diff options
author | tedu <> | 2014-05-06 03:56:27 +0000 |
---|---|---|
committer | tedu <> | 2014-05-06 03:56:27 +0000 |
commit | 2518b24aa4315d557b967bff48dfc9efed909569 (patch) | |
tree | ce2ee4fdddbbe61dd0ccb045a1604a3d92a86a00 /src/lib/libcrypto/ec/ec2_mult.c | |
parent | 0539604f5771dae2c3ecffa8122b5651ff283719 (diff) | |
download | openbsd-2518b24aa4315d557b967bff48dfc9efed909569.tar.gz openbsd-2518b24aa4315d557b967bff48dfc9efed909569.tar.bz2 openbsd-2518b24aa4315d557b967bff48dfc9efed909569.zip |
knf approximation
Diffstat (limited to '')
-rw-r--r-- | src/lib/libcrypto/ec/ec2_mult.c | 374 |
1 files changed, 213 insertions, 161 deletions
diff --git a/src/lib/libcrypto/ec/ec2_mult.c b/src/lib/libcrypto/ec/ec2_mult.c index 1c575dc47a..040d7bb278 100644 --- a/src/lib/libcrypto/ec/ec2_mult.c +++ b/src/lib/libcrypto/ec/ec2_mult.c | |||
@@ -21,7 +21,7 @@ | |||
21 | * are met: | 21 | * are met: |
22 | * | 22 | * |
23 | * 1. Redistributions of source code must retain the above copyright | 23 | * 1. Redistributions of source code must retain the above copyright |
24 | * notice, this list of conditions and the following disclaimer. | 24 | * notice, this list of conditions and the following disclaimer. |
25 | * | 25 | * |
26 | * 2. Redistributions in binary form must reproduce the above copyright | 26 | * 2. Redistributions in binary form must reproduce the above copyright |
27 | * notice, this list of conditions and the following disclaimer in | 27 | * notice, this list of conditions and the following disclaimer in |
@@ -74,178 +74,215 @@ | |||
74 | #ifndef OPENSSL_NO_EC2M | 74 | #ifndef OPENSSL_NO_EC2M |
75 | 75 | ||
76 | 76 | ||
77 | /* Compute the x-coordinate x/z for the point 2*(x/z) in Montgomery projective | 77 | /* Compute the x-coordinate x/z for the point 2*(x/z) in Montgomery projective |
78 | * coordinates. | 78 | * coordinates. |
79 | * Uses algorithm Mdouble in appendix of | 79 | * Uses algorithm Mdouble in appendix of |
80 | * Lopez, J. and Dahab, R. "Fast multiplication on elliptic curves over | 80 | * Lopez, J. and Dahab, R. "Fast multiplication on elliptic curves over |
81 | * GF(2^m) without precomputation" (CHES '99, LNCS 1717). | 81 | * GF(2^m) without precomputation" (CHES '99, LNCS 1717). |
82 | * modified to not require precomputation of c=b^{2^{m-1}}. | 82 | * modified to not require precomputation of c=b^{2^{m-1}}. |
83 | */ | 83 | */ |
84 | static int gf2m_Mdouble(const EC_GROUP *group, BIGNUM *x, BIGNUM *z, BN_CTX *ctx) | 84 | static int |
85 | { | 85 | gf2m_Mdouble(const EC_GROUP *group, BIGNUM *x, BIGNUM *z, BN_CTX *ctx) |
86 | { | ||
86 | BIGNUM *t1; | 87 | BIGNUM *t1; |
87 | int ret = 0; | 88 | int ret = 0; |
88 | 89 | ||
89 | /* Since Mdouble is static we can guarantee that ctx != NULL. */ | 90 | /* Since Mdouble is static we can guarantee that ctx != NULL. */ |
90 | BN_CTX_start(ctx); | 91 | BN_CTX_start(ctx); |
91 | t1 = BN_CTX_get(ctx); | 92 | t1 = BN_CTX_get(ctx); |
92 | if (t1 == NULL) goto err; | 93 | if (t1 == NULL) |
94 | goto err; | ||
93 | 95 | ||
94 | if (!group->meth->field_sqr(group, x, x, ctx)) goto err; | 96 | if (!group->meth->field_sqr(group, x, x, ctx)) |
95 | if (!group->meth->field_sqr(group, t1, z, ctx)) goto err; | 97 | goto err; |
96 | if (!group->meth->field_mul(group, z, x, t1, ctx)) goto err; | 98 | if (!group->meth->field_sqr(group, t1, z, ctx)) |
97 | if (!group->meth->field_sqr(group, x, x, ctx)) goto err; | 99 | goto err; |
98 | if (!group->meth->field_sqr(group, t1, t1, ctx)) goto err; | 100 | if (!group->meth->field_mul(group, z, x, t1, ctx)) |
99 | if (!group->meth->field_mul(group, t1, &group->b, t1, ctx)) goto err; | 101 | goto err; |
100 | if (!BN_GF2m_add(x, x, t1)) goto err; | 102 | if (!group->meth->field_sqr(group, x, x, ctx)) |
103 | goto err; | ||
104 | if (!group->meth->field_sqr(group, t1, t1, ctx)) | ||
105 | goto err; | ||
106 | if (!group->meth->field_mul(group, t1, &group->b, t1, ctx)) | ||
107 | goto err; | ||
108 | if (!BN_GF2m_add(x, x, t1)) | ||
109 | goto err; | ||
101 | 110 | ||
102 | ret = 1; | 111 | ret = 1; |
103 | 112 | ||
104 | err: | 113 | err: |
105 | BN_CTX_end(ctx); | 114 | BN_CTX_end(ctx); |
106 | return ret; | 115 | return ret; |
107 | } | 116 | } |
108 | 117 | ||
109 | /* Compute the x-coordinate x1/z1 for the point (x1/z1)+(x2/x2) in Montgomery | 118 | /* Compute the x-coordinate x1/z1 for the point (x1/z1)+(x2/x2) in Montgomery |
110 | * projective coordinates. | 119 | * projective coordinates. |
111 | * Uses algorithm Madd in appendix of | 120 | * Uses algorithm Madd in appendix of |
112 | * Lopez, J. and Dahab, R. "Fast multiplication on elliptic curves over | 121 | * Lopez, J. and Dahab, R. "Fast multiplication on elliptic curves over |
113 | * GF(2^m) without precomputation" (CHES '99, LNCS 1717). | 122 | * GF(2^m) without precomputation" (CHES '99, LNCS 1717). |
114 | */ | 123 | */ |
115 | static int gf2m_Madd(const EC_GROUP *group, const BIGNUM *x, BIGNUM *x1, BIGNUM *z1, | 124 | static int |
116 | const BIGNUM *x2, const BIGNUM *z2, BN_CTX *ctx) | 125 | gf2m_Madd(const EC_GROUP *group, const BIGNUM *x, BIGNUM *x1, BIGNUM *z1, |
117 | { | 126 | const BIGNUM *x2, const BIGNUM *z2, BN_CTX *ctx) |
127 | { | ||
118 | BIGNUM *t1, *t2; | 128 | BIGNUM *t1, *t2; |
119 | int ret = 0; | 129 | int ret = 0; |
120 | 130 | ||
121 | /* Since Madd is static we can guarantee that ctx != NULL. */ | 131 | /* Since Madd is static we can guarantee that ctx != NULL. */ |
122 | BN_CTX_start(ctx); | 132 | BN_CTX_start(ctx); |
123 | t1 = BN_CTX_get(ctx); | 133 | t1 = BN_CTX_get(ctx); |
124 | t2 = BN_CTX_get(ctx); | 134 | t2 = BN_CTX_get(ctx); |
125 | if (t2 == NULL) goto err; | 135 | if (t2 == NULL) |
136 | goto err; | ||
126 | 137 | ||
127 | if (!BN_copy(t1, x)) goto err; | 138 | if (!BN_copy(t1, x)) |
128 | if (!group->meth->field_mul(group, x1, x1, z2, ctx)) goto err; | 139 | goto err; |
129 | if (!group->meth->field_mul(group, z1, z1, x2, ctx)) goto err; | 140 | if (!group->meth->field_mul(group, x1, x1, z2, ctx)) |
130 | if (!group->meth->field_mul(group, t2, x1, z1, ctx)) goto err; | 141 | goto err; |
131 | if (!BN_GF2m_add(z1, z1, x1)) goto err; | 142 | if (!group->meth->field_mul(group, z1, z1, x2, ctx)) |
132 | if (!group->meth->field_sqr(group, z1, z1, ctx)) goto err; | 143 | goto err; |
133 | if (!group->meth->field_mul(group, x1, z1, t1, ctx)) goto err; | 144 | if (!group->meth->field_mul(group, t2, x1, z1, ctx)) |
134 | if (!BN_GF2m_add(x1, x1, t2)) goto err; | 145 | goto err; |
146 | if (!BN_GF2m_add(z1, z1, x1)) | ||
147 | goto err; | ||
148 | if (!group->meth->field_sqr(group, z1, z1, ctx)) | ||
149 | goto err; | ||
150 | if (!group->meth->field_mul(group, x1, z1, t1, ctx)) | ||
151 | goto err; | ||
152 | if (!BN_GF2m_add(x1, x1, t2)) | ||
153 | goto err; | ||
135 | 154 | ||
136 | ret = 1; | 155 | ret = 1; |
137 | 156 | ||
138 | err: | 157 | err: |
139 | BN_CTX_end(ctx); | 158 | BN_CTX_end(ctx); |
140 | return ret; | 159 | return ret; |
141 | } | 160 | } |
142 | 161 | ||
143 | /* Compute the x, y affine coordinates from the point (x1, z1) (x2, z2) | 162 | /* Compute the x, y affine coordinates from the point (x1, z1) (x2, z2) |
144 | * using Montgomery point multiplication algorithm Mxy() in appendix of | 163 | * using Montgomery point multiplication algorithm Mxy() in appendix of |
145 | * Lopez, J. and Dahab, R. "Fast multiplication on elliptic curves over | 164 | * Lopez, J. and Dahab, R. "Fast multiplication on elliptic curves over |
146 | * GF(2^m) without precomputation" (CHES '99, LNCS 1717). | 165 | * GF(2^m) without precomputation" (CHES '99, LNCS 1717). |
147 | * Returns: | 166 | * Returns: |
148 | * 0 on error | 167 | * 0 on error |
149 | * 1 if return value should be the point at infinity | 168 | * 1 if return value should be the point at infinity |
150 | * 2 otherwise | 169 | * 2 otherwise |
151 | */ | 170 | */ |
152 | static int gf2m_Mxy(const EC_GROUP *group, const BIGNUM *x, const BIGNUM *y, BIGNUM *x1, | 171 | static int |
153 | BIGNUM *z1, BIGNUM *x2, BIGNUM *z2, BN_CTX *ctx) | 172 | gf2m_Mxy(const EC_GROUP *group, const BIGNUM *x, const BIGNUM *y, BIGNUM *x1, |
154 | { | 173 | BIGNUM *z1, BIGNUM *x2, BIGNUM *z2, BN_CTX *ctx) |
174 | { | ||
155 | BIGNUM *t3, *t4, *t5; | 175 | BIGNUM *t3, *t4, *t5; |
156 | int ret = 0; | 176 | int ret = 0; |
157 | 177 | ||
158 | if (BN_is_zero(z1)) | 178 | if (BN_is_zero(z1)) { |
159 | { | ||
160 | BN_zero(x2); | 179 | BN_zero(x2); |
161 | BN_zero(z2); | 180 | BN_zero(z2); |
162 | return 1; | 181 | return 1; |
163 | } | 182 | } |
164 | 183 | if (BN_is_zero(z2)) { | |
165 | if (BN_is_zero(z2)) | 184 | if (!BN_copy(x2, x)) |
166 | { | 185 | return 0; |
167 | if (!BN_copy(x2, x)) return 0; | 186 | if (!BN_GF2m_add(z2, x, y)) |
168 | if (!BN_GF2m_add(z2, x, y)) return 0; | 187 | return 0; |
169 | return 2; | 188 | return 2; |
170 | } | 189 | } |
171 | |||
172 | /* Since Mxy is static we can guarantee that ctx != NULL. */ | 190 | /* Since Mxy is static we can guarantee that ctx != NULL. */ |
173 | BN_CTX_start(ctx); | 191 | BN_CTX_start(ctx); |
174 | t3 = BN_CTX_get(ctx); | 192 | t3 = BN_CTX_get(ctx); |
175 | t4 = BN_CTX_get(ctx); | 193 | t4 = BN_CTX_get(ctx); |
176 | t5 = BN_CTX_get(ctx); | 194 | t5 = BN_CTX_get(ctx); |
177 | if (t5 == NULL) goto err; | 195 | if (t5 == NULL) |
196 | goto err; | ||
178 | 197 | ||
179 | if (!BN_one(t5)) goto err; | 198 | if (!BN_one(t5)) |
199 | goto err; | ||
180 | 200 | ||
181 | if (!group->meth->field_mul(group, t3, z1, z2, ctx)) goto err; | 201 | if (!group->meth->field_mul(group, t3, z1, z2, ctx)) |
202 | goto err; | ||
182 | 203 | ||
183 | if (!group->meth->field_mul(group, z1, z1, x, ctx)) goto err; | 204 | if (!group->meth->field_mul(group, z1, z1, x, ctx)) |
184 | if (!BN_GF2m_add(z1, z1, x1)) goto err; | 205 | goto err; |
185 | if (!group->meth->field_mul(group, z2, z2, x, ctx)) goto err; | 206 | if (!BN_GF2m_add(z1, z1, x1)) |
186 | if (!group->meth->field_mul(group, x1, z2, x1, ctx)) goto err; | 207 | goto err; |
187 | if (!BN_GF2m_add(z2, z2, x2)) goto err; | 208 | if (!group->meth->field_mul(group, z2, z2, x, ctx)) |
209 | goto err; | ||
210 | if (!group->meth->field_mul(group, x1, z2, x1, ctx)) | ||
211 | goto err; | ||
212 | if (!BN_GF2m_add(z2, z2, x2)) | ||
213 | goto err; | ||
188 | 214 | ||
189 | if (!group->meth->field_mul(group, z2, z2, z1, ctx)) goto err; | 215 | if (!group->meth->field_mul(group, z2, z2, z1, ctx)) |
190 | if (!group->meth->field_sqr(group, t4, x, ctx)) goto err; | 216 | goto err; |
191 | if (!BN_GF2m_add(t4, t4, y)) goto err; | 217 | if (!group->meth->field_sqr(group, t4, x, ctx)) |
192 | if (!group->meth->field_mul(group, t4, t4, t3, ctx)) goto err; | 218 | goto err; |
193 | if (!BN_GF2m_add(t4, t4, z2)) goto err; | 219 | if (!BN_GF2m_add(t4, t4, y)) |
220 | goto err; | ||
221 | if (!group->meth->field_mul(group, t4, t4, t3, ctx)) | ||
222 | goto err; | ||
223 | if (!BN_GF2m_add(t4, t4, z2)) | ||
224 | goto err; | ||
194 | 225 | ||
195 | if (!group->meth->field_mul(group, t3, t3, x, ctx)) goto err; | 226 | if (!group->meth->field_mul(group, t3, t3, x, ctx)) |
196 | if (!group->meth->field_div(group, t3, t5, t3, ctx)) goto err; | 227 | goto err; |
197 | if (!group->meth->field_mul(group, t4, t3, t4, ctx)) goto err; | 228 | if (!group->meth->field_div(group, t3, t5, t3, ctx)) |
198 | if (!group->meth->field_mul(group, x2, x1, t3, ctx)) goto err; | 229 | goto err; |
199 | if (!BN_GF2m_add(z2, x2, x)) goto err; | 230 | if (!group->meth->field_mul(group, t4, t3, t4, ctx)) |
231 | goto err; | ||
232 | if (!group->meth->field_mul(group, x2, x1, t3, ctx)) | ||
233 | goto err; | ||
234 | if (!BN_GF2m_add(z2, x2, x)) | ||
235 | goto err; | ||
200 | 236 | ||
201 | if (!group->meth->field_mul(group, z2, z2, t4, ctx)) goto err; | 237 | if (!group->meth->field_mul(group, z2, z2, t4, ctx)) |
202 | if (!BN_GF2m_add(z2, z2, y)) goto err; | 238 | goto err; |
239 | if (!BN_GF2m_add(z2, z2, y)) | ||
240 | goto err; | ||
203 | 241 | ||
204 | ret = 2; | 242 | ret = 2; |
205 | 243 | ||
206 | err: | 244 | err: |
207 | BN_CTX_end(ctx); | 245 | BN_CTX_end(ctx); |
208 | return ret; | 246 | return ret; |
209 | } | 247 | } |
210 | 248 | ||
211 | 249 | ||
212 | /* Computes scalar*point and stores the result in r. | 250 | /* Computes scalar*point and stores the result in r. |
213 | * point can not equal r. | 251 | * point can not equal r. |
214 | * Uses a modified algorithm 2P of | 252 | * Uses a modified algorithm 2P of |
215 | * Lopez, J. and Dahab, R. "Fast multiplication on elliptic curves over | 253 | * Lopez, J. and Dahab, R. "Fast multiplication on elliptic curves over |
216 | * GF(2^m) without precomputation" (CHES '99, LNCS 1717). | 254 | * GF(2^m) without precomputation" (CHES '99, LNCS 1717). |
217 | * | 255 | * |
218 | * To protect against side-channel attack the function uses constant time swap, | 256 | * To protect against side-channel attack the function uses constant time swap, |
219 | * avoiding conditional branches. | 257 | * avoiding conditional branches. |
220 | */ | 258 | */ |
221 | static int ec_GF2m_montgomery_point_multiply(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar, | 259 | static int |
222 | const EC_POINT *point, BN_CTX *ctx) | 260 | ec_GF2m_montgomery_point_multiply(const EC_GROUP *group, EC_POINT *r, |
223 | { | 261 | const BIGNUM *scalar, const EC_POINT *point, BN_CTX *ctx) |
262 | { | ||
224 | BIGNUM *x1, *x2, *z1, *z2; | 263 | BIGNUM *x1, *x2, *z1, *z2; |
225 | int ret = 0, i; | 264 | int ret = 0, i; |
226 | BN_ULONG mask,word; | 265 | BN_ULONG mask, word; |
227 | 266 | ||
228 | if (r == point) | 267 | if (r == point) { |
229 | { | ||
230 | ECerr(EC_F_EC_GF2M_MONTGOMERY_POINT_MULTIPLY, EC_R_INVALID_ARGUMENT); | 268 | ECerr(EC_F_EC_GF2M_MONTGOMERY_POINT_MULTIPLY, EC_R_INVALID_ARGUMENT); |
231 | return 0; | 269 | return 0; |
232 | } | 270 | } |
233 | |||
234 | /* if result should be point at infinity */ | 271 | /* if result should be point at infinity */ |
235 | if ((scalar == NULL) || BN_is_zero(scalar) || (point == NULL) || | 272 | if ((scalar == NULL) || BN_is_zero(scalar) || (point == NULL) || |
236 | EC_POINT_is_at_infinity(group, point)) | 273 | EC_POINT_is_at_infinity(group, point)) { |
237 | { | ||
238 | return EC_POINT_set_to_infinity(group, r); | 274 | return EC_POINT_set_to_infinity(group, r); |
239 | } | 275 | } |
240 | |||
241 | /* only support affine coordinates */ | 276 | /* only support affine coordinates */ |
242 | if (!point->Z_is_one) return 0; | 277 | if (!point->Z_is_one) |
278 | return 0; | ||
243 | 279 | ||
244 | /* Since point_multiply is static we can guarantee that ctx != NULL. */ | 280 | /* Since point_multiply is static we can guarantee that ctx != NULL. */ |
245 | BN_CTX_start(ctx); | 281 | BN_CTX_start(ctx); |
246 | x1 = BN_CTX_get(ctx); | 282 | x1 = BN_CTX_get(ctx); |
247 | z1 = BN_CTX_get(ctx); | 283 | z1 = BN_CTX_get(ctx); |
248 | if (z1 == NULL) goto err; | 284 | if (z1 == NULL) |
285 | goto err; | ||
249 | 286 | ||
250 | x2 = &r->X; | 287 | x2 = &r->X; |
251 | z2 = &r->Y; | 288 | z2 = &r->Y; |
@@ -255,53 +292,57 @@ static int ec_GF2m_montgomery_point_multiply(const EC_GROUP *group, EC_POINT *r, | |||
255 | bn_wexpand(x2, group->field.top); | 292 | bn_wexpand(x2, group->field.top); |
256 | bn_wexpand(z2, group->field.top); | 293 | bn_wexpand(z2, group->field.top); |
257 | 294 | ||
258 | if (!BN_GF2m_mod_arr(x1, &point->X, group->poly)) goto err; /* x1 = x */ | 295 | if (!BN_GF2m_mod_arr(x1, &point->X, group->poly)) |
259 | if (!BN_one(z1)) goto err; /* z1 = 1 */ | 296 | goto err; /* x1 = x */ |
260 | if (!group->meth->field_sqr(group, z2, x1, ctx)) goto err; /* z2 = x1^2 = x^2 */ | 297 | if (!BN_one(z1)) |
261 | if (!group->meth->field_sqr(group, x2, z2, ctx)) goto err; | 298 | goto err; /* z1 = 1 */ |
262 | if (!BN_GF2m_add(x2, x2, &group->b)) goto err; /* x2 = x^4 + b */ | 299 | if (!group->meth->field_sqr(group, z2, x1, ctx)) |
300 | goto err; /* z2 = x1^2 = x^2 */ | ||
301 | if (!group->meth->field_sqr(group, x2, z2, ctx)) | ||
302 | goto err; | ||
303 | if (!BN_GF2m_add(x2, x2, &group->b)) | ||
304 | goto err; /* x2 = x^4 + b */ | ||
263 | 305 | ||
264 | /* find top most bit and go one past it */ | 306 | /* find top most bit and go one past it */ |
265 | i = scalar->top - 1; | 307 | i = scalar->top - 1; |
266 | mask = BN_TBIT; | 308 | mask = BN_TBIT; |
267 | word = scalar->d[i]; | 309 | word = scalar->d[i]; |
268 | while (!(word & mask)) mask >>= 1; | 310 | while (!(word & mask)) |
311 | mask >>= 1; | ||
269 | mask >>= 1; | 312 | mask >>= 1; |
270 | /* if top most bit was at word break, go to next word */ | 313 | /* if top most bit was at word break, go to next word */ |
271 | if (!mask) | 314 | if (!mask) { |
272 | { | ||
273 | i--; | 315 | i--; |
274 | mask = BN_TBIT; | 316 | mask = BN_TBIT; |
275 | } | 317 | } |
276 | 318 | for (; i >= 0; i--) { | |
277 | for (; i >= 0; i--) | ||
278 | { | ||
279 | word = scalar->d[i]; | 319 | word = scalar->d[i]; |
280 | while (mask) | 320 | while (mask) { |
281 | { | ||
282 | BN_consttime_swap(word & mask, x1, x2, group->field.top); | 321 | BN_consttime_swap(word & mask, x1, x2, group->field.top); |
283 | BN_consttime_swap(word & mask, z1, z2, group->field.top); | 322 | BN_consttime_swap(word & mask, z1, z2, group->field.top); |
284 | if (!gf2m_Madd(group, &point->X, x2, z2, x1, z1, ctx)) goto err; | 323 | if (!gf2m_Madd(group, &point->X, x2, z2, x1, z1, ctx)) |
285 | if (!gf2m_Mdouble(group, x1, z1, ctx)) goto err; | 324 | goto err; |
325 | if (!gf2m_Mdouble(group, x1, z1, ctx)) | ||
326 | goto err; | ||
286 | BN_consttime_swap(word & mask, x1, x2, group->field.top); | 327 | BN_consttime_swap(word & mask, x1, x2, group->field.top); |
287 | BN_consttime_swap(word & mask, z1, z2, group->field.top); | 328 | BN_consttime_swap(word & mask, z1, z2, group->field.top); |
288 | mask >>= 1; | 329 | mask >>= 1; |
289 | } | ||
290 | mask = BN_TBIT; | ||
291 | } | 330 | } |
331 | mask = BN_TBIT; | ||
332 | } | ||
292 | 333 | ||
293 | /* convert out of "projective" coordinates */ | 334 | /* convert out of "projective" coordinates */ |
294 | i = gf2m_Mxy(group, &point->X, &point->Y, x1, z1, x2, z2, ctx); | 335 | i = gf2m_Mxy(group, &point->X, &point->Y, x1, z1, x2, z2, ctx); |
295 | if (i == 0) goto err; | 336 | if (i == 0) |
296 | else if (i == 1) | 337 | goto err; |
297 | { | 338 | else if (i == 1) { |
298 | if (!EC_POINT_set_to_infinity(group, r)) goto err; | 339 | if (!EC_POINT_set_to_infinity(group, r)) |
299 | } | 340 | goto err; |
300 | else | 341 | } else { |
301 | { | 342 | if (!BN_one(&r->Z)) |
302 | if (!BN_one(&r->Z)) goto err; | 343 | goto err; |
303 | r->Z_is_one = 1; | 344 | r->Z_is_one = 1; |
304 | } | 345 | } |
305 | 346 | ||
306 | /* GF(2^m) field elements should always have BIGNUM::neg = 0 */ | 347 | /* GF(2^m) field elements should always have BIGNUM::neg = 0 */ |
307 | BN_set_negative(&r->X, 0); | 348 | BN_set_negative(&r->X, 0); |
@@ -309,87 +350,98 @@ static int ec_GF2m_montgomery_point_multiply(const EC_GROUP *group, EC_POINT *r, | |||
309 | 350 | ||
310 | ret = 1; | 351 | ret = 1; |
311 | 352 | ||
312 | err: | 353 | err: |
313 | BN_CTX_end(ctx); | 354 | BN_CTX_end(ctx); |
314 | return ret; | 355 | return ret; |
315 | } | 356 | } |
316 | 357 | ||
317 | 358 | ||
318 | /* Computes the sum | 359 | /* Computes the sum |
319 | * scalar*group->generator + scalars[0]*points[0] + ... + scalars[num-1]*points[num-1] | 360 | * scalar*group->generator + scalars[0]*points[0] + ... + scalars[num-1]*points[num-1] |
320 | * gracefully ignoring NULL scalar values. | 361 | * gracefully ignoring NULL scalar values. |
321 | */ | 362 | */ |
322 | int ec_GF2m_simple_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar, | 363 | int |
323 | size_t num, const EC_POINT *points[], const BIGNUM *scalars[], BN_CTX *ctx) | 364 | ec_GF2m_simple_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar, |
324 | { | 365 | size_t num, const EC_POINT *points[], const BIGNUM *scalars[], BN_CTX *ctx) |
366 | { | ||
325 | BN_CTX *new_ctx = NULL; | 367 | BN_CTX *new_ctx = NULL; |
326 | int ret = 0; | 368 | int ret = 0; |
327 | size_t i; | 369 | size_t i; |
328 | EC_POINT *p=NULL; | 370 | EC_POINT *p = NULL; |
329 | EC_POINT *acc = NULL; | 371 | EC_POINT *acc = NULL; |
330 | 372 | ||
331 | if (ctx == NULL) | 373 | if (ctx == NULL) { |
332 | { | ||
333 | ctx = new_ctx = BN_CTX_new(); | 374 | ctx = new_ctx = BN_CTX_new(); |
334 | if (ctx == NULL) | 375 | if (ctx == NULL) |
335 | return 0; | 376 | return 0; |
336 | } | 377 | } |
337 | 378 | /* | |
338 | /* This implementation is more efficient than the wNAF implementation for 2 | 379 | * This implementation is more efficient than the wNAF implementation |
339 | * or fewer points. Use the ec_wNAF_mul implementation for 3 or more points, | 380 | * for 2 or fewer points. Use the ec_wNAF_mul implementation for 3 |
340 | * or if we can perform a fast multiplication based on precomputation. | 381 | * or more points, or if we can perform a fast multiplication based |
382 | * on precomputation. | ||
341 | */ | 383 | */ |
342 | if ((scalar && (num > 1)) || (num > 2) || (num == 0 && EC_GROUP_have_precompute_mult(group))) | 384 | if ((scalar && (num > 1)) || (num > 2) || |
343 | { | 385 | (num == 0 && EC_GROUP_have_precompute_mult(group))) { |
344 | ret = ec_wNAF_mul(group, r, scalar, num, points, scalars, ctx); | 386 | ret = ec_wNAF_mul(group, r, scalar, num, points, scalars, ctx); |
345 | goto err; | 387 | goto err; |
346 | } | 388 | } |
347 | 389 | if ((p = EC_POINT_new(group)) == NULL) | |
348 | if ((p = EC_POINT_new(group)) == NULL) goto err; | 390 | goto err; |
349 | if ((acc = EC_POINT_new(group)) == NULL) goto err; | 391 | if ((acc = EC_POINT_new(group)) == NULL) |
392 | goto err; | ||
350 | 393 | ||
351 | if (!EC_POINT_set_to_infinity(group, acc)) goto err; | 394 | if (!EC_POINT_set_to_infinity(group, acc)) |
395 | goto err; | ||
352 | 396 | ||
353 | if (scalar) | 397 | if (scalar) { |
354 | { | 398 | if (!ec_GF2m_montgomery_point_multiply(group, p, scalar, group->generator, ctx)) |
355 | if (!ec_GF2m_montgomery_point_multiply(group, p, scalar, group->generator, ctx)) goto err; | 399 | goto err; |
356 | if (BN_is_negative(scalar)) | 400 | if (BN_is_negative(scalar)) |
357 | if (!group->meth->invert(group, p, ctx)) goto err; | 401 | if (!group->meth->invert(group, p, ctx)) |
358 | if (!group->meth->add(group, acc, acc, p, ctx)) goto err; | 402 | goto err; |
359 | } | 403 | if (!group->meth->add(group, acc, acc, p, ctx)) |
360 | 404 | goto err; | |
361 | for (i = 0; i < num; i++) | 405 | } |
362 | { | 406 | for (i = 0; i < num; i++) { |
363 | if (!ec_GF2m_montgomery_point_multiply(group, p, scalars[i], points[i], ctx)) goto err; | 407 | if (!ec_GF2m_montgomery_point_multiply(group, p, scalars[i], points[i], ctx)) |
408 | goto err; | ||
364 | if (BN_is_negative(scalars[i])) | 409 | if (BN_is_negative(scalars[i])) |
365 | if (!group->meth->invert(group, p, ctx)) goto err; | 410 | if (!group->meth->invert(group, p, ctx)) |
366 | if (!group->meth->add(group, acc, acc, p, ctx)) goto err; | 411 | goto err; |
367 | } | 412 | if (!group->meth->add(group, acc, acc, p, ctx)) |
413 | goto err; | ||
414 | } | ||
368 | 415 | ||
369 | if (!EC_POINT_copy(r, acc)) goto err; | 416 | if (!EC_POINT_copy(r, acc)) |
417 | goto err; | ||
370 | 418 | ||
371 | ret = 1; | 419 | ret = 1; |
372 | 420 | ||
373 | err: | 421 | err: |
374 | if (p) EC_POINT_free(p); | 422 | if (p) |
375 | if (acc) EC_POINT_free(acc); | 423 | EC_POINT_free(p); |
424 | if (acc) | ||
425 | EC_POINT_free(acc); | ||
376 | if (new_ctx != NULL) | 426 | if (new_ctx != NULL) |
377 | BN_CTX_free(new_ctx); | 427 | BN_CTX_free(new_ctx); |
378 | return ret; | 428 | return ret; |
379 | } | 429 | } |
380 | 430 | ||
381 | 431 | ||
382 | /* Precomputation for point multiplication: fall back to wNAF methods | 432 | /* Precomputation for point multiplication: fall back to wNAF methods |
383 | * because ec_GF2m_simple_mul() uses ec_wNAF_mul() if appropriate */ | 433 | * because ec_GF2m_simple_mul() uses ec_wNAF_mul() if appropriate */ |
384 | 434 | ||
385 | int ec_GF2m_precompute_mult(EC_GROUP *group, BN_CTX *ctx) | 435 | int |
386 | { | 436 | ec_GF2m_precompute_mult(EC_GROUP * group, BN_CTX * ctx) |
437 | { | ||
387 | return ec_wNAF_precompute_mult(group, ctx); | 438 | return ec_wNAF_precompute_mult(group, ctx); |
388 | } | 439 | } |
389 | 440 | ||
390 | int ec_GF2m_have_precompute_mult(const EC_GROUP *group) | 441 | int |
391 | { | 442 | ec_GF2m_have_precompute_mult(const EC_GROUP * group) |
443 | { | ||
392 | return ec_wNAF_have_precompute_mult(group); | 444 | return ec_wNAF_have_precompute_mult(group); |
393 | } | 445 | } |
394 | 446 | ||
395 | #endif | 447 | #endif |