diff options
| author | tb <> | 2023-04-25 19:53:30 +0000 |
|---|---|---|
| committer | tb <> | 2023-04-25 19:53:30 +0000 |
| commit | 0725c451bef02fc23e8b5bafa353df9cd02984b7 (patch) | |
| tree | e9be44ea96c7294efcc800d9cb419edbab4fe999 /src/lib/libcrypto/ec/ec2_mult.c | |
| parent | ae6c86218c35619cec69850fd313bea6175da6dc (diff) | |
| download | openbsd-0725c451bef02fc23e8b5bafa353df9cd02984b7.tar.gz openbsd-0725c451bef02fc23e8b5bafa353df9cd02984b7.tar.bz2 openbsd-0725c451bef02fc23e8b5bafa353df9cd02984b7.zip | |
GF2m bites the dust. It won't be missed.
Diffstat (limited to '')
| -rw-r--r-- | src/lib/libcrypto/ec/ec2_mult.c | 449 |
1 files changed, 0 insertions, 449 deletions
diff --git a/src/lib/libcrypto/ec/ec2_mult.c b/src/lib/libcrypto/ec/ec2_mult.c deleted file mode 100644 index d7cbd933f2..0000000000 --- a/src/lib/libcrypto/ec/ec2_mult.c +++ /dev/null | |||
| @@ -1,449 +0,0 @@ | |||
| 1 | /* $OpenBSD: ec2_mult.c,v 1.17 2023/04/11 18:58:20 jsing Exp $ */ | ||
| 2 | /* ==================================================================== | ||
| 3 | * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. | ||
| 4 | * | ||
| 5 | * The Elliptic Curve Public-Key Crypto Library (ECC Code) included | ||
| 6 | * herein is developed by SUN MICROSYSTEMS, INC., and is contributed | ||
| 7 | * to the OpenSSL project. | ||
| 8 | * | ||
| 9 | * The ECC Code is licensed pursuant to the OpenSSL open source | ||
| 10 | * license provided below. | ||
| 11 | * | ||
| 12 | * The software is originally written by Sheueling Chang Shantz and | ||
| 13 | * Douglas Stebila of Sun Microsystems Laboratories. | ||
| 14 | * | ||
| 15 | */ | ||
| 16 | /* ==================================================================== | ||
| 17 | * Copyright (c) 1998-2003 The OpenSSL Project. All rights reserved. | ||
| 18 | * | ||
| 19 | * Redistribution and use in source and binary forms, with or without | ||
| 20 | * modification, are permitted provided that the following conditions | ||
| 21 | * are met: | ||
| 22 | * | ||
| 23 | * 1. Redistributions of source code must retain the above copyright | ||
| 24 | * notice, this list of conditions and the following disclaimer. | ||
| 25 | * | ||
| 26 | * 2. Redistributions in binary form must reproduce the above copyright | ||
| 27 | * notice, this list of conditions and the following disclaimer in | ||
| 28 | * the documentation and/or other materials provided with the | ||
| 29 | * distribution. | ||
| 30 | * | ||
| 31 | * 3. All advertising materials mentioning features or use of this | ||
| 32 | * software must display the following acknowledgment: | ||
| 33 | * "This product includes software developed by the OpenSSL Project | ||
| 34 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | ||
| 35 | * | ||
| 36 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
| 37 | * endorse or promote products derived from this software without | ||
| 38 | * prior written permission. For written permission, please contact | ||
| 39 | * openssl-core@openssl.org. | ||
| 40 | * | ||
| 41 | * 5. Products derived from this software may not be called "OpenSSL" | ||
| 42 | * nor may "OpenSSL" appear in their names without prior written | ||
| 43 | * permission of the OpenSSL Project. | ||
| 44 | * | ||
| 45 | * 6. Redistributions of any form whatsoever must retain the following | ||
| 46 | * acknowledgment: | ||
| 47 | * "This product includes software developed by the OpenSSL Project | ||
| 48 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" | ||
| 49 | * | ||
| 50 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
| 51 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
| 52 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
| 53 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
| 54 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
| 55 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
| 56 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
| 57 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
| 58 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
| 59 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
| 60 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
| 61 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
| 62 | * ==================================================================== | ||
| 63 | * | ||
| 64 | * This product includes cryptographic software written by Eric Young | ||
| 65 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
| 66 | * Hudson (tjh@cryptsoft.com). | ||
| 67 | * | ||
| 68 | */ | ||
| 69 | |||
| 70 | #include <openssl/opensslconf.h> | ||
| 71 | |||
| 72 | #include <openssl/err.h> | ||
| 73 | |||
| 74 | #include "bn_local.h" | ||
| 75 | #include "ec_local.h" | ||
| 76 | |||
| 77 | #ifndef OPENSSL_NO_EC2M | ||
| 78 | |||
| 79 | |||
| 80 | /* Compute the x-coordinate x/z for the point 2*(x/z) in Montgomery projective | ||
| 81 | * coordinates. | ||
| 82 | * Uses algorithm Mdouble in appendix of | ||
| 83 | * Lopez, J. and Dahab, R. "Fast multiplication on elliptic curves over | ||
| 84 | * GF(2^m) without precomputation" (CHES '99, LNCS 1717). | ||
| 85 | * modified to not require precomputation of c=b^{2^{m-1}}. | ||
| 86 | */ | ||
| 87 | static int | ||
| 88 | gf2m_Mdouble(const EC_GROUP *group, BIGNUM *x, BIGNUM *z, BN_CTX *ctx) | ||
| 89 | { | ||
| 90 | BIGNUM *t1; | ||
| 91 | int ret = 0; | ||
| 92 | |||
| 93 | /* Since Mdouble is static we can guarantee that ctx != NULL. */ | ||
| 94 | BN_CTX_start(ctx); | ||
| 95 | if ((t1 = BN_CTX_get(ctx)) == NULL) | ||
| 96 | goto err; | ||
| 97 | |||
| 98 | if (!group->meth->field_sqr(group, x, x, ctx)) | ||
| 99 | goto err; | ||
| 100 | if (!group->meth->field_sqr(group, t1, z, ctx)) | ||
| 101 | goto err; | ||
| 102 | if (!group->meth->field_mul(group, z, x, t1, ctx)) | ||
| 103 | goto err; | ||
| 104 | if (!group->meth->field_sqr(group, x, x, ctx)) | ||
| 105 | goto err; | ||
| 106 | if (!group->meth->field_sqr(group, t1, t1, ctx)) | ||
| 107 | goto err; | ||
| 108 | if (!group->meth->field_mul(group, t1, &group->b, t1, ctx)) | ||
| 109 | goto err; | ||
| 110 | if (!BN_GF2m_add(x, x, t1)) | ||
| 111 | goto err; | ||
| 112 | |||
| 113 | ret = 1; | ||
| 114 | |||
| 115 | err: | ||
| 116 | BN_CTX_end(ctx); | ||
| 117 | return ret; | ||
| 118 | } | ||
| 119 | |||
| 120 | /* Compute the x-coordinate x1/z1 for the point (x1/z1)+(x2/x2) in Montgomery | ||
| 121 | * projective coordinates. | ||
| 122 | * Uses algorithm Madd in appendix of | ||
| 123 | * Lopez, J. and Dahab, R. "Fast multiplication on elliptic curves over | ||
| 124 | * GF(2^m) without precomputation" (CHES '99, LNCS 1717). | ||
| 125 | */ | ||
| 126 | static int | ||
| 127 | gf2m_Madd(const EC_GROUP *group, const BIGNUM *x, BIGNUM *x1, BIGNUM *z1, | ||
| 128 | const BIGNUM *x2, const BIGNUM *z2, BN_CTX *ctx) | ||
| 129 | { | ||
| 130 | BIGNUM *t1, *t2; | ||
| 131 | int ret = 0; | ||
| 132 | |||
| 133 | /* Since Madd is static we can guarantee that ctx != NULL. */ | ||
| 134 | BN_CTX_start(ctx); | ||
| 135 | if ((t1 = BN_CTX_get(ctx)) == NULL) | ||
| 136 | goto err; | ||
| 137 | if ((t2 = BN_CTX_get(ctx)) == NULL) | ||
| 138 | goto err; | ||
| 139 | |||
| 140 | if (!bn_copy(t1, x)) | ||
| 141 | goto err; | ||
| 142 | if (!group->meth->field_mul(group, x1, x1, z2, ctx)) | ||
| 143 | goto err; | ||
| 144 | if (!group->meth->field_mul(group, z1, z1, x2, ctx)) | ||
| 145 | goto err; | ||
| 146 | if (!group->meth->field_mul(group, t2, x1, z1, ctx)) | ||
| 147 | goto err; | ||
| 148 | if (!BN_GF2m_add(z1, z1, x1)) | ||
| 149 | goto err; | ||
| 150 | if (!group->meth->field_sqr(group, z1, z1, ctx)) | ||
| 151 | goto err; | ||
| 152 | if (!group->meth->field_mul(group, x1, z1, t1, ctx)) | ||
| 153 | goto err; | ||
| 154 | if (!BN_GF2m_add(x1, x1, t2)) | ||
| 155 | goto err; | ||
| 156 | |||
| 157 | ret = 1; | ||
| 158 | |||
| 159 | err: | ||
| 160 | BN_CTX_end(ctx); | ||
| 161 | return ret; | ||
| 162 | } | ||
| 163 | |||
| 164 | /* Compute the x, y affine coordinates from the point (x1, z1) (x2, z2) | ||
| 165 | * using Montgomery point multiplication algorithm Mxy() in appendix of | ||
| 166 | * Lopez, J. and Dahab, R. "Fast multiplication on elliptic curves over | ||
| 167 | * GF(2^m) without precomputation" (CHES '99, LNCS 1717). | ||
| 168 | * Returns: | ||
| 169 | * 0 on error | ||
| 170 | * 1 if return value should be the point at infinity | ||
| 171 | * 2 otherwise | ||
| 172 | */ | ||
| 173 | static int | ||
| 174 | gf2m_Mxy(const EC_GROUP *group, const BIGNUM *x, const BIGNUM *y, BIGNUM *x1, | ||
| 175 | BIGNUM *z1, BIGNUM *x2, BIGNUM *z2, BN_CTX *ctx) | ||
| 176 | { | ||
| 177 | BIGNUM *t3, *t4, *t5; | ||
| 178 | int ret = 0; | ||
| 179 | |||
| 180 | if (BN_is_zero(z1)) { | ||
| 181 | BN_zero(x2); | ||
| 182 | BN_zero(z2); | ||
| 183 | return 1; | ||
| 184 | } | ||
| 185 | if (BN_is_zero(z2)) { | ||
| 186 | if (!bn_copy(x2, x)) | ||
| 187 | return 0; | ||
| 188 | if (!BN_GF2m_add(z2, x, y)) | ||
| 189 | return 0; | ||
| 190 | return 2; | ||
| 191 | } | ||
| 192 | /* Since Mxy is static we can guarantee that ctx != NULL. */ | ||
| 193 | BN_CTX_start(ctx); | ||
| 194 | if ((t3 = BN_CTX_get(ctx)) == NULL) | ||
| 195 | goto err; | ||
| 196 | if ((t4 = BN_CTX_get(ctx)) == NULL) | ||
| 197 | goto err; | ||
| 198 | if ((t5 = BN_CTX_get(ctx)) == NULL) | ||
| 199 | goto err; | ||
| 200 | |||
| 201 | if (!BN_one(t5)) | ||
| 202 | goto err; | ||
| 203 | |||
| 204 | if (!group->meth->field_mul(group, t3, z1, z2, ctx)) | ||
| 205 | goto err; | ||
| 206 | |||
| 207 | if (!group->meth->field_mul(group, z1, z1, x, ctx)) | ||
| 208 | goto err; | ||
| 209 | if (!BN_GF2m_add(z1, z1, x1)) | ||
| 210 | goto err; | ||
| 211 | if (!group->meth->field_mul(group, z2, z2, x, ctx)) | ||
| 212 | goto err; | ||
| 213 | if (!group->meth->field_mul(group, x1, z2, x1, ctx)) | ||
| 214 | goto err; | ||
| 215 | if (!BN_GF2m_add(z2, z2, x2)) | ||
| 216 | goto err; | ||
| 217 | |||
| 218 | if (!group->meth->field_mul(group, z2, z2, z1, ctx)) | ||
| 219 | goto err; | ||
| 220 | if (!group->meth->field_sqr(group, t4, x, ctx)) | ||
| 221 | goto err; | ||
| 222 | if (!BN_GF2m_add(t4, t4, y)) | ||
| 223 | goto err; | ||
| 224 | if (!group->meth->field_mul(group, t4, t4, t3, ctx)) | ||
| 225 | goto err; | ||
| 226 | if (!BN_GF2m_add(t4, t4, z2)) | ||
| 227 | goto err; | ||
| 228 | |||
| 229 | if (!group->meth->field_mul(group, t3, t3, x, ctx)) | ||
| 230 | goto err; | ||
| 231 | if (!group->meth->field_div(group, t3, t5, t3, ctx)) | ||
| 232 | goto err; | ||
| 233 | if (!group->meth->field_mul(group, t4, t3, t4, ctx)) | ||
| 234 | goto err; | ||
| 235 | if (!group->meth->field_mul(group, x2, x1, t3, ctx)) | ||
| 236 | goto err; | ||
| 237 | if (!BN_GF2m_add(z2, x2, x)) | ||
| 238 | goto err; | ||
| 239 | |||
| 240 | if (!group->meth->field_mul(group, z2, z2, t4, ctx)) | ||
| 241 | goto err; | ||
| 242 | if (!BN_GF2m_add(z2, z2, y)) | ||
| 243 | goto err; | ||
| 244 | |||
| 245 | ret = 2; | ||
| 246 | |||
| 247 | err: | ||
| 248 | BN_CTX_end(ctx); | ||
| 249 | return ret; | ||
| 250 | } | ||
| 251 | |||
| 252 | |||
| 253 | /* Computes scalar*point and stores the result in r. | ||
| 254 | * point can not equal r. | ||
| 255 | * Uses a modified algorithm 2P of | ||
| 256 | * Lopez, J. and Dahab, R. "Fast multiplication on elliptic curves over | ||
| 257 | * GF(2^m) without precomputation" (CHES '99, LNCS 1717). | ||
| 258 | * | ||
| 259 | * To protect against side-channel attack the function uses constant time swap, | ||
| 260 | * avoiding conditional branches. | ||
| 261 | */ | ||
| 262 | static int | ||
| 263 | ec_GF2m_montgomery_point_multiply(const EC_GROUP *group, EC_POINT *r, | ||
| 264 | const BIGNUM *scalar, const EC_POINT *point, BN_CTX *ctx) | ||
| 265 | { | ||
| 266 | BIGNUM *x1, *x2, *z1, *z2; | ||
| 267 | int ret = 0, i; | ||
| 268 | BN_ULONG mask, word; | ||
| 269 | |||
| 270 | if (r == point) { | ||
| 271 | ECerror(EC_R_INVALID_ARGUMENT); | ||
| 272 | return 0; | ||
| 273 | } | ||
| 274 | /* if result should be point at infinity */ | ||
| 275 | if ((scalar == NULL) || BN_is_zero(scalar) || (point == NULL) || | ||
| 276 | EC_POINT_is_at_infinity(group, point) > 0) { | ||
| 277 | return EC_POINT_set_to_infinity(group, r); | ||
| 278 | } | ||
| 279 | /* only support affine coordinates */ | ||
| 280 | if (!point->Z_is_one) | ||
| 281 | return 0; | ||
| 282 | |||
| 283 | /* Since point_multiply is static we can guarantee that ctx != NULL. */ | ||
| 284 | BN_CTX_start(ctx); | ||
| 285 | if ((x1 = BN_CTX_get(ctx)) == NULL) | ||
| 286 | goto err; | ||
| 287 | if ((z1 = BN_CTX_get(ctx)) == NULL) | ||
| 288 | goto err; | ||
| 289 | |||
| 290 | x2 = &r->X; | ||
| 291 | z2 = &r->Y; | ||
| 292 | |||
| 293 | if (!bn_wexpand(x1, group->field.top)) | ||
| 294 | goto err; | ||
| 295 | if (!bn_wexpand(z1, group->field.top)) | ||
| 296 | goto err; | ||
| 297 | if (!bn_wexpand(x2, group->field.top)) | ||
| 298 | goto err; | ||
| 299 | if (!bn_wexpand(z2, group->field.top)) | ||
| 300 | goto err; | ||
| 301 | |||
| 302 | if (!BN_GF2m_mod_arr(x1, &point->X, group->poly)) | ||
| 303 | goto err; /* x1 = x */ | ||
| 304 | if (!BN_one(z1)) | ||
| 305 | goto err; /* z1 = 1 */ | ||
| 306 | if (!group->meth->field_sqr(group, z2, x1, ctx)) | ||
| 307 | goto err; /* z2 = x1^2 = x^2 */ | ||
| 308 | if (!group->meth->field_sqr(group, x2, z2, ctx)) | ||
| 309 | goto err; | ||
| 310 | if (!BN_GF2m_add(x2, x2, &group->b)) | ||
| 311 | goto err; /* x2 = x^4 + b */ | ||
| 312 | |||
| 313 | /* find top most bit and go one past it */ | ||
| 314 | i = scalar->top - 1; | ||
| 315 | mask = BN_TBIT; | ||
| 316 | word = scalar->d[i]; | ||
| 317 | while (!(word & mask)) | ||
| 318 | mask >>= 1; | ||
| 319 | mask >>= 1; | ||
| 320 | /* if top most bit was at word break, go to next word */ | ||
| 321 | if (!mask) { | ||
| 322 | i--; | ||
| 323 | mask = BN_TBIT; | ||
| 324 | } | ||
| 325 | for (; i >= 0; i--) { | ||
| 326 | word = scalar->d[i]; | ||
| 327 | while (mask) { | ||
| 328 | if (!BN_swap_ct(word & mask, x1, x2, group->field.top)) | ||
| 329 | goto err; | ||
| 330 | if (!BN_swap_ct(word & mask, z1, z2, group->field.top)) | ||
| 331 | goto err; | ||
| 332 | if (!gf2m_Madd(group, &point->X, x2, z2, x1, z1, ctx)) | ||
| 333 | goto err; | ||
| 334 | if (!gf2m_Mdouble(group, x1, z1, ctx)) | ||
| 335 | goto err; | ||
| 336 | if (!BN_swap_ct(word & mask, x1, x2, group->field.top)) | ||
| 337 | goto err; | ||
| 338 | if (!BN_swap_ct(word & mask, z1, z2, group->field.top)) | ||
| 339 | goto err; | ||
| 340 | mask >>= 1; | ||
| 341 | } | ||
| 342 | mask = BN_TBIT; | ||
| 343 | } | ||
| 344 | |||
| 345 | /* convert out of "projective" coordinates */ | ||
| 346 | i = gf2m_Mxy(group, &point->X, &point->Y, x1, z1, x2, z2, ctx); | ||
| 347 | if (i == 0) | ||
| 348 | goto err; | ||
| 349 | else if (i == 1) { | ||
| 350 | if (!EC_POINT_set_to_infinity(group, r)) | ||
| 351 | goto err; | ||
| 352 | } else { | ||
| 353 | if (!BN_one(&r->Z)) | ||
| 354 | goto err; | ||
| 355 | r->Z_is_one = 1; | ||
| 356 | } | ||
| 357 | |||
| 358 | /* GF(2^m) field elements should always have BIGNUM::neg = 0 */ | ||
| 359 | BN_set_negative(&r->X, 0); | ||
| 360 | BN_set_negative(&r->Y, 0); | ||
| 361 | |||
| 362 | ret = 1; | ||
| 363 | |||
| 364 | err: | ||
| 365 | BN_CTX_end(ctx); | ||
| 366 | return ret; | ||
| 367 | } | ||
| 368 | |||
| 369 | |||
| 370 | /* Computes the sum | ||
| 371 | * scalar*group->generator + scalars[0]*points[0] + ... + scalars[num-1]*points[num-1] | ||
| 372 | * gracefully ignoring NULL scalar values. | ||
| 373 | */ | ||
| 374 | int | ||
| 375 | ec_GF2m_simple_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar, | ||
| 376 | size_t num, const EC_POINT *points[], const BIGNUM *scalars[], BN_CTX *ctx) | ||
| 377 | { | ||
| 378 | EC_POINT *p = NULL; | ||
| 379 | EC_POINT *acc = NULL; | ||
| 380 | size_t i; | ||
| 381 | int ret = 0; | ||
| 382 | |||
| 383 | /* | ||
| 384 | * This implementation is more efficient than the wNAF implementation | ||
| 385 | * for 2 or fewer points. Use the ec_wNAF_mul implementation for 3 | ||
| 386 | * or more points, or if we can perform a fast multiplication based | ||
| 387 | * on precomputation. | ||
| 388 | */ | ||
| 389 | if ((scalar && (num > 1)) || (num > 2) || | ||
| 390 | (num == 0 && EC_GROUP_have_precompute_mult(group))) { | ||
| 391 | ret = ec_wNAF_mul(group, r, scalar, num, points, scalars, ctx); | ||
| 392 | goto err; | ||
| 393 | } | ||
| 394 | if ((p = EC_POINT_new(group)) == NULL) | ||
| 395 | goto err; | ||
| 396 | if ((acc = EC_POINT_new(group)) == NULL) | ||
| 397 | goto err; | ||
| 398 | |||
| 399 | if (!EC_POINT_set_to_infinity(group, acc)) | ||
| 400 | goto err; | ||
| 401 | |||
| 402 | if (scalar) { | ||
| 403 | if (!ec_GF2m_montgomery_point_multiply(group, p, scalar, group->generator, ctx)) | ||
| 404 | goto err; | ||
| 405 | if (BN_is_negative(scalar)) | ||
| 406 | if (!group->meth->invert(group, p, ctx)) | ||
| 407 | goto err; | ||
| 408 | if (!group->meth->add(group, acc, acc, p, ctx)) | ||
| 409 | goto err; | ||
| 410 | } | ||
| 411 | for (i = 0; i < num; i++) { | ||
| 412 | if (!ec_GF2m_montgomery_point_multiply(group, p, scalars[i], points[i], ctx)) | ||
| 413 | goto err; | ||
| 414 | if (BN_is_negative(scalars[i])) | ||
| 415 | if (!group->meth->invert(group, p, ctx)) | ||
| 416 | goto err; | ||
| 417 | if (!group->meth->add(group, acc, acc, p, ctx)) | ||
| 418 | goto err; | ||
| 419 | } | ||
| 420 | |||
| 421 | if (!EC_POINT_copy(r, acc)) | ||
| 422 | goto err; | ||
| 423 | |||
| 424 | ret = 1; | ||
| 425 | |||
| 426 | err: | ||
| 427 | EC_POINT_free(p); | ||
| 428 | EC_POINT_free(acc); | ||
| 429 | |||
| 430 | return ret; | ||
| 431 | } | ||
| 432 | |||
| 433 | |||
| 434 | /* Precomputation for point multiplication: fall back to wNAF methods | ||
| 435 | * because ec_GF2m_simple_mul() uses ec_wNAF_mul() if appropriate */ | ||
| 436 | |||
| 437 | int | ||
| 438 | ec_GF2m_precompute_mult(EC_GROUP *group, BN_CTX *ctx) | ||
| 439 | { | ||
| 440 | return ec_wNAF_precompute_mult(group, ctx); | ||
| 441 | } | ||
| 442 | |||
| 443 | int | ||
| 444 | ec_GF2m_have_precompute_mult(const EC_GROUP *group) | ||
| 445 | { | ||
| 446 | return ec_wNAF_have_precompute_mult(group); | ||
| 447 | } | ||
| 448 | |||
| 449 | #endif | ||
