | ||
73 | * 3. All advertising materials mentioning features or use of this | ||
74 | * software must display the following acknowledgment: | ||
75 | * "This product includes software developed by the OpenSSL Project | ||
76 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | ||
77 | * | ||
78 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
79 | * endorse or promote products derived from this software without | ||
80 | * prior written permission. For written permission, please contact | ||
81 | * openssl-core@openssl.org. | ||
82 | * | ||
83 | * 5. Products derived from this software may not be called "OpenSSL" | ||
84 | * nor may "OpenSSL" appear in their names without prior written | ||
85 | * permission of the OpenSSL Project. | ||
86 | * | ||
87 | * 6. Redistributions of any form whatsoever must retain the following | ||
88 | * acknowledgment: | ||
89 | * "This product includes software developed by the OpenSSL Project | ||
90 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" | ||
91 | * | ||
92 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
93 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
94 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
95 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
96 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
97 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
98 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
99 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
100 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
101 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
102 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
103 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
104 | * ==================================================================== | ||
105 | * | ||
106 | * This product includes cryptographic software written by Eric Young | ||
107 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
108 | * Hudson (tjh@cryptsoft.com). | ||
109 | * | ||
110 | */ | ||
111 | |||
112 | #include <stdio.h> | ||
113 | #include <time.h> | ||
114 | |||
115 | #include "bn_lcl.h" | ||
116 | |||
117 | /* NB: these functions have been "upgraded", the deprecated versions (which are | ||
118 | * compatibility wrappers using these functions) are in bn_depr.c. | ||
119 | * - Geoff | ||
120 | */ | ||
121 | |||
122 | /* The quick sieve algorithm approach to weeding out primes is | ||
123 | * Philip Zimmermann's, as implemented in PGP. I have had a read of | ||
124 | * his comments and implemented my own version. | ||
125 | */ | ||
126 | #include "bn_prime.h" | ||
127 | |||
128 | static int witness(BIGNUM *w, const BIGNUM *a, const BIGNUM *a1, | ||
129 | const BIGNUM *a1_odd, int k, BN_CTX *ctx, BN_MONT_CTX *mont); | ||
130 | static int probable_prime(BIGNUM *rnd, int bits); | ||
131 | static int probable_prime_dh(BIGNUM *rnd, int bits, | ||
132 | const BIGNUM *add, const BIGNUM *rem, BN_CTX *ctx); | ||
133 | static int probable_prime_dh_safe(BIGNUM *rnd, int bits, | ||
134 | const BIGNUM *add, const BIGNUM *rem, BN_CTX *ctx); | ||
135 | |||
136 | int | ||
137 | BN_GENCB_call(BN_GENCB *cb, int a, int b) | ||
138 | { | ||
139 | /* No callback means continue */ | ||
140 | if (!cb) | ||
141 | return 1; | ||
142 | switch (cb->ver) { | ||
143 | case 1: | ||
144 | /* Deprecated-style callbacks */ | ||
145 | if (!cb->cb.cb_1) | ||
146 | return 1; | ||
147 | cb->cb.cb_1(a, b, cb->arg); | ||
148 | return 1; | ||
149 | case 2: | ||
150 | /* New-style callbacks */ | ||
151 | return cb->cb.cb_2(a, b, cb); | ||
152 | default: | ||
153 | break; | ||
154 | } | ||
155 | /* Unrecognised callback type */ | ||
156 | return 0; | ||
157 | } | ||
158 | |||
159 | int | ||
160 | BN_generate_prime_ex(BIGNUM *ret, int bits, int safe, const BIGNUM *add, | ||
161 | const BIGNUM *rem, BN_GENCB *cb) | ||
162 | { | ||
163 | BIGNUM *t; | ||
164 | int found = 0; | ||
165 | int i, j, c1 = 0; | ||
166 | BN_CTX *ctx; | ||
167 | int checks = BN_prime_checks_for_size(bits); | ||
168 | |||
169 | ctx = BN_CTX_new(); | ||
170 | if (ctx == NULL) | ||
171 | goto err; | ||
172 | BN_CTX_start(ctx); | ||
173 | if ((t = BN_CTX_get(ctx)) == NULL) | ||
174 | goto err; | ||
175 | loop: | ||
176 | /* make a random number and set the top and bottom bits */ | ||
177 | if (add == NULL) { | ||
178 | if (!probable_prime(ret, bits)) | ||
179 | goto err; | ||
180 | } else { | ||
181 | if (safe) { | ||
182 | if (!probable_prime_dh_safe(ret, bits, add, rem, ctx)) | ||
183 | goto err; | ||
184 | } else { | ||
185 | if (!probable_prime_dh(ret, bits, add, rem, ctx)) | ||
186 | goto err; | ||
187 | } | ||
188 | } | ||
189 | /* if (BN_mod_word(ret,(BN_ULONG)3) == 1) goto loop; */ | ||
190 | if (!BN_GENCB_call(cb, 0, c1++)) | ||
191 | /* aborted */ | ||
192 | goto err; | ||
193 | |||
194 | if (!safe) { | ||
195 | i = BN_is_prime_fasttest_ex(ret, checks, ctx, 0, cb); | ||
196 | if (i == -1) | ||
197 | goto err; | ||
198 | if (i == 0) | ||
199 | goto loop; | ||
200 | } else { | ||
201 | /* for "safe prime" generation, | ||
202 | * check that (p-1)/2 is prime. | ||
203 | * Since a prime is odd, We just | ||
204 | * need to divide by 2 */ | ||
205 | if (!BN_rshift1(t, ret)) | ||
206 | goto err; | ||
207 | |||
208 | for (i = 0; i < checks; i++) { | ||
209 | j = BN_is_prime_fasttest_ex(ret, 1, ctx, 0, cb); | ||
210 | if (j == -1) | ||
211 | goto err; | ||
212 | if (j == 0) | ||
213 | goto loop; | ||
214 | |||
215 | j = BN_is_prime_fasttest_ex(t, 1, ctx, 0, cb); | ||
216 | if (j == -1) | ||
217 | goto err; | ||
218 | if (j == 0) | ||
219 | goto loop; | ||
220 | |||
221 | if (!BN_GENCB_call(cb, 2, c1 - 1)) | ||
222 | goto err; | ||
223 | /* We have a safe prime test pass */ | ||
224 | } | ||
225 | } | ||
226 | /* we have a prime :-) */ | ||
227 | found = 1; | ||
228 | |||
229 | err: | ||
230 | if (ctx != NULL) { | ||
231 | BN_CTX_end(ctx); | ||
232 | BN_CTX_free(ctx); | ||
233 | } | ||
234 | bn_check_top(ret); | ||
235 | return found; | ||
236 | } | ||
237 | |||
238 | int | ||
239 | BN_is_prime_ex(const BIGNUM *a, int checks, BN_CTX *ctx_passed, BN_GENCB *cb) | ||
240 | { | ||
241 | return BN_is_prime_fasttest_ex(a, checks, ctx_passed, 0, cb); | ||
242 | } | ||
243 | |||
244 | int | ||
245 | BN_is_prime_fasttest_ex(const BIGNUM *a, int checks, BN_CTX *ctx_passed, | ||
246 | int do_trial_division, BN_GENCB *cb) | ||
247 | { | ||
248 | int i, j, ret = -1; | ||
249 | int k; | ||
250 | BN_CTX *ctx = NULL; | ||
251 | BIGNUM *A1, *A1_odd, *check; /* taken from ctx */ | ||
252 | BN_MONT_CTX *mont = NULL; | ||
253 | const BIGNUM *A = NULL; | ||
254 | |||
255 | if (BN_cmp(a, BN_value_one()) <= 0) | ||
256 | return 0; | ||
257 | |||
258 | if (checks == BN_prime_checks) | ||
259 | checks = BN_prime_checks_for_size(BN_num_bits(a)); | ||
260 | |||
261 | /* first look for small factors */ | ||
262 | if (!BN_is_odd(a)) | ||
263 | /* a is even => a is prime if and only if a == 2 */ | ||
264 | return BN_is_word(a, 2); | ||
265 | if (do_trial_division) { | ||
266 | for (i = 1; i < NUMPRIMES; i++) | ||
267 | if (BN_mod_word(a, primes[i]) == 0) | ||
268 | return 0; | ||
269 | if (!BN_GENCB_call(cb, 1, -1)) | ||
270 | goto err; | ||
271 | } | ||
272 | |||
273 | if (ctx_passed != NULL) | ||
274 | ctx = ctx_passed; | ||
275 | else if ((ctx = BN_CTX_new()) == NULL) | ||
276 | goto err; | ||
277 | BN_CTX_start(ctx); | ||
278 | |||
279 | /* A := abs(a) */ | ||
280 | if (a->neg) { | ||
281 | BIGNUM *t; | ||
282 | if ((t = BN_CTX_get(ctx)) == NULL) | ||
283 | goto err; | ||
284 | BN_copy(t, a); | ||
285 | t->neg = 0; | ||
286 | A = t; | ||
287 | } else | ||
288 | A = a; | ||
289 | if ((A1 = BN_CTX_get(ctx)) == NULL) | ||
290 | goto err; | ||
291 | if ((A1_odd = BN_CTX_get(ctx)) == NULL) | ||
292 | goto err; | ||
293 | if ((check = BN_CTX_get(ctx)) == NULL) | ||
294 | goto err; | ||
295 | |||
296 | /* compute A1 := A - 1 */ | ||
297 | if (!BN_copy(A1, A)) | ||
298 | goto err; | ||
299 | if (!BN_sub_word(A1, 1)) | ||
300 | goto err; | ||
301 | if (BN_is_zero(A1)) { | ||
302 | ret = 0; | ||
303 | goto err; | ||
304 | } | ||
305 | |||
306 | /* write A1 as A1_odd * 2^k */ | ||
307 | k = 1; | ||
308 | while (!BN_is_bit_set(A1, k)) | ||
309 | k++; | ||
310 | if (!BN_rshift(A1_odd, A1, k)) | ||
311 | goto err; | ||
312 | |||
313 | /* Montgomery setup for computations mod A */ | ||
314 | mont = BN_MONT_CTX_new(); | ||
315 | if (mont == NULL) | ||
316 | goto err; | ||
317 | if (!BN_MONT_CTX_set(mont, A, ctx)) | ||
318 | goto err; | ||
319 | |||
320 | for (i = 0; i < checks; i++) { | ||
321 | if (!BN_pseudo_rand_range(check, A1)) | ||
322 | goto err; | ||
323 | if (!BN_add_word(check, 1)) | ||
324 | goto err; | ||
325 | /* now 1 <= check < A */ | ||
326 | |||
327 | j = witness(check, A, A1, A1_odd, k, ctx, mont); | ||
328 | if (j == -1) | ||
329 | goto err; | ||
330 | if (j) { | ||
331 | ret = 0; | ||
332 | goto err; | ||
333 | } | ||
334 | if (!BN_GENCB_call(cb, 1, i)) | ||
335 | goto err; | ||
336 | } | ||
337 | ret = 1; | ||
338 | |||
339 | err: | ||
340 | if (ctx != NULL) { | ||
341 | BN_CTX_end(ctx); | ||
342 | if (ctx_passed == NULL) | ||
343 | BN_CTX_free(ctx); | ||
344 | } | ||
345 | BN_MONT_CTX_free(mont); | ||
346 | |||
347 | return (ret); | ||
348 | } | ||
349 | |||
350 | static int | ||
351 | witness(BIGNUM *w, const BIGNUM *a, const BIGNUM *a1, const BIGNUM *a1_odd, | ||
352 | int k, BN_CTX *ctx, BN_MONT_CTX *mont) | ||
353 | { | ||
354 | if (!BN_mod_exp_mont(w, w, a1_odd, a, ctx, mont)) | ||
355 | /* w := w^a1_odd mod a */ | ||
356 | return -1; | ||
357 | if (BN_is_one(w)) | ||
358 | return 0; /* probably prime */ | ||
359 | if (BN_cmp(w, a1) == 0) | ||
360 | return 0; /* w == -1 (mod a), 'a' is probably prime */ | ||
361 | while (--k) { | ||
362 | if (!BN_mod_mul(w, w, w, a, ctx)) /* w := w^2 mod a */ | ||
363 | return -1; | ||
364 | if (BN_is_one(w)) | ||
365 | return 1; /* 'a' is composite, otherwise a previous 'w' would | ||
366 | * have been == -1 (mod 'a') */ | ||
367 | if (BN_cmp(w, a1) == 0) | ||
368 | return 0; /* w == -1 (mod a), 'a' is probably prime */ | ||
369 | } | ||
370 | /* If we get here, 'w' is the (a-1)/2-th power of the original 'w', | ||
371 | * and it is neither -1 nor +1 -- so 'a' cannot be prime */ | ||
372 | bn_check_top(w); | ||
373 | return 1; | ||
374 | } | ||
375 | |||
376 | static int | ||
377 | probable_prime(BIGNUM *rnd, int bits) | ||
378 | { | ||
379 | int i; | ||
380 | prime_t mods[NUMPRIMES]; | ||
381 | BN_ULONG delta, maxdelta; | ||
382 | |||
383 | again: | ||
384 | if (!BN_rand(rnd, bits, 1, 1)) | ||
385 | return (0); | ||
386 | /* we now have a random number 'rand' to test. */ | ||
387 | for (i = 1; i < NUMPRIMES; i++) | ||
388 | mods[i] = (prime_t)BN_mod_word(rnd, (BN_ULONG)primes[i]); | ||
389 | maxdelta = BN_MASK2 - primes[NUMPRIMES - 1]; | ||
390 | delta = 0; | ||
391 | loop: | ||
392 | for (i = 1; i < NUMPRIMES; i++) { | ||
393 | /* check that rnd is not a prime and also | ||
394 | * that gcd(rnd-1,primes) == 1 (except for 2) */ | ||
395 | if (((mods[i] + delta) % primes[i]) <= 1) { | ||
396 | delta += 2; | ||
397 | if (delta > maxdelta) | ||
398 | goto again; | ||
399 | goto loop; | ||
400 | } | ||
401 | } | ||
402 | if (!BN_add_word(rnd, delta)) | ||
403 | return (0); | ||
404 | bn_check_top(rnd); | ||
405 | return (1); | ||
406 | } | ||
407 | |||
408 | static int | ||
409 | probable_prime_dh(BIGNUM *rnd, int bits, const BIGNUM *add, const BIGNUM *rem, | ||
410 | BN_CTX *ctx) | ||
411 | { | ||
412 | int i, ret = 0; | ||
413 | BIGNUM *t1; | ||
414 | |||
415 | BN_CTX_start(ctx); | ||
416 | if ((t1 = BN_CTX_get(ctx)) == NULL) | ||
417 | goto err; | ||
418 | |||
419 | if (!BN_rand(rnd, bits, 0, 1)) | ||
420 | goto err; | ||
421 | |||
422 | /* we need ((rnd-rem) % add) == 0 */ | ||
423 | |||
424 | if (!BN_mod(t1, rnd, add, ctx)) | ||
425 | goto err; | ||
426 | if (!BN_sub(rnd, rnd, t1)) | ||
427 | goto err; | ||
428 | if (rem == NULL) { | ||
429 | if (!BN_add_word(rnd, 1)) | ||
430 | goto err; | ||
431 | } else { | ||
432 | if (!BN_add(rnd, rnd, rem)) | ||
433 | goto err; | ||
434 | } | ||
435 | |||
436 | /* we now have a random number 'rand' to test. */ | ||
437 | |||
438 | loop: | ||
439 | for (i = 1; i < NUMPRIMES; i++) { | ||
440 | /* check that rnd is a prime */ | ||
441 | if (BN_mod_word(rnd, (BN_ULONG)primes[i]) <= 1) { | ||
442 | if (!BN_add(rnd, rnd, add)) | ||
443 | goto err; | ||
444 | goto loop; | ||
445 | } | ||
446 | } | ||
447 | ret = 1; | ||
448 | |||
449 | err: | ||
450 | BN_CTX_end(ctx); | ||
451 | bn_check_top(rnd); | ||
452 | return (ret); | ||
453 | } | ||
454 | |||
455 | static int | ||
456 | probable_prime_dh_safe(BIGNUM *p, int bits, const BIGNUM *padd, | ||
457 | const BIGNUM *rem, BN_CTX *ctx) | ||
458 | { | ||
459 | int i, ret = 0; | ||
460 | BIGNUM *t1, *qadd, *q; | ||
461 | |||
462 | bits--; | ||
463 | BN_CTX_start(ctx); | ||
464 | if ((t1 = BN_CTX_get(ctx)) == NULL) | ||
465 | goto err; | ||
466 | if ((q = BN_CTX_get(ctx)) == NULL) | ||
467 | goto err; | ||
468 | if ((qadd = BN_CTX_get(ctx)) == NULL) | ||
469 | goto err; | ||
470 | |||
471 | if (!BN_rshift1(qadd, padd)) | ||
472 | goto err; | ||
473 | |||
474 | if (!BN_rand(q, bits, 0, 1)) | ||
475 | goto err; | ||
476 | |||
477 | /* we need ((rnd-rem) % add) == 0 */ | ||
478 | if (!BN_mod(t1, q,qadd, ctx)) | ||
479 | goto err; | ||
480 | if (!BN_sub(q, q, t1)) | ||
481 | goto err; | ||
482 | if (rem == NULL) { | ||
483 | if (!BN_add_word(q, 1)) | ||
484 | goto err; | ||
485 | } else { | ||
486 | if (!BN_rshift1(t1, rem)) | ||
487 | goto err; | ||
488 | if (!BN_add(q, q, t1)) | ||
489 | goto err; | ||
490 | } | ||
491 | |||
492 | /* we now have a random number 'rand' to test. */ | ||
493 | if (!BN_lshift1(p, q)) | ||
494 | goto err; | ||
495 | if (!BN_add_word(p, 1)) | ||
496 | goto err; | ||
497 | |||
498 | loop: | ||
499 | for (i = 1; i < NUMPRIMES; i++) { | ||
500 | /* check that p and q are prime */ | ||
501 | /* check that for p and q | ||
502 | * gcd(p-1,primes) == 1 (except for 2) */ | ||
503 | if ((BN_mod_word(p, (BN_ULONG)primes[i]) == 0) || | ||
504 | (BN_mod_word(q, (BN_ULONG)primes[i]) == 0)) { | ||
505 | if (!BN_add(p, p, padd)) | ||
506 | goto err; | ||
507 | if (!BN_add(q, q, qadd)) | ||
508 | goto err; | ||
509 | goto loop; | ||
510 | } | ||
511 | } | ||
512 | ret = 1; | ||
513 | |||
514 | err: | ||
515 | BN_CTX_end(ctx); | ||
516 | bn_check_top(p); | ||
517 | return (ret); | ||
518 | } | ||
diff --git a/src/lib/libcrypto/bn/bn_prime.h b/src/lib/libcrypto/bn/bn_prime.h deleted file mode 100644 index 3102d8eb41..0000000000 --- a/src/lib/libcrypto/bn/bn_prime.h +++ /dev/null | |||
@@ -1,319 +0,0 @@ | |||
1 | /* $OpenBSD: bn_prime.h,v 1.6 2014/06/12 15:49:28 deraadt Exp $ */ | ||
2 | /* Auto generated by bn_prime.pl */ | ||
3 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) | ||
4 | * All rights reserved. | ||
5 | * | ||
6 | * This package is an SSL implementation written | ||
7 | * by Eric Young (eay@cryptsoft.com). | ||
8 | * The implementation was written so as to conform with Netscapes SSL. | ||
9 | * | ||
10 | * This library is free for commercial and non-commercial use as long as | ||
11 | * the following conditions are aheared to. The following conditions | ||
12 | * apply to all code found in this distribution, be it the RC4, RSA, | ||
13 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation | ||
14 | * included with this distribution is covered by the same copyright terms | ||
15 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | ||
16 | * | ||
17 | * Copyright remains Eric Young's, and as such any Copyright notices in | ||
18 | * the code are not to be removed. | ||
19 | * If this package is used in a product, Eric Young should be given attribution | ||
20 | * as the author of the parts of the library used. | ||
21 | * This can be in the form of a textual message at program startup or | ||
22 | * in documentation (online or textual) provided with the package. | ||
23 | * | ||
24 | * Redistribution and use in source and binary forms, with or without | ||
25 | * modification, are permitted provided that the following conditions | ||
26 | * are met: | ||
27 | * 1. Redistributions of source code must retain the copyright | ||
28 | * notice, this list of conditions and the following disclaimer. | ||
29 | * 2. Redistributions in binary form must reproduce the above copyright | ||
30 | * notice, this list of conditions and the following disclaimer in the | ||
31 | * documentation and/or other materials provided with the distribution. | ||
32 | * 3. All advertising materials mentioning features or use of this software | ||
33 | * must display the following acknowledgement: | ||
34 | * "This product includes cryptographic software written by | ||
35 | * Eric Young (eay@cryptsoft.com)" | ||
36 | * The word 'cryptographic' can be left out if the rouines from the library | ||
37 | * being used are not cryptographic related :-). | ||
38 | * 4. If you include any Windows specific code (or a derivative thereof) from | ||
39 | * the apps directory (application code) you must include an acknowledgement: | ||
40 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | ||
41 | * | ||
42 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | ||
43 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
44 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | ||
45 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | ||
46 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | ||
47 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | ||
48 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
49 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | ||
50 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | ||
51 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | ||
52 | * SUCH DAMAGE. | ||
53 | * | ||
54 | * The licence and distribution terms for any publically available version or | ||
55 | * derivative of this code cannot be changed. i.e. this code cannot simply be | ||
56 | * copied and put under another distribution licence | ||
57 | * [including the GNU Public Licence.] | ||
58 | */ | ||
59 | |||
60 | #define NUMPRIMES 2048 | ||
61 | typedef unsigned short prime_t; | ||
62 | static const prime_t primes[NUMPRIMES] = { | ||
63 | 2, 3, 5, 7, 11, 13, 17, 19, | ||
64 | 23, 29, 31, 37, 41, 43, 47, 53, | ||
65 | 59, 61, 67, 71, 73, 79, 83, 89, | ||
66 | 97, 101, 103, 107, 109, 113, 127, 131, | ||
67 | 137, 139, 149, 151, 157, 163, 167, 173, | ||
68 | 179, 181, 191, 193, 197, 199, 211, 223, | ||
69 | 227, 229, 233, 239, 241, 251, 257, 263, | ||
70 | 269, 271, 277, 281, 283, 293, 307, 311, | ||
71 | 313, 317, 331, 337, 347, 349, 353, 359, | ||
72 | 367, 373, 379, 383, 389, 397, 401, 409, | ||
73 | 419, 421, 431, 433, 439, 443, 449, 457, | ||
74 | 461, 463, 467, 479, 487, 491, 499, 503, | ||
75 | 509, 521, 523, 541, 547, 557, 563, 569, | ||
76 | 571, 577, 587, 593, 599, 601, 607, 613, | ||
77 | 617, 619, 631, 641, 643, 647, 653, 659, | ||
78 | 661, 673, 677, 683, 691, 701, 709, 719, | ||
79 | 727, 733, 739, 743, 751, 757, 761, 769, | ||
80 | 773, 787, 797, 809, 811, 821, 823, 827, | ||
81 | 829, 839, 853, 857, 859, 863, 877, 881, | ||
82 | 883, 887, 907, 911, 919, 929, 937, 941, | ||
83 | 947, 953, 967, 971, 977, 983, 991, 997, | ||
84 | 1009, 1013, 1019, 1021, 1031, 1033, 1039, 1049, | ||
85 | 1051, 1061, 1063, 1069, 1087, 1091, 1093, 1097, | ||
86 | 1103, 1109, 1117, 1123, 1129, 1151, 1153, 1163, | ||
87 | 1171, 1181, 1187, 1193, 1201, 1213, 1217, 1223, | ||
88 | 1229, 1231, 1237, 1249, 1259, 1277, 1279, 1283, | ||
89 | 1289, 1291, 1297, 1301, 1303, 1307, 1319, 1321, | ||
90 | 1327, 1361, 1367, 1373, 1381, 1399, 1409, 1423, | ||
91 | 1427, 1429, 1433, 1439, 1447, 1451, 1453, 1459, | ||
92 | 1471, 1481, 1483, 1487, 1489, 1493, 1499, 1511, | ||
93 | 1523, 1531, 1543, 1549, 1553, 1559, 1567, 1571, | ||
94 | 1579, 1583, 1597, 1601, 1607, 1609, 1613, 1619, | ||
95 | 1621, 1627, 1637, 1657, 1663, 1667, 1669, 1693, | ||
96 | 1697, 1699, 1709, 1721, 1723, 1733, 1741, 1747, | ||
97 | 1753, 1759, 1777, 1783, 1787, 1789, 1801, 1811, | ||
98 | 1823, 1831, 1847, 1861, 1867, 1871, 1873, 1877, | ||
99 | 1879, 1889, 1901, 1907, 1913, 1931, 1933, 1949, | ||
100 | 1951, 1973, 1979, 1987, 1993, 1997, 1999, 2003, | ||
101 | 2011, 2017, 2027, 2029, 2039, 2053, 2063, 2069, | ||
102 | 2081, 2083, 2087, 2089, 2099, 2111, 2113, 2129, | ||
103 | 2131, 2137, 2141, 2143, 2153, 2161, 2179, 2203, | ||
104 | 2207, 2213, 2221, 2237, 2239, 2243, 2251, 2267, | ||
105 | 2269, 2273, 2281, 2287, 2293, 2297, 2309, 2311, | ||
106 | 2333, 2339, 2341, 2347, 2351, 2357, 2371, 2377, | ||
107 | 2381, 2383, 2389, 2393, 2399, 2411, 2417, 2423, | ||
108 | 2437, 2441, 2447, 2459, 2467, 2473, 2477, 2503, | ||
109 | 2521, 2531, 2539, 2543, 2549, 2551, 2557, 2579, | ||
110 | 2591, 2593, 2609, 2617, 2621, 2633, 2647, 2657, | ||
111 | 2659, 2663, 2671, 2677, 2683, 2687, 2689, 2693, | ||
112 | 2699, 2707, 2711, 2713, 2719, 2729, 2731, 2741, | ||
113 | 2749, 2753, 2767, 2777, 2789, 2791, 2797, 2801, | ||
114 | 2803, 2819, 2833, 2837, 2843, 2851, 2857, 2861, | ||
115 | 2879, 2887, 2897, 2903, 2909, 2917, 2927, 2939, | ||
116 | 2953, 2957, 2963, 2969, 2971, 2999, 3001, 3011, | ||
117 | 3019, 3023, 3037, 3041, 3049, 3061, 3067, 3079, | ||
118 | 3083, 3089, 3109, 3119, 3121, 3137, 3163, 3167, | ||
119 | 3169, 3181, 3187, 3191, 3203, 3209, 3217, 3221, | ||
120 | 3229, 3251, 3253, 3257, 3259, 3271, 3299, 3301, | ||
121 | 3307, 3313, 3319, 3323, 3329, 3331, 3343, 3347, | ||
122 | 3359, 3361, 3371, 3373, 3389, 3391, 3407, 3413, | ||
123 | 3433, 3449, 3457, 3461, 3463, 3467, 3469, 3491, | ||
124 | 3499, 3511, 3517, 3527, 3529, 3533, 3539, 3541, | ||
125 | 3547, 3557, 3559, 3571, 3581, 3583, 3593, 3607, | ||
126 | 3613, 3617, 3623, 3631, 3637, 3643, 3659, 3671, | ||
127 | 3673, 3677, 3691, 3697, 3701, 3709, 3719, 3727, | ||
128 | 3733, 3739, 3761, 3767, 3769, 3779, 3793, 3797, | ||
129 | 3803, 3821, 3823, 3833, 3847, 3851, 3853, 3863, | ||
130 | 3877, 3881, 3889, 3907, 3911, 3917, 3919, 3923, | ||
131 | 3929, 3931, 3943, 3947, 3967, 3989, 4001, 4003, | ||
132 | 4007, 4013, 4019, 4021, 4027, 4049, 4051, 4057, | ||
133 | 4073, 4079, 4091, 4093, 4099, 4111, 4127, 4129, | ||
134 | 4133, 4139, 4153, 4157, 4159, 4177, 4201, 4211, | ||
135 | 4217, 4219, 4229, 4231, 4241, 4243, 4253, 4259, | ||
136 | 4261, 4271, 4273, 4283, 4289, 4297, 4327, 4337, | ||
137 | 4339, 4349, 4357, 4363, 4373, 4391, 4397, 4409, | ||
138 | 4421, 4423, 4441, 4447, 4451, 4457, 4463, 4481, | ||
139 | 4483, 4493, 4507, 4513, 4517, 4519, 4523, 4547, | ||
140 | 4549, 4561, 4567, 4583, 4591, 4597, 4603, 4621, | ||
141 | 4637, 4639, 4643, 4649, 4651, 4657, 4663, 4673, | ||
142 | 4679, 4691, 4703, 4721, 4723, 4729, 4733, 4751, | ||
143 | 4759, 4783, 4787, 4789, 4793, 4799, 4801, 4813, | ||
144 | 4817, 4831, 4861, 4871, 4877, 4889, 4903, 4909, | ||
145 | 4919, 4931, 4933, 4937, 4943, 4951, 4957, 4967, | ||
146 | 4969, 4973, 4987, 4993, 4999, 5003, 5009, 5011, | ||
147 | 5021, 5023, 5039, 5051, 5059, 5077, 5081, 5087, | ||
148 | 5099, 5101, 5107, 5113, 5119, 5147, 5153, 5167, | ||
149 | 5171, 5179, 5189, 5197, 5209, 5227, 5231, 5233, | ||
150 | 5237, 5261, 5273, 5279, 5281, 5297, 5303, 5309, | ||
151 | 5323, 5333, 5347, 5351, 5381, 5387, 5393, 5399, | ||
152 | 5407, 5413, 5417, 5419, 5431, 5437, 5441, 5443, | ||
153 | 5449, 5471, 5477, 5479, 5483, 5501, 5503, 5507, | ||
154 | 5519, 5521, 5527, 5531, 5557, 5563, 5569, 5573, | ||
155 | 5581, 5591, 5623, 5639, 5641, 5647, 5651, 5653, | ||
156 | 5657, 5659, 5669, 5683, 5689, 5693, 5701, 5711, | ||
157 | 5717, 5737, 5741, 5743, 5749, 5779, 5783, 5791, | ||
158 | 5801, 5807, 5813, 5821, 5827, 5839, 5843, 5849, | ||
159 | 5851, 5857, 5861, 5867, 5869, 5879, 5881, 5897, | ||
160 | 5903, 5923, 5927, 5939, 5953, 5981, 5987, 6007, | ||
161 | 6011, 6029, 6037, 6043, 6047, 6053, 6067, 6073, | ||
162 | 6079, 6089, 6091, 6101, 6113, 6121, 6131, 6133, | ||
163 | 6143, 6151, 6163, 6173, 6197, 6199, 6203, 6211, | ||
164 | 6217, 6221, 6229, 6247, 6257, 6263, 6269, 6271, | ||
165 | 6277, 6287, 6299, 6301, 6311, 6317, 6323, 6329, | ||
166 | 6337, 6343, 6353, 6359, 6361, 6367, 6373, 6379, | ||
167 | 6389, 6397, 6421, 6427, 6449, 6451, 6469, 6473, | ||
168 | 6481, 6491, 6521, 6529, 6547, 6551, 6553, 6563, | ||
169 | 6569, 6571, 6577, 6581, 6599, 6607, 6619, 6637, | ||
170 | 6653, 6659, 6661, 6673, 6679, 6689, 6691, 6701, | ||
171 | 6703, 6709, 6719, 6733, 6737, 6761, 6763, 6779, | ||
172 | 6781, 6791, 6793, 6803, 6823, 6827, 6829, 6833, | ||
173 | 6841, 6857, 6863, 6869, 6871, 6883, 6899, 6907, | ||
174 | 6911, 6917, 6947, 6949, 6959, 6961, 6967, 6971, | ||
175 | 6977, 6983, 6991, 6997, 7001, 7013, 7019, 7027, | ||
176 | 7039, 7043, 7057, 7069, 7079, 7103, 7109, 7121, | ||
177 | 7127, 7129, 7151, 7159, 7177, 7187, 7193, 7207, | ||
178 | 7211, 7213, 7219, 7229, 7237, 7243, 7247, 7253, | ||
179 | 7283, 7297, 7307, 7309, 7321, 7331, 7333, 7349, | ||
180 | 7351, 7369, 7393, 7411, 7417, 7433, 7451, 7457, | ||
181 | 7459, 7477, 7481, 7487, 7489, 7499, 7507, 7517, | ||
182 | 7523, 7529, 7537, 7541, 7547, 7549, 7559, 7561, | ||
183 | 7573, 7577, 7583, 7589, 7591, 7603, 7607, 7621, | ||
184 | 7639, 7643, 7649, 7669, 7673, 7681, 7687, 7691, | ||
185 | 7699, 7703, 7717, 7723, 7727, 7741, 7753, 7757, | ||
186 | 7759, 7789, 7793, 7817, 7823, 7829, 7841, 7853, | ||
187 | 7867, 7873, 7877, 7879, 7883, 7901, 7907, 7919, | ||
188 | 7927, 7933, 7937, 7949, 7951, 7963, 7993, 8009, | ||
189 | 8011, 8017, 8039, 8053, 8059, 8069, 8081, 8087, | ||
190 | 8089, 8093, 8101, 8111, 8117, 8123, 8147, 8161, | ||
191 | 8167, 8171, 8179, 8191, 8209, 8219, 8221, 8231, | ||
192 | 8233, 8237, 8243, 8263, 8269, 8273, 8287, 8291, | ||
193 | 8293, 8297, 8311, 8317, 8329, 8353, 8363, 8369, | ||
194 | 8377, 8387, 8389, 8419, 8423, 8429, 8431, 8443, | ||
195 | 8447, 8461, 8467, 8501, 8513, 8521, 8527, 8537, | ||
196 | 8539, 8543, 8563, 8573, 8581, 8597, 8599, 8609, | ||
197 | 8623, 8627, 8629, 8641, 8647, 8663, 8669, 8677, | ||
198 | 8681, 8689, 8693, 8699, 8707, 8713, 8719, 8731, | ||
199 | 8737, 8741, 8747, 8753, 8761, 8779, 8783, 8803, | ||
200 | 8807, 8819, 8821, 8831, 8837, 8839, 8849, 8861, | ||
201 | 8863, 8867, 8887, 8893, 8923, 8929, 8933, 8941, | ||
202 | 8951, 8963, 8969, 8971, 8999, 9001, 9007, 9011, | ||
203 | 9013, 9029, 9041, 9043, 9049, 9059, 9067, 9091, | ||
204 | 9103, 9109, 9127, 9133, 9137, 9151, 9157, 9161, | ||
205 | 9173, 9181, 9187, 9199, 9203, 9209, 9221, 9227, | ||
206 | 9239, 9241, 9257, 9277, 9281, 9283, 9293, 9311, | ||
207 | 9319, 9323, 9337, 9341, 9343, 9349, 9371, 9377, | ||
208 | 9391, 9397, 9403, 9413, 9419, 9421, 9431, 9433, | ||
209 | 9437, 9439, 9461, 9463, 9467, 9473, 9479, 9491, | ||
210 | 9497, 9511, 9521, 9533, 9539, 9547, 9551, 9587, | ||
211 | 9601, 9613, 9619, 9623, 9629, 9631, 9643, 9649, | ||
212 | 9661, 9677, 9679, 9689, 9697, 9719, 9721, 9733, | ||
213 | 9739, 9743, 9749, 9767, 9769, 9781, 9787, 9791, | ||
214 | 9803, 9811, 9817, 9829, 9833, 9839, 9851, 9857, | ||
215 | 9859, 9871, 9883, 9887, 9901, 9907, 9923, 9929, | ||
216 | 9931, 9941, 9949, 9967, 9973, 10007, 10009, 10037, | ||
217 | 10039, 10061, 10067, 10069, 10079, 10091, 10093, 10099, | ||
218 | 10103, 10111, 10133, 10139, 10141, 10151, 10159, 10163, | ||
219 | 10169, 10177, 10181, 10193, 10211, 10223, 10243, 10247, | ||
220 | 10253, 10259, 10267, 10271, 10273, 10289, 10301, 10303, | ||
221 | 10313, 10321, 10331, 10333, 10337, 10343, 10357, 10369, | ||
222 | 10391, 10399, 10427, 10429, 10433, 10453, 10457, 10459, | ||
223 | 10463, 10477, 10487, 10499, 10501, 10513, 10529, 10531, | ||
224 | 10559, 10567, 10589, 10597, 10601, 10607, 10613, 10627, | ||
225 | 10631, 10639, 10651, 10657, 10663, 10667, 10687, 10691, | ||
226 | 10709, 10711, 10723, 10729, 10733, 10739, 10753, 10771, | ||
227 | 10781, 10789, 10799, 10831, 10837, 10847, 10853, 10859, | ||
228 | 10861, 10867, 10883, 10889, 10891, 10903, 10909, 10937, | ||
229 | 10939, 10949, 10957, 10973, 10979, 10987, 10993, 11003, | ||
230 | 11027, 11047, 11057, 11059, 11069, 11071, 11083, 11087, | ||
231 | 11093, 11113, 11117, 11119, 11131, 11149, 11159, 11161, | ||
232 | 11171, 11173, 11177, 11197, 11213, 11239, 11243, 11251, | ||
233 | 11257, 11261, 11273, 11279, 11287, 11299, 11311, 11317, | ||
234 | 11321, 11329, 11351, 11353, 11369, 11383, 11393, 11399, | ||
235 | 11411, 11423, 11437, 11443, 11447, 11467, 11471, 11483, | ||
236 | 11489, 11491, 11497, 11503, 11519, 11527, 11549, 11551, | ||
237 | 11579, 11587, 11593, 11597, 11617, 11621, 11633, 11657, | ||
238 | 11677, 11681, 11689, 11699, 11701, 11717, 11719, 11731, | ||
239 | 11743, 11777, 11779, 11783, 11789, 11801, 11807, 11813, | ||
240 | 11821, 11827, 11831, 11833, 11839, 11863, 11867, 11887, | ||
241 | 11897, 11903, 11909, 11923, 11927, 11933, 11939, 11941, | ||
242 | 11953, 11959, 11969, 11971, 11981, 11987, 12007, 12011, | ||
243 | 12037, 12041, 12043, 12049, 12071, 12073, 12097, 12101, | ||
244 | 12107, 12109, 12113, 12119, 12143, 12149, 12157, 12161, | ||
245 | 12163, 12197, 12203, 12211, 12227, 12239, 12241, 12251, | ||
246 | 12253, 12263, 12269, 12277, 12281, 12289, 12301, 12323, | ||
247 | 12329, 12343, 12347, 12373, 12377, 12379, 12391, 12401, | ||
248 | 12409, 12413, 12421, 12433, 12437, 12451, 12457, 12473, | ||
249 | 12479, 12487, 12491, 12497, 12503, 12511, 12517, 12527, | ||
250 | 12539, 12541, 12547, 12553, 12569, 12577, 12583, 12589, | ||
251 | 12601, 12611, 12613, 12619, 12637, 12641, 12647, 12653, | ||
252 | 12659, 12671, 12689, 12697, 12703, 12713, 12721, 12739, | ||
253 | 12743, 12757, 12763, 12781, 12791, 12799, 12809, 12821, | ||
254 | 12823, 12829, 12841, 12853, 12889, 12893, 12899, 12907, | ||
255 | 12911, 12917, 12919, 12923, 12941, 12953, 12959, 12967, | ||
256 | 12973, 12979, 12983, 13001, 13003, 13007, 13009, 13033, | ||
257 | 13037, 13043, 13049, 13063, 13093, 13099, 13103, 13109, | ||
258 | 13121, 13127, 13147, 13151, 13159, 13163, 13171, 13177, | ||
259 | 13183, 13187, 13217, 13219, 13229, 13241, 13249, 13259, | ||
260 | 13267, 13291, 13297, 13309, 13313, 13327, 13331, 13337, | ||
261 | 13339, 13367, 13381, 13397, 13399, 13411, 13417, 13421, | ||
262 | 13441, 13451, 13457, 13463, 13469, 13477, 13487, 13499, | ||
263 | 13513, 13523, 13537, 13553, 13567, 13577, 13591, 13597, | ||
264 | 13613, 13619, 13627, 13633, 13649, 13669, 13679, 13681, | ||
265 | 13687, 13691, 13693, 13697, 13709, 13711, 13721, 13723, | ||
266 | 13729, 13751, 13757, 13759, 13763, 13781, 13789, 13799, | ||
267 | 13807, 13829, 13831, 13841, 13859, 13873, 13877, 13879, | ||
268 | 13883, 13901, 13903, 13907, 13913, 13921, 13931, 13933, | ||
269 | 13963, 13967, 13997, 13999, 14009, 14011, 14029, 14033, | ||
270 | 14051, 14057, 14071, 14081, 14083, 14087, 14107, 14143, | ||
271 | 14149, 14153, 14159, 14173, 14177, 14197, 14207, 14221, | ||
272 | 14243, 14249, 14251, 14281, 14293, 14303, 14321, 14323, | ||
273 | 14327, 14341, 14347, 14369, 14387, 14389, 14401, 14407, | ||
274 | 14411, 14419, 14423, 14431, 14437, 14447, 14449, 14461, | ||
275 | 14479, 14489, 14503, 14519, 14533, 14537, 14543, 14549, | ||
276 | 14551, 14557, 14561, 14563, 14591, 14593, 14621, 14627, | ||
277 | 14629, 14633, 14639, 14653, 14657, 14669, 14683, 14699, | ||
278 | 14713, 14717, 14723, 14731, 14737, 14741, 14747, 14753, | ||
279 | 14759, 14767, 14771, 14779, 14783, 14797, 14813, 14821, | ||
280 | 14827, 14831, 14843, 14851, 14867, 14869, 14879, 14887, | ||
281 | 14891, 14897, 14923, 14929, 14939, 14947, 14951, 14957, | ||
282 | 14969, 14983, 15013, 15017, 15031, 15053, 15061, 15073, | ||
283 | 15077, 15083, 15091, 15101, 15107, 15121, 15131, 15137, | ||
284 | 15139, 15149, 15161, 15173, 15187, 15193, 15199, 15217, | ||
285 | 15227, 15233, 15241, 15259, 15263, 15269, 15271, 15277, | ||
286 | 15287, 15289, 15299, 15307, 15313, 15319, 15329, 15331, | ||
287 | 15349, 15359, 15361, 15373, 15377, 15383, 15391, 15401, | ||
288 | 15413, 15427, 15439, 15443, 15451, 15461, 15467, 15473, | ||
289 | 15493, 15497, 15511, 15527, 15541, 15551, 15559, 15569, | ||
290 | 15581, 15583, 15601, 15607, 15619, 15629, 15641, 15643, | ||
291 | 15647, 15649, 15661, 15667, 15671, 15679, 15683, 15727, | ||
292 | 15731, 15733, 15737, 15739, 15749, 15761, 15767, 15773, | ||
293 | 15787, 15791, 15797, 15803, 15809, 15817, 15823, 15859, | ||
294 | 15877, 15881, 15887, 15889, 15901, 15907, 15913, 15919, | ||
295 | 15923, 15937, 15959, 15971, 15973, 15991, 16001, 16007, | ||
296 | 16033, 16057, 16061, 16063, 16067, 16069, 16073, 16087, | ||
297 | 16091, 16097, 16103, 16111, 16127, 16139, 16141, 16183, | ||
298 | 16187, 16189, 16193, 16217, 16223, 16229, 16231, 16249, | ||
299 | 16253, 16267, 16273, 16301, 16319, 16333, 16339, 16349, | ||
300 | 16361, 16363, 16369, 16381, 16411, 16417, 16421, 16427, | ||
301 | 16433, 16447, 16451, 16453, 16477, 16481, 16487, 16493, | ||
302 | 16519, 16529, 16547, 16553, 16561, 16567, 16573, 16603, | ||
303 | 16607, 16619, 16631, 16633, 16649, 16651, 16657, 16661, | ||
304 | 16673, 16691, 16693, 16699, 16703, 16729, 16741, 16747, | ||
305 | 16759, 16763, 16787, 16811, 16823, 16829, 16831, 16843, | ||
306 | 16871, 16879, 16883, 16889, 16901, 16903, 16921, 16927, | ||
307 | 16931, 16937, 16943, 16963, 16979, 16981, 16987, 16993, | ||
308 | 17011, 17021, 17027, 17029, 17033, 17041, 17047, 17053, | ||
309 | 17077, 17093, 17099, 17107, 17117, 17123, 17137, 17159, | ||
310 | 17167, 17183, 17189, 17191, 17203, 17207, 17209, 17231, | ||
311 | 17239, 17257, 17291, 17293, 17299, 17317, 17321, 17327, | ||
312 | 17333, 17341, 17351, 17359, 17377, 17383, 17387, 17389, | ||
313 | 17393, 17401, 17417, 17419, 17431, 17443, 17449, 17467, | ||
314 | 17471, 17477, 17483, 17489, 17491, 17497, 17509, 17519, | ||
315 | 17539, 17551, 17569, 17573, 17579, 17581, 17597, 17599, | ||
316 | 17609, 17623, 17627, 17657, 17659, 17669, 17681, 17683, | ||
317 | 17707, 17713, 17729, 17737, 17747, 17749, 17761, 17783, | ||
318 | 17789, 17791, 17807, 17827, 17837, 17839, 17851, 17863, | ||
319 | }; | ||
diff --git a/src/lib/libcrypto/bn/bn_prime.pl b/src/lib/libcrypto/bn/bn_prime.pl deleted file mode 100644 index eb73f0bfa6..0000000000 --- a/src/lib/libcrypto/bn/bn_prime.pl +++ /dev/null | |||
@@ -1,103 +0,0 @@ | |||
1 | #!/usr/local/bin/perl | ||
2 | # bn_prime.pl | ||
3 | |||
4 | $num=2048; | ||
5 | $num=$ARGV[0] if ($#ARGV >= 0); | ||
6 | |||
7 | push(@primes,2); | ||
8 | $p=1; | ||
9 | loop: while ($#primes < $num-1) | ||
10 | { | ||
11 | $p+=2; | ||
12 | $s=int(sqrt($p)); | ||
13 | |||
14 | for ($i=0; defined($primes[$i]) && $primes[$i]<=$s; $i++) | ||
15 | { | ||
16 | next loop if (($p%$primes[$i]) == 0); | ||
17 | } | ||
18 | push(@primes,$p); | ||
19 | } | ||
20 | |||
21 | # print <<"EOF"; | ||
22 | # /* Auto generated by bn_prime.pl */ | ||
23 | # /* Copyright (C) 1995-1997 Eric Young (eay\@mincom.oz.au). | ||
24 | # * All rights reserved. | ||
25 | # * Copyright remains Eric Young's, and as such any Copyright notices in | ||
26 | # * the code are not to be removed. | ||
27 | # * See the COPYRIGHT file in the SSLeay distribution for more details. | ||
28 | # */ | ||
29 | # | ||
30 | # EOF | ||
31 | |||
32 | print <<\EOF; | ||
33 | /* Auto generated by bn_prime.pl */ | ||
34 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) | ||
35 | * All rights reserved. | ||
36 | * | ||
37 | * This package is an SSL implementation written | ||
38 | * by Eric Young (eay@cryptsoft.com). | ||
39 | * The implementation was written so as to conform with Netscapes SSL. | ||
40 | * | ||
41 | * This library is free for commercial and non-commercial use as long as | ||
42 | * the following conditions are aheared to. The following conditions | ||
43 | * apply to all code found in this distribution, be it the RC4, RSA, | ||
44 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation | ||
45 | * included with this distribution is covered by the same copyright terms | ||
46 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | ||
47 | * | ||
48 | * Copyright remains Eric Young's, and as such any Copyright notices in | ||
49 | * the code are not to be removed. | ||
50 | * If this package is used in a product, Eric Young should be given attribution | ||
51 | * as the author of the parts of the library used. | ||
52 | * This can be in the form of a textual message at program startup or | ||
53 | * in documentation (online or textual) provided with the package. | ||
54 | * | ||
55 | * Redistribution and use in source and binary forms, with or without | ||
56 | * modification, are permitted provided that the following conditions | ||
57 | * are met: | ||
58 | * 1. Redistributions of source code must retain the copyright | ||
59 | * notice, this list of conditions and the following disclaimer. | ||
60 | * 2. Redistributions in binary form must reproduce the above copyright | ||
61 | * notice, this list of conditions and the following disclaimer in the | ||
62 | * documentation and/or other materials provided with the distribution. | ||
63 | * 3. All advertising materials mentioning features or use of this software | ||
64 | * must display the following acknowledgement: | ||
65 | * "This product includes cryptographic software written by | ||
66 | * Eric Young (eay@cryptsoft.com)" | ||
67 | * The word 'cryptographic' can be left out if the rouines from the library | ||
68 | * being used are not cryptographic related :-). | ||
69 | * 4. If you include any Windows specific code (or a derivative thereof) from | ||
70 | * the apps directory (application code) you must include an acknowledgement: | ||
71 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | ||
72 | * | ||
73 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | ||
74 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
75 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | ||
76 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | ||
77 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | ||
78 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | ||
79 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
80 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | ||
81 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | ||
82 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | ||
83 | * SUCH DAMAGE. | ||
84 | * | ||
85 | * The licence and distribution terms for any publically available version or | ||
86 | * derivative of this code cannot be changed. i.e. this code cannot simply be | ||
87 | * copied and put under another distribution licence | ||
88 | * [including the GNU Public Licence.] | ||
89 | */ | ||
90 | |||
91 | EOF | ||
92 | |||
93 | printf "#define NUMPRIMES %d\n",$num; | ||
94 | printf "typedef unsigned short prime_t;\n"; | ||
95 | print "static const prime_t primes[NUMPRIMES]=\n{\n\t"; | ||
96 | for ($i=0; $i <= $#primes; $i++) | ||
97 | { | ||
98 | printf("\n\t") if (($i%8) == 0) && ($i != 0); | ||
99 | printf("%4d,",$primes[$i]); | ||
100 | } | ||
101 | print "\n};\n"; | ||
102 | |||
103 | |||
diff --git a/src/lib/libcrypto/bn/bn_print.c b/src/lib/libcrypto/bn/bn_print.c deleted file mode 100644 index 4920705a5b..0000000000 --- a/src/lib/libcrypto/bn/bn_print.c +++ /dev/null | |||
@@ -1,393 +0,0 @@ | |||
1 | /* $OpenBSD: bn_print.c,v 1.23 2014/07/12 16:03:36 miod Exp $ */ | ||
2 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) | ||
3 | * All rights reserved. | ||
4 | * | ||
5 | * This package is an SSL implementation written | ||
6 | * by Eric Young (eay@cryptsoft.com). | ||
7 | * The implementation was written so as to conform with Netscapes SSL. | ||
8 | * | ||
9 | * This library is free for commercial and non-commercial use as long as | ||
10 | * the following conditions are aheared to. The following conditions | ||
11 | * apply to all code found in this distribution, be it the RC4, RSA, | ||
12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation | ||
13 | * included with this distribution is covered by the same copyright terms | ||
14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | ||
15 | * | ||
16 | * Copyright remains Eric Young's, and as such any Copyright notices in | ||
17 | * the code are not to be removed. | ||
18 | * If this package is used in a product, Eric Young should be given attribution | ||
19 | * as the author of the parts of the library used. | ||
20 | * This can be in the form of a textual message at program startup or | ||
21 | * in documentation (online or textual) provided with the package. | ||
22 | * | ||
23 | * Redistribution and use in source and binary forms, with or without | ||
24 | * modification, are permitted provided that the following conditions | ||
25 | * are met: | ||
26 | * 1. Redistributions of source code must retain the copyright | ||
27 | * notice, this list of conditions and the following disclaimer. | ||
28 | * 2. Redistributions in binary form must reproduce the above copyright | ||
29 | * notice, this list of conditions and the following disclaimer in the | ||
30 | * documentation and/or other materials provided with the distribution. | ||
31 | * 3. All advertising materials mentioning features or use of this software | ||
32 | * must display the following acknowledgement: | ||
33 | * "This product includes cryptographic software written by | ||
34 | * Eric Young (eay@cryptsoft.com)" | ||
35 | * The word 'cryptographic' can be left out if the rouines from the library | ||
36 | * being used are not cryptographic related :-). | ||
37 | * 4. If you include any Windows specific code (or a derivative thereof) from | ||
38 | * the apps directory (application code) you must include an acknowledgement: | ||
39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | ||
40 | * | ||
41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | ||
42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | ||
44 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | ||
45 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | ||
46 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | ||
47 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
48 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | ||
49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | ||
50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | ||
51 | * SUCH DAMAGE. | ||
52 | * | ||
53 | * The licence and distribution terms for any publically available version or | ||
54 | * derivative of this code cannot be changed. i.e. this code cannot simply be | ||
55 | * copied and put under another distribution licence | ||
56 | * [including the GNU Public Licence.] | ||
57 | */ | ||
58 | |||
59 | #include <ctype.h> | ||
60 | #include <stdio.h> | ||
61 | |||
62 | #include <openssl/opensslconf.h> | ||
63 | |||
64 | #include <openssl/bio.h> | ||
65 | #include <openssl/buffer.h> | ||
66 | #include <openssl/err.h> | ||
67 | |||
68 | #include "bn_lcl.h" | ||
69 | |||
70 | static const char Hex[]="0123456789ABCDEF"; | ||
71 | |||
72 | /* Must 'free' the returned data */ | ||
73 | char * | ||
74 | BN_bn2hex(const BIGNUM *a) | ||
75 | { | ||
76 | int i, j, v, z = 0; | ||
77 | char *buf; | ||
78 | char *p; | ||
79 | |||
80 | buf = malloc(a->top * BN_BYTES * 2 + 2); | ||
81 | if (buf == NULL) { | ||
82 | BNerr(BN_F_BN_BN2HEX, ERR_R_MALLOC_FAILURE); | ||
83 | goto err; | ||
84 | } | ||
85 | p = buf; | ||
86 | if (a->neg) | ||
87 | *(p++) = '-'; | ||
88 | if (BN_is_zero(a)) | ||
89 | *(p++) = '0'; | ||
90 | for (i = a->top - 1; i >=0; i--) { | ||
91 | for (j = BN_BITS2 - 8; j >= 0; j -= 8) { | ||
92 | /* strip leading zeros */ | ||
93 | v = ((int)(a->d[i] >> (long)j)) & 0xff; | ||
94 | if (z || (v != 0)) { | ||
95 | *(p++) = Hex[v >> 4]; | ||
96 | *(p++) = Hex[v & 0x0f]; | ||
97 | z = 1; | ||
98 | } | ||
99 | } | ||
100 | } | ||
101 | *p = '\0'; | ||
102 | |||
103 | err: | ||
104 | return (buf); | ||
105 | } | ||
106 | |||
107 | /* Must 'free' the returned data */ | ||
108 | char * | ||
109 | BN_bn2dec(const BIGNUM *a) | ||
110 | { | ||
111 | int i = 0, num, ok = 0; | ||
112 | char *buf = NULL; | ||
113 | char *p; | ||
114 | BIGNUM *t = NULL; | ||
115 | BN_ULONG *bn_data = NULL, *lp; | ||
116 | |||
117 | /* get an upper bound for the length of the decimal integer | ||
118 | * num <= (BN_num_bits(a) + 1) * log(2) | ||
119 | * <= 3 * BN_num_bits(a) * 0.1001 + log(2) + 1 (rounding error) | ||
120 | * <= BN_num_bits(a)/10 + BN_num_bits/1000 + 1 + 1 | ||
121 | */ | ||
122 | i = BN_num_bits(a) * 3; | ||
123 | num = (i / 10 + i / 1000 + 1) + 1; | ||
124 | bn_data = reallocarray(NULL, num / BN_DEC_NUM + 1, sizeof(BN_ULONG)); | ||
125 | buf = malloc(num + 3); | ||
126 | if ((buf == NULL) || (bn_data == NULL)) { | ||
127 | BNerr(BN_F_BN_BN2DEC, ERR_R_MALLOC_FAILURE); | ||
128 | goto err; | ||
129 | } | ||
130 | if ((t = BN_dup(a)) == NULL) | ||
131 | goto err; | ||
132 | |||
133 | #define BUF_REMAIN (num+3 - (size_t)(p - buf)) | ||
134 | p = buf; | ||
135 | lp = bn_data; | ||
136 | if (BN_is_zero(t)) { | ||
137 | *(p++) = '0'; | ||
138 | *(p++) = '\0'; | ||
139 | } else { | ||
140 | if (BN_is_negative(t)) | ||
141 | *p++ = '-'; | ||
142 | |||
143 | i = 0; | ||
144 | while (!BN_is_zero(t)) { | ||
145 | *lp = BN_div_word(t, BN_DEC_CONV); | ||
146 | lp++; | ||
147 | } | ||
148 | lp--; | ||
149 | /* We now have a series of blocks, BN_DEC_NUM chars | ||
150 | * in length, where the last one needs truncation. | ||
151 | * The blocks need to be reversed in order. */ | ||
152 | snprintf(p, BUF_REMAIN, BN_DEC_FMT1, *lp); | ||
153 | while (*p) | ||
154 | p++; | ||
155 | while (lp != bn_data) { | ||
156 | lp--; | ||
157 | snprintf(p, BUF_REMAIN, BN_DEC_FMT2, *lp); | ||
158 | while (*p) | ||
159 | p++; | ||
160 | } | ||
161 | } | ||
162 | ok = 1; | ||
163 | |||
164 | err: | ||
165 | free(bn_data); | ||
166 | BN_free(t); | ||
167 | if (!ok && buf) { | ||
168 | free(buf); | ||
169 | buf = NULL; | ||
170 | } | ||
171 | |||
172 | return (buf); | ||
173 | } | ||
174 | |||
175 | int | ||
176 | BN_hex2bn(BIGNUM **bn, const char *a) | ||
177 | { | ||
178 | BIGNUM *ret = NULL; | ||
179 | BN_ULONG l = 0; | ||
180 | int neg = 0, h, m, i,j, k, c; | ||
181 | int num; | ||
182 | |||
183 | if ((a == NULL) || (*a == '\0')) | ||
184 | return (0); | ||
185 | |||
186 | if (*a == '-') { | ||
187 | neg = 1; | ||
188 | a++; | ||
189 | } | ||
190 | |||
191 | for (i = 0; isxdigit((unsigned char)a[i]); i++) | ||
192 | ; | ||
193 | |||
194 | num = i + neg; | ||
195 | if (bn == NULL) | ||
196 | return (num); | ||
197 | |||
198 | /* a is the start of the hex digits, and it is 'i' long */ | ||
199 | if (*bn == NULL) { | ||
200 | if ((ret = BN_new()) == NULL) | ||
201 | return (0); | ||
202 | } else { | ||
203 | ret= *bn; | ||
204 | BN_zero(ret); | ||
205 | } | ||
206 | |||
207 | /* i is the number of hex digests; */ | ||
208 | if (bn_expand(ret, i * 4) == NULL) | ||
209 | goto err; | ||
210 | |||
211 | j = i; /* least significant 'hex' */ | ||
212 | m = 0; | ||
213 | h = 0; | ||
214 | while (j > 0) { | ||
215 | m = ((BN_BYTES*2) <= j) ? (BN_BYTES * 2) : j; | ||
216 | l = 0; | ||
217 | for (;;) { | ||
218 | c = a[j - m]; | ||
219 | if ((c >= '0') && (c <= '9')) | ||
220 | k = c - '0'; | ||
221 | else if ((c >= 'a') && (c <= 'f')) | ||
222 | k = c - 'a' + 10; | ||
223 | else if ((c >= 'A') && (c <= 'F')) | ||
224 | k = c - 'A' + 10; | ||
225 | else | ||
226 | k = 0; /* paranoia */ | ||
227 | l = (l << 4) | k; | ||
228 | |||
229 | if (--m <= 0) { | ||
230 | ret->d[h++] = l; | ||
231 | break; | ||
232 | } | ||
233 | } | ||
234 | j -= (BN_BYTES * 2); | ||
235 | } | ||
236 | ret->top = h; | ||
237 | bn_correct_top(ret); | ||
238 | ret->neg = neg; | ||
239 | |||
240 | *bn = ret; | ||
241 | bn_check_top(ret); | ||
242 | return (num); | ||
243 | |||
244 | err: | ||
245 | if (*bn == NULL) | ||
246 | BN_free(ret); | ||
247 | return (0); | ||
248 | } | ||
249 | |||
250 | int | ||
251 | BN_dec2bn(BIGNUM **bn, const char *a) | ||
252 | { | ||
253 | BIGNUM *ret = NULL; | ||
254 | BN_ULONG l = 0; | ||
255 | int neg = 0, i, j; | ||
256 | int num; | ||
257 | |||
258 | if ((a == NULL) || (*a == '\0')) | ||
259 | return (0); | ||
260 | if (*a == '-') { | ||
261 | neg = 1; | ||
262 | a++; | ||
263 | } | ||
264 | |||
265 | for (i = 0; isdigit((unsigned char)a[i]); i++) | ||
266 | ; | ||
267 | |||
268 | num = i + neg; | ||
269 | if (bn == NULL) | ||
270 | return (num); | ||
271 | |||
272 | /* a is the start of the digits, and it is 'i' long. | ||
273 | * We chop it into BN_DEC_NUM digits at a time */ | ||
274 | if (*bn == NULL) { | ||
275 | if ((ret = BN_new()) == NULL) | ||
276 | return (0); | ||
277 | } else { | ||
278 | ret = *bn; | ||
279 | BN_zero(ret); | ||
280 | } | ||
281 | |||
282 | /* i is the number of digests, a bit of an over expand; */ | ||
283 | if (bn_expand(ret, i * 4) == NULL) | ||
284 | goto err; | ||
285 | |||
286 | j = BN_DEC_NUM - (i % BN_DEC_NUM); | ||
287 | if (j == BN_DEC_NUM) | ||
288 | j = 0; | ||
289 | l = 0; | ||
290 | while (*a) { | ||
291 | l *= 10; | ||
292 | l += *a - '0'; | ||
293 | a++; | ||
294 | if (++j == BN_DEC_NUM) { | ||
295 | BN_mul_word(ret, BN_DEC_CONV); | ||
296 | BN_add_word(ret, l); | ||
297 | l = 0; | ||
298 | j = 0; | ||
299 | } | ||
300 | } | ||
301 | ret->neg = neg; | ||
302 | |||
303 | bn_correct_top(ret); | ||
304 | *bn = ret; | ||
305 | bn_check_top(ret); | ||
306 | return (num); | ||
307 | |||
308 | err: | ||
309 | if (*bn == NULL) | ||
310 | BN_free(ret); | ||
311 | return (0); | ||
312 | } | ||
313 | |||
314 | int | ||
315 | BN_asc2bn(BIGNUM **bn, const char *a) | ||
316 | { | ||
317 | const char *p = a; | ||
318 | if (*p == '-') | ||
319 | p++; | ||
320 | |||
321 | if (p[0] == '0' && (p[1] == 'X' || p[1] == 'x')) { | ||
322 | if (!BN_hex2bn(bn, p + 2)) | ||
323 | return 0; | ||
324 | } else { | ||
325 | if (!BN_dec2bn(bn, p)) | ||
326 | return 0; | ||
327 | } | ||
328 | if (*a == '-') | ||
329 | (*bn)->neg = 1; | ||
330 | return 1; | ||
331 | } | ||
332 | |||
333 | #ifndef OPENSSL_NO_BIO | ||
334 | int | ||
335 | BN_print_fp(FILE *fp, const BIGNUM *a) | ||
336 | { | ||
337 | BIO *b; | ||
338 | int ret; | ||
339 | |||
340 | if ((b = BIO_new(BIO_s_file())) == NULL) | ||
341 | return (0); | ||
342 | BIO_set_fp(b, fp, BIO_NOCLOSE); | ||
343 | ret = BN_print(b, a); | ||
344 | BIO_free(b); | ||
345 | return (ret); | ||
346 | } | ||
347 | |||
348 | int | ||
349 | BN_print(BIO *bp, const BIGNUM *a) | ||
350 | { | ||
351 | int i, j, v, z = 0; | ||
352 | int ret = 0; | ||
353 | |||
354 | if ((a->neg) && (BIO_write(bp, "-", 1) != 1)) | ||
355 | goto end; | ||
356 | if (BN_is_zero(a) && (BIO_write(bp, "0", 1) != 1)) | ||
357 | goto end; | ||
358 | for (i = a->top - 1; i >= 0; i--) { | ||
359 | for (j = BN_BITS2 - 4; j >= 0; j -= 4) { | ||
360 | /* strip leading zeros */ | ||
361 | v = ((int)(a->d[i] >> (long)j)) & 0x0f; | ||
362 | if (z || (v != 0)) { | ||
363 | if (BIO_write(bp, &(Hex[v]), 1) != 1) | ||
364 | goto end; | ||
365 | z = 1; | ||
366 | } | ||
367 | } | ||
368 | } | ||
369 | ret = 1; | ||
370 | |||
371 | end: | ||
372 | return (ret); | ||
373 | } | ||
374 | #endif | ||
375 | |||
376 | char * | ||
377 | BN_options(void) | ||
378 | { | ||
379 | static int init = 0; | ||
380 | static char data[16]; | ||
381 | |||
382 | if (!init) { | ||
383 | init++; | ||
384 | #ifdef BN_LLONG | ||
385 | snprintf(data,sizeof data, "bn(%d,%d)", | ||
386 | (int)sizeof(BN_ULLONG) * 8, (int)sizeof(BN_ULONG) * 8); | ||
387 | #else | ||
388 | snprintf(data,sizeof data, "bn(%d,%d)", | ||
389 | (int)sizeof(BN_ULONG) * 8, (int)sizeof(BN_ULONG) * 8); | ||
390 | #endif | ||
391 | } | ||
392 | return (data); | ||
393 | } | ||
diff --git a/src/lib/libcrypto/bn/bn_rand.c b/src/lib/libcrypto/bn/bn_rand.c deleted file mode 100644 index ac5c5eb308..0000000000 --- a/src/lib/libcrypto/bn/bn_rand.c +++ /dev/null | |||
@@ -1,290 +0,0 @@ | |||
1 | /* $OpenBSD: bn_rand.c,v 1.17 2015/02/19 06:10:29 jsing Exp $ */ | ||
2 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) | ||
3 | * All rights reserved. | ||
4 | * | ||
5 | * This package is an SSL implementation written | ||
6 | * by Eric Young (eay@cryptsoft.com). | ||
7 | * The implementation was written so as to conform with Netscapes SSL. | ||
8 | * | ||
9 | * This library is free for commercial and non-commercial use as long as | ||
10 | * the following conditions are aheared to. The following conditions | ||
11 | * apply to all code found in this distribution, be it the RC4, RSA, | ||
12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation | ||
13 | * included with this distribution is covered by the same copyright terms | ||
14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | ||
15 | * | ||
16 | * Copyright remains Eric Young's, and as such any Copyright notices in | ||
17 | * the code are not to be removed. | ||
18 | * If this package is used in a product, Eric Young should be given attribution | ||
19 | * as the author of the parts of the library used. | ||
20 | * This can be in the form of a textual message at program startup or | ||
21 | * in documentation (online or textual) provided with the package. | ||
22 | * | ||
23 | * Redistribution and use in source and binary forms, with or without | ||
24 | * modification, are permitted provided that the following conditions | ||
25 | * are met: | ||
26 | * 1. Redistributions of source code must retain the copyright | ||
27 | * notice, this list of conditions and the following disclaimer. | ||
28 | * 2. Redistributions in binary form must reproduce the above copyright | ||
29 | * notice, this list of conditions and the following disclaimer in the | ||
30 | * documentation and/or other materials provided with the distribution. | ||
31 | * 3. All advertising materials mentioning features or use of this software | ||
32 | * must display the following acknowledgement: | ||
33 | * "This product includes cryptographic software written by | ||
34 | * Eric Young (eay@cryptsoft.com)" | ||
35 | * The word 'cryptographic' can be left out if the rouines from the library | ||
36 | * being used are not cryptographic related :-). | ||
37 | * 4. If you include any Windows specific code (or a derivative thereof) from | ||
38 | * the apps directory (application code) you must include an acknowledgement: | ||
39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | ||
40 | * | ||
41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | ||
42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | ||
44 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | ||
45 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | ||
46 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | ||
47 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
48 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | ||
49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | ||
50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | ||
51 | * SUCH DAMAGE. | ||
52 | * | ||
53 | * The licence and distribution terms for any publically available version or | ||
54 | * derivative of this code cannot be changed. i.e. this code cannot simply be | ||
55 | * copied and put under another distribution licence | ||
56 | * [including the GNU Public Licence.] | ||
57 | */ | ||
58 | /* ==================================================================== | ||
59 | * Copyright (c) 1998-2001 The OpenSSL Project. All rights reserved. | ||
60 | * | ||
61 | * Redistribution and use in source and binary forms, with or without | ||
62 | * modification, are permitted provided that the following conditions | ||
63 | * are met: | ||
64 | * | ||
65 | * 1. Redistributions of source code must retain the above copyright | ||
66 | * notice, this list of conditions and the following disclaimer. | ||
67 | * | ||
68 | * 2. Redistributions in binary form must reproduce the above copyright | ||
69 | * notice, this list of conditions and the following disclaimer in | ||
70 | * the documentation and/or other materials provided with the | ||
71 | * distribution. | ||
72 | * | ||
73 | * 3. All advertising materials mentioning features or use of this | ||
74 | * software must display the following acknowledgment: | ||
75 | * "This product includes software developed by the OpenSSL Project | ||
76 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | ||
77 | * | ||
78 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
79 | * endorse or promote products derived from this software without | ||
80 | * prior written permission. For written permission, please contact | ||
81 | * openssl-core@openssl.org. | ||
82 | * | ||
83 | * 5. Products derived from this software may not be called "OpenSSL" | ||
84 | * nor may "OpenSSL" appear in their names without prior written | ||
85 | * permission of the OpenSSL Project. | ||
86 | * | ||
87 | * 6. Redistributions of any form whatsoever must retain the following | ||
88 | * acknowledgment: | ||
89 | * "This product includes software developed by the OpenSSL Project | ||
90 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" | ||
91 | * | ||
92 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
93 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
94 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
95 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
96 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
97 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
98 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
99 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
100 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
101 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
102 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
103 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
104 | * ==================================================================== | ||
105 | * | ||
106 | * This product includes cryptographic software written by Eric Young | ||
107 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
108 | * Hudson (tjh@cryptsoft.com). | ||
109 | * | ||
110 | */ | ||
111 | |||
112 | #include <stdio.h> | ||
113 | #include <stdlib.h> | ||
114 | #include <time.h> | ||
115 | |||
116 | #include <openssl/err.h> | ||
117 | |||
118 | #include "bn_lcl.h" | ||
119 | |||
120 | static int | ||
121 | bnrand(int pseudorand, BIGNUM *rnd, int bits, int top, int bottom) | ||
122 | { | ||
123 | unsigned char *buf = NULL; | ||
124 | int ret = 0, bit, bytes, mask; | ||
125 | |||
126 | if (rnd == NULL) { | ||
127 | BNerr(BN_F_BNRAND, ERR_R_PASSED_NULL_PARAMETER); | ||
128 | return (0); | ||
129 | } | ||
130 | |||
131 | if (bits == 0) { | ||
132 | BN_zero(rnd); | ||
133 | return (1); | ||
134 | } | ||
135 | |||
136 | bytes = (bits + 7) / 8; | ||
137 | bit = (bits - 1) % 8; | ||
138 | mask = 0xff << (bit + 1); | ||
139 | |||
140 | buf = malloc(bytes); | ||
141 | if (buf == NULL) { | ||
142 | BNerr(BN_F_BNRAND, ERR_R_MALLOC_FAILURE); | ||
143 | goto err; | ||
144 | } | ||
145 | |||
146 | /* make a random number and set the top and bottom bits */ | ||
147 | arc4random_buf(buf, bytes); | ||
148 | |||
149 | #if 1 | ||
150 | if (pseudorand == 2) { | ||
151 | /* generate patterns that are more likely to trigger BN | ||
152 | library bugs */ | ||
153 | int i; | ||
154 | unsigned char c; | ||
155 | |||
156 | for (i = 0; i < bytes; i++) { | ||
157 | arc4random_buf(&c, 1); | ||
158 | if (c >= 128 && i > 0) | ||
159 | buf[i] = buf[i - 1]; | ||
160 | else if (c < 42) | ||
161 | buf[i] = 0; | ||
162 | else if (c < 84) | ||
163 | buf[i] = 255; | ||
164 | } | ||
165 | } | ||
166 | #endif | ||
167 | |||
168 | if (top != -1) { | ||
169 | if (top) { | ||
170 | if (bit == 0) { | ||
171 | buf[0] = 1; | ||
172 | buf[1] |= 0x80; | ||
173 | } else { | ||
174 | buf[0] |= (3 << (bit - 1)); | ||
175 | } | ||
176 | } else { | ||
177 | buf[0] |= (1 << bit); | ||
178 | } | ||
179 | } | ||
180 | buf[0] &= ~mask; | ||
181 | if (bottom) /* set bottom bit if requested */ | ||
182 | buf[bytes - 1] |= 1; | ||
183 | if (BN_bin2bn(buf, bytes, rnd) == NULL) | ||
184 | goto err; | ||
185 | ret = 1; | ||
186 | |||
187 | err: | ||
188 | if (buf != NULL) { | ||
189 | OPENSSL_cleanse(buf, bytes); | ||
190 | free(buf); | ||
191 | } | ||
192 | bn_check_top(rnd); | ||
193 | return (ret); | ||
194 | } | ||
195 | |||
196 | int | ||
197 | BN_rand(BIGNUM *rnd, int bits, int top, int bottom) | ||
198 | { | ||
199 | return bnrand(0, rnd, bits, top, bottom); | ||
200 | } | ||
201 | |||
202 | int | ||
203 | BN_pseudo_rand(BIGNUM *rnd, int bits, int top, int bottom) | ||
204 | { | ||
205 | return bnrand(1, rnd, bits, top, bottom); | ||
206 | } | ||
207 | |||
208 | #if 1 | ||
209 | int | ||
210 | BN_bntest_rand(BIGNUM *rnd, int bits, int top, int bottom) | ||
211 | { | ||
212 | return bnrand(2, rnd, bits, top, bottom); | ||
213 | } | ||
214 | #endif | ||
215 | |||
216 | |||
217 | /* random number r: 0 <= r < range */ | ||
218 | static int | ||
219 | bn_rand_range(int pseudo, BIGNUM *r, const BIGNUM *range) | ||
220 | { | ||
221 | int (*bn_rand)(BIGNUM *, int, int, int) = pseudo ? BN_pseudo_rand : BN_rand; | ||
222 | int n; | ||
223 | int count = 100; | ||
224 | |||
225 | if (range->neg || BN_is_zero(range)) { | ||
226 | BNerr(BN_F_BN_RAND_RANGE, BN_R_INVALID_RANGE); | ||
227 | return 0; | ||
228 | } | ||
229 | |||
230 | n = BN_num_bits(range); /* n > 0 */ | ||
231 | |||
232 | /* BN_is_bit_set(range, n - 1) always holds */ | ||
233 | |||
234 | if (n == 1) | ||
235 | BN_zero(r); | ||
236 | else if (!BN_is_bit_set(range, n - 2) && !BN_is_bit_set(range, n - 3)) { | ||
237 | /* range = 100..._2, | ||
238 | * so 3*range (= 11..._2) is exactly one bit longer than range */ | ||
239 | do { | ||
240 | if (!bn_rand(r, n + 1, -1, 0)) | ||
241 | return 0; | ||
242 | /* If r < 3*range, use r := r MOD range | ||
243 | * (which is either r, r - range, or r - 2*range). | ||
244 | * Otherwise, iterate once more. | ||
245 | * Since 3*range = 11..._2, each iteration succeeds with | ||
246 | * probability >= .75. */ | ||
247 | if (BN_cmp(r, range) >= 0) { | ||
248 | if (!BN_sub(r, r, range)) | ||
249 | return 0; | ||
250 | if (BN_cmp(r, range) >= 0) | ||
251 | if (!BN_sub(r, r, range)) | ||
252 | return 0; | ||
253 | } | ||
254 | |||
255 | if (!--count) { | ||
256 | BNerr(BN_F_BN_RAND_RANGE, | ||
257 | BN_R_TOO_MANY_ITERATIONS); | ||
258 | return 0; | ||
259 | } | ||
260 | |||
261 | } while (BN_cmp(r, range) >= 0); | ||
262 | } else { | ||
263 | do { | ||
264 | /* range = 11..._2 or range = 101..._2 */ | ||
265 | if (!bn_rand(r, n, -1, 0)) | ||
266 | return 0; | ||
267 | |||
268 | if (!--count) { | ||
269 | BNerr(BN_F_BN_RAND_RANGE, | ||
270 | BN_R_TOO_MANY_ITERATIONS); | ||
271 | return 0; | ||
272 | } | ||
273 | } while (BN_cmp(r, range) >= 0); | ||
274 | } | ||
275 | |||
276 | bn_check_top(r); | ||
277 | return 1; | ||
278 | } | ||
279 | |||
280 | int | ||
281 | BN_rand_range(BIGNUM *r, const BIGNUM *range) | ||
282 | { | ||
283 | return bn_rand_range(0, r, range); | ||
284 | } | ||
285 | |||
286 | int | ||
287 | BN_pseudo_rand_range(BIGNUM *r, const BIGNUM *range) | ||
288 | { | ||
289 | return bn_rand_range(1, r, range); | ||
290 | } | ||
diff --git a/src/lib/libcrypto/bn/bn_recp.c b/src/lib/libcrypto/bn/bn_recp.c deleted file mode 100644 index b0bd0aa4df..0000000000 --- a/src/lib/libcrypto/bn/bn_recp.c +++ /dev/null | |||
@@ -1,263 +0,0 @@ | |||
1 | /* $OpenBSD: bn_recp.c,v 1.13 2015/04/29 00:11:12 doug Exp $ */ | ||
2 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) | ||
3 | * All rights reserved. | ||
4 | * | ||
5 | * This package is an SSL implementation written | ||
6 | * by Eric Young (eay@cryptsoft.com). | ||
7 | * The implementation was written so as to conform with Netscapes SSL. | ||
8 | * | ||
9 | * This library is free for commercial and non-commercial use as long as | ||
10 | * the following conditions are aheared to. The following conditions | ||
11 | * apply to all code found in this distribution, be it the RC4, RSA, | ||
12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation | ||
13 | * included with this distribution is covered by the same copyright terms | ||
14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | ||
15 | * | ||
16 | * Copyright remains Eric Young's, and as such any Copyright notices in | ||
17 | * the code are not to be removed. | ||
18 | * If this package is used in a product, Eric Young should be given attribution | ||
19 | * as the author of the parts of the library used. | ||
20 | * This can be in the form of a textual message at program startup or | ||
21 | * in documentation (online or textual) provided with the package. | ||
22 | * | ||
23 | * Redistribution and use in source and binary forms, with or without | ||
24 | * modification, are permitted provided that the following conditions | ||
25 | * are met: | ||
26 | * 1. Redistributions of source code must retain the copyright | ||
27 | * notice, this list of conditions and the following disclaimer. | ||
28 | * 2. Redistributions in binary form must reproduce the above copyright | ||
29 | * notice, this list of conditions and the following disclaimer in the | ||
30 | * documentation and/or other materials provided with the distribution. | ||
31 | * 3. All advertising materials mentioning features or use of this software | ||
32 | * must display the following acknowledgement: | ||
33 | * "This product includes cryptographic software written by | ||
34 | * Eric Young (eay@cryptsoft.com)" | ||
35 | * The word 'cryptographic' can be left out if the rouines from the library | ||
36 | * being used are not cryptographic related :-). | ||
37 | * 4. If you include any Windows specific code (or a derivative thereof) from | ||
38 | * the apps directory (application code) you must include an acknowledgement: | ||
39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | ||
40 | * | ||
41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | ||
42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | ||
44 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | ||
45 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | ||
46 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | ||
47 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
48 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | ||
49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | ||
50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | ||
51 | * SUCH DAMAGE. | ||
52 | * | ||
53 | * The licence and distribution terms for any publically available version or | ||
54 | * derivative of this code cannot be changed. i.e. this code cannot simply be | ||
55 | * copied and put under another distribution licence | ||
56 | * [including the GNU Public Licence.] | ||
57 | */ | ||
58 | |||
59 | #include <stdio.h> | ||
60 | |||
61 | #include <openssl/err.h> | ||
62 | |||
63 | #include "bn_lcl.h" | ||
64 | |||
65 | void | ||
66 | BN_RECP_CTX_init(BN_RECP_CTX *recp) | ||
67 | { | ||
68 | BN_init(&(recp->N)); | ||
69 | BN_init(&(recp->Nr)); | ||
70 | recp->num_bits = 0; | ||
71 | recp->flags = 0; | ||
72 | } | ||
73 | |||
74 | BN_RECP_CTX * | ||
75 | BN_RECP_CTX_new(void) | ||
76 | { | ||
77 | BN_RECP_CTX *ret; | ||
78 | |||
79 | if ((ret = malloc(sizeof(BN_RECP_CTX))) == NULL) | ||
80 | return (NULL); | ||
81 | |||
82 | BN_RECP_CTX_init(ret); | ||
83 | ret->flags = BN_FLG_MALLOCED; | ||
84 | return (ret); | ||
85 | } | ||
86 | |||
87 | void | ||
88 | BN_RECP_CTX_free(BN_RECP_CTX *recp) | ||
89 | { | ||
90 | if (recp == NULL) | ||
91 | return; | ||
92 | |||
93 | BN_free(&(recp->N)); | ||
94 | BN_free(&(recp->Nr)); | ||
95 | if (recp->flags & BN_FLG_MALLOCED) | ||
96 | free(recp); | ||
97 | } | ||
98 | |||
99 | int | ||
100 | BN_RECP_CTX_set(BN_RECP_CTX *recp, const BIGNUM *d, BN_CTX *ctx) | ||
101 | { | ||
102 | if (!BN_copy(&(recp->N), d)) | ||
103 | return 0; | ||
104 | BN_zero(&(recp->Nr)); | ||
105 | recp->num_bits = BN_num_bits(d); | ||
106 | recp->shift = 0; | ||
107 | return (1); | ||
108 | } | ||
109 | |||
110 | int | ||
111 | BN_mod_mul_reciprocal(BIGNUM *r, const BIGNUM *x, const BIGNUM *y, | ||
112 | BN_RECP_CTX *recp, BN_CTX *ctx) | ||
113 | { | ||
114 | int ret = 0; | ||
115 | BIGNUM *a; | ||
116 | const BIGNUM *ca; | ||
117 | |||
118 | BN_CTX_start(ctx); | ||
119 | if ((a = BN_CTX_get(ctx)) == NULL) | ||
120 | goto err; | ||
121 | if (y != NULL) { | ||
122 | if (x == y) { | ||
123 | if (!BN_sqr(a, x, ctx)) | ||
124 | goto err; | ||
125 | } else { | ||
126 | if (!BN_mul(a, x, y, ctx)) | ||
127 | goto err; | ||
128 | } | ||
129 | ca = a; | ||
130 | } else | ||
131 | ca = x; /* Just do the mod */ | ||
132 | |||
133 | ret = BN_div_recp(NULL, r, ca, recp, ctx); | ||
134 | |||
135 | err: | ||
136 | BN_CTX_end(ctx); | ||
137 | bn_check_top(r); | ||
138 | return (ret); | ||
139 | } | ||
140 | |||
141 | int | ||
142 | BN_div_recp(BIGNUM *dv, BIGNUM *rem, const BIGNUM *m, BN_RECP_CTX *recp, | ||
143 | BN_CTX *ctx) | ||
144 | { | ||
145 | int i, j, ret = 0; | ||
146 | BIGNUM *a, *b, *d, *r; | ||
147 | |||
148 | BN_CTX_start(ctx); | ||
149 | a = BN_CTX_get(ctx); | ||
150 | b = BN_CTX_get(ctx); | ||
151 | if (dv != NULL) | ||
152 | d = dv; | ||
153 | else | ||
154 | d = BN_CTX_get(ctx); | ||
155 | if (rem != NULL) | ||
156 | r = rem; | ||
157 | else | ||
158 | r = BN_CTX_get(ctx); | ||
159 | if (a == NULL || b == NULL || d == NULL || r == NULL) | ||
160 | goto err; | ||
161 | |||
162 | if (BN_ucmp(m, &(recp->N)) < 0) { | ||
163 | BN_zero(d); | ||
164 | if (!BN_copy(r, m)) { | ||
165 | BN_CTX_end(ctx); | ||
166 | return 0; | ||
167 | } | ||
168 | BN_CTX_end(ctx); | ||
169 | return (1); | ||
170 | } | ||
171 | |||
172 | /* We want the remainder | ||
173 | * Given input of ABCDEF / ab | ||
174 | * we need multiply ABCDEF by 3 digests of the reciprocal of ab | ||
175 | * | ||
176 | */ | ||
177 | |||
178 | /* i := max(BN_num_bits(m), 2*BN_num_bits(N)) */ | ||
179 | i = BN_num_bits(m); | ||
180 | j = recp->num_bits << 1; | ||
181 | if (j > i) | ||
182 | i = j; | ||
183 | |||
184 | /* Nr := round(2^i / N) */ | ||
185 | if (i != recp->shift) | ||
186 | recp->shift = BN_reciprocal(&(recp->Nr), &(recp->N), i, ctx); | ||
187 | |||
188 | /* BN_reciprocal returns i, or -1 for an error */ | ||
189 | if (recp->shift == -1) | ||
190 | goto err; | ||
191 | |||
192 | /* d := |round(round(m / 2^BN_num_bits(N)) * recp->Nr / 2^(i - BN_num_bits(N)))| | ||
193 | * = |round(round(m / 2^BN_num_bits(N)) * round(2^i / N) / 2^(i - BN_num_bits(N)))| | ||
194 | * <= |(m / 2^BN_num_bits(N)) * (2^i / N) * (2^BN_num_bits(N) / 2^i)| | ||
195 | * = |m/N| | ||
196 | */ | ||
197 | if (!BN_rshift(a, m, recp->num_bits)) | ||
198 | goto err; | ||
199 | if (!BN_mul(b, a,&(recp->Nr), ctx)) | ||
200 | goto err; | ||
201 | if (!BN_rshift(d, b, i - recp->num_bits)) | ||
202 | goto err; | ||
203 | d->neg = 0; | ||
204 | |||
205 | if (!BN_mul(b, &(recp->N), d, ctx)) | ||
206 | goto err; | ||
207 | if (!BN_usub(r, m, b)) | ||
208 | goto err; | ||
209 | r->neg = 0; | ||
210 | |||
211 | #if 1 | ||
212 | j = 0; | ||
213 | while (BN_ucmp(r, &(recp->N)) >= 0) { | ||
214 | if (j++ > 2) { | ||
215 | BNerr(BN_F_BN_DIV_RECP, BN_R_BAD_RECIPROCAL); | ||
216 | goto err; | ||
217 | } | ||
218 | if (!BN_usub(r, r, &(recp->N))) | ||
219 | goto err; | ||
220 | if (!BN_add_word(d, 1)) | ||
221 | goto err; | ||
222 | } | ||
223 | #endif | ||
224 | |||
225 | r->neg = BN_is_zero(r) ? 0 : m->neg; | ||
226 | d->neg = m->neg^recp->N.neg; | ||
227 | ret = 1; | ||
228 | |||
229 | err: | ||
230 | BN_CTX_end(ctx); | ||
231 | bn_check_top(dv); | ||
232 | bn_check_top(rem); | ||
233 | return (ret); | ||
234 | } | ||
235 | |||
236 | /* len is the expected size of the result | ||
237 | * We actually calculate with an extra word of precision, so | ||
238 | * we can do faster division if the remainder is not required. | ||
239 | */ | ||
240 | /* r := 2^len / m */ | ||
241 | int | ||
242 | BN_reciprocal(BIGNUM *r, const BIGNUM *m, int len, BN_CTX *ctx) | ||
243 | { | ||
244 | int ret = -1; | ||
245 | BIGNUM *t; | ||
246 | |||
247 | BN_CTX_start(ctx); | ||
248 | if ((t = BN_CTX_get(ctx)) == NULL) | ||
249 | goto err; | ||
250 | |||
251 | if (!BN_set_bit(t, len)) | ||
252 | goto err; | ||
253 | |||
254 | if (!BN_div(r, NULL, t,m, ctx)) | ||
255 | goto err; | ||
256 | |||
257 | ret = len; | ||
258 | |||
259 | err: | ||
260 | bn_check_top(r); | ||
261 | BN_CTX_end(ctx); | ||
262 | return (ret); | ||
263 | } | ||
diff --git a/src/lib/libcrypto/bn/bn_shift.c b/src/lib/libcrypto/bn/bn_shift.c deleted file mode 100644 index 0e8211e3d6..0000000000 --- a/src/lib/libcrypto/bn/bn_shift.c +++ /dev/null | |||
@@ -1,218 +0,0 @@ | |||
1 | /* $OpenBSD: bn_shift.c,v 1.13 2014/10/28 07:35:58 jsg Exp $ */ | ||
2 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) | ||
3 | * All rights reserved. | ||
4 | * | ||
5 | * This package is an SSL implementation written | ||
6 | * by Eric Young (eay@cryptsoft.com). | ||
7 | * The implementation was written so as to conform with Netscapes SSL. | ||
8 | * | ||
9 | * This library is free for commercial and non-commercial use as long as | ||
10 | * the following conditions are aheared to. The following conditions | ||
11 | * apply to all code found in this distribution, be it the RC4, RSA, | ||
12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation | ||
13 | * included with this distribution is covered by the same copyright terms | ||
14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | ||
15 | * | ||
16 | * Copyright remains Eric Young's, and as such any Copyright notices in | ||
17 | * the code are not to be removed. | ||
18 | * If this package is used in a product, Eric Young should be given attribution | ||
19 | * as the author of the parts of the library used. | ||
20 | * This can be in the form of a textual message at program startup or | ||
21 | * in documentation (online or textual) provided with the package. | ||
22 | * | ||
23 | * Redistribution and use in source and binary forms, with or without | ||
24 | * modification, are permitted provided that the following conditions | ||
25 | * are met: | ||
26 | * 1. Redistributions of source code must retain the copyright | ||
27 | * notice, this list of conditions and the following disclaimer. | ||
28 | * 2. Redistributions in binary form must reproduce the above copyright | ||
29 | * notice, this list of conditions and the following disclaimer in the | ||
30 | * documentation and/or other materials provided with the distribution. | ||
31 | * 3. All advertising materials mentioning features or use of this software | ||
32 | * must display the following acknowledgement: | ||
33 | * "This product includes cryptographic software written by | ||
34 | * Eric Young (eay@cryptsoft.com)" | ||
35 | * The word 'cryptographic' can be left out if the rouines from the library | ||
36 | * being used are not cryptographic related :-). | ||
37 | * 4. If you include any Windows specific code (or a derivative thereof) from | ||
38 | * the apps directory (application code) you must include an acknowledgement: | ||
39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | ||
40 | * | ||
41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | ||
42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | ||
44 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | ||
45 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | ||
46 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | ||
47 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
48 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | ||
49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | ||
50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | ||
51 | * SUCH DAMAGE. | ||
52 | * | ||
53 | * The licence and distribution terms for any publically available version or | ||
54 | * derivative of this code cannot be changed. i.e. this code cannot simply be | ||
55 | * copied and put under another distribution licence | ||
56 | * [including the GNU Public Licence.] | ||
57 | */ | ||
58 | |||
59 | #include <stdio.h> | ||
60 | #include <string.h> | ||
61 | |||
62 | #include "bn_lcl.h" | ||
63 | |||
64 | int | ||
65 | BN_lshift1(BIGNUM *r, const BIGNUM *a) | ||
66 | { | ||
67 | BN_ULONG *ap, *rp, t, c; | ||
68 | int i; | ||
69 | |||
70 | bn_check_top(r); | ||
71 | bn_check_top(a); | ||
72 | |||
73 | if (r != a) { | ||
74 | r->neg = a->neg; | ||
75 | if (bn_wexpand(r, a->top + 1) == NULL) | ||
76 | return (0); | ||
77 | r->top = a->top; | ||
78 | } else { | ||
79 | if (bn_wexpand(r, a->top + 1) == NULL) | ||
80 | return (0); | ||
81 | } | ||
82 | ap = a->d; | ||
83 | rp = r->d; | ||
84 | c = 0; | ||
85 | for (i = 0; i < a->top; i++) { | ||
86 | t= *(ap++); | ||
87 | *(rp++) = ((t << 1) | c) & BN_MASK2; | ||
88 | c = (t & BN_TBIT) ? 1 : 0; | ||
89 | } | ||
90 | if (c) { | ||
91 | *rp = 1; | ||
92 | r->top++; | ||
93 | } | ||
94 | bn_check_top(r); | ||
95 | return (1); | ||
96 | } | ||
97 | |||
98 | int | ||
99 | BN_rshift1(BIGNUM *r, const BIGNUM *a) | ||
100 | { | ||
101 | BN_ULONG *ap, *rp, t, c; | ||
102 | int i, j; | ||
103 | |||
104 | bn_check_top(r); | ||
105 | bn_check_top(a); | ||
106 | |||
107 | if (BN_is_zero(a)) { | ||
108 | BN_zero(r); | ||
109 | return (1); | ||
110 | } | ||
111 | i = a->top; | ||
112 | ap = a->d; | ||
113 | j = i - (ap[i - 1]==1); | ||
114 | if (a != r) { | ||
115 | if (bn_wexpand(r, j) == NULL) | ||
116 | return (0); | ||
117 | r->neg = a->neg; | ||
118 | } | ||
119 | rp = r->d; | ||
120 | t = ap[--i]; | ||
121 | c = (t & 1) ? BN_TBIT : 0; | ||
122 | if (t >>= 1) | ||
123 | rp[i] = t; | ||
124 | while (i > 0) { | ||
125 | t = ap[--i]; | ||
126 | rp[i] = ((t >> 1) & BN_MASK2) | c; | ||
127 | c = (t & 1) ? BN_TBIT : 0; | ||
128 | } | ||
129 | r->top = j; | ||
130 | bn_check_top(r); | ||
131 | return (1); | ||
132 | } | ||
133 | |||
134 | int | ||
135 | BN_lshift(BIGNUM *r, const BIGNUM *a, int n) | ||
136 | { | ||
137 | int i, nw, lb, rb; | ||
138 | BN_ULONG *t, *f; | ||
139 | BN_ULONG l; | ||
140 | |||
141 | bn_check_top(r); | ||
142 | bn_check_top(a); | ||
143 | |||
144 | r->neg = a->neg; | ||
145 | nw = n / BN_BITS2; | ||
146 | if (bn_wexpand(r, a->top + nw + 1) == NULL) | ||
147 | return (0); | ||
148 | lb = n % BN_BITS2; | ||
149 | rb = BN_BITS2 - lb; | ||
150 | f = a->d; | ||
151 | t = r->d; | ||
152 | t[a->top + nw] = 0; | ||
153 | if (lb == 0) | ||
154 | for (i = a->top - 1; i >= 0; i--) | ||
155 | t[nw + i] = f[i]; | ||
156 | else | ||
157 | for (i = a->top - 1; i >= 0; i--) { | ||
158 | l = f[i]; | ||
159 | t[nw + i + 1] |= (l >> rb) & BN_MASK2; | ||
160 | t[nw + i] = (l << lb) & BN_MASK2; | ||
161 | } | ||
162 | memset(t, 0, nw * sizeof(t[0])); | ||
163 | /* for (i=0; i<nw; i++) | ||
164 | t[i]=0;*/ | ||
165 | r->top = a->top + nw + 1; | ||
166 | bn_correct_top(r); | ||
167 | bn_check_top(r); | ||
168 | return (1); | ||
169 | } | ||
170 | |||
171 | int | ||
172 | BN_rshift(BIGNUM *r, const BIGNUM *a, int n) | ||
173 | { | ||
174 | int i, j, nw, lb, rb; | ||
175 | BN_ULONG *t, *f; | ||
176 | BN_ULONG l, tmp; | ||
177 | |||
178 | bn_check_top(r); | ||
179 | bn_check_top(a); | ||
180 | |||
181 | nw = n / BN_BITS2; | ||
182 | rb = n % BN_BITS2; | ||
183 | lb = BN_BITS2 - rb; | ||
184 | if (nw >= a->top || a->top == 0) { | ||
185 | BN_zero(r); | ||
186 | return (1); | ||
187 | } | ||
188 | i = (BN_num_bits(a) - n + (BN_BITS2 - 1)) / BN_BITS2; | ||
189 | if (r != a) { | ||
190 | r->neg = a->neg; | ||
191 | if (bn_wexpand(r, i) == NULL) | ||
192 | return (0); | ||
193 | } else { | ||
194 | if (n == 0) | ||
195 | return 1; /* or the copying loop will go berserk */ | ||
196 | } | ||
197 | |||
198 | f = &(a->d[nw]); | ||
199 | t = r->d; | ||
200 | j = a->top - nw; | ||
201 | r->top = i; | ||
202 | |||
203 | if (rb == 0) { | ||
204 | for (i = j; i != 0; i--) | ||
205 | *(t++) = *(f++); | ||
206 | } else { | ||
207 | l = *(f++); | ||
208 | for (i = j - 1; i != 0; i--) { | ||
209 | tmp = (l >> rb) & BN_MASK2; | ||
210 | l = *(f++); | ||
211 | *(t++) = (tmp|(l << lb)) & BN_MASK2; | ||
212 | } | ||
213 | if ((l = (l >> rb) & BN_MASK2)) | ||
214 | *(t) = l; | ||
215 | } | ||
216 | bn_check_top(r); | ||
217 | return (1); | ||
218 | } | ||
diff --git a/src/lib/libcrypto/bn/bn_sqr.c b/src/lib/libcrypto/bn/bn_sqr.c deleted file mode 100644 index a0dce6ea81..0000000000 --- a/src/lib/libcrypto/bn/bn_sqr.c +++ /dev/null | |||
@@ -1,286 +0,0 @@ | |||
1 | /* $OpenBSD: bn_sqr.c,v 1.12 2015/02/09 15:49:22 jsing Exp $ */ | ||
2 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) | ||
3 | * All rights reserved. | ||
4 | * | ||
5 | * This package is an SSL implementation written | ||
6 | * by Eric Young (eay@cryptsoft.com). | ||
7 | * The implementation was written so as to conform with Netscapes SSL. | ||
8 | * | ||
9 | * This library is free for commercial and non-commercial use as long as | ||
10 | * the following conditions are aheared to. The following conditions | ||
11 | * apply to all code found in this distribution, be it the RC4, RSA, | ||
12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation | ||
13 | * included with this distribution is covered by the same copyright terms | ||
14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | ||
15 | * | ||
16 | * Copyright remains Eric Young's, and as such any Copyright notices in | ||
17 | * the code are not to be removed. | ||
18 | * If this package is used in a product, Eric Young should be given attribution | ||
19 | * as the author of the parts of the library used. | ||
20 | * This can be in the form of a textual message at program startup or | ||
21 | * in documentation (online or textual) provided with the package. | ||
22 | * | ||
23 | * Redistribution and use in source and binary forms, with or without | ||
24 | * modification, are permitted provided that the following conditions | ||
25 | * are met: | ||
26 | * 1. Redistributions of source code must retain the copyright | ||
27 | * notice, this list of conditions and the following disclaimer. | ||
28 | * 2. Redistributions in binary form must reproduce the above copyright | ||
29 | * notice, this list of conditions and the following disclaimer in the | ||
30 | * documentation and/or other materials provided with the distribution. | ||
31 | * 3. All advertising materials mentioning features or use of this software | ||
32 | * must display the following acknowledgement: | ||
33 | * "This product includes cryptographic software written by | ||
34 | * Eric Young (eay@cryptsoft.com)" | ||
35 | * The word 'cryptographic' can be left out if the rouines from the library | ||
36 | * being used are not cryptographic related :-). | ||
37 | * 4. If you include any Windows specific code (or a derivative thereof) from | ||
38 | * the apps directory (application code) you must include an acknowledgement: | ||
39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | ||
40 | * | ||
41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | ||
42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | ||
44 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | ||
45 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | ||
46 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | ||
47 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
48 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | ||
49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | ||
50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | ||
51 | * SUCH DAMAGE. | ||
52 | * | ||
53 | * The licence and distribution terms for any publically available version or | ||
54 | * derivative of this code cannot be changed. i.e. this code cannot simply be | ||
55 | * copied and put under another distribution licence | ||
56 | * [including the GNU Public Licence.] | ||
57 | */ | ||
58 | |||
59 | #include <stdio.h> | ||
60 | #include <string.h> | ||
61 | |||
62 | #include "bn_lcl.h" | ||
63 | |||
64 | /* r must not be a */ | ||
65 | /* I've just gone over this and it is now %20 faster on x86 - eay - 27 Jun 96 */ | ||
66 | int | ||
67 | BN_sqr(BIGNUM *r, const BIGNUM *a, BN_CTX *ctx) | ||
68 | { | ||
69 | int max, al; | ||
70 | int ret = 0; | ||
71 | BIGNUM *tmp, *rr; | ||
72 | |||
73 | #ifdef BN_COUNT | ||
74 | fprintf(stderr, "BN_sqr %d * %d\n", a->top, a->top); | ||
75 | #endif | ||
76 | bn_check_top(a); | ||
77 | |||
78 | al = a->top; | ||
79 | if (al <= 0) { | ||
80 | r->top = 0; | ||
81 | r->neg = 0; | ||
82 | return 1; | ||
83 | } | ||
84 | |||
85 | BN_CTX_start(ctx); | ||
86 | rr = (a != r) ? r : BN_CTX_get(ctx); | ||
87 | tmp = BN_CTX_get(ctx); | ||
88 | if (rr == NULL || tmp == NULL) | ||
89 | goto err; | ||
90 | |||
91 | max = 2 * al; /* Non-zero (from above) */ | ||
92 | if (bn_wexpand(rr, max) == NULL) | ||
93 | goto err; | ||
94 | |||
95 | if (al == 4) { | ||
96 | #ifndef BN_SQR_COMBA | ||
97 | BN_ULONG t[8]; | ||
98 | bn_sqr_normal(rr->d, a->d, 4, t); | ||
99 | #else | ||
100 | bn_sqr_comba4(rr->d, a->d); | ||
101 | #endif | ||
102 | } else if (al == 8) { | ||
103 | #ifndef BN_SQR_COMBA | ||
104 | BN_ULONG t[16]; | ||
105 | bn_sqr_normal(rr->d, a->d, 8, t); | ||
106 | #else | ||
107 | bn_sqr_comba8(rr->d, a->d); | ||
108 | #endif | ||
109 | } else { | ||
110 | #if defined(BN_RECURSION) | ||
111 | if (al < BN_SQR_RECURSIVE_SIZE_NORMAL) { | ||
112 | BN_ULONG t[BN_SQR_RECURSIVE_SIZE_NORMAL*2]; | ||
113 | bn_sqr_normal(rr->d, a->d, al, t); | ||
114 | } else { | ||
115 | int j, k; | ||
116 | |||
117 | j = BN_num_bits_word((BN_ULONG)al); | ||
118 | j = 1 << (j - 1); | ||
119 | k = j + j; | ||
120 | if (al == j) { | ||
121 | if (bn_wexpand(tmp, k * 2) == NULL) | ||
122 | goto err; | ||
123 | bn_sqr_recursive(rr->d, a->d, al, tmp->d); | ||
124 | } else { | ||
125 | if (bn_wexpand(tmp, max) == NULL) | ||
126 | goto err; | ||
127 | bn_sqr_normal(rr->d, a->d, al, tmp->d); | ||
128 | } | ||
129 | } | ||
130 | #else | ||
131 | if (bn_wexpand(tmp, max) == NULL) | ||
132 | goto err; | ||
133 | bn_sqr_normal(rr->d, a->d, al, tmp->d); | ||
134 | #endif | ||
135 | } | ||
136 | |||
137 | rr->neg = 0; | ||
138 | /* If the most-significant half of the top word of 'a' is zero, then | ||
139 | * the square of 'a' will max-1 words. */ | ||
140 | if (a->d[al - 1] == (a->d[al - 1] & BN_MASK2l)) | ||
141 | rr->top = max - 1; | ||
142 | else | ||
143 | rr->top = max; | ||
144 | if (rr != r) | ||
145 | BN_copy(r, rr); | ||
146 | ret = 1; | ||
147 | |||
148 | err: | ||
149 | bn_check_top(rr); | ||
150 | bn_check_top(tmp); | ||
151 | BN_CTX_end(ctx); | ||
152 | return (ret); | ||
153 | } | ||
154 | |||
155 | /* tmp must have 2*n words */ | ||
156 | void | ||
157 | bn_sqr_normal(BN_ULONG *r, const BN_ULONG *a, int n, BN_ULONG *tmp) | ||
158 | { | ||
159 | int i, j, max; | ||
160 | const BN_ULONG *ap; | ||
161 | BN_ULONG *rp; | ||
162 | |||
163 | max = n * 2; | ||
164 | ap = a; | ||
165 | rp = r; | ||
166 | rp[0] = rp[max - 1] = 0; | ||
167 | rp++; | ||
168 | j = n; | ||
169 | |||
170 | if (--j > 0) { | ||
171 | ap++; | ||
172 | rp[j] = bn_mul_words(rp, ap, j, ap[-1]); | ||
173 | rp += 2; | ||
174 | } | ||
175 | |||
176 | for (i = n - 2; i > 0; i--) { | ||
177 | j--; | ||
178 | ap++; | ||
179 | rp[j] = bn_mul_add_words(rp, ap, j, ap[-1]); | ||
180 | rp += 2; | ||
181 | } | ||
182 | |||
183 | bn_add_words(r, r, r, max); | ||
184 | |||
185 | /* There will not be a carry */ | ||
186 | |||
187 | bn_sqr_words(tmp, a, n); | ||
188 | |||
189 | bn_add_words(r, r, tmp, max); | ||
190 | } | ||
191 | |||
192 | #ifdef BN_RECURSION | ||
193 | /* r is 2*n words in size, | ||
194 | * a and b are both n words in size. (There's not actually a 'b' here ...) | ||
195 | * n must be a power of 2. | ||
196 | * We multiply and return the result. | ||
197 | * t must be 2*n words in size | ||
198 | * We calculate | ||
199 | * a[0]*b[0] | ||
200 | * a[0]*b[0]+a[1]*b[1]+(a[0]-a[1])*(b[1]-b[0]) | ||
201 | * a[1]*b[1] | ||
202 | */ | ||
203 | void | ||
204 | bn_sqr_recursive(BN_ULONG *r, const BN_ULONG *a, int n2, BN_ULONG *t) | ||
205 | { | ||
206 | int n = n2 / 2; | ||
207 | int zero, c1; | ||
208 | BN_ULONG ln, lo, *p; | ||
209 | |||
210 | #ifdef BN_COUNT | ||
211 | fprintf(stderr, " bn_sqr_recursive %d * %d\n", n2, n2); | ||
212 | #endif | ||
213 | if (n2 == 4) { | ||
214 | #ifndef BN_SQR_COMBA | ||
215 | bn_sqr_normal(r, a, 4, t); | ||
216 | #else | ||
217 | bn_sqr_comba4(r, a); | ||
218 | #endif | ||
219 | return; | ||
220 | } else if (n2 == 8) { | ||
221 | #ifndef BN_SQR_COMBA | ||
222 | bn_sqr_normal(r, a, 8, t); | ||
223 | #else | ||
224 | bn_sqr_comba8(r, a); | ||
225 | #endif | ||
226 | return; | ||
227 | } | ||
228 | if (n2 < BN_SQR_RECURSIVE_SIZE_NORMAL) { | ||
229 | bn_sqr_normal(r, a, n2, t); | ||
230 | return; | ||
231 | } | ||
232 | /* r=(a[0]-a[1])*(a[1]-a[0]) */ | ||
233 | c1 = bn_cmp_words(a, &(a[n]), n); | ||
234 | zero = 0; | ||
235 | if (c1 > 0) | ||
236 | bn_sub_words(t, a, &(a[n]), n); | ||
237 | else if (c1 < 0) | ||
238 | bn_sub_words(t, &(a[n]), a, n); | ||
239 | else | ||
240 | zero = 1; | ||
241 | |||
242 | /* The result will always be negative unless it is zero */ | ||
243 | p = &(t[n2*2]); | ||
244 | |||
245 | if (!zero) | ||
246 | bn_sqr_recursive(&(t[n2]), t, n, p); | ||
247 | else | ||
248 | memset(&(t[n2]), 0, n2 * sizeof(BN_ULONG)); | ||
249 | bn_sqr_recursive(r, a, n, p); | ||
250 | bn_sqr_recursive(&(r[n2]), &(a[n]), n, p); | ||
251 | |||
252 | /* t[32] holds (a[0]-a[1])*(a[1]-a[0]), it is negative or zero | ||
253 | * r[10] holds (a[0]*b[0]) | ||
254 | * r[32] holds (b[1]*b[1]) | ||
255 | */ | ||
256 | |||
257 | c1 = (int)(bn_add_words(t, r, &(r[n2]), n2)); | ||
258 | |||
259 | /* t[32] is negative */ | ||
260 | c1 -= (int)(bn_sub_words(&(t[n2]), t, &(t[n2]), n2)); | ||
261 | |||
262 | /* t[32] holds (a[0]-a[1])*(a[1]-a[0])+(a[0]*a[0])+(a[1]*a[1]) | ||
263 | * r[10] holds (a[0]*a[0]) | ||
264 | * r[32] holds (a[1]*a[1]) | ||
265 | * c1 holds the carry bits | ||
266 | */ | ||
267 | c1 += (int)(bn_add_words(&(r[n]), &(r[n]), &(t[n2]), n2)); | ||
268 | if (c1) { | ||
269 | p = &(r[n + n2]); | ||
270 | lo= *p; | ||
271 | ln = (lo + c1) & BN_MASK2; | ||
272 | *p = ln; | ||
273 | |||
274 | /* The overflow will stop before we over write | ||
275 | * words we should not overwrite */ | ||
276 | if (ln < (BN_ULONG)c1) { | ||
277 | do { | ||
278 | p++; | ||
279 | lo= *p; | ||
280 | ln = (lo + 1) & BN_MASK2; | ||
281 | *p = ln; | ||
282 | } while (ln == 0); | ||
283 | } | ||
284 | } | ||
285 | } | ||
286 | #endif | ||
diff --git a/src/lib/libcrypto/bn/bn_sqrt.c b/src/lib/libcrypto/bn/bn_sqrt.c deleted file mode 100644 index f94fa41094..0000000000 --- a/src/lib/libcrypto/bn/bn_sqrt.c +++ /dev/null | |||
@@ -1,405 +0,0 @@ | |||
1 | /* $OpenBSD: bn_sqrt.c,v 1.6 2015/02/09 15:49:22 jsing Exp $ */ | ||
2 | /* Written by Lenka Fibikova <fibikova@exp-math.uni-essen.de> | ||
3 | * and Bodo Moeller for the OpenSSL project. */ | ||
4 | /* ==================================================================== | ||
5 | * Copyright (c) 1998-2000 The OpenSSL Project. All rights reserved. | ||
6 | * | ||
7 | * Redistribution and use in source and binary forms, with or without | ||
8 | * modification, are permitted provided that the following conditions | ||
9 | * are met: | ||
10 | * | ||
11 | * 1. Redistributions of source code must retain the above copyright | ||
12 | * notice, this list of conditions and the following disclaimer. | ||
13 | * | ||
14 | * 2. Redistributions in binary form must reproduce the above copyright | ||
15 | * notice, this list of conditions and the following disclaimer in | ||
16 | * the documentation and/or other materials provided with the | ||
17 | * distribution. | ||
18 | * | ||
19 | * 3. All advertising materials mentioning features or use of this | ||
20 | * software must display the following acknowledgment: | ||
21 | * "This product includes software developed by the OpenSSL Project | ||
22 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | ||
23 | * | ||
24 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
25 | * endorse or promote products derived from this software without | ||
26 | * prior written permission. For written permission, please contact | ||
27 | * openssl-core@openssl.org. | ||
28 | * | ||
29 | * 5. Products derived from this software may not be called "OpenSSL" | ||
30 | * nor may "OpenSSL" appear in their names without prior written | ||
31 | * permission of the OpenSSL Project. | ||
32 | * | ||
33 | * 6. Redistributions of any form whatsoever must retain the following | ||
34 | * acknowledgment: | ||
35 | * "This product includes software developed by the OpenSSL Project | ||
36 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" | ||
37 | * | ||
38 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
39 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
40 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
41 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
42 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
43 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
44 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
45 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
46 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
47 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
48 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
49 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
50 | * ==================================================================== | ||
51 | * | ||
52 | * This product includes cryptographic software written by Eric Young | ||
53 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
54 | * Hudson (tjh@cryptsoft.com). | ||
55 | * | ||
56 | */ | ||
57 | |||
58 | #include <openssl/err.h> | ||
59 | |||
60 | #include "bn_lcl.h" | ||
61 | |||
62 | BIGNUM * | ||
63 | BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) | ||
64 | /* Returns 'ret' such that | ||
65 | * ret^2 == a (mod p), | ||
66 | * using the Tonelli/Shanks algorithm (cf. Henri Cohen, "A Course | ||
67 | * in Algebraic Computational Number Theory", algorithm 1.5.1). | ||
68 | * 'p' must be prime! | ||
69 | */ | ||
70 | { | ||
71 | BIGNUM *ret = in; | ||
72 | int err = 1; | ||
73 | int r; | ||
74 | BIGNUM *A, *b, *q, *t, *x, *y; | ||
75 | int e, i, j; | ||
76 | |||
77 | if (!BN_is_odd(p) || BN_abs_is_word(p, 1)) { | ||
78 | if (BN_abs_is_word(p, 2)) { | ||
79 | if (ret == NULL) | ||
80 | ret = BN_new(); | ||
81 | if (ret == NULL) | ||
82 | goto end; | ||
83 | if (!BN_set_word(ret, BN_is_bit_set(a, 0))) { | ||
84 | if (ret != in) | ||
85 | BN_free(ret); | ||
86 | return NULL; | ||
87 | } | ||
88 | bn_check_top(ret); | ||
89 | return ret; | ||
90 | } | ||
91 | |||
92 | BNerr(BN_F_BN_MOD_SQRT, BN_R_P_IS_NOT_PRIME); | ||
93 | return (NULL); | ||
94 | } | ||
95 | |||
96 | if (BN_is_zero(a) || BN_is_one(a)) { | ||
97 | if (ret == NULL) | ||
98 | ret = BN_new(); | ||
99 | if (ret == NULL) | ||
100 | goto end; | ||
101 | if (!BN_set_word(ret, BN_is_one(a))) { | ||
102 | if (ret != in) | ||
103 | BN_free(ret); | ||
104 | return NULL; | ||
105 | } | ||
106 | bn_check_top(ret); | ||
107 | return ret; | ||
108 | } | ||
109 | |||
110 | BN_CTX_start(ctx); | ||
111 | if ((A = BN_CTX_get(ctx)) == NULL) | ||
112 | goto end; | ||
113 | if ((b = BN_CTX_get(ctx)) == NULL) | ||
114 | goto end; | ||
115 | if ((q = BN_CTX_get(ctx)) == NULL) | ||
116 | goto end; | ||
117 | if ((t = BN_CTX_get(ctx)) == NULL) | ||
118 | goto end; | ||
119 | if ((x = BN_CTX_get(ctx)) == NULL) | ||
120 | goto end; | ||
121 | if ((y = BN_CTX_get(ctx)) == NULL) | ||
122 | goto end; | ||
123 | |||
124 | if (ret == NULL) | ||
125 | ret = BN_new(); | ||
126 | if (ret == NULL) | ||
127 | goto end; | ||
128 | |||
129 | /* A = a mod p */ | ||
130 | if (!BN_nnmod(A, a, p, ctx)) | ||
131 | goto end; | ||
132 | |||
133 | /* now write |p| - 1 as 2^e*q where q is odd */ | ||
134 | e = 1; | ||
135 | while (!BN_is_bit_set(p, e)) | ||
136 | e++; | ||
137 | /* we'll set q later (if needed) */ | ||
138 | |||
139 | if (e == 1) { | ||
140 | /* The easy case: (|p|-1)/2 is odd, so 2 has an inverse | ||
141 | * modulo (|p|-1)/2, and square roots can be computed | ||
142 | * directly by modular exponentiation. | ||
143 | * We have | ||
144 | * 2 * (|p|+1)/4 == 1 (mod (|p|-1)/2), | ||
145 | * so we can use exponent (|p|+1)/4, i.e. (|p|-3)/4 + 1. | ||
146 | */ | ||
147 | if (!BN_rshift(q, p, 2)) | ||
148 | goto end; | ||
149 | q->neg = 0; | ||
150 | if (!BN_add_word(q, 1)) | ||
151 | goto end; | ||
152 | if (!BN_mod_exp(ret, A, q, p, ctx)) | ||
153 | goto end; | ||
154 | err = 0; | ||
155 | goto vrfy; | ||
156 | } | ||
157 | |||
158 | if (e == 2) { | ||
159 | /* |p| == 5 (mod 8) | ||
160 | * | ||
161 | * In this case 2 is always a non-square since | ||
162 | * Legendre(2,p) = (-1)^((p^2-1)/8) for any odd prime. | ||
163 | * So if a really is a square, then 2*a is a non-square. | ||
164 | * Thus for | ||
165 | * b := (2*a)^((|p|-5)/8), | ||
166 | * i := (2*a)*b^2 | ||
167 | * we have | ||
168 | * i^2 = (2*a)^((1 + (|p|-5)/4)*2) | ||
169 | * = (2*a)^((p-1)/2) | ||
170 | * = -1; | ||
171 | * so if we set | ||
172 | * x := a*b*(i-1), | ||
173 | * then | ||
174 | * x^2 = a^2 * b^2 * (i^2 - 2*i + 1) | ||
175 | * = a^2 * b^2 * (-2*i) | ||
176 | * = a*(-i)*(2*a*b^2) | ||
177 | * = a*(-i)*i | ||
178 | * = a. | ||
179 | * | ||
180 | * (This is due to A.O.L. Atkin, | ||
181 | * <URL: http://listserv.nodak.edu/scripts/wa.exe?A2=ind9211&L=nmbrthry&O=T&P=562>, | ||
182 | * November 1992.) | ||
183 | */ | ||
184 | |||
185 | /* t := 2*a */ | ||
186 | if (!BN_mod_lshift1_quick(t, A, p)) | ||
187 | goto end; | ||
188 | |||
189 | /* b := (2*a)^((|p|-5)/8) */ | ||
190 | if (!BN_rshift(q, p, 3)) | ||
191 | goto end; | ||
192 | q->neg = 0; | ||
193 | if (!BN_mod_exp(b, t, q, p, ctx)) | ||
194 | goto end; | ||
195 | |||
196 | /* y := b^2 */ | ||
197 | if (!BN_mod_sqr(y, b, p, ctx)) | ||
198 | goto end; | ||
199 | |||
200 | /* t := (2*a)*b^2 - 1*/ | ||
201 | if (!BN_mod_mul(t, t, y, p, ctx)) | ||
202 | goto end; | ||
203 | if (!BN_sub_word(t, 1)) | ||
204 | goto end; | ||
205 | |||
206 | /* x = a*b*t */ | ||
207 | if (!BN_mod_mul(x, A, b, p, ctx)) | ||
208 | goto end; | ||
209 | if (!BN_mod_mul(x, x, t, p, ctx)) | ||
210 | goto end; | ||
211 | |||
212 | if (!BN_copy(ret, x)) | ||
213 | goto end; | ||
214 | err = 0; | ||
215 | goto vrfy; | ||
216 | } | ||
217 | |||
218 | /* e > 2, so we really have to use the Tonelli/Shanks algorithm. | ||
219 | * First, find some y that is not a square. */ | ||
220 | if (!BN_copy(q, p)) goto end; /* use 'q' as temp */ | ||
221 | q->neg = 0; | ||
222 | i = 2; | ||
223 | do { | ||
224 | /* For efficiency, try small numbers first; | ||
225 | * if this fails, try random numbers. | ||
226 | */ | ||
227 | if (i < 22) { | ||
228 | if (!BN_set_word(y, i)) | ||
229 | goto end; | ||
230 | } else { | ||
231 | if (!BN_pseudo_rand(y, BN_num_bits(p), 0, 0)) | ||
232 | goto end; | ||
233 | if (BN_ucmp(y, p) >= 0) { | ||
234 | if (!(p->neg ? BN_add : BN_sub)(y, y, p)) | ||
235 | goto end; | ||
236 | } | ||
237 | /* now 0 <= y < |p| */ | ||
238 | if (BN_is_zero(y)) | ||
239 | if (!BN_set_word(y, i)) | ||
240 | goto end; | ||
241 | } | ||
242 | |||
243 | r = BN_kronecker(y, q, ctx); /* here 'q' is |p| */ | ||
244 | if (r < -1) | ||
245 | goto end; | ||
246 | if (r == 0) { | ||
247 | /* m divides p */ | ||
248 | BNerr(BN_F_BN_MOD_SQRT, BN_R_P_IS_NOT_PRIME); | ||
249 | goto end; | ||
250 | } | ||
251 | } | ||
252 | while (r == 1 && ++i < 82); | ||
253 | |||
254 | if (r != -1) { | ||
255 | /* Many rounds and still no non-square -- this is more likely | ||
256 | * a bug than just bad luck. | ||
257 | * Even if p is not prime, we should have found some y | ||
258 | * such that r == -1. | ||
259 | */ | ||
260 | BNerr(BN_F_BN_MOD_SQRT, BN_R_TOO_MANY_ITERATIONS); | ||
261 | goto end; | ||
262 | } | ||
263 | |||
264 | /* Here's our actual 'q': */ | ||
265 | if (!BN_rshift(q, q, e)) | ||
266 | goto end; | ||
267 | |||
268 | /* Now that we have some non-square, we can find an element | ||
269 | * of order 2^e by computing its q'th power. */ | ||
270 | if (!BN_mod_exp(y, y, q, p, ctx)) | ||
271 | goto end; | ||
272 | if (BN_is_one(y)) { | ||
273 | BNerr(BN_F_BN_MOD_SQRT, BN_R_P_IS_NOT_PRIME); | ||
274 | goto end; | ||
275 | } | ||
276 | |||
277 | /* Now we know that (if p is indeed prime) there is an integer | ||
278 | * k, 0 <= k < 2^e, such that | ||
279 | * | ||
280 | * a^q * y^k == 1 (mod p). | ||
281 | * | ||
282 | * As a^q is a square and y is not, k must be even. | ||
283 | * q+1 is even, too, so there is an element | ||
284 | * | ||
285 | * X := a^((q+1)/2) * y^(k/2), | ||
286 | * | ||
287 | * and it satisfies | ||
288 | * | ||
289 | * X^2 = a^q * a * y^k | ||
290 | * = a, | ||
291 | * | ||
292 | * so it is the square root that we are looking for. | ||
293 | */ | ||
294 | |||
295 | /* t := (q-1)/2 (note that q is odd) */ | ||
296 | if (!BN_rshift1(t, q)) | ||
297 | goto end; | ||
298 | |||
299 | /* x := a^((q-1)/2) */ | ||
300 | if (BN_is_zero(t)) /* special case: p = 2^e + 1 */ | ||
301 | { | ||
302 | if (!BN_nnmod(t, A, p, ctx)) | ||
303 | goto end; | ||
304 | if (BN_is_zero(t)) { | ||
305 | /* special case: a == 0 (mod p) */ | ||
306 | BN_zero(ret); | ||
307 | err = 0; | ||
308 | goto end; | ||
309 | } else if (!BN_one(x)) | ||
310 | goto end; | ||
311 | } else { | ||
312 | if (!BN_mod_exp(x, A, t, p, ctx)) | ||
313 | goto end; | ||
314 | if (BN_is_zero(x)) { | ||
315 | /* special case: a == 0 (mod p) */ | ||
316 | BN_zero(ret); | ||
317 | err = 0; | ||
318 | goto end; | ||
319 | } | ||
320 | } | ||
321 | |||
322 | /* b := a*x^2 (= a^q) */ | ||
323 | if (!BN_mod_sqr(b, x, p, ctx)) | ||
324 | goto end; | ||
325 | if (!BN_mod_mul(b, b, A, p, ctx)) | ||
326 | goto end; | ||
327 | |||
328 | /* x := a*x (= a^((q+1)/2)) */ | ||
329 | if (!BN_mod_mul(x, x, A, p, ctx)) | ||
330 | goto end; | ||
331 | |||
332 | while (1) { | ||
333 | /* Now b is a^q * y^k for some even k (0 <= k < 2^E | ||
334 | * where E refers to the original value of e, which we | ||
335 | * don't keep in a variable), and x is a^((q+1)/2) * y^(k/2). | ||
336 | * | ||
337 | * We have a*b = x^2, | ||
338 | * y^2^(e-1) = -1, | ||
339 | * b^2^(e-1) = 1. | ||
340 | */ | ||
341 | |||
342 | if (BN_is_one(b)) { | ||
343 | if (!BN_copy(ret, x)) | ||
344 | goto end; | ||
345 | err = 0; | ||
346 | goto vrfy; | ||
347 | } | ||
348 | |||
349 | |||
350 | /* find smallest i such that b^(2^i) = 1 */ | ||
351 | i = 1; | ||
352 | if (!BN_mod_sqr(t, b, p, ctx)) | ||
353 | goto end; | ||
354 | while (!BN_is_one(t)) { | ||
355 | i++; | ||
356 | if (i == e) { | ||
357 | BNerr(BN_F_BN_MOD_SQRT, BN_R_NOT_A_SQUARE); | ||
358 | goto end; | ||
359 | } | ||
360 | if (!BN_mod_mul(t, t, t, p, ctx)) | ||
361 | goto end; | ||
362 | } | ||
363 | |||
364 | |||
365 | /* t := y^2^(e - i - 1) */ | ||
366 | if (!BN_copy(t, y)) | ||
367 | goto end; | ||
368 | for (j = e - i - 1; j > 0; j--) { | ||
369 | if (!BN_mod_sqr(t, t, p, ctx)) | ||
370 | goto end; | ||
371 | } | ||
372 | if (!BN_mod_mul(y, t, t, p, ctx)) | ||
373 | goto end; | ||
374 | if (!BN_mod_mul(x, x, t, p, ctx)) | ||
375 | goto end; | ||
376 | if (!BN_mod_mul(b, b, y, p, ctx)) | ||
377 | goto end; | ||
378 | e = i; | ||
379 | } | ||
380 | |||
381 | vrfy: | ||
382 | if (!err) { | ||
383 | /* verify the result -- the input might have been not a square | ||
384 | * (test added in 0.9.8) */ | ||
385 | |||
386 | if (!BN_mod_sqr(x, ret, p, ctx)) | ||
387 | err = 1; | ||
388 | |||
389 | if (!err && 0 != BN_cmp(x, A)) { | ||
390 | BNerr(BN_F_BN_MOD_SQRT, BN_R_NOT_A_SQUARE); | ||
391 | err = 1; | ||
392 | } | ||
393 | } | ||
394 | |||
395 | end: | ||
396 | if (err) { | ||
397 | if (ret != NULL && ret != in) { | ||
398 | BN_clear_free(ret); | ||
399 | } | ||
400 | ret = NULL; | ||
401 | } | ||
402 | BN_CTX_end(ctx); | ||
403 | bn_check_top(ret); | ||
404 | return ret; | ||
405 | } | ||
diff --git a/src/lib/libcrypto/bn/bn_word.c b/src/lib/libcrypto/bn/bn_word.c deleted file mode 100644 index c4c6754c37..0000000000 --- a/src/lib/libcrypto/bn/bn_word.c +++ /dev/null | |||
@@ -1,233 +0,0 @@ | |||
1 | /* $OpenBSD: bn_word.c,v 1.12 2014/07/11 08:44:48 jsing Exp $ */ | ||
2 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) | ||
3 | * All rights reserved. | ||
4 | * | ||
5 | * This package is an SSL implementation written | ||
6 | * by Eric Young (eay@cryptsoft.com). | ||
7 | * The implementation was written so as to conform with Netscapes SSL. | ||
8 | * | ||
9 | * This library is free for commercial and non-commercial use as long as | ||
10 | * the following conditions are aheared to. The following conditions | ||
11 | * apply to all code found in this distribution, be it the RC4, RSA, | ||
12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation | ||
13 | * included with this distribution is covered by the same copyright terms | ||
14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | ||
15 | * | ||
16 | * Copyright remains Eric Young's, and as such any Copyright notices in | ||
17 | * the code are not to be removed. | ||
18 | * If this package is used in a product, Eric Young should be given attribution | ||
19 | * as the author of the parts of the library used. | ||
20 | * This can be in the form of a textual message at program startup or | ||
21 | * in documentation (online or textual) provided with the package. | ||
22 | * | ||
23 | * Redistribution and use in source and binary forms, with or without | ||
24 | * modification, are permitted provided that the following conditions | ||
25 | * are met: | ||
26 | * 1. Redistributions of source code must retain the copyright | ||
27 | * notice, this list of conditions and the following disclaimer. | ||
28 | * 2. Redistributions in binary form must reproduce the above copyright | ||
29 | * notice, this list of conditions and the following disclaimer in the | ||
30 | * documentation and/or other materials provided with the distribution. | ||
31 | * 3. All advertising materials mentioning features or use of this software | ||
32 | * must display the following acknowledgement: | ||
33 | * "This product includes cryptographic software written by | ||
34 | * Eric Young (eay@cryptsoft.com)" | ||
35 | * The word 'cryptographic' can be left out if the rouines from the library | ||
36 | * being used are not cryptographic related :-). | ||
37 | * 4. If you include any Windows specific code (or a derivative thereof) from | ||
38 | * the apps directory (application code) you must include an acknowledgement: | ||
39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | ||
40 | * | ||
41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | ||
42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | ||
44 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | ||
45 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | ||
46 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | ||
47 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
48 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | ||
49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | ||
50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | ||
51 | * SUCH DAMAGE. | ||
52 | * | ||
53 | * The licence and distribution terms for any publically available version or | ||
54 | * derivative of this code cannot be changed. i.e. this code cannot simply be | ||
55 | * copied and put under another distribution licence | ||
56 | * [including the GNU Public Licence.] | ||
57 | */ | ||
58 | |||
59 | #include <stdio.h> | ||
60 | |||
61 | #include "bn_lcl.h" | ||
62 | |||
63 | BN_ULONG | ||
64 | BN_mod_word(const BIGNUM *a, BN_ULONG w) | ||
65 | { | ||
66 | #ifndef BN_LLONG | ||
67 | BN_ULONG ret = 0; | ||
68 | #else | ||
69 | BN_ULLONG ret = 0; | ||
70 | #endif | ||
71 | int i; | ||
72 | |||
73 | if (w == 0) | ||
74 | return (BN_ULONG) - 1; | ||
75 | |||
76 | bn_check_top(a); | ||
77 | w &= BN_MASK2; | ||
78 | for (i = a->top - 1; i >= 0; i--) { | ||
79 | #ifndef BN_LLONG | ||
80 | ret = ((ret << BN_BITS4) | ((a->d[i] >> BN_BITS4) & | ||
81 | BN_MASK2l)) % w; | ||
82 | ret = ((ret << BN_BITS4) | (a->d[i] & BN_MASK2l)) % w; | ||
83 | #else | ||
84 | ret = (BN_ULLONG)(((ret << (BN_ULLONG)BN_BITS2) | | ||
85 | a->d[i]) % (BN_ULLONG)w); | ||
86 | #endif | ||
87 | } | ||
88 | return ((BN_ULONG)ret); | ||
89 | } | ||
90 | |||
91 | BN_ULONG | ||
92 | BN_div_word(BIGNUM *a, BN_ULONG w) | ||
93 | { | ||
94 | BN_ULONG ret = 0; | ||
95 | int i, j; | ||
96 | |||
97 | bn_check_top(a); | ||
98 | w &= BN_MASK2; | ||
99 | |||
100 | if (!w) | ||
101 | /* actually this an error (division by zero) */ | ||
102 | return (BN_ULONG) - 1; | ||
103 | if (a->top == 0) | ||
104 | return 0; | ||
105 | |||
106 | /* normalize input (so bn_div_words doesn't complain) */ | ||
107 | j = BN_BITS2 - BN_num_bits_word(w); | ||
108 | w <<= j; | ||
109 | if (!BN_lshift(a, a, j)) | ||
110 | return (BN_ULONG) - 1; | ||
111 | |||
112 | for (i = a->top - 1; i >= 0; i--) { | ||
113 | BN_ULONG l, d; | ||
114 | |||
115 | l = a->d[i]; | ||
116 | d = bn_div_words(ret, l, w); | ||
117 | ret = (l - ((d*w)&BN_MASK2))&BN_MASK2; | ||
118 | a->d[i] = d; | ||
119 | } | ||
120 | if ((a->top > 0) && (a->d[a->top - 1] == 0)) | ||
121 | a->top--; | ||
122 | ret >>= j; | ||
123 | bn_check_top(a); | ||
124 | return (ret); | ||
125 | } | ||
126 | |||
127 | int | ||
128 | BN_add_word(BIGNUM *a, BN_ULONG w) | ||
129 | { | ||
130 | BN_ULONG l; | ||
131 | int i; | ||
132 | |||
133 | bn_check_top(a); | ||
134 | w &= BN_MASK2; | ||
135 | |||
136 | /* degenerate case: w is zero */ | ||
137 | if (!w) | ||
138 | return 1; | ||
139 | /* degenerate case: a is zero */ | ||
140 | if (BN_is_zero(a)) | ||
141 | return BN_set_word(a, w); | ||
142 | /* handle 'a' when negative */ | ||
143 | if (a->neg) { | ||
144 | a->neg = 0; | ||
145 | i = BN_sub_word(a, w); | ||
146 | if (!BN_is_zero(a)) | ||
147 | a->neg=!(a->neg); | ||
148 | return (i); | ||
149 | } | ||
150 | for (i = 0; w != 0 && i < a->top; i++) { | ||
151 | a->d[i] = l = (a->d[i] + w) & BN_MASK2; | ||
152 | w = (w > l) ? 1 : 0; | ||
153 | } | ||
154 | if (w && i == a->top) { | ||
155 | if (bn_wexpand(a, a->top + 1) == NULL) | ||
156 | return 0; | ||
157 | a->top++; | ||
158 | a->d[i] = w; | ||
159 | } | ||
160 | bn_check_top(a); | ||
161 | return (1); | ||
162 | } | ||
163 | |||
164 | int | ||
165 | BN_sub_word(BIGNUM *a, BN_ULONG w) | ||
166 | { | ||
167 | int i; | ||
168 | |||
169 | bn_check_top(a); | ||
170 | w &= BN_MASK2; | ||
171 | |||
172 | /* degenerate case: w is zero */ | ||
173 | if (!w) | ||
174 | return 1; | ||
175 | /* degenerate case: a is zero */ | ||
176 | if (BN_is_zero(a)) { | ||
177 | i = BN_set_word(a, w); | ||
178 | if (i != 0) | ||
179 | BN_set_negative(a, 1); | ||
180 | return i; | ||
181 | } | ||
182 | /* handle 'a' when negative */ | ||
183 | if (a->neg) { | ||
184 | a->neg = 0; | ||
185 | i = BN_add_word(a, w); | ||
186 | a->neg = 1; | ||
187 | return (i); | ||
188 | } | ||
189 | |||
190 | if ((a->top == 1) && (a->d[0] < w)) { | ||
191 | a->d[0] = w - a->d[0]; | ||
192 | a->neg = 1; | ||
193 | return (1); | ||
194 | } | ||
195 | i = 0; | ||
196 | for (;;) { | ||
197 | if (a->d[i] >= w) { | ||
198 | a->d[i] -= w; | ||
199 | break; | ||
200 | } else { | ||
201 | a->d[i] = (a->d[i] - w) & BN_MASK2; | ||
202 | i++; | ||
203 | w = 1; | ||
204 | } | ||
205 | } | ||
206 | if ((a->d[i] == 0) && (i == (a->top - 1))) | ||
207 | a->top--; | ||
208 | bn_check_top(a); | ||
209 | return (1); | ||
210 | } | ||
211 | |||
212 | int | ||
213 | BN_mul_word(BIGNUM *a, BN_ULONG w) | ||
214 | { | ||
215 | BN_ULONG ll; | ||
216 | |||
217 | bn_check_top(a); | ||
218 | w &= BN_MASK2; | ||
219 | if (a->top) { | ||
220 | if (w == 0) | ||
221 | BN_zero(a); | ||
222 | else { | ||
223 | ll = bn_mul_words(a->d, a->d, a->top, w); | ||
224 | if (ll) { | ||
225 | if (bn_wexpand(a, a->top + 1) == NULL) | ||
226 | return (0); | ||
227 | a->d[a->top++] = ll; | ||
228 | } | ||
229 | } | ||
230 | } | ||
231 | bn_check_top(a); | ||
232 | return (1); | ||
233 | } | ||
diff --git a/src/lib/libcrypto/bn/bn_x931p.c b/src/lib/libcrypto/bn/bn_x931p.c deleted file mode 100644 index 1948bc8e71..0000000000 --- a/src/lib/libcrypto/bn/bn_x931p.c +++ /dev/null | |||
@@ -1,279 +0,0 @@ | |||
1 | /* $OpenBSD: bn_x931p.c,v 1.8 2015/04/29 00:11:12 doug Exp $ */ | ||
2 | /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL | ||
3 | * project 2005. | ||
4 | */ | ||
5 | /* ==================================================================== | ||
6 | * Copyright (c) 2005 The OpenSSL Project. All rights reserved. | ||
7 | * | ||
8 | * Redistribution and use in source and binary forms, with or without | ||
9 | * modification, are permitted provided that the following conditions | ||
10 | * are met: | ||
11 | * | ||
12 | * 1. Redistributions of source code must retain the above copyright | ||
13 | * notice, this list of conditions and the following disclaimer. | ||
14 | * | ||
15 | * 2. Redistributions in binary form must reproduce the above copyright | ||
16 | * notice, this list of conditions and the following disclaimer in | ||
17 | * the documentation and/or other materials provided with the | ||
18 | * distribution. | ||
19 | * | ||
20 | * 3. All advertising materials mentioning features or use of this | ||
21 | * software must display the following acknowledgment: | ||
22 | * "This product includes software developed by the OpenSSL Project | ||
23 | * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" | ||
24 | * | ||
25 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
26 | * endorse or promote products derived from this software without | ||
27 | * prior written permission. For written permission, please contact | ||
28 | * licensing@OpenSSL.org. | ||
29 | * | ||
30 | * 5. Products derived from this software may not be called "OpenSSL" | ||
31 | * nor may "OpenSSL" appear in their names without prior written | ||
32 | * permission of the OpenSSL Project. | ||
33 | * | ||
34 | * 6. Redistributions of any form whatsoever must retain the following | ||
35 | * acknowledgment: | ||
36 | * "This product includes software developed by the OpenSSL Project | ||
37 | * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" | ||
38 | * | ||
39 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
40 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
41 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
42 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
43 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
44 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
45 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
46 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
47 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
48 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
49 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
50 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
51 | * ==================================================================== | ||
52 | * | ||
53 | * This product includes cryptographic software written by Eric Young | ||
54 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
55 | * Hudson (tjh@cryptsoft.com). | ||
56 | * | ||
57 | */ | ||
58 | |||
59 | #include <stdio.h> | ||
60 | #include <openssl/bn.h> | ||
61 | |||
62 | /* X9.31 routines for prime derivation */ | ||
63 | |||
64 | /* X9.31 prime derivation. This is used to generate the primes pi | ||
65 | * (p1, p2, q1, q2) from a parameter Xpi by checking successive odd | ||
66 | * integers. | ||
67 | */ | ||
68 | |||
69 | static int | ||
70 | bn_x931_derive_pi(BIGNUM *pi, const BIGNUM *Xpi, BN_CTX *ctx, BN_GENCB *cb) | ||
71 | { | ||
72 | int i = 0; | ||
73 | |||
74 | if (!BN_copy(pi, Xpi)) | ||
75 | return 0; | ||
76 | if (!BN_is_odd(pi) && !BN_add_word(pi, 1)) | ||
77 | return 0; | ||
78 | for (;;) { | ||
79 | i++; | ||
80 | BN_GENCB_call(cb, 0, i); | ||
81 | /* NB 27 MR is specificed in X9.31 */ | ||
82 | if (BN_is_prime_fasttest_ex(pi, 27, ctx, 1, cb)) | ||
83 | break; | ||
84 | if (!BN_add_word(pi, 2)) | ||
85 | return 0; | ||
86 | } | ||
87 | BN_GENCB_call(cb, 2, i); | ||
88 | return 1; | ||
89 | } | ||
90 | |||
91 | /* This is the main X9.31 prime derivation function. From parameters | ||
92 | * Xp1, Xp2 and Xp derive the prime p. If the parameters p1 or p2 are | ||
93 | * not NULL they will be returned too: this is needed for testing. | ||
94 | */ | ||
95 | |||
96 | int | ||
97 | BN_X931_derive_prime_ex(BIGNUM *p, BIGNUM *p1, BIGNUM *p2, const BIGNUM *Xp, | ||
98 | const BIGNUM *Xp1, const BIGNUM *Xp2, const BIGNUM *e, BN_CTX *ctx, | ||
99 | BN_GENCB *cb) | ||
100 | { | ||
101 | int ret = 0; | ||
102 | |||
103 | BIGNUM *t, *p1p2, *pm1; | ||
104 | |||
105 | /* Only even e supported */ | ||
106 | if (!BN_is_odd(e)) | ||
107 | return 0; | ||
108 | |||
109 | BN_CTX_start(ctx); | ||
110 | if (p1 == NULL) { | ||
111 | if ((p1 = BN_CTX_get(ctx)) == NULL) | ||
112 | goto err; | ||
113 | } | ||
114 | if (p2 == NULL) { | ||
115 | if ((p2 = BN_CTX_get(ctx)) == NULL) | ||
116 | goto err; | ||
117 | } | ||
118 | |||
119 | if ((t = BN_CTX_get(ctx)) == NULL) | ||
120 | goto err; | ||
121 | if ((p1p2 = BN_CTX_get(ctx)) == NULL) | ||
122 | goto err; | ||
123 | if ((pm1 = BN_CTX_get(ctx)) == NULL) | ||
124 | goto err; | ||
125 | |||
126 | if (!bn_x931_derive_pi(p1, Xp1, ctx, cb)) | ||
127 | goto err; | ||
128 | |||
129 | if (!bn_x931_derive_pi(p2, Xp2, ctx, cb)) | ||
130 | goto err; | ||
131 | |||
132 | if (!BN_mul(p1p2, p1, p2, ctx)) | ||
133 | goto err; | ||
134 | |||
135 | /* First set p to value of Rp */ | ||
136 | |||
137 | if (!BN_mod_inverse(p, p2, p1, ctx)) | ||
138 | goto err; | ||
139 | |||
140 | if (!BN_mul(p, p, p2, ctx)) | ||
141 | goto err; | ||
142 | |||
143 | if (!BN_mod_inverse(t, p1, p2, ctx)) | ||
144 | goto err; | ||
145 | |||
146 | if (!BN_mul(t, t, p1, ctx)) | ||
147 | goto err; | ||
148 | |||
149 | if (!BN_sub(p, p, t)) | ||
150 | goto err; | ||
151 | |||
152 | if (p->neg && !BN_add(p, p, p1p2)) | ||
153 | goto err; | ||
154 | |||
155 | /* p now equals Rp */ | ||
156 | |||
157 | if (!BN_mod_sub(p, p, Xp, p1p2, ctx)) | ||
158 | goto err; | ||
159 | |||
160 | if (!BN_add(p, p, Xp)) | ||
161 | goto err; | ||
162 | |||
163 | /* p now equals Yp0 */ | ||
164 | |||
165 | for (;;) { | ||
166 | int i = 1; | ||
167 | BN_GENCB_call(cb, 0, i++); | ||
168 | if (!BN_copy(pm1, p)) | ||
169 | goto err; | ||
170 | if (!BN_sub_word(pm1, 1)) | ||
171 | goto err; | ||
172 | if (!BN_gcd(t, pm1, e, ctx)) | ||
173 | goto err; | ||
174 | if (BN_is_one(t) | ||
175 | /* X9.31 specifies 8 MR and 1 Lucas test or any prime test | ||
176 | * offering similar or better guarantees 50 MR is considerably | ||
177 | * better. | ||
178 | */ | ||
179 | && BN_is_prime_fasttest_ex(p, 50, ctx, 1, cb)) | ||
180 | break; | ||
181 | if (!BN_add(p, p, p1p2)) | ||
182 | goto err; | ||
183 | } | ||
184 | |||
185 | BN_GENCB_call(cb, 3, 0); | ||
186 | |||
187 | ret = 1; | ||
188 | |||
189 | err: | ||
190 | |||
191 | BN_CTX_end(ctx); | ||
192 | |||
193 | return ret; | ||
194 | } | ||
195 | |||
196 | /* Generate pair of paramters Xp, Xq for X9.31 prime generation. | ||
197 | * Note: nbits paramter is sum of number of bits in both. | ||
198 | */ | ||
199 | |||
200 | int | ||
201 | BN_X931_generate_Xpq(BIGNUM *Xp, BIGNUM *Xq, int nbits, BN_CTX *ctx) | ||
202 | { | ||
203 | BIGNUM *t; | ||
204 | int i; | ||
205 | int ret = 0; | ||
206 | |||
207 | /* Number of bits for each prime is of the form | ||
208 | * 512+128s for s = 0, 1, ... | ||
209 | */ | ||
210 | if ((nbits < 1024) || (nbits & 0xff)) | ||
211 | return 0; | ||
212 | nbits >>= 1; | ||
213 | /* The random value Xp must be between sqrt(2) * 2^(nbits-1) and | ||
214 | * 2^nbits - 1. By setting the top two bits we ensure that the lower | ||
215 | * bound is exceeded. | ||
216 | */ | ||
217 | if (!BN_rand(Xp, nbits, 1, 0)) | ||
218 | return 0; | ||
219 | |||
220 | BN_CTX_start(ctx); | ||
221 | if ((t = BN_CTX_get(ctx)) == NULL) | ||
222 | goto err; | ||
223 | |||
224 | for (i = 0; i < 1000; i++) { | ||
225 | if (!BN_rand(Xq, nbits, 1, 0)) | ||
226 | goto err; | ||
227 | /* Check that |Xp - Xq| > 2^(nbits - 100) */ | ||
228 | BN_sub(t, Xp, Xq); | ||
229 | if (BN_num_bits(t) > (nbits - 100)) | ||
230 | break; | ||
231 | } | ||
232 | |||
233 | if (i < 1000) | ||
234 | ret = 1; | ||
235 | |||
236 | err: | ||
237 | BN_CTX_end(ctx); | ||
238 | |||
239 | return ret; | ||
240 | } | ||
241 | |||
242 | /* Generate primes using X9.31 algorithm. Of the values p, p1, p2, Xp1 | ||
243 | * and Xp2 only 'p' needs to be non-NULL. If any of the others are not NULL | ||
244 | * the relevant parameter will be stored in it. | ||
245 | * | ||
246 | * Due to the fact that |Xp - Xq| > 2^(nbits - 100) must be satisfied Xp and Xq | ||
247 | * are generated using the previous function and supplied as input. | ||
248 | */ | ||
249 | |||
250 | int | ||
251 | BN_X931_generate_prime_ex(BIGNUM *p, BIGNUM *p1, BIGNUM *p2, BIGNUM *Xp1, | ||
252 | BIGNUM *Xp2, const BIGNUM *Xp, const BIGNUM *e, BN_CTX *ctx, BN_GENCB *cb) | ||
253 | { | ||
254 | int ret = 0; | ||
255 | |||
256 | BN_CTX_start(ctx); | ||
257 | if (Xp1 == NULL) { | ||
258 | if ((Xp1 = BN_CTX_get(ctx)) == NULL) | ||
259 | goto error; | ||
260 | } | ||
261 | if (Xp2 == NULL) { | ||
262 | if ((Xp2 = BN_CTX_get(ctx)) == NULL) | ||
263 | goto error; | ||
264 | } | ||
265 | |||
266 | if (!BN_rand(Xp1, 101, 0, 0)) | ||
267 | goto error; | ||
268 | if (!BN_rand(Xp2, 101, 0, 0)) | ||
269 | goto error; | ||
270 | if (!BN_X931_derive_prime_ex(p, p1, p2, Xp, Xp1, Xp2, e, ctx, cb)) | ||
271 | goto error; | ||
272 | |||
273 | ret = 1; | ||
274 | |||
275 | error: | ||
276 | BN_CTX_end(ctx); | ||
277 | |||
278 | return ret; | ||
279 | } | ||