diff options
author | djm <> | 2012-10-13 21:23:50 +0000 |
---|---|---|
committer | djm <> | 2012-10-13 21:23:50 +0000 |
commit | 228cae30b117c2493f69ad3c195341cd6ec8d430 (patch) | |
tree | 29ff00b10d52c0978077c4fd83c33b065bade73e /src/lib/libcrypto/modes | |
parent | 731838c66b52c0ae5888333005b74115a620aa96 (diff) | |
download | openbsd-228cae30b117c2493f69ad3c195341cd6ec8d430.tar.gz openbsd-228cae30b117c2493f69ad3c195341cd6ec8d430.tar.bz2 openbsd-228cae30b117c2493f69ad3c195341cd6ec8d430.zip |
import OpenSSL-1.0.1c
Diffstat (limited to 'src/lib/libcrypto/modes')
-rw-r--r-- | src/lib/libcrypto/modes/asm/ghash-alpha.pl | 451 | ||||
-rw-r--r-- | src/lib/libcrypto/modes/asm/ghash-armv4.pl | 429 | ||||
-rwxr-xr-x | src/lib/libcrypto/modes/asm/ghash-ia64.pl | 463 | ||||
-rw-r--r-- | src/lib/libcrypto/modes/asm/ghash-parisc.pl | 730 | ||||
-rw-r--r-- | src/lib/libcrypto/modes/asm/ghash-s390x.pl | 262 | ||||
-rw-r--r-- | src/lib/libcrypto/modes/asm/ghash-sparcv9.pl | 330 | ||||
-rw-r--r-- | src/lib/libcrypto/modes/asm/ghash-x86.pl | 1342 | ||||
-rw-r--r-- | src/lib/libcrypto/modes/asm/ghash-x86_64.pl | 805 | ||||
-rw-r--r-- | src/lib/libcrypto/modes/cbc128.c | 10 | ||||
-rw-r--r-- | src/lib/libcrypto/modes/ccm128.c | 441 | ||||
-rw-r--r-- | src/lib/libcrypto/modes/cfb128.c | 11 | ||||
-rw-r--r-- | src/lib/libcrypto/modes/ctr128.c | 92 | ||||
-rw-r--r-- | src/lib/libcrypto/modes/cts128.c | 226 | ||||
-rw-r--r-- | src/lib/libcrypto/modes/gcm128.c | 1757 | ||||
-rw-r--r-- | src/lib/libcrypto/modes/modes.h | 76 | ||||
-rw-r--r-- | src/lib/libcrypto/modes/modes_lcl.h | 131 | ||||
-rw-r--r-- | src/lib/libcrypto/modes/ofb128.c | 11 | ||||
-rw-r--r-- | src/lib/libcrypto/modes/xts128.c | 187 |
18 files changed, 7707 insertions, 47 deletions
diff --git a/src/lib/libcrypto/modes/asm/ghash-alpha.pl b/src/lib/libcrypto/modes/asm/ghash-alpha.pl new file mode 100644 index 0000000000..6358b2750f --- /dev/null +++ b/src/lib/libcrypto/modes/asm/ghash-alpha.pl | |||
@@ -0,0 +1,451 @@ | |||
1 | #!/usr/bin/env perl | ||
2 | # | ||
3 | # ==================================================================== | ||
4 | # Written by Andy Polyakov <appro@openssl.org> for the OpenSSL | ||
5 | # project. The module is, however, dual licensed under OpenSSL and | ||
6 | # CRYPTOGAMS licenses depending on where you obtain it. For further | ||
7 | # details see http://www.openssl.org/~appro/cryptogams/. | ||
8 | # ==================================================================== | ||
9 | # | ||
10 | # March 2010 | ||
11 | # | ||
12 | # The module implements "4-bit" GCM GHASH function and underlying | ||
13 | # single multiplication operation in GF(2^128). "4-bit" means that it | ||
14 | # uses 256 bytes per-key table [+128 bytes shared table]. Even though | ||
15 | # loops are aggressively modulo-scheduled in respect to references to | ||
16 | # Htbl and Z.hi updates for 8 cycles per byte, measured performance is | ||
17 | # ~12 cycles per processed byte on 21264 CPU. It seems to be a dynamic | ||
18 | # scheduling "glitch," because uprofile(1) indicates uniform sample | ||
19 | # distribution, as if all instruction bundles execute in 1.5 cycles. | ||
20 | # Meaning that it could have been even faster, yet 12 cycles is ~60% | ||
21 | # better than gcc-generated code and ~80% than code generated by vendor | ||
22 | # compiler. | ||
23 | |||
24 | $cnt="v0"; # $0 | ||
25 | $t0="t0"; | ||
26 | $t1="t1"; | ||
27 | $t2="t2"; | ||
28 | $Thi0="t3"; # $4 | ||
29 | $Tlo0="t4"; | ||
30 | $Thi1="t5"; | ||
31 | $Tlo1="t6"; | ||
32 | $rem="t7"; # $8 | ||
33 | ################# | ||
34 | $Xi="a0"; # $16, input argument block | ||
35 | $Htbl="a1"; | ||
36 | $inp="a2"; | ||
37 | $len="a3"; | ||
38 | $nlo="a4"; # $20 | ||
39 | $nhi="a5"; | ||
40 | $Zhi="t8"; | ||
41 | $Zlo="t9"; | ||
42 | $Xhi="t10"; # $24 | ||
43 | $Xlo="t11"; | ||
44 | $remp="t12"; | ||
45 | $rem_4bit="AT"; # $28 | ||
46 | |||
47 | { my $N; | ||
48 | sub loop() { | ||
49 | |||
50 | $N++; | ||
51 | $code.=<<___; | ||
52 | .align 4 | ||
53 | extbl $Xlo,7,$nlo | ||
54 | and $nlo,0xf0,$nhi | ||
55 | sll $nlo,4,$nlo | ||
56 | and $nlo,0xf0,$nlo | ||
57 | |||
58 | addq $nlo,$Htbl,$nlo | ||
59 | ldq $Zlo,8($nlo) | ||
60 | addq $nhi,$Htbl,$nhi | ||
61 | ldq $Zhi,0($nlo) | ||
62 | |||
63 | and $Zlo,0x0f,$remp | ||
64 | sll $Zhi,60,$t0 | ||
65 | lda $cnt,6(zero) | ||
66 | extbl $Xlo,6,$nlo | ||
67 | |||
68 | ldq $Tlo1,8($nhi) | ||
69 | s8addq $remp,$rem_4bit,$remp | ||
70 | ldq $Thi1,0($nhi) | ||
71 | srl $Zlo,4,$Zlo | ||
72 | |||
73 | ldq $rem,0($remp) | ||
74 | srl $Zhi,4,$Zhi | ||
75 | xor $t0,$Zlo,$Zlo | ||
76 | and $nlo,0xf0,$nhi | ||
77 | |||
78 | xor $Tlo1,$Zlo,$Zlo | ||
79 | sll $nlo,4,$nlo | ||
80 | xor $Thi1,$Zhi,$Zhi | ||
81 | and $nlo,0xf0,$nlo | ||
82 | |||
83 | addq $nlo,$Htbl,$nlo | ||
84 | ldq $Tlo0,8($nlo) | ||
85 | addq $nhi,$Htbl,$nhi | ||
86 | ldq $Thi0,0($nlo) | ||
87 | |||
88 | .Looplo$N: | ||
89 | and $Zlo,0x0f,$remp | ||
90 | sll $Zhi,60,$t0 | ||
91 | subq $cnt,1,$cnt | ||
92 | srl $Zlo,4,$Zlo | ||
93 | |||
94 | ldq $Tlo1,8($nhi) | ||
95 | xor $rem,$Zhi,$Zhi | ||
96 | ldq $Thi1,0($nhi) | ||
97 | s8addq $remp,$rem_4bit,$remp | ||
98 | |||
99 | ldq $rem,0($remp) | ||
100 | srl $Zhi,4,$Zhi | ||
101 | xor $t0,$Zlo,$Zlo | ||
102 | extbl $Xlo,$cnt,$nlo | ||
103 | |||
104 | and $nlo,0xf0,$nhi | ||
105 | xor $Thi0,$Zhi,$Zhi | ||
106 | xor $Tlo0,$Zlo,$Zlo | ||
107 | sll $nlo,4,$nlo | ||
108 | |||
109 | |||
110 | and $Zlo,0x0f,$remp | ||
111 | sll $Zhi,60,$t0 | ||
112 | and $nlo,0xf0,$nlo | ||
113 | srl $Zlo,4,$Zlo | ||
114 | |||
115 | s8addq $remp,$rem_4bit,$remp | ||
116 | xor $rem,$Zhi,$Zhi | ||
117 | addq $nlo,$Htbl,$nlo | ||
118 | addq $nhi,$Htbl,$nhi | ||
119 | |||
120 | ldq $rem,0($remp) | ||
121 | srl $Zhi,4,$Zhi | ||
122 | ldq $Tlo0,8($nlo) | ||
123 | xor $t0,$Zlo,$Zlo | ||
124 | |||
125 | xor $Tlo1,$Zlo,$Zlo | ||
126 | xor $Thi1,$Zhi,$Zhi | ||
127 | ldq $Thi0,0($nlo) | ||
128 | bne $cnt,.Looplo$N | ||
129 | |||
130 | |||
131 | and $Zlo,0x0f,$remp | ||
132 | sll $Zhi,60,$t0 | ||
133 | lda $cnt,7(zero) | ||
134 | srl $Zlo,4,$Zlo | ||
135 | |||
136 | ldq $Tlo1,8($nhi) | ||
137 | xor $rem,$Zhi,$Zhi | ||
138 | ldq $Thi1,0($nhi) | ||
139 | s8addq $remp,$rem_4bit,$remp | ||
140 | |||
141 | ldq $rem,0($remp) | ||
142 | srl $Zhi,4,$Zhi | ||
143 | xor $t0,$Zlo,$Zlo | ||
144 | extbl $Xhi,$cnt,$nlo | ||
145 | |||
146 | and $nlo,0xf0,$nhi | ||
147 | xor $Thi0,$Zhi,$Zhi | ||
148 | xor $Tlo0,$Zlo,$Zlo | ||
149 | sll $nlo,4,$nlo | ||
150 | |||
151 | and $Zlo,0x0f,$remp | ||
152 | sll $Zhi,60,$t0 | ||
153 | and $nlo,0xf0,$nlo | ||
154 | srl $Zlo,4,$Zlo | ||
155 | |||
156 | s8addq $remp,$rem_4bit,$remp | ||
157 | xor $rem,$Zhi,$Zhi | ||
158 | addq $nlo,$Htbl,$nlo | ||
159 | addq $nhi,$Htbl,$nhi | ||
160 | |||
161 | ldq $rem,0($remp) | ||
162 | srl $Zhi,4,$Zhi | ||
163 | ldq $Tlo0,8($nlo) | ||
164 | xor $t0,$Zlo,$Zlo | ||
165 | |||
166 | xor $Tlo1,$Zlo,$Zlo | ||
167 | xor $Thi1,$Zhi,$Zhi | ||
168 | ldq $Thi0,0($nlo) | ||
169 | unop | ||
170 | |||
171 | |||
172 | .Loophi$N: | ||
173 | and $Zlo,0x0f,$remp | ||
174 | sll $Zhi,60,$t0 | ||
175 | subq $cnt,1,$cnt | ||
176 | srl $Zlo,4,$Zlo | ||
177 | |||
178 | ldq $Tlo1,8($nhi) | ||
179 | xor $rem,$Zhi,$Zhi | ||
180 | ldq $Thi1,0($nhi) | ||
181 | s8addq $remp,$rem_4bit,$remp | ||
182 | |||
183 | ldq $rem,0($remp) | ||
184 | srl $Zhi,4,$Zhi | ||
185 | xor $t0,$Zlo,$Zlo | ||
186 | extbl $Xhi,$cnt,$nlo | ||
187 | |||
188 | and $nlo,0xf0,$nhi | ||
189 | xor $Thi0,$Zhi,$Zhi | ||
190 | xor $Tlo0,$Zlo,$Zlo | ||
191 | sll $nlo,4,$nlo | ||
192 | |||
193 | |||
194 | and $Zlo,0x0f,$remp | ||
195 | sll $Zhi,60,$t0 | ||
196 | and $nlo,0xf0,$nlo | ||
197 | srl $Zlo,4,$Zlo | ||
198 | |||
199 | s8addq $remp,$rem_4bit,$remp | ||
200 | xor $rem,$Zhi,$Zhi | ||
201 | addq $nlo,$Htbl,$nlo | ||
202 | addq $nhi,$Htbl,$nhi | ||
203 | |||
204 | ldq $rem,0($remp) | ||
205 | srl $Zhi,4,$Zhi | ||
206 | ldq $Tlo0,8($nlo) | ||
207 | xor $t0,$Zlo,$Zlo | ||
208 | |||
209 | xor $Tlo1,$Zlo,$Zlo | ||
210 | xor $Thi1,$Zhi,$Zhi | ||
211 | ldq $Thi0,0($nlo) | ||
212 | bne $cnt,.Loophi$N | ||
213 | |||
214 | |||
215 | and $Zlo,0x0f,$remp | ||
216 | sll $Zhi,60,$t0 | ||
217 | srl $Zlo,4,$Zlo | ||
218 | |||
219 | ldq $Tlo1,8($nhi) | ||
220 | xor $rem,$Zhi,$Zhi | ||
221 | ldq $Thi1,0($nhi) | ||
222 | s8addq $remp,$rem_4bit,$remp | ||
223 | |||
224 | ldq $rem,0($remp) | ||
225 | srl $Zhi,4,$Zhi | ||
226 | xor $t0,$Zlo,$Zlo | ||
227 | |||
228 | xor $Tlo0,$Zlo,$Zlo | ||
229 | xor $Thi0,$Zhi,$Zhi | ||
230 | |||
231 | and $Zlo,0x0f,$remp | ||
232 | sll $Zhi,60,$t0 | ||
233 | srl $Zlo,4,$Zlo | ||
234 | |||
235 | s8addq $remp,$rem_4bit,$remp | ||
236 | xor $rem,$Zhi,$Zhi | ||
237 | |||
238 | ldq $rem,0($remp) | ||
239 | srl $Zhi,4,$Zhi | ||
240 | xor $Tlo1,$Zlo,$Zlo | ||
241 | xor $Thi1,$Zhi,$Zhi | ||
242 | xor $t0,$Zlo,$Zlo | ||
243 | xor $rem,$Zhi,$Zhi | ||
244 | ___ | ||
245 | }} | ||
246 | |||
247 | $code=<<___; | ||
248 | #ifdef __linux__ | ||
249 | #include <asm/regdef.h> | ||
250 | #else | ||
251 | #include <asm.h> | ||
252 | #include <regdef.h> | ||
253 | #endif | ||
254 | |||
255 | .text | ||
256 | |||
257 | .set noat | ||
258 | .set noreorder | ||
259 | .globl gcm_gmult_4bit | ||
260 | .align 4 | ||
261 | .ent gcm_gmult_4bit | ||
262 | gcm_gmult_4bit: | ||
263 | .frame sp,0,ra | ||
264 | .prologue 0 | ||
265 | |||
266 | ldq $Xlo,8($Xi) | ||
267 | ldq $Xhi,0($Xi) | ||
268 | |||
269 | br $rem_4bit,.Lpic1 | ||
270 | .Lpic1: lda $rem_4bit,rem_4bit-.Lpic1($rem_4bit) | ||
271 | ___ | ||
272 | |||
273 | &loop(); | ||
274 | |||
275 | $code.=<<___; | ||
276 | srl $Zlo,24,$t0 # byte swap | ||
277 | srl $Zlo,8,$t1 | ||
278 | |||
279 | sll $Zlo,8,$t2 | ||
280 | sll $Zlo,24,$Zlo | ||
281 | zapnot $t0,0x11,$t0 | ||
282 | zapnot $t1,0x22,$t1 | ||
283 | |||
284 | zapnot $Zlo,0x88,$Zlo | ||
285 | or $t0,$t1,$t0 | ||
286 | zapnot $t2,0x44,$t2 | ||
287 | |||
288 | or $Zlo,$t0,$Zlo | ||
289 | srl $Zhi,24,$t0 | ||
290 | srl $Zhi,8,$t1 | ||
291 | |||
292 | or $Zlo,$t2,$Zlo | ||
293 | sll $Zhi,8,$t2 | ||
294 | sll $Zhi,24,$Zhi | ||
295 | |||
296 | srl $Zlo,32,$Xlo | ||
297 | sll $Zlo,32,$Zlo | ||
298 | |||
299 | zapnot $t0,0x11,$t0 | ||
300 | zapnot $t1,0x22,$t1 | ||
301 | or $Zlo,$Xlo,$Xlo | ||
302 | |||
303 | zapnot $Zhi,0x88,$Zhi | ||
304 | or $t0,$t1,$t0 | ||
305 | zapnot $t2,0x44,$t2 | ||
306 | |||
307 | or $Zhi,$t0,$Zhi | ||
308 | or $Zhi,$t2,$Zhi | ||
309 | |||
310 | srl $Zhi,32,$Xhi | ||
311 | sll $Zhi,32,$Zhi | ||
312 | |||
313 | or $Zhi,$Xhi,$Xhi | ||
314 | stq $Xlo,8($Xi) | ||
315 | stq $Xhi,0($Xi) | ||
316 | |||
317 | ret (ra) | ||
318 | .end gcm_gmult_4bit | ||
319 | ___ | ||
320 | |||
321 | $inhi="s0"; | ||
322 | $inlo="s1"; | ||
323 | |||
324 | $code.=<<___; | ||
325 | .globl gcm_ghash_4bit | ||
326 | .align 4 | ||
327 | .ent gcm_ghash_4bit | ||
328 | gcm_ghash_4bit: | ||
329 | lda sp,-32(sp) | ||
330 | stq ra,0(sp) | ||
331 | stq s0,8(sp) | ||
332 | stq s1,16(sp) | ||
333 | .mask 0x04000600,-32 | ||
334 | .frame sp,32,ra | ||
335 | .prologue 0 | ||
336 | |||
337 | ldq_u $inhi,0($inp) | ||
338 | ldq_u $Thi0,7($inp) | ||
339 | ldq_u $inlo,8($inp) | ||
340 | ldq_u $Tlo0,15($inp) | ||
341 | ldq $Xhi,0($Xi) | ||
342 | ldq $Xlo,8($Xi) | ||
343 | |||
344 | br $rem_4bit,.Lpic2 | ||
345 | .Lpic2: lda $rem_4bit,rem_4bit-.Lpic2($rem_4bit) | ||
346 | |||
347 | .Louter: | ||
348 | extql $inhi,$inp,$inhi | ||
349 | extqh $Thi0,$inp,$Thi0 | ||
350 | or $inhi,$Thi0,$inhi | ||
351 | lda $inp,16($inp) | ||
352 | |||
353 | extql $inlo,$inp,$inlo | ||
354 | extqh $Tlo0,$inp,$Tlo0 | ||
355 | or $inlo,$Tlo0,$inlo | ||
356 | subq $len,16,$len | ||
357 | |||
358 | xor $Xlo,$inlo,$Xlo | ||
359 | xor $Xhi,$inhi,$Xhi | ||
360 | ___ | ||
361 | |||
362 | &loop(); | ||
363 | |||
364 | $code.=<<___; | ||
365 | srl $Zlo,24,$t0 # byte swap | ||
366 | srl $Zlo,8,$t1 | ||
367 | |||
368 | sll $Zlo,8,$t2 | ||
369 | sll $Zlo,24,$Zlo | ||
370 | zapnot $t0,0x11,$t0 | ||
371 | zapnot $t1,0x22,$t1 | ||
372 | |||
373 | zapnot $Zlo,0x88,$Zlo | ||
374 | or $t0,$t1,$t0 | ||
375 | zapnot $t2,0x44,$t2 | ||
376 | |||
377 | or $Zlo,$t0,$Zlo | ||
378 | srl $Zhi,24,$t0 | ||
379 | srl $Zhi,8,$t1 | ||
380 | |||
381 | or $Zlo,$t2,$Zlo | ||
382 | sll $Zhi,8,$t2 | ||
383 | sll $Zhi,24,$Zhi | ||
384 | |||
385 | srl $Zlo,32,$Xlo | ||
386 | sll $Zlo,32,$Zlo | ||
387 | beq $len,.Ldone | ||
388 | |||
389 | zapnot $t0,0x11,$t0 | ||
390 | zapnot $t1,0x22,$t1 | ||
391 | or $Zlo,$Xlo,$Xlo | ||
392 | ldq_u $inhi,0($inp) | ||
393 | |||
394 | zapnot $Zhi,0x88,$Zhi | ||
395 | or $t0,$t1,$t0 | ||
396 | zapnot $t2,0x44,$t2 | ||
397 | ldq_u $Thi0,7($inp) | ||
398 | |||
399 | or $Zhi,$t0,$Zhi | ||
400 | or $Zhi,$t2,$Zhi | ||
401 | ldq_u $inlo,8($inp) | ||
402 | ldq_u $Tlo0,15($inp) | ||
403 | |||
404 | srl $Zhi,32,$Xhi | ||
405 | sll $Zhi,32,$Zhi | ||
406 | |||
407 | or $Zhi,$Xhi,$Xhi | ||
408 | br zero,.Louter | ||
409 | |||
410 | .Ldone: | ||
411 | zapnot $t0,0x11,$t0 | ||
412 | zapnot $t1,0x22,$t1 | ||
413 | or $Zlo,$Xlo,$Xlo | ||
414 | |||
415 | zapnot $Zhi,0x88,$Zhi | ||
416 | or $t0,$t1,$t0 | ||
417 | zapnot $t2,0x44,$t2 | ||
418 | |||
419 | or $Zhi,$t0,$Zhi | ||
420 | or $Zhi,$t2,$Zhi | ||
421 | |||
422 | srl $Zhi,32,$Xhi | ||
423 | sll $Zhi,32,$Zhi | ||
424 | |||
425 | or $Zhi,$Xhi,$Xhi | ||
426 | |||
427 | stq $Xlo,8($Xi) | ||
428 | stq $Xhi,0($Xi) | ||
429 | |||
430 | .set noreorder | ||
431 | /*ldq ra,0(sp)*/ | ||
432 | ldq s0,8(sp) | ||
433 | ldq s1,16(sp) | ||
434 | lda sp,32(sp) | ||
435 | ret (ra) | ||
436 | .end gcm_ghash_4bit | ||
437 | |||
438 | .align 4 | ||
439 | rem_4bit: | ||
440 | .quad 0x0000<<48, 0x1C20<<48, 0x3840<<48, 0x2460<<48 | ||
441 | .quad 0x7080<<48, 0x6CA0<<48, 0x48C0<<48, 0x54E0<<48 | ||
442 | .quad 0xE100<<48, 0xFD20<<48, 0xD940<<48, 0xC560<<48 | ||
443 | .quad 0x9180<<48, 0x8DA0<<48, 0xA9C0<<48, 0xB5E0<<48 | ||
444 | .ascii "GHASH for Alpha, CRYPTOGAMS by <appro\@openssl.org>" | ||
445 | .align 4 | ||
446 | |||
447 | ___ | ||
448 | $output=shift and open STDOUT,">$output"; | ||
449 | print $code; | ||
450 | close STDOUT; | ||
451 | |||
diff --git a/src/lib/libcrypto/modes/asm/ghash-armv4.pl b/src/lib/libcrypto/modes/asm/ghash-armv4.pl new file mode 100644 index 0000000000..d91586ee29 --- /dev/null +++ b/src/lib/libcrypto/modes/asm/ghash-armv4.pl | |||
@@ -0,0 +1,429 @@ | |||
1 | #!/usr/bin/env perl | ||
2 | # | ||
3 | # ==================================================================== | ||
4 | # Written by Andy Polyakov <appro@openssl.org> for the OpenSSL | ||
5 | # project. The module is, however, dual licensed under OpenSSL and | ||
6 | # CRYPTOGAMS licenses depending on where you obtain it. For further | ||
7 | # details see http://www.openssl.org/~appro/cryptogams/. | ||
8 | # ==================================================================== | ||
9 | # | ||
10 | # April 2010 | ||
11 | # | ||
12 | # The module implements "4-bit" GCM GHASH function and underlying | ||
13 | # single multiplication operation in GF(2^128). "4-bit" means that it | ||
14 | # uses 256 bytes per-key table [+32 bytes shared table]. There is no | ||
15 | # experimental performance data available yet. The only approximation | ||
16 | # that can be made at this point is based on code size. Inner loop is | ||
17 | # 32 instructions long and on single-issue core should execute in <40 | ||
18 | # cycles. Having verified that gcc 3.4 didn't unroll corresponding | ||
19 | # loop, this assembler loop body was found to be ~3x smaller than | ||
20 | # compiler-generated one... | ||
21 | # | ||
22 | # July 2010 | ||
23 | # | ||
24 | # Rescheduling for dual-issue pipeline resulted in 8.5% improvement on | ||
25 | # Cortex A8 core and ~25 cycles per processed byte (which was observed | ||
26 | # to be ~3 times faster than gcc-generated code:-) | ||
27 | # | ||
28 | # February 2011 | ||
29 | # | ||
30 | # Profiler-assisted and platform-specific optimization resulted in 7% | ||
31 | # improvement on Cortex A8 core and ~23.5 cycles per byte. | ||
32 | # | ||
33 | # March 2011 | ||
34 | # | ||
35 | # Add NEON implementation featuring polynomial multiplication, i.e. no | ||
36 | # lookup tables involved. On Cortex A8 it was measured to process one | ||
37 | # byte in 15 cycles or 55% faster than integer-only code. | ||
38 | |||
39 | # ==================================================================== | ||
40 | # Note about "528B" variant. In ARM case it makes lesser sense to | ||
41 | # implement it for following reasons: | ||
42 | # | ||
43 | # - performance improvement won't be anywhere near 50%, because 128- | ||
44 | # bit shift operation is neatly fused with 128-bit xor here, and | ||
45 | # "538B" variant would eliminate only 4-5 instructions out of 32 | ||
46 | # in the inner loop (meaning that estimated improvement is ~15%); | ||
47 | # - ARM-based systems are often embedded ones and extra memory | ||
48 | # consumption might be unappreciated (for so little improvement); | ||
49 | # | ||
50 | # Byte order [in]dependence. ========================================= | ||
51 | # | ||
52 | # Caller is expected to maintain specific *dword* order in Htable, | ||
53 | # namely with *least* significant dword of 128-bit value at *lower* | ||
54 | # address. This differs completely from C code and has everything to | ||
55 | # do with ldm instruction and order in which dwords are "consumed" by | ||
56 | # algorithm. *Byte* order within these dwords in turn is whatever | ||
57 | # *native* byte order on current platform. See gcm128.c for working | ||
58 | # example... | ||
59 | |||
60 | while (($output=shift) && ($output!~/^\w[\w\-]*\.\w+$/)) {} | ||
61 | open STDOUT,">$output"; | ||
62 | |||
63 | $Xi="r0"; # argument block | ||
64 | $Htbl="r1"; | ||
65 | $inp="r2"; | ||
66 | $len="r3"; | ||
67 | |||
68 | $Zll="r4"; # variables | ||
69 | $Zlh="r5"; | ||
70 | $Zhl="r6"; | ||
71 | $Zhh="r7"; | ||
72 | $Tll="r8"; | ||
73 | $Tlh="r9"; | ||
74 | $Thl="r10"; | ||
75 | $Thh="r11"; | ||
76 | $nlo="r12"; | ||
77 | ################# r13 is stack pointer | ||
78 | $nhi="r14"; | ||
79 | ################# r15 is program counter | ||
80 | |||
81 | $rem_4bit=$inp; # used in gcm_gmult_4bit | ||
82 | $cnt=$len; | ||
83 | |||
84 | sub Zsmash() { | ||
85 | my $i=12; | ||
86 | my @args=@_; | ||
87 | for ($Zll,$Zlh,$Zhl,$Zhh) { | ||
88 | $code.=<<___; | ||
89 | #if __ARM_ARCH__>=7 && defined(__ARMEL__) | ||
90 | rev $_,$_ | ||
91 | str $_,[$Xi,#$i] | ||
92 | #elif defined(__ARMEB__) | ||
93 | str $_,[$Xi,#$i] | ||
94 | #else | ||
95 | mov $Tlh,$_,lsr#8 | ||
96 | strb $_,[$Xi,#$i+3] | ||
97 | mov $Thl,$_,lsr#16 | ||
98 | strb $Tlh,[$Xi,#$i+2] | ||
99 | mov $Thh,$_,lsr#24 | ||
100 | strb $Thl,[$Xi,#$i+1] | ||
101 | strb $Thh,[$Xi,#$i] | ||
102 | #endif | ||
103 | ___ | ||
104 | $code.="\t".shift(@args)."\n"; | ||
105 | $i-=4; | ||
106 | } | ||
107 | } | ||
108 | |||
109 | $code=<<___; | ||
110 | #include "arm_arch.h" | ||
111 | |||
112 | .text | ||
113 | .code 32 | ||
114 | |||
115 | .type rem_4bit,%object | ||
116 | .align 5 | ||
117 | rem_4bit: | ||
118 | .short 0x0000,0x1C20,0x3840,0x2460 | ||
119 | .short 0x7080,0x6CA0,0x48C0,0x54E0 | ||
120 | .short 0xE100,0xFD20,0xD940,0xC560 | ||
121 | .short 0x9180,0x8DA0,0xA9C0,0xB5E0 | ||
122 | .size rem_4bit,.-rem_4bit | ||
123 | |||
124 | .type rem_4bit_get,%function | ||
125 | rem_4bit_get: | ||
126 | sub $rem_4bit,pc,#8 | ||
127 | sub $rem_4bit,$rem_4bit,#32 @ &rem_4bit | ||
128 | b .Lrem_4bit_got | ||
129 | nop | ||
130 | .size rem_4bit_get,.-rem_4bit_get | ||
131 | |||
132 | .global gcm_ghash_4bit | ||
133 | .type gcm_ghash_4bit,%function | ||
134 | gcm_ghash_4bit: | ||
135 | sub r12,pc,#8 | ||
136 | add $len,$inp,$len @ $len to point at the end | ||
137 | stmdb sp!,{r3-r11,lr} @ save $len/end too | ||
138 | sub r12,r12,#48 @ &rem_4bit | ||
139 | |||
140 | ldmia r12,{r4-r11} @ copy rem_4bit ... | ||
141 | stmdb sp!,{r4-r11} @ ... to stack | ||
142 | |||
143 | ldrb $nlo,[$inp,#15] | ||
144 | ldrb $nhi,[$Xi,#15] | ||
145 | .Louter: | ||
146 | eor $nlo,$nlo,$nhi | ||
147 | and $nhi,$nlo,#0xf0 | ||
148 | and $nlo,$nlo,#0x0f | ||
149 | mov $cnt,#14 | ||
150 | |||
151 | add $Zhh,$Htbl,$nlo,lsl#4 | ||
152 | ldmia $Zhh,{$Zll-$Zhh} @ load Htbl[nlo] | ||
153 | add $Thh,$Htbl,$nhi | ||
154 | ldrb $nlo,[$inp,#14] | ||
155 | |||
156 | and $nhi,$Zll,#0xf @ rem | ||
157 | ldmia $Thh,{$Tll-$Thh} @ load Htbl[nhi] | ||
158 | add $nhi,$nhi,$nhi | ||
159 | eor $Zll,$Tll,$Zll,lsr#4 | ||
160 | ldrh $Tll,[sp,$nhi] @ rem_4bit[rem] | ||
161 | eor $Zll,$Zll,$Zlh,lsl#28 | ||
162 | ldrb $nhi,[$Xi,#14] | ||
163 | eor $Zlh,$Tlh,$Zlh,lsr#4 | ||
164 | eor $Zlh,$Zlh,$Zhl,lsl#28 | ||
165 | eor $Zhl,$Thl,$Zhl,lsr#4 | ||
166 | eor $Zhl,$Zhl,$Zhh,lsl#28 | ||
167 | eor $Zhh,$Thh,$Zhh,lsr#4 | ||
168 | eor $nlo,$nlo,$nhi | ||
169 | and $nhi,$nlo,#0xf0 | ||
170 | and $nlo,$nlo,#0x0f | ||
171 | eor $Zhh,$Zhh,$Tll,lsl#16 | ||
172 | |||
173 | .Linner: | ||
174 | add $Thh,$Htbl,$nlo,lsl#4 | ||
175 | and $nlo,$Zll,#0xf @ rem | ||
176 | subs $cnt,$cnt,#1 | ||
177 | add $nlo,$nlo,$nlo | ||
178 | ldmia $Thh,{$Tll-$Thh} @ load Htbl[nlo] | ||
179 | eor $Zll,$Tll,$Zll,lsr#4 | ||
180 | eor $Zll,$Zll,$Zlh,lsl#28 | ||
181 | eor $Zlh,$Tlh,$Zlh,lsr#4 | ||
182 | eor $Zlh,$Zlh,$Zhl,lsl#28 | ||
183 | ldrh $Tll,[sp,$nlo] @ rem_4bit[rem] | ||
184 | eor $Zhl,$Thl,$Zhl,lsr#4 | ||
185 | ldrplb $nlo,[$inp,$cnt] | ||
186 | eor $Zhl,$Zhl,$Zhh,lsl#28 | ||
187 | eor $Zhh,$Thh,$Zhh,lsr#4 | ||
188 | |||
189 | add $Thh,$Htbl,$nhi | ||
190 | and $nhi,$Zll,#0xf @ rem | ||
191 | eor $Zhh,$Zhh,$Tll,lsl#16 @ ^= rem_4bit[rem] | ||
192 | add $nhi,$nhi,$nhi | ||
193 | ldmia $Thh,{$Tll-$Thh} @ load Htbl[nhi] | ||
194 | eor $Zll,$Tll,$Zll,lsr#4 | ||
195 | ldrplb $Tll,[$Xi,$cnt] | ||
196 | eor $Zll,$Zll,$Zlh,lsl#28 | ||
197 | eor $Zlh,$Tlh,$Zlh,lsr#4 | ||
198 | ldrh $Tlh,[sp,$nhi] | ||
199 | eor $Zlh,$Zlh,$Zhl,lsl#28 | ||
200 | eor $Zhl,$Thl,$Zhl,lsr#4 | ||
201 | eor $Zhl,$Zhl,$Zhh,lsl#28 | ||
202 | eorpl $nlo,$nlo,$Tll | ||
203 | eor $Zhh,$Thh,$Zhh,lsr#4 | ||
204 | andpl $nhi,$nlo,#0xf0 | ||
205 | andpl $nlo,$nlo,#0x0f | ||
206 | eor $Zhh,$Zhh,$Tlh,lsl#16 @ ^= rem_4bit[rem] | ||
207 | bpl .Linner | ||
208 | |||
209 | ldr $len,[sp,#32] @ re-load $len/end | ||
210 | add $inp,$inp,#16 | ||
211 | mov $nhi,$Zll | ||
212 | ___ | ||
213 | &Zsmash("cmp\t$inp,$len","ldrneb\t$nlo,[$inp,#15]"); | ||
214 | $code.=<<___; | ||
215 | bne .Louter | ||
216 | |||
217 | add sp,sp,#36 | ||
218 | #if __ARM_ARCH__>=5 | ||
219 | ldmia sp!,{r4-r11,pc} | ||
220 | #else | ||
221 | ldmia sp!,{r4-r11,lr} | ||
222 | tst lr,#1 | ||
223 | moveq pc,lr @ be binary compatible with V4, yet | ||
224 | bx lr @ interoperable with Thumb ISA:-) | ||
225 | #endif | ||
226 | .size gcm_ghash_4bit,.-gcm_ghash_4bit | ||
227 | |||
228 | .global gcm_gmult_4bit | ||
229 | .type gcm_gmult_4bit,%function | ||
230 | gcm_gmult_4bit: | ||
231 | stmdb sp!,{r4-r11,lr} | ||
232 | ldrb $nlo,[$Xi,#15] | ||
233 | b rem_4bit_get | ||
234 | .Lrem_4bit_got: | ||
235 | and $nhi,$nlo,#0xf0 | ||
236 | and $nlo,$nlo,#0x0f | ||
237 | mov $cnt,#14 | ||
238 | |||
239 | add $Zhh,$Htbl,$nlo,lsl#4 | ||
240 | ldmia $Zhh,{$Zll-$Zhh} @ load Htbl[nlo] | ||
241 | ldrb $nlo,[$Xi,#14] | ||
242 | |||
243 | add $Thh,$Htbl,$nhi | ||
244 | and $nhi,$Zll,#0xf @ rem | ||
245 | ldmia $Thh,{$Tll-$Thh} @ load Htbl[nhi] | ||
246 | add $nhi,$nhi,$nhi | ||
247 | eor $Zll,$Tll,$Zll,lsr#4 | ||
248 | ldrh $Tll,[$rem_4bit,$nhi] @ rem_4bit[rem] | ||
249 | eor $Zll,$Zll,$Zlh,lsl#28 | ||
250 | eor $Zlh,$Tlh,$Zlh,lsr#4 | ||
251 | eor $Zlh,$Zlh,$Zhl,lsl#28 | ||
252 | eor $Zhl,$Thl,$Zhl,lsr#4 | ||
253 | eor $Zhl,$Zhl,$Zhh,lsl#28 | ||
254 | eor $Zhh,$Thh,$Zhh,lsr#4 | ||
255 | and $nhi,$nlo,#0xf0 | ||
256 | eor $Zhh,$Zhh,$Tll,lsl#16 | ||
257 | and $nlo,$nlo,#0x0f | ||
258 | |||
259 | .Loop: | ||
260 | add $Thh,$Htbl,$nlo,lsl#4 | ||
261 | and $nlo,$Zll,#0xf @ rem | ||
262 | subs $cnt,$cnt,#1 | ||
263 | add $nlo,$nlo,$nlo | ||
264 | ldmia $Thh,{$Tll-$Thh} @ load Htbl[nlo] | ||
265 | eor $Zll,$Tll,$Zll,lsr#4 | ||
266 | eor $Zll,$Zll,$Zlh,lsl#28 | ||
267 | eor $Zlh,$Tlh,$Zlh,lsr#4 | ||
268 | eor $Zlh,$Zlh,$Zhl,lsl#28 | ||
269 | ldrh $Tll,[$rem_4bit,$nlo] @ rem_4bit[rem] | ||
270 | eor $Zhl,$Thl,$Zhl,lsr#4 | ||
271 | ldrplb $nlo,[$Xi,$cnt] | ||
272 | eor $Zhl,$Zhl,$Zhh,lsl#28 | ||
273 | eor $Zhh,$Thh,$Zhh,lsr#4 | ||
274 | |||
275 | add $Thh,$Htbl,$nhi | ||
276 | and $nhi,$Zll,#0xf @ rem | ||
277 | eor $Zhh,$Zhh,$Tll,lsl#16 @ ^= rem_4bit[rem] | ||
278 | add $nhi,$nhi,$nhi | ||
279 | ldmia $Thh,{$Tll-$Thh} @ load Htbl[nhi] | ||
280 | eor $Zll,$Tll,$Zll,lsr#4 | ||
281 | eor $Zll,$Zll,$Zlh,lsl#28 | ||
282 | eor $Zlh,$Tlh,$Zlh,lsr#4 | ||
283 | ldrh $Tll,[$rem_4bit,$nhi] @ rem_4bit[rem] | ||
284 | eor $Zlh,$Zlh,$Zhl,lsl#28 | ||
285 | eor $Zhl,$Thl,$Zhl,lsr#4 | ||
286 | eor $Zhl,$Zhl,$Zhh,lsl#28 | ||
287 | eor $Zhh,$Thh,$Zhh,lsr#4 | ||
288 | andpl $nhi,$nlo,#0xf0 | ||
289 | andpl $nlo,$nlo,#0x0f | ||
290 | eor $Zhh,$Zhh,$Tll,lsl#16 @ ^= rem_4bit[rem] | ||
291 | bpl .Loop | ||
292 | ___ | ||
293 | &Zsmash(); | ||
294 | $code.=<<___; | ||
295 | #if __ARM_ARCH__>=5 | ||
296 | ldmia sp!,{r4-r11,pc} | ||
297 | #else | ||
298 | ldmia sp!,{r4-r11,lr} | ||
299 | tst lr,#1 | ||
300 | moveq pc,lr @ be binary compatible with V4, yet | ||
301 | bx lr @ interoperable with Thumb ISA:-) | ||
302 | #endif | ||
303 | .size gcm_gmult_4bit,.-gcm_gmult_4bit | ||
304 | ___ | ||
305 | { | ||
306 | my $cnt=$Htbl; # $Htbl is used once in the very beginning | ||
307 | |||
308 | my ($Hhi, $Hlo, $Zo, $T, $xi, $mod) = map("d$_",(0..7)); | ||
309 | my ($Qhi, $Qlo, $Z, $R, $zero, $Qpost, $IN) = map("q$_",(8..15)); | ||
310 | |||
311 | # Z:Zo keeps 128-bit result shifted by 1 to the right, with bottom bit | ||
312 | # in Zo. Or should I say "top bit", because GHASH is specified in | ||
313 | # reverse bit order? Otherwise straightforward 128-bt H by one input | ||
314 | # byte multiplication and modulo-reduction, times 16. | ||
315 | |||
316 | sub Dlo() { shift=~m|q([1]?[0-9])|?"d".($1*2):""; } | ||
317 | sub Dhi() { shift=~m|q([1]?[0-9])|?"d".($1*2+1):""; } | ||
318 | sub Q() { shift=~m|d([1-3]?[02468])|?"q".($1/2):""; } | ||
319 | |||
320 | $code.=<<___; | ||
321 | #if __ARM_ARCH__>=7 | ||
322 | .fpu neon | ||
323 | |||
324 | .global gcm_gmult_neon | ||
325 | .type gcm_gmult_neon,%function | ||
326 | .align 4 | ||
327 | gcm_gmult_neon: | ||
328 | sub $Htbl,#16 @ point at H in GCM128_CTX | ||
329 | vld1.64 `&Dhi("$IN")`,[$Xi,:64]!@ load Xi | ||
330 | vmov.i32 $mod,#0xe1 @ our irreducible polynomial | ||
331 | vld1.64 `&Dlo("$IN")`,[$Xi,:64]! | ||
332 | vshr.u64 $mod,#32 | ||
333 | vldmia $Htbl,{$Hhi-$Hlo} @ load H | ||
334 | veor $zero,$zero | ||
335 | #ifdef __ARMEL__ | ||
336 | vrev64.8 $IN,$IN | ||
337 | #endif | ||
338 | veor $Qpost,$Qpost | ||
339 | veor $R,$R | ||
340 | mov $cnt,#16 | ||
341 | veor $Z,$Z | ||
342 | mov $len,#16 | ||
343 | veor $Zo,$Zo | ||
344 | vdup.8 $xi,`&Dlo("$IN")`[0] @ broadcast lowest byte | ||
345 | b .Linner_neon | ||
346 | .size gcm_gmult_neon,.-gcm_gmult_neon | ||
347 | |||
348 | .global gcm_ghash_neon | ||
349 | .type gcm_ghash_neon,%function | ||
350 | .align 4 | ||
351 | gcm_ghash_neon: | ||
352 | vld1.64 `&Dhi("$Z")`,[$Xi,:64]! @ load Xi | ||
353 | vmov.i32 $mod,#0xe1 @ our irreducible polynomial | ||
354 | vld1.64 `&Dlo("$Z")`,[$Xi,:64]! | ||
355 | vshr.u64 $mod,#32 | ||
356 | vldmia $Xi,{$Hhi-$Hlo} @ load H | ||
357 | veor $zero,$zero | ||
358 | nop | ||
359 | #ifdef __ARMEL__ | ||
360 | vrev64.8 $Z,$Z | ||
361 | #endif | ||
362 | .Louter_neon: | ||
363 | vld1.64 `&Dhi($IN)`,[$inp]! @ load inp | ||
364 | veor $Qpost,$Qpost | ||
365 | vld1.64 `&Dlo($IN)`,[$inp]! | ||
366 | veor $R,$R | ||
367 | mov $cnt,#16 | ||
368 | #ifdef __ARMEL__ | ||
369 | vrev64.8 $IN,$IN | ||
370 | #endif | ||
371 | veor $Zo,$Zo | ||
372 | veor $IN,$Z @ inp^=Xi | ||
373 | veor $Z,$Z | ||
374 | vdup.8 $xi,`&Dlo("$IN")`[0] @ broadcast lowest byte | ||
375 | .Linner_neon: | ||
376 | subs $cnt,$cnt,#1 | ||
377 | vmull.p8 $Qlo,$Hlo,$xi @ H.lo·Xi[i] | ||
378 | vmull.p8 $Qhi,$Hhi,$xi @ H.hi·Xi[i] | ||
379 | vext.8 $IN,$zero,#1 @ IN>>=8 | ||
380 | |||
381 | veor $Z,$Qpost @ modulo-scheduled part | ||
382 | vshl.i64 `&Dlo("$R")`,#48 | ||
383 | vdup.8 $xi,`&Dlo("$IN")`[0] @ broadcast lowest byte | ||
384 | veor $T,`&Dlo("$Qlo")`,`&Dlo("$Z")` | ||
385 | |||
386 | veor `&Dhi("$Z")`,`&Dlo("$R")` | ||
387 | vuzp.8 $Qlo,$Qhi | ||
388 | vsli.8 $Zo,$T,#1 @ compose the "carry" byte | ||
389 | vext.8 $Z,$zero,#1 @ Z>>=8 | ||
390 | |||
391 | vmull.p8 $R,$Zo,$mod @ "carry"·0xe1 | ||
392 | vshr.u8 $Zo,$T,#7 @ save Z's bottom bit | ||
393 | vext.8 $Qpost,$Qlo,$zero,#1 @ Qlo>>=8 | ||
394 | veor $Z,$Qhi | ||
395 | bne .Linner_neon | ||
396 | |||
397 | veor $Z,$Qpost @ modulo-scheduled artefact | ||
398 | vshl.i64 `&Dlo("$R")`,#48 | ||
399 | veor `&Dhi("$Z")`,`&Dlo("$R")` | ||
400 | |||
401 | @ finalization, normalize Z:Zo | ||
402 | vand $Zo,$mod @ suffices to mask the bit | ||
403 | vshr.u64 `&Dhi(&Q("$Zo"))`,`&Dlo("$Z")`,#63 | ||
404 | vshl.i64 $Z,#1 | ||
405 | subs $len,#16 | ||
406 | vorr $Z,`&Q("$Zo")` @ Z=Z:Zo<<1 | ||
407 | bne .Louter_neon | ||
408 | |||
409 | #ifdef __ARMEL__ | ||
410 | vrev64.8 $Z,$Z | ||
411 | #endif | ||
412 | sub $Xi,#16 | ||
413 | vst1.64 `&Dhi("$Z")`,[$Xi,:64]! @ write out Xi | ||
414 | vst1.64 `&Dlo("$Z")`,[$Xi,:64] | ||
415 | |||
416 | bx lr | ||
417 | .size gcm_ghash_neon,.-gcm_ghash_neon | ||
418 | #endif | ||
419 | ___ | ||
420 | } | ||
421 | $code.=<<___; | ||
422 | .asciz "GHASH for ARMv4/NEON, CRYPTOGAMS by <appro\@openssl.org>" | ||
423 | .align 2 | ||
424 | ___ | ||
425 | |||
426 | $code =~ s/\`([^\`]*)\`/eval $1/gem; | ||
427 | $code =~ s/\bbx\s+lr\b/.word\t0xe12fff1e/gm; # make it possible to compile with -march=armv4 | ||
428 | print $code; | ||
429 | close STDOUT; # enforce flush | ||
diff --git a/src/lib/libcrypto/modes/asm/ghash-ia64.pl b/src/lib/libcrypto/modes/asm/ghash-ia64.pl new file mode 100755 index 0000000000..0354c95444 --- /dev/null +++ b/src/lib/libcrypto/modes/asm/ghash-ia64.pl | |||
@@ -0,0 +1,463 @@ | |||
1 | #!/usr/bin/env perl | ||
2 | |||
3 | # ==================================================================== | ||
4 | # Written by Andy Polyakov <appro@openssl.org> for the OpenSSL | ||
5 | # project. The module is, however, dual licensed under OpenSSL and | ||
6 | # CRYPTOGAMS licenses depending on where you obtain it. For further | ||
7 | # details see http://www.openssl.org/~appro/cryptogams/. | ||
8 | # ==================================================================== | ||
9 | # | ||
10 | # March 2010 | ||
11 | # | ||
12 | # The module implements "4-bit" GCM GHASH function and underlying | ||
13 | # single multiplication operation in GF(2^128). "4-bit" means that it | ||
14 | # uses 256 bytes per-key table [+128 bytes shared table]. Streamed | ||
15 | # GHASH performance was measured to be 6.67 cycles per processed byte | ||
16 | # on Itanium 2, which is >90% better than Microsoft compiler generated | ||
17 | # code. To anchor to something else sha1-ia64.pl module processes one | ||
18 | # byte in 5.7 cycles. On Itanium GHASH should run at ~8.5 cycles per | ||
19 | # byte. | ||
20 | |||
21 | # September 2010 | ||
22 | # | ||
23 | # It was originally thought that it makes lesser sense to implement | ||
24 | # "528B" variant on Itanium 2 for following reason. Because number of | ||
25 | # functional units is naturally limited, it appeared impossible to | ||
26 | # implement "528B" loop in 4 cycles, only in 5. This would mean that | ||
27 | # theoretically performance improvement couldn't be more than 20%. | ||
28 | # But occasionally you prove yourself wrong:-) I figured out a way to | ||
29 | # fold couple of instructions and having freed yet another instruction | ||
30 | # slot by unrolling the loop... Resulting performance is 4.45 cycles | ||
31 | # per processed byte and 50% better than "256B" version. On original | ||
32 | # Itanium performance should remain the same as the "256B" version, | ||
33 | # i.e. ~8.5 cycles. | ||
34 | |||
35 | $output=shift and (open STDOUT,">$output" or die "can't open $output: $!"); | ||
36 | |||
37 | if ($^O eq "hpux") { | ||
38 | $ADDP="addp4"; | ||
39 | for (@ARGV) { $ADDP="add" if (/[\+DD|\-mlp]64/); } | ||
40 | } else { $ADDP="add"; } | ||
41 | for (@ARGV) { $big_endian=1 if (/\-DB_ENDIAN/); | ||
42 | $big_endian=0 if (/\-DL_ENDIAN/); } | ||
43 | if (!defined($big_endian)) | ||
44 | { $big_endian=(unpack('L',pack('N',1))==1); } | ||
45 | |||
46 | sub loop() { | ||
47 | my $label=shift; | ||
48 | my ($p16,$p17)=(shift)?("p63","p63"):("p16","p17"); # mask references to inp | ||
49 | |||
50 | # Loop is scheduled for 6 ticks on Itanium 2 and 8 on Itanium, i.e. | ||
51 | # in scalable manner;-) Naturally assuming data in L1 cache... | ||
52 | # Special note about 'dep' instruction, which is used to construct | ||
53 | # &rem_4bit[Zlo&0xf]. It works, because rem_4bit is aligned at 128 | ||
54 | # bytes boundary and lower 7 bits of its address are guaranteed to | ||
55 | # be zero. | ||
56 | $code.=<<___; | ||
57 | $label: | ||
58 | { .mfi; (p18) ld8 Hlo=[Hi[1]],-8 | ||
59 | (p19) dep rem=Zlo,rem_4bitp,3,4 } | ||
60 | { .mfi; (p19) xor Zhi=Zhi,Hhi | ||
61 | ($p17) xor xi[1]=xi[1],in[1] };; | ||
62 | { .mfi; (p18) ld8 Hhi=[Hi[1]] | ||
63 | (p19) shrp Zlo=Zhi,Zlo,4 } | ||
64 | { .mfi; (p19) ld8 rem=[rem] | ||
65 | (p18) and Hi[1]=mask0xf0,xi[2] };; | ||
66 | { .mmi; ($p16) ld1 in[0]=[inp],-1 | ||
67 | (p18) xor Zlo=Zlo,Hlo | ||
68 | (p19) shr.u Zhi=Zhi,4 } | ||
69 | { .mib; (p19) xor Hhi=Hhi,rem | ||
70 | (p18) add Hi[1]=Htbl,Hi[1] };; | ||
71 | |||
72 | { .mfi; (p18) ld8 Hlo=[Hi[1]],-8 | ||
73 | (p18) dep rem=Zlo,rem_4bitp,3,4 } | ||
74 | { .mfi; (p17) shladd Hi[0]=xi[1],4,r0 | ||
75 | (p18) xor Zhi=Zhi,Hhi };; | ||
76 | { .mfi; (p18) ld8 Hhi=[Hi[1]] | ||
77 | (p18) shrp Zlo=Zhi,Zlo,4 } | ||
78 | { .mfi; (p18) ld8 rem=[rem] | ||
79 | (p17) and Hi[0]=mask0xf0,Hi[0] };; | ||
80 | { .mmi; (p16) ld1 xi[0]=[Xi],-1 | ||
81 | (p18) xor Zlo=Zlo,Hlo | ||
82 | (p18) shr.u Zhi=Zhi,4 } | ||
83 | { .mib; (p18) xor Hhi=Hhi,rem | ||
84 | (p17) add Hi[0]=Htbl,Hi[0] | ||
85 | br.ctop.sptk $label };; | ||
86 | ___ | ||
87 | } | ||
88 | |||
89 | $code=<<___; | ||
90 | .explicit | ||
91 | .text | ||
92 | |||
93 | prevfs=r2; prevlc=r3; prevpr=r8; | ||
94 | mask0xf0=r21; | ||
95 | rem=r22; rem_4bitp=r23; | ||
96 | Xi=r24; Htbl=r25; | ||
97 | inp=r26; end=r27; | ||
98 | Hhi=r28; Hlo=r29; | ||
99 | Zhi=r30; Zlo=r31; | ||
100 | |||
101 | .align 128 | ||
102 | .skip 16 // aligns loop body | ||
103 | .global gcm_gmult_4bit# | ||
104 | .proc gcm_gmult_4bit# | ||
105 | gcm_gmult_4bit: | ||
106 | .prologue | ||
107 | { .mmi; .save ar.pfs,prevfs | ||
108 | alloc prevfs=ar.pfs,2,6,0,8 | ||
109 | $ADDP Xi=15,in0 // &Xi[15] | ||
110 | mov rem_4bitp=ip } | ||
111 | { .mii; $ADDP Htbl=8,in1 // &Htbl[0].lo | ||
112 | .save ar.lc,prevlc | ||
113 | mov prevlc=ar.lc | ||
114 | .save pr,prevpr | ||
115 | mov prevpr=pr };; | ||
116 | |||
117 | .body | ||
118 | .rotr in[3],xi[3],Hi[2] | ||
119 | |||
120 | { .mib; ld1 xi[2]=[Xi],-1 // Xi[15] | ||
121 | mov mask0xf0=0xf0 | ||
122 | brp.loop.imp .Loop1,.Lend1-16};; | ||
123 | { .mmi; ld1 xi[1]=[Xi],-1 // Xi[14] | ||
124 | };; | ||
125 | { .mii; shladd Hi[1]=xi[2],4,r0 | ||
126 | mov pr.rot=0x7<<16 | ||
127 | mov ar.lc=13 };; | ||
128 | { .mii; and Hi[1]=mask0xf0,Hi[1] | ||
129 | mov ar.ec=3 | ||
130 | xor Zlo=Zlo,Zlo };; | ||
131 | { .mii; add Hi[1]=Htbl,Hi[1] // &Htbl[nlo].lo | ||
132 | add rem_4bitp=rem_4bit#-gcm_gmult_4bit#,rem_4bitp | ||
133 | xor Zhi=Zhi,Zhi };; | ||
134 | ___ | ||
135 | &loop (".Loop1",1); | ||
136 | $code.=<<___; | ||
137 | .Lend1: | ||
138 | { .mib; xor Zhi=Zhi,Hhi };; // modulo-scheduling artefact | ||
139 | { .mib; mux1 Zlo=Zlo,\@rev };; | ||
140 | { .mib; mux1 Zhi=Zhi,\@rev };; | ||
141 | { .mmi; add Hlo=9,Xi;; // ;; is here to prevent | ||
142 | add Hhi=1,Xi };; // pipeline flush on Itanium | ||
143 | { .mib; st8 [Hlo]=Zlo | ||
144 | mov pr=prevpr,0x1ffff };; | ||
145 | { .mib; st8 [Hhi]=Zhi | ||
146 | mov ar.lc=prevlc | ||
147 | br.ret.sptk.many b0 };; | ||
148 | .endp gcm_gmult_4bit# | ||
149 | ___ | ||
150 | |||
151 | ###################################################################### | ||
152 | # "528B" (well, "512B" actualy) streamed GHASH | ||
153 | # | ||
154 | $Xip="in0"; | ||
155 | $Htbl="in1"; | ||
156 | $inp="in2"; | ||
157 | $len="in3"; | ||
158 | $rem_8bit="loc0"; | ||
159 | $mask0xff="loc1"; | ||
160 | ($sum,$rum) = $big_endian ? ("nop.m","nop.m") : ("sum","rum"); | ||
161 | |||
162 | sub load_htable() { | ||
163 | for (my $i=0;$i<8;$i++) { | ||
164 | $code.=<<___; | ||
165 | { .mmi; ld8 r`16+2*$i+1`=[r8],16 // Htable[$i].hi | ||
166 | ld8 r`16+2*$i`=[r9],16 } // Htable[$i].lo | ||
167 | { .mmi; ldf8 f`32+2*$i+1`=[r10],16 // Htable[`8+$i`].hi | ||
168 | ldf8 f`32+2*$i`=[r11],16 // Htable[`8+$i`].lo | ||
169 | ___ | ||
170 | $code.=shift if (($i+$#_)==7); | ||
171 | $code.="\t};;\n" | ||
172 | } | ||
173 | } | ||
174 | |||
175 | $code.=<<___; | ||
176 | prevsp=r3; | ||
177 | |||
178 | .align 32 | ||
179 | .skip 16 // aligns loop body | ||
180 | .global gcm_ghash_4bit# | ||
181 | .proc gcm_ghash_4bit# | ||
182 | gcm_ghash_4bit: | ||
183 | .prologue | ||
184 | { .mmi; .save ar.pfs,prevfs | ||
185 | alloc prevfs=ar.pfs,4,2,0,0 | ||
186 | .vframe prevsp | ||
187 | mov prevsp=sp | ||
188 | mov $rem_8bit=ip };; | ||
189 | .body | ||
190 | { .mfi; $ADDP r8=0+0,$Htbl | ||
191 | $ADDP r9=0+8,$Htbl } | ||
192 | { .mfi; $ADDP r10=128+0,$Htbl | ||
193 | $ADDP r11=128+8,$Htbl };; | ||
194 | ___ | ||
195 | &load_htable( | ||
196 | " $ADDP $Xip=15,$Xip", # &Xi[15] | ||
197 | " $ADDP $len=$len,$inp", # &inp[len] | ||
198 | " $ADDP $inp=15,$inp", # &inp[15] | ||
199 | " mov $mask0xff=0xff", | ||
200 | " add sp=-512,sp", | ||
201 | " andcm sp=sp,$mask0xff", # align stack frame | ||
202 | " add r14=0,sp", | ||
203 | " add r15=8,sp"); | ||
204 | $code.=<<___; | ||
205 | { .mmi; $sum 1<<1 // go big-endian | ||
206 | add r8=256+0,sp | ||
207 | add r9=256+8,sp } | ||
208 | { .mmi; add r10=256+128+0,sp | ||
209 | add r11=256+128+8,sp | ||
210 | add $len=-17,$len };; | ||
211 | ___ | ||
212 | for($i=0;$i<8;$i++) { # generate first half of Hshr4[] | ||
213 | my ($rlo,$rhi)=("r".eval(16+2*$i),"r".eval(16+2*$i+1)); | ||
214 | $code.=<<___; | ||
215 | { .mmi; st8 [r8]=$rlo,16 // Htable[$i].lo | ||
216 | st8 [r9]=$rhi,16 // Htable[$i].hi | ||
217 | shrp $rlo=$rhi,$rlo,4 }//;; | ||
218 | { .mmi; stf8 [r10]=f`32+2*$i`,16 // Htable[`8+$i`].lo | ||
219 | stf8 [r11]=f`32+2*$i+1`,16 // Htable[`8+$i`].hi | ||
220 | shr.u $rhi=$rhi,4 };; | ||
221 | { .mmi; st8 [r14]=$rlo,16 // Htable[$i].lo>>4 | ||
222 | st8 [r15]=$rhi,16 }//;; // Htable[$i].hi>>4 | ||
223 | ___ | ||
224 | } | ||
225 | $code.=<<___; | ||
226 | { .mmi; ld8 r16=[r8],16 // Htable[8].lo | ||
227 | ld8 r17=[r9],16 };; // Htable[8].hi | ||
228 | { .mmi; ld8 r18=[r8],16 // Htable[9].lo | ||
229 | ld8 r19=[r9],16 } // Htable[9].hi | ||
230 | { .mmi; rum 1<<5 // clear um.mfh | ||
231 | shrp r16=r17,r16,4 };; | ||
232 | ___ | ||
233 | for($i=0;$i<6;$i++) { # generate second half of Hshr4[] | ||
234 | $code.=<<___; | ||
235 | { .mmi; ld8 r`20+2*$i`=[r8],16 // Htable[`10+$i`].lo | ||
236 | ld8 r`20+2*$i+1`=[r9],16 // Htable[`10+$i`].hi | ||
237 | shr.u r`16+2*$i+1`=r`16+2*$i+1`,4 };; | ||
238 | { .mmi; st8 [r14]=r`16+2*$i`,16 // Htable[`8+$i`].lo>>4 | ||
239 | st8 [r15]=r`16+2*$i+1`,16 // Htable[`8+$i`].hi>>4 | ||
240 | shrp r`18+2*$i`=r`18+2*$i+1`,r`18+2*$i`,4 } | ||
241 | ___ | ||
242 | } | ||
243 | $code.=<<___; | ||
244 | { .mmi; shr.u r`16+2*$i+1`=r`16+2*$i+1`,4 };; | ||
245 | { .mmi; st8 [r14]=r`16+2*$i`,16 // Htable[`8+$i`].lo>>4 | ||
246 | st8 [r15]=r`16+2*$i+1`,16 // Htable[`8+$i`].hi>>4 | ||
247 | shrp r`18+2*$i`=r`18+2*$i+1`,r`18+2*$i`,4 } | ||
248 | { .mmi; add $Htbl=256,sp // &Htable[0] | ||
249 | add $rem_8bit=rem_8bit#-gcm_ghash_4bit#,$rem_8bit | ||
250 | shr.u r`18+2*$i+1`=r`18+2*$i+1`,4 };; | ||
251 | { .mmi; st8 [r14]=r`18+2*$i` // Htable[`8+$i`].lo>>4 | ||
252 | st8 [r15]=r`18+2*$i+1` } // Htable[`8+$i`].hi>>4 | ||
253 | ___ | ||
254 | |||
255 | $in="r15"; | ||
256 | @xi=("r16","r17"); | ||
257 | @rem=("r18","r19"); | ||
258 | ($Alo,$Ahi,$Blo,$Bhi,$Zlo,$Zhi)=("r20","r21","r22","r23","r24","r25"); | ||
259 | ($Atbl,$Btbl)=("r26","r27"); | ||
260 | |||
261 | $code.=<<___; # (p16) | ||
262 | { .mmi; ld1 $in=[$inp],-1 //(p16) *inp-- | ||
263 | ld1 $xi[0]=[$Xip],-1 //(p16) *Xi-- | ||
264 | cmp.eq p0,p6=r0,r0 };; // clear p6 | ||
265 | ___ | ||
266 | push (@xi,shift(@xi)); push (@rem,shift(@rem)); # "rotate" registers | ||
267 | |||
268 | $code.=<<___; # (p16),(p17) | ||
269 | { .mmi; ld1 $xi[0]=[$Xip],-1 //(p16) *Xi-- | ||
270 | xor $xi[1]=$xi[1],$in };; //(p17) xi=$xi[i]^inp[i] | ||
271 | { .mii; ld1 $in=[$inp],-1 //(p16) *inp-- | ||
272 | dep $Atbl=$xi[1],$Htbl,4,4 //(p17) &Htable[nlo].lo | ||
273 | and $xi[1]=-16,$xi[1] };; //(p17) nhi=xi&0xf0 | ||
274 | .align 32 | ||
275 | .LOOP: | ||
276 | { .mmi; | ||
277 | (p6) st8 [$Xip]=$Zhi,13 | ||
278 | xor $Zlo=$Zlo,$Zlo | ||
279 | add $Btbl=$xi[1],$Htbl };; //(p17) &Htable[nhi].lo | ||
280 | ___ | ||
281 | push (@xi,shift(@xi)); push (@rem,shift(@rem)); # "rotate" registers | ||
282 | |||
283 | $code.=<<___; # (p16),(p17),(p18) | ||
284 | { .mmi; ld8 $Alo=[$Atbl],8 //(p18) Htable[nlo].lo,&Htable[nlo].hi | ||
285 | ld8 $rem[0]=[$Btbl],-256 //(p18) Htable[nhi].lo,&Hshr4[nhi].lo | ||
286 | xor $xi[1]=$xi[1],$in };; //(p17) xi=$xi[i]^inp[i] | ||
287 | { .mfi; ld8 $Ahi=[$Atbl] //(p18) Htable[nlo].hi | ||
288 | dep $Atbl=$xi[1],$Htbl,4,4 } //(p17) &Htable[nlo].lo | ||
289 | { .mfi; shladd $rem[0]=$rem[0],4,r0 //(p18) Htable[nhi].lo<<4 | ||
290 | xor $Zlo=$Zlo,$Alo };; //(p18) Z.lo^=Htable[nlo].lo | ||
291 | { .mmi; ld8 $Blo=[$Btbl],8 //(p18) Hshr4[nhi].lo,&Hshr4[nhi].hi | ||
292 | ld1 $in=[$inp],-1 } //(p16) *inp-- | ||
293 | { .mmi; xor $rem[0]=$rem[0],$Zlo //(p18) Z.lo^(Htable[nhi].lo<<4) | ||
294 | mov $Zhi=$Ahi //(p18) Z.hi^=Htable[nlo].hi | ||
295 | and $xi[1]=-16,$xi[1] };; //(p17) nhi=xi&0xf0 | ||
296 | { .mmi; ld8 $Bhi=[$Btbl] //(p18) Hshr4[nhi].hi | ||
297 | ld1 $xi[0]=[$Xip],-1 //(p16) *Xi-- | ||
298 | shrp $Zlo=$Zhi,$Zlo,8 } //(p18) Z.lo=(Z.hi<<56)|(Z.lo>>8) | ||
299 | { .mmi; and $rem[0]=$rem[0],$mask0xff //(p18) rem=($Zlo^(Htable[nhi].lo<<4))&0xff | ||
300 | add $Btbl=$xi[1],$Htbl };; //(p17) &Htable[nhi] | ||
301 | ___ | ||
302 | push (@xi,shift(@xi)); push (@rem,shift(@rem)); # "rotate" registers | ||
303 | |||
304 | for ($i=1;$i<14;$i++) { | ||
305 | # Above and below fragments are derived from this one by removing | ||
306 | # unsuitable (p??) instructions. | ||
307 | $code.=<<___; # (p16),(p17),(p18),(p19) | ||
308 | { .mmi; ld8 $Alo=[$Atbl],8 //(p18) Htable[nlo].lo,&Htable[nlo].hi | ||
309 | ld8 $rem[0]=[$Btbl],-256 //(p18) Htable[nhi].lo,&Hshr4[nhi].lo | ||
310 | shr.u $Zhi=$Zhi,8 } //(p19) Z.hi>>=8 | ||
311 | { .mmi; shladd $rem[1]=$rem[1],1,$rem_8bit //(p19) &rem_8bit[rem] | ||
312 | xor $Zlo=$Zlo,$Blo //(p19) Z.lo^=Hshr4[nhi].lo | ||
313 | xor $xi[1]=$xi[1],$in };; //(p17) xi=$xi[i]^inp[i] | ||
314 | { .mmi; ld8 $Ahi=[$Atbl] //(p18) Htable[nlo].hi | ||
315 | ld2 $rem[1]=[$rem[1]] //(p19) rem_8bit[rem] | ||
316 | dep $Atbl=$xi[1],$Htbl,4,4 } //(p17) &Htable[nlo].lo | ||
317 | { .mmi; shladd $rem[0]=$rem[0],4,r0 //(p18) Htable[nhi].lo<<4 | ||
318 | xor $Zlo=$Zlo,$Alo //(p18) Z.lo^=Htable[nlo].lo | ||
319 | xor $Zhi=$Zhi,$Bhi };; //(p19) Z.hi^=Hshr4[nhi].hi | ||
320 | { .mmi; ld8 $Blo=[$Btbl],8 //(p18) Hshr4[nhi].lo,&Hshr4[nhi].hi | ||
321 | ld1 $in=[$inp],-1 //(p16) *inp-- | ||
322 | shl $rem[1]=$rem[1],48 } //(p19) rem_8bit[rem]<<48 | ||
323 | { .mmi; xor $rem[0]=$rem[0],$Zlo //(p18) Z.lo^(Htable[nhi].lo<<4) | ||
324 | xor $Zhi=$Zhi,$Ahi //(p18) Z.hi^=Htable[nlo].hi | ||
325 | and $xi[1]=-16,$xi[1] };; //(p17) nhi=xi&0xf0 | ||
326 | { .mmi; ld8 $Bhi=[$Btbl] //(p18) Hshr4[nhi].hi | ||
327 | ld1 $xi[0]=[$Xip],-1 //(p16) *Xi-- | ||
328 | shrp $Zlo=$Zhi,$Zlo,8 } //(p18) Z.lo=(Z.hi<<56)|(Z.lo>>8) | ||
329 | { .mmi; and $rem[0]=$rem[0],$mask0xff //(p18) rem=($Zlo^(Htable[nhi].lo<<4))&0xff | ||
330 | xor $Zhi=$Zhi,$rem[1] //(p19) Z.hi^=rem_8bit[rem]<<48 | ||
331 | add $Btbl=$xi[1],$Htbl };; //(p17) &Htable[nhi] | ||
332 | ___ | ||
333 | push (@xi,shift(@xi)); push (@rem,shift(@rem)); # "rotate" registers | ||
334 | } | ||
335 | |||
336 | $code.=<<___; # (p17),(p18),(p19) | ||
337 | { .mmi; ld8 $Alo=[$Atbl],8 //(p18) Htable[nlo].lo,&Htable[nlo].hi | ||
338 | ld8 $rem[0]=[$Btbl],-256 //(p18) Htable[nhi].lo,&Hshr4[nhi].lo | ||
339 | shr.u $Zhi=$Zhi,8 } //(p19) Z.hi>>=8 | ||
340 | { .mmi; shladd $rem[1]=$rem[1],1,$rem_8bit //(p19) &rem_8bit[rem] | ||
341 | xor $Zlo=$Zlo,$Blo //(p19) Z.lo^=Hshr4[nhi].lo | ||
342 | xor $xi[1]=$xi[1],$in };; //(p17) xi=$xi[i]^inp[i] | ||
343 | { .mmi; ld8 $Ahi=[$Atbl] //(p18) Htable[nlo].hi | ||
344 | ld2 $rem[1]=[$rem[1]] //(p19) rem_8bit[rem] | ||
345 | dep $Atbl=$xi[1],$Htbl,4,4 };; //(p17) &Htable[nlo].lo | ||
346 | { .mmi; shladd $rem[0]=$rem[0],4,r0 //(p18) Htable[nhi].lo<<4 | ||
347 | xor $Zlo=$Zlo,$Alo //(p18) Z.lo^=Htable[nlo].lo | ||
348 | xor $Zhi=$Zhi,$Bhi };; //(p19) Z.hi^=Hshr4[nhi].hi | ||
349 | { .mmi; ld8 $Blo=[$Btbl],8 //(p18) Hshr4[nhi].lo,&Hshr4[nhi].hi | ||
350 | shl $rem[1]=$rem[1],48 } //(p19) rem_8bit[rem]<<48 | ||
351 | { .mmi; xor $rem[0]=$rem[0],$Zlo //(p18) Z.lo^(Htable[nhi].lo<<4) | ||
352 | xor $Zhi=$Zhi,$Ahi //(p18) Z.hi^=Htable[nlo].hi | ||
353 | and $xi[1]=-16,$xi[1] };; //(p17) nhi=xi&0xf0 | ||
354 | { .mmi; ld8 $Bhi=[$Btbl] //(p18) Hshr4[nhi].hi | ||
355 | shrp $Zlo=$Zhi,$Zlo,8 } //(p18) Z.lo=(Z.hi<<56)|(Z.lo>>8) | ||
356 | { .mmi; and $rem[0]=$rem[0],$mask0xff //(p18) rem=($Zlo^(Htable[nhi].lo<<4))&0xff | ||
357 | xor $Zhi=$Zhi,$rem[1] //(p19) Z.hi^=rem_8bit[rem]<<48 | ||
358 | add $Btbl=$xi[1],$Htbl };; //(p17) &Htable[nhi] | ||
359 | ___ | ||
360 | push (@xi,shift(@xi)); push (@rem,shift(@rem)); # "rotate" registers | ||
361 | |||
362 | $code.=<<___; # (p18),(p19) | ||
363 | { .mfi; ld8 $Alo=[$Atbl],8 //(p18) Htable[nlo].lo,&Htable[nlo].hi | ||
364 | shr.u $Zhi=$Zhi,8 } //(p19) Z.hi>>=8 | ||
365 | { .mfi; shladd $rem[1]=$rem[1],1,$rem_8bit //(p19) &rem_8bit[rem] | ||
366 | xor $Zlo=$Zlo,$Blo };; //(p19) Z.lo^=Hshr4[nhi].lo | ||
367 | { .mfi; ld8 $Ahi=[$Atbl] //(p18) Htable[nlo].hi | ||
368 | xor $Zlo=$Zlo,$Alo } //(p18) Z.lo^=Htable[nlo].lo | ||
369 | { .mfi; ld2 $rem[1]=[$rem[1]] //(p19) rem_8bit[rem] | ||
370 | xor $Zhi=$Zhi,$Bhi };; //(p19) Z.hi^=Hshr4[nhi].hi | ||
371 | { .mfi; ld8 $Blo=[$Btbl],8 //(p18) Htable[nhi].lo,&Htable[nhi].hi | ||
372 | shl $rem[1]=$rem[1],48 } //(p19) rem_8bit[rem]<<48 | ||
373 | { .mfi; shladd $rem[0]=$Zlo,4,r0 //(p18) Z.lo<<4 | ||
374 | xor $Zhi=$Zhi,$Ahi };; //(p18) Z.hi^=Htable[nlo].hi | ||
375 | { .mfi; ld8 $Bhi=[$Btbl] //(p18) Htable[nhi].hi | ||
376 | shrp $Zlo=$Zhi,$Zlo,4 } //(p18) Z.lo=(Z.hi<<60)|(Z.lo>>4) | ||
377 | { .mfi; and $rem[0]=$rem[0],$mask0xff //(p18) rem=($Zlo^(Htable[nhi].lo<<4))&0xff | ||
378 | xor $Zhi=$Zhi,$rem[1] };; //(p19) Z.hi^=rem_8bit[rem]<<48 | ||
379 | ___ | ||
380 | push (@xi,shift(@xi)); push (@rem,shift(@rem)); # "rotate" registers | ||
381 | |||
382 | $code.=<<___; # (p19) | ||
383 | { .mmi; cmp.ltu p6,p0=$inp,$len | ||
384 | add $inp=32,$inp | ||
385 | shr.u $Zhi=$Zhi,4 } //(p19) Z.hi>>=4 | ||
386 | { .mmi; shladd $rem[1]=$rem[1],1,$rem_8bit //(p19) &rem_8bit[rem] | ||
387 | xor $Zlo=$Zlo,$Blo //(p19) Z.lo^=Hshr4[nhi].lo | ||
388 | add $Xip=9,$Xip };; // &Xi.lo | ||
389 | { .mmi; ld2 $rem[1]=[$rem[1]] //(p19) rem_8bit[rem] | ||
390 | (p6) ld1 $in=[$inp],-1 //[p16] *inp-- | ||
391 | (p6) extr.u $xi[1]=$Zlo,8,8 } //[p17] Xi[14] | ||
392 | { .mmi; xor $Zhi=$Zhi,$Bhi //(p19) Z.hi^=Hshr4[nhi].hi | ||
393 | (p6) and $xi[0]=$Zlo,$mask0xff };; //[p16] Xi[15] | ||
394 | { .mmi; st8 [$Xip]=$Zlo,-8 | ||
395 | (p6) xor $xi[0]=$xi[0],$in //[p17] xi=$xi[i]^inp[i] | ||
396 | shl $rem[1]=$rem[1],48 };; //(p19) rem_8bit[rem]<<48 | ||
397 | { .mmi; | ||
398 | (p6) ld1 $in=[$inp],-1 //[p16] *inp-- | ||
399 | xor $Zhi=$Zhi,$rem[1] //(p19) Z.hi^=rem_8bit[rem]<<48 | ||
400 | (p6) dep $Atbl=$xi[0],$Htbl,4,4 } //[p17] &Htable[nlo].lo | ||
401 | { .mib; | ||
402 | (p6) and $xi[0]=-16,$xi[0] //[p17] nhi=xi&0xf0 | ||
403 | (p6) br.cond.dptk.many .LOOP };; | ||
404 | |||
405 | { .mib; st8 [$Xip]=$Zhi };; | ||
406 | { .mib; $rum 1<<1 // return to little-endian | ||
407 | .restore sp | ||
408 | mov sp=prevsp | ||
409 | br.ret.sptk.many b0 };; | ||
410 | .endp gcm_ghash_4bit# | ||
411 | ___ | ||
412 | $code.=<<___; | ||
413 | .align 128 | ||
414 | .type rem_4bit#,\@object | ||
415 | rem_4bit: | ||
416 | data8 0x0000<<48, 0x1C20<<48, 0x3840<<48, 0x2460<<48 | ||
417 | data8 0x7080<<48, 0x6CA0<<48, 0x48C0<<48, 0x54E0<<48 | ||
418 | data8 0xE100<<48, 0xFD20<<48, 0xD940<<48, 0xC560<<48 | ||
419 | data8 0x9180<<48, 0x8DA0<<48, 0xA9C0<<48, 0xB5E0<<48 | ||
420 | .size rem_4bit#,128 | ||
421 | .type rem_8bit#,\@object | ||
422 | rem_8bit: | ||
423 | data1 0x00,0x00, 0x01,0xC2, 0x03,0x84, 0x02,0x46, 0x07,0x08, 0x06,0xCA, 0x04,0x8C, 0x05,0x4E | ||
424 | data1 0x0E,0x10, 0x0F,0xD2, 0x0D,0x94, 0x0C,0x56, 0x09,0x18, 0x08,0xDA, 0x0A,0x9C, 0x0B,0x5E | ||
425 | data1 0x1C,0x20, 0x1D,0xE2, 0x1F,0xA4, 0x1E,0x66, 0x1B,0x28, 0x1A,0xEA, 0x18,0xAC, 0x19,0x6E | ||
426 | data1 0x12,0x30, 0x13,0xF2, 0x11,0xB4, 0x10,0x76, 0x15,0x38, 0x14,0xFA, 0x16,0xBC, 0x17,0x7E | ||
427 | data1 0x38,0x40, 0x39,0x82, 0x3B,0xC4, 0x3A,0x06, 0x3F,0x48, 0x3E,0x8A, 0x3C,0xCC, 0x3D,0x0E | ||
428 | data1 0x36,0x50, 0x37,0x92, 0x35,0xD4, 0x34,0x16, 0x31,0x58, 0x30,0x9A, 0x32,0xDC, 0x33,0x1E | ||
429 | data1 0x24,0x60, 0x25,0xA2, 0x27,0xE4, 0x26,0x26, 0x23,0x68, 0x22,0xAA, 0x20,0xEC, 0x21,0x2E | ||
430 | data1 0x2A,0x70, 0x2B,0xB2, 0x29,0xF4, 0x28,0x36, 0x2D,0x78, 0x2C,0xBA, 0x2E,0xFC, 0x2F,0x3E | ||
431 | data1 0x70,0x80, 0x71,0x42, 0x73,0x04, 0x72,0xC6, 0x77,0x88, 0x76,0x4A, 0x74,0x0C, 0x75,0xCE | ||
432 | data1 0x7E,0x90, 0x7F,0x52, 0x7D,0x14, 0x7C,0xD6, 0x79,0x98, 0x78,0x5A, 0x7A,0x1C, 0x7B,0xDE | ||
433 | data1 0x6C,0xA0, 0x6D,0x62, 0x6F,0x24, 0x6E,0xE6, 0x6B,0xA8, 0x6A,0x6A, 0x68,0x2C, 0x69,0xEE | ||
434 | data1 0x62,0xB0, 0x63,0x72, 0x61,0x34, 0x60,0xF6, 0x65,0xB8, 0x64,0x7A, 0x66,0x3C, 0x67,0xFE | ||
435 | data1 0x48,0xC0, 0x49,0x02, 0x4B,0x44, 0x4A,0x86, 0x4F,0xC8, 0x4E,0x0A, 0x4C,0x4C, 0x4D,0x8E | ||
436 | data1 0x46,0xD0, 0x47,0x12, 0x45,0x54, 0x44,0x96, 0x41,0xD8, 0x40,0x1A, 0x42,0x5C, 0x43,0x9E | ||
437 | data1 0x54,0xE0, 0x55,0x22, 0x57,0x64, 0x56,0xA6, 0x53,0xE8, 0x52,0x2A, 0x50,0x6C, 0x51,0xAE | ||
438 | data1 0x5A,0xF0, 0x5B,0x32, 0x59,0x74, 0x58,0xB6, 0x5D,0xF8, 0x5C,0x3A, 0x5E,0x7C, 0x5F,0xBE | ||
439 | data1 0xE1,0x00, 0xE0,0xC2, 0xE2,0x84, 0xE3,0x46, 0xE6,0x08, 0xE7,0xCA, 0xE5,0x8C, 0xE4,0x4E | ||
440 | data1 0xEF,0x10, 0xEE,0xD2, 0xEC,0x94, 0xED,0x56, 0xE8,0x18, 0xE9,0xDA, 0xEB,0x9C, 0xEA,0x5E | ||
441 | data1 0xFD,0x20, 0xFC,0xE2, 0xFE,0xA4, 0xFF,0x66, 0xFA,0x28, 0xFB,0xEA, 0xF9,0xAC, 0xF8,0x6E | ||
442 | data1 0xF3,0x30, 0xF2,0xF2, 0xF0,0xB4, 0xF1,0x76, 0xF4,0x38, 0xF5,0xFA, 0xF7,0xBC, 0xF6,0x7E | ||
443 | data1 0xD9,0x40, 0xD8,0x82, 0xDA,0xC4, 0xDB,0x06, 0xDE,0x48, 0xDF,0x8A, 0xDD,0xCC, 0xDC,0x0E | ||
444 | data1 0xD7,0x50, 0xD6,0x92, 0xD4,0xD4, 0xD5,0x16, 0xD0,0x58, 0xD1,0x9A, 0xD3,0xDC, 0xD2,0x1E | ||
445 | data1 0xC5,0x60, 0xC4,0xA2, 0xC6,0xE4, 0xC7,0x26, 0xC2,0x68, 0xC3,0xAA, 0xC1,0xEC, 0xC0,0x2E | ||
446 | data1 0xCB,0x70, 0xCA,0xB2, 0xC8,0xF4, 0xC9,0x36, 0xCC,0x78, 0xCD,0xBA, 0xCF,0xFC, 0xCE,0x3E | ||
447 | data1 0x91,0x80, 0x90,0x42, 0x92,0x04, 0x93,0xC6, 0x96,0x88, 0x97,0x4A, 0x95,0x0C, 0x94,0xCE | ||
448 | data1 0x9F,0x90, 0x9E,0x52, 0x9C,0x14, 0x9D,0xD6, 0x98,0x98, 0x99,0x5A, 0x9B,0x1C, 0x9A,0xDE | ||
449 | data1 0x8D,0xA0, 0x8C,0x62, 0x8E,0x24, 0x8F,0xE6, 0x8A,0xA8, 0x8B,0x6A, 0x89,0x2C, 0x88,0xEE | ||
450 | data1 0x83,0xB0, 0x82,0x72, 0x80,0x34, 0x81,0xF6, 0x84,0xB8, 0x85,0x7A, 0x87,0x3C, 0x86,0xFE | ||
451 | data1 0xA9,0xC0, 0xA8,0x02, 0xAA,0x44, 0xAB,0x86, 0xAE,0xC8, 0xAF,0x0A, 0xAD,0x4C, 0xAC,0x8E | ||
452 | data1 0xA7,0xD0, 0xA6,0x12, 0xA4,0x54, 0xA5,0x96, 0xA0,0xD8, 0xA1,0x1A, 0xA3,0x5C, 0xA2,0x9E | ||
453 | data1 0xB5,0xE0, 0xB4,0x22, 0xB6,0x64, 0xB7,0xA6, 0xB2,0xE8, 0xB3,0x2A, 0xB1,0x6C, 0xB0,0xAE | ||
454 | data1 0xBB,0xF0, 0xBA,0x32, 0xB8,0x74, 0xB9,0xB6, 0xBC,0xF8, 0xBD,0x3A, 0xBF,0x7C, 0xBE,0xBE | ||
455 | .size rem_8bit#,512 | ||
456 | stringz "GHASH for IA64, CRYPTOGAMS by <appro\@openssl.org>" | ||
457 | ___ | ||
458 | |||
459 | $code =~ s/mux1(\s+)\S+\@rev/nop.i$1 0x0/gm if ($big_endian); | ||
460 | $code =~ s/\`([^\`]*)\`/eval $1/gem; | ||
461 | |||
462 | print $code; | ||
463 | close STDOUT; | ||
diff --git a/src/lib/libcrypto/modes/asm/ghash-parisc.pl b/src/lib/libcrypto/modes/asm/ghash-parisc.pl new file mode 100644 index 0000000000..8c7454ee93 --- /dev/null +++ b/src/lib/libcrypto/modes/asm/ghash-parisc.pl | |||
@@ -0,0 +1,730 @@ | |||
1 | #!/usr/bin/env perl | ||
2 | # | ||
3 | # ==================================================================== | ||
4 | # Written by Andy Polyakov <appro@openssl.org> for the OpenSSL | ||
5 | # project. The module is, however, dual licensed under OpenSSL and | ||
6 | # CRYPTOGAMS licenses depending on where you obtain it. For further | ||
7 | # details see http://www.openssl.org/~appro/cryptogams/. | ||
8 | # ==================================================================== | ||
9 | # | ||
10 | # April 2010 | ||
11 | # | ||
12 | # The module implements "4-bit" GCM GHASH function and underlying | ||
13 | # single multiplication operation in GF(2^128). "4-bit" means that it | ||
14 | # uses 256 bytes per-key table [+128 bytes shared table]. On PA-7100LC | ||
15 | # it processes one byte in 19.6 cycles, which is more than twice as | ||
16 | # fast as code generated by gcc 3.2. PA-RISC 2.0 loop is scheduled for | ||
17 | # 8 cycles, but measured performance on PA-8600 system is ~9 cycles per | ||
18 | # processed byte. This is ~2.2x faster than 64-bit code generated by | ||
19 | # vendor compiler (which used to be very hard to beat:-). | ||
20 | # | ||
21 | # Special thanks to polarhome.com for providing HP-UX account. | ||
22 | |||
23 | $flavour = shift; | ||
24 | $output = shift; | ||
25 | open STDOUT,">$output"; | ||
26 | |||
27 | if ($flavour =~ /64/) { | ||
28 | $LEVEL ="2.0W"; | ||
29 | $SIZE_T =8; | ||
30 | $FRAME_MARKER =80; | ||
31 | $SAVED_RP =16; | ||
32 | $PUSH ="std"; | ||
33 | $PUSHMA ="std,ma"; | ||
34 | $POP ="ldd"; | ||
35 | $POPMB ="ldd,mb"; | ||
36 | $NREGS =6; | ||
37 | } else { | ||
38 | $LEVEL ="1.0"; #"\n\t.ALLOW\t2.0"; | ||
39 | $SIZE_T =4; | ||
40 | $FRAME_MARKER =48; | ||
41 | $SAVED_RP =20; | ||
42 | $PUSH ="stw"; | ||
43 | $PUSHMA ="stwm"; | ||
44 | $POP ="ldw"; | ||
45 | $POPMB ="ldwm"; | ||
46 | $NREGS =11; | ||
47 | } | ||
48 | |||
49 | $FRAME=10*$SIZE_T+$FRAME_MARKER;# NREGS saved regs + frame marker | ||
50 | # [+ argument transfer] | ||
51 | |||
52 | ################# volatile registers | ||
53 | $Xi="%r26"; # argument block | ||
54 | $Htbl="%r25"; | ||
55 | $inp="%r24"; | ||
56 | $len="%r23"; | ||
57 | $Hhh=$Htbl; # variables | ||
58 | $Hll="%r22"; | ||
59 | $Zhh="%r21"; | ||
60 | $Zll="%r20"; | ||
61 | $cnt="%r19"; | ||
62 | $rem_4bit="%r28"; | ||
63 | $rem="%r29"; | ||
64 | $mask0xf0="%r31"; | ||
65 | |||
66 | ################# preserved registers | ||
67 | $Thh="%r1"; | ||
68 | $Tll="%r2"; | ||
69 | $nlo="%r3"; | ||
70 | $nhi="%r4"; | ||
71 | $byte="%r5"; | ||
72 | if ($SIZE_T==4) { | ||
73 | $Zhl="%r6"; | ||
74 | $Zlh="%r7"; | ||
75 | $Hhl="%r8"; | ||
76 | $Hlh="%r9"; | ||
77 | $Thl="%r10"; | ||
78 | $Tlh="%r11"; | ||
79 | } | ||
80 | $rem2="%r6"; # used in PA-RISC 2.0 code | ||
81 | |||
82 | $code.=<<___; | ||
83 | .LEVEL $LEVEL | ||
84 | .SPACE \$TEXT\$ | ||
85 | .SUBSPA \$CODE\$,QUAD=0,ALIGN=8,ACCESS=0x2C,CODE_ONLY | ||
86 | |||
87 | .EXPORT gcm_gmult_4bit,ENTRY,ARGW0=GR,ARGW1=GR | ||
88 | .ALIGN 64 | ||
89 | gcm_gmult_4bit | ||
90 | .PROC | ||
91 | .CALLINFO FRAME=`$FRAME-10*$SIZE_T`,NO_CALLS,SAVE_RP,ENTRY_GR=$NREGS | ||
92 | .ENTRY | ||
93 | $PUSH %r2,-$SAVED_RP(%sp) ; standard prologue | ||
94 | $PUSHMA %r3,$FRAME(%sp) | ||
95 | $PUSH %r4,`-$FRAME+1*$SIZE_T`(%sp) | ||
96 | $PUSH %r5,`-$FRAME+2*$SIZE_T`(%sp) | ||
97 | $PUSH %r6,`-$FRAME+3*$SIZE_T`(%sp) | ||
98 | ___ | ||
99 | $code.=<<___ if ($SIZE_T==4); | ||
100 | $PUSH %r7,`-$FRAME+4*$SIZE_T`(%sp) | ||
101 | $PUSH %r8,`-$FRAME+5*$SIZE_T`(%sp) | ||
102 | $PUSH %r9,`-$FRAME+6*$SIZE_T`(%sp) | ||
103 | $PUSH %r10,`-$FRAME+7*$SIZE_T`(%sp) | ||
104 | $PUSH %r11,`-$FRAME+8*$SIZE_T`(%sp) | ||
105 | ___ | ||
106 | $code.=<<___; | ||
107 | blr %r0,$rem_4bit | ||
108 | ldi 3,$rem | ||
109 | L\$pic_gmult | ||
110 | andcm $rem_4bit,$rem,$rem_4bit | ||
111 | addl $inp,$len,$len | ||
112 | ldo L\$rem_4bit-L\$pic_gmult($rem_4bit),$rem_4bit | ||
113 | ldi 0xf0,$mask0xf0 | ||
114 | ___ | ||
115 | $code.=<<___ if ($SIZE_T==4); | ||
116 | ldi 31,$rem | ||
117 | mtctl $rem,%cr11 | ||
118 | extrd,u,*= $rem,%sar,1,$rem ; executes on PA-RISC 1.0 | ||
119 | b L\$parisc1_gmult | ||
120 | nop | ||
121 | ___ | ||
122 | |||
123 | $code.=<<___; | ||
124 | ldb 15($Xi),$nlo | ||
125 | ldo 8($Htbl),$Hll | ||
126 | |||
127 | and $mask0xf0,$nlo,$nhi | ||
128 | depd,z $nlo,59,4,$nlo | ||
129 | |||
130 | ldd $nlo($Hll),$Zll | ||
131 | ldd $nlo($Hhh),$Zhh | ||
132 | |||
133 | depd,z $Zll,60,4,$rem | ||
134 | shrpd $Zhh,$Zll,4,$Zll | ||
135 | extrd,u $Zhh,59,60,$Zhh | ||
136 | ldb 14($Xi),$nlo | ||
137 | |||
138 | ldd $nhi($Hll),$Tll | ||
139 | ldd $nhi($Hhh),$Thh | ||
140 | and $mask0xf0,$nlo,$nhi | ||
141 | depd,z $nlo,59,4,$nlo | ||
142 | |||
143 | xor $Tll,$Zll,$Zll | ||
144 | xor $Thh,$Zhh,$Zhh | ||
145 | ldd $rem($rem_4bit),$rem | ||
146 | b L\$oop_gmult_pa2 | ||
147 | ldi 13,$cnt | ||
148 | |||
149 | .ALIGN 8 | ||
150 | L\$oop_gmult_pa2 | ||
151 | xor $rem,$Zhh,$Zhh ; moved here to work around gas bug | ||
152 | depd,z $Zll,60,4,$rem | ||
153 | |||
154 | shrpd $Zhh,$Zll,4,$Zll | ||
155 | extrd,u $Zhh,59,60,$Zhh | ||
156 | ldd $nlo($Hll),$Tll | ||
157 | ldd $nlo($Hhh),$Thh | ||
158 | |||
159 | xor $Tll,$Zll,$Zll | ||
160 | xor $Thh,$Zhh,$Zhh | ||
161 | ldd $rem($rem_4bit),$rem | ||
162 | |||
163 | xor $rem,$Zhh,$Zhh | ||
164 | depd,z $Zll,60,4,$rem | ||
165 | ldbx $cnt($Xi),$nlo | ||
166 | |||
167 | shrpd $Zhh,$Zll,4,$Zll | ||
168 | extrd,u $Zhh,59,60,$Zhh | ||
169 | ldd $nhi($Hll),$Tll | ||
170 | ldd $nhi($Hhh),$Thh | ||
171 | |||
172 | and $mask0xf0,$nlo,$nhi | ||
173 | depd,z $nlo,59,4,$nlo | ||
174 | ldd $rem($rem_4bit),$rem | ||
175 | |||
176 | xor $Tll,$Zll,$Zll | ||
177 | addib,uv -1,$cnt,L\$oop_gmult_pa2 | ||
178 | xor $Thh,$Zhh,$Zhh | ||
179 | |||
180 | xor $rem,$Zhh,$Zhh | ||
181 | depd,z $Zll,60,4,$rem | ||
182 | |||
183 | shrpd $Zhh,$Zll,4,$Zll | ||
184 | extrd,u $Zhh,59,60,$Zhh | ||
185 | ldd $nlo($Hll),$Tll | ||
186 | ldd $nlo($Hhh),$Thh | ||
187 | |||
188 | xor $Tll,$Zll,$Zll | ||
189 | xor $Thh,$Zhh,$Zhh | ||
190 | ldd $rem($rem_4bit),$rem | ||
191 | |||
192 | xor $rem,$Zhh,$Zhh | ||
193 | depd,z $Zll,60,4,$rem | ||
194 | |||
195 | shrpd $Zhh,$Zll,4,$Zll | ||
196 | extrd,u $Zhh,59,60,$Zhh | ||
197 | ldd $nhi($Hll),$Tll | ||
198 | ldd $nhi($Hhh),$Thh | ||
199 | |||
200 | xor $Tll,$Zll,$Zll | ||
201 | xor $Thh,$Zhh,$Zhh | ||
202 | ldd $rem($rem_4bit),$rem | ||
203 | |||
204 | xor $rem,$Zhh,$Zhh | ||
205 | std $Zll,8($Xi) | ||
206 | std $Zhh,0($Xi) | ||
207 | ___ | ||
208 | |||
209 | $code.=<<___ if ($SIZE_T==4); | ||
210 | b L\$done_gmult | ||
211 | nop | ||
212 | |||
213 | L\$parisc1_gmult | ||
214 | ldb 15($Xi),$nlo | ||
215 | ldo 12($Htbl),$Hll | ||
216 | ldo 8($Htbl),$Hlh | ||
217 | ldo 4($Htbl),$Hhl | ||
218 | |||
219 | and $mask0xf0,$nlo,$nhi | ||
220 | zdep $nlo,27,4,$nlo | ||
221 | |||
222 | ldwx $nlo($Hll),$Zll | ||
223 | ldwx $nlo($Hlh),$Zlh | ||
224 | ldwx $nlo($Hhl),$Zhl | ||
225 | ldwx $nlo($Hhh),$Zhh | ||
226 | zdep $Zll,28,4,$rem | ||
227 | ldb 14($Xi),$nlo | ||
228 | ldwx $rem($rem_4bit),$rem | ||
229 | shrpw $Zlh,$Zll,4,$Zll | ||
230 | ldwx $nhi($Hll),$Tll | ||
231 | shrpw $Zhl,$Zlh,4,$Zlh | ||
232 | ldwx $nhi($Hlh),$Tlh | ||
233 | shrpw $Zhh,$Zhl,4,$Zhl | ||
234 | ldwx $nhi($Hhl),$Thl | ||
235 | extru $Zhh,27,28,$Zhh | ||
236 | ldwx $nhi($Hhh),$Thh | ||
237 | xor $rem,$Zhh,$Zhh | ||
238 | and $mask0xf0,$nlo,$nhi | ||
239 | zdep $nlo,27,4,$nlo | ||
240 | |||
241 | xor $Tll,$Zll,$Zll | ||
242 | ldwx $nlo($Hll),$Tll | ||
243 | xor $Tlh,$Zlh,$Zlh | ||
244 | ldwx $nlo($Hlh),$Tlh | ||
245 | xor $Thl,$Zhl,$Zhl | ||
246 | b L\$oop_gmult_pa1 | ||
247 | ldi 13,$cnt | ||
248 | |||
249 | .ALIGN 8 | ||
250 | L\$oop_gmult_pa1 | ||
251 | zdep $Zll,28,4,$rem | ||
252 | ldwx $nlo($Hhl),$Thl | ||
253 | xor $Thh,$Zhh,$Zhh | ||
254 | ldwx $rem($rem_4bit),$rem | ||
255 | shrpw $Zlh,$Zll,4,$Zll | ||
256 | ldwx $nlo($Hhh),$Thh | ||
257 | shrpw $Zhl,$Zlh,4,$Zlh | ||
258 | ldbx $cnt($Xi),$nlo | ||
259 | xor $Tll,$Zll,$Zll | ||
260 | ldwx $nhi($Hll),$Tll | ||
261 | shrpw $Zhh,$Zhl,4,$Zhl | ||
262 | xor $Tlh,$Zlh,$Zlh | ||
263 | ldwx $nhi($Hlh),$Tlh | ||
264 | extru $Zhh,27,28,$Zhh | ||
265 | xor $Thl,$Zhl,$Zhl | ||
266 | ldwx $nhi($Hhl),$Thl | ||
267 | xor $rem,$Zhh,$Zhh | ||
268 | zdep $Zll,28,4,$rem | ||
269 | xor $Thh,$Zhh,$Zhh | ||
270 | ldwx $nhi($Hhh),$Thh | ||
271 | shrpw $Zlh,$Zll,4,$Zll | ||
272 | ldwx $rem($rem_4bit),$rem | ||
273 | shrpw $Zhl,$Zlh,4,$Zlh | ||
274 | shrpw $Zhh,$Zhl,4,$Zhl | ||
275 | and $mask0xf0,$nlo,$nhi | ||
276 | extru $Zhh,27,28,$Zhh | ||
277 | zdep $nlo,27,4,$nlo | ||
278 | xor $Tll,$Zll,$Zll | ||
279 | ldwx $nlo($Hll),$Tll | ||
280 | xor $Tlh,$Zlh,$Zlh | ||
281 | ldwx $nlo($Hlh),$Tlh | ||
282 | xor $rem,$Zhh,$Zhh | ||
283 | addib,uv -1,$cnt,L\$oop_gmult_pa1 | ||
284 | xor $Thl,$Zhl,$Zhl | ||
285 | |||
286 | zdep $Zll,28,4,$rem | ||
287 | ldwx $nlo($Hhl),$Thl | ||
288 | xor $Thh,$Zhh,$Zhh | ||
289 | ldwx $rem($rem_4bit),$rem | ||
290 | shrpw $Zlh,$Zll,4,$Zll | ||
291 | ldwx $nlo($Hhh),$Thh | ||
292 | shrpw $Zhl,$Zlh,4,$Zlh | ||
293 | xor $Tll,$Zll,$Zll | ||
294 | ldwx $nhi($Hll),$Tll | ||
295 | shrpw $Zhh,$Zhl,4,$Zhl | ||
296 | xor $Tlh,$Zlh,$Zlh | ||
297 | ldwx $nhi($Hlh),$Tlh | ||
298 | extru $Zhh,27,28,$Zhh | ||
299 | xor $rem,$Zhh,$Zhh | ||
300 | xor $Thl,$Zhl,$Zhl | ||
301 | ldwx $nhi($Hhl),$Thl | ||
302 | xor $Thh,$Zhh,$Zhh | ||
303 | ldwx $nhi($Hhh),$Thh | ||
304 | zdep $Zll,28,4,$rem | ||
305 | ldwx $rem($rem_4bit),$rem | ||
306 | shrpw $Zlh,$Zll,4,$Zll | ||
307 | shrpw $Zhl,$Zlh,4,$Zlh | ||
308 | shrpw $Zhh,$Zhl,4,$Zhl | ||
309 | extru $Zhh,27,28,$Zhh | ||
310 | xor $Tll,$Zll,$Zll | ||
311 | xor $Tlh,$Zlh,$Zlh | ||
312 | xor $rem,$Zhh,$Zhh | ||
313 | stw $Zll,12($Xi) | ||
314 | xor $Thl,$Zhl,$Zhl | ||
315 | stw $Zlh,8($Xi) | ||
316 | xor $Thh,$Zhh,$Zhh | ||
317 | stw $Zhl,4($Xi) | ||
318 | stw $Zhh,0($Xi) | ||
319 | ___ | ||
320 | $code.=<<___; | ||
321 | L\$done_gmult | ||
322 | $POP `-$FRAME-$SAVED_RP`(%sp),%r2 ; standard epilogue | ||
323 | $POP `-$FRAME+1*$SIZE_T`(%sp),%r4 | ||
324 | $POP `-$FRAME+2*$SIZE_T`(%sp),%r5 | ||
325 | $POP `-$FRAME+3*$SIZE_T`(%sp),%r6 | ||
326 | ___ | ||
327 | $code.=<<___ if ($SIZE_T==4); | ||
328 | $POP `-$FRAME+4*$SIZE_T`(%sp),%r7 | ||
329 | $POP `-$FRAME+5*$SIZE_T`(%sp),%r8 | ||
330 | $POP `-$FRAME+6*$SIZE_T`(%sp),%r9 | ||
331 | $POP `-$FRAME+7*$SIZE_T`(%sp),%r10 | ||
332 | $POP `-$FRAME+8*$SIZE_T`(%sp),%r11 | ||
333 | ___ | ||
334 | $code.=<<___; | ||
335 | bv (%r2) | ||
336 | .EXIT | ||
337 | $POPMB -$FRAME(%sp),%r3 | ||
338 | .PROCEND | ||
339 | |||
340 | .EXPORT gcm_ghash_4bit,ENTRY,ARGW0=GR,ARGW1=GR,ARGW2=GR,ARGW3=GR | ||
341 | .ALIGN 64 | ||
342 | gcm_ghash_4bit | ||
343 | .PROC | ||
344 | .CALLINFO FRAME=`$FRAME-10*$SIZE_T`,NO_CALLS,SAVE_RP,ENTRY_GR=11 | ||
345 | .ENTRY | ||
346 | $PUSH %r2,-$SAVED_RP(%sp) ; standard prologue | ||
347 | $PUSHMA %r3,$FRAME(%sp) | ||
348 | $PUSH %r4,`-$FRAME+1*$SIZE_T`(%sp) | ||
349 | $PUSH %r5,`-$FRAME+2*$SIZE_T`(%sp) | ||
350 | $PUSH %r6,`-$FRAME+3*$SIZE_T`(%sp) | ||
351 | ___ | ||
352 | $code.=<<___ if ($SIZE_T==4); | ||
353 | $PUSH %r7,`-$FRAME+4*$SIZE_T`(%sp) | ||
354 | $PUSH %r8,`-$FRAME+5*$SIZE_T`(%sp) | ||
355 | $PUSH %r9,`-$FRAME+6*$SIZE_T`(%sp) | ||
356 | $PUSH %r10,`-$FRAME+7*$SIZE_T`(%sp) | ||
357 | $PUSH %r11,`-$FRAME+8*$SIZE_T`(%sp) | ||
358 | ___ | ||
359 | $code.=<<___; | ||
360 | blr %r0,$rem_4bit | ||
361 | ldi 3,$rem | ||
362 | L\$pic_ghash | ||
363 | andcm $rem_4bit,$rem,$rem_4bit | ||
364 | addl $inp,$len,$len | ||
365 | ldo L\$rem_4bit-L\$pic_ghash($rem_4bit),$rem_4bit | ||
366 | ldi 0xf0,$mask0xf0 | ||
367 | ___ | ||
368 | $code.=<<___ if ($SIZE_T==4); | ||
369 | ldi 31,$rem | ||
370 | mtctl $rem,%cr11 | ||
371 | extrd,u,*= $rem,%sar,1,$rem ; executes on PA-RISC 1.0 | ||
372 | b L\$parisc1_ghash | ||
373 | nop | ||
374 | ___ | ||
375 | |||
376 | $code.=<<___; | ||
377 | ldb 15($Xi),$nlo | ||
378 | ldo 8($Htbl),$Hll | ||
379 | |||
380 | L\$outer_ghash_pa2 | ||
381 | ldb 15($inp),$nhi | ||
382 | xor $nhi,$nlo,$nlo | ||
383 | and $mask0xf0,$nlo,$nhi | ||
384 | depd,z $nlo,59,4,$nlo | ||
385 | |||
386 | ldd $nlo($Hll),$Zll | ||
387 | ldd $nlo($Hhh),$Zhh | ||
388 | |||
389 | depd,z $Zll,60,4,$rem | ||
390 | shrpd $Zhh,$Zll,4,$Zll | ||
391 | extrd,u $Zhh,59,60,$Zhh | ||
392 | ldb 14($Xi),$nlo | ||
393 | ldb 14($inp),$byte | ||
394 | |||
395 | ldd $nhi($Hll),$Tll | ||
396 | ldd $nhi($Hhh),$Thh | ||
397 | xor $byte,$nlo,$nlo | ||
398 | and $mask0xf0,$nlo,$nhi | ||
399 | depd,z $nlo,59,4,$nlo | ||
400 | |||
401 | xor $Tll,$Zll,$Zll | ||
402 | xor $Thh,$Zhh,$Zhh | ||
403 | ldd $rem($rem_4bit),$rem | ||
404 | b L\$oop_ghash_pa2 | ||
405 | ldi 13,$cnt | ||
406 | |||
407 | .ALIGN 8 | ||
408 | L\$oop_ghash_pa2 | ||
409 | xor $rem,$Zhh,$Zhh ; moved here to work around gas bug | ||
410 | depd,z $Zll,60,4,$rem2 | ||
411 | |||
412 | shrpd $Zhh,$Zll,4,$Zll | ||
413 | extrd,u $Zhh,59,60,$Zhh | ||
414 | ldd $nlo($Hll),$Tll | ||
415 | ldd $nlo($Hhh),$Thh | ||
416 | |||
417 | xor $Tll,$Zll,$Zll | ||
418 | xor $Thh,$Zhh,$Zhh | ||
419 | ldbx $cnt($Xi),$nlo | ||
420 | ldbx $cnt($inp),$byte | ||
421 | |||
422 | depd,z $Zll,60,4,$rem | ||
423 | shrpd $Zhh,$Zll,4,$Zll | ||
424 | ldd $rem2($rem_4bit),$rem2 | ||
425 | |||
426 | xor $rem2,$Zhh,$Zhh | ||
427 | xor $byte,$nlo,$nlo | ||
428 | ldd $nhi($Hll),$Tll | ||
429 | ldd $nhi($Hhh),$Thh | ||
430 | |||
431 | and $mask0xf0,$nlo,$nhi | ||
432 | depd,z $nlo,59,4,$nlo | ||
433 | |||
434 | extrd,u $Zhh,59,60,$Zhh | ||
435 | xor $Tll,$Zll,$Zll | ||
436 | |||
437 | ldd $rem($rem_4bit),$rem | ||
438 | addib,uv -1,$cnt,L\$oop_ghash_pa2 | ||
439 | xor $Thh,$Zhh,$Zhh | ||
440 | |||
441 | xor $rem,$Zhh,$Zhh | ||
442 | depd,z $Zll,60,4,$rem2 | ||
443 | |||
444 | shrpd $Zhh,$Zll,4,$Zll | ||
445 | extrd,u $Zhh,59,60,$Zhh | ||
446 | ldd $nlo($Hll),$Tll | ||
447 | ldd $nlo($Hhh),$Thh | ||
448 | |||
449 | xor $Tll,$Zll,$Zll | ||
450 | xor $Thh,$Zhh,$Zhh | ||
451 | |||
452 | depd,z $Zll,60,4,$rem | ||
453 | shrpd $Zhh,$Zll,4,$Zll | ||
454 | ldd $rem2($rem_4bit),$rem2 | ||
455 | |||
456 | xor $rem2,$Zhh,$Zhh | ||
457 | ldd $nhi($Hll),$Tll | ||
458 | ldd $nhi($Hhh),$Thh | ||
459 | |||
460 | extrd,u $Zhh,59,60,$Zhh | ||
461 | xor $Tll,$Zll,$Zll | ||
462 | xor $Thh,$Zhh,$Zhh | ||
463 | ldd $rem($rem_4bit),$rem | ||
464 | |||
465 | xor $rem,$Zhh,$Zhh | ||
466 | std $Zll,8($Xi) | ||
467 | ldo 16($inp),$inp | ||
468 | std $Zhh,0($Xi) | ||
469 | cmpb,*<> $inp,$len,L\$outer_ghash_pa2 | ||
470 | copy $Zll,$nlo | ||
471 | ___ | ||
472 | |||
473 | $code.=<<___ if ($SIZE_T==4); | ||
474 | b L\$done_ghash | ||
475 | nop | ||
476 | |||
477 | L\$parisc1_ghash | ||
478 | ldb 15($Xi),$nlo | ||
479 | ldo 12($Htbl),$Hll | ||
480 | ldo 8($Htbl),$Hlh | ||
481 | ldo 4($Htbl),$Hhl | ||
482 | |||
483 | L\$outer_ghash_pa1 | ||
484 | ldb 15($inp),$byte | ||
485 | xor $byte,$nlo,$nlo | ||
486 | and $mask0xf0,$nlo,$nhi | ||
487 | zdep $nlo,27,4,$nlo | ||
488 | |||
489 | ldwx $nlo($Hll),$Zll | ||
490 | ldwx $nlo($Hlh),$Zlh | ||
491 | ldwx $nlo($Hhl),$Zhl | ||
492 | ldwx $nlo($Hhh),$Zhh | ||
493 | zdep $Zll,28,4,$rem | ||
494 | ldb 14($Xi),$nlo | ||
495 | ldb 14($inp),$byte | ||
496 | ldwx $rem($rem_4bit),$rem | ||
497 | shrpw $Zlh,$Zll,4,$Zll | ||
498 | ldwx $nhi($Hll),$Tll | ||
499 | shrpw $Zhl,$Zlh,4,$Zlh | ||
500 | ldwx $nhi($Hlh),$Tlh | ||
501 | shrpw $Zhh,$Zhl,4,$Zhl | ||
502 | ldwx $nhi($Hhl),$Thl | ||
503 | extru $Zhh,27,28,$Zhh | ||
504 | ldwx $nhi($Hhh),$Thh | ||
505 | xor $byte,$nlo,$nlo | ||
506 | xor $rem,$Zhh,$Zhh | ||
507 | and $mask0xf0,$nlo,$nhi | ||
508 | zdep $nlo,27,4,$nlo | ||
509 | |||
510 | xor $Tll,$Zll,$Zll | ||
511 | ldwx $nlo($Hll),$Tll | ||
512 | xor $Tlh,$Zlh,$Zlh | ||
513 | ldwx $nlo($Hlh),$Tlh | ||
514 | xor $Thl,$Zhl,$Zhl | ||
515 | b L\$oop_ghash_pa1 | ||
516 | ldi 13,$cnt | ||
517 | |||
518 | .ALIGN 8 | ||
519 | L\$oop_ghash_pa1 | ||
520 | zdep $Zll,28,4,$rem | ||
521 | ldwx $nlo($Hhl),$Thl | ||
522 | xor $Thh,$Zhh,$Zhh | ||
523 | ldwx $rem($rem_4bit),$rem | ||
524 | shrpw $Zlh,$Zll,4,$Zll | ||
525 | ldwx $nlo($Hhh),$Thh | ||
526 | shrpw $Zhl,$Zlh,4,$Zlh | ||
527 | ldbx $cnt($Xi),$nlo | ||
528 | xor $Tll,$Zll,$Zll | ||
529 | ldwx $nhi($Hll),$Tll | ||
530 | shrpw $Zhh,$Zhl,4,$Zhl | ||
531 | ldbx $cnt($inp),$byte | ||
532 | xor $Tlh,$Zlh,$Zlh | ||
533 | ldwx $nhi($Hlh),$Tlh | ||
534 | extru $Zhh,27,28,$Zhh | ||
535 | xor $Thl,$Zhl,$Zhl | ||
536 | ldwx $nhi($Hhl),$Thl | ||
537 | xor $rem,$Zhh,$Zhh | ||
538 | zdep $Zll,28,4,$rem | ||
539 | xor $Thh,$Zhh,$Zhh | ||
540 | ldwx $nhi($Hhh),$Thh | ||
541 | shrpw $Zlh,$Zll,4,$Zll | ||
542 | ldwx $rem($rem_4bit),$rem | ||
543 | shrpw $Zhl,$Zlh,4,$Zlh | ||
544 | xor $byte,$nlo,$nlo | ||
545 | shrpw $Zhh,$Zhl,4,$Zhl | ||
546 | and $mask0xf0,$nlo,$nhi | ||
547 | extru $Zhh,27,28,$Zhh | ||
548 | zdep $nlo,27,4,$nlo | ||
549 | xor $Tll,$Zll,$Zll | ||
550 | ldwx $nlo($Hll),$Tll | ||
551 | xor $Tlh,$Zlh,$Zlh | ||
552 | ldwx $nlo($Hlh),$Tlh | ||
553 | xor $rem,$Zhh,$Zhh | ||
554 | addib,uv -1,$cnt,L\$oop_ghash_pa1 | ||
555 | xor $Thl,$Zhl,$Zhl | ||
556 | |||
557 | zdep $Zll,28,4,$rem | ||
558 | ldwx $nlo($Hhl),$Thl | ||
559 | xor $Thh,$Zhh,$Zhh | ||
560 | ldwx $rem($rem_4bit),$rem | ||
561 | shrpw $Zlh,$Zll,4,$Zll | ||
562 | ldwx $nlo($Hhh),$Thh | ||
563 | shrpw $Zhl,$Zlh,4,$Zlh | ||
564 | xor $Tll,$Zll,$Zll | ||
565 | ldwx $nhi($Hll),$Tll | ||
566 | shrpw $Zhh,$Zhl,4,$Zhl | ||
567 | xor $Tlh,$Zlh,$Zlh | ||
568 | ldwx $nhi($Hlh),$Tlh | ||
569 | extru $Zhh,27,28,$Zhh | ||
570 | xor $rem,$Zhh,$Zhh | ||
571 | xor $Thl,$Zhl,$Zhl | ||
572 | ldwx $nhi($Hhl),$Thl | ||
573 | xor $Thh,$Zhh,$Zhh | ||
574 | ldwx $nhi($Hhh),$Thh | ||
575 | zdep $Zll,28,4,$rem | ||
576 | ldwx $rem($rem_4bit),$rem | ||
577 | shrpw $Zlh,$Zll,4,$Zll | ||
578 | shrpw $Zhl,$Zlh,4,$Zlh | ||
579 | shrpw $Zhh,$Zhl,4,$Zhl | ||
580 | extru $Zhh,27,28,$Zhh | ||
581 | xor $Tll,$Zll,$Zll | ||
582 | xor $Tlh,$Zlh,$Zlh | ||
583 | xor $rem,$Zhh,$Zhh | ||
584 | stw $Zll,12($Xi) | ||
585 | xor $Thl,$Zhl,$Zhl | ||
586 | stw $Zlh,8($Xi) | ||
587 | xor $Thh,$Zhh,$Zhh | ||
588 | stw $Zhl,4($Xi) | ||
589 | ldo 16($inp),$inp | ||
590 | stw $Zhh,0($Xi) | ||
591 | comb,<> $inp,$len,L\$outer_ghash_pa1 | ||
592 | copy $Zll,$nlo | ||
593 | ___ | ||
594 | $code.=<<___; | ||
595 | L\$done_ghash | ||
596 | $POP `-$FRAME-$SAVED_RP`(%sp),%r2 ; standard epilogue | ||
597 | $POP `-$FRAME+1*$SIZE_T`(%sp),%r4 | ||
598 | $POP `-$FRAME+2*$SIZE_T`(%sp),%r5 | ||
599 | $POP `-$FRAME+3*$SIZE_T`(%sp),%r6 | ||
600 | ___ | ||
601 | $code.=<<___ if ($SIZE_T==4); | ||
602 | $POP `-$FRAME+4*$SIZE_T`(%sp),%r7 | ||
603 | $POP `-$FRAME+5*$SIZE_T`(%sp),%r8 | ||
604 | $POP `-$FRAME+6*$SIZE_T`(%sp),%r9 | ||
605 | $POP `-$FRAME+7*$SIZE_T`(%sp),%r10 | ||
606 | $POP `-$FRAME+8*$SIZE_T`(%sp),%r11 | ||
607 | ___ | ||
608 | $code.=<<___; | ||
609 | bv (%r2) | ||
610 | .EXIT | ||
611 | $POPMB -$FRAME(%sp),%r3 | ||
612 | .PROCEND | ||
613 | |||
614 | .ALIGN 64 | ||
615 | L\$rem_4bit | ||
616 | .WORD `0x0000<<16`,0,`0x1C20<<16`,0,`0x3840<<16`,0,`0x2460<<16`,0 | ||
617 | .WORD `0x7080<<16`,0,`0x6CA0<<16`,0,`0x48C0<<16`,0,`0x54E0<<16`,0 | ||
618 | .WORD `0xE100<<16`,0,`0xFD20<<16`,0,`0xD940<<16`,0,`0xC560<<16`,0 | ||
619 | .WORD `0x9180<<16`,0,`0x8DA0<<16`,0,`0xA9C0<<16`,0,`0xB5E0<<16`,0 | ||
620 | .STRINGZ "GHASH for PA-RISC, GRYPTOGAMS by <appro\@openssl.org>" | ||
621 | .ALIGN 64 | ||
622 | ___ | ||
623 | |||
624 | # Explicitly encode PA-RISC 2.0 instructions used in this module, so | ||
625 | # that it can be compiled with .LEVEL 1.0. It should be noted that I | ||
626 | # wouldn't have to do this, if GNU assembler understood .ALLOW 2.0 | ||
627 | # directive... | ||
628 | |||
629 | my $ldd = sub { | ||
630 | my ($mod,$args) = @_; | ||
631 | my $orig = "ldd$mod\t$args"; | ||
632 | |||
633 | if ($args =~ /%r([0-9]+)\(%r([0-9]+)\),%r([0-9]+)/) # format 4 | ||
634 | { my $opcode=(0x03<<26)|($2<<21)|($1<<16)|(3<<6)|$3; | ||
635 | sprintf "\t.WORD\t0x%08x\t; %s",$opcode,$orig; | ||
636 | } | ||
637 | elsif ($args =~ /(\-?[0-9]+)\(%r([0-9]+)\),%r([0-9]+)/) # format 5 | ||
638 | { my $opcode=(0x03<<26)|($2<<21)|(1<<12)|(3<<6)|$3; | ||
639 | $opcode|=(($1&0xF)<<17)|(($1&0x10)<<12); # encode offset | ||
640 | $opcode|=(1<<5) if ($mod =~ /^,m/); | ||
641 | $opcode|=(1<<13) if ($mod =~ /^,mb/); | ||
642 | sprintf "\t.WORD\t0x%08x\t; %s",$opcode,$orig; | ||
643 | } | ||
644 | else { "\t".$orig; } | ||
645 | }; | ||
646 | |||
647 | my $std = sub { | ||
648 | my ($mod,$args) = @_; | ||
649 | my $orig = "std$mod\t$args"; | ||
650 | |||
651 | if ($args =~ /%r([0-9]+),(\-?[0-9]+)\(%r([0-9]+)\)/) # format 3 suffices | ||
652 | { my $opcode=(0x1c<<26)|($3<<21)|($1<<16)|(($2&0x1FF8)<<1)|(($2>>13)&1); | ||
653 | sprintf "\t.WORD\t0x%08x\t; %s",$opcode,$orig; | ||
654 | } | ||
655 | else { "\t".$orig; } | ||
656 | }; | ||
657 | |||
658 | my $extrd = sub { | ||
659 | my ($mod,$args) = @_; | ||
660 | my $orig = "extrd$mod\t$args"; | ||
661 | |||
662 | # I only have ",u" completer, it's implicitly encoded... | ||
663 | if ($args =~ /%r([0-9]+),([0-9]+),([0-9]+),%r([0-9]+)/) # format 15 | ||
664 | { my $opcode=(0x36<<26)|($1<<21)|($4<<16); | ||
665 | my $len=32-$3; | ||
666 | $opcode |= (($2&0x20)<<6)|(($2&0x1f)<<5); # encode pos | ||
667 | $opcode |= (($len&0x20)<<7)|($len&0x1f); # encode len | ||
668 | sprintf "\t.WORD\t0x%08x\t; %s",$opcode,$orig; | ||
669 | } | ||
670 | elsif ($args =~ /%r([0-9]+),%sar,([0-9]+),%r([0-9]+)/) # format 12 | ||
671 | { my $opcode=(0x34<<26)|($1<<21)|($3<<16)|(2<<11)|(1<<9); | ||
672 | my $len=32-$2; | ||
673 | $opcode |= (($len&0x20)<<3)|($len&0x1f); # encode len | ||
674 | $opcode |= (1<<13) if ($mod =~ /,\**=/); | ||
675 | sprintf "\t.WORD\t0x%08x\t; %s",$opcode,$orig; | ||
676 | } | ||
677 | else { "\t".$orig; } | ||
678 | }; | ||
679 | |||
680 | my $shrpd = sub { | ||
681 | my ($mod,$args) = @_; | ||
682 | my $orig = "shrpd$mod\t$args"; | ||
683 | |||
684 | if ($args =~ /%r([0-9]+),%r([0-9]+),([0-9]+),%r([0-9]+)/) # format 14 | ||
685 | { my $opcode=(0x34<<26)|($2<<21)|($1<<16)|(1<<10)|$4; | ||
686 | my $cpos=63-$3; | ||
687 | $opcode |= (($cpos&0x20)<<6)|(($cpos&0x1f)<<5); # encode sa | ||
688 | sprintf "\t.WORD\t0x%08x\t; %s",$opcode,$orig; | ||
689 | } | ||
690 | elsif ($args =~ /%r([0-9]+),%r([0-9]+),%sar,%r([0-9]+)/) # format 11 | ||
691 | { sprintf "\t.WORD\t0x%08x\t; %s", | ||
692 | (0x34<<26)|($2<<21)|($1<<16)|(1<<9)|$3,$orig; | ||
693 | } | ||
694 | else { "\t".$orig; } | ||
695 | }; | ||
696 | |||
697 | my $depd = sub { | ||
698 | my ($mod,$args) = @_; | ||
699 | my $orig = "depd$mod\t$args"; | ||
700 | |||
701 | # I only have ",z" completer, it's impicitly encoded... | ||
702 | if ($args =~ /%r([0-9]+),([0-9]+),([0-9]+),%r([0-9]+)/) # format 16 | ||
703 | { my $opcode=(0x3c<<26)|($4<<21)|($1<<16); | ||
704 | my $cpos=63-$2; | ||
705 | my $len=32-$3; | ||
706 | $opcode |= (($cpos&0x20)<<6)|(($cpos&0x1f)<<5); # encode pos | ||
707 | $opcode |= (($len&0x20)<<7)|($len&0x1f); # encode len | ||
708 | sprintf "\t.WORD\t0x%08x\t; %s",$opcode,$orig; | ||
709 | } | ||
710 | else { "\t".$orig; } | ||
711 | }; | ||
712 | |||
713 | sub assemble { | ||
714 | my ($mnemonic,$mod,$args)=@_; | ||
715 | my $opcode = eval("\$$mnemonic"); | ||
716 | |||
717 | ref($opcode) eq 'CODE' ? &$opcode($mod,$args) : "\t$mnemonic$mod\t$args"; | ||
718 | } | ||
719 | |||
720 | foreach (split("\n",$code)) { | ||
721 | s/\`([^\`]*)\`/eval $1/ge; | ||
722 | if ($SIZE_T==4) { | ||
723 | s/^\s+([a-z]+)([\S]*)\s+([\S]*)/&assemble($1,$2,$3)/e; | ||
724 | s/cmpb,\*/comb,/; | ||
725 | s/,\*/,/; | ||
726 | } | ||
727 | print $_,"\n"; | ||
728 | } | ||
729 | |||
730 | close STDOUT; | ||
diff --git a/src/lib/libcrypto/modes/asm/ghash-s390x.pl b/src/lib/libcrypto/modes/asm/ghash-s390x.pl new file mode 100644 index 0000000000..6a40d5d89c --- /dev/null +++ b/src/lib/libcrypto/modes/asm/ghash-s390x.pl | |||
@@ -0,0 +1,262 @@ | |||
1 | #!/usr/bin/env perl | ||
2 | |||
3 | # ==================================================================== | ||
4 | # Written by Andy Polyakov <appro@openssl.org> for the OpenSSL | ||
5 | # project. The module is, however, dual licensed under OpenSSL and | ||
6 | # CRYPTOGAMS licenses depending on where you obtain it. For further | ||
7 | # details see http://www.openssl.org/~appro/cryptogams/. | ||
8 | # ==================================================================== | ||
9 | |||
10 | # September 2010. | ||
11 | # | ||
12 | # The module implements "4-bit" GCM GHASH function and underlying | ||
13 | # single multiplication operation in GF(2^128). "4-bit" means that it | ||
14 | # uses 256 bytes per-key table [+128 bytes shared table]. Performance | ||
15 | # was measured to be ~18 cycles per processed byte on z10, which is | ||
16 | # almost 40% better than gcc-generated code. It should be noted that | ||
17 | # 18 cycles is worse result than expected: loop is scheduled for 12 | ||
18 | # and the result should be close to 12. In the lack of instruction- | ||
19 | # level profiling data it's impossible to tell why... | ||
20 | |||
21 | # November 2010. | ||
22 | # | ||
23 | # Adapt for -m31 build. If kernel supports what's called "highgprs" | ||
24 | # feature on Linux [see /proc/cpuinfo], it's possible to use 64-bit | ||
25 | # instructions and achieve "64-bit" performance even in 31-bit legacy | ||
26 | # application context. The feature is not specific to any particular | ||
27 | # processor, as long as it's "z-CPU". Latter implies that the code | ||
28 | # remains z/Architecture specific. On z990 it was measured to perform | ||
29 | # 2.8x better than 32-bit code generated by gcc 4.3. | ||
30 | |||
31 | # March 2011. | ||
32 | # | ||
33 | # Support for hardware KIMD-GHASH is verified to produce correct | ||
34 | # result and therefore is engaged. On z196 it was measured to process | ||
35 | # 8KB buffer ~7 faster than software implementation. It's not as | ||
36 | # impressive for smaller buffer sizes and for smallest 16-bytes buffer | ||
37 | # it's actually almost 2 times slower. Which is the reason why | ||
38 | # KIMD-GHASH is not used in gcm_gmult_4bit. | ||
39 | |||
40 | $flavour = shift; | ||
41 | |||
42 | if ($flavour =~ /3[12]/) { | ||
43 | $SIZE_T=4; | ||
44 | $g=""; | ||
45 | } else { | ||
46 | $SIZE_T=8; | ||
47 | $g="g"; | ||
48 | } | ||
49 | |||
50 | while (($output=shift) && ($output!~/^\w[\w\-]*\.\w+$/)) {} | ||
51 | open STDOUT,">$output"; | ||
52 | |||
53 | $softonly=0; | ||
54 | |||
55 | $Zhi="%r0"; | ||
56 | $Zlo="%r1"; | ||
57 | |||
58 | $Xi="%r2"; # argument block | ||
59 | $Htbl="%r3"; | ||
60 | $inp="%r4"; | ||
61 | $len="%r5"; | ||
62 | |||
63 | $rem0="%r6"; # variables | ||
64 | $rem1="%r7"; | ||
65 | $nlo="%r8"; | ||
66 | $nhi="%r9"; | ||
67 | $xi="%r10"; | ||
68 | $cnt="%r11"; | ||
69 | $tmp="%r12"; | ||
70 | $x78="%r13"; | ||
71 | $rem_4bit="%r14"; | ||
72 | |||
73 | $sp="%r15"; | ||
74 | |||
75 | $code.=<<___; | ||
76 | .text | ||
77 | |||
78 | .globl gcm_gmult_4bit | ||
79 | .align 32 | ||
80 | gcm_gmult_4bit: | ||
81 | ___ | ||
82 | $code.=<<___ if(!$softonly && 0); # hardware is slow for single block... | ||
83 | larl %r1,OPENSSL_s390xcap_P | ||
84 | lg %r0,0(%r1) | ||
85 | tmhl %r0,0x4000 # check for message-security-assist | ||
86 | jz .Lsoft_gmult | ||
87 | lghi %r0,0 | ||
88 | la %r1,16($sp) | ||
89 | .long 0xb93e0004 # kimd %r0,%r4 | ||
90 | lg %r1,24($sp) | ||
91 | tmhh %r1,0x4000 # check for function 65 | ||
92 | jz .Lsoft_gmult | ||
93 | stg %r0,16($sp) # arrange 16 bytes of zero input | ||
94 | stg %r0,24($sp) | ||
95 | lghi %r0,65 # function 65 | ||
96 | la %r1,0($Xi) # H lies right after Xi in gcm128_context | ||
97 | la $inp,16($sp) | ||
98 | lghi $len,16 | ||
99 | .long 0xb93e0004 # kimd %r0,$inp | ||
100 | brc 1,.-4 # pay attention to "partial completion" | ||
101 | br %r14 | ||
102 | .align 32 | ||
103 | .Lsoft_gmult: | ||
104 | ___ | ||
105 | $code.=<<___; | ||
106 | stm${g} %r6,%r14,6*$SIZE_T($sp) | ||
107 | |||
108 | aghi $Xi,-1 | ||
109 | lghi $len,1 | ||
110 | lghi $x78,`0xf<<3` | ||
111 | larl $rem_4bit,rem_4bit | ||
112 | |||
113 | lg $Zlo,8+1($Xi) # Xi | ||
114 | j .Lgmult_shortcut | ||
115 | .type gcm_gmult_4bit,\@function | ||
116 | .size gcm_gmult_4bit,(.-gcm_gmult_4bit) | ||
117 | |||
118 | .globl gcm_ghash_4bit | ||
119 | .align 32 | ||
120 | gcm_ghash_4bit: | ||
121 | ___ | ||
122 | $code.=<<___ if(!$softonly); | ||
123 | larl %r1,OPENSSL_s390xcap_P | ||
124 | lg %r0,0(%r1) | ||
125 | tmhl %r0,0x4000 # check for message-security-assist | ||
126 | jz .Lsoft_ghash | ||
127 | lghi %r0,0 | ||
128 | la %r1,16($sp) | ||
129 | .long 0xb93e0004 # kimd %r0,%r4 | ||
130 | lg %r1,24($sp) | ||
131 | tmhh %r1,0x4000 # check for function 65 | ||
132 | jz .Lsoft_ghash | ||
133 | lghi %r0,65 # function 65 | ||
134 | la %r1,0($Xi) # H lies right after Xi in gcm128_context | ||
135 | .long 0xb93e0004 # kimd %r0,$inp | ||
136 | brc 1,.-4 # pay attention to "partial completion" | ||
137 | br %r14 | ||
138 | .align 32 | ||
139 | .Lsoft_ghash: | ||
140 | ___ | ||
141 | $code.=<<___ if ($flavour =~ /3[12]/); | ||
142 | llgfr $len,$len | ||
143 | ___ | ||
144 | $code.=<<___; | ||
145 | stm${g} %r6,%r14,6*$SIZE_T($sp) | ||
146 | |||
147 | aghi $Xi,-1 | ||
148 | srlg $len,$len,4 | ||
149 | lghi $x78,`0xf<<3` | ||
150 | larl $rem_4bit,rem_4bit | ||
151 | |||
152 | lg $Zlo,8+1($Xi) # Xi | ||
153 | lg $Zhi,0+1($Xi) | ||
154 | lghi $tmp,0 | ||
155 | .Louter: | ||
156 | xg $Zhi,0($inp) # Xi ^= inp | ||
157 | xg $Zlo,8($inp) | ||
158 | xgr $Zhi,$tmp | ||
159 | stg $Zlo,8+1($Xi) | ||
160 | stg $Zhi,0+1($Xi) | ||
161 | |||
162 | .Lgmult_shortcut: | ||
163 | lghi $tmp,0xf0 | ||
164 | sllg $nlo,$Zlo,4 | ||
165 | srlg $xi,$Zlo,8 # extract second byte | ||
166 | ngr $nlo,$tmp | ||
167 | lgr $nhi,$Zlo | ||
168 | lghi $cnt,14 | ||
169 | ngr $nhi,$tmp | ||
170 | |||
171 | lg $Zlo,8($nlo,$Htbl) | ||
172 | lg $Zhi,0($nlo,$Htbl) | ||
173 | |||
174 | sllg $nlo,$xi,4 | ||
175 | sllg $rem0,$Zlo,3 | ||
176 | ngr $nlo,$tmp | ||
177 | ngr $rem0,$x78 | ||
178 | ngr $xi,$tmp | ||
179 | |||
180 | sllg $tmp,$Zhi,60 | ||
181 | srlg $Zlo,$Zlo,4 | ||
182 | srlg $Zhi,$Zhi,4 | ||
183 | xg $Zlo,8($nhi,$Htbl) | ||
184 | xg $Zhi,0($nhi,$Htbl) | ||
185 | lgr $nhi,$xi | ||
186 | sllg $rem1,$Zlo,3 | ||
187 | xgr $Zlo,$tmp | ||
188 | ngr $rem1,$x78 | ||
189 | j .Lghash_inner | ||
190 | .align 16 | ||
191 | .Lghash_inner: | ||
192 | srlg $Zlo,$Zlo,4 | ||
193 | sllg $tmp,$Zhi,60 | ||
194 | xg $Zlo,8($nlo,$Htbl) | ||
195 | srlg $Zhi,$Zhi,4 | ||
196 | llgc $xi,0($cnt,$Xi) | ||
197 | xg $Zhi,0($nlo,$Htbl) | ||
198 | sllg $nlo,$xi,4 | ||
199 | xg $Zhi,0($rem0,$rem_4bit) | ||
200 | nill $nlo,0xf0 | ||
201 | sllg $rem0,$Zlo,3 | ||
202 | xgr $Zlo,$tmp | ||
203 | ngr $rem0,$x78 | ||
204 | nill $xi,0xf0 | ||
205 | |||
206 | sllg $tmp,$Zhi,60 | ||
207 | srlg $Zlo,$Zlo,4 | ||
208 | srlg $Zhi,$Zhi,4 | ||
209 | xg $Zlo,8($nhi,$Htbl) | ||
210 | xg $Zhi,0($nhi,$Htbl) | ||
211 | lgr $nhi,$xi | ||
212 | xg $Zhi,0($rem1,$rem_4bit) | ||
213 | sllg $rem1,$Zlo,3 | ||
214 | xgr $Zlo,$tmp | ||
215 | ngr $rem1,$x78 | ||
216 | brct $cnt,.Lghash_inner | ||
217 | |||
218 | sllg $tmp,$Zhi,60 | ||
219 | srlg $Zlo,$Zlo,4 | ||
220 | srlg $Zhi,$Zhi,4 | ||
221 | xg $Zlo,8($nlo,$Htbl) | ||
222 | xg $Zhi,0($nlo,$Htbl) | ||
223 | sllg $xi,$Zlo,3 | ||
224 | xg $Zhi,0($rem0,$rem_4bit) | ||
225 | xgr $Zlo,$tmp | ||
226 | ngr $xi,$x78 | ||
227 | |||
228 | sllg $tmp,$Zhi,60 | ||
229 | srlg $Zlo,$Zlo,4 | ||
230 | srlg $Zhi,$Zhi,4 | ||
231 | xg $Zlo,8($nhi,$Htbl) | ||
232 | xg $Zhi,0($nhi,$Htbl) | ||
233 | xgr $Zlo,$tmp | ||
234 | xg $Zhi,0($rem1,$rem_4bit) | ||
235 | |||
236 | lg $tmp,0($xi,$rem_4bit) | ||
237 | la $inp,16($inp) | ||
238 | sllg $tmp,$tmp,4 # correct last rem_4bit[rem] | ||
239 | brctg $len,.Louter | ||
240 | |||
241 | xgr $Zhi,$tmp | ||
242 | stg $Zlo,8+1($Xi) | ||
243 | stg $Zhi,0+1($Xi) | ||
244 | lm${g} %r6,%r14,6*$SIZE_T($sp) | ||
245 | br %r14 | ||
246 | .type gcm_ghash_4bit,\@function | ||
247 | .size gcm_ghash_4bit,(.-gcm_ghash_4bit) | ||
248 | |||
249 | .align 64 | ||
250 | rem_4bit: | ||
251 | .long `0x0000<<12`,0,`0x1C20<<12`,0,`0x3840<<12`,0,`0x2460<<12`,0 | ||
252 | .long `0x7080<<12`,0,`0x6CA0<<12`,0,`0x48C0<<12`,0,`0x54E0<<12`,0 | ||
253 | .long `0xE100<<12`,0,`0xFD20<<12`,0,`0xD940<<12`,0,`0xC560<<12`,0 | ||
254 | .long `0x9180<<12`,0,`0x8DA0<<12`,0,`0xA9C0<<12`,0,`0xB5E0<<12`,0 | ||
255 | .type rem_4bit,\@object | ||
256 | .size rem_4bit,(.-rem_4bit) | ||
257 | .string "GHASH for s390x, CRYPTOGAMS by <appro\@openssl.org>" | ||
258 | ___ | ||
259 | |||
260 | $code =~ s/\`([^\`]*)\`/eval $1/gem; | ||
261 | print $code; | ||
262 | close STDOUT; | ||
diff --git a/src/lib/libcrypto/modes/asm/ghash-sparcv9.pl b/src/lib/libcrypto/modes/asm/ghash-sparcv9.pl new file mode 100644 index 0000000000..70e7b044a3 --- /dev/null +++ b/src/lib/libcrypto/modes/asm/ghash-sparcv9.pl | |||
@@ -0,0 +1,330 @@ | |||
1 | #!/usr/bin/env perl | ||
2 | |||
3 | # ==================================================================== | ||
4 | # Written by Andy Polyakov <appro@openssl.org> for the OpenSSL | ||
5 | # project. The module is, however, dual licensed under OpenSSL and | ||
6 | # CRYPTOGAMS licenses depending on where you obtain it. For further | ||
7 | # details see http://www.openssl.org/~appro/cryptogams/. | ||
8 | # ==================================================================== | ||
9 | |||
10 | # March 2010 | ||
11 | # | ||
12 | # The module implements "4-bit" GCM GHASH function and underlying | ||
13 | # single multiplication operation in GF(2^128). "4-bit" means that it | ||
14 | # uses 256 bytes per-key table [+128 bytes shared table]. Performance | ||
15 | # results are for streamed GHASH subroutine on UltraSPARC pre-Tx CPU | ||
16 | # and are expressed in cycles per processed byte, less is better: | ||
17 | # | ||
18 | # gcc 3.3.x cc 5.2 this assembler | ||
19 | # | ||
20 | # 32-bit build 81.4 43.3 12.6 (+546%/+244%) | ||
21 | # 64-bit build 20.2 21.2 12.6 (+60%/+68%) | ||
22 | # | ||
23 | # Here is data collected on UltraSPARC T1 system running Linux: | ||
24 | # | ||
25 | # gcc 4.4.1 this assembler | ||
26 | # | ||
27 | # 32-bit build 566 50 (+1000%) | ||
28 | # 64-bit build 56 50 (+12%) | ||
29 | # | ||
30 | # I don't quite understand why difference between 32-bit and 64-bit | ||
31 | # compiler-generated code is so big. Compilers *were* instructed to | ||
32 | # generate code for UltraSPARC and should have used 64-bit registers | ||
33 | # for Z vector (see C code) even in 32-bit build... Oh well, it only | ||
34 | # means more impressive improvement coefficients for this assembler | ||
35 | # module;-) Loops are aggressively modulo-scheduled in respect to | ||
36 | # references to input data and Z.hi updates to achieve 12 cycles | ||
37 | # timing. To anchor to something else, sha1-sparcv9.pl spends 11.6 | ||
38 | # cycles to process one byte on UltraSPARC pre-Tx CPU and ~24 on T1. | ||
39 | |||
40 | $bits=32; | ||
41 | for (@ARGV) { $bits=64 if (/\-m64/ || /\-xarch\=v9/); } | ||
42 | if ($bits==64) { $bias=2047; $frame=192; } | ||
43 | else { $bias=0; $frame=112; } | ||
44 | |||
45 | $output=shift; | ||
46 | open STDOUT,">$output"; | ||
47 | |||
48 | $Zhi="%o0"; # 64-bit values | ||
49 | $Zlo="%o1"; | ||
50 | $Thi="%o2"; | ||
51 | $Tlo="%o3"; | ||
52 | $rem="%o4"; | ||
53 | $tmp="%o5"; | ||
54 | |||
55 | $nhi="%l0"; # small values and pointers | ||
56 | $nlo="%l1"; | ||
57 | $xi0="%l2"; | ||
58 | $xi1="%l3"; | ||
59 | $rem_4bit="%l4"; | ||
60 | $remi="%l5"; | ||
61 | $Htblo="%l6"; | ||
62 | $cnt="%l7"; | ||
63 | |||
64 | $Xi="%i0"; # input argument block | ||
65 | $Htbl="%i1"; | ||
66 | $inp="%i2"; | ||
67 | $len="%i3"; | ||
68 | |||
69 | $code.=<<___; | ||
70 | .section ".text",#alloc,#execinstr | ||
71 | |||
72 | .align 64 | ||
73 | rem_4bit: | ||
74 | .long `0x0000<<16`,0,`0x1C20<<16`,0,`0x3840<<16`,0,`0x2460<<16`,0 | ||
75 | .long `0x7080<<16`,0,`0x6CA0<<16`,0,`0x48C0<<16`,0,`0x54E0<<16`,0 | ||
76 | .long `0xE100<<16`,0,`0xFD20<<16`,0,`0xD940<<16`,0,`0xC560<<16`,0 | ||
77 | .long `0x9180<<16`,0,`0x8DA0<<16`,0,`0xA9C0<<16`,0,`0xB5E0<<16`,0 | ||
78 | .type rem_4bit,#object | ||
79 | .size rem_4bit,(.-rem_4bit) | ||
80 | |||
81 | .globl gcm_ghash_4bit | ||
82 | .align 32 | ||
83 | gcm_ghash_4bit: | ||
84 | save %sp,-$frame,%sp | ||
85 | ldub [$inp+15],$nlo | ||
86 | ldub [$Xi+15],$xi0 | ||
87 | ldub [$Xi+14],$xi1 | ||
88 | add $len,$inp,$len | ||
89 | add $Htbl,8,$Htblo | ||
90 | |||
91 | 1: call .+8 | ||
92 | add %o7,rem_4bit-1b,$rem_4bit | ||
93 | |||
94 | .Louter: | ||
95 | xor $xi0,$nlo,$nlo | ||
96 | and $nlo,0xf0,$nhi | ||
97 | and $nlo,0x0f,$nlo | ||
98 | sll $nlo,4,$nlo | ||
99 | ldx [$Htblo+$nlo],$Zlo | ||
100 | ldx [$Htbl+$nlo],$Zhi | ||
101 | |||
102 | ldub [$inp+14],$nlo | ||
103 | |||
104 | ldx [$Htblo+$nhi],$Tlo | ||
105 | and $Zlo,0xf,$remi | ||
106 | ldx [$Htbl+$nhi],$Thi | ||
107 | sll $remi,3,$remi | ||
108 | ldx [$rem_4bit+$remi],$rem | ||
109 | srlx $Zlo,4,$Zlo | ||
110 | mov 13,$cnt | ||
111 | sllx $Zhi,60,$tmp | ||
112 | xor $Tlo,$Zlo,$Zlo | ||
113 | srlx $Zhi,4,$Zhi | ||
114 | xor $Zlo,$tmp,$Zlo | ||
115 | |||
116 | xor $xi1,$nlo,$nlo | ||
117 | and $Zlo,0xf,$remi | ||
118 | and $nlo,0xf0,$nhi | ||
119 | and $nlo,0x0f,$nlo | ||
120 | ba .Lghash_inner | ||
121 | sll $nlo,4,$nlo | ||
122 | .align 32 | ||
123 | .Lghash_inner: | ||
124 | ldx [$Htblo+$nlo],$Tlo | ||
125 | sll $remi,3,$remi | ||
126 | xor $Thi,$Zhi,$Zhi | ||
127 | ldx [$Htbl+$nlo],$Thi | ||
128 | srlx $Zlo,4,$Zlo | ||
129 | xor $rem,$Zhi,$Zhi | ||
130 | ldx [$rem_4bit+$remi],$rem | ||
131 | sllx $Zhi,60,$tmp | ||
132 | xor $Tlo,$Zlo,$Zlo | ||
133 | ldub [$inp+$cnt],$nlo | ||
134 | srlx $Zhi,4,$Zhi | ||
135 | xor $Zlo,$tmp,$Zlo | ||
136 | ldub [$Xi+$cnt],$xi1 | ||
137 | xor $Thi,$Zhi,$Zhi | ||
138 | and $Zlo,0xf,$remi | ||
139 | |||
140 | ldx [$Htblo+$nhi],$Tlo | ||
141 | sll $remi,3,$remi | ||
142 | xor $rem,$Zhi,$Zhi | ||
143 | ldx [$Htbl+$nhi],$Thi | ||
144 | srlx $Zlo,4,$Zlo | ||
145 | ldx [$rem_4bit+$remi],$rem | ||
146 | sllx $Zhi,60,$tmp | ||
147 | xor $xi1,$nlo,$nlo | ||
148 | srlx $Zhi,4,$Zhi | ||
149 | and $nlo,0xf0,$nhi | ||
150 | addcc $cnt,-1,$cnt | ||
151 | xor $Zlo,$tmp,$Zlo | ||
152 | and $nlo,0x0f,$nlo | ||
153 | xor $Tlo,$Zlo,$Zlo | ||
154 | sll $nlo,4,$nlo | ||
155 | blu .Lghash_inner | ||
156 | and $Zlo,0xf,$remi | ||
157 | |||
158 | ldx [$Htblo+$nlo],$Tlo | ||
159 | sll $remi,3,$remi | ||
160 | xor $Thi,$Zhi,$Zhi | ||
161 | ldx [$Htbl+$nlo],$Thi | ||
162 | srlx $Zlo,4,$Zlo | ||
163 | xor $rem,$Zhi,$Zhi | ||
164 | ldx [$rem_4bit+$remi],$rem | ||
165 | sllx $Zhi,60,$tmp | ||
166 | xor $Tlo,$Zlo,$Zlo | ||
167 | srlx $Zhi,4,$Zhi | ||
168 | xor $Zlo,$tmp,$Zlo | ||
169 | xor $Thi,$Zhi,$Zhi | ||
170 | |||
171 | add $inp,16,$inp | ||
172 | cmp $inp,$len | ||
173 | be,pn `$bits==64?"%xcc":"%icc"`,.Ldone | ||
174 | and $Zlo,0xf,$remi | ||
175 | |||
176 | ldx [$Htblo+$nhi],$Tlo | ||
177 | sll $remi,3,$remi | ||
178 | xor $rem,$Zhi,$Zhi | ||
179 | ldx [$Htbl+$nhi],$Thi | ||
180 | srlx $Zlo,4,$Zlo | ||
181 | ldx [$rem_4bit+$remi],$rem | ||
182 | sllx $Zhi,60,$tmp | ||
183 | xor $Tlo,$Zlo,$Zlo | ||
184 | ldub [$inp+15],$nlo | ||
185 | srlx $Zhi,4,$Zhi | ||
186 | xor $Zlo,$tmp,$Zlo | ||
187 | xor $Thi,$Zhi,$Zhi | ||
188 | stx $Zlo,[$Xi+8] | ||
189 | xor $rem,$Zhi,$Zhi | ||
190 | stx $Zhi,[$Xi] | ||
191 | srl $Zlo,8,$xi1 | ||
192 | and $Zlo,0xff,$xi0 | ||
193 | ba .Louter | ||
194 | and $xi1,0xff,$xi1 | ||
195 | .align 32 | ||
196 | .Ldone: | ||
197 | ldx [$Htblo+$nhi],$Tlo | ||
198 | sll $remi,3,$remi | ||
199 | xor $rem,$Zhi,$Zhi | ||
200 | ldx [$Htbl+$nhi],$Thi | ||
201 | srlx $Zlo,4,$Zlo | ||
202 | ldx [$rem_4bit+$remi],$rem | ||
203 | sllx $Zhi,60,$tmp | ||
204 | xor $Tlo,$Zlo,$Zlo | ||
205 | srlx $Zhi,4,$Zhi | ||
206 | xor $Zlo,$tmp,$Zlo | ||
207 | xor $Thi,$Zhi,$Zhi | ||
208 | stx $Zlo,[$Xi+8] | ||
209 | xor $rem,$Zhi,$Zhi | ||
210 | stx $Zhi,[$Xi] | ||
211 | |||
212 | ret | ||
213 | restore | ||
214 | .type gcm_ghash_4bit,#function | ||
215 | .size gcm_ghash_4bit,(.-gcm_ghash_4bit) | ||
216 | ___ | ||
217 | |||
218 | undef $inp; | ||
219 | undef $len; | ||
220 | |||
221 | $code.=<<___; | ||
222 | .globl gcm_gmult_4bit | ||
223 | .align 32 | ||
224 | gcm_gmult_4bit: | ||
225 | save %sp,-$frame,%sp | ||
226 | ldub [$Xi+15],$nlo | ||
227 | add $Htbl,8,$Htblo | ||
228 | |||
229 | 1: call .+8 | ||
230 | add %o7,rem_4bit-1b,$rem_4bit | ||
231 | |||
232 | and $nlo,0xf0,$nhi | ||
233 | and $nlo,0x0f,$nlo | ||
234 | sll $nlo,4,$nlo | ||
235 | ldx [$Htblo+$nlo],$Zlo | ||
236 | ldx [$Htbl+$nlo],$Zhi | ||
237 | |||
238 | ldub [$Xi+14],$nlo | ||
239 | |||
240 | ldx [$Htblo+$nhi],$Tlo | ||
241 | and $Zlo,0xf,$remi | ||
242 | ldx [$Htbl+$nhi],$Thi | ||
243 | sll $remi,3,$remi | ||
244 | ldx [$rem_4bit+$remi],$rem | ||
245 | srlx $Zlo,4,$Zlo | ||
246 | mov 13,$cnt | ||
247 | sllx $Zhi,60,$tmp | ||
248 | xor $Tlo,$Zlo,$Zlo | ||
249 | srlx $Zhi,4,$Zhi | ||
250 | xor $Zlo,$tmp,$Zlo | ||
251 | |||
252 | and $Zlo,0xf,$remi | ||
253 | and $nlo,0xf0,$nhi | ||
254 | and $nlo,0x0f,$nlo | ||
255 | ba .Lgmult_inner | ||
256 | sll $nlo,4,$nlo | ||
257 | .align 32 | ||
258 | .Lgmult_inner: | ||
259 | ldx [$Htblo+$nlo],$Tlo | ||
260 | sll $remi,3,$remi | ||
261 | xor $Thi,$Zhi,$Zhi | ||
262 | ldx [$Htbl+$nlo],$Thi | ||
263 | srlx $Zlo,4,$Zlo | ||
264 | xor $rem,$Zhi,$Zhi | ||
265 | ldx [$rem_4bit+$remi],$rem | ||
266 | sllx $Zhi,60,$tmp | ||
267 | xor $Tlo,$Zlo,$Zlo | ||
268 | ldub [$Xi+$cnt],$nlo | ||
269 | srlx $Zhi,4,$Zhi | ||
270 | xor $Zlo,$tmp,$Zlo | ||
271 | xor $Thi,$Zhi,$Zhi | ||
272 | and $Zlo,0xf,$remi | ||
273 | |||
274 | ldx [$Htblo+$nhi],$Tlo | ||
275 | sll $remi,3,$remi | ||
276 | xor $rem,$Zhi,$Zhi | ||
277 | ldx [$Htbl+$nhi],$Thi | ||
278 | srlx $Zlo,4,$Zlo | ||
279 | ldx [$rem_4bit+$remi],$rem | ||
280 | sllx $Zhi,60,$tmp | ||
281 | srlx $Zhi,4,$Zhi | ||
282 | and $nlo,0xf0,$nhi | ||
283 | addcc $cnt,-1,$cnt | ||
284 | xor $Zlo,$tmp,$Zlo | ||
285 | and $nlo,0x0f,$nlo | ||
286 | xor $Tlo,$Zlo,$Zlo | ||
287 | sll $nlo,4,$nlo | ||
288 | blu .Lgmult_inner | ||
289 | and $Zlo,0xf,$remi | ||
290 | |||
291 | ldx [$Htblo+$nlo],$Tlo | ||
292 | sll $remi,3,$remi | ||
293 | xor $Thi,$Zhi,$Zhi | ||
294 | ldx [$Htbl+$nlo],$Thi | ||
295 | srlx $Zlo,4,$Zlo | ||
296 | xor $rem,$Zhi,$Zhi | ||
297 | ldx [$rem_4bit+$remi],$rem | ||
298 | sllx $Zhi,60,$tmp | ||
299 | xor $Tlo,$Zlo,$Zlo | ||
300 | srlx $Zhi,4,$Zhi | ||
301 | xor $Zlo,$tmp,$Zlo | ||
302 | xor $Thi,$Zhi,$Zhi | ||
303 | and $Zlo,0xf,$remi | ||
304 | |||
305 | ldx [$Htblo+$nhi],$Tlo | ||
306 | sll $remi,3,$remi | ||
307 | xor $rem,$Zhi,$Zhi | ||
308 | ldx [$Htbl+$nhi],$Thi | ||
309 | srlx $Zlo,4,$Zlo | ||
310 | ldx [$rem_4bit+$remi],$rem | ||
311 | sllx $Zhi,60,$tmp | ||
312 | xor $Tlo,$Zlo,$Zlo | ||
313 | srlx $Zhi,4,$Zhi | ||
314 | xor $Zlo,$tmp,$Zlo | ||
315 | xor $Thi,$Zhi,$Zhi | ||
316 | stx $Zlo,[$Xi+8] | ||
317 | xor $rem,$Zhi,$Zhi | ||
318 | stx $Zhi,[$Xi] | ||
319 | |||
320 | ret | ||
321 | restore | ||
322 | .type gcm_gmult_4bit,#function | ||
323 | .size gcm_gmult_4bit,(.-gcm_gmult_4bit) | ||
324 | .asciz "GHASH for SPARCv9, CRYPTOGAMS by <appro\@openssl.org>" | ||
325 | .align 4 | ||
326 | ___ | ||
327 | |||
328 | $code =~ s/\`([^\`]*)\`/eval $1/gem; | ||
329 | print $code; | ||
330 | close STDOUT; | ||
diff --git a/src/lib/libcrypto/modes/asm/ghash-x86.pl b/src/lib/libcrypto/modes/asm/ghash-x86.pl new file mode 100644 index 0000000000..6b09669d47 --- /dev/null +++ b/src/lib/libcrypto/modes/asm/ghash-x86.pl | |||
@@ -0,0 +1,1342 @@ | |||
1 | #!/usr/bin/env perl | ||
2 | # | ||
3 | # ==================================================================== | ||
4 | # Written by Andy Polyakov <appro@openssl.org> for the OpenSSL | ||
5 | # project. The module is, however, dual licensed under OpenSSL and | ||
6 | # CRYPTOGAMS licenses depending on where you obtain it. For further | ||
7 | # details see http://www.openssl.org/~appro/cryptogams/. | ||
8 | # ==================================================================== | ||
9 | # | ||
10 | # March, May, June 2010 | ||
11 | # | ||
12 | # The module implements "4-bit" GCM GHASH function and underlying | ||
13 | # single multiplication operation in GF(2^128). "4-bit" means that it | ||
14 | # uses 256 bytes per-key table [+64/128 bytes fixed table]. It has two | ||
15 | # code paths: vanilla x86 and vanilla MMX. Former will be executed on | ||
16 | # 486 and Pentium, latter on all others. MMX GHASH features so called | ||
17 | # "528B" variant of "4-bit" method utilizing additional 256+16 bytes | ||
18 | # of per-key storage [+512 bytes shared table]. Performance results | ||
19 | # are for streamed GHASH subroutine and are expressed in cycles per | ||
20 | # processed byte, less is better: | ||
21 | # | ||
22 | # gcc 2.95.3(*) MMX assembler x86 assembler | ||
23 | # | ||
24 | # Pentium 105/111(**) - 50 | ||
25 | # PIII 68 /75 12.2 24 | ||
26 | # P4 125/125 17.8 84(***) | ||
27 | # Opteron 66 /70 10.1 30 | ||
28 | # Core2 54 /67 8.4 18 | ||
29 | # | ||
30 | # (*) gcc 3.4.x was observed to generate few percent slower code, | ||
31 | # which is one of reasons why 2.95.3 results were chosen, | ||
32 | # another reason is lack of 3.4.x results for older CPUs; | ||
33 | # comparison with MMX results is not completely fair, because C | ||
34 | # results are for vanilla "256B" implementation, while | ||
35 | # assembler results are for "528B";-) | ||
36 | # (**) second number is result for code compiled with -fPIC flag, | ||
37 | # which is actually more relevant, because assembler code is | ||
38 | # position-independent; | ||
39 | # (***) see comment in non-MMX routine for further details; | ||
40 | # | ||
41 | # To summarize, it's >2-5 times faster than gcc-generated code. To | ||
42 | # anchor it to something else SHA1 assembler processes one byte in | ||
43 | # 11-13 cycles on contemporary x86 cores. As for choice of MMX in | ||
44 | # particular, see comment at the end of the file... | ||
45 | |||
46 | # May 2010 | ||
47 | # | ||
48 | # Add PCLMULQDQ version performing at 2.10 cycles per processed byte. | ||
49 | # The question is how close is it to theoretical limit? The pclmulqdq | ||
50 | # instruction latency appears to be 14 cycles and there can't be more | ||
51 | # than 2 of them executing at any given time. This means that single | ||
52 | # Karatsuba multiplication would take 28 cycles *plus* few cycles for | ||
53 | # pre- and post-processing. Then multiplication has to be followed by | ||
54 | # modulo-reduction. Given that aggregated reduction method [see | ||
55 | # "Carry-less Multiplication and Its Usage for Computing the GCM Mode" | ||
56 | # white paper by Intel] allows you to perform reduction only once in | ||
57 | # a while we can assume that asymptotic performance can be estimated | ||
58 | # as (28+Tmod/Naggr)/16, where Tmod is time to perform reduction | ||
59 | # and Naggr is the aggregation factor. | ||
60 | # | ||
61 | # Before we proceed to this implementation let's have closer look at | ||
62 | # the best-performing code suggested by Intel in their white paper. | ||
63 | # By tracing inter-register dependencies Tmod is estimated as ~19 | ||
64 | # cycles and Naggr chosen by Intel is 4, resulting in 2.05 cycles per | ||
65 | # processed byte. As implied, this is quite optimistic estimate, | ||
66 | # because it does not account for Karatsuba pre- and post-processing, | ||
67 | # which for a single multiplication is ~5 cycles. Unfortunately Intel | ||
68 | # does not provide performance data for GHASH alone. But benchmarking | ||
69 | # AES_GCM_encrypt ripped out of Fig. 15 of the white paper with aadt | ||
70 | # alone resulted in 2.46 cycles per byte of out 16KB buffer. Note that | ||
71 | # the result accounts even for pre-computing of degrees of the hash | ||
72 | # key H, but its portion is negligible at 16KB buffer size. | ||
73 | # | ||
74 | # Moving on to the implementation in question. Tmod is estimated as | ||
75 | # ~13 cycles and Naggr is 2, giving asymptotic performance of ... | ||
76 | # 2.16. How is it possible that measured performance is better than | ||
77 | # optimistic theoretical estimate? There is one thing Intel failed | ||
78 | # to recognize. By serializing GHASH with CTR in same subroutine | ||
79 | # former's performance is really limited to above (Tmul + Tmod/Naggr) | ||
80 | # equation. But if GHASH procedure is detached, the modulo-reduction | ||
81 | # can be interleaved with Naggr-1 multiplications at instruction level | ||
82 | # and under ideal conditions even disappear from the equation. So that | ||
83 | # optimistic theoretical estimate for this implementation is ... | ||
84 | # 28/16=1.75, and not 2.16. Well, it's probably way too optimistic, | ||
85 | # at least for such small Naggr. I'd argue that (28+Tproc/Naggr), | ||
86 | # where Tproc is time required for Karatsuba pre- and post-processing, | ||
87 | # is more realistic estimate. In this case it gives ... 1.91 cycles. | ||
88 | # Or in other words, depending on how well we can interleave reduction | ||
89 | # and one of the two multiplications the performance should be betwen | ||
90 | # 1.91 and 2.16. As already mentioned, this implementation processes | ||
91 | # one byte out of 8KB buffer in 2.10 cycles, while x86_64 counterpart | ||
92 | # - in 2.02. x86_64 performance is better, because larger register | ||
93 | # bank allows to interleave reduction and multiplication better. | ||
94 | # | ||
95 | # Does it make sense to increase Naggr? To start with it's virtually | ||
96 | # impossible in 32-bit mode, because of limited register bank | ||
97 | # capacity. Otherwise improvement has to be weighed agiainst slower | ||
98 | # setup, as well as code size and complexity increase. As even | ||
99 | # optimistic estimate doesn't promise 30% performance improvement, | ||
100 | # there are currently no plans to increase Naggr. | ||
101 | # | ||
102 | # Special thanks to David Woodhouse <dwmw2@infradead.org> for | ||
103 | # providing access to a Westmere-based system on behalf of Intel | ||
104 | # Open Source Technology Centre. | ||
105 | |||
106 | # January 2010 | ||
107 | # | ||
108 | # Tweaked to optimize transitions between integer and FP operations | ||
109 | # on same XMM register, PCLMULQDQ subroutine was measured to process | ||
110 | # one byte in 2.07 cycles on Sandy Bridge, and in 2.12 - on Westmere. | ||
111 | # The minor regression on Westmere is outweighed by ~15% improvement | ||
112 | # on Sandy Bridge. Strangely enough attempt to modify 64-bit code in | ||
113 | # similar manner resulted in almost 20% degradation on Sandy Bridge, | ||
114 | # where original 64-bit code processes one byte in 1.95 cycles. | ||
115 | |||
116 | $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; | ||
117 | push(@INC,"${dir}","${dir}../../perlasm"); | ||
118 | require "x86asm.pl"; | ||
119 | |||
120 | &asm_init($ARGV[0],"ghash-x86.pl",$x86only = $ARGV[$#ARGV] eq "386"); | ||
121 | |||
122 | $sse2=0; | ||
123 | for (@ARGV) { $sse2=1 if (/-DOPENSSL_IA32_SSE2/); } | ||
124 | |||
125 | ($Zhh,$Zhl,$Zlh,$Zll) = ("ebp","edx","ecx","ebx"); | ||
126 | $inp = "edi"; | ||
127 | $Htbl = "esi"; | ||
128 | |||
129 | $unroll = 0; # Affects x86 loop. Folded loop performs ~7% worse | ||
130 | # than unrolled, which has to be weighted against | ||
131 | # 2.5x x86-specific code size reduction. | ||
132 | |||
133 | sub x86_loop { | ||
134 | my $off = shift; | ||
135 | my $rem = "eax"; | ||
136 | |||
137 | &mov ($Zhh,&DWP(4,$Htbl,$Zll)); | ||
138 | &mov ($Zhl,&DWP(0,$Htbl,$Zll)); | ||
139 | &mov ($Zlh,&DWP(12,$Htbl,$Zll)); | ||
140 | &mov ($Zll,&DWP(8,$Htbl,$Zll)); | ||
141 | &xor ($rem,$rem); # avoid partial register stalls on PIII | ||
142 | |||
143 | # shrd practically kills P4, 2.5x deterioration, but P4 has | ||
144 | # MMX code-path to execute. shrd runs tad faster [than twice | ||
145 | # the shifts, move's and or's] on pre-MMX Pentium (as well as | ||
146 | # PIII and Core2), *but* minimizes code size, spares register | ||
147 | # and thus allows to fold the loop... | ||
148 | if (!$unroll) { | ||
149 | my $cnt = $inp; | ||
150 | &mov ($cnt,15); | ||
151 | &jmp (&label("x86_loop")); | ||
152 | &set_label("x86_loop",16); | ||
153 | for($i=1;$i<=2;$i++) { | ||
154 | &mov (&LB($rem),&LB($Zll)); | ||
155 | &shrd ($Zll,$Zlh,4); | ||
156 | &and (&LB($rem),0xf); | ||
157 | &shrd ($Zlh,$Zhl,4); | ||
158 | &shrd ($Zhl,$Zhh,4); | ||
159 | &shr ($Zhh,4); | ||
160 | &xor ($Zhh,&DWP($off+16,"esp",$rem,4)); | ||
161 | |||
162 | &mov (&LB($rem),&BP($off,"esp",$cnt)); | ||
163 | if ($i&1) { | ||
164 | &and (&LB($rem),0xf0); | ||
165 | } else { | ||
166 | &shl (&LB($rem),4); | ||
167 | } | ||
168 | |||
169 | &xor ($Zll,&DWP(8,$Htbl,$rem)); | ||
170 | &xor ($Zlh,&DWP(12,$Htbl,$rem)); | ||
171 | &xor ($Zhl,&DWP(0,$Htbl,$rem)); | ||
172 | &xor ($Zhh,&DWP(4,$Htbl,$rem)); | ||
173 | |||
174 | if ($i&1) { | ||
175 | &dec ($cnt); | ||
176 | &js (&label("x86_break")); | ||
177 | } else { | ||
178 | &jmp (&label("x86_loop")); | ||
179 | } | ||
180 | } | ||
181 | &set_label("x86_break",16); | ||
182 | } else { | ||
183 | for($i=1;$i<32;$i++) { | ||
184 | &comment($i); | ||
185 | &mov (&LB($rem),&LB($Zll)); | ||
186 | &shrd ($Zll,$Zlh,4); | ||
187 | &and (&LB($rem),0xf); | ||
188 | &shrd ($Zlh,$Zhl,4); | ||
189 | &shrd ($Zhl,$Zhh,4); | ||
190 | &shr ($Zhh,4); | ||
191 | &xor ($Zhh,&DWP($off+16,"esp",$rem,4)); | ||
192 | |||
193 | if ($i&1) { | ||
194 | &mov (&LB($rem),&BP($off+15-($i>>1),"esp")); | ||
195 | &and (&LB($rem),0xf0); | ||
196 | } else { | ||
197 | &mov (&LB($rem),&BP($off+15-($i>>1),"esp")); | ||
198 | &shl (&LB($rem),4); | ||
199 | } | ||
200 | |||
201 | &xor ($Zll,&DWP(8,$Htbl,$rem)); | ||
202 | &xor ($Zlh,&DWP(12,$Htbl,$rem)); | ||
203 | &xor ($Zhl,&DWP(0,$Htbl,$rem)); | ||
204 | &xor ($Zhh,&DWP(4,$Htbl,$rem)); | ||
205 | } | ||
206 | } | ||
207 | &bswap ($Zll); | ||
208 | &bswap ($Zlh); | ||
209 | &bswap ($Zhl); | ||
210 | if (!$x86only) { | ||
211 | &bswap ($Zhh); | ||
212 | } else { | ||
213 | &mov ("eax",$Zhh); | ||
214 | &bswap ("eax"); | ||
215 | &mov ($Zhh,"eax"); | ||
216 | } | ||
217 | } | ||
218 | |||
219 | if ($unroll) { | ||
220 | &function_begin_B("_x86_gmult_4bit_inner"); | ||
221 | &x86_loop(4); | ||
222 | &ret (); | ||
223 | &function_end_B("_x86_gmult_4bit_inner"); | ||
224 | } | ||
225 | |||
226 | sub deposit_rem_4bit { | ||
227 | my $bias = shift; | ||
228 | |||
229 | &mov (&DWP($bias+0, "esp"),0x0000<<16); | ||
230 | &mov (&DWP($bias+4, "esp"),0x1C20<<16); | ||
231 | &mov (&DWP($bias+8, "esp"),0x3840<<16); | ||
232 | &mov (&DWP($bias+12,"esp"),0x2460<<16); | ||
233 | &mov (&DWP($bias+16,"esp"),0x7080<<16); | ||
234 | &mov (&DWP($bias+20,"esp"),0x6CA0<<16); | ||
235 | &mov (&DWP($bias+24,"esp"),0x48C0<<16); | ||
236 | &mov (&DWP($bias+28,"esp"),0x54E0<<16); | ||
237 | &mov (&DWP($bias+32,"esp"),0xE100<<16); | ||
238 | &mov (&DWP($bias+36,"esp"),0xFD20<<16); | ||
239 | &mov (&DWP($bias+40,"esp"),0xD940<<16); | ||
240 | &mov (&DWP($bias+44,"esp"),0xC560<<16); | ||
241 | &mov (&DWP($bias+48,"esp"),0x9180<<16); | ||
242 | &mov (&DWP($bias+52,"esp"),0x8DA0<<16); | ||
243 | &mov (&DWP($bias+56,"esp"),0xA9C0<<16); | ||
244 | &mov (&DWP($bias+60,"esp"),0xB5E0<<16); | ||
245 | } | ||
246 | |||
247 | $suffix = $x86only ? "" : "_x86"; | ||
248 | |||
249 | &function_begin("gcm_gmult_4bit".$suffix); | ||
250 | &stack_push(16+4+1); # +1 for stack alignment | ||
251 | &mov ($inp,&wparam(0)); # load Xi | ||
252 | &mov ($Htbl,&wparam(1)); # load Htable | ||
253 | |||
254 | &mov ($Zhh,&DWP(0,$inp)); # load Xi[16] | ||
255 | &mov ($Zhl,&DWP(4,$inp)); | ||
256 | &mov ($Zlh,&DWP(8,$inp)); | ||
257 | &mov ($Zll,&DWP(12,$inp)); | ||
258 | |||
259 | &deposit_rem_4bit(16); | ||
260 | |||
261 | &mov (&DWP(0,"esp"),$Zhh); # copy Xi[16] on stack | ||
262 | &mov (&DWP(4,"esp"),$Zhl); | ||
263 | &mov (&DWP(8,"esp"),$Zlh); | ||
264 | &mov (&DWP(12,"esp"),$Zll); | ||
265 | &shr ($Zll,20); | ||
266 | &and ($Zll,0xf0); | ||
267 | |||
268 | if ($unroll) { | ||
269 | &call ("_x86_gmult_4bit_inner"); | ||
270 | } else { | ||
271 | &x86_loop(0); | ||
272 | &mov ($inp,&wparam(0)); | ||
273 | } | ||
274 | |||
275 | &mov (&DWP(12,$inp),$Zll); | ||
276 | &mov (&DWP(8,$inp),$Zlh); | ||
277 | &mov (&DWP(4,$inp),$Zhl); | ||
278 | &mov (&DWP(0,$inp),$Zhh); | ||
279 | &stack_pop(16+4+1); | ||
280 | &function_end("gcm_gmult_4bit".$suffix); | ||
281 | |||
282 | &function_begin("gcm_ghash_4bit".$suffix); | ||
283 | &stack_push(16+4+1); # +1 for 64-bit alignment | ||
284 | &mov ($Zll,&wparam(0)); # load Xi | ||
285 | &mov ($Htbl,&wparam(1)); # load Htable | ||
286 | &mov ($inp,&wparam(2)); # load in | ||
287 | &mov ("ecx",&wparam(3)); # load len | ||
288 | &add ("ecx",$inp); | ||
289 | &mov (&wparam(3),"ecx"); | ||
290 | |||
291 | &mov ($Zhh,&DWP(0,$Zll)); # load Xi[16] | ||
292 | &mov ($Zhl,&DWP(4,$Zll)); | ||
293 | &mov ($Zlh,&DWP(8,$Zll)); | ||
294 | &mov ($Zll,&DWP(12,$Zll)); | ||
295 | |||
296 | &deposit_rem_4bit(16); | ||
297 | |||
298 | &set_label("x86_outer_loop",16); | ||
299 | &xor ($Zll,&DWP(12,$inp)); # xor with input | ||
300 | &xor ($Zlh,&DWP(8,$inp)); | ||
301 | &xor ($Zhl,&DWP(4,$inp)); | ||
302 | &xor ($Zhh,&DWP(0,$inp)); | ||
303 | &mov (&DWP(12,"esp"),$Zll); # dump it on stack | ||
304 | &mov (&DWP(8,"esp"),$Zlh); | ||
305 | &mov (&DWP(4,"esp"),$Zhl); | ||
306 | &mov (&DWP(0,"esp"),$Zhh); | ||
307 | |||
308 | &shr ($Zll,20); | ||
309 | &and ($Zll,0xf0); | ||
310 | |||
311 | if ($unroll) { | ||
312 | &call ("_x86_gmult_4bit_inner"); | ||
313 | } else { | ||
314 | &x86_loop(0); | ||
315 | &mov ($inp,&wparam(2)); | ||
316 | } | ||
317 | &lea ($inp,&DWP(16,$inp)); | ||
318 | &cmp ($inp,&wparam(3)); | ||
319 | &mov (&wparam(2),$inp) if (!$unroll); | ||
320 | &jb (&label("x86_outer_loop")); | ||
321 | |||
322 | &mov ($inp,&wparam(0)); # load Xi | ||
323 | &mov (&DWP(12,$inp),$Zll); | ||
324 | &mov (&DWP(8,$inp),$Zlh); | ||
325 | &mov (&DWP(4,$inp),$Zhl); | ||
326 | &mov (&DWP(0,$inp),$Zhh); | ||
327 | &stack_pop(16+4+1); | ||
328 | &function_end("gcm_ghash_4bit".$suffix); | ||
329 | |||
330 | if (!$x86only) {{{ | ||
331 | |||
332 | &static_label("rem_4bit"); | ||
333 | |||
334 | if (!$sse2) {{ # pure-MMX "May" version... | ||
335 | |||
336 | $S=12; # shift factor for rem_4bit | ||
337 | |||
338 | &function_begin_B("_mmx_gmult_4bit_inner"); | ||
339 | # MMX version performs 3.5 times better on P4 (see comment in non-MMX | ||
340 | # routine for further details), 100% better on Opteron, ~70% better | ||
341 | # on Core2 and PIII... In other words effort is considered to be well | ||
342 | # spent... Since initial release the loop was unrolled in order to | ||
343 | # "liberate" register previously used as loop counter. Instead it's | ||
344 | # used to optimize critical path in 'Z.hi ^= rem_4bit[Z.lo&0xf]'. | ||
345 | # The path involves move of Z.lo from MMX to integer register, | ||
346 | # effective address calculation and finally merge of value to Z.hi. | ||
347 | # Reference to rem_4bit is scheduled so late that I had to >>4 | ||
348 | # rem_4bit elements. This resulted in 20-45% procent improvement | ||
349 | # on contemporary µ-archs. | ||
350 | { | ||
351 | my $cnt; | ||
352 | my $rem_4bit = "eax"; | ||
353 | my @rem = ($Zhh,$Zll); | ||
354 | my $nhi = $Zhl; | ||
355 | my $nlo = $Zlh; | ||
356 | |||
357 | my ($Zlo,$Zhi) = ("mm0","mm1"); | ||
358 | my $tmp = "mm2"; | ||
359 | |||
360 | &xor ($nlo,$nlo); # avoid partial register stalls on PIII | ||
361 | &mov ($nhi,$Zll); | ||
362 | &mov (&LB($nlo),&LB($nhi)); | ||
363 | &shl (&LB($nlo),4); | ||
364 | &and ($nhi,0xf0); | ||
365 | &movq ($Zlo,&QWP(8,$Htbl,$nlo)); | ||
366 | &movq ($Zhi,&QWP(0,$Htbl,$nlo)); | ||
367 | &movd ($rem[0],$Zlo); | ||
368 | |||
369 | for ($cnt=28;$cnt>=-2;$cnt--) { | ||
370 | my $odd = $cnt&1; | ||
371 | my $nix = $odd ? $nlo : $nhi; | ||
372 | |||
373 | &shl (&LB($nlo),4) if ($odd); | ||
374 | &psrlq ($Zlo,4); | ||
375 | &movq ($tmp,$Zhi); | ||
376 | &psrlq ($Zhi,4); | ||
377 | &pxor ($Zlo,&QWP(8,$Htbl,$nix)); | ||
378 | &mov (&LB($nlo),&BP($cnt/2,$inp)) if (!$odd && $cnt>=0); | ||
379 | &psllq ($tmp,60); | ||
380 | &and ($nhi,0xf0) if ($odd); | ||
381 | &pxor ($Zhi,&QWP(0,$rem_4bit,$rem[1],8)) if ($cnt<28); | ||
382 | &and ($rem[0],0xf); | ||
383 | &pxor ($Zhi,&QWP(0,$Htbl,$nix)); | ||
384 | &mov ($nhi,$nlo) if (!$odd && $cnt>=0); | ||
385 | &movd ($rem[1],$Zlo); | ||
386 | &pxor ($Zlo,$tmp); | ||
387 | |||
388 | push (@rem,shift(@rem)); # "rotate" registers | ||
389 | } | ||
390 | |||
391 | &mov ($inp,&DWP(4,$rem_4bit,$rem[1],8)); # last rem_4bit[rem] | ||
392 | |||
393 | &psrlq ($Zlo,32); # lower part of Zlo is already there | ||
394 | &movd ($Zhl,$Zhi); | ||
395 | &psrlq ($Zhi,32); | ||
396 | &movd ($Zlh,$Zlo); | ||
397 | &movd ($Zhh,$Zhi); | ||
398 | &shl ($inp,4); # compensate for rem_4bit[i] being >>4 | ||
399 | |||
400 | &bswap ($Zll); | ||
401 | &bswap ($Zhl); | ||
402 | &bswap ($Zlh); | ||
403 | &xor ($Zhh,$inp); | ||
404 | &bswap ($Zhh); | ||
405 | |||
406 | &ret (); | ||
407 | } | ||
408 | &function_end_B("_mmx_gmult_4bit_inner"); | ||
409 | |||
410 | &function_begin("gcm_gmult_4bit_mmx"); | ||
411 | &mov ($inp,&wparam(0)); # load Xi | ||
412 | &mov ($Htbl,&wparam(1)); # load Htable | ||
413 | |||
414 | &call (&label("pic_point")); | ||
415 | &set_label("pic_point"); | ||
416 | &blindpop("eax"); | ||
417 | &lea ("eax",&DWP(&label("rem_4bit")."-".&label("pic_point"),"eax")); | ||
418 | |||
419 | &movz ($Zll,&BP(15,$inp)); | ||
420 | |||
421 | &call ("_mmx_gmult_4bit_inner"); | ||
422 | |||
423 | &mov ($inp,&wparam(0)); # load Xi | ||
424 | &emms (); | ||
425 | &mov (&DWP(12,$inp),$Zll); | ||
426 | &mov (&DWP(4,$inp),$Zhl); | ||
427 | &mov (&DWP(8,$inp),$Zlh); | ||
428 | &mov (&DWP(0,$inp),$Zhh); | ||
429 | &function_end("gcm_gmult_4bit_mmx"); | ||
430 | |||
431 | # Streamed version performs 20% better on P4, 7% on Opteron, | ||
432 | # 10% on Core2 and PIII... | ||
433 | &function_begin("gcm_ghash_4bit_mmx"); | ||
434 | &mov ($Zhh,&wparam(0)); # load Xi | ||
435 | &mov ($Htbl,&wparam(1)); # load Htable | ||
436 | &mov ($inp,&wparam(2)); # load in | ||
437 | &mov ($Zlh,&wparam(3)); # load len | ||
438 | |||
439 | &call (&label("pic_point")); | ||
440 | &set_label("pic_point"); | ||
441 | &blindpop("eax"); | ||
442 | &lea ("eax",&DWP(&label("rem_4bit")."-".&label("pic_point"),"eax")); | ||
443 | |||
444 | &add ($Zlh,$inp); | ||
445 | &mov (&wparam(3),$Zlh); # len to point at the end of input | ||
446 | &stack_push(4+1); # +1 for stack alignment | ||
447 | |||
448 | &mov ($Zll,&DWP(12,$Zhh)); # load Xi[16] | ||
449 | &mov ($Zhl,&DWP(4,$Zhh)); | ||
450 | &mov ($Zlh,&DWP(8,$Zhh)); | ||
451 | &mov ($Zhh,&DWP(0,$Zhh)); | ||
452 | &jmp (&label("mmx_outer_loop")); | ||
453 | |||
454 | &set_label("mmx_outer_loop",16); | ||
455 | &xor ($Zll,&DWP(12,$inp)); | ||
456 | &xor ($Zhl,&DWP(4,$inp)); | ||
457 | &xor ($Zlh,&DWP(8,$inp)); | ||
458 | &xor ($Zhh,&DWP(0,$inp)); | ||
459 | &mov (&wparam(2),$inp); | ||
460 | &mov (&DWP(12,"esp"),$Zll); | ||
461 | &mov (&DWP(4,"esp"),$Zhl); | ||
462 | &mov (&DWP(8,"esp"),$Zlh); | ||
463 | &mov (&DWP(0,"esp"),$Zhh); | ||
464 | |||
465 | &mov ($inp,"esp"); | ||
466 | &shr ($Zll,24); | ||
467 | |||
468 | &call ("_mmx_gmult_4bit_inner"); | ||
469 | |||
470 | &mov ($inp,&wparam(2)); | ||
471 | &lea ($inp,&DWP(16,$inp)); | ||
472 | &cmp ($inp,&wparam(3)); | ||
473 | &jb (&label("mmx_outer_loop")); | ||
474 | |||
475 | &mov ($inp,&wparam(0)); # load Xi | ||
476 | &emms (); | ||
477 | &mov (&DWP(12,$inp),$Zll); | ||
478 | &mov (&DWP(4,$inp),$Zhl); | ||
479 | &mov (&DWP(8,$inp),$Zlh); | ||
480 | &mov (&DWP(0,$inp),$Zhh); | ||
481 | |||
482 | &stack_pop(4+1); | ||
483 | &function_end("gcm_ghash_4bit_mmx"); | ||
484 | |||
485 | }} else {{ # "June" MMX version... | ||
486 | # ... has slower "April" gcm_gmult_4bit_mmx with folded | ||
487 | # loop. This is done to conserve code size... | ||
488 | $S=16; # shift factor for rem_4bit | ||
489 | |||
490 | sub mmx_loop() { | ||
491 | # MMX version performs 2.8 times better on P4 (see comment in non-MMX | ||
492 | # routine for further details), 40% better on Opteron and Core2, 50% | ||
493 | # better on PIII... In other words effort is considered to be well | ||
494 | # spent... | ||
495 | my $inp = shift; | ||
496 | my $rem_4bit = shift; | ||
497 | my $cnt = $Zhh; | ||
498 | my $nhi = $Zhl; | ||
499 | my $nlo = $Zlh; | ||
500 | my $rem = $Zll; | ||
501 | |||
502 | my ($Zlo,$Zhi) = ("mm0","mm1"); | ||
503 | my $tmp = "mm2"; | ||
504 | |||
505 | &xor ($nlo,$nlo); # avoid partial register stalls on PIII | ||
506 | &mov ($nhi,$Zll); | ||
507 | &mov (&LB($nlo),&LB($nhi)); | ||
508 | &mov ($cnt,14); | ||
509 | &shl (&LB($nlo),4); | ||
510 | &and ($nhi,0xf0); | ||
511 | &movq ($Zlo,&QWP(8,$Htbl,$nlo)); | ||
512 | &movq ($Zhi,&QWP(0,$Htbl,$nlo)); | ||
513 | &movd ($rem,$Zlo); | ||
514 | &jmp (&label("mmx_loop")); | ||
515 | |||
516 | &set_label("mmx_loop",16); | ||
517 | &psrlq ($Zlo,4); | ||
518 | &and ($rem,0xf); | ||
519 | &movq ($tmp,$Zhi); | ||
520 | &psrlq ($Zhi,4); | ||
521 | &pxor ($Zlo,&QWP(8,$Htbl,$nhi)); | ||
522 | &mov (&LB($nlo),&BP(0,$inp,$cnt)); | ||
523 | &psllq ($tmp,60); | ||
524 | &pxor ($Zhi,&QWP(0,$rem_4bit,$rem,8)); | ||
525 | &dec ($cnt); | ||
526 | &movd ($rem,$Zlo); | ||
527 | &pxor ($Zhi,&QWP(0,$Htbl,$nhi)); | ||
528 | &mov ($nhi,$nlo); | ||
529 | &pxor ($Zlo,$tmp); | ||
530 | &js (&label("mmx_break")); | ||
531 | |||
532 | &shl (&LB($nlo),4); | ||
533 | &and ($rem,0xf); | ||
534 | &psrlq ($Zlo,4); | ||
535 | &and ($nhi,0xf0); | ||
536 | &movq ($tmp,$Zhi); | ||
537 | &psrlq ($Zhi,4); | ||
538 | &pxor ($Zlo,&QWP(8,$Htbl,$nlo)); | ||
539 | &psllq ($tmp,60); | ||
540 | &pxor ($Zhi,&QWP(0,$rem_4bit,$rem,8)); | ||
541 | &movd ($rem,$Zlo); | ||
542 | &pxor ($Zhi,&QWP(0,$Htbl,$nlo)); | ||
543 | &pxor ($Zlo,$tmp); | ||
544 | &jmp (&label("mmx_loop")); | ||
545 | |||
546 | &set_label("mmx_break",16); | ||
547 | &shl (&LB($nlo),4); | ||
548 | &and ($rem,0xf); | ||
549 | &psrlq ($Zlo,4); | ||
550 | &and ($nhi,0xf0); | ||
551 | &movq ($tmp,$Zhi); | ||
552 | &psrlq ($Zhi,4); | ||
553 | &pxor ($Zlo,&QWP(8,$Htbl,$nlo)); | ||
554 | &psllq ($tmp,60); | ||
555 | &pxor ($Zhi,&QWP(0,$rem_4bit,$rem,8)); | ||
556 | &movd ($rem,$Zlo); | ||
557 | &pxor ($Zhi,&QWP(0,$Htbl,$nlo)); | ||
558 | &pxor ($Zlo,$tmp); | ||
559 | |||
560 | &psrlq ($Zlo,4); | ||
561 | &and ($rem,0xf); | ||
562 | &movq ($tmp,$Zhi); | ||
563 | &psrlq ($Zhi,4); | ||
564 | &pxor ($Zlo,&QWP(8,$Htbl,$nhi)); | ||
565 | &psllq ($tmp,60); | ||
566 | &pxor ($Zhi,&QWP(0,$rem_4bit,$rem,8)); | ||
567 | &movd ($rem,$Zlo); | ||
568 | &pxor ($Zhi,&QWP(0,$Htbl,$nhi)); | ||
569 | &pxor ($Zlo,$tmp); | ||
570 | |||
571 | &psrlq ($Zlo,32); # lower part of Zlo is already there | ||
572 | &movd ($Zhl,$Zhi); | ||
573 | &psrlq ($Zhi,32); | ||
574 | &movd ($Zlh,$Zlo); | ||
575 | &movd ($Zhh,$Zhi); | ||
576 | |||
577 | &bswap ($Zll); | ||
578 | &bswap ($Zhl); | ||
579 | &bswap ($Zlh); | ||
580 | &bswap ($Zhh); | ||
581 | } | ||
582 | |||
583 | &function_begin("gcm_gmult_4bit_mmx"); | ||
584 | &mov ($inp,&wparam(0)); # load Xi | ||
585 | &mov ($Htbl,&wparam(1)); # load Htable | ||
586 | |||
587 | &call (&label("pic_point")); | ||
588 | &set_label("pic_point"); | ||
589 | &blindpop("eax"); | ||
590 | &lea ("eax",&DWP(&label("rem_4bit")."-".&label("pic_point"),"eax")); | ||
591 | |||
592 | &movz ($Zll,&BP(15,$inp)); | ||
593 | |||
594 | &mmx_loop($inp,"eax"); | ||
595 | |||
596 | &emms (); | ||
597 | &mov (&DWP(12,$inp),$Zll); | ||
598 | &mov (&DWP(4,$inp),$Zhl); | ||
599 | &mov (&DWP(8,$inp),$Zlh); | ||
600 | &mov (&DWP(0,$inp),$Zhh); | ||
601 | &function_end("gcm_gmult_4bit_mmx"); | ||
602 | |||
603 | ###################################################################### | ||
604 | # Below subroutine is "528B" variant of "4-bit" GCM GHASH function | ||
605 | # (see gcm128.c for details). It provides further 20-40% performance | ||
606 | # improvement over above mentioned "May" version. | ||
607 | |||
608 | &static_label("rem_8bit"); | ||
609 | |||
610 | &function_begin("gcm_ghash_4bit_mmx"); | ||
611 | { my ($Zlo,$Zhi) = ("mm7","mm6"); | ||
612 | my $rem_8bit = "esi"; | ||
613 | my $Htbl = "ebx"; | ||
614 | |||
615 | # parameter block | ||
616 | &mov ("eax",&wparam(0)); # Xi | ||
617 | &mov ("ebx",&wparam(1)); # Htable | ||
618 | &mov ("ecx",&wparam(2)); # inp | ||
619 | &mov ("edx",&wparam(3)); # len | ||
620 | &mov ("ebp","esp"); # original %esp | ||
621 | &call (&label("pic_point")); | ||
622 | &set_label ("pic_point"); | ||
623 | &blindpop ($rem_8bit); | ||
624 | &lea ($rem_8bit,&DWP(&label("rem_8bit")."-".&label("pic_point"),$rem_8bit)); | ||
625 | |||
626 | &sub ("esp",512+16+16); # allocate stack frame... | ||
627 | &and ("esp",-64); # ...and align it | ||
628 | &sub ("esp",16); # place for (u8)(H[]<<4) | ||
629 | |||
630 | &add ("edx","ecx"); # pointer to the end of input | ||
631 | &mov (&DWP(528+16+0,"esp"),"eax"); # save Xi | ||
632 | &mov (&DWP(528+16+8,"esp"),"edx"); # save inp+len | ||
633 | &mov (&DWP(528+16+12,"esp"),"ebp"); # save original %esp | ||
634 | |||
635 | { my @lo = ("mm0","mm1","mm2"); | ||
636 | my @hi = ("mm3","mm4","mm5"); | ||
637 | my @tmp = ("mm6","mm7"); | ||
638 | my $off1=0,$off2=0,$i; | ||
639 | |||
640 | &add ($Htbl,128); # optimize for size | ||
641 | &lea ("edi",&DWP(16+128,"esp")); | ||
642 | &lea ("ebp",&DWP(16+256+128,"esp")); | ||
643 | |||
644 | # decompose Htable (low and high parts are kept separately), | ||
645 | # generate Htable[]>>4, (u8)(Htable[]<<4), save to stack... | ||
646 | for ($i=0;$i<18;$i++) { | ||
647 | |||
648 | &mov ("edx",&DWP(16*$i+8-128,$Htbl)) if ($i<16); | ||
649 | &movq ($lo[0],&QWP(16*$i+8-128,$Htbl)) if ($i<16); | ||
650 | &psllq ($tmp[1],60) if ($i>1); | ||
651 | &movq ($hi[0],&QWP(16*$i+0-128,$Htbl)) if ($i<16); | ||
652 | &por ($lo[2],$tmp[1]) if ($i>1); | ||
653 | &movq (&QWP($off1-128,"edi"),$lo[1]) if ($i>0 && $i<17); | ||
654 | &psrlq ($lo[1],4) if ($i>0 && $i<17); | ||
655 | &movq (&QWP($off1,"edi"),$hi[1]) if ($i>0 && $i<17); | ||
656 | &movq ($tmp[0],$hi[1]) if ($i>0 && $i<17); | ||
657 | &movq (&QWP($off2-128,"ebp"),$lo[2]) if ($i>1); | ||
658 | &psrlq ($hi[1],4) if ($i>0 && $i<17); | ||
659 | &movq (&QWP($off2,"ebp"),$hi[2]) if ($i>1); | ||
660 | &shl ("edx",4) if ($i<16); | ||
661 | &mov (&BP($i,"esp"),&LB("edx")) if ($i<16); | ||
662 | |||
663 | unshift (@lo,pop(@lo)); # "rotate" registers | ||
664 | unshift (@hi,pop(@hi)); | ||
665 | unshift (@tmp,pop(@tmp)); | ||
666 | $off1 += 8 if ($i>0); | ||
667 | $off2 += 8 if ($i>1); | ||
668 | } | ||
669 | } | ||
670 | |||
671 | &movq ($Zhi,&QWP(0,"eax")); | ||
672 | &mov ("ebx",&DWP(8,"eax")); | ||
673 | &mov ("edx",&DWP(12,"eax")); # load Xi | ||
674 | |||
675 | &set_label("outer",16); | ||
676 | { my $nlo = "eax"; | ||
677 | my $dat = "edx"; | ||
678 | my @nhi = ("edi","ebp"); | ||
679 | my @rem = ("ebx","ecx"); | ||
680 | my @red = ("mm0","mm1","mm2"); | ||
681 | my $tmp = "mm3"; | ||
682 | |||
683 | &xor ($dat,&DWP(12,"ecx")); # merge input data | ||
684 | &xor ("ebx",&DWP(8,"ecx")); | ||
685 | &pxor ($Zhi,&QWP(0,"ecx")); | ||
686 | &lea ("ecx",&DWP(16,"ecx")); # inp+=16 | ||
687 | #&mov (&DWP(528+12,"esp"),$dat); # save inp^Xi | ||
688 | &mov (&DWP(528+8,"esp"),"ebx"); | ||
689 | &movq (&QWP(528+0,"esp"),$Zhi); | ||
690 | &mov (&DWP(528+16+4,"esp"),"ecx"); # save inp | ||
691 | |||
692 | &xor ($nlo,$nlo); | ||
693 | &rol ($dat,8); | ||
694 | &mov (&LB($nlo),&LB($dat)); | ||
695 | &mov ($nhi[1],$nlo); | ||
696 | &and (&LB($nlo),0x0f); | ||
697 | &shr ($nhi[1],4); | ||
698 | &pxor ($red[0],$red[0]); | ||
699 | &rol ($dat,8); # next byte | ||
700 | &pxor ($red[1],$red[1]); | ||
701 | &pxor ($red[2],$red[2]); | ||
702 | |||
703 | # Just like in "May" verson modulo-schedule for critical path in | ||
704 | # 'Z.hi ^= rem_8bit[Z.lo&0xff^((u8)H[nhi]<<4)]<<48'. Final 'pxor' | ||
705 | # is scheduled so late that rem_8bit[] has to be shifted *right* | ||
706 | # by 16, which is why last argument to pinsrw is 2, which | ||
707 | # corresponds to <<32=<<48>>16... | ||
708 | for ($j=11,$i=0;$i<15;$i++) { | ||
709 | |||
710 | if ($i>0) { | ||
711 | &pxor ($Zlo,&QWP(16,"esp",$nlo,8)); # Z^=H[nlo] | ||
712 | &rol ($dat,8); # next byte | ||
713 | &pxor ($Zhi,&QWP(16+128,"esp",$nlo,8)); | ||
714 | |||
715 | &pxor ($Zlo,$tmp); | ||
716 | &pxor ($Zhi,&QWP(16+256+128,"esp",$nhi[0],8)); | ||
717 | &xor (&LB($rem[1]),&BP(0,"esp",$nhi[0])); # rem^(H[nhi]<<4) | ||
718 | } else { | ||
719 | &movq ($Zlo,&QWP(16,"esp",$nlo,8)); | ||
720 | &movq ($Zhi,&QWP(16+128,"esp",$nlo,8)); | ||
721 | } | ||
722 | |||
723 | &mov (&LB($nlo),&LB($dat)); | ||
724 | &mov ($dat,&DWP(528+$j,"esp")) if (--$j%4==0); | ||
725 | |||
726 | &movd ($rem[0],$Zlo); | ||
727 | &movz ($rem[1],&LB($rem[1])) if ($i>0); | ||
728 | &psrlq ($Zlo,8); # Z>>=8 | ||
729 | |||
730 | &movq ($tmp,$Zhi); | ||
731 | &mov ($nhi[0],$nlo); | ||
732 | &psrlq ($Zhi,8); | ||
733 | |||
734 | &pxor ($Zlo,&QWP(16+256+0,"esp",$nhi[1],8)); # Z^=H[nhi]>>4 | ||
735 | &and (&LB($nlo),0x0f); | ||
736 | &psllq ($tmp,56); | ||
737 | |||
738 | &pxor ($Zhi,$red[1]) if ($i>1); | ||
739 | &shr ($nhi[0],4); | ||
740 | &pinsrw ($red[0],&WP(0,$rem_8bit,$rem[1],2),2) if ($i>0); | ||
741 | |||
742 | unshift (@red,pop(@red)); # "rotate" registers | ||
743 | unshift (@rem,pop(@rem)); | ||
744 | unshift (@nhi,pop(@nhi)); | ||
745 | } | ||
746 | |||
747 | &pxor ($Zlo,&QWP(16,"esp",$nlo,8)); # Z^=H[nlo] | ||
748 | &pxor ($Zhi,&QWP(16+128,"esp",$nlo,8)); | ||
749 | &xor (&LB($rem[1]),&BP(0,"esp",$nhi[0])); # rem^(H[nhi]<<4) | ||
750 | |||
751 | &pxor ($Zlo,$tmp); | ||
752 | &pxor ($Zhi,&QWP(16+256+128,"esp",$nhi[0],8)); | ||
753 | &movz ($rem[1],&LB($rem[1])); | ||
754 | |||
755 | &pxor ($red[2],$red[2]); # clear 2nd word | ||
756 | &psllq ($red[1],4); | ||
757 | |||
758 | &movd ($rem[0],$Zlo); | ||
759 | &psrlq ($Zlo,4); # Z>>=4 | ||
760 | |||
761 | &movq ($tmp,$Zhi); | ||
762 | &psrlq ($Zhi,4); | ||
763 | &shl ($rem[0],4); # rem<<4 | ||
764 | |||
765 | &pxor ($Zlo,&QWP(16,"esp",$nhi[1],8)); # Z^=H[nhi] | ||
766 | &psllq ($tmp,60); | ||
767 | &movz ($rem[0],&LB($rem[0])); | ||
768 | |||
769 | &pxor ($Zlo,$tmp); | ||
770 | &pxor ($Zhi,&QWP(16+128,"esp",$nhi[1],8)); | ||
771 | |||
772 | &pinsrw ($red[0],&WP(0,$rem_8bit,$rem[1],2),2); | ||
773 | &pxor ($Zhi,$red[1]); | ||
774 | |||
775 | &movd ($dat,$Zlo); | ||
776 | &pinsrw ($red[2],&WP(0,$rem_8bit,$rem[0],2),3); # last is <<48 | ||
777 | |||
778 | &psllq ($red[0],12); # correct by <<16>>4 | ||
779 | &pxor ($Zhi,$red[0]); | ||
780 | &psrlq ($Zlo,32); | ||
781 | &pxor ($Zhi,$red[2]); | ||
782 | |||
783 | &mov ("ecx",&DWP(528+16+4,"esp")); # restore inp | ||
784 | &movd ("ebx",$Zlo); | ||
785 | &movq ($tmp,$Zhi); # 01234567 | ||
786 | &psllw ($Zhi,8); # 1.3.5.7. | ||
787 | &psrlw ($tmp,8); # .0.2.4.6 | ||
788 | &por ($Zhi,$tmp); # 10325476 | ||
789 | &bswap ($dat); | ||
790 | &pshufw ($Zhi,$Zhi,0b00011011); # 76543210 | ||
791 | &bswap ("ebx"); | ||
792 | |||
793 | &cmp ("ecx",&DWP(528+16+8,"esp")); # are we done? | ||
794 | &jne (&label("outer")); | ||
795 | } | ||
796 | |||
797 | &mov ("eax",&DWP(528+16+0,"esp")); # restore Xi | ||
798 | &mov (&DWP(12,"eax"),"edx"); | ||
799 | &mov (&DWP(8,"eax"),"ebx"); | ||
800 | &movq (&QWP(0,"eax"),$Zhi); | ||
801 | |||
802 | &mov ("esp",&DWP(528+16+12,"esp")); # restore original %esp | ||
803 | &emms (); | ||
804 | } | ||
805 | &function_end("gcm_ghash_4bit_mmx"); | ||
806 | }} | ||
807 | |||
808 | if ($sse2) {{ | ||
809 | ###################################################################### | ||
810 | # PCLMULQDQ version. | ||
811 | |||
812 | $Xip="eax"; | ||
813 | $Htbl="edx"; | ||
814 | $const="ecx"; | ||
815 | $inp="esi"; | ||
816 | $len="ebx"; | ||
817 | |||
818 | ($Xi,$Xhi)=("xmm0","xmm1"); $Hkey="xmm2"; | ||
819 | ($T1,$T2,$T3)=("xmm3","xmm4","xmm5"); | ||
820 | ($Xn,$Xhn)=("xmm6","xmm7"); | ||
821 | |||
822 | &static_label("bswap"); | ||
823 | |||
824 | sub clmul64x64_T2 { # minimal "register" pressure | ||
825 | my ($Xhi,$Xi,$Hkey)=@_; | ||
826 | |||
827 | &movdqa ($Xhi,$Xi); # | ||
828 | &pshufd ($T1,$Xi,0b01001110); | ||
829 | &pshufd ($T2,$Hkey,0b01001110); | ||
830 | &pxor ($T1,$Xi); # | ||
831 | &pxor ($T2,$Hkey); | ||
832 | |||
833 | &pclmulqdq ($Xi,$Hkey,0x00); ####### | ||
834 | &pclmulqdq ($Xhi,$Hkey,0x11); ####### | ||
835 | &pclmulqdq ($T1,$T2,0x00); ####### | ||
836 | &xorps ($T1,$Xi); # | ||
837 | &xorps ($T1,$Xhi); # | ||
838 | |||
839 | &movdqa ($T2,$T1); # | ||
840 | &psrldq ($T1,8); | ||
841 | &pslldq ($T2,8); # | ||
842 | &pxor ($Xhi,$T1); | ||
843 | &pxor ($Xi,$T2); # | ||
844 | } | ||
845 | |||
846 | sub clmul64x64_T3 { | ||
847 | # Even though this subroutine offers visually better ILP, it | ||
848 | # was empirically found to be a tad slower than above version. | ||
849 | # At least in gcm_ghash_clmul context. But it's just as well, | ||
850 | # because loop modulo-scheduling is possible only thanks to | ||
851 | # minimized "register" pressure... | ||
852 | my ($Xhi,$Xi,$Hkey)=@_; | ||
853 | |||
854 | &movdqa ($T1,$Xi); # | ||
855 | &movdqa ($Xhi,$Xi); | ||
856 | &pclmulqdq ($Xi,$Hkey,0x00); ####### | ||
857 | &pclmulqdq ($Xhi,$Hkey,0x11); ####### | ||
858 | &pshufd ($T2,$T1,0b01001110); # | ||
859 | &pshufd ($T3,$Hkey,0b01001110); | ||
860 | &pxor ($T2,$T1); # | ||
861 | &pxor ($T3,$Hkey); | ||
862 | &pclmulqdq ($T2,$T3,0x00); ####### | ||
863 | &pxor ($T2,$Xi); # | ||
864 | &pxor ($T2,$Xhi); # | ||
865 | |||
866 | &movdqa ($T3,$T2); # | ||
867 | &psrldq ($T2,8); | ||
868 | &pslldq ($T3,8); # | ||
869 | &pxor ($Xhi,$T2); | ||
870 | &pxor ($Xi,$T3); # | ||
871 | } | ||
872 | |||
873 | if (1) { # Algorithm 9 with <<1 twist. | ||
874 | # Reduction is shorter and uses only two | ||
875 | # temporary registers, which makes it better | ||
876 | # candidate for interleaving with 64x64 | ||
877 | # multiplication. Pre-modulo-scheduled loop | ||
878 | # was found to be ~20% faster than Algorithm 5 | ||
879 | # below. Algorithm 9 was therefore chosen for | ||
880 | # further optimization... | ||
881 | |||
882 | sub reduction_alg9 { # 17/13 times faster than Intel version | ||
883 | my ($Xhi,$Xi) = @_; | ||
884 | |||
885 | # 1st phase | ||
886 | &movdqa ($T1,$Xi) # | ||
887 | &psllq ($Xi,1); | ||
888 | &pxor ($Xi,$T1); # | ||
889 | &psllq ($Xi,5); # | ||
890 | &pxor ($Xi,$T1); # | ||
891 | &psllq ($Xi,57); # | ||
892 | &movdqa ($T2,$Xi); # | ||
893 | &pslldq ($Xi,8); | ||
894 | &psrldq ($T2,8); # | ||
895 | &pxor ($Xi,$T1); | ||
896 | &pxor ($Xhi,$T2); # | ||
897 | |||
898 | # 2nd phase | ||
899 | &movdqa ($T2,$Xi); | ||
900 | &psrlq ($Xi,5); | ||
901 | &pxor ($Xi,$T2); # | ||
902 | &psrlq ($Xi,1); # | ||
903 | &pxor ($Xi,$T2); # | ||
904 | &pxor ($T2,$Xhi); | ||
905 | &psrlq ($Xi,1); # | ||
906 | &pxor ($Xi,$T2); # | ||
907 | } | ||
908 | |||
909 | &function_begin_B("gcm_init_clmul"); | ||
910 | &mov ($Htbl,&wparam(0)); | ||
911 | &mov ($Xip,&wparam(1)); | ||
912 | |||
913 | &call (&label("pic")); | ||
914 | &set_label("pic"); | ||
915 | &blindpop ($const); | ||
916 | &lea ($const,&DWP(&label("bswap")."-".&label("pic"),$const)); | ||
917 | |||
918 | &movdqu ($Hkey,&QWP(0,$Xip)); | ||
919 | &pshufd ($Hkey,$Hkey,0b01001110);# dword swap | ||
920 | |||
921 | # <<1 twist | ||
922 | &pshufd ($T2,$Hkey,0b11111111); # broadcast uppermost dword | ||
923 | &movdqa ($T1,$Hkey); | ||
924 | &psllq ($Hkey,1); | ||
925 | &pxor ($T3,$T3); # | ||
926 | &psrlq ($T1,63); | ||
927 | &pcmpgtd ($T3,$T2); # broadcast carry bit | ||
928 | &pslldq ($T1,8); | ||
929 | &por ($Hkey,$T1); # H<<=1 | ||
930 | |||
931 | # magic reduction | ||
932 | &pand ($T3,&QWP(16,$const)); # 0x1c2_polynomial | ||
933 | &pxor ($Hkey,$T3); # if(carry) H^=0x1c2_polynomial | ||
934 | |||
935 | # calculate H^2 | ||
936 | &movdqa ($Xi,$Hkey); | ||
937 | &clmul64x64_T2 ($Xhi,$Xi,$Hkey); | ||
938 | &reduction_alg9 ($Xhi,$Xi); | ||
939 | |||
940 | &movdqu (&QWP(0,$Htbl),$Hkey); # save H | ||
941 | &movdqu (&QWP(16,$Htbl),$Xi); # save H^2 | ||
942 | |||
943 | &ret (); | ||
944 | &function_end_B("gcm_init_clmul"); | ||
945 | |||
946 | &function_begin_B("gcm_gmult_clmul"); | ||
947 | &mov ($Xip,&wparam(0)); | ||
948 | &mov ($Htbl,&wparam(1)); | ||
949 | |||
950 | &call (&label("pic")); | ||
951 | &set_label("pic"); | ||
952 | &blindpop ($const); | ||
953 | &lea ($const,&DWP(&label("bswap")."-".&label("pic"),$const)); | ||
954 | |||
955 | &movdqu ($Xi,&QWP(0,$Xip)); | ||
956 | &movdqa ($T3,&QWP(0,$const)); | ||
957 | &movups ($Hkey,&QWP(0,$Htbl)); | ||
958 | &pshufb ($Xi,$T3); | ||
959 | |||
960 | &clmul64x64_T2 ($Xhi,$Xi,$Hkey); | ||
961 | &reduction_alg9 ($Xhi,$Xi); | ||
962 | |||
963 | &pshufb ($Xi,$T3); | ||
964 | &movdqu (&QWP(0,$Xip),$Xi); | ||
965 | |||
966 | &ret (); | ||
967 | &function_end_B("gcm_gmult_clmul"); | ||
968 | |||
969 | &function_begin("gcm_ghash_clmul"); | ||
970 | &mov ($Xip,&wparam(0)); | ||
971 | &mov ($Htbl,&wparam(1)); | ||
972 | &mov ($inp,&wparam(2)); | ||
973 | &mov ($len,&wparam(3)); | ||
974 | |||
975 | &call (&label("pic")); | ||
976 | &set_label("pic"); | ||
977 | &blindpop ($const); | ||
978 | &lea ($const,&DWP(&label("bswap")."-".&label("pic"),$const)); | ||
979 | |||
980 | &movdqu ($Xi,&QWP(0,$Xip)); | ||
981 | &movdqa ($T3,&QWP(0,$const)); | ||
982 | &movdqu ($Hkey,&QWP(0,$Htbl)); | ||
983 | &pshufb ($Xi,$T3); | ||
984 | |||
985 | &sub ($len,0x10); | ||
986 | &jz (&label("odd_tail")); | ||
987 | |||
988 | ####### | ||
989 | # Xi+2 =[H*(Ii+1 + Xi+1)] mod P = | ||
990 | # [(H*Ii+1) + (H*Xi+1)] mod P = | ||
991 | # [(H*Ii+1) + H^2*(Ii+Xi)] mod P | ||
992 | # | ||
993 | &movdqu ($T1,&QWP(0,$inp)); # Ii | ||
994 | &movdqu ($Xn,&QWP(16,$inp)); # Ii+1 | ||
995 | &pshufb ($T1,$T3); | ||
996 | &pshufb ($Xn,$T3); | ||
997 | &pxor ($Xi,$T1); # Ii+Xi | ||
998 | |||
999 | &clmul64x64_T2 ($Xhn,$Xn,$Hkey); # H*Ii+1 | ||
1000 | &movups ($Hkey,&QWP(16,$Htbl)); # load H^2 | ||
1001 | |||
1002 | &lea ($inp,&DWP(32,$inp)); # i+=2 | ||
1003 | &sub ($len,0x20); | ||
1004 | &jbe (&label("even_tail")); | ||
1005 | |||
1006 | &set_label("mod_loop"); | ||
1007 | &clmul64x64_T2 ($Xhi,$Xi,$Hkey); # H^2*(Ii+Xi) | ||
1008 | &movdqu ($T1,&QWP(0,$inp)); # Ii | ||
1009 | &movups ($Hkey,&QWP(0,$Htbl)); # load H | ||
1010 | |||
1011 | &pxor ($Xi,$Xn); # (H*Ii+1) + H^2*(Ii+Xi) | ||
1012 | &pxor ($Xhi,$Xhn); | ||
1013 | |||
1014 | &movdqu ($Xn,&QWP(16,$inp)); # Ii+1 | ||
1015 | &pshufb ($T1,$T3); | ||
1016 | &pshufb ($Xn,$T3); | ||
1017 | |||
1018 | &movdqa ($T3,$Xn); #&clmul64x64_TX ($Xhn,$Xn,$Hkey); H*Ii+1 | ||
1019 | &movdqa ($Xhn,$Xn); | ||
1020 | &pxor ($Xhi,$T1); # "Ii+Xi", consume early | ||
1021 | |||
1022 | &movdqa ($T1,$Xi) #&reduction_alg9($Xhi,$Xi); 1st phase | ||
1023 | &psllq ($Xi,1); | ||
1024 | &pxor ($Xi,$T1); # | ||
1025 | &psllq ($Xi,5); # | ||
1026 | &pxor ($Xi,$T1); # | ||
1027 | &pclmulqdq ($Xn,$Hkey,0x00); ####### | ||
1028 | &psllq ($Xi,57); # | ||
1029 | &movdqa ($T2,$Xi); # | ||
1030 | &pslldq ($Xi,8); | ||
1031 | &psrldq ($T2,8); # | ||
1032 | &pxor ($Xi,$T1); | ||
1033 | &pshufd ($T1,$T3,0b01001110); | ||
1034 | &pxor ($Xhi,$T2); # | ||
1035 | &pxor ($T1,$T3); | ||
1036 | &pshufd ($T3,$Hkey,0b01001110); | ||
1037 | &pxor ($T3,$Hkey); # | ||
1038 | |||
1039 | &pclmulqdq ($Xhn,$Hkey,0x11); ####### | ||
1040 | &movdqa ($T2,$Xi); # 2nd phase | ||
1041 | &psrlq ($Xi,5); | ||
1042 | &pxor ($Xi,$T2); # | ||
1043 | &psrlq ($Xi,1); # | ||
1044 | &pxor ($Xi,$T2); # | ||
1045 | &pxor ($T2,$Xhi); | ||
1046 | &psrlq ($Xi,1); # | ||
1047 | &pxor ($Xi,$T2); # | ||
1048 | |||
1049 | &pclmulqdq ($T1,$T3,0x00); ####### | ||
1050 | &movups ($Hkey,&QWP(16,$Htbl)); # load H^2 | ||
1051 | &xorps ($T1,$Xn); # | ||
1052 | &xorps ($T1,$Xhn); # | ||
1053 | |||
1054 | &movdqa ($T3,$T1); # | ||
1055 | &psrldq ($T1,8); | ||
1056 | &pslldq ($T3,8); # | ||
1057 | &pxor ($Xhn,$T1); | ||
1058 | &pxor ($Xn,$T3); # | ||
1059 | &movdqa ($T3,&QWP(0,$const)); | ||
1060 | |||
1061 | &lea ($inp,&DWP(32,$inp)); | ||
1062 | &sub ($len,0x20); | ||
1063 | &ja (&label("mod_loop")); | ||
1064 | |||
1065 | &set_label("even_tail"); | ||
1066 | &clmul64x64_T2 ($Xhi,$Xi,$Hkey); # H^2*(Ii+Xi) | ||
1067 | |||
1068 | &pxor ($Xi,$Xn); # (H*Ii+1) + H^2*(Ii+Xi) | ||
1069 | &pxor ($Xhi,$Xhn); | ||
1070 | |||
1071 | &reduction_alg9 ($Xhi,$Xi); | ||
1072 | |||
1073 | &test ($len,$len); | ||
1074 | &jnz (&label("done")); | ||
1075 | |||
1076 | &movups ($Hkey,&QWP(0,$Htbl)); # load H | ||
1077 | &set_label("odd_tail"); | ||
1078 | &movdqu ($T1,&QWP(0,$inp)); # Ii | ||
1079 | &pshufb ($T1,$T3); | ||
1080 | &pxor ($Xi,$T1); # Ii+Xi | ||
1081 | |||
1082 | &clmul64x64_T2 ($Xhi,$Xi,$Hkey); # H*(Ii+Xi) | ||
1083 | &reduction_alg9 ($Xhi,$Xi); | ||
1084 | |||
1085 | &set_label("done"); | ||
1086 | &pshufb ($Xi,$T3); | ||
1087 | &movdqu (&QWP(0,$Xip),$Xi); | ||
1088 | &function_end("gcm_ghash_clmul"); | ||
1089 | |||
1090 | } else { # Algorith 5. Kept for reference purposes. | ||
1091 | |||
1092 | sub reduction_alg5 { # 19/16 times faster than Intel version | ||
1093 | my ($Xhi,$Xi)=@_; | ||
1094 | |||
1095 | # <<1 | ||
1096 | &movdqa ($T1,$Xi); # | ||
1097 | &movdqa ($T2,$Xhi); | ||
1098 | &pslld ($Xi,1); | ||
1099 | &pslld ($Xhi,1); # | ||
1100 | &psrld ($T1,31); | ||
1101 | &psrld ($T2,31); # | ||
1102 | &movdqa ($T3,$T1); | ||
1103 | &pslldq ($T1,4); | ||
1104 | &psrldq ($T3,12); # | ||
1105 | &pslldq ($T2,4); | ||
1106 | &por ($Xhi,$T3); # | ||
1107 | &por ($Xi,$T1); | ||
1108 | &por ($Xhi,$T2); # | ||
1109 | |||
1110 | # 1st phase | ||
1111 | &movdqa ($T1,$Xi); | ||
1112 | &movdqa ($T2,$Xi); | ||
1113 | &movdqa ($T3,$Xi); # | ||
1114 | &pslld ($T1,31); | ||
1115 | &pslld ($T2,30); | ||
1116 | &pslld ($Xi,25); # | ||
1117 | &pxor ($T1,$T2); | ||
1118 | &pxor ($T1,$Xi); # | ||
1119 | &movdqa ($T2,$T1); # | ||
1120 | &pslldq ($T1,12); | ||
1121 | &psrldq ($T2,4); # | ||
1122 | &pxor ($T3,$T1); | ||
1123 | |||
1124 | # 2nd phase | ||
1125 | &pxor ($Xhi,$T3); # | ||
1126 | &movdqa ($Xi,$T3); | ||
1127 | &movdqa ($T1,$T3); | ||
1128 | &psrld ($Xi,1); # | ||
1129 | &psrld ($T1,2); | ||
1130 | &psrld ($T3,7); # | ||
1131 | &pxor ($Xi,$T1); | ||
1132 | &pxor ($Xhi,$T2); | ||
1133 | &pxor ($Xi,$T3); # | ||
1134 | &pxor ($Xi,$Xhi); # | ||
1135 | } | ||
1136 | |||
1137 | &function_begin_B("gcm_init_clmul"); | ||
1138 | &mov ($Htbl,&wparam(0)); | ||
1139 | &mov ($Xip,&wparam(1)); | ||
1140 | |||
1141 | &call (&label("pic")); | ||
1142 | &set_label("pic"); | ||
1143 | &blindpop ($const); | ||
1144 | &lea ($const,&DWP(&label("bswap")."-".&label("pic"),$const)); | ||
1145 | |||
1146 | &movdqu ($Hkey,&QWP(0,$Xip)); | ||
1147 | &pshufd ($Hkey,$Hkey,0b01001110);# dword swap | ||
1148 | |||
1149 | # calculate H^2 | ||
1150 | &movdqa ($Xi,$Hkey); | ||
1151 | &clmul64x64_T3 ($Xhi,$Xi,$Hkey); | ||
1152 | &reduction_alg5 ($Xhi,$Xi); | ||
1153 | |||
1154 | &movdqu (&QWP(0,$Htbl),$Hkey); # save H | ||
1155 | &movdqu (&QWP(16,$Htbl),$Xi); # save H^2 | ||
1156 | |||
1157 | &ret (); | ||
1158 | &function_end_B("gcm_init_clmul"); | ||
1159 | |||
1160 | &function_begin_B("gcm_gmult_clmul"); | ||
1161 | &mov ($Xip,&wparam(0)); | ||
1162 | &mov ($Htbl,&wparam(1)); | ||
1163 | |||
1164 | &call (&label("pic")); | ||
1165 | &set_label("pic"); | ||
1166 | &blindpop ($const); | ||
1167 | &lea ($const,&DWP(&label("bswap")."-".&label("pic"),$const)); | ||
1168 | |||
1169 | &movdqu ($Xi,&QWP(0,$Xip)); | ||
1170 | &movdqa ($Xn,&QWP(0,$const)); | ||
1171 | &movdqu ($Hkey,&QWP(0,$Htbl)); | ||
1172 | &pshufb ($Xi,$Xn); | ||
1173 | |||
1174 | &clmul64x64_T3 ($Xhi,$Xi,$Hkey); | ||
1175 | &reduction_alg5 ($Xhi,$Xi); | ||
1176 | |||
1177 | &pshufb ($Xi,$Xn); | ||
1178 | &movdqu (&QWP(0,$Xip),$Xi); | ||
1179 | |||
1180 | &ret (); | ||
1181 | &function_end_B("gcm_gmult_clmul"); | ||
1182 | |||
1183 | &function_begin("gcm_ghash_clmul"); | ||
1184 | &mov ($Xip,&wparam(0)); | ||
1185 | &mov ($Htbl,&wparam(1)); | ||
1186 | &mov ($inp,&wparam(2)); | ||
1187 | &mov ($len,&wparam(3)); | ||
1188 | |||
1189 | &call (&label("pic")); | ||
1190 | &set_label("pic"); | ||
1191 | &blindpop ($const); | ||
1192 | &lea ($const,&DWP(&label("bswap")."-".&label("pic"),$const)); | ||
1193 | |||
1194 | &movdqu ($Xi,&QWP(0,$Xip)); | ||
1195 | &movdqa ($T3,&QWP(0,$const)); | ||
1196 | &movdqu ($Hkey,&QWP(0,$Htbl)); | ||
1197 | &pshufb ($Xi,$T3); | ||
1198 | |||
1199 | &sub ($len,0x10); | ||
1200 | &jz (&label("odd_tail")); | ||
1201 | |||
1202 | ####### | ||
1203 | # Xi+2 =[H*(Ii+1 + Xi+1)] mod P = | ||
1204 | # [(H*Ii+1) + (H*Xi+1)] mod P = | ||
1205 | # [(H*Ii+1) + H^2*(Ii+Xi)] mod P | ||
1206 | # | ||
1207 | &movdqu ($T1,&QWP(0,$inp)); # Ii | ||
1208 | &movdqu ($Xn,&QWP(16,$inp)); # Ii+1 | ||
1209 | &pshufb ($T1,$T3); | ||
1210 | &pshufb ($Xn,$T3); | ||
1211 | &pxor ($Xi,$T1); # Ii+Xi | ||
1212 | |||
1213 | &clmul64x64_T3 ($Xhn,$Xn,$Hkey); # H*Ii+1 | ||
1214 | &movdqu ($Hkey,&QWP(16,$Htbl)); # load H^2 | ||
1215 | |||
1216 | &sub ($len,0x20); | ||
1217 | &lea ($inp,&DWP(32,$inp)); # i+=2 | ||
1218 | &jbe (&label("even_tail")); | ||
1219 | |||
1220 | &set_label("mod_loop"); | ||
1221 | &clmul64x64_T3 ($Xhi,$Xi,$Hkey); # H^2*(Ii+Xi) | ||
1222 | &movdqu ($Hkey,&QWP(0,$Htbl)); # load H | ||
1223 | |||
1224 | &pxor ($Xi,$Xn); # (H*Ii+1) + H^2*(Ii+Xi) | ||
1225 | &pxor ($Xhi,$Xhn); | ||
1226 | |||
1227 | &reduction_alg5 ($Xhi,$Xi); | ||
1228 | |||
1229 | ####### | ||
1230 | &movdqa ($T3,&QWP(0,$const)); | ||
1231 | &movdqu ($T1,&QWP(0,$inp)); # Ii | ||
1232 | &movdqu ($Xn,&QWP(16,$inp)); # Ii+1 | ||
1233 | &pshufb ($T1,$T3); | ||
1234 | &pshufb ($Xn,$T3); | ||
1235 | &pxor ($Xi,$T1); # Ii+Xi | ||
1236 | |||
1237 | &clmul64x64_T3 ($Xhn,$Xn,$Hkey); # H*Ii+1 | ||
1238 | &movdqu ($Hkey,&QWP(16,$Htbl)); # load H^2 | ||
1239 | |||
1240 | &sub ($len,0x20); | ||
1241 | &lea ($inp,&DWP(32,$inp)); | ||
1242 | &ja (&label("mod_loop")); | ||
1243 | |||
1244 | &set_label("even_tail"); | ||
1245 | &clmul64x64_T3 ($Xhi,$Xi,$Hkey); # H^2*(Ii+Xi) | ||
1246 | |||
1247 | &pxor ($Xi,$Xn); # (H*Ii+1) + H^2*(Ii+Xi) | ||
1248 | &pxor ($Xhi,$Xhn); | ||
1249 | |||
1250 | &reduction_alg5 ($Xhi,$Xi); | ||
1251 | |||
1252 | &movdqa ($T3,&QWP(0,$const)); | ||
1253 | &test ($len,$len); | ||
1254 | &jnz (&label("done")); | ||
1255 | |||
1256 | &movdqu ($Hkey,&QWP(0,$Htbl)); # load H | ||
1257 | &set_label("odd_tail"); | ||
1258 | &movdqu ($T1,&QWP(0,$inp)); # Ii | ||
1259 | &pshufb ($T1,$T3); | ||
1260 | &pxor ($Xi,$T1); # Ii+Xi | ||
1261 | |||
1262 | &clmul64x64_T3 ($Xhi,$Xi,$Hkey); # H*(Ii+Xi) | ||
1263 | &reduction_alg5 ($Xhi,$Xi); | ||
1264 | |||
1265 | &movdqa ($T3,&QWP(0,$const)); | ||
1266 | &set_label("done"); | ||
1267 | &pshufb ($Xi,$T3); | ||
1268 | &movdqu (&QWP(0,$Xip),$Xi); | ||
1269 | &function_end("gcm_ghash_clmul"); | ||
1270 | |||
1271 | } | ||
1272 | |||
1273 | &set_label("bswap",64); | ||
1274 | &data_byte(15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0); | ||
1275 | &data_byte(1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0xc2); # 0x1c2_polynomial | ||
1276 | }} # $sse2 | ||
1277 | |||
1278 | &set_label("rem_4bit",64); | ||
1279 | &data_word(0,0x0000<<$S,0,0x1C20<<$S,0,0x3840<<$S,0,0x2460<<$S); | ||
1280 | &data_word(0,0x7080<<$S,0,0x6CA0<<$S,0,0x48C0<<$S,0,0x54E0<<$S); | ||
1281 | &data_word(0,0xE100<<$S,0,0xFD20<<$S,0,0xD940<<$S,0,0xC560<<$S); | ||
1282 | &data_word(0,0x9180<<$S,0,0x8DA0<<$S,0,0xA9C0<<$S,0,0xB5E0<<$S); | ||
1283 | &set_label("rem_8bit",64); | ||
1284 | &data_short(0x0000,0x01C2,0x0384,0x0246,0x0708,0x06CA,0x048C,0x054E); | ||
1285 | &data_short(0x0E10,0x0FD2,0x0D94,0x0C56,0x0918,0x08DA,0x0A9C,0x0B5E); | ||
1286 | &data_short(0x1C20,0x1DE2,0x1FA4,0x1E66,0x1B28,0x1AEA,0x18AC,0x196E); | ||
1287 | &data_short(0x1230,0x13F2,0x11B4,0x1076,0x1538,0x14FA,0x16BC,0x177E); | ||
1288 | &data_short(0x3840,0x3982,0x3BC4,0x3A06,0x3F48,0x3E8A,0x3CCC,0x3D0E); | ||
1289 | &data_short(0x3650,0x3792,0x35D4,0x3416,0x3158,0x309A,0x32DC,0x331E); | ||
1290 | &data_short(0x2460,0x25A2,0x27E4,0x2626,0x2368,0x22AA,0x20EC,0x212E); | ||
1291 | &data_short(0x2A70,0x2BB2,0x29F4,0x2836,0x2D78,0x2CBA,0x2EFC,0x2F3E); | ||
1292 | &data_short(0x7080,0x7142,0x7304,0x72C6,0x7788,0x764A,0x740C,0x75CE); | ||
1293 | &data_short(0x7E90,0x7F52,0x7D14,0x7CD6,0x7998,0x785A,0x7A1C,0x7BDE); | ||
1294 | &data_short(0x6CA0,0x6D62,0x6F24,0x6EE6,0x6BA8,0x6A6A,0x682C,0x69EE); | ||
1295 | &data_short(0x62B0,0x6372,0x6134,0x60F6,0x65B8,0x647A,0x663C,0x67FE); | ||
1296 | &data_short(0x48C0,0x4902,0x4B44,0x4A86,0x4FC8,0x4E0A,0x4C4C,0x4D8E); | ||
1297 | &data_short(0x46D0,0x4712,0x4554,0x4496,0x41D8,0x401A,0x425C,0x439E); | ||
1298 | &data_short(0x54E0,0x5522,0x5764,0x56A6,0x53E8,0x522A,0x506C,0x51AE); | ||
1299 | &data_short(0x5AF0,0x5B32,0x5974,0x58B6,0x5DF8,0x5C3A,0x5E7C,0x5FBE); | ||
1300 | &data_short(0xE100,0xE0C2,0xE284,0xE346,0xE608,0xE7CA,0xE58C,0xE44E); | ||
1301 | &data_short(0xEF10,0xEED2,0xEC94,0xED56,0xE818,0xE9DA,0xEB9C,0xEA5E); | ||
1302 | &data_short(0xFD20,0xFCE2,0xFEA4,0xFF66,0xFA28,0xFBEA,0xF9AC,0xF86E); | ||
1303 | &data_short(0xF330,0xF2F2,0xF0B4,0xF176,0xF438,0xF5FA,0xF7BC,0xF67E); | ||
1304 | &data_short(0xD940,0xD882,0xDAC4,0xDB06,0xDE48,0xDF8A,0xDDCC,0xDC0E); | ||
1305 | &data_short(0xD750,0xD692,0xD4D4,0xD516,0xD058,0xD19A,0xD3DC,0xD21E); | ||
1306 | &data_short(0xC560,0xC4A2,0xC6E4,0xC726,0xC268,0xC3AA,0xC1EC,0xC02E); | ||
1307 | &data_short(0xCB70,0xCAB2,0xC8F4,0xC936,0xCC78,0xCDBA,0xCFFC,0xCE3E); | ||
1308 | &data_short(0x9180,0x9042,0x9204,0x93C6,0x9688,0x974A,0x950C,0x94CE); | ||
1309 | &data_short(0x9F90,0x9E52,0x9C14,0x9DD6,0x9898,0x995A,0x9B1C,0x9ADE); | ||
1310 | &data_short(0x8DA0,0x8C62,0x8E24,0x8FE6,0x8AA8,0x8B6A,0x892C,0x88EE); | ||
1311 | &data_short(0x83B0,0x8272,0x8034,0x81F6,0x84B8,0x857A,0x873C,0x86FE); | ||
1312 | &data_short(0xA9C0,0xA802,0xAA44,0xAB86,0xAEC8,0xAF0A,0xAD4C,0xAC8E); | ||
1313 | &data_short(0xA7D0,0xA612,0xA454,0xA596,0xA0D8,0xA11A,0xA35C,0xA29E); | ||
1314 | &data_short(0xB5E0,0xB422,0xB664,0xB7A6,0xB2E8,0xB32A,0xB16C,0xB0AE); | ||
1315 | &data_short(0xBBF0,0xBA32,0xB874,0xB9B6,0xBCF8,0xBD3A,0xBF7C,0xBEBE); | ||
1316 | }}} # !$x86only | ||
1317 | |||
1318 | &asciz("GHASH for x86, CRYPTOGAMS by <appro\@openssl.org>"); | ||
1319 | &asm_finish(); | ||
1320 | |||
1321 | # A question was risen about choice of vanilla MMX. Or rather why wasn't | ||
1322 | # SSE2 chosen instead? In addition to the fact that MMX runs on legacy | ||
1323 | # CPUs such as PIII, "4-bit" MMX version was observed to provide better | ||
1324 | # performance than *corresponding* SSE2 one even on contemporary CPUs. | ||
1325 | # SSE2 results were provided by Peter-Michael Hager. He maintains SSE2 | ||
1326 | # implementation featuring full range of lookup-table sizes, but with | ||
1327 | # per-invocation lookup table setup. Latter means that table size is | ||
1328 | # chosen depending on how much data is to be hashed in every given call, | ||
1329 | # more data - larger table. Best reported result for Core2 is ~4 cycles | ||
1330 | # per processed byte out of 64KB block. This number accounts even for | ||
1331 | # 64KB table setup overhead. As discussed in gcm128.c we choose to be | ||
1332 | # more conservative in respect to lookup table sizes, but how do the | ||
1333 | # results compare? Minimalistic "256B" MMX version delivers ~11 cycles | ||
1334 | # on same platform. As also discussed in gcm128.c, next in line "8-bit | ||
1335 | # Shoup's" or "4KB" method should deliver twice the performance of | ||
1336 | # "256B" one, in other words not worse than ~6 cycles per byte. It | ||
1337 | # should be also be noted that in SSE2 case improvement can be "super- | ||
1338 | # linear," i.e. more than twice, mostly because >>8 maps to single | ||
1339 | # instruction on SSE2 register. This is unlike "4-bit" case when >>4 | ||
1340 | # maps to same amount of instructions in both MMX and SSE2 cases. | ||
1341 | # Bottom line is that switch to SSE2 is considered to be justifiable | ||
1342 | # only in case we choose to implement "8-bit" method... | ||
diff --git a/src/lib/libcrypto/modes/asm/ghash-x86_64.pl b/src/lib/libcrypto/modes/asm/ghash-x86_64.pl new file mode 100644 index 0000000000..a5ae180882 --- /dev/null +++ b/src/lib/libcrypto/modes/asm/ghash-x86_64.pl | |||
@@ -0,0 +1,805 @@ | |||
1 | #!/usr/bin/env perl | ||
2 | # | ||
3 | # ==================================================================== | ||
4 | # Written by Andy Polyakov <appro@openssl.org> for the OpenSSL | ||
5 | # project. The module is, however, dual licensed under OpenSSL and | ||
6 | # CRYPTOGAMS licenses depending on where you obtain it. For further | ||
7 | # details see http://www.openssl.org/~appro/cryptogams/. | ||
8 | # ==================================================================== | ||
9 | # | ||
10 | # March, June 2010 | ||
11 | # | ||
12 | # The module implements "4-bit" GCM GHASH function and underlying | ||
13 | # single multiplication operation in GF(2^128). "4-bit" means that | ||
14 | # it uses 256 bytes per-key table [+128 bytes shared table]. GHASH | ||
15 | # function features so called "528B" variant utilizing additional | ||
16 | # 256+16 bytes of per-key storage [+512 bytes shared table]. | ||
17 | # Performance results are for this streamed GHASH subroutine and are | ||
18 | # expressed in cycles per processed byte, less is better: | ||
19 | # | ||
20 | # gcc 3.4.x(*) assembler | ||
21 | # | ||
22 | # P4 28.6 14.0 +100% | ||
23 | # Opteron 19.3 7.7 +150% | ||
24 | # Core2 17.8 8.1(**) +120% | ||
25 | # | ||
26 | # (*) comparison is not completely fair, because C results are | ||
27 | # for vanilla "256B" implementation, while assembler results | ||
28 | # are for "528B";-) | ||
29 | # (**) it's mystery [to me] why Core2 result is not same as for | ||
30 | # Opteron; | ||
31 | |||
32 | # May 2010 | ||
33 | # | ||
34 | # Add PCLMULQDQ version performing at 2.02 cycles per processed byte. | ||
35 | # See ghash-x86.pl for background information and details about coding | ||
36 | # techniques. | ||
37 | # | ||
38 | # Special thanks to David Woodhouse <dwmw2@infradead.org> for | ||
39 | # providing access to a Westmere-based system on behalf of Intel | ||
40 | # Open Source Technology Centre. | ||
41 | |||
42 | $flavour = shift; | ||
43 | $output = shift; | ||
44 | if ($flavour =~ /\./) { $output = $flavour; undef $flavour; } | ||
45 | |||
46 | $win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/); | ||
47 | |||
48 | $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; | ||
49 | ( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or | ||
50 | ( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or | ||
51 | die "can't locate x86_64-xlate.pl"; | ||
52 | |||
53 | open STDOUT,"| $^X $xlate $flavour $output"; | ||
54 | |||
55 | # common register layout | ||
56 | $nlo="%rax"; | ||
57 | $nhi="%rbx"; | ||
58 | $Zlo="%r8"; | ||
59 | $Zhi="%r9"; | ||
60 | $tmp="%r10"; | ||
61 | $rem_4bit = "%r11"; | ||
62 | |||
63 | $Xi="%rdi"; | ||
64 | $Htbl="%rsi"; | ||
65 | |||
66 | # per-function register layout | ||
67 | $cnt="%rcx"; | ||
68 | $rem="%rdx"; | ||
69 | |||
70 | sub LB() { my $r=shift; $r =~ s/%[er]([a-d])x/%\1l/ or | ||
71 | $r =~ s/%[er]([sd]i)/%\1l/ or | ||
72 | $r =~ s/%[er](bp)/%\1l/ or | ||
73 | $r =~ s/%(r[0-9]+)[d]?/%\1b/; $r; } | ||
74 | |||
75 | sub AUTOLOAD() # thunk [simplified] 32-bit style perlasm | ||
76 | { my $opcode = $AUTOLOAD; $opcode =~ s/.*:://; | ||
77 | my $arg = pop; | ||
78 | $arg = "\$$arg" if ($arg*1 eq $arg); | ||
79 | $code .= "\t$opcode\t".join(',',$arg,reverse @_)."\n"; | ||
80 | } | ||
81 | |||
82 | { my $N; | ||
83 | sub loop() { | ||
84 | my $inp = shift; | ||
85 | |||
86 | $N++; | ||
87 | $code.=<<___; | ||
88 | xor $nlo,$nlo | ||
89 | xor $nhi,$nhi | ||
90 | mov `&LB("$Zlo")`,`&LB("$nlo")` | ||
91 | mov `&LB("$Zlo")`,`&LB("$nhi")` | ||
92 | shl \$4,`&LB("$nlo")` | ||
93 | mov \$14,$cnt | ||
94 | mov 8($Htbl,$nlo),$Zlo | ||
95 | mov ($Htbl,$nlo),$Zhi | ||
96 | and \$0xf0,`&LB("$nhi")` | ||
97 | mov $Zlo,$rem | ||
98 | jmp .Loop$N | ||
99 | |||
100 | .align 16 | ||
101 | .Loop$N: | ||
102 | shr \$4,$Zlo | ||
103 | and \$0xf,$rem | ||
104 | mov $Zhi,$tmp | ||
105 | mov ($inp,$cnt),`&LB("$nlo")` | ||
106 | shr \$4,$Zhi | ||
107 | xor 8($Htbl,$nhi),$Zlo | ||
108 | shl \$60,$tmp | ||
109 | xor ($Htbl,$nhi),$Zhi | ||
110 | mov `&LB("$nlo")`,`&LB("$nhi")` | ||
111 | xor ($rem_4bit,$rem,8),$Zhi | ||
112 | mov $Zlo,$rem | ||
113 | shl \$4,`&LB("$nlo")` | ||
114 | xor $tmp,$Zlo | ||
115 | dec $cnt | ||
116 | js .Lbreak$N | ||
117 | |||
118 | shr \$4,$Zlo | ||
119 | and \$0xf,$rem | ||
120 | mov $Zhi,$tmp | ||
121 | shr \$4,$Zhi | ||
122 | xor 8($Htbl,$nlo),$Zlo | ||
123 | shl \$60,$tmp | ||
124 | xor ($Htbl,$nlo),$Zhi | ||
125 | and \$0xf0,`&LB("$nhi")` | ||
126 | xor ($rem_4bit,$rem,8),$Zhi | ||
127 | mov $Zlo,$rem | ||
128 | xor $tmp,$Zlo | ||
129 | jmp .Loop$N | ||
130 | |||
131 | .align 16 | ||
132 | .Lbreak$N: | ||
133 | shr \$4,$Zlo | ||
134 | and \$0xf,$rem | ||
135 | mov $Zhi,$tmp | ||
136 | shr \$4,$Zhi | ||
137 | xor 8($Htbl,$nlo),$Zlo | ||
138 | shl \$60,$tmp | ||
139 | xor ($Htbl,$nlo),$Zhi | ||
140 | and \$0xf0,`&LB("$nhi")` | ||
141 | xor ($rem_4bit,$rem,8),$Zhi | ||
142 | mov $Zlo,$rem | ||
143 | xor $tmp,$Zlo | ||
144 | |||
145 | shr \$4,$Zlo | ||
146 | and \$0xf,$rem | ||
147 | mov $Zhi,$tmp | ||
148 | shr \$4,$Zhi | ||
149 | xor 8($Htbl,$nhi),$Zlo | ||
150 | shl \$60,$tmp | ||
151 | xor ($Htbl,$nhi),$Zhi | ||
152 | xor $tmp,$Zlo | ||
153 | xor ($rem_4bit,$rem,8),$Zhi | ||
154 | |||
155 | bswap $Zlo | ||
156 | bswap $Zhi | ||
157 | ___ | ||
158 | }} | ||
159 | |||
160 | $code=<<___; | ||
161 | .text | ||
162 | |||
163 | .globl gcm_gmult_4bit | ||
164 | .type gcm_gmult_4bit,\@function,2 | ||
165 | .align 16 | ||
166 | gcm_gmult_4bit: | ||
167 | push %rbx | ||
168 | push %rbp # %rbp and %r12 are pushed exclusively in | ||
169 | push %r12 # order to reuse Win64 exception handler... | ||
170 | .Lgmult_prologue: | ||
171 | |||
172 | movzb 15($Xi),$Zlo | ||
173 | lea .Lrem_4bit(%rip),$rem_4bit | ||
174 | ___ | ||
175 | &loop ($Xi); | ||
176 | $code.=<<___; | ||
177 | mov $Zlo,8($Xi) | ||
178 | mov $Zhi,($Xi) | ||
179 | |||
180 | mov 16(%rsp),%rbx | ||
181 | lea 24(%rsp),%rsp | ||
182 | .Lgmult_epilogue: | ||
183 | ret | ||
184 | .size gcm_gmult_4bit,.-gcm_gmult_4bit | ||
185 | ___ | ||
186 | |||
187 | # per-function register layout | ||
188 | $inp="%rdx"; | ||
189 | $len="%rcx"; | ||
190 | $rem_8bit=$rem_4bit; | ||
191 | |||
192 | $code.=<<___; | ||
193 | .globl gcm_ghash_4bit | ||
194 | .type gcm_ghash_4bit,\@function,4 | ||
195 | .align 16 | ||
196 | gcm_ghash_4bit: | ||
197 | push %rbx | ||
198 | push %rbp | ||
199 | push %r12 | ||
200 | push %r13 | ||
201 | push %r14 | ||
202 | push %r15 | ||
203 | sub \$280,%rsp | ||
204 | .Lghash_prologue: | ||
205 | mov $inp,%r14 # reassign couple of args | ||
206 | mov $len,%r15 | ||
207 | ___ | ||
208 | { my $inp="%r14"; | ||
209 | my $dat="%edx"; | ||
210 | my $len="%r15"; | ||
211 | my @nhi=("%ebx","%ecx"); | ||
212 | my @rem=("%r12","%r13"); | ||
213 | my $Hshr4="%rbp"; | ||
214 | |||
215 | &sub ($Htbl,-128); # size optimization | ||
216 | &lea ($Hshr4,"16+128(%rsp)"); | ||
217 | { my @lo =($nlo,$nhi); | ||
218 | my @hi =($Zlo,$Zhi); | ||
219 | |||
220 | &xor ($dat,$dat); | ||
221 | for ($i=0,$j=-2;$i<18;$i++,$j++) { | ||
222 | &mov ("$j(%rsp)",&LB($dat)) if ($i>1); | ||
223 | &or ($lo[0],$tmp) if ($i>1); | ||
224 | &mov (&LB($dat),&LB($lo[1])) if ($i>0 && $i<17); | ||
225 | &shr ($lo[1],4) if ($i>0 && $i<17); | ||
226 | &mov ($tmp,$hi[1]) if ($i>0 && $i<17); | ||
227 | &shr ($hi[1],4) if ($i>0 && $i<17); | ||
228 | &mov ("8*$j($Hshr4)",$hi[0]) if ($i>1); | ||
229 | &mov ($hi[0],"16*$i+0-128($Htbl)") if ($i<16); | ||
230 | &shl (&LB($dat),4) if ($i>0 && $i<17); | ||
231 | &mov ("8*$j-128($Hshr4)",$lo[0]) if ($i>1); | ||
232 | &mov ($lo[0],"16*$i+8-128($Htbl)") if ($i<16); | ||
233 | &shl ($tmp,60) if ($i>0 && $i<17); | ||
234 | |||
235 | push (@lo,shift(@lo)); | ||
236 | push (@hi,shift(@hi)); | ||
237 | } | ||
238 | } | ||
239 | &add ($Htbl,-128); | ||
240 | &mov ($Zlo,"8($Xi)"); | ||
241 | &mov ($Zhi,"0($Xi)"); | ||
242 | &add ($len,$inp); # pointer to the end of data | ||
243 | &lea ($rem_8bit,".Lrem_8bit(%rip)"); | ||
244 | &jmp (".Louter_loop"); | ||
245 | |||
246 | $code.=".align 16\n.Louter_loop:\n"; | ||
247 | &xor ($Zhi,"($inp)"); | ||
248 | &mov ("%rdx","8($inp)"); | ||
249 | &lea ($inp,"16($inp)"); | ||
250 | &xor ("%rdx",$Zlo); | ||
251 | &mov ("($Xi)",$Zhi); | ||
252 | &mov ("8($Xi)","%rdx"); | ||
253 | &shr ("%rdx",32); | ||
254 | |||
255 | &xor ($nlo,$nlo); | ||
256 | &rol ($dat,8); | ||
257 | &mov (&LB($nlo),&LB($dat)); | ||
258 | &movz ($nhi[0],&LB($dat)); | ||
259 | &shl (&LB($nlo),4); | ||
260 | &shr ($nhi[0],4); | ||
261 | |||
262 | for ($j=11,$i=0;$i<15;$i++) { | ||
263 | &rol ($dat,8); | ||
264 | &xor ($Zlo,"8($Htbl,$nlo)") if ($i>0); | ||
265 | &xor ($Zhi,"($Htbl,$nlo)") if ($i>0); | ||
266 | &mov ($Zlo,"8($Htbl,$nlo)") if ($i==0); | ||
267 | &mov ($Zhi,"($Htbl,$nlo)") if ($i==0); | ||
268 | |||
269 | &mov (&LB($nlo),&LB($dat)); | ||
270 | &xor ($Zlo,$tmp) if ($i>0); | ||
271 | &movzw ($rem[1],"($rem_8bit,$rem[1],2)") if ($i>0); | ||
272 | |||
273 | &movz ($nhi[1],&LB($dat)); | ||
274 | &shl (&LB($nlo),4); | ||
275 | &movzb ($rem[0],"(%rsp,$nhi[0])"); | ||
276 | |||
277 | &shr ($nhi[1],4) if ($i<14); | ||
278 | &and ($nhi[1],0xf0) if ($i==14); | ||
279 | &shl ($rem[1],48) if ($i>0); | ||
280 | &xor ($rem[0],$Zlo); | ||
281 | |||
282 | &mov ($tmp,$Zhi); | ||
283 | &xor ($Zhi,$rem[1]) if ($i>0); | ||
284 | &shr ($Zlo,8); | ||
285 | |||
286 | &movz ($rem[0],&LB($rem[0])); | ||
287 | &mov ($dat,"$j($Xi)") if (--$j%4==0); | ||
288 | &shr ($Zhi,8); | ||
289 | |||
290 | &xor ($Zlo,"-128($Hshr4,$nhi[0],8)"); | ||
291 | &shl ($tmp,56); | ||
292 | &xor ($Zhi,"($Hshr4,$nhi[0],8)"); | ||
293 | |||
294 | unshift (@nhi,pop(@nhi)); # "rotate" registers | ||
295 | unshift (@rem,pop(@rem)); | ||
296 | } | ||
297 | &movzw ($rem[1],"($rem_8bit,$rem[1],2)"); | ||
298 | &xor ($Zlo,"8($Htbl,$nlo)"); | ||
299 | &xor ($Zhi,"($Htbl,$nlo)"); | ||
300 | |||
301 | &shl ($rem[1],48); | ||
302 | &xor ($Zlo,$tmp); | ||
303 | |||
304 | &xor ($Zhi,$rem[1]); | ||
305 | &movz ($rem[0],&LB($Zlo)); | ||
306 | &shr ($Zlo,4); | ||
307 | |||
308 | &mov ($tmp,$Zhi); | ||
309 | &shl (&LB($rem[0]),4); | ||
310 | &shr ($Zhi,4); | ||
311 | |||
312 | &xor ($Zlo,"8($Htbl,$nhi[0])"); | ||
313 | &movzw ($rem[0],"($rem_8bit,$rem[0],2)"); | ||
314 | &shl ($tmp,60); | ||
315 | |||
316 | &xor ($Zhi,"($Htbl,$nhi[0])"); | ||
317 | &xor ($Zlo,$tmp); | ||
318 | &shl ($rem[0],48); | ||
319 | |||
320 | &bswap ($Zlo); | ||
321 | &xor ($Zhi,$rem[0]); | ||
322 | |||
323 | &bswap ($Zhi); | ||
324 | &cmp ($inp,$len); | ||
325 | &jb (".Louter_loop"); | ||
326 | } | ||
327 | $code.=<<___; | ||
328 | mov $Zlo,8($Xi) | ||
329 | mov $Zhi,($Xi) | ||
330 | |||
331 | lea 280(%rsp),%rsi | ||
332 | mov 0(%rsi),%r15 | ||
333 | mov 8(%rsi),%r14 | ||
334 | mov 16(%rsi),%r13 | ||
335 | mov 24(%rsi),%r12 | ||
336 | mov 32(%rsi),%rbp | ||
337 | mov 40(%rsi),%rbx | ||
338 | lea 48(%rsi),%rsp | ||
339 | .Lghash_epilogue: | ||
340 | ret | ||
341 | .size gcm_ghash_4bit,.-gcm_ghash_4bit | ||
342 | ___ | ||
343 | |||
344 | ###################################################################### | ||
345 | # PCLMULQDQ version. | ||
346 | |||
347 | @_4args=$win64? ("%rcx","%rdx","%r8", "%r9") : # Win64 order | ||
348 | ("%rdi","%rsi","%rdx","%rcx"); # Unix order | ||
349 | |||
350 | ($Xi,$Xhi)=("%xmm0","%xmm1"); $Hkey="%xmm2"; | ||
351 | ($T1,$T2,$T3)=("%xmm3","%xmm4","%xmm5"); | ||
352 | |||
353 | sub clmul64x64_T2 { # minimal register pressure | ||
354 | my ($Xhi,$Xi,$Hkey,$modulo)=@_; | ||
355 | |||
356 | $code.=<<___ if (!defined($modulo)); | ||
357 | movdqa $Xi,$Xhi # | ||
358 | pshufd \$0b01001110,$Xi,$T1 | ||
359 | pshufd \$0b01001110,$Hkey,$T2 | ||
360 | pxor $Xi,$T1 # | ||
361 | pxor $Hkey,$T2 | ||
362 | ___ | ||
363 | $code.=<<___; | ||
364 | pclmulqdq \$0x00,$Hkey,$Xi ####### | ||
365 | pclmulqdq \$0x11,$Hkey,$Xhi ####### | ||
366 | pclmulqdq \$0x00,$T2,$T1 ####### | ||
367 | pxor $Xi,$T1 # | ||
368 | pxor $Xhi,$T1 # | ||
369 | |||
370 | movdqa $T1,$T2 # | ||
371 | psrldq \$8,$T1 | ||
372 | pslldq \$8,$T2 # | ||
373 | pxor $T1,$Xhi | ||
374 | pxor $T2,$Xi # | ||
375 | ___ | ||
376 | } | ||
377 | |||
378 | sub reduction_alg9 { # 17/13 times faster than Intel version | ||
379 | my ($Xhi,$Xi) = @_; | ||
380 | |||
381 | $code.=<<___; | ||
382 | # 1st phase | ||
383 | movdqa $Xi,$T1 # | ||
384 | psllq \$1,$Xi | ||
385 | pxor $T1,$Xi # | ||
386 | psllq \$5,$Xi # | ||
387 | pxor $T1,$Xi # | ||
388 | psllq \$57,$Xi # | ||
389 | movdqa $Xi,$T2 # | ||
390 | pslldq \$8,$Xi | ||
391 | psrldq \$8,$T2 # | ||
392 | pxor $T1,$Xi | ||
393 | pxor $T2,$Xhi # | ||
394 | |||
395 | # 2nd phase | ||
396 | movdqa $Xi,$T2 | ||
397 | psrlq \$5,$Xi | ||
398 | pxor $T2,$Xi # | ||
399 | psrlq \$1,$Xi # | ||
400 | pxor $T2,$Xi # | ||
401 | pxor $Xhi,$T2 | ||
402 | psrlq \$1,$Xi # | ||
403 | pxor $T2,$Xi # | ||
404 | ___ | ||
405 | } | ||
406 | |||
407 | { my ($Htbl,$Xip)=@_4args; | ||
408 | |||
409 | $code.=<<___; | ||
410 | .globl gcm_init_clmul | ||
411 | .type gcm_init_clmul,\@abi-omnipotent | ||
412 | .align 16 | ||
413 | gcm_init_clmul: | ||
414 | movdqu ($Xip),$Hkey | ||
415 | pshufd \$0b01001110,$Hkey,$Hkey # dword swap | ||
416 | |||
417 | # <<1 twist | ||
418 | pshufd \$0b11111111,$Hkey,$T2 # broadcast uppermost dword | ||
419 | movdqa $Hkey,$T1 | ||
420 | psllq \$1,$Hkey | ||
421 | pxor $T3,$T3 # | ||
422 | psrlq \$63,$T1 | ||
423 | pcmpgtd $T2,$T3 # broadcast carry bit | ||
424 | pslldq \$8,$T1 | ||
425 | por $T1,$Hkey # H<<=1 | ||
426 | |||
427 | # magic reduction | ||
428 | pand .L0x1c2_polynomial(%rip),$T3 | ||
429 | pxor $T3,$Hkey # if(carry) H^=0x1c2_polynomial | ||
430 | |||
431 | # calculate H^2 | ||
432 | movdqa $Hkey,$Xi | ||
433 | ___ | ||
434 | &clmul64x64_T2 ($Xhi,$Xi,$Hkey); | ||
435 | &reduction_alg9 ($Xhi,$Xi); | ||
436 | $code.=<<___; | ||
437 | movdqu $Hkey,($Htbl) # save H | ||
438 | movdqu $Xi,16($Htbl) # save H^2 | ||
439 | ret | ||
440 | .size gcm_init_clmul,.-gcm_init_clmul | ||
441 | ___ | ||
442 | } | ||
443 | |||
444 | { my ($Xip,$Htbl)=@_4args; | ||
445 | |||
446 | $code.=<<___; | ||
447 | .globl gcm_gmult_clmul | ||
448 | .type gcm_gmult_clmul,\@abi-omnipotent | ||
449 | .align 16 | ||
450 | gcm_gmult_clmul: | ||
451 | movdqu ($Xip),$Xi | ||
452 | movdqa .Lbswap_mask(%rip),$T3 | ||
453 | movdqu ($Htbl),$Hkey | ||
454 | pshufb $T3,$Xi | ||
455 | ___ | ||
456 | &clmul64x64_T2 ($Xhi,$Xi,$Hkey); | ||
457 | &reduction_alg9 ($Xhi,$Xi); | ||
458 | $code.=<<___; | ||
459 | pshufb $T3,$Xi | ||
460 | movdqu $Xi,($Xip) | ||
461 | ret | ||
462 | .size gcm_gmult_clmul,.-gcm_gmult_clmul | ||
463 | ___ | ||
464 | } | ||
465 | |||
466 | { my ($Xip,$Htbl,$inp,$len)=@_4args; | ||
467 | my $Xn="%xmm6"; | ||
468 | my $Xhn="%xmm7"; | ||
469 | my $Hkey2="%xmm8"; | ||
470 | my $T1n="%xmm9"; | ||
471 | my $T2n="%xmm10"; | ||
472 | |||
473 | $code.=<<___; | ||
474 | .globl gcm_ghash_clmul | ||
475 | .type gcm_ghash_clmul,\@abi-omnipotent | ||
476 | .align 16 | ||
477 | gcm_ghash_clmul: | ||
478 | ___ | ||
479 | $code.=<<___ if ($win64); | ||
480 | .LSEH_begin_gcm_ghash_clmul: | ||
481 | # I can't trust assembler to use specific encoding:-( | ||
482 | .byte 0x48,0x83,0xec,0x58 #sub \$0x58,%rsp | ||
483 | .byte 0x0f,0x29,0x34,0x24 #movaps %xmm6,(%rsp) | ||
484 | .byte 0x0f,0x29,0x7c,0x24,0x10 #movdqa %xmm7,0x10(%rsp) | ||
485 | .byte 0x44,0x0f,0x29,0x44,0x24,0x20 #movaps %xmm8,0x20(%rsp) | ||
486 | .byte 0x44,0x0f,0x29,0x4c,0x24,0x30 #movaps %xmm9,0x30(%rsp) | ||
487 | .byte 0x44,0x0f,0x29,0x54,0x24,0x40 #movaps %xmm10,0x40(%rsp) | ||
488 | ___ | ||
489 | $code.=<<___; | ||
490 | movdqa .Lbswap_mask(%rip),$T3 | ||
491 | |||
492 | movdqu ($Xip),$Xi | ||
493 | movdqu ($Htbl),$Hkey | ||
494 | pshufb $T3,$Xi | ||
495 | |||
496 | sub \$0x10,$len | ||
497 | jz .Lodd_tail | ||
498 | |||
499 | movdqu 16($Htbl),$Hkey2 | ||
500 | ####### | ||
501 | # Xi+2 =[H*(Ii+1 + Xi+1)] mod P = | ||
502 | # [(H*Ii+1) + (H*Xi+1)] mod P = | ||
503 | # [(H*Ii+1) + H^2*(Ii+Xi)] mod P | ||
504 | # | ||
505 | movdqu ($inp),$T1 # Ii | ||
506 | movdqu 16($inp),$Xn # Ii+1 | ||
507 | pshufb $T3,$T1 | ||
508 | pshufb $T3,$Xn | ||
509 | pxor $T1,$Xi # Ii+Xi | ||
510 | ___ | ||
511 | &clmul64x64_T2 ($Xhn,$Xn,$Hkey); # H*Ii+1 | ||
512 | $code.=<<___; | ||
513 | movdqa $Xi,$Xhi # | ||
514 | pshufd \$0b01001110,$Xi,$T1 | ||
515 | pshufd \$0b01001110,$Hkey2,$T2 | ||
516 | pxor $Xi,$T1 # | ||
517 | pxor $Hkey2,$T2 | ||
518 | |||
519 | lea 32($inp),$inp # i+=2 | ||
520 | sub \$0x20,$len | ||
521 | jbe .Leven_tail | ||
522 | |||
523 | .Lmod_loop: | ||
524 | ___ | ||
525 | &clmul64x64_T2 ($Xhi,$Xi,$Hkey2,1); # H^2*(Ii+Xi) | ||
526 | $code.=<<___; | ||
527 | movdqu ($inp),$T1 # Ii | ||
528 | pxor $Xn,$Xi # (H*Ii+1) + H^2*(Ii+Xi) | ||
529 | pxor $Xhn,$Xhi | ||
530 | |||
531 | movdqu 16($inp),$Xn # Ii+1 | ||
532 | pshufb $T3,$T1 | ||
533 | pshufb $T3,$Xn | ||
534 | |||
535 | movdqa $Xn,$Xhn # | ||
536 | pshufd \$0b01001110,$Xn,$T1n | ||
537 | pshufd \$0b01001110,$Hkey,$T2n | ||
538 | pxor $Xn,$T1n # | ||
539 | pxor $Hkey,$T2n | ||
540 | pxor $T1,$Xhi # "Ii+Xi", consume early | ||
541 | |||
542 | movdqa $Xi,$T1 # 1st phase | ||
543 | psllq \$1,$Xi | ||
544 | pxor $T1,$Xi # | ||
545 | psllq \$5,$Xi # | ||
546 | pxor $T1,$Xi # | ||
547 | pclmulqdq \$0x00,$Hkey,$Xn ####### | ||
548 | psllq \$57,$Xi # | ||
549 | movdqa $Xi,$T2 # | ||
550 | pslldq \$8,$Xi | ||
551 | psrldq \$8,$T2 # | ||
552 | pxor $T1,$Xi | ||
553 | pxor $T2,$Xhi # | ||
554 | |||
555 | pclmulqdq \$0x11,$Hkey,$Xhn ####### | ||
556 | movdqa $Xi,$T2 # 2nd phase | ||
557 | psrlq \$5,$Xi | ||
558 | pxor $T2,$Xi # | ||
559 | psrlq \$1,$Xi # | ||
560 | pxor $T2,$Xi # | ||
561 | pxor $Xhi,$T2 | ||
562 | psrlq \$1,$Xi # | ||
563 | pxor $T2,$Xi # | ||
564 | |||
565 | pclmulqdq \$0x00,$T2n,$T1n ####### | ||
566 | movdqa $Xi,$Xhi # | ||
567 | pshufd \$0b01001110,$Xi,$T1 | ||
568 | pshufd \$0b01001110,$Hkey2,$T2 | ||
569 | pxor $Xi,$T1 # | ||
570 | pxor $Hkey2,$T2 | ||
571 | |||
572 | pxor $Xn,$T1n # | ||
573 | pxor $Xhn,$T1n # | ||
574 | movdqa $T1n,$T2n # | ||
575 | psrldq \$8,$T1n | ||
576 | pslldq \$8,$T2n # | ||
577 | pxor $T1n,$Xhn | ||
578 | pxor $T2n,$Xn # | ||
579 | |||
580 | lea 32($inp),$inp | ||
581 | sub \$0x20,$len | ||
582 | ja .Lmod_loop | ||
583 | |||
584 | .Leven_tail: | ||
585 | ___ | ||
586 | &clmul64x64_T2 ($Xhi,$Xi,$Hkey2,1); # H^2*(Ii+Xi) | ||
587 | $code.=<<___; | ||
588 | pxor $Xn,$Xi # (H*Ii+1) + H^2*(Ii+Xi) | ||
589 | pxor $Xhn,$Xhi | ||
590 | ___ | ||
591 | &reduction_alg9 ($Xhi,$Xi); | ||
592 | $code.=<<___; | ||
593 | test $len,$len | ||
594 | jnz .Ldone | ||
595 | |||
596 | .Lodd_tail: | ||
597 | movdqu ($inp),$T1 # Ii | ||
598 | pshufb $T3,$T1 | ||
599 | pxor $T1,$Xi # Ii+Xi | ||
600 | ___ | ||
601 | &clmul64x64_T2 ($Xhi,$Xi,$Hkey); # H*(Ii+Xi) | ||
602 | &reduction_alg9 ($Xhi,$Xi); | ||
603 | $code.=<<___; | ||
604 | .Ldone: | ||
605 | pshufb $T3,$Xi | ||
606 | movdqu $Xi,($Xip) | ||
607 | ___ | ||
608 | $code.=<<___ if ($win64); | ||
609 | movaps (%rsp),%xmm6 | ||
610 | movaps 0x10(%rsp),%xmm7 | ||
611 | movaps 0x20(%rsp),%xmm8 | ||
612 | movaps 0x30(%rsp),%xmm9 | ||
613 | movaps 0x40(%rsp),%xmm10 | ||
614 | add \$0x58,%rsp | ||
615 | ___ | ||
616 | $code.=<<___; | ||
617 | ret | ||
618 | .LSEH_end_gcm_ghash_clmul: | ||
619 | .size gcm_ghash_clmul,.-gcm_ghash_clmul | ||
620 | ___ | ||
621 | } | ||
622 | |||
623 | $code.=<<___; | ||
624 | .align 64 | ||
625 | .Lbswap_mask: | ||
626 | .byte 15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0 | ||
627 | .L0x1c2_polynomial: | ||
628 | .byte 1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0xc2 | ||
629 | .align 64 | ||
630 | .type .Lrem_4bit,\@object | ||
631 | .Lrem_4bit: | ||
632 | .long 0,`0x0000<<16`,0,`0x1C20<<16`,0,`0x3840<<16`,0,`0x2460<<16` | ||
633 | .long 0,`0x7080<<16`,0,`0x6CA0<<16`,0,`0x48C0<<16`,0,`0x54E0<<16` | ||
634 | .long 0,`0xE100<<16`,0,`0xFD20<<16`,0,`0xD940<<16`,0,`0xC560<<16` | ||
635 | .long 0,`0x9180<<16`,0,`0x8DA0<<16`,0,`0xA9C0<<16`,0,`0xB5E0<<16` | ||
636 | .type .Lrem_8bit,\@object | ||
637 | .Lrem_8bit: | ||
638 | .value 0x0000,0x01C2,0x0384,0x0246,0x0708,0x06CA,0x048C,0x054E | ||
639 | .value 0x0E10,0x0FD2,0x0D94,0x0C56,0x0918,0x08DA,0x0A9C,0x0B5E | ||
640 | .value 0x1C20,0x1DE2,0x1FA4,0x1E66,0x1B28,0x1AEA,0x18AC,0x196E | ||
641 | .value 0x1230,0x13F2,0x11B4,0x1076,0x1538,0x14FA,0x16BC,0x177E | ||
642 | .value 0x3840,0x3982,0x3BC4,0x3A06,0x3F48,0x3E8A,0x3CCC,0x3D0E | ||
643 | .value 0x3650,0x3792,0x35D4,0x3416,0x3158,0x309A,0x32DC,0x331E | ||
644 | .value 0x2460,0x25A2,0x27E4,0x2626,0x2368,0x22AA,0x20EC,0x212E | ||
645 | .value 0x2A70,0x2BB2,0x29F4,0x2836,0x2D78,0x2CBA,0x2EFC,0x2F3E | ||
646 | .value 0x7080,0x7142,0x7304,0x72C6,0x7788,0x764A,0x740C,0x75CE | ||
647 | .value 0x7E90,0x7F52,0x7D14,0x7CD6,0x7998,0x785A,0x7A1C,0x7BDE | ||
648 | .value 0x6CA0,0x6D62,0x6F24,0x6EE6,0x6BA8,0x6A6A,0x682C,0x69EE | ||
649 | .value 0x62B0,0x6372,0x6134,0x60F6,0x65B8,0x647A,0x663C,0x67FE | ||
650 | .value 0x48C0,0x4902,0x4B44,0x4A86,0x4FC8,0x4E0A,0x4C4C,0x4D8E | ||
651 | .value 0x46D0,0x4712,0x4554,0x4496,0x41D8,0x401A,0x425C,0x439E | ||
652 | .value 0x54E0,0x5522,0x5764,0x56A6,0x53E8,0x522A,0x506C,0x51AE | ||
653 | .value 0x5AF0,0x5B32,0x5974,0x58B6,0x5DF8,0x5C3A,0x5E7C,0x5FBE | ||
654 | .value 0xE100,0xE0C2,0xE284,0xE346,0xE608,0xE7CA,0xE58C,0xE44E | ||
655 | .value 0xEF10,0xEED2,0xEC94,0xED56,0xE818,0xE9DA,0xEB9C,0xEA5E | ||
656 | .value 0xFD20,0xFCE2,0xFEA4,0xFF66,0xFA28,0xFBEA,0xF9AC,0xF86E | ||
657 | .value 0xF330,0xF2F2,0xF0B4,0xF176,0xF438,0xF5FA,0xF7BC,0xF67E | ||
658 | .value 0xD940,0xD882,0xDAC4,0xDB06,0xDE48,0xDF8A,0xDDCC,0xDC0E | ||
659 | .value 0xD750,0xD692,0xD4D4,0xD516,0xD058,0xD19A,0xD3DC,0xD21E | ||
660 | .value 0xC560,0xC4A2,0xC6E4,0xC726,0xC268,0xC3AA,0xC1EC,0xC02E | ||
661 | .value 0xCB70,0xCAB2,0xC8F4,0xC936,0xCC78,0xCDBA,0xCFFC,0xCE3E | ||
662 | .value 0x9180,0x9042,0x9204,0x93C6,0x9688,0x974A,0x950C,0x94CE | ||
663 | .value 0x9F90,0x9E52,0x9C14,0x9DD6,0x9898,0x995A,0x9B1C,0x9ADE | ||
664 | .value 0x8DA0,0x8C62,0x8E24,0x8FE6,0x8AA8,0x8B6A,0x892C,0x88EE | ||
665 | .value 0x83B0,0x8272,0x8034,0x81F6,0x84B8,0x857A,0x873C,0x86FE | ||
666 | .value 0xA9C0,0xA802,0xAA44,0xAB86,0xAEC8,0xAF0A,0xAD4C,0xAC8E | ||
667 | .value 0xA7D0,0xA612,0xA454,0xA596,0xA0D8,0xA11A,0xA35C,0xA29E | ||
668 | .value 0xB5E0,0xB422,0xB664,0xB7A6,0xB2E8,0xB32A,0xB16C,0xB0AE | ||
669 | .value 0xBBF0,0xBA32,0xB874,0xB9B6,0xBCF8,0xBD3A,0xBF7C,0xBEBE | ||
670 | |||
671 | .asciz "GHASH for x86_64, CRYPTOGAMS by <appro\@openssl.org>" | ||
672 | .align 64 | ||
673 | ___ | ||
674 | |||
675 | # EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame, | ||
676 | # CONTEXT *context,DISPATCHER_CONTEXT *disp) | ||
677 | if ($win64) { | ||
678 | $rec="%rcx"; | ||
679 | $frame="%rdx"; | ||
680 | $context="%r8"; | ||
681 | $disp="%r9"; | ||
682 | |||
683 | $code.=<<___; | ||
684 | .extern __imp_RtlVirtualUnwind | ||
685 | .type se_handler,\@abi-omnipotent | ||
686 | .align 16 | ||
687 | se_handler: | ||
688 | push %rsi | ||
689 | push %rdi | ||
690 | push %rbx | ||
691 | push %rbp | ||
692 | push %r12 | ||
693 | push %r13 | ||
694 | push %r14 | ||
695 | push %r15 | ||
696 | pushfq | ||
697 | sub \$64,%rsp | ||
698 | |||
699 | mov 120($context),%rax # pull context->Rax | ||
700 | mov 248($context),%rbx # pull context->Rip | ||
701 | |||
702 | mov 8($disp),%rsi # disp->ImageBase | ||
703 | mov 56($disp),%r11 # disp->HandlerData | ||
704 | |||
705 | mov 0(%r11),%r10d # HandlerData[0] | ||
706 | lea (%rsi,%r10),%r10 # prologue label | ||
707 | cmp %r10,%rbx # context->Rip<prologue label | ||
708 | jb .Lin_prologue | ||
709 | |||
710 | mov 152($context),%rax # pull context->Rsp | ||
711 | |||
712 | mov 4(%r11),%r10d # HandlerData[1] | ||
713 | lea (%rsi,%r10),%r10 # epilogue label | ||
714 | cmp %r10,%rbx # context->Rip>=epilogue label | ||
715 | jae .Lin_prologue | ||
716 | |||
717 | lea 24(%rax),%rax # adjust "rsp" | ||
718 | |||
719 | mov -8(%rax),%rbx | ||
720 | mov -16(%rax),%rbp | ||
721 | mov -24(%rax),%r12 | ||
722 | mov %rbx,144($context) # restore context->Rbx | ||
723 | mov %rbp,160($context) # restore context->Rbp | ||
724 | mov %r12,216($context) # restore context->R12 | ||
725 | |||
726 | .Lin_prologue: | ||
727 | mov 8(%rax),%rdi | ||
728 | mov 16(%rax),%rsi | ||
729 | mov %rax,152($context) # restore context->Rsp | ||
730 | mov %rsi,168($context) # restore context->Rsi | ||
731 | mov %rdi,176($context) # restore context->Rdi | ||
732 | |||
733 | mov 40($disp),%rdi # disp->ContextRecord | ||
734 | mov $context,%rsi # context | ||
735 | mov \$`1232/8`,%ecx # sizeof(CONTEXT) | ||
736 | .long 0xa548f3fc # cld; rep movsq | ||
737 | |||
738 | mov $disp,%rsi | ||
739 | xor %rcx,%rcx # arg1, UNW_FLAG_NHANDLER | ||
740 | mov 8(%rsi),%rdx # arg2, disp->ImageBase | ||
741 | mov 0(%rsi),%r8 # arg3, disp->ControlPc | ||
742 | mov 16(%rsi),%r9 # arg4, disp->FunctionEntry | ||
743 | mov 40(%rsi),%r10 # disp->ContextRecord | ||
744 | lea 56(%rsi),%r11 # &disp->HandlerData | ||
745 | lea 24(%rsi),%r12 # &disp->EstablisherFrame | ||
746 | mov %r10,32(%rsp) # arg5 | ||
747 | mov %r11,40(%rsp) # arg6 | ||
748 | mov %r12,48(%rsp) # arg7 | ||
749 | mov %rcx,56(%rsp) # arg8, (NULL) | ||
750 | call *__imp_RtlVirtualUnwind(%rip) | ||
751 | |||
752 | mov \$1,%eax # ExceptionContinueSearch | ||
753 | add \$64,%rsp | ||
754 | popfq | ||
755 | pop %r15 | ||
756 | pop %r14 | ||
757 | pop %r13 | ||
758 | pop %r12 | ||
759 | pop %rbp | ||
760 | pop %rbx | ||
761 | pop %rdi | ||
762 | pop %rsi | ||
763 | ret | ||
764 | .size se_handler,.-se_handler | ||
765 | |||
766 | .section .pdata | ||
767 | .align 4 | ||
768 | .rva .LSEH_begin_gcm_gmult_4bit | ||
769 | .rva .LSEH_end_gcm_gmult_4bit | ||
770 | .rva .LSEH_info_gcm_gmult_4bit | ||
771 | |||
772 | .rva .LSEH_begin_gcm_ghash_4bit | ||
773 | .rva .LSEH_end_gcm_ghash_4bit | ||
774 | .rva .LSEH_info_gcm_ghash_4bit | ||
775 | |||
776 | .rva .LSEH_begin_gcm_ghash_clmul | ||
777 | .rva .LSEH_end_gcm_ghash_clmul | ||
778 | .rva .LSEH_info_gcm_ghash_clmul | ||
779 | |||
780 | .section .xdata | ||
781 | .align 8 | ||
782 | .LSEH_info_gcm_gmult_4bit: | ||
783 | .byte 9,0,0,0 | ||
784 | .rva se_handler | ||
785 | .rva .Lgmult_prologue,.Lgmult_epilogue # HandlerData | ||
786 | .LSEH_info_gcm_ghash_4bit: | ||
787 | .byte 9,0,0,0 | ||
788 | .rva se_handler | ||
789 | .rva .Lghash_prologue,.Lghash_epilogue # HandlerData | ||
790 | .LSEH_info_gcm_ghash_clmul: | ||
791 | .byte 0x01,0x1f,0x0b,0x00 | ||
792 | .byte 0x1f,0xa8,0x04,0x00 #movaps 0x40(rsp),xmm10 | ||
793 | .byte 0x19,0x98,0x03,0x00 #movaps 0x30(rsp),xmm9 | ||
794 | .byte 0x13,0x88,0x02,0x00 #movaps 0x20(rsp),xmm8 | ||
795 | .byte 0x0d,0x78,0x01,0x00 #movaps 0x10(rsp),xmm7 | ||
796 | .byte 0x08,0x68,0x00,0x00 #movaps (rsp),xmm6 | ||
797 | .byte 0x04,0xa2,0x00,0x00 #sub rsp,0x58 | ||
798 | ___ | ||
799 | } | ||
800 | |||
801 | $code =~ s/\`([^\`]*)\`/eval($1)/gem; | ||
802 | |||
803 | print $code; | ||
804 | |||
805 | close STDOUT; | ||
diff --git a/src/lib/libcrypto/modes/cbc128.c b/src/lib/libcrypto/modes/cbc128.c index 8f8bd563b9..3d3782cbe1 100644 --- a/src/lib/libcrypto/modes/cbc128.c +++ b/src/lib/libcrypto/modes/cbc128.c | |||
@@ -48,7 +48,8 @@ | |||
48 | * | 48 | * |
49 | */ | 49 | */ |
50 | 50 | ||
51 | #include "modes.h" | 51 | #include <openssl/crypto.h> |
52 | #include "modes_lcl.h" | ||
52 | #include <string.h> | 53 | #include <string.h> |
53 | 54 | ||
54 | #ifndef MODES_DEBUG | 55 | #ifndef MODES_DEBUG |
@@ -58,12 +59,7 @@ | |||
58 | #endif | 59 | #endif |
59 | #include <assert.h> | 60 | #include <assert.h> |
60 | 61 | ||
61 | #define STRICT_ALIGNMENT 1 | 62 | #ifndef STRICT_ALIGNMENT |
62 | #if defined(__i386) || defined(__i386__) || \ | ||
63 | defined(__x86_64) || defined(__x86_64__) || \ | ||
64 | defined(_M_IX86) || defined(_M_AMD64) || defined(_M_X64) || \ | ||
65 | defined(__s390__) || defined(__s390x__) | ||
66 | # undef STRICT_ALIGNMENT | ||
67 | # define STRICT_ALIGNMENT 0 | 63 | # define STRICT_ALIGNMENT 0 |
68 | #endif | 64 | #endif |
69 | 65 | ||
diff --git a/src/lib/libcrypto/modes/ccm128.c b/src/lib/libcrypto/modes/ccm128.c new file mode 100644 index 0000000000..c9b35e5b35 --- /dev/null +++ b/src/lib/libcrypto/modes/ccm128.c | |||
@@ -0,0 +1,441 @@ | |||
1 | /* ==================================================================== | ||
2 | * Copyright (c) 2011 The OpenSSL Project. All rights reserved. | ||
3 | * | ||
4 | * Redistribution and use in source and binary forms, with or without | ||
5 | * modification, are permitted provided that the following conditions | ||
6 | * are met: | ||
7 | * | ||
8 | * 1. Redistributions of source code must retain the above copyright | ||
9 | * notice, this list of conditions and the following disclaimer. | ||
10 | * | ||
11 | * 2. Redistributions in binary form must reproduce the above copyright | ||
12 | * notice, this list of conditions and the following disclaimer in | ||
13 | * the documentation and/or other materials provided with the | ||
14 | * distribution. | ||
15 | * | ||
16 | * 3. All advertising materials mentioning features or use of this | ||
17 | * software must display the following acknowledgment: | ||
18 | * "This product includes software developed by the OpenSSL Project | ||
19 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | ||
20 | * | ||
21 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
22 | * endorse or promote products derived from this software without | ||
23 | * prior written permission. For written permission, please contact | ||
24 | * openssl-core@openssl.org. | ||
25 | * | ||
26 | * 5. Products derived from this software may not be called "OpenSSL" | ||
27 | * nor may "OpenSSL" appear in their names without prior written | ||
28 | * permission of the OpenSSL Project. | ||
29 | * | ||
30 | * 6. Redistributions of any form whatsoever must retain the following | ||
31 | * acknowledgment: | ||
32 | * "This product includes software developed by the OpenSSL Project | ||
33 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" | ||
34 | * | ||
35 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
36 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
37 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
38 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
39 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
40 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
41 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
42 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
43 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
44 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
45 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
46 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
47 | * ==================================================================== | ||
48 | */ | ||
49 | |||
50 | #include <openssl/crypto.h> | ||
51 | #include "modes_lcl.h" | ||
52 | #include <string.h> | ||
53 | |||
54 | #ifndef MODES_DEBUG | ||
55 | # ifndef NDEBUG | ||
56 | # define NDEBUG | ||
57 | # endif | ||
58 | #endif | ||
59 | #include <assert.h> | ||
60 | |||
61 | /* First you setup M and L parameters and pass the key schedule. | ||
62 | * This is called once per session setup... */ | ||
63 | void CRYPTO_ccm128_init(CCM128_CONTEXT *ctx, | ||
64 | unsigned int M,unsigned int L,void *key,block128_f block) | ||
65 | { | ||
66 | memset(ctx->nonce.c,0,sizeof(ctx->nonce.c)); | ||
67 | ctx->nonce.c[0] = ((u8)(L-1)&7) | (u8)(((M-2)/2)&7)<<3; | ||
68 | ctx->blocks = 0; | ||
69 | ctx->block = block; | ||
70 | ctx->key = key; | ||
71 | } | ||
72 | |||
73 | /* !!! Following interfaces are to be called *once* per packet !!! */ | ||
74 | |||
75 | /* Then you setup per-message nonce and pass the length of the message */ | ||
76 | int CRYPTO_ccm128_setiv(CCM128_CONTEXT *ctx, | ||
77 | const unsigned char *nonce,size_t nlen,size_t mlen) | ||
78 | { | ||
79 | unsigned int L = ctx->nonce.c[0]&7; /* the L parameter */ | ||
80 | |||
81 | if (nlen<(14-L)) return -1; /* nonce is too short */ | ||
82 | |||
83 | if (sizeof(mlen)==8 && L>=3) { | ||
84 | ctx->nonce.c[8] = (u8)(mlen>>(56%(sizeof(mlen)*8))); | ||
85 | ctx->nonce.c[9] = (u8)(mlen>>(48%(sizeof(mlen)*8))); | ||
86 | ctx->nonce.c[10] = (u8)(mlen>>(40%(sizeof(mlen)*8))); | ||
87 | ctx->nonce.c[11] = (u8)(mlen>>(32%(sizeof(mlen)*8))); | ||
88 | } | ||
89 | else | ||
90 | *(u32*)(&ctx->nonce.c[8]) = 0; | ||
91 | |||
92 | ctx->nonce.c[12] = (u8)(mlen>>24); | ||
93 | ctx->nonce.c[13] = (u8)(mlen>>16); | ||
94 | ctx->nonce.c[14] = (u8)(mlen>>8); | ||
95 | ctx->nonce.c[15] = (u8)mlen; | ||
96 | |||
97 | ctx->nonce.c[0] &= ~0x40; /* clear Adata flag */ | ||
98 | memcpy(&ctx->nonce.c[1],nonce,14-L); | ||
99 | |||
100 | return 0; | ||
101 | } | ||
102 | |||
103 | /* Then you pass additional authentication data, this is optional */ | ||
104 | void CRYPTO_ccm128_aad(CCM128_CONTEXT *ctx, | ||
105 | const unsigned char *aad,size_t alen) | ||
106 | { unsigned int i; | ||
107 | block128_f block = ctx->block; | ||
108 | |||
109 | if (alen==0) return; | ||
110 | |||
111 | ctx->nonce.c[0] |= 0x40; /* set Adata flag */ | ||
112 | (*block)(ctx->nonce.c,ctx->cmac.c,ctx->key), | ||
113 | ctx->blocks++; | ||
114 | |||
115 | if (alen<(0x10000-0x100)) { | ||
116 | ctx->cmac.c[0] ^= (u8)(alen>>8); | ||
117 | ctx->cmac.c[1] ^= (u8)alen; | ||
118 | i=2; | ||
119 | } | ||
120 | else if (sizeof(alen)==8 && alen>=(size_t)1<<(32%(sizeof(alen)*8))) { | ||
121 | ctx->cmac.c[0] ^= 0xFF; | ||
122 | ctx->cmac.c[1] ^= 0xFF; | ||
123 | ctx->cmac.c[2] ^= (u8)(alen>>(56%(sizeof(alen)*8))); | ||
124 | ctx->cmac.c[3] ^= (u8)(alen>>(48%(sizeof(alen)*8))); | ||
125 | ctx->cmac.c[4] ^= (u8)(alen>>(40%(sizeof(alen)*8))); | ||
126 | ctx->cmac.c[5] ^= (u8)(alen>>(32%(sizeof(alen)*8))); | ||
127 | ctx->cmac.c[6] ^= (u8)(alen>>24); | ||
128 | ctx->cmac.c[7] ^= (u8)(alen>>16); | ||
129 | ctx->cmac.c[8] ^= (u8)(alen>>8); | ||
130 | ctx->cmac.c[9] ^= (u8)alen; | ||
131 | i=10; | ||
132 | } | ||
133 | else { | ||
134 | ctx->cmac.c[0] ^= 0xFF; | ||
135 | ctx->cmac.c[1] ^= 0xFE; | ||
136 | ctx->cmac.c[2] ^= (u8)(alen>>24); | ||
137 | ctx->cmac.c[3] ^= (u8)(alen>>16); | ||
138 | ctx->cmac.c[4] ^= (u8)(alen>>8); | ||
139 | ctx->cmac.c[5] ^= (u8)alen; | ||
140 | i=6; | ||
141 | } | ||
142 | |||
143 | do { | ||
144 | for(;i<16 && alen;++i,++aad,--alen) | ||
145 | ctx->cmac.c[i] ^= *aad; | ||
146 | (*block)(ctx->cmac.c,ctx->cmac.c,ctx->key), | ||
147 | ctx->blocks++; | ||
148 | i=0; | ||
149 | } while (alen); | ||
150 | } | ||
151 | |||
152 | /* Finally you encrypt or decrypt the message */ | ||
153 | |||
154 | /* counter part of nonce may not be larger than L*8 bits, | ||
155 | * L is not larger than 8, therefore 64-bit counter... */ | ||
156 | static void ctr64_inc(unsigned char *counter) { | ||
157 | unsigned int n=8; | ||
158 | u8 c; | ||
159 | |||
160 | counter += 8; | ||
161 | do { | ||
162 | --n; | ||
163 | c = counter[n]; | ||
164 | ++c; | ||
165 | counter[n] = c; | ||
166 | if (c) return; | ||
167 | } while (n); | ||
168 | } | ||
169 | |||
170 | int CRYPTO_ccm128_encrypt(CCM128_CONTEXT *ctx, | ||
171 | const unsigned char *inp, unsigned char *out, | ||
172 | size_t len) | ||
173 | { | ||
174 | size_t n; | ||
175 | unsigned int i,L; | ||
176 | unsigned char flags0 = ctx->nonce.c[0]; | ||
177 | block128_f block = ctx->block; | ||
178 | void * key = ctx->key; | ||
179 | union { u64 u[2]; u8 c[16]; } scratch; | ||
180 | |||
181 | if (!(flags0&0x40)) | ||
182 | (*block)(ctx->nonce.c,ctx->cmac.c,key), | ||
183 | ctx->blocks++; | ||
184 | |||
185 | ctx->nonce.c[0] = L = flags0&7; | ||
186 | for (n=0,i=15-L;i<15;++i) { | ||
187 | n |= ctx->nonce.c[i]; | ||
188 | ctx->nonce.c[i]=0; | ||
189 | n <<= 8; | ||
190 | } | ||
191 | n |= ctx->nonce.c[15]; /* reconstructed length */ | ||
192 | ctx->nonce.c[15]=1; | ||
193 | |||
194 | if (n!=len) return -1; /* length mismatch */ | ||
195 | |||
196 | ctx->blocks += ((len+15)>>3)|1; | ||
197 | if (ctx->blocks > (U64(1)<<61)) return -2; /* too much data */ | ||
198 | |||
199 | while (len>=16) { | ||
200 | #if defined(STRICT_ALIGNMENT) | ||
201 | union { u64 u[2]; u8 c[16]; } temp; | ||
202 | |||
203 | memcpy (temp.c,inp,16); | ||
204 | ctx->cmac.u[0] ^= temp.u[0]; | ||
205 | ctx->cmac.u[1] ^= temp.u[1]; | ||
206 | #else | ||
207 | ctx->cmac.u[0] ^= ((u64*)inp)[0]; | ||
208 | ctx->cmac.u[1] ^= ((u64*)inp)[1]; | ||
209 | #endif | ||
210 | (*block)(ctx->cmac.c,ctx->cmac.c,key); | ||
211 | (*block)(ctx->nonce.c,scratch.c,key); | ||
212 | ctr64_inc(ctx->nonce.c); | ||
213 | #if defined(STRICT_ALIGNMENT) | ||
214 | temp.u[0] ^= scratch.u[0]; | ||
215 | temp.u[1] ^= scratch.u[1]; | ||
216 | memcpy(out,temp.c,16); | ||
217 | #else | ||
218 | ((u64*)out)[0] = scratch.u[0]^((u64*)inp)[0]; | ||
219 | ((u64*)out)[1] = scratch.u[1]^((u64*)inp)[1]; | ||
220 | #endif | ||
221 | inp += 16; | ||
222 | out += 16; | ||
223 | len -= 16; | ||
224 | } | ||
225 | |||
226 | if (len) { | ||
227 | for (i=0; i<len; ++i) ctx->cmac.c[i] ^= inp[i]; | ||
228 | (*block)(ctx->cmac.c,ctx->cmac.c,key); | ||
229 | (*block)(ctx->nonce.c,scratch.c,key); | ||
230 | for (i=0; i<len; ++i) out[i] = scratch.c[i]^inp[i]; | ||
231 | } | ||
232 | |||
233 | for (i=15-L;i<16;++i) | ||
234 | ctx->nonce.c[i]=0; | ||
235 | |||
236 | (*block)(ctx->nonce.c,scratch.c,key); | ||
237 | ctx->cmac.u[0] ^= scratch.u[0]; | ||
238 | ctx->cmac.u[1] ^= scratch.u[1]; | ||
239 | |||
240 | ctx->nonce.c[0] = flags0; | ||
241 | |||
242 | return 0; | ||
243 | } | ||
244 | |||
245 | int CRYPTO_ccm128_decrypt(CCM128_CONTEXT *ctx, | ||
246 | const unsigned char *inp, unsigned char *out, | ||
247 | size_t len) | ||
248 | { | ||
249 | size_t n; | ||
250 | unsigned int i,L; | ||
251 | unsigned char flags0 = ctx->nonce.c[0]; | ||
252 | block128_f block = ctx->block; | ||
253 | void * key = ctx->key; | ||
254 | union { u64 u[2]; u8 c[16]; } scratch; | ||
255 | |||
256 | if (!(flags0&0x40)) | ||
257 | (*block)(ctx->nonce.c,ctx->cmac.c,key); | ||
258 | |||
259 | ctx->nonce.c[0] = L = flags0&7; | ||
260 | for (n=0,i=15-L;i<15;++i) { | ||
261 | n |= ctx->nonce.c[i]; | ||
262 | ctx->nonce.c[i]=0; | ||
263 | n <<= 8; | ||
264 | } | ||
265 | n |= ctx->nonce.c[15]; /* reconstructed length */ | ||
266 | ctx->nonce.c[15]=1; | ||
267 | |||
268 | if (n!=len) return -1; | ||
269 | |||
270 | while (len>=16) { | ||
271 | #if defined(STRICT_ALIGNMENT) | ||
272 | union { u64 u[2]; u8 c[16]; } temp; | ||
273 | #endif | ||
274 | (*block)(ctx->nonce.c,scratch.c,key); | ||
275 | ctr64_inc(ctx->nonce.c); | ||
276 | #if defined(STRICT_ALIGNMENT) | ||
277 | memcpy (temp.c,inp,16); | ||
278 | ctx->cmac.u[0] ^= (scratch.u[0] ^= temp.u[0]); | ||
279 | ctx->cmac.u[1] ^= (scratch.u[1] ^= temp.u[1]); | ||
280 | memcpy (out,scratch.c,16); | ||
281 | #else | ||
282 | ctx->cmac.u[0] ^= (((u64*)out)[0] = scratch.u[0]^((u64*)inp)[0]); | ||
283 | ctx->cmac.u[1] ^= (((u64*)out)[1] = scratch.u[1]^((u64*)inp)[1]); | ||
284 | #endif | ||
285 | (*block)(ctx->cmac.c,ctx->cmac.c,key); | ||
286 | |||
287 | inp += 16; | ||
288 | out += 16; | ||
289 | len -= 16; | ||
290 | } | ||
291 | |||
292 | if (len) { | ||
293 | (*block)(ctx->nonce.c,scratch.c,key); | ||
294 | for (i=0; i<len; ++i) | ||
295 | ctx->cmac.c[i] ^= (out[i] = scratch.c[i]^inp[i]); | ||
296 | (*block)(ctx->cmac.c,ctx->cmac.c,key); | ||
297 | } | ||
298 | |||
299 | for (i=15-L;i<16;++i) | ||
300 | ctx->nonce.c[i]=0; | ||
301 | |||
302 | (*block)(ctx->nonce.c,scratch.c,key); | ||
303 | ctx->cmac.u[0] ^= scratch.u[0]; | ||
304 | ctx->cmac.u[1] ^= scratch.u[1]; | ||
305 | |||
306 | ctx->nonce.c[0] = flags0; | ||
307 | |||
308 | return 0; | ||
309 | } | ||
310 | |||
311 | static void ctr64_add (unsigned char *counter,size_t inc) | ||
312 | { size_t n=8, val=0; | ||
313 | |||
314 | counter += 8; | ||
315 | do { | ||
316 | --n; | ||
317 | val += counter[n] + (inc&0xff); | ||
318 | counter[n] = (unsigned char)val; | ||
319 | val >>= 8; /* carry bit */ | ||
320 | inc >>= 8; | ||
321 | } while(n && (inc || val)); | ||
322 | } | ||
323 | |||
324 | int CRYPTO_ccm128_encrypt_ccm64(CCM128_CONTEXT *ctx, | ||
325 | const unsigned char *inp, unsigned char *out, | ||
326 | size_t len,ccm128_f stream) | ||
327 | { | ||
328 | size_t n; | ||
329 | unsigned int i,L; | ||
330 | unsigned char flags0 = ctx->nonce.c[0]; | ||
331 | block128_f block = ctx->block; | ||
332 | void * key = ctx->key; | ||
333 | union { u64 u[2]; u8 c[16]; } scratch; | ||
334 | |||
335 | if (!(flags0&0x40)) | ||
336 | (*block)(ctx->nonce.c,ctx->cmac.c,key), | ||
337 | ctx->blocks++; | ||
338 | |||
339 | ctx->nonce.c[0] = L = flags0&7; | ||
340 | for (n=0,i=15-L;i<15;++i) { | ||
341 | n |= ctx->nonce.c[i]; | ||
342 | ctx->nonce.c[i]=0; | ||
343 | n <<= 8; | ||
344 | } | ||
345 | n |= ctx->nonce.c[15]; /* reconstructed length */ | ||
346 | ctx->nonce.c[15]=1; | ||
347 | |||
348 | if (n!=len) return -1; /* length mismatch */ | ||
349 | |||
350 | ctx->blocks += ((len+15)>>3)|1; | ||
351 | if (ctx->blocks > (U64(1)<<61)) return -2; /* too much data */ | ||
352 | |||
353 | if ((n=len/16)) { | ||
354 | (*stream)(inp,out,n,key,ctx->nonce.c,ctx->cmac.c); | ||
355 | n *= 16; | ||
356 | inp += n; | ||
357 | out += n; | ||
358 | len -= n; | ||
359 | if (len) ctr64_add(ctx->nonce.c,n/16); | ||
360 | } | ||
361 | |||
362 | if (len) { | ||
363 | for (i=0; i<len; ++i) ctx->cmac.c[i] ^= inp[i]; | ||
364 | (*block)(ctx->cmac.c,ctx->cmac.c,key); | ||
365 | (*block)(ctx->nonce.c,scratch.c,key); | ||
366 | for (i=0; i<len; ++i) out[i] = scratch.c[i]^inp[i]; | ||
367 | } | ||
368 | |||
369 | for (i=15-L;i<16;++i) | ||
370 | ctx->nonce.c[i]=0; | ||
371 | |||
372 | (*block)(ctx->nonce.c,scratch.c,key); | ||
373 | ctx->cmac.u[0] ^= scratch.u[0]; | ||
374 | ctx->cmac.u[1] ^= scratch.u[1]; | ||
375 | |||
376 | ctx->nonce.c[0] = flags0; | ||
377 | |||
378 | return 0; | ||
379 | } | ||
380 | |||
381 | int CRYPTO_ccm128_decrypt_ccm64(CCM128_CONTEXT *ctx, | ||
382 | const unsigned char *inp, unsigned char *out, | ||
383 | size_t len,ccm128_f stream) | ||
384 | { | ||
385 | size_t n; | ||
386 | unsigned int i,L; | ||
387 | unsigned char flags0 = ctx->nonce.c[0]; | ||
388 | block128_f block = ctx->block; | ||
389 | void * key = ctx->key; | ||
390 | union { u64 u[2]; u8 c[16]; } scratch; | ||
391 | |||
392 | if (!(flags0&0x40)) | ||
393 | (*block)(ctx->nonce.c,ctx->cmac.c,key); | ||
394 | |||
395 | ctx->nonce.c[0] = L = flags0&7; | ||
396 | for (n=0,i=15-L;i<15;++i) { | ||
397 | n |= ctx->nonce.c[i]; | ||
398 | ctx->nonce.c[i]=0; | ||
399 | n <<= 8; | ||
400 | } | ||
401 | n |= ctx->nonce.c[15]; /* reconstructed length */ | ||
402 | ctx->nonce.c[15]=1; | ||
403 | |||
404 | if (n!=len) return -1; | ||
405 | |||
406 | if ((n=len/16)) { | ||
407 | (*stream)(inp,out,n,key,ctx->nonce.c,ctx->cmac.c); | ||
408 | n *= 16; | ||
409 | inp += n; | ||
410 | out += n; | ||
411 | len -= n; | ||
412 | if (len) ctr64_add(ctx->nonce.c,n/16); | ||
413 | } | ||
414 | |||
415 | if (len) { | ||
416 | (*block)(ctx->nonce.c,scratch.c,key); | ||
417 | for (i=0; i<len; ++i) | ||
418 | ctx->cmac.c[i] ^= (out[i] = scratch.c[i]^inp[i]); | ||
419 | (*block)(ctx->cmac.c,ctx->cmac.c,key); | ||
420 | } | ||
421 | |||
422 | for (i=15-L;i<16;++i) | ||
423 | ctx->nonce.c[i]=0; | ||
424 | |||
425 | (*block)(ctx->nonce.c,scratch.c,key); | ||
426 | ctx->cmac.u[0] ^= scratch.u[0]; | ||
427 | ctx->cmac.u[1] ^= scratch.u[1]; | ||
428 | |||
429 | ctx->nonce.c[0] = flags0; | ||
430 | |||
431 | return 0; | ||
432 | } | ||
433 | |||
434 | size_t CRYPTO_ccm128_tag(CCM128_CONTEXT *ctx,unsigned char *tag,size_t len) | ||
435 | { unsigned int M = (ctx->nonce.c[0]>>3)&7; /* the M parameter */ | ||
436 | |||
437 | M *= 2; M += 2; | ||
438 | if (len<M) return 0; | ||
439 | memcpy(tag,ctx->cmac.c,M); | ||
440 | return M; | ||
441 | } | ||
diff --git a/src/lib/libcrypto/modes/cfb128.c b/src/lib/libcrypto/modes/cfb128.c index e5938c6137..4e6f5d35e1 100644 --- a/src/lib/libcrypto/modes/cfb128.c +++ b/src/lib/libcrypto/modes/cfb128.c | |||
@@ -48,7 +48,8 @@ | |||
48 | * | 48 | * |
49 | */ | 49 | */ |
50 | 50 | ||
51 | #include "modes.h" | 51 | #include <openssl/crypto.h> |
52 | #include "modes_lcl.h" | ||
52 | #include <string.h> | 53 | #include <string.h> |
53 | 54 | ||
54 | #ifndef MODES_DEBUG | 55 | #ifndef MODES_DEBUG |
@@ -58,14 +59,6 @@ | |||
58 | #endif | 59 | #endif |
59 | #include <assert.h> | 60 | #include <assert.h> |
60 | 61 | ||
61 | #define STRICT_ALIGNMENT | ||
62 | #if defined(__i386) || defined(__i386__) || \ | ||
63 | defined(__x86_64) || defined(__x86_64__) || \ | ||
64 | defined(_M_IX86) || defined(_M_AMD64) || defined(_M_X64) || \ | ||
65 | defined(__s390__) || defined(__s390x__) | ||
66 | # undef STRICT_ALIGNMENT | ||
67 | #endif | ||
68 | |||
69 | /* The input and output encrypted as though 128bit cfb mode is being | 62 | /* The input and output encrypted as though 128bit cfb mode is being |
70 | * used. The extra state information to record how much of the | 63 | * used. The extra state information to record how much of the |
71 | * 128bit block we have used is contained in *num; | 64 | * 128bit block we have used is contained in *num; |
diff --git a/src/lib/libcrypto/modes/ctr128.c b/src/lib/libcrypto/modes/ctr128.c index 932037f551..ee642c5863 100644 --- a/src/lib/libcrypto/modes/ctr128.c +++ b/src/lib/libcrypto/modes/ctr128.c | |||
@@ -48,7 +48,8 @@ | |||
48 | * | 48 | * |
49 | */ | 49 | */ |
50 | 50 | ||
51 | #include "modes.h" | 51 | #include <openssl/crypto.h> |
52 | #include "modes_lcl.h" | ||
52 | #include <string.h> | 53 | #include <string.h> |
53 | 54 | ||
54 | #ifndef MODES_DEBUG | 55 | #ifndef MODES_DEBUG |
@@ -58,17 +59,6 @@ | |||
58 | #endif | 59 | #endif |
59 | #include <assert.h> | 60 | #include <assert.h> |
60 | 61 | ||
61 | typedef unsigned int u32; | ||
62 | typedef unsigned char u8; | ||
63 | |||
64 | #define STRICT_ALIGNMENT | ||
65 | #if defined(__i386) || defined(__i386__) || \ | ||
66 | defined(__x86_64) || defined(__x86_64__) || \ | ||
67 | defined(_M_IX86) || defined(_M_AMD64) || defined(_M_X64) || \ | ||
68 | defined(__s390__) || defined(__s390x__) | ||
69 | # undef STRICT_ALIGNMENT | ||
70 | #endif | ||
71 | |||
72 | /* NOTE: the IV/counter CTR mode is big-endian. The code itself | 62 | /* NOTE: the IV/counter CTR mode is big-endian. The code itself |
73 | * is endian-neutral. */ | 63 | * is endian-neutral. */ |
74 | 64 | ||
@@ -182,3 +172,81 @@ void CRYPTO_ctr128_encrypt(const unsigned char *in, unsigned char *out, | |||
182 | 172 | ||
183 | *num=n; | 173 | *num=n; |
184 | } | 174 | } |
175 | |||
176 | /* increment upper 96 bits of 128-bit counter by 1 */ | ||
177 | static void ctr96_inc(unsigned char *counter) { | ||
178 | u32 n=12; | ||
179 | u8 c; | ||
180 | |||
181 | do { | ||
182 | --n; | ||
183 | c = counter[n]; | ||
184 | ++c; | ||
185 | counter[n] = c; | ||
186 | if (c) return; | ||
187 | } while (n); | ||
188 | } | ||
189 | |||
190 | void CRYPTO_ctr128_encrypt_ctr32(const unsigned char *in, unsigned char *out, | ||
191 | size_t len, const void *key, | ||
192 | unsigned char ivec[16], unsigned char ecount_buf[16], | ||
193 | unsigned int *num, ctr128_f func) | ||
194 | { | ||
195 | unsigned int n,ctr32; | ||
196 | |||
197 | assert(in && out && key && ecount_buf && num); | ||
198 | assert(*num < 16); | ||
199 | |||
200 | n = *num; | ||
201 | |||
202 | while (n && len) { | ||
203 | *(out++) = *(in++) ^ ecount_buf[n]; | ||
204 | --len; | ||
205 | n = (n+1) % 16; | ||
206 | } | ||
207 | |||
208 | ctr32 = GETU32(ivec+12); | ||
209 | while (len>=16) { | ||
210 | size_t blocks = len/16; | ||
211 | /* | ||
212 | * 1<<28 is just a not-so-small yet not-so-large number... | ||
213 | * Below condition is practically never met, but it has to | ||
214 | * be checked for code correctness. | ||
215 | */ | ||
216 | if (sizeof(size_t)>sizeof(unsigned int) && blocks>(1U<<28)) | ||
217 | blocks = (1U<<28); | ||
218 | /* | ||
219 | * As (*func) operates on 32-bit counter, caller | ||
220 | * has to handle overflow. 'if' below detects the | ||
221 | * overflow, which is then handled by limiting the | ||
222 | * amount of blocks to the exact overflow point... | ||
223 | */ | ||
224 | ctr32 += (u32)blocks; | ||
225 | if (ctr32 < blocks) { | ||
226 | blocks -= ctr32; | ||
227 | ctr32 = 0; | ||
228 | } | ||
229 | (*func)(in,out,blocks,key,ivec); | ||
230 | /* (*ctr) does not update ivec, caller does: */ | ||
231 | PUTU32(ivec+12,ctr32); | ||
232 | /* ... overflow was detected, propogate carry. */ | ||
233 | if (ctr32 == 0) ctr96_inc(ivec); | ||
234 | blocks *= 16; | ||
235 | len -= blocks; | ||
236 | out += blocks; | ||
237 | in += blocks; | ||
238 | } | ||
239 | if (len) { | ||
240 | memset(ecount_buf,0,16); | ||
241 | (*func)(ecount_buf,ecount_buf,1,key,ivec); | ||
242 | ++ctr32; | ||
243 | PUTU32(ivec+12,ctr32); | ||
244 | if (ctr32 == 0) ctr96_inc(ivec); | ||
245 | while (len--) { | ||
246 | out[n] = in[n] ^ ecount_buf[n]; | ||
247 | ++n; | ||
248 | } | ||
249 | } | ||
250 | |||
251 | *num=n; | ||
252 | } | ||
diff --git a/src/lib/libcrypto/modes/cts128.c b/src/lib/libcrypto/modes/cts128.c index e0430f9fdc..c0e1f3696c 100644 --- a/src/lib/libcrypto/modes/cts128.c +++ b/src/lib/libcrypto/modes/cts128.c | |||
@@ -5,7 +5,8 @@ | |||
5 | * forms are granted according to the OpenSSL license. | 5 | * forms are granted according to the OpenSSL license. |
6 | */ | 6 | */ |
7 | 7 | ||
8 | #include "modes.h" | 8 | #include <openssl/crypto.h> |
9 | #include "modes_lcl.h" | ||
9 | #include <string.h> | 10 | #include <string.h> |
10 | 11 | ||
11 | #ifndef MODES_DEBUG | 12 | #ifndef MODES_DEBUG |
@@ -23,8 +24,9 @@ | |||
23 | * deviates from mentioned RFCs. Most notably it allows input to be | 24 | * deviates from mentioned RFCs. Most notably it allows input to be |
24 | * of block length and it doesn't flip the order of the last two | 25 | * of block length and it doesn't flip the order of the last two |
25 | * blocks. CTS is being discussed even in ECB context, but it's not | 26 | * blocks. CTS is being discussed even in ECB context, but it's not |
26 | * adopted for any known application. This implementation complies | 27 | * adopted for any known application. This implementation provides |
27 | * with mentioned RFCs and [as such] extends CBC mode. | 28 | * two interfaces: one compliant with above mentioned RFCs and one |
29 | * compliant with the NIST proposal, both extending CBC mode. | ||
28 | */ | 30 | */ |
29 | 31 | ||
30 | size_t CRYPTO_cts128_encrypt_block(const unsigned char *in, unsigned char *out, | 32 | size_t CRYPTO_cts128_encrypt_block(const unsigned char *in, unsigned char *out, |
@@ -54,6 +56,34 @@ size_t CRYPTO_cts128_encrypt_block(const unsigned char *in, unsigned char *out, | |||
54 | return len+residue; | 56 | return len+residue; |
55 | } | 57 | } |
56 | 58 | ||
59 | size_t CRYPTO_nistcts128_encrypt_block(const unsigned char *in, unsigned char *out, | ||
60 | size_t len, const void *key, | ||
61 | unsigned char ivec[16], block128_f block) | ||
62 | { size_t residue, n; | ||
63 | |||
64 | assert (in && out && key && ivec); | ||
65 | |||
66 | if (len < 16) return 0; | ||
67 | |||
68 | residue=len%16; | ||
69 | |||
70 | len -= residue; | ||
71 | |||
72 | CRYPTO_cbc128_encrypt(in,out,len,key,ivec,block); | ||
73 | |||
74 | if (residue==0) return len; | ||
75 | |||
76 | in += len; | ||
77 | out += len; | ||
78 | |||
79 | for (n=0; n<residue; ++n) | ||
80 | ivec[n] ^= in[n]; | ||
81 | (*block)(ivec,ivec,key); | ||
82 | memcpy(out-16+residue,ivec,16); | ||
83 | |||
84 | return len+residue; | ||
85 | } | ||
86 | |||
57 | size_t CRYPTO_cts128_encrypt(const unsigned char *in, unsigned char *out, | 87 | size_t CRYPTO_cts128_encrypt(const unsigned char *in, unsigned char *out, |
58 | size_t len, const void *key, | 88 | size_t len, const void *key, |
59 | unsigned char ivec[16], cbc128_f cbc) | 89 | unsigned char ivec[16], cbc128_f cbc) |
@@ -90,6 +120,41 @@ size_t CRYPTO_cts128_encrypt(const unsigned char *in, unsigned char *out, | |||
90 | return len+residue; | 120 | return len+residue; |
91 | } | 121 | } |
92 | 122 | ||
123 | size_t CRYPTO_nistcts128_encrypt(const unsigned char *in, unsigned char *out, | ||
124 | size_t len, const void *key, | ||
125 | unsigned char ivec[16], cbc128_f cbc) | ||
126 | { size_t residue; | ||
127 | union { size_t align; unsigned char c[16]; } tmp; | ||
128 | |||
129 | assert (in && out && key && ivec); | ||
130 | |||
131 | if (len < 16) return 0; | ||
132 | |||
133 | residue=len%16; | ||
134 | |||
135 | len -= residue; | ||
136 | |||
137 | (*cbc)(in,out,len,key,ivec,1); | ||
138 | |||
139 | if (residue==0) return len; | ||
140 | |||
141 | in += len; | ||
142 | out += len; | ||
143 | |||
144 | #if defined(CBC_HANDLES_TRUNCATED_IO) | ||
145 | (*cbc)(in,out-16+residue,residue,key,ivec,1); | ||
146 | #else | ||
147 | { | ||
148 | size_t n; | ||
149 | for (n=0; n<16; n+=sizeof(size_t)) | ||
150 | *(size_t *)(tmp.c+n) = 0; | ||
151 | memcpy(tmp.c,in,residue); | ||
152 | } | ||
153 | (*cbc)(tmp.c,out-16+residue,16,key,ivec,1); | ||
154 | #endif | ||
155 | return len+residue; | ||
156 | } | ||
157 | |||
93 | size_t CRYPTO_cts128_decrypt_block(const unsigned char *in, unsigned char *out, | 158 | size_t CRYPTO_cts128_decrypt_block(const unsigned char *in, unsigned char *out, |
94 | size_t len, const void *key, | 159 | size_t len, const void *key, |
95 | unsigned char ivec[16], block128_f block) | 160 | unsigned char ivec[16], block128_f block) |
@@ -125,7 +190,51 @@ size_t CRYPTO_cts128_decrypt_block(const unsigned char *in, unsigned char *out, | |||
125 | for(residue+=16; n<residue; ++n) | 190 | for(residue+=16; n<residue; ++n) |
126 | out[n] = tmp.c[n] ^ in[n]; | 191 | out[n] = tmp.c[n] ^ in[n]; |
127 | 192 | ||
128 | return len+residue-16; | 193 | return 16+len+residue; |
194 | } | ||
195 | |||
196 | size_t CRYPTO_nistcts128_decrypt_block(const unsigned char *in, unsigned char *out, | ||
197 | size_t len, const void *key, | ||
198 | unsigned char ivec[16], block128_f block) | ||
199 | { size_t residue, n; | ||
200 | union { size_t align; unsigned char c[32]; } tmp; | ||
201 | |||
202 | assert (in && out && key && ivec); | ||
203 | |||
204 | if (len<16) return 0; | ||
205 | |||
206 | residue=len%16; | ||
207 | |||
208 | if (residue==0) { | ||
209 | CRYPTO_cbc128_decrypt(in,out,len,key,ivec,block); | ||
210 | return len; | ||
211 | } | ||
212 | |||
213 | len -= 16+residue; | ||
214 | |||
215 | if (len) { | ||
216 | CRYPTO_cbc128_decrypt(in,out,len,key,ivec,block); | ||
217 | in += len; | ||
218 | out += len; | ||
219 | } | ||
220 | |||
221 | (*block)(in+residue,tmp.c+16,key); | ||
222 | |||
223 | for (n=0; n<16; n+=sizeof(size_t)) | ||
224 | *(size_t *)(tmp.c+n) = *(size_t *)(tmp.c+16+n); | ||
225 | memcpy(tmp.c,in,residue); | ||
226 | (*block)(tmp.c,tmp.c,key); | ||
227 | |||
228 | for(n=0; n<16; ++n) { | ||
229 | unsigned char c = in[n]; | ||
230 | out[n] = tmp.c[n] ^ ivec[n]; | ||
231 | ivec[n] = in[n+residue]; | ||
232 | tmp.c[n] = c; | ||
233 | } | ||
234 | for(residue+=16; n<residue; ++n) | ||
235 | out[n] = tmp.c[n] ^ tmp.c[n-16]; | ||
236 | |||
237 | return 16+len+residue; | ||
129 | } | 238 | } |
130 | 239 | ||
131 | size_t CRYPTO_cts128_decrypt(const unsigned char *in, unsigned char *out, | 240 | size_t CRYPTO_cts128_decrypt(const unsigned char *in, unsigned char *out, |
@@ -160,7 +269,47 @@ size_t CRYPTO_cts128_decrypt(const unsigned char *in, unsigned char *out, | |||
160 | (*cbc)(tmp.c,tmp.c,32,key,ivec,0); | 269 | (*cbc)(tmp.c,tmp.c,32,key,ivec,0); |
161 | memcpy(out,tmp.c,16+residue); | 270 | memcpy(out,tmp.c,16+residue); |
162 | #endif | 271 | #endif |
163 | return len+residue; | 272 | return 16+len+residue; |
273 | } | ||
274 | |||
275 | size_t CRYPTO_nistcts128_decrypt(const unsigned char *in, unsigned char *out, | ||
276 | size_t len, const void *key, | ||
277 | unsigned char ivec[16], cbc128_f cbc) | ||
278 | { size_t residue, n; | ||
279 | union { size_t align; unsigned char c[32]; } tmp; | ||
280 | |||
281 | assert (in && out && key && ivec); | ||
282 | |||
283 | if (len<16) return 0; | ||
284 | |||
285 | residue=len%16; | ||
286 | |||
287 | if (residue==0) { | ||
288 | (*cbc)(in,out,len,key,ivec,0); | ||
289 | return len; | ||
290 | } | ||
291 | |||
292 | len -= 16+residue; | ||
293 | |||
294 | if (len) { | ||
295 | (*cbc)(in,out,len,key,ivec,0); | ||
296 | in += len; | ||
297 | out += len; | ||
298 | } | ||
299 | |||
300 | for (n=16; n<32; n+=sizeof(size_t)) | ||
301 | *(size_t *)(tmp.c+n) = 0; | ||
302 | /* this places in[16] at &tmp.c[16] and decrypted block at &tmp.c[0] */ | ||
303 | (*cbc)(in+residue,tmp.c,16,key,tmp.c+16,0); | ||
304 | |||
305 | memcpy(tmp.c,in,residue); | ||
306 | #if defined(CBC_HANDLES_TRUNCATED_IO) | ||
307 | (*cbc)(tmp.c,out,16+residue,key,ivec,0); | ||
308 | #else | ||
309 | (*cbc)(tmp.c,tmp.c,32,key,ivec,0); | ||
310 | memcpy(out,tmp.c,16+residue); | ||
311 | #endif | ||
312 | return 16+len+residue; | ||
164 | } | 313 | } |
165 | 314 | ||
166 | #if defined(SELFTEST) | 315 | #if defined(SELFTEST) |
@@ -200,9 +349,8 @@ static const unsigned char vector_64[64] = | |||
200 | static AES_KEY encks, decks; | 349 | static AES_KEY encks, decks; |
201 | 350 | ||
202 | void test_vector(const unsigned char *vector,size_t len) | 351 | void test_vector(const unsigned char *vector,size_t len) |
203 | { unsigned char cleartext[64]; | 352 | { unsigned char iv[sizeof(test_iv)]; |
204 | unsigned char iv[sizeof(test_iv)]; | 353 | unsigned char cleartext[64],ciphertext[64]; |
205 | unsigned char ciphertext[64]; | ||
206 | size_t tail; | 354 | size_t tail; |
207 | 355 | ||
208 | printf("vector_%d\n",len); fflush(stdout); | 356 | printf("vector_%d\n",len); fflush(stdout); |
@@ -243,7 +391,57 @@ void test_vector(const unsigned char *vector,size_t len) | |||
243 | fprintf(stderr,"iv_%d mismatch\n",len), exit(4); | 391 | fprintf(stderr,"iv_%d mismatch\n",len), exit(4); |
244 | } | 392 | } |
245 | 393 | ||
246 | main() | 394 | void test_nistvector(const unsigned char *vector,size_t len) |
395 | { unsigned char iv[sizeof(test_iv)]; | ||
396 | unsigned char cleartext[64],ciphertext[64],nistvector[64]; | ||
397 | size_t tail; | ||
398 | |||
399 | printf("nistvector_%d\n",len); fflush(stdout); | ||
400 | |||
401 | if ((tail=len%16) == 0) tail = 16; | ||
402 | |||
403 | len -= 16 + tail; | ||
404 | memcpy(nistvector,vector,len); | ||
405 | /* flip two last blocks */ | ||
406 | memcpy(nistvector+len,vector+len+16,tail); | ||
407 | memcpy(nistvector+len+tail,vector+len,16); | ||
408 | len += 16 + tail; | ||
409 | tail = 16; | ||
410 | |||
411 | /* test block-based encryption */ | ||
412 | memcpy(iv,test_iv,sizeof(test_iv)); | ||
413 | CRYPTO_nistcts128_encrypt_block(test_input,ciphertext,len,&encks,iv,(block128_f)AES_encrypt); | ||
414 | if (memcmp(ciphertext,nistvector,len)) | ||
415 | fprintf(stderr,"output_%d mismatch\n",len), exit(1); | ||
416 | if (memcmp(iv,nistvector+len-tail,sizeof(iv))) | ||
417 | fprintf(stderr,"iv_%d mismatch\n",len), exit(1); | ||
418 | |||
419 | /* test block-based decryption */ | ||
420 | memcpy(iv,test_iv,sizeof(test_iv)); | ||
421 | CRYPTO_nistcts128_decrypt_block(ciphertext,cleartext,len,&decks,iv,(block128_f)AES_decrypt); | ||
422 | if (memcmp(cleartext,test_input,len)) | ||
423 | fprintf(stderr,"input_%d mismatch\n",len), exit(2); | ||
424 | if (memcmp(iv,nistvector+len-tail,sizeof(iv))) | ||
425 | fprintf(stderr,"iv_%d mismatch\n",len), exit(2); | ||
426 | |||
427 | /* test streamed encryption */ | ||
428 | memcpy(iv,test_iv,sizeof(test_iv)); | ||
429 | CRYPTO_nistcts128_encrypt(test_input,ciphertext,len,&encks,iv,(cbc128_f)AES_cbc_encrypt); | ||
430 | if (memcmp(ciphertext,nistvector,len)) | ||
431 | fprintf(stderr,"output_%d mismatch\n",len), exit(3); | ||
432 | if (memcmp(iv,nistvector+len-tail,sizeof(iv))) | ||
433 | fprintf(stderr,"iv_%d mismatch\n",len), exit(3); | ||
434 | |||
435 | /* test streamed decryption */ | ||
436 | memcpy(iv,test_iv,sizeof(test_iv)); | ||
437 | CRYPTO_nistcts128_decrypt(ciphertext,cleartext,len,&decks,iv,(cbc128_f)AES_cbc_encrypt); | ||
438 | if (memcmp(cleartext,test_input,len)) | ||
439 | fprintf(stderr,"input_%d mismatch\n",len), exit(4); | ||
440 | if (memcmp(iv,nistvector+len-tail,sizeof(iv))) | ||
441 | fprintf(stderr,"iv_%d mismatch\n",len), exit(4); | ||
442 | } | ||
443 | |||
444 | int main() | ||
247 | { | 445 | { |
248 | AES_set_encrypt_key(test_key,128,&encks); | 446 | AES_set_encrypt_key(test_key,128,&encks); |
249 | AES_set_decrypt_key(test_key,128,&decks); | 447 | AES_set_decrypt_key(test_key,128,&decks); |
@@ -254,6 +452,14 @@ main() | |||
254 | test_vector(vector_47,sizeof(vector_47)); | 452 | test_vector(vector_47,sizeof(vector_47)); |
255 | test_vector(vector_48,sizeof(vector_48)); | 453 | test_vector(vector_48,sizeof(vector_48)); |
256 | test_vector(vector_64,sizeof(vector_64)); | 454 | test_vector(vector_64,sizeof(vector_64)); |
257 | exit(0); | 455 | |
456 | test_nistvector(vector_17,sizeof(vector_17)); | ||
457 | test_nistvector(vector_31,sizeof(vector_31)); | ||
458 | test_nistvector(vector_32,sizeof(vector_32)); | ||
459 | test_nistvector(vector_47,sizeof(vector_47)); | ||
460 | test_nistvector(vector_48,sizeof(vector_48)); | ||
461 | test_nistvector(vector_64,sizeof(vector_64)); | ||
462 | |||
463 | return 0; | ||
258 | } | 464 | } |
259 | #endif | 465 | #endif |
diff --git a/src/lib/libcrypto/modes/gcm128.c b/src/lib/libcrypto/modes/gcm128.c new file mode 100644 index 0000000000..7d6d034970 --- /dev/null +++ b/src/lib/libcrypto/modes/gcm128.c | |||
@@ -0,0 +1,1757 @@ | |||
1 | /* ==================================================================== | ||
2 | * Copyright (c) 2010 The OpenSSL Project. All rights reserved. | ||
3 | * | ||
4 | * Redistribution and use in source and binary forms, with or without | ||
5 | * modification, are permitted provided that the following conditions | ||
6 | * are met: | ||
7 | * | ||
8 | * 1. Redistributions of source code must retain the above copyright | ||
9 | * notice, this list of conditions and the following disclaimer. | ||
10 | * | ||
11 | * 2. Redistributions in binary form must reproduce the above copyright | ||
12 | * notice, this list of conditions and the following disclaimer in | ||
13 | * the documentation and/or other materials provided with the | ||
14 | * distribution. | ||
15 | * | ||
16 | * 3. All advertising materials mentioning features or use of this | ||
17 | * software must display the following acknowledgment: | ||
18 | * "This product includes software developed by the OpenSSL Project | ||
19 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | ||
20 | * | ||
21 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
22 | * endorse or promote products derived from this software without | ||
23 | * prior written permission. For written permission, please contact | ||
24 | * openssl-core@openssl.org. | ||
25 | * | ||
26 | * 5. Products derived from this software may not be called "OpenSSL" | ||
27 | * nor may "OpenSSL" appear in their names without prior written | ||
28 | * permission of the OpenSSL Project. | ||
29 | * | ||
30 | * 6. Redistributions of any form whatsoever must retain the following | ||
31 | * acknowledgment: | ||
32 | * "This product includes software developed by the OpenSSL Project | ||
33 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" | ||
34 | * | ||
35 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
36 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
37 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
38 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
39 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
40 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
41 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
42 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
43 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
44 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
45 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
46 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
47 | * ==================================================================== | ||
48 | */ | ||
49 | |||
50 | #define OPENSSL_FIPSAPI | ||
51 | |||
52 | #include <openssl/crypto.h> | ||
53 | #include "modes_lcl.h" | ||
54 | #include <string.h> | ||
55 | |||
56 | #ifndef MODES_DEBUG | ||
57 | # ifndef NDEBUG | ||
58 | # define NDEBUG | ||
59 | # endif | ||
60 | #endif | ||
61 | #include <assert.h> | ||
62 | |||
63 | #if defined(BSWAP4) && defined(STRICT_ALIGNMENT) | ||
64 | /* redefine, because alignment is ensured */ | ||
65 | #undef GETU32 | ||
66 | #define GETU32(p) BSWAP4(*(const u32 *)(p)) | ||
67 | #undef PUTU32 | ||
68 | #define PUTU32(p,v) *(u32 *)(p) = BSWAP4(v) | ||
69 | #endif | ||
70 | |||
71 | #define PACK(s) ((size_t)(s)<<(sizeof(size_t)*8-16)) | ||
72 | #define REDUCE1BIT(V) do { \ | ||
73 | if (sizeof(size_t)==8) { \ | ||
74 | u64 T = U64(0xe100000000000000) & (0-(V.lo&1)); \ | ||
75 | V.lo = (V.hi<<63)|(V.lo>>1); \ | ||
76 | V.hi = (V.hi>>1 )^T; \ | ||
77 | } \ | ||
78 | else { \ | ||
79 | u32 T = 0xe1000000U & (0-(u32)(V.lo&1)); \ | ||
80 | V.lo = (V.hi<<63)|(V.lo>>1); \ | ||
81 | V.hi = (V.hi>>1 )^((u64)T<<32); \ | ||
82 | } \ | ||
83 | } while(0) | ||
84 | |||
85 | /* | ||
86 | * Even though permitted values for TABLE_BITS are 8, 4 and 1, it should | ||
87 | * never be set to 8. 8 is effectively reserved for testing purposes. | ||
88 | * TABLE_BITS>1 are lookup-table-driven implementations referred to as | ||
89 | * "Shoup's" in GCM specification. In other words OpenSSL does not cover | ||
90 | * whole spectrum of possible table driven implementations. Why? In | ||
91 | * non-"Shoup's" case memory access pattern is segmented in such manner, | ||
92 | * that it's trivial to see that cache timing information can reveal | ||
93 | * fair portion of intermediate hash value. Given that ciphertext is | ||
94 | * always available to attacker, it's possible for him to attempt to | ||
95 | * deduce secret parameter H and if successful, tamper with messages | ||
96 | * [which is nothing but trivial in CTR mode]. In "Shoup's" case it's | ||
97 | * not as trivial, but there is no reason to believe that it's resistant | ||
98 | * to cache-timing attack. And the thing about "8-bit" implementation is | ||
99 | * that it consumes 16 (sixteen) times more memory, 4KB per individual | ||
100 | * key + 1KB shared. Well, on pros side it should be twice as fast as | ||
101 | * "4-bit" version. And for gcc-generated x86[_64] code, "8-bit" version | ||
102 | * was observed to run ~75% faster, closer to 100% for commercial | ||
103 | * compilers... Yet "4-bit" procedure is preferred, because it's | ||
104 | * believed to provide better security-performance balance and adequate | ||
105 | * all-round performance. "All-round" refers to things like: | ||
106 | * | ||
107 | * - shorter setup time effectively improves overall timing for | ||
108 | * handling short messages; | ||
109 | * - larger table allocation can become unbearable because of VM | ||
110 | * subsystem penalties (for example on Windows large enough free | ||
111 | * results in VM working set trimming, meaning that consequent | ||
112 | * malloc would immediately incur working set expansion); | ||
113 | * - larger table has larger cache footprint, which can affect | ||
114 | * performance of other code paths (not necessarily even from same | ||
115 | * thread in Hyper-Threading world); | ||
116 | * | ||
117 | * Value of 1 is not appropriate for performance reasons. | ||
118 | */ | ||
119 | #if TABLE_BITS==8 | ||
120 | |||
121 | static void gcm_init_8bit(u128 Htable[256], u64 H[2]) | ||
122 | { | ||
123 | int i, j; | ||
124 | u128 V; | ||
125 | |||
126 | Htable[0].hi = 0; | ||
127 | Htable[0].lo = 0; | ||
128 | V.hi = H[0]; | ||
129 | V.lo = H[1]; | ||
130 | |||
131 | for (Htable[128]=V, i=64; i>0; i>>=1) { | ||
132 | REDUCE1BIT(V); | ||
133 | Htable[i] = V; | ||
134 | } | ||
135 | |||
136 | for (i=2; i<256; i<<=1) { | ||
137 | u128 *Hi = Htable+i, H0 = *Hi; | ||
138 | for (j=1; j<i; ++j) { | ||
139 | Hi[j].hi = H0.hi^Htable[j].hi; | ||
140 | Hi[j].lo = H0.lo^Htable[j].lo; | ||
141 | } | ||
142 | } | ||
143 | } | ||
144 | |||
145 | static void gcm_gmult_8bit(u64 Xi[2], const u128 Htable[256]) | ||
146 | { | ||
147 | u128 Z = { 0, 0}; | ||
148 | const u8 *xi = (const u8 *)Xi+15; | ||
149 | size_t rem, n = *xi; | ||
150 | const union { long one; char little; } is_endian = {1}; | ||
151 | static const size_t rem_8bit[256] = { | ||
152 | PACK(0x0000), PACK(0x01C2), PACK(0x0384), PACK(0x0246), | ||
153 | PACK(0x0708), PACK(0x06CA), PACK(0x048C), PACK(0x054E), | ||
154 | PACK(0x0E10), PACK(0x0FD2), PACK(0x0D94), PACK(0x0C56), | ||
155 | PACK(0x0918), PACK(0x08DA), PACK(0x0A9C), PACK(0x0B5E), | ||
156 | PACK(0x1C20), PACK(0x1DE2), PACK(0x1FA4), PACK(0x1E66), | ||
157 | PACK(0x1B28), PACK(0x1AEA), PACK(0x18AC), PACK(0x196E), | ||
158 | PACK(0x1230), PACK(0x13F2), PACK(0x11B4), PACK(0x1076), | ||
159 | PACK(0x1538), PACK(0x14FA), PACK(0x16BC), PACK(0x177E), | ||
160 | PACK(0x3840), PACK(0x3982), PACK(0x3BC4), PACK(0x3A06), | ||
161 | PACK(0x3F48), PACK(0x3E8A), PACK(0x3CCC), PACK(0x3D0E), | ||
162 | PACK(0x3650), PACK(0x3792), PACK(0x35D4), PACK(0x3416), | ||
163 | PACK(0x3158), PACK(0x309A), PACK(0x32DC), PACK(0x331E), | ||
164 | PACK(0x2460), PACK(0x25A2), PACK(0x27E4), PACK(0x2626), | ||
165 | PACK(0x2368), PACK(0x22AA), PACK(0x20EC), PACK(0x212E), | ||
166 | PACK(0x2A70), PACK(0x2BB2), PACK(0x29F4), PACK(0x2836), | ||
167 | PACK(0x2D78), PACK(0x2CBA), PACK(0x2EFC), PACK(0x2F3E), | ||
168 | PACK(0x7080), PACK(0x7142), PACK(0x7304), PACK(0x72C6), | ||
169 | PACK(0x7788), PACK(0x764A), PACK(0x740C), PACK(0x75CE), | ||
170 | PACK(0x7E90), PACK(0x7F52), PACK(0x7D14), PACK(0x7CD6), | ||
171 | PACK(0x7998), PACK(0x785A), PACK(0x7A1C), PACK(0x7BDE), | ||
172 | PACK(0x6CA0), PACK(0x6D62), PACK(0x6F24), PACK(0x6EE6), | ||
173 | PACK(0x6BA8), PACK(0x6A6A), PACK(0x682C), PACK(0x69EE), | ||
174 | PACK(0x62B0), PACK(0x6372), PACK(0x6134), PACK(0x60F6), | ||
175 | PACK(0x65B8), PACK(0x647A), PACK(0x663C), PACK(0x67FE), | ||
176 | PACK(0x48C0), PACK(0x4902), PACK(0x4B44), PACK(0x4A86), | ||
177 | PACK(0x4FC8), PACK(0x4E0A), PACK(0x4C4C), PACK(0x4D8E), | ||
178 | PACK(0x46D0), PACK(0x4712), PACK(0x4554), PACK(0x4496), | ||
179 | PACK(0x41D8), PACK(0x401A), PACK(0x425C), PACK(0x439E), | ||
180 | PACK(0x54E0), PACK(0x5522), PACK(0x5764), PACK(0x56A6), | ||
181 | PACK(0x53E8), PACK(0x522A), PACK(0x506C), PACK(0x51AE), | ||
182 | PACK(0x5AF0), PACK(0x5B32), PACK(0x5974), PACK(0x58B6), | ||
183 | PACK(0x5DF8), PACK(0x5C3A), PACK(0x5E7C), PACK(0x5FBE), | ||
184 | PACK(0xE100), PACK(0xE0C2), PACK(0xE284), PACK(0xE346), | ||
185 | PACK(0xE608), PACK(0xE7CA), PACK(0xE58C), PACK(0xE44E), | ||
186 | PACK(0xEF10), PACK(0xEED2), PACK(0xEC94), PACK(0xED56), | ||
187 | PACK(0xE818), PACK(0xE9DA), PACK(0xEB9C), PACK(0xEA5E), | ||
188 | PACK(0xFD20), PACK(0xFCE2), PACK(0xFEA4), PACK(0xFF66), | ||
189 | PACK(0xFA28), PACK(0xFBEA), PACK(0xF9AC), PACK(0xF86E), | ||
190 | PACK(0xF330), PACK(0xF2F2), PACK(0xF0B4), PACK(0xF176), | ||
191 | PACK(0xF438), PACK(0xF5FA), PACK(0xF7BC), PACK(0xF67E), | ||
192 | PACK(0xD940), PACK(0xD882), PACK(0xDAC4), PACK(0xDB06), | ||
193 | PACK(0xDE48), PACK(0xDF8A), PACK(0xDDCC), PACK(0xDC0E), | ||
194 | PACK(0xD750), PACK(0xD692), PACK(0xD4D4), PACK(0xD516), | ||
195 | PACK(0xD058), PACK(0xD19A), PACK(0xD3DC), PACK(0xD21E), | ||
196 | PACK(0xC560), PACK(0xC4A2), PACK(0xC6E4), PACK(0xC726), | ||
197 | PACK(0xC268), PACK(0xC3AA), PACK(0xC1EC), PACK(0xC02E), | ||
198 | PACK(0xCB70), PACK(0xCAB2), PACK(0xC8F4), PACK(0xC936), | ||
199 | PACK(0xCC78), PACK(0xCDBA), PACK(0xCFFC), PACK(0xCE3E), | ||
200 | PACK(0x9180), PACK(0x9042), PACK(0x9204), PACK(0x93C6), | ||
201 | PACK(0x9688), PACK(0x974A), PACK(0x950C), PACK(0x94CE), | ||
202 | PACK(0x9F90), PACK(0x9E52), PACK(0x9C14), PACK(0x9DD6), | ||
203 | PACK(0x9898), PACK(0x995A), PACK(0x9B1C), PACK(0x9ADE), | ||
204 | PACK(0x8DA0), PACK(0x8C62), PACK(0x8E24), PACK(0x8FE6), | ||
205 | PACK(0x8AA8), PACK(0x8B6A), PACK(0x892C), PACK(0x88EE), | ||
206 | PACK(0x83B0), PACK(0x8272), PACK(0x8034), PACK(0x81F6), | ||
207 | PACK(0x84B8), PACK(0x857A), PACK(0x873C), PACK(0x86FE), | ||
208 | PACK(0xA9C0), PACK(0xA802), PACK(0xAA44), PACK(0xAB86), | ||
209 | PACK(0xAEC8), PACK(0xAF0A), PACK(0xAD4C), PACK(0xAC8E), | ||
210 | PACK(0xA7D0), PACK(0xA612), PACK(0xA454), PACK(0xA596), | ||
211 | PACK(0xA0D8), PACK(0xA11A), PACK(0xA35C), PACK(0xA29E), | ||
212 | PACK(0xB5E0), PACK(0xB422), PACK(0xB664), PACK(0xB7A6), | ||
213 | PACK(0xB2E8), PACK(0xB32A), PACK(0xB16C), PACK(0xB0AE), | ||
214 | PACK(0xBBF0), PACK(0xBA32), PACK(0xB874), PACK(0xB9B6), | ||
215 | PACK(0xBCF8), PACK(0xBD3A), PACK(0xBF7C), PACK(0xBEBE) }; | ||
216 | |||
217 | while (1) { | ||
218 | Z.hi ^= Htable[n].hi; | ||
219 | Z.lo ^= Htable[n].lo; | ||
220 | |||
221 | if ((u8 *)Xi==xi) break; | ||
222 | |||
223 | n = *(--xi); | ||
224 | |||
225 | rem = (size_t)Z.lo&0xff; | ||
226 | Z.lo = (Z.hi<<56)|(Z.lo>>8); | ||
227 | Z.hi = (Z.hi>>8); | ||
228 | if (sizeof(size_t)==8) | ||
229 | Z.hi ^= rem_8bit[rem]; | ||
230 | else | ||
231 | Z.hi ^= (u64)rem_8bit[rem]<<32; | ||
232 | } | ||
233 | |||
234 | if (is_endian.little) { | ||
235 | #ifdef BSWAP8 | ||
236 | Xi[0] = BSWAP8(Z.hi); | ||
237 | Xi[1] = BSWAP8(Z.lo); | ||
238 | #else | ||
239 | u8 *p = (u8 *)Xi; | ||
240 | u32 v; | ||
241 | v = (u32)(Z.hi>>32); PUTU32(p,v); | ||
242 | v = (u32)(Z.hi); PUTU32(p+4,v); | ||
243 | v = (u32)(Z.lo>>32); PUTU32(p+8,v); | ||
244 | v = (u32)(Z.lo); PUTU32(p+12,v); | ||
245 | #endif | ||
246 | } | ||
247 | else { | ||
248 | Xi[0] = Z.hi; | ||
249 | Xi[1] = Z.lo; | ||
250 | } | ||
251 | } | ||
252 | #define GCM_MUL(ctx,Xi) gcm_gmult_8bit(ctx->Xi.u,ctx->Htable) | ||
253 | |||
254 | #elif TABLE_BITS==4 | ||
255 | |||
256 | static void gcm_init_4bit(u128 Htable[16], u64 H[2]) | ||
257 | { | ||
258 | u128 V; | ||
259 | #if defined(OPENSSL_SMALL_FOOTPRINT) | ||
260 | int i; | ||
261 | #endif | ||
262 | |||
263 | Htable[0].hi = 0; | ||
264 | Htable[0].lo = 0; | ||
265 | V.hi = H[0]; | ||
266 | V.lo = H[1]; | ||
267 | |||
268 | #if defined(OPENSSL_SMALL_FOOTPRINT) | ||
269 | for (Htable[8]=V, i=4; i>0; i>>=1) { | ||
270 | REDUCE1BIT(V); | ||
271 | Htable[i] = V; | ||
272 | } | ||
273 | |||
274 | for (i=2; i<16; i<<=1) { | ||
275 | u128 *Hi = Htable+i; | ||
276 | int j; | ||
277 | for (V=*Hi, j=1; j<i; ++j) { | ||
278 | Hi[j].hi = V.hi^Htable[j].hi; | ||
279 | Hi[j].lo = V.lo^Htable[j].lo; | ||
280 | } | ||
281 | } | ||
282 | #else | ||
283 | Htable[8] = V; | ||
284 | REDUCE1BIT(V); | ||
285 | Htable[4] = V; | ||
286 | REDUCE1BIT(V); | ||
287 | Htable[2] = V; | ||
288 | REDUCE1BIT(V); | ||
289 | Htable[1] = V; | ||
290 | Htable[3].hi = V.hi^Htable[2].hi, Htable[3].lo = V.lo^Htable[2].lo; | ||
291 | V=Htable[4]; | ||
292 | Htable[5].hi = V.hi^Htable[1].hi, Htable[5].lo = V.lo^Htable[1].lo; | ||
293 | Htable[6].hi = V.hi^Htable[2].hi, Htable[6].lo = V.lo^Htable[2].lo; | ||
294 | Htable[7].hi = V.hi^Htable[3].hi, Htable[7].lo = V.lo^Htable[3].lo; | ||
295 | V=Htable[8]; | ||
296 | Htable[9].hi = V.hi^Htable[1].hi, Htable[9].lo = V.lo^Htable[1].lo; | ||
297 | Htable[10].hi = V.hi^Htable[2].hi, Htable[10].lo = V.lo^Htable[2].lo; | ||
298 | Htable[11].hi = V.hi^Htable[3].hi, Htable[11].lo = V.lo^Htable[3].lo; | ||
299 | Htable[12].hi = V.hi^Htable[4].hi, Htable[12].lo = V.lo^Htable[4].lo; | ||
300 | Htable[13].hi = V.hi^Htable[5].hi, Htable[13].lo = V.lo^Htable[5].lo; | ||
301 | Htable[14].hi = V.hi^Htable[6].hi, Htable[14].lo = V.lo^Htable[6].lo; | ||
302 | Htable[15].hi = V.hi^Htable[7].hi, Htable[15].lo = V.lo^Htable[7].lo; | ||
303 | #endif | ||
304 | #if defined(GHASH_ASM) && (defined(__arm__) || defined(__arm)) | ||
305 | /* | ||
306 | * ARM assembler expects specific dword order in Htable. | ||
307 | */ | ||
308 | { | ||
309 | int j; | ||
310 | const union { long one; char little; } is_endian = {1}; | ||
311 | |||
312 | if (is_endian.little) | ||
313 | for (j=0;j<16;++j) { | ||
314 | V = Htable[j]; | ||
315 | Htable[j].hi = V.lo; | ||
316 | Htable[j].lo = V.hi; | ||
317 | } | ||
318 | else | ||
319 | for (j=0;j<16;++j) { | ||
320 | V = Htable[j]; | ||
321 | Htable[j].hi = V.lo<<32|V.lo>>32; | ||
322 | Htable[j].lo = V.hi<<32|V.hi>>32; | ||
323 | } | ||
324 | } | ||
325 | #endif | ||
326 | } | ||
327 | |||
328 | #ifndef GHASH_ASM | ||
329 | static const size_t rem_4bit[16] = { | ||
330 | PACK(0x0000), PACK(0x1C20), PACK(0x3840), PACK(0x2460), | ||
331 | PACK(0x7080), PACK(0x6CA0), PACK(0x48C0), PACK(0x54E0), | ||
332 | PACK(0xE100), PACK(0xFD20), PACK(0xD940), PACK(0xC560), | ||
333 | PACK(0x9180), PACK(0x8DA0), PACK(0xA9C0), PACK(0xB5E0) }; | ||
334 | |||
335 | static void gcm_gmult_4bit(u64 Xi[2], const u128 Htable[16]) | ||
336 | { | ||
337 | u128 Z; | ||
338 | int cnt = 15; | ||
339 | size_t rem, nlo, nhi; | ||
340 | const union { long one; char little; } is_endian = {1}; | ||
341 | |||
342 | nlo = ((const u8 *)Xi)[15]; | ||
343 | nhi = nlo>>4; | ||
344 | nlo &= 0xf; | ||
345 | |||
346 | Z.hi = Htable[nlo].hi; | ||
347 | Z.lo = Htable[nlo].lo; | ||
348 | |||
349 | while (1) { | ||
350 | rem = (size_t)Z.lo&0xf; | ||
351 | Z.lo = (Z.hi<<60)|(Z.lo>>4); | ||
352 | Z.hi = (Z.hi>>4); | ||
353 | if (sizeof(size_t)==8) | ||
354 | Z.hi ^= rem_4bit[rem]; | ||
355 | else | ||
356 | Z.hi ^= (u64)rem_4bit[rem]<<32; | ||
357 | |||
358 | Z.hi ^= Htable[nhi].hi; | ||
359 | Z.lo ^= Htable[nhi].lo; | ||
360 | |||
361 | if (--cnt<0) break; | ||
362 | |||
363 | nlo = ((const u8 *)Xi)[cnt]; | ||
364 | nhi = nlo>>4; | ||
365 | nlo &= 0xf; | ||
366 | |||
367 | rem = (size_t)Z.lo&0xf; | ||
368 | Z.lo = (Z.hi<<60)|(Z.lo>>4); | ||
369 | Z.hi = (Z.hi>>4); | ||
370 | if (sizeof(size_t)==8) | ||
371 | Z.hi ^= rem_4bit[rem]; | ||
372 | else | ||
373 | Z.hi ^= (u64)rem_4bit[rem]<<32; | ||
374 | |||
375 | Z.hi ^= Htable[nlo].hi; | ||
376 | Z.lo ^= Htable[nlo].lo; | ||
377 | } | ||
378 | |||
379 | if (is_endian.little) { | ||
380 | #ifdef BSWAP8 | ||
381 | Xi[0] = BSWAP8(Z.hi); | ||
382 | Xi[1] = BSWAP8(Z.lo); | ||
383 | #else | ||
384 | u8 *p = (u8 *)Xi; | ||
385 | u32 v; | ||
386 | v = (u32)(Z.hi>>32); PUTU32(p,v); | ||
387 | v = (u32)(Z.hi); PUTU32(p+4,v); | ||
388 | v = (u32)(Z.lo>>32); PUTU32(p+8,v); | ||
389 | v = (u32)(Z.lo); PUTU32(p+12,v); | ||
390 | #endif | ||
391 | } | ||
392 | else { | ||
393 | Xi[0] = Z.hi; | ||
394 | Xi[1] = Z.lo; | ||
395 | } | ||
396 | } | ||
397 | |||
398 | #if !defined(OPENSSL_SMALL_FOOTPRINT) | ||
399 | /* | ||
400 | * Streamed gcm_mult_4bit, see CRYPTO_gcm128_[en|de]crypt for | ||
401 | * details... Compiler-generated code doesn't seem to give any | ||
402 | * performance improvement, at least not on x86[_64]. It's here | ||
403 | * mostly as reference and a placeholder for possible future | ||
404 | * non-trivial optimization[s]... | ||
405 | */ | ||
406 | static void gcm_ghash_4bit(u64 Xi[2],const u128 Htable[16], | ||
407 | const u8 *inp,size_t len) | ||
408 | { | ||
409 | u128 Z; | ||
410 | int cnt; | ||
411 | size_t rem, nlo, nhi; | ||
412 | const union { long one; char little; } is_endian = {1}; | ||
413 | |||
414 | #if 1 | ||
415 | do { | ||
416 | cnt = 15; | ||
417 | nlo = ((const u8 *)Xi)[15]; | ||
418 | nlo ^= inp[15]; | ||
419 | nhi = nlo>>4; | ||
420 | nlo &= 0xf; | ||
421 | |||
422 | Z.hi = Htable[nlo].hi; | ||
423 | Z.lo = Htable[nlo].lo; | ||
424 | |||
425 | while (1) { | ||
426 | rem = (size_t)Z.lo&0xf; | ||
427 | Z.lo = (Z.hi<<60)|(Z.lo>>4); | ||
428 | Z.hi = (Z.hi>>4); | ||
429 | if (sizeof(size_t)==8) | ||
430 | Z.hi ^= rem_4bit[rem]; | ||
431 | else | ||
432 | Z.hi ^= (u64)rem_4bit[rem]<<32; | ||
433 | |||
434 | Z.hi ^= Htable[nhi].hi; | ||
435 | Z.lo ^= Htable[nhi].lo; | ||
436 | |||
437 | if (--cnt<0) break; | ||
438 | |||
439 | nlo = ((const u8 *)Xi)[cnt]; | ||
440 | nlo ^= inp[cnt]; | ||
441 | nhi = nlo>>4; | ||
442 | nlo &= 0xf; | ||
443 | |||
444 | rem = (size_t)Z.lo&0xf; | ||
445 | Z.lo = (Z.hi<<60)|(Z.lo>>4); | ||
446 | Z.hi = (Z.hi>>4); | ||
447 | if (sizeof(size_t)==8) | ||
448 | Z.hi ^= rem_4bit[rem]; | ||
449 | else | ||
450 | Z.hi ^= (u64)rem_4bit[rem]<<32; | ||
451 | |||
452 | Z.hi ^= Htable[nlo].hi; | ||
453 | Z.lo ^= Htable[nlo].lo; | ||
454 | } | ||
455 | #else | ||
456 | /* | ||
457 | * Extra 256+16 bytes per-key plus 512 bytes shared tables | ||
458 | * [should] give ~50% improvement... One could have PACK()-ed | ||
459 | * the rem_8bit even here, but the priority is to minimize | ||
460 | * cache footprint... | ||
461 | */ | ||
462 | u128 Hshr4[16]; /* Htable shifted right by 4 bits */ | ||
463 | u8 Hshl4[16]; /* Htable shifted left by 4 bits */ | ||
464 | static const unsigned short rem_8bit[256] = { | ||
465 | 0x0000, 0x01C2, 0x0384, 0x0246, 0x0708, 0x06CA, 0x048C, 0x054E, | ||
466 | 0x0E10, 0x0FD2, 0x0D94, 0x0C56, 0x0918, 0x08DA, 0x0A9C, 0x0B5E, | ||
467 | 0x1C20, 0x1DE2, 0x1FA4, 0x1E66, 0x1B28, 0x1AEA, 0x18AC, 0x196E, | ||
468 | 0x1230, 0x13F2, 0x11B4, 0x1076, 0x1538, 0x14FA, 0x16BC, 0x177E, | ||
469 | 0x3840, 0x3982, 0x3BC4, 0x3A06, 0x3F48, 0x3E8A, 0x3CCC, 0x3D0E, | ||
470 | 0x3650, 0x3792, 0x35D4, 0x3416, 0x3158, 0x309A, 0x32DC, 0x331E, | ||
471 | 0x2460, 0x25A2, 0x27E4, 0x2626, 0x2368, 0x22AA, 0x20EC, 0x212E, | ||
472 | 0x2A70, 0x2BB2, 0x29F4, 0x2836, 0x2D78, 0x2CBA, 0x2EFC, 0x2F3E, | ||
473 | 0x7080, 0x7142, 0x7304, 0x72C6, 0x7788, 0x764A, 0x740C, 0x75CE, | ||
474 | 0x7E90, 0x7F52, 0x7D14, 0x7CD6, 0x7998, 0x785A, 0x7A1C, 0x7BDE, | ||
475 | 0x6CA0, 0x6D62, 0x6F24, 0x6EE6, 0x6BA8, 0x6A6A, 0x682C, 0x69EE, | ||
476 | 0x62B0, 0x6372, 0x6134, 0x60F6, 0x65B8, 0x647A, 0x663C, 0x67FE, | ||
477 | 0x48C0, 0x4902, 0x4B44, 0x4A86, 0x4FC8, 0x4E0A, 0x4C4C, 0x4D8E, | ||
478 | 0x46D0, 0x4712, 0x4554, 0x4496, 0x41D8, 0x401A, 0x425C, 0x439E, | ||
479 | 0x54E0, 0x5522, 0x5764, 0x56A6, 0x53E8, 0x522A, 0x506C, 0x51AE, | ||
480 | 0x5AF0, 0x5B32, 0x5974, 0x58B6, 0x5DF8, 0x5C3A, 0x5E7C, 0x5FBE, | ||
481 | 0xE100, 0xE0C2, 0xE284, 0xE346, 0xE608, 0xE7CA, 0xE58C, 0xE44E, | ||
482 | 0xEF10, 0xEED2, 0xEC94, 0xED56, 0xE818, 0xE9DA, 0xEB9C, 0xEA5E, | ||
483 | 0xFD20, 0xFCE2, 0xFEA4, 0xFF66, 0xFA28, 0xFBEA, 0xF9AC, 0xF86E, | ||
484 | 0xF330, 0xF2F2, 0xF0B4, 0xF176, 0xF438, 0xF5FA, 0xF7BC, 0xF67E, | ||
485 | 0xD940, 0xD882, 0xDAC4, 0xDB06, 0xDE48, 0xDF8A, 0xDDCC, 0xDC0E, | ||
486 | 0xD750, 0xD692, 0xD4D4, 0xD516, 0xD058, 0xD19A, 0xD3DC, 0xD21E, | ||
487 | 0xC560, 0xC4A2, 0xC6E4, 0xC726, 0xC268, 0xC3AA, 0xC1EC, 0xC02E, | ||
488 | 0xCB70, 0xCAB2, 0xC8F4, 0xC936, 0xCC78, 0xCDBA, 0xCFFC, 0xCE3E, | ||
489 | 0x9180, 0x9042, 0x9204, 0x93C6, 0x9688, 0x974A, 0x950C, 0x94CE, | ||
490 | 0x9F90, 0x9E52, 0x9C14, 0x9DD6, 0x9898, 0x995A, 0x9B1C, 0x9ADE, | ||
491 | 0x8DA0, 0x8C62, 0x8E24, 0x8FE6, 0x8AA8, 0x8B6A, 0x892C, 0x88EE, | ||
492 | 0x83B0, 0x8272, 0x8034, 0x81F6, 0x84B8, 0x857A, 0x873C, 0x86FE, | ||
493 | 0xA9C0, 0xA802, 0xAA44, 0xAB86, 0xAEC8, 0xAF0A, 0xAD4C, 0xAC8E, | ||
494 | 0xA7D0, 0xA612, 0xA454, 0xA596, 0xA0D8, 0xA11A, 0xA35C, 0xA29E, | ||
495 | 0xB5E0, 0xB422, 0xB664, 0xB7A6, 0xB2E8, 0xB32A, 0xB16C, 0xB0AE, | ||
496 | 0xBBF0, 0xBA32, 0xB874, 0xB9B6, 0xBCF8, 0xBD3A, 0xBF7C, 0xBEBE }; | ||
497 | /* | ||
498 | * This pre-processing phase slows down procedure by approximately | ||
499 | * same time as it makes each loop spin faster. In other words | ||
500 | * single block performance is approximately same as straightforward | ||
501 | * "4-bit" implementation, and then it goes only faster... | ||
502 | */ | ||
503 | for (cnt=0; cnt<16; ++cnt) { | ||
504 | Z.hi = Htable[cnt].hi; | ||
505 | Z.lo = Htable[cnt].lo; | ||
506 | Hshr4[cnt].lo = (Z.hi<<60)|(Z.lo>>4); | ||
507 | Hshr4[cnt].hi = (Z.hi>>4); | ||
508 | Hshl4[cnt] = (u8)(Z.lo<<4); | ||
509 | } | ||
510 | |||
511 | do { | ||
512 | for (Z.lo=0, Z.hi=0, cnt=15; cnt; --cnt) { | ||
513 | nlo = ((const u8 *)Xi)[cnt]; | ||
514 | nlo ^= inp[cnt]; | ||
515 | nhi = nlo>>4; | ||
516 | nlo &= 0xf; | ||
517 | |||
518 | Z.hi ^= Htable[nlo].hi; | ||
519 | Z.lo ^= Htable[nlo].lo; | ||
520 | |||
521 | rem = (size_t)Z.lo&0xff; | ||
522 | |||
523 | Z.lo = (Z.hi<<56)|(Z.lo>>8); | ||
524 | Z.hi = (Z.hi>>8); | ||
525 | |||
526 | Z.hi ^= Hshr4[nhi].hi; | ||
527 | Z.lo ^= Hshr4[nhi].lo; | ||
528 | Z.hi ^= (u64)rem_8bit[rem^Hshl4[nhi]]<<48; | ||
529 | } | ||
530 | |||
531 | nlo = ((const u8 *)Xi)[0]; | ||
532 | nlo ^= inp[0]; | ||
533 | nhi = nlo>>4; | ||
534 | nlo &= 0xf; | ||
535 | |||
536 | Z.hi ^= Htable[nlo].hi; | ||
537 | Z.lo ^= Htable[nlo].lo; | ||
538 | |||
539 | rem = (size_t)Z.lo&0xf; | ||
540 | |||
541 | Z.lo = (Z.hi<<60)|(Z.lo>>4); | ||
542 | Z.hi = (Z.hi>>4); | ||
543 | |||
544 | Z.hi ^= Htable[nhi].hi; | ||
545 | Z.lo ^= Htable[nhi].lo; | ||
546 | Z.hi ^= ((u64)rem_8bit[rem<<4])<<48; | ||
547 | #endif | ||
548 | |||
549 | if (is_endian.little) { | ||
550 | #ifdef BSWAP8 | ||
551 | Xi[0] = BSWAP8(Z.hi); | ||
552 | Xi[1] = BSWAP8(Z.lo); | ||
553 | #else | ||
554 | u8 *p = (u8 *)Xi; | ||
555 | u32 v; | ||
556 | v = (u32)(Z.hi>>32); PUTU32(p,v); | ||
557 | v = (u32)(Z.hi); PUTU32(p+4,v); | ||
558 | v = (u32)(Z.lo>>32); PUTU32(p+8,v); | ||
559 | v = (u32)(Z.lo); PUTU32(p+12,v); | ||
560 | #endif | ||
561 | } | ||
562 | else { | ||
563 | Xi[0] = Z.hi; | ||
564 | Xi[1] = Z.lo; | ||
565 | } | ||
566 | } while (inp+=16, len-=16); | ||
567 | } | ||
568 | #endif | ||
569 | #else | ||
570 | void gcm_gmult_4bit(u64 Xi[2],const u128 Htable[16]); | ||
571 | void gcm_ghash_4bit(u64 Xi[2],const u128 Htable[16],const u8 *inp,size_t len); | ||
572 | #endif | ||
573 | |||
574 | #define GCM_MUL(ctx,Xi) gcm_gmult_4bit(ctx->Xi.u,ctx->Htable) | ||
575 | #if defined(GHASH_ASM) || !defined(OPENSSL_SMALL_FOOTPRINT) | ||
576 | #define GHASH(ctx,in,len) gcm_ghash_4bit((ctx)->Xi.u,(ctx)->Htable,in,len) | ||
577 | /* GHASH_CHUNK is "stride parameter" missioned to mitigate cache | ||
578 | * trashing effect. In other words idea is to hash data while it's | ||
579 | * still in L1 cache after encryption pass... */ | ||
580 | #define GHASH_CHUNK (3*1024) | ||
581 | #endif | ||
582 | |||
583 | #else /* TABLE_BITS */ | ||
584 | |||
585 | static void gcm_gmult_1bit(u64 Xi[2],const u64 H[2]) | ||
586 | { | ||
587 | u128 V,Z = { 0,0 }; | ||
588 | long X; | ||
589 | int i,j; | ||
590 | const long *xi = (const long *)Xi; | ||
591 | const union { long one; char little; } is_endian = {1}; | ||
592 | |||
593 | V.hi = H[0]; /* H is in host byte order, no byte swapping */ | ||
594 | V.lo = H[1]; | ||
595 | |||
596 | for (j=0; j<16/sizeof(long); ++j) { | ||
597 | if (is_endian.little) { | ||
598 | if (sizeof(long)==8) { | ||
599 | #ifdef BSWAP8 | ||
600 | X = (long)(BSWAP8(xi[j])); | ||
601 | #else | ||
602 | const u8 *p = (const u8 *)(xi+j); | ||
603 | X = (long)((u64)GETU32(p)<<32|GETU32(p+4)); | ||
604 | #endif | ||
605 | } | ||
606 | else { | ||
607 | const u8 *p = (const u8 *)(xi+j); | ||
608 | X = (long)GETU32(p); | ||
609 | } | ||
610 | } | ||
611 | else | ||
612 | X = xi[j]; | ||
613 | |||
614 | for (i=0; i<8*sizeof(long); ++i, X<<=1) { | ||
615 | u64 M = (u64)(X>>(8*sizeof(long)-1)); | ||
616 | Z.hi ^= V.hi&M; | ||
617 | Z.lo ^= V.lo&M; | ||
618 | |||
619 | REDUCE1BIT(V); | ||
620 | } | ||
621 | } | ||
622 | |||
623 | if (is_endian.little) { | ||
624 | #ifdef BSWAP8 | ||
625 | Xi[0] = BSWAP8(Z.hi); | ||
626 | Xi[1] = BSWAP8(Z.lo); | ||
627 | #else | ||
628 | u8 *p = (u8 *)Xi; | ||
629 | u32 v; | ||
630 | v = (u32)(Z.hi>>32); PUTU32(p,v); | ||
631 | v = (u32)(Z.hi); PUTU32(p+4,v); | ||
632 | v = (u32)(Z.lo>>32); PUTU32(p+8,v); | ||
633 | v = (u32)(Z.lo); PUTU32(p+12,v); | ||
634 | #endif | ||
635 | } | ||
636 | else { | ||
637 | Xi[0] = Z.hi; | ||
638 | Xi[1] = Z.lo; | ||
639 | } | ||
640 | } | ||
641 | #define GCM_MUL(ctx,Xi) gcm_gmult_1bit(ctx->Xi.u,ctx->H.u) | ||
642 | |||
643 | #endif | ||
644 | |||
645 | #if TABLE_BITS==4 && defined(GHASH_ASM) | ||
646 | # if !defined(I386_ONLY) && \ | ||
647 | (defined(__i386) || defined(__i386__) || \ | ||
648 | defined(__x86_64) || defined(__x86_64__) || \ | ||
649 | defined(_M_IX86) || defined(_M_AMD64) || defined(_M_X64)) | ||
650 | # define GHASH_ASM_X86_OR_64 | ||
651 | # define GCM_FUNCREF_4BIT | ||
652 | extern unsigned int OPENSSL_ia32cap_P[2]; | ||
653 | |||
654 | void gcm_init_clmul(u128 Htable[16],const u64 Xi[2]); | ||
655 | void gcm_gmult_clmul(u64 Xi[2],const u128 Htable[16]); | ||
656 | void gcm_ghash_clmul(u64 Xi[2],const u128 Htable[16],const u8 *inp,size_t len); | ||
657 | |||
658 | # if defined(__i386) || defined(__i386__) || defined(_M_IX86) | ||
659 | # define GHASH_ASM_X86 | ||
660 | void gcm_gmult_4bit_mmx(u64 Xi[2],const u128 Htable[16]); | ||
661 | void gcm_ghash_4bit_mmx(u64 Xi[2],const u128 Htable[16],const u8 *inp,size_t len); | ||
662 | |||
663 | void gcm_gmult_4bit_x86(u64 Xi[2],const u128 Htable[16]); | ||
664 | void gcm_ghash_4bit_x86(u64 Xi[2],const u128 Htable[16],const u8 *inp,size_t len); | ||
665 | # endif | ||
666 | # elif defined(__arm__) || defined(__arm) | ||
667 | # include "arm_arch.h" | ||
668 | # if __ARM_ARCH__>=7 | ||
669 | # define GHASH_ASM_ARM | ||
670 | # define GCM_FUNCREF_4BIT | ||
671 | void gcm_gmult_neon(u64 Xi[2],const u128 Htable[16]); | ||
672 | void gcm_ghash_neon(u64 Xi[2],const u128 Htable[16],const u8 *inp,size_t len); | ||
673 | # endif | ||
674 | # endif | ||
675 | #endif | ||
676 | |||
677 | #ifdef GCM_FUNCREF_4BIT | ||
678 | # undef GCM_MUL | ||
679 | # define GCM_MUL(ctx,Xi) (*gcm_gmult_p)(ctx->Xi.u,ctx->Htable) | ||
680 | # ifdef GHASH | ||
681 | # undef GHASH | ||
682 | # define GHASH(ctx,in,len) (*gcm_ghash_p)(ctx->Xi.u,ctx->Htable,in,len) | ||
683 | # endif | ||
684 | #endif | ||
685 | |||
686 | void CRYPTO_gcm128_init(GCM128_CONTEXT *ctx,void *key,block128_f block) | ||
687 | { | ||
688 | const union { long one; char little; } is_endian = {1}; | ||
689 | |||
690 | memset(ctx,0,sizeof(*ctx)); | ||
691 | ctx->block = block; | ||
692 | ctx->key = key; | ||
693 | |||
694 | (*block)(ctx->H.c,ctx->H.c,key); | ||
695 | |||
696 | if (is_endian.little) { | ||
697 | /* H is stored in host byte order */ | ||
698 | #ifdef BSWAP8 | ||
699 | ctx->H.u[0] = BSWAP8(ctx->H.u[0]); | ||
700 | ctx->H.u[1] = BSWAP8(ctx->H.u[1]); | ||
701 | #else | ||
702 | u8 *p = ctx->H.c; | ||
703 | u64 hi,lo; | ||
704 | hi = (u64)GETU32(p) <<32|GETU32(p+4); | ||
705 | lo = (u64)GETU32(p+8)<<32|GETU32(p+12); | ||
706 | ctx->H.u[0] = hi; | ||
707 | ctx->H.u[1] = lo; | ||
708 | #endif | ||
709 | } | ||
710 | |||
711 | #if TABLE_BITS==8 | ||
712 | gcm_init_8bit(ctx->Htable,ctx->H.u); | ||
713 | #elif TABLE_BITS==4 | ||
714 | # if defined(GHASH_ASM_X86_OR_64) | ||
715 | # if !defined(GHASH_ASM_X86) || defined(OPENSSL_IA32_SSE2) | ||
716 | if (OPENSSL_ia32cap_P[0]&(1<<24) && /* check FXSR bit */ | ||
717 | OPENSSL_ia32cap_P[1]&(1<<1) ) { /* check PCLMULQDQ bit */ | ||
718 | gcm_init_clmul(ctx->Htable,ctx->H.u); | ||
719 | ctx->gmult = gcm_gmult_clmul; | ||
720 | ctx->ghash = gcm_ghash_clmul; | ||
721 | return; | ||
722 | } | ||
723 | # endif | ||
724 | gcm_init_4bit(ctx->Htable,ctx->H.u); | ||
725 | # if defined(GHASH_ASM_X86) /* x86 only */ | ||
726 | # if defined(OPENSSL_IA32_SSE2) | ||
727 | if (OPENSSL_ia32cap_P[0]&(1<<25)) { /* check SSE bit */ | ||
728 | # else | ||
729 | if (OPENSSL_ia32cap_P[0]&(1<<23)) { /* check MMX bit */ | ||
730 | # endif | ||
731 | ctx->gmult = gcm_gmult_4bit_mmx; | ||
732 | ctx->ghash = gcm_ghash_4bit_mmx; | ||
733 | } else { | ||
734 | ctx->gmult = gcm_gmult_4bit_x86; | ||
735 | ctx->ghash = gcm_ghash_4bit_x86; | ||
736 | } | ||
737 | # else | ||
738 | ctx->gmult = gcm_gmult_4bit; | ||
739 | ctx->ghash = gcm_ghash_4bit; | ||
740 | # endif | ||
741 | # elif defined(GHASH_ASM_ARM) | ||
742 | if (OPENSSL_armcap_P & ARMV7_NEON) { | ||
743 | ctx->gmult = gcm_gmult_neon; | ||
744 | ctx->ghash = gcm_ghash_neon; | ||
745 | } else { | ||
746 | gcm_init_4bit(ctx->Htable,ctx->H.u); | ||
747 | ctx->gmult = gcm_gmult_4bit; | ||
748 | ctx->ghash = gcm_ghash_4bit; | ||
749 | } | ||
750 | # else | ||
751 | gcm_init_4bit(ctx->Htable,ctx->H.u); | ||
752 | # endif | ||
753 | #endif | ||
754 | } | ||
755 | |||
756 | void CRYPTO_gcm128_setiv(GCM128_CONTEXT *ctx,const unsigned char *iv,size_t len) | ||
757 | { | ||
758 | const union { long one; char little; } is_endian = {1}; | ||
759 | unsigned int ctr; | ||
760 | #ifdef GCM_FUNCREF_4BIT | ||
761 | void (*gcm_gmult_p)(u64 Xi[2],const u128 Htable[16]) = ctx->gmult; | ||
762 | #endif | ||
763 | |||
764 | ctx->Yi.u[0] = 0; | ||
765 | ctx->Yi.u[1] = 0; | ||
766 | ctx->Xi.u[0] = 0; | ||
767 | ctx->Xi.u[1] = 0; | ||
768 | ctx->len.u[0] = 0; /* AAD length */ | ||
769 | ctx->len.u[1] = 0; /* message length */ | ||
770 | ctx->ares = 0; | ||
771 | ctx->mres = 0; | ||
772 | |||
773 | if (len==12) { | ||
774 | memcpy(ctx->Yi.c,iv,12); | ||
775 | ctx->Yi.c[15]=1; | ||
776 | ctr=1; | ||
777 | } | ||
778 | else { | ||
779 | size_t i; | ||
780 | u64 len0 = len; | ||
781 | |||
782 | while (len>=16) { | ||
783 | for (i=0; i<16; ++i) ctx->Yi.c[i] ^= iv[i]; | ||
784 | GCM_MUL(ctx,Yi); | ||
785 | iv += 16; | ||
786 | len -= 16; | ||
787 | } | ||
788 | if (len) { | ||
789 | for (i=0; i<len; ++i) ctx->Yi.c[i] ^= iv[i]; | ||
790 | GCM_MUL(ctx,Yi); | ||
791 | } | ||
792 | len0 <<= 3; | ||
793 | if (is_endian.little) { | ||
794 | #ifdef BSWAP8 | ||
795 | ctx->Yi.u[1] ^= BSWAP8(len0); | ||
796 | #else | ||
797 | ctx->Yi.c[8] ^= (u8)(len0>>56); | ||
798 | ctx->Yi.c[9] ^= (u8)(len0>>48); | ||
799 | ctx->Yi.c[10] ^= (u8)(len0>>40); | ||
800 | ctx->Yi.c[11] ^= (u8)(len0>>32); | ||
801 | ctx->Yi.c[12] ^= (u8)(len0>>24); | ||
802 | ctx->Yi.c[13] ^= (u8)(len0>>16); | ||
803 | ctx->Yi.c[14] ^= (u8)(len0>>8); | ||
804 | ctx->Yi.c[15] ^= (u8)(len0); | ||
805 | #endif | ||
806 | } | ||
807 | else | ||
808 | ctx->Yi.u[1] ^= len0; | ||
809 | |||
810 | GCM_MUL(ctx,Yi); | ||
811 | |||
812 | if (is_endian.little) | ||
813 | ctr = GETU32(ctx->Yi.c+12); | ||
814 | else | ||
815 | ctr = ctx->Yi.d[3]; | ||
816 | } | ||
817 | |||
818 | (*ctx->block)(ctx->Yi.c,ctx->EK0.c,ctx->key); | ||
819 | ++ctr; | ||
820 | if (is_endian.little) | ||
821 | PUTU32(ctx->Yi.c+12,ctr); | ||
822 | else | ||
823 | ctx->Yi.d[3] = ctr; | ||
824 | } | ||
825 | |||
826 | int CRYPTO_gcm128_aad(GCM128_CONTEXT *ctx,const unsigned char *aad,size_t len) | ||
827 | { | ||
828 | size_t i; | ||
829 | unsigned int n; | ||
830 | u64 alen = ctx->len.u[0]; | ||
831 | #ifdef GCM_FUNCREF_4BIT | ||
832 | void (*gcm_gmult_p)(u64 Xi[2],const u128 Htable[16]) = ctx->gmult; | ||
833 | # ifdef GHASH | ||
834 | void (*gcm_ghash_p)(u64 Xi[2],const u128 Htable[16], | ||
835 | const u8 *inp,size_t len) = ctx->ghash; | ||
836 | # endif | ||
837 | #endif | ||
838 | |||
839 | if (ctx->len.u[1]) return -2; | ||
840 | |||
841 | alen += len; | ||
842 | if (alen>(U64(1)<<61) || (sizeof(len)==8 && alen<len)) | ||
843 | return -1; | ||
844 | ctx->len.u[0] = alen; | ||
845 | |||
846 | n = ctx->ares; | ||
847 | if (n) { | ||
848 | while (n && len) { | ||
849 | ctx->Xi.c[n] ^= *(aad++); | ||
850 | --len; | ||
851 | n = (n+1)%16; | ||
852 | } | ||
853 | if (n==0) GCM_MUL(ctx,Xi); | ||
854 | else { | ||
855 | ctx->ares = n; | ||
856 | return 0; | ||
857 | } | ||
858 | } | ||
859 | |||
860 | #ifdef GHASH | ||
861 | if ((i = (len&(size_t)-16))) { | ||
862 | GHASH(ctx,aad,i); | ||
863 | aad += i; | ||
864 | len -= i; | ||
865 | } | ||
866 | #else | ||
867 | while (len>=16) { | ||
868 | for (i=0; i<16; ++i) ctx->Xi.c[i] ^= aad[i]; | ||
869 | GCM_MUL(ctx,Xi); | ||
870 | aad += 16; | ||
871 | len -= 16; | ||
872 | } | ||
873 | #endif | ||
874 | if (len) { | ||
875 | n = (unsigned int)len; | ||
876 | for (i=0; i<len; ++i) ctx->Xi.c[i] ^= aad[i]; | ||
877 | } | ||
878 | |||
879 | ctx->ares = n; | ||
880 | return 0; | ||
881 | } | ||
882 | |||
883 | int CRYPTO_gcm128_encrypt(GCM128_CONTEXT *ctx, | ||
884 | const unsigned char *in, unsigned char *out, | ||
885 | size_t len) | ||
886 | { | ||
887 | const union { long one; char little; } is_endian = {1}; | ||
888 | unsigned int n, ctr; | ||
889 | size_t i; | ||
890 | u64 mlen = ctx->len.u[1]; | ||
891 | block128_f block = ctx->block; | ||
892 | void *key = ctx->key; | ||
893 | #ifdef GCM_FUNCREF_4BIT | ||
894 | void (*gcm_gmult_p)(u64 Xi[2],const u128 Htable[16]) = ctx->gmult; | ||
895 | # ifdef GHASH | ||
896 | void (*gcm_ghash_p)(u64 Xi[2],const u128 Htable[16], | ||
897 | const u8 *inp,size_t len) = ctx->ghash; | ||
898 | # endif | ||
899 | #endif | ||
900 | |||
901 | #if 0 | ||
902 | n = (unsigned int)mlen%16; /* alternative to ctx->mres */ | ||
903 | #endif | ||
904 | mlen += len; | ||
905 | if (mlen>((U64(1)<<36)-32) || (sizeof(len)==8 && mlen<len)) | ||
906 | return -1; | ||
907 | ctx->len.u[1] = mlen; | ||
908 | |||
909 | if (ctx->ares) { | ||
910 | /* First call to encrypt finalizes GHASH(AAD) */ | ||
911 | GCM_MUL(ctx,Xi); | ||
912 | ctx->ares = 0; | ||
913 | } | ||
914 | |||
915 | if (is_endian.little) | ||
916 | ctr = GETU32(ctx->Yi.c+12); | ||
917 | else | ||
918 | ctr = ctx->Yi.d[3]; | ||
919 | |||
920 | n = ctx->mres; | ||
921 | #if !defined(OPENSSL_SMALL_FOOTPRINT) | ||
922 | if (16%sizeof(size_t) == 0) do { /* always true actually */ | ||
923 | if (n) { | ||
924 | while (n && len) { | ||
925 | ctx->Xi.c[n] ^= *(out++) = *(in++)^ctx->EKi.c[n]; | ||
926 | --len; | ||
927 | n = (n+1)%16; | ||
928 | } | ||
929 | if (n==0) GCM_MUL(ctx,Xi); | ||
930 | else { | ||
931 | ctx->mres = n; | ||
932 | return 0; | ||
933 | } | ||
934 | } | ||
935 | #if defined(STRICT_ALIGNMENT) | ||
936 | if (((size_t)in|(size_t)out)%sizeof(size_t) != 0) | ||
937 | break; | ||
938 | #endif | ||
939 | #if defined(GHASH) && defined(GHASH_CHUNK) | ||
940 | while (len>=GHASH_CHUNK) { | ||
941 | size_t j=GHASH_CHUNK; | ||
942 | |||
943 | while (j) { | ||
944 | (*block)(ctx->Yi.c,ctx->EKi.c,key); | ||
945 | ++ctr; | ||
946 | if (is_endian.little) | ||
947 | PUTU32(ctx->Yi.c+12,ctr); | ||
948 | else | ||
949 | ctx->Yi.d[3] = ctr; | ||
950 | for (i=0; i<16; i+=sizeof(size_t)) | ||
951 | *(size_t *)(out+i) = | ||
952 | *(size_t *)(in+i)^*(size_t *)(ctx->EKi.c+i); | ||
953 | out += 16; | ||
954 | in += 16; | ||
955 | j -= 16; | ||
956 | } | ||
957 | GHASH(ctx,out-GHASH_CHUNK,GHASH_CHUNK); | ||
958 | len -= GHASH_CHUNK; | ||
959 | } | ||
960 | if ((i = (len&(size_t)-16))) { | ||
961 | size_t j=i; | ||
962 | |||
963 | while (len>=16) { | ||
964 | (*block)(ctx->Yi.c,ctx->EKi.c,key); | ||
965 | ++ctr; | ||
966 | if (is_endian.little) | ||
967 | PUTU32(ctx->Yi.c+12,ctr); | ||
968 | else | ||
969 | ctx->Yi.d[3] = ctr; | ||
970 | for (i=0; i<16; i+=sizeof(size_t)) | ||
971 | *(size_t *)(out+i) = | ||
972 | *(size_t *)(in+i)^*(size_t *)(ctx->EKi.c+i); | ||
973 | out += 16; | ||
974 | in += 16; | ||
975 | len -= 16; | ||
976 | } | ||
977 | GHASH(ctx,out-j,j); | ||
978 | } | ||
979 | #else | ||
980 | while (len>=16) { | ||
981 | (*block)(ctx->Yi.c,ctx->EKi.c,key); | ||
982 | ++ctr; | ||
983 | if (is_endian.little) | ||
984 | PUTU32(ctx->Yi.c+12,ctr); | ||
985 | else | ||
986 | ctx->Yi.d[3] = ctr; | ||
987 | for (i=0; i<16; i+=sizeof(size_t)) | ||
988 | *(size_t *)(ctx->Xi.c+i) ^= | ||
989 | *(size_t *)(out+i) = | ||
990 | *(size_t *)(in+i)^*(size_t *)(ctx->EKi.c+i); | ||
991 | GCM_MUL(ctx,Xi); | ||
992 | out += 16; | ||
993 | in += 16; | ||
994 | len -= 16; | ||
995 | } | ||
996 | #endif | ||
997 | if (len) { | ||
998 | (*block)(ctx->Yi.c,ctx->EKi.c,key); | ||
999 | ++ctr; | ||
1000 | if (is_endian.little) | ||
1001 | PUTU32(ctx->Yi.c+12,ctr); | ||
1002 | else | ||
1003 | ctx->Yi.d[3] = ctr; | ||
1004 | while (len--) { | ||
1005 | ctx->Xi.c[n] ^= out[n] = in[n]^ctx->EKi.c[n]; | ||
1006 | ++n; | ||
1007 | } | ||
1008 | } | ||
1009 | |||
1010 | ctx->mres = n; | ||
1011 | return 0; | ||
1012 | } while(0); | ||
1013 | #endif | ||
1014 | for (i=0;i<len;++i) { | ||
1015 | if (n==0) { | ||
1016 | (*block)(ctx->Yi.c,ctx->EKi.c,key); | ||
1017 | ++ctr; | ||
1018 | if (is_endian.little) | ||
1019 | PUTU32(ctx->Yi.c+12,ctr); | ||
1020 | else | ||
1021 | ctx->Yi.d[3] = ctr; | ||
1022 | } | ||
1023 | ctx->Xi.c[n] ^= out[i] = in[i]^ctx->EKi.c[n]; | ||
1024 | n = (n+1)%16; | ||
1025 | if (n==0) | ||
1026 | GCM_MUL(ctx,Xi); | ||
1027 | } | ||
1028 | |||
1029 | ctx->mres = n; | ||
1030 | return 0; | ||
1031 | } | ||
1032 | |||
1033 | int CRYPTO_gcm128_decrypt(GCM128_CONTEXT *ctx, | ||
1034 | const unsigned char *in, unsigned char *out, | ||
1035 | size_t len) | ||
1036 | { | ||
1037 | const union { long one; char little; } is_endian = {1}; | ||
1038 | unsigned int n, ctr; | ||
1039 | size_t i; | ||
1040 | u64 mlen = ctx->len.u[1]; | ||
1041 | block128_f block = ctx->block; | ||
1042 | void *key = ctx->key; | ||
1043 | #ifdef GCM_FUNCREF_4BIT | ||
1044 | void (*gcm_gmult_p)(u64 Xi[2],const u128 Htable[16]) = ctx->gmult; | ||
1045 | # ifdef GHASH | ||
1046 | void (*gcm_ghash_p)(u64 Xi[2],const u128 Htable[16], | ||
1047 | const u8 *inp,size_t len) = ctx->ghash; | ||
1048 | # endif | ||
1049 | #endif | ||
1050 | |||
1051 | mlen += len; | ||
1052 | if (mlen>((U64(1)<<36)-32) || (sizeof(len)==8 && mlen<len)) | ||
1053 | return -1; | ||
1054 | ctx->len.u[1] = mlen; | ||
1055 | |||
1056 | if (ctx->ares) { | ||
1057 | /* First call to decrypt finalizes GHASH(AAD) */ | ||
1058 | GCM_MUL(ctx,Xi); | ||
1059 | ctx->ares = 0; | ||
1060 | } | ||
1061 | |||
1062 | if (is_endian.little) | ||
1063 | ctr = GETU32(ctx->Yi.c+12); | ||
1064 | else | ||
1065 | ctr = ctx->Yi.d[3]; | ||
1066 | |||
1067 | n = ctx->mres; | ||
1068 | #if !defined(OPENSSL_SMALL_FOOTPRINT) | ||
1069 | if (16%sizeof(size_t) == 0) do { /* always true actually */ | ||
1070 | if (n) { | ||
1071 | while (n && len) { | ||
1072 | u8 c = *(in++); | ||
1073 | *(out++) = c^ctx->EKi.c[n]; | ||
1074 | ctx->Xi.c[n] ^= c; | ||
1075 | --len; | ||
1076 | n = (n+1)%16; | ||
1077 | } | ||
1078 | if (n==0) GCM_MUL (ctx,Xi); | ||
1079 | else { | ||
1080 | ctx->mres = n; | ||
1081 | return 0; | ||
1082 | } | ||
1083 | } | ||
1084 | #if defined(STRICT_ALIGNMENT) | ||
1085 | if (((size_t)in|(size_t)out)%sizeof(size_t) != 0) | ||
1086 | break; | ||
1087 | #endif | ||
1088 | #if defined(GHASH) && defined(GHASH_CHUNK) | ||
1089 | while (len>=GHASH_CHUNK) { | ||
1090 | size_t j=GHASH_CHUNK; | ||
1091 | |||
1092 | GHASH(ctx,in,GHASH_CHUNK); | ||
1093 | while (j) { | ||
1094 | (*block)(ctx->Yi.c,ctx->EKi.c,key); | ||
1095 | ++ctr; | ||
1096 | if (is_endian.little) | ||
1097 | PUTU32(ctx->Yi.c+12,ctr); | ||
1098 | else | ||
1099 | ctx->Yi.d[3] = ctr; | ||
1100 | for (i=0; i<16; i+=sizeof(size_t)) | ||
1101 | *(size_t *)(out+i) = | ||
1102 | *(size_t *)(in+i)^*(size_t *)(ctx->EKi.c+i); | ||
1103 | out += 16; | ||
1104 | in += 16; | ||
1105 | j -= 16; | ||
1106 | } | ||
1107 | len -= GHASH_CHUNK; | ||
1108 | } | ||
1109 | if ((i = (len&(size_t)-16))) { | ||
1110 | GHASH(ctx,in,i); | ||
1111 | while (len>=16) { | ||
1112 | (*block)(ctx->Yi.c,ctx->EKi.c,key); | ||
1113 | ++ctr; | ||
1114 | if (is_endian.little) | ||
1115 | PUTU32(ctx->Yi.c+12,ctr); | ||
1116 | else | ||
1117 | ctx->Yi.d[3] = ctr; | ||
1118 | for (i=0; i<16; i+=sizeof(size_t)) | ||
1119 | *(size_t *)(out+i) = | ||
1120 | *(size_t *)(in+i)^*(size_t *)(ctx->EKi.c+i); | ||
1121 | out += 16; | ||
1122 | in += 16; | ||
1123 | len -= 16; | ||
1124 | } | ||
1125 | } | ||
1126 | #else | ||
1127 | while (len>=16) { | ||
1128 | (*block)(ctx->Yi.c,ctx->EKi.c,key); | ||
1129 | ++ctr; | ||
1130 | if (is_endian.little) | ||
1131 | PUTU32(ctx->Yi.c+12,ctr); | ||
1132 | else | ||
1133 | ctx->Yi.d[3] = ctr; | ||
1134 | for (i=0; i<16; i+=sizeof(size_t)) { | ||
1135 | size_t c = *(size_t *)(in+i); | ||
1136 | *(size_t *)(out+i) = c^*(size_t *)(ctx->EKi.c+i); | ||
1137 | *(size_t *)(ctx->Xi.c+i) ^= c; | ||
1138 | } | ||
1139 | GCM_MUL(ctx,Xi); | ||
1140 | out += 16; | ||
1141 | in += 16; | ||
1142 | len -= 16; | ||
1143 | } | ||
1144 | #endif | ||
1145 | if (len) { | ||
1146 | (*block)(ctx->Yi.c,ctx->EKi.c,key); | ||
1147 | ++ctr; | ||
1148 | if (is_endian.little) | ||
1149 | PUTU32(ctx->Yi.c+12,ctr); | ||
1150 | else | ||
1151 | ctx->Yi.d[3] = ctr; | ||
1152 | while (len--) { | ||
1153 | u8 c = in[n]; | ||
1154 | ctx->Xi.c[n] ^= c; | ||
1155 | out[n] = c^ctx->EKi.c[n]; | ||
1156 | ++n; | ||
1157 | } | ||
1158 | } | ||
1159 | |||
1160 | ctx->mres = n; | ||
1161 | return 0; | ||
1162 | } while(0); | ||
1163 | #endif | ||
1164 | for (i=0;i<len;++i) { | ||
1165 | u8 c; | ||
1166 | if (n==0) { | ||
1167 | (*block)(ctx->Yi.c,ctx->EKi.c,key); | ||
1168 | ++ctr; | ||
1169 | if (is_endian.little) | ||
1170 | PUTU32(ctx->Yi.c+12,ctr); | ||
1171 | else | ||
1172 | ctx->Yi.d[3] = ctr; | ||
1173 | } | ||
1174 | c = in[i]; | ||
1175 | out[i] = c^ctx->EKi.c[n]; | ||
1176 | ctx->Xi.c[n] ^= c; | ||
1177 | n = (n+1)%16; | ||
1178 | if (n==0) | ||
1179 | GCM_MUL(ctx,Xi); | ||
1180 | } | ||
1181 | |||
1182 | ctx->mres = n; | ||
1183 | return 0; | ||
1184 | } | ||
1185 | |||
1186 | int CRYPTO_gcm128_encrypt_ctr32(GCM128_CONTEXT *ctx, | ||
1187 | const unsigned char *in, unsigned char *out, | ||
1188 | size_t len, ctr128_f stream) | ||
1189 | { | ||
1190 | const union { long one; char little; } is_endian = {1}; | ||
1191 | unsigned int n, ctr; | ||
1192 | size_t i; | ||
1193 | u64 mlen = ctx->len.u[1]; | ||
1194 | void *key = ctx->key; | ||
1195 | #ifdef GCM_FUNCREF_4BIT | ||
1196 | void (*gcm_gmult_p)(u64 Xi[2],const u128 Htable[16]) = ctx->gmult; | ||
1197 | # ifdef GHASH | ||
1198 | void (*gcm_ghash_p)(u64 Xi[2],const u128 Htable[16], | ||
1199 | const u8 *inp,size_t len) = ctx->ghash; | ||
1200 | # endif | ||
1201 | #endif | ||
1202 | |||
1203 | mlen += len; | ||
1204 | if (mlen>((U64(1)<<36)-32) || (sizeof(len)==8 && mlen<len)) | ||
1205 | return -1; | ||
1206 | ctx->len.u[1] = mlen; | ||
1207 | |||
1208 | if (ctx->ares) { | ||
1209 | /* First call to encrypt finalizes GHASH(AAD) */ | ||
1210 | GCM_MUL(ctx,Xi); | ||
1211 | ctx->ares = 0; | ||
1212 | } | ||
1213 | |||
1214 | if (is_endian.little) | ||
1215 | ctr = GETU32(ctx->Yi.c+12); | ||
1216 | else | ||
1217 | ctr = ctx->Yi.d[3]; | ||
1218 | |||
1219 | n = ctx->mres; | ||
1220 | if (n) { | ||
1221 | while (n && len) { | ||
1222 | ctx->Xi.c[n] ^= *(out++) = *(in++)^ctx->EKi.c[n]; | ||
1223 | --len; | ||
1224 | n = (n+1)%16; | ||
1225 | } | ||
1226 | if (n==0) GCM_MUL(ctx,Xi); | ||
1227 | else { | ||
1228 | ctx->mres = n; | ||
1229 | return 0; | ||
1230 | } | ||
1231 | } | ||
1232 | #if defined(GHASH) && !defined(OPENSSL_SMALL_FOOTPRINT) | ||
1233 | while (len>=GHASH_CHUNK) { | ||
1234 | (*stream)(in,out,GHASH_CHUNK/16,key,ctx->Yi.c); | ||
1235 | ctr += GHASH_CHUNK/16; | ||
1236 | if (is_endian.little) | ||
1237 | PUTU32(ctx->Yi.c+12,ctr); | ||
1238 | else | ||
1239 | ctx->Yi.d[3] = ctr; | ||
1240 | GHASH(ctx,out,GHASH_CHUNK); | ||
1241 | out += GHASH_CHUNK; | ||
1242 | in += GHASH_CHUNK; | ||
1243 | len -= GHASH_CHUNK; | ||
1244 | } | ||
1245 | #endif | ||
1246 | if ((i = (len&(size_t)-16))) { | ||
1247 | size_t j=i/16; | ||
1248 | |||
1249 | (*stream)(in,out,j,key,ctx->Yi.c); | ||
1250 | ctr += (unsigned int)j; | ||
1251 | if (is_endian.little) | ||
1252 | PUTU32(ctx->Yi.c+12,ctr); | ||
1253 | else | ||
1254 | ctx->Yi.d[3] = ctr; | ||
1255 | in += i; | ||
1256 | len -= i; | ||
1257 | #if defined(GHASH) | ||
1258 | GHASH(ctx,out,i); | ||
1259 | out += i; | ||
1260 | #else | ||
1261 | while (j--) { | ||
1262 | for (i=0;i<16;++i) ctx->Xi.c[i] ^= out[i]; | ||
1263 | GCM_MUL(ctx,Xi); | ||
1264 | out += 16; | ||
1265 | } | ||
1266 | #endif | ||
1267 | } | ||
1268 | if (len) { | ||
1269 | (*ctx->block)(ctx->Yi.c,ctx->EKi.c,key); | ||
1270 | ++ctr; | ||
1271 | if (is_endian.little) | ||
1272 | PUTU32(ctx->Yi.c+12,ctr); | ||
1273 | else | ||
1274 | ctx->Yi.d[3] = ctr; | ||
1275 | while (len--) { | ||
1276 | ctx->Xi.c[n] ^= out[n] = in[n]^ctx->EKi.c[n]; | ||
1277 | ++n; | ||
1278 | } | ||
1279 | } | ||
1280 | |||
1281 | ctx->mres = n; | ||
1282 | return 0; | ||
1283 | } | ||
1284 | |||
1285 | int CRYPTO_gcm128_decrypt_ctr32(GCM128_CONTEXT *ctx, | ||
1286 | const unsigned char *in, unsigned char *out, | ||
1287 | size_t len,ctr128_f stream) | ||
1288 | { | ||
1289 | const union { long one; char little; } is_endian = {1}; | ||
1290 | unsigned int n, ctr; | ||
1291 | size_t i; | ||
1292 | u64 mlen = ctx->len.u[1]; | ||
1293 | void *key = ctx->key; | ||
1294 | #ifdef GCM_FUNCREF_4BIT | ||
1295 | void (*gcm_gmult_p)(u64 Xi[2],const u128 Htable[16]) = ctx->gmult; | ||
1296 | # ifdef GHASH | ||
1297 | void (*gcm_ghash_p)(u64 Xi[2],const u128 Htable[16], | ||
1298 | const u8 *inp,size_t len) = ctx->ghash; | ||
1299 | # endif | ||
1300 | #endif | ||
1301 | |||
1302 | mlen += len; | ||
1303 | if (mlen>((U64(1)<<36)-32) || (sizeof(len)==8 && mlen<len)) | ||
1304 | return -1; | ||
1305 | ctx->len.u[1] = mlen; | ||
1306 | |||
1307 | if (ctx->ares) { | ||
1308 | /* First call to decrypt finalizes GHASH(AAD) */ | ||
1309 | GCM_MUL(ctx,Xi); | ||
1310 | ctx->ares = 0; | ||
1311 | } | ||
1312 | |||
1313 | if (is_endian.little) | ||
1314 | ctr = GETU32(ctx->Yi.c+12); | ||
1315 | else | ||
1316 | ctr = ctx->Yi.d[3]; | ||
1317 | |||
1318 | n = ctx->mres; | ||
1319 | if (n) { | ||
1320 | while (n && len) { | ||
1321 | u8 c = *(in++); | ||
1322 | *(out++) = c^ctx->EKi.c[n]; | ||
1323 | ctx->Xi.c[n] ^= c; | ||
1324 | --len; | ||
1325 | n = (n+1)%16; | ||
1326 | } | ||
1327 | if (n==0) GCM_MUL (ctx,Xi); | ||
1328 | else { | ||
1329 | ctx->mres = n; | ||
1330 | return 0; | ||
1331 | } | ||
1332 | } | ||
1333 | #if defined(GHASH) && !defined(OPENSSL_SMALL_FOOTPRINT) | ||
1334 | while (len>=GHASH_CHUNK) { | ||
1335 | GHASH(ctx,in,GHASH_CHUNK); | ||
1336 | (*stream)(in,out,GHASH_CHUNK/16,key,ctx->Yi.c); | ||
1337 | ctr += GHASH_CHUNK/16; | ||
1338 | if (is_endian.little) | ||
1339 | PUTU32(ctx->Yi.c+12,ctr); | ||
1340 | else | ||
1341 | ctx->Yi.d[3] = ctr; | ||
1342 | out += GHASH_CHUNK; | ||
1343 | in += GHASH_CHUNK; | ||
1344 | len -= GHASH_CHUNK; | ||
1345 | } | ||
1346 | #endif | ||
1347 | if ((i = (len&(size_t)-16))) { | ||
1348 | size_t j=i/16; | ||
1349 | |||
1350 | #if defined(GHASH) | ||
1351 | GHASH(ctx,in,i); | ||
1352 | #else | ||
1353 | while (j--) { | ||
1354 | size_t k; | ||
1355 | for (k=0;k<16;++k) ctx->Xi.c[k] ^= in[k]; | ||
1356 | GCM_MUL(ctx,Xi); | ||
1357 | in += 16; | ||
1358 | } | ||
1359 | j = i/16; | ||
1360 | in -= i; | ||
1361 | #endif | ||
1362 | (*stream)(in,out,j,key,ctx->Yi.c); | ||
1363 | ctr += (unsigned int)j; | ||
1364 | if (is_endian.little) | ||
1365 | PUTU32(ctx->Yi.c+12,ctr); | ||
1366 | else | ||
1367 | ctx->Yi.d[3] = ctr; | ||
1368 | out += i; | ||
1369 | in += i; | ||
1370 | len -= i; | ||
1371 | } | ||
1372 | if (len) { | ||
1373 | (*ctx->block)(ctx->Yi.c,ctx->EKi.c,key); | ||
1374 | ++ctr; | ||
1375 | if (is_endian.little) | ||
1376 | PUTU32(ctx->Yi.c+12,ctr); | ||
1377 | else | ||
1378 | ctx->Yi.d[3] = ctr; | ||
1379 | while (len--) { | ||
1380 | u8 c = in[n]; | ||
1381 | ctx->Xi.c[n] ^= c; | ||
1382 | out[n] = c^ctx->EKi.c[n]; | ||
1383 | ++n; | ||
1384 | } | ||
1385 | } | ||
1386 | |||
1387 | ctx->mres = n; | ||
1388 | return 0; | ||
1389 | } | ||
1390 | |||
1391 | int CRYPTO_gcm128_finish(GCM128_CONTEXT *ctx,const unsigned char *tag, | ||
1392 | size_t len) | ||
1393 | { | ||
1394 | const union { long one; char little; } is_endian = {1}; | ||
1395 | u64 alen = ctx->len.u[0]<<3; | ||
1396 | u64 clen = ctx->len.u[1]<<3; | ||
1397 | #ifdef GCM_FUNCREF_4BIT | ||
1398 | void (*gcm_gmult_p)(u64 Xi[2],const u128 Htable[16]) = ctx->gmult; | ||
1399 | #endif | ||
1400 | |||
1401 | if (ctx->mres) | ||
1402 | GCM_MUL(ctx,Xi); | ||
1403 | |||
1404 | if (is_endian.little) { | ||
1405 | #ifdef BSWAP8 | ||
1406 | alen = BSWAP8(alen); | ||
1407 | clen = BSWAP8(clen); | ||
1408 | #else | ||
1409 | u8 *p = ctx->len.c; | ||
1410 | |||
1411 | ctx->len.u[0] = alen; | ||
1412 | ctx->len.u[1] = clen; | ||
1413 | |||
1414 | alen = (u64)GETU32(p) <<32|GETU32(p+4); | ||
1415 | clen = (u64)GETU32(p+8)<<32|GETU32(p+12); | ||
1416 | #endif | ||
1417 | } | ||
1418 | |||
1419 | ctx->Xi.u[0] ^= alen; | ||
1420 | ctx->Xi.u[1] ^= clen; | ||
1421 | GCM_MUL(ctx,Xi); | ||
1422 | |||
1423 | ctx->Xi.u[0] ^= ctx->EK0.u[0]; | ||
1424 | ctx->Xi.u[1] ^= ctx->EK0.u[1]; | ||
1425 | |||
1426 | if (tag && len<=sizeof(ctx->Xi)) | ||
1427 | return memcmp(ctx->Xi.c,tag,len); | ||
1428 | else | ||
1429 | return -1; | ||
1430 | } | ||
1431 | |||
1432 | void CRYPTO_gcm128_tag(GCM128_CONTEXT *ctx, unsigned char *tag, size_t len) | ||
1433 | { | ||
1434 | CRYPTO_gcm128_finish(ctx, NULL, 0); | ||
1435 | memcpy(tag, ctx->Xi.c, len<=sizeof(ctx->Xi.c)?len:sizeof(ctx->Xi.c)); | ||
1436 | } | ||
1437 | |||
1438 | GCM128_CONTEXT *CRYPTO_gcm128_new(void *key, block128_f block) | ||
1439 | { | ||
1440 | GCM128_CONTEXT *ret; | ||
1441 | |||
1442 | if ((ret = (GCM128_CONTEXT *)OPENSSL_malloc(sizeof(GCM128_CONTEXT)))) | ||
1443 | CRYPTO_gcm128_init(ret,key,block); | ||
1444 | |||
1445 | return ret; | ||
1446 | } | ||
1447 | |||
1448 | void CRYPTO_gcm128_release(GCM128_CONTEXT *ctx) | ||
1449 | { | ||
1450 | if (ctx) { | ||
1451 | OPENSSL_cleanse(ctx,sizeof(*ctx)); | ||
1452 | OPENSSL_free(ctx); | ||
1453 | } | ||
1454 | } | ||
1455 | |||
1456 | #if defined(SELFTEST) | ||
1457 | #include <stdio.h> | ||
1458 | #include <openssl/aes.h> | ||
1459 | |||
1460 | /* Test Case 1 */ | ||
1461 | static const u8 K1[16], | ||
1462 | *P1=NULL, | ||
1463 | *A1=NULL, | ||
1464 | IV1[12], | ||
1465 | *C1=NULL, | ||
1466 | T1[]= {0x58,0xe2,0xfc,0xce,0xfa,0x7e,0x30,0x61,0x36,0x7f,0x1d,0x57,0xa4,0xe7,0x45,0x5a}; | ||
1467 | |||
1468 | /* Test Case 2 */ | ||
1469 | #define K2 K1 | ||
1470 | #define A2 A1 | ||
1471 | #define IV2 IV1 | ||
1472 | static const u8 P2[16], | ||
1473 | C2[]= {0x03,0x88,0xda,0xce,0x60,0xb6,0xa3,0x92,0xf3,0x28,0xc2,0xb9,0x71,0xb2,0xfe,0x78}, | ||
1474 | T2[]= {0xab,0x6e,0x47,0xd4,0x2c,0xec,0x13,0xbd,0xf5,0x3a,0x67,0xb2,0x12,0x57,0xbd,0xdf}; | ||
1475 | |||
1476 | /* Test Case 3 */ | ||
1477 | #define A3 A2 | ||
1478 | static const u8 K3[]= {0xfe,0xff,0xe9,0x92,0x86,0x65,0x73,0x1c,0x6d,0x6a,0x8f,0x94,0x67,0x30,0x83,0x08}, | ||
1479 | P3[]= {0xd9,0x31,0x32,0x25,0xf8,0x84,0x06,0xe5,0xa5,0x59,0x09,0xc5,0xaf,0xf5,0x26,0x9a, | ||
1480 | 0x86,0xa7,0xa9,0x53,0x15,0x34,0xf7,0xda,0x2e,0x4c,0x30,0x3d,0x8a,0x31,0x8a,0x72, | ||
1481 | 0x1c,0x3c,0x0c,0x95,0x95,0x68,0x09,0x53,0x2f,0xcf,0x0e,0x24,0x49,0xa6,0xb5,0x25, | ||
1482 | 0xb1,0x6a,0xed,0xf5,0xaa,0x0d,0xe6,0x57,0xba,0x63,0x7b,0x39,0x1a,0xaf,0xd2,0x55}, | ||
1483 | IV3[]= {0xca,0xfe,0xba,0xbe,0xfa,0xce,0xdb,0xad,0xde,0xca,0xf8,0x88}, | ||
1484 | C3[]= {0x42,0x83,0x1e,0xc2,0x21,0x77,0x74,0x24,0x4b,0x72,0x21,0xb7,0x84,0xd0,0xd4,0x9c, | ||
1485 | 0xe3,0xaa,0x21,0x2f,0x2c,0x02,0xa4,0xe0,0x35,0xc1,0x7e,0x23,0x29,0xac,0xa1,0x2e, | ||
1486 | 0x21,0xd5,0x14,0xb2,0x54,0x66,0x93,0x1c,0x7d,0x8f,0x6a,0x5a,0xac,0x84,0xaa,0x05, | ||
1487 | 0x1b,0xa3,0x0b,0x39,0x6a,0x0a,0xac,0x97,0x3d,0x58,0xe0,0x91,0x47,0x3f,0x59,0x85}, | ||
1488 | T3[]= {0x4d,0x5c,0x2a,0xf3,0x27,0xcd,0x64,0xa6,0x2c,0xf3,0x5a,0xbd,0x2b,0xa6,0xfa,0xb4}; | ||
1489 | |||
1490 | /* Test Case 4 */ | ||
1491 | #define K4 K3 | ||
1492 | #define IV4 IV3 | ||
1493 | static const u8 P4[]= {0xd9,0x31,0x32,0x25,0xf8,0x84,0x06,0xe5,0xa5,0x59,0x09,0xc5,0xaf,0xf5,0x26,0x9a, | ||
1494 | 0x86,0xa7,0xa9,0x53,0x15,0x34,0xf7,0xda,0x2e,0x4c,0x30,0x3d,0x8a,0x31,0x8a,0x72, | ||
1495 | 0x1c,0x3c,0x0c,0x95,0x95,0x68,0x09,0x53,0x2f,0xcf,0x0e,0x24,0x49,0xa6,0xb5,0x25, | ||
1496 | 0xb1,0x6a,0xed,0xf5,0xaa,0x0d,0xe6,0x57,0xba,0x63,0x7b,0x39}, | ||
1497 | A4[]= {0xfe,0xed,0xfa,0xce,0xde,0xad,0xbe,0xef,0xfe,0xed,0xfa,0xce,0xde,0xad,0xbe,0xef, | ||
1498 | 0xab,0xad,0xda,0xd2}, | ||
1499 | C4[]= {0x42,0x83,0x1e,0xc2,0x21,0x77,0x74,0x24,0x4b,0x72,0x21,0xb7,0x84,0xd0,0xd4,0x9c, | ||
1500 | 0xe3,0xaa,0x21,0x2f,0x2c,0x02,0xa4,0xe0,0x35,0xc1,0x7e,0x23,0x29,0xac,0xa1,0x2e, | ||
1501 | 0x21,0xd5,0x14,0xb2,0x54,0x66,0x93,0x1c,0x7d,0x8f,0x6a,0x5a,0xac,0x84,0xaa,0x05, | ||
1502 | 0x1b,0xa3,0x0b,0x39,0x6a,0x0a,0xac,0x97,0x3d,0x58,0xe0,0x91}, | ||
1503 | T4[]= {0x5b,0xc9,0x4f,0xbc,0x32,0x21,0xa5,0xdb,0x94,0xfa,0xe9,0x5a,0xe7,0x12,0x1a,0x47}; | ||
1504 | |||
1505 | /* Test Case 5 */ | ||
1506 | #define K5 K4 | ||
1507 | #define P5 P4 | ||
1508 | #define A5 A4 | ||
1509 | static const u8 IV5[]= {0xca,0xfe,0xba,0xbe,0xfa,0xce,0xdb,0xad}, | ||
1510 | C5[]= {0x61,0x35,0x3b,0x4c,0x28,0x06,0x93,0x4a,0x77,0x7f,0xf5,0x1f,0xa2,0x2a,0x47,0x55, | ||
1511 | 0x69,0x9b,0x2a,0x71,0x4f,0xcd,0xc6,0xf8,0x37,0x66,0xe5,0xf9,0x7b,0x6c,0x74,0x23, | ||
1512 | 0x73,0x80,0x69,0x00,0xe4,0x9f,0x24,0xb2,0x2b,0x09,0x75,0x44,0xd4,0x89,0x6b,0x42, | ||
1513 | 0x49,0x89,0xb5,0xe1,0xeb,0xac,0x0f,0x07,0xc2,0x3f,0x45,0x98}, | ||
1514 | T5[]= {0x36,0x12,0xd2,0xe7,0x9e,0x3b,0x07,0x85,0x56,0x1b,0xe1,0x4a,0xac,0xa2,0xfc,0xcb}; | ||
1515 | |||
1516 | /* Test Case 6 */ | ||
1517 | #define K6 K5 | ||
1518 | #define P6 P5 | ||
1519 | #define A6 A5 | ||
1520 | static const u8 IV6[]= {0x93,0x13,0x22,0x5d,0xf8,0x84,0x06,0xe5,0x55,0x90,0x9c,0x5a,0xff,0x52,0x69,0xaa, | ||
1521 | 0x6a,0x7a,0x95,0x38,0x53,0x4f,0x7d,0xa1,0xe4,0xc3,0x03,0xd2,0xa3,0x18,0xa7,0x28, | ||
1522 | 0xc3,0xc0,0xc9,0x51,0x56,0x80,0x95,0x39,0xfc,0xf0,0xe2,0x42,0x9a,0x6b,0x52,0x54, | ||
1523 | 0x16,0xae,0xdb,0xf5,0xa0,0xde,0x6a,0x57,0xa6,0x37,0xb3,0x9b}, | ||
1524 | C6[]= {0x8c,0xe2,0x49,0x98,0x62,0x56,0x15,0xb6,0x03,0xa0,0x33,0xac,0xa1,0x3f,0xb8,0x94, | ||
1525 | 0xbe,0x91,0x12,0xa5,0xc3,0xa2,0x11,0xa8,0xba,0x26,0x2a,0x3c,0xca,0x7e,0x2c,0xa7, | ||
1526 | 0x01,0xe4,0xa9,0xa4,0xfb,0xa4,0x3c,0x90,0xcc,0xdc,0xb2,0x81,0xd4,0x8c,0x7c,0x6f, | ||
1527 | 0xd6,0x28,0x75,0xd2,0xac,0xa4,0x17,0x03,0x4c,0x34,0xae,0xe5}, | ||
1528 | T6[]= {0x61,0x9c,0xc5,0xae,0xff,0xfe,0x0b,0xfa,0x46,0x2a,0xf4,0x3c,0x16,0x99,0xd0,0x50}; | ||
1529 | |||
1530 | /* Test Case 7 */ | ||
1531 | static const u8 K7[24], | ||
1532 | *P7=NULL, | ||
1533 | *A7=NULL, | ||
1534 | IV7[12], | ||
1535 | *C7=NULL, | ||
1536 | T7[]= {0xcd,0x33,0xb2,0x8a,0xc7,0x73,0xf7,0x4b,0xa0,0x0e,0xd1,0xf3,0x12,0x57,0x24,0x35}; | ||
1537 | |||
1538 | /* Test Case 8 */ | ||
1539 | #define K8 K7 | ||
1540 | #define IV8 IV7 | ||
1541 | #define A8 A7 | ||
1542 | static const u8 P8[16], | ||
1543 | C8[]= {0x98,0xe7,0x24,0x7c,0x07,0xf0,0xfe,0x41,0x1c,0x26,0x7e,0x43,0x84,0xb0,0xf6,0x00}, | ||
1544 | T8[]= {0x2f,0xf5,0x8d,0x80,0x03,0x39,0x27,0xab,0x8e,0xf4,0xd4,0x58,0x75,0x14,0xf0,0xfb}; | ||
1545 | |||
1546 | /* Test Case 9 */ | ||
1547 | #define A9 A8 | ||
1548 | static const u8 K9[]= {0xfe,0xff,0xe9,0x92,0x86,0x65,0x73,0x1c,0x6d,0x6a,0x8f,0x94,0x67,0x30,0x83,0x08, | ||
1549 | 0xfe,0xff,0xe9,0x92,0x86,0x65,0x73,0x1c}, | ||
1550 | P9[]= {0xd9,0x31,0x32,0x25,0xf8,0x84,0x06,0xe5,0xa5,0x59,0x09,0xc5,0xaf,0xf5,0x26,0x9a, | ||
1551 | 0x86,0xa7,0xa9,0x53,0x15,0x34,0xf7,0xda,0x2e,0x4c,0x30,0x3d,0x8a,0x31,0x8a,0x72, | ||
1552 | 0x1c,0x3c,0x0c,0x95,0x95,0x68,0x09,0x53,0x2f,0xcf,0x0e,0x24,0x49,0xa6,0xb5,0x25, | ||
1553 | 0xb1,0x6a,0xed,0xf5,0xaa,0x0d,0xe6,0x57,0xba,0x63,0x7b,0x39,0x1a,0xaf,0xd2,0x55}, | ||
1554 | IV9[]= {0xca,0xfe,0xba,0xbe,0xfa,0xce,0xdb,0xad,0xde,0xca,0xf8,0x88}, | ||
1555 | C9[]= {0x39,0x80,0xca,0x0b,0x3c,0x00,0xe8,0x41,0xeb,0x06,0xfa,0xc4,0x87,0x2a,0x27,0x57, | ||
1556 | 0x85,0x9e,0x1c,0xea,0xa6,0xef,0xd9,0x84,0x62,0x85,0x93,0xb4,0x0c,0xa1,0xe1,0x9c, | ||
1557 | 0x7d,0x77,0x3d,0x00,0xc1,0x44,0xc5,0x25,0xac,0x61,0x9d,0x18,0xc8,0x4a,0x3f,0x47, | ||
1558 | 0x18,0xe2,0x44,0x8b,0x2f,0xe3,0x24,0xd9,0xcc,0xda,0x27,0x10,0xac,0xad,0xe2,0x56}, | ||
1559 | T9[]= {0x99,0x24,0xa7,0xc8,0x58,0x73,0x36,0xbf,0xb1,0x18,0x02,0x4d,0xb8,0x67,0x4a,0x14}; | ||
1560 | |||
1561 | /* Test Case 10 */ | ||
1562 | #define K10 K9 | ||
1563 | #define IV10 IV9 | ||
1564 | static const u8 P10[]= {0xd9,0x31,0x32,0x25,0xf8,0x84,0x06,0xe5,0xa5,0x59,0x09,0xc5,0xaf,0xf5,0x26,0x9a, | ||
1565 | 0x86,0xa7,0xa9,0x53,0x15,0x34,0xf7,0xda,0x2e,0x4c,0x30,0x3d,0x8a,0x31,0x8a,0x72, | ||
1566 | 0x1c,0x3c,0x0c,0x95,0x95,0x68,0x09,0x53,0x2f,0xcf,0x0e,0x24,0x49,0xa6,0xb5,0x25, | ||
1567 | 0xb1,0x6a,0xed,0xf5,0xaa,0x0d,0xe6,0x57,0xba,0x63,0x7b,0x39}, | ||
1568 | A10[]= {0xfe,0xed,0xfa,0xce,0xde,0xad,0xbe,0xef,0xfe,0xed,0xfa,0xce,0xde,0xad,0xbe,0xef, | ||
1569 | 0xab,0xad,0xda,0xd2}, | ||
1570 | C10[]= {0x39,0x80,0xca,0x0b,0x3c,0x00,0xe8,0x41,0xeb,0x06,0xfa,0xc4,0x87,0x2a,0x27,0x57, | ||
1571 | 0x85,0x9e,0x1c,0xea,0xa6,0xef,0xd9,0x84,0x62,0x85,0x93,0xb4,0x0c,0xa1,0xe1,0x9c, | ||
1572 | 0x7d,0x77,0x3d,0x00,0xc1,0x44,0xc5,0x25,0xac,0x61,0x9d,0x18,0xc8,0x4a,0x3f,0x47, | ||
1573 | 0x18,0xe2,0x44,0x8b,0x2f,0xe3,0x24,0xd9,0xcc,0xda,0x27,0x10}, | ||
1574 | T10[]= {0x25,0x19,0x49,0x8e,0x80,0xf1,0x47,0x8f,0x37,0xba,0x55,0xbd,0x6d,0x27,0x61,0x8c}; | ||
1575 | |||
1576 | /* Test Case 11 */ | ||
1577 | #define K11 K10 | ||
1578 | #define P11 P10 | ||
1579 | #define A11 A10 | ||
1580 | static const u8 IV11[]={0xca,0xfe,0xba,0xbe,0xfa,0xce,0xdb,0xad}, | ||
1581 | C11[]= {0x0f,0x10,0xf5,0x99,0xae,0x14,0xa1,0x54,0xed,0x24,0xb3,0x6e,0x25,0x32,0x4d,0xb8, | ||
1582 | 0xc5,0x66,0x63,0x2e,0xf2,0xbb,0xb3,0x4f,0x83,0x47,0x28,0x0f,0xc4,0x50,0x70,0x57, | ||
1583 | 0xfd,0xdc,0x29,0xdf,0x9a,0x47,0x1f,0x75,0xc6,0x65,0x41,0xd4,0xd4,0xda,0xd1,0xc9, | ||
1584 | 0xe9,0x3a,0x19,0xa5,0x8e,0x8b,0x47,0x3f,0xa0,0xf0,0x62,0xf7}, | ||
1585 | T11[]= {0x65,0xdc,0xc5,0x7f,0xcf,0x62,0x3a,0x24,0x09,0x4f,0xcc,0xa4,0x0d,0x35,0x33,0xf8}; | ||
1586 | |||
1587 | /* Test Case 12 */ | ||
1588 | #define K12 K11 | ||
1589 | #define P12 P11 | ||
1590 | #define A12 A11 | ||
1591 | static const u8 IV12[]={0x93,0x13,0x22,0x5d,0xf8,0x84,0x06,0xe5,0x55,0x90,0x9c,0x5a,0xff,0x52,0x69,0xaa, | ||
1592 | 0x6a,0x7a,0x95,0x38,0x53,0x4f,0x7d,0xa1,0xe4,0xc3,0x03,0xd2,0xa3,0x18,0xa7,0x28, | ||
1593 | 0xc3,0xc0,0xc9,0x51,0x56,0x80,0x95,0x39,0xfc,0xf0,0xe2,0x42,0x9a,0x6b,0x52,0x54, | ||
1594 | 0x16,0xae,0xdb,0xf5,0xa0,0xde,0x6a,0x57,0xa6,0x37,0xb3,0x9b}, | ||
1595 | C12[]= {0xd2,0x7e,0x88,0x68,0x1c,0xe3,0x24,0x3c,0x48,0x30,0x16,0x5a,0x8f,0xdc,0xf9,0xff, | ||
1596 | 0x1d,0xe9,0xa1,0xd8,0xe6,0xb4,0x47,0xef,0x6e,0xf7,0xb7,0x98,0x28,0x66,0x6e,0x45, | ||
1597 | 0x81,0xe7,0x90,0x12,0xaf,0x34,0xdd,0xd9,0xe2,0xf0,0x37,0x58,0x9b,0x29,0x2d,0xb3, | ||
1598 | 0xe6,0x7c,0x03,0x67,0x45,0xfa,0x22,0xe7,0xe9,0xb7,0x37,0x3b}, | ||
1599 | T12[]= {0xdc,0xf5,0x66,0xff,0x29,0x1c,0x25,0xbb,0xb8,0x56,0x8f,0xc3,0xd3,0x76,0xa6,0xd9}; | ||
1600 | |||
1601 | /* Test Case 13 */ | ||
1602 | static const u8 K13[32], | ||
1603 | *P13=NULL, | ||
1604 | *A13=NULL, | ||
1605 | IV13[12], | ||
1606 | *C13=NULL, | ||
1607 | T13[]={0x53,0x0f,0x8a,0xfb,0xc7,0x45,0x36,0xb9,0xa9,0x63,0xb4,0xf1,0xc4,0xcb,0x73,0x8b}; | ||
1608 | |||
1609 | /* Test Case 14 */ | ||
1610 | #define K14 K13 | ||
1611 | #define A14 A13 | ||
1612 | static const u8 P14[16], | ||
1613 | IV14[12], | ||
1614 | C14[]= {0xce,0xa7,0x40,0x3d,0x4d,0x60,0x6b,0x6e,0x07,0x4e,0xc5,0xd3,0xba,0xf3,0x9d,0x18}, | ||
1615 | T14[]= {0xd0,0xd1,0xc8,0xa7,0x99,0x99,0x6b,0xf0,0x26,0x5b,0x98,0xb5,0xd4,0x8a,0xb9,0x19}; | ||
1616 | |||
1617 | /* Test Case 15 */ | ||
1618 | #define A15 A14 | ||
1619 | static const u8 K15[]= {0xfe,0xff,0xe9,0x92,0x86,0x65,0x73,0x1c,0x6d,0x6a,0x8f,0x94,0x67,0x30,0x83,0x08, | ||
1620 | 0xfe,0xff,0xe9,0x92,0x86,0x65,0x73,0x1c,0x6d,0x6a,0x8f,0x94,0x67,0x30,0x83,0x08}, | ||
1621 | P15[]= {0xd9,0x31,0x32,0x25,0xf8,0x84,0x06,0xe5,0xa5,0x59,0x09,0xc5,0xaf,0xf5,0x26,0x9a, | ||
1622 | 0x86,0xa7,0xa9,0x53,0x15,0x34,0xf7,0xda,0x2e,0x4c,0x30,0x3d,0x8a,0x31,0x8a,0x72, | ||
1623 | 0x1c,0x3c,0x0c,0x95,0x95,0x68,0x09,0x53,0x2f,0xcf,0x0e,0x24,0x49,0xa6,0xb5,0x25, | ||
1624 | 0xb1,0x6a,0xed,0xf5,0xaa,0x0d,0xe6,0x57,0xba,0x63,0x7b,0x39,0x1a,0xaf,0xd2,0x55}, | ||
1625 | IV15[]={0xca,0xfe,0xba,0xbe,0xfa,0xce,0xdb,0xad,0xde,0xca,0xf8,0x88}, | ||
1626 | C15[]= {0x52,0x2d,0xc1,0xf0,0x99,0x56,0x7d,0x07,0xf4,0x7f,0x37,0xa3,0x2a,0x84,0x42,0x7d, | ||
1627 | 0x64,0x3a,0x8c,0xdc,0xbf,0xe5,0xc0,0xc9,0x75,0x98,0xa2,0xbd,0x25,0x55,0xd1,0xaa, | ||
1628 | 0x8c,0xb0,0x8e,0x48,0x59,0x0d,0xbb,0x3d,0xa7,0xb0,0x8b,0x10,0x56,0x82,0x88,0x38, | ||
1629 | 0xc5,0xf6,0x1e,0x63,0x93,0xba,0x7a,0x0a,0xbc,0xc9,0xf6,0x62,0x89,0x80,0x15,0xad}, | ||
1630 | T15[]= {0xb0,0x94,0xda,0xc5,0xd9,0x34,0x71,0xbd,0xec,0x1a,0x50,0x22,0x70,0xe3,0xcc,0x6c}; | ||
1631 | |||
1632 | /* Test Case 16 */ | ||
1633 | #define K16 K15 | ||
1634 | #define IV16 IV15 | ||
1635 | static const u8 P16[]= {0xd9,0x31,0x32,0x25,0xf8,0x84,0x06,0xe5,0xa5,0x59,0x09,0xc5,0xaf,0xf5,0x26,0x9a, | ||
1636 | 0x86,0xa7,0xa9,0x53,0x15,0x34,0xf7,0xda,0x2e,0x4c,0x30,0x3d,0x8a,0x31,0x8a,0x72, | ||
1637 | 0x1c,0x3c,0x0c,0x95,0x95,0x68,0x09,0x53,0x2f,0xcf,0x0e,0x24,0x49,0xa6,0xb5,0x25, | ||
1638 | 0xb1,0x6a,0xed,0xf5,0xaa,0x0d,0xe6,0x57,0xba,0x63,0x7b,0x39}, | ||
1639 | A16[]= {0xfe,0xed,0xfa,0xce,0xde,0xad,0xbe,0xef,0xfe,0xed,0xfa,0xce,0xde,0xad,0xbe,0xef, | ||
1640 | 0xab,0xad,0xda,0xd2}, | ||
1641 | C16[]= {0x52,0x2d,0xc1,0xf0,0x99,0x56,0x7d,0x07,0xf4,0x7f,0x37,0xa3,0x2a,0x84,0x42,0x7d, | ||
1642 | 0x64,0x3a,0x8c,0xdc,0xbf,0xe5,0xc0,0xc9,0x75,0x98,0xa2,0xbd,0x25,0x55,0xd1,0xaa, | ||
1643 | 0x8c,0xb0,0x8e,0x48,0x59,0x0d,0xbb,0x3d,0xa7,0xb0,0x8b,0x10,0x56,0x82,0x88,0x38, | ||
1644 | 0xc5,0xf6,0x1e,0x63,0x93,0xba,0x7a,0x0a,0xbc,0xc9,0xf6,0x62}, | ||
1645 | T16[]= {0x76,0xfc,0x6e,0xce,0x0f,0x4e,0x17,0x68,0xcd,0xdf,0x88,0x53,0xbb,0x2d,0x55,0x1b}; | ||
1646 | |||
1647 | /* Test Case 17 */ | ||
1648 | #define K17 K16 | ||
1649 | #define P17 P16 | ||
1650 | #define A17 A16 | ||
1651 | static const u8 IV17[]={0xca,0xfe,0xba,0xbe,0xfa,0xce,0xdb,0xad}, | ||
1652 | C17[]= {0xc3,0x76,0x2d,0xf1,0xca,0x78,0x7d,0x32,0xae,0x47,0xc1,0x3b,0xf1,0x98,0x44,0xcb, | ||
1653 | 0xaf,0x1a,0xe1,0x4d,0x0b,0x97,0x6a,0xfa,0xc5,0x2f,0xf7,0xd7,0x9b,0xba,0x9d,0xe0, | ||
1654 | 0xfe,0xb5,0x82,0xd3,0x39,0x34,0xa4,0xf0,0x95,0x4c,0xc2,0x36,0x3b,0xc7,0x3f,0x78, | ||
1655 | 0x62,0xac,0x43,0x0e,0x64,0xab,0xe4,0x99,0xf4,0x7c,0x9b,0x1f}, | ||
1656 | T17[]= {0x3a,0x33,0x7d,0xbf,0x46,0xa7,0x92,0xc4,0x5e,0x45,0x49,0x13,0xfe,0x2e,0xa8,0xf2}; | ||
1657 | |||
1658 | /* Test Case 18 */ | ||
1659 | #define K18 K17 | ||
1660 | #define P18 P17 | ||
1661 | #define A18 A17 | ||
1662 | static const u8 IV18[]={0x93,0x13,0x22,0x5d,0xf8,0x84,0x06,0xe5,0x55,0x90,0x9c,0x5a,0xff,0x52,0x69,0xaa, | ||
1663 | 0x6a,0x7a,0x95,0x38,0x53,0x4f,0x7d,0xa1,0xe4,0xc3,0x03,0xd2,0xa3,0x18,0xa7,0x28, | ||
1664 | 0xc3,0xc0,0xc9,0x51,0x56,0x80,0x95,0x39,0xfc,0xf0,0xe2,0x42,0x9a,0x6b,0x52,0x54, | ||
1665 | 0x16,0xae,0xdb,0xf5,0xa0,0xde,0x6a,0x57,0xa6,0x37,0xb3,0x9b}, | ||
1666 | C18[]= {0x5a,0x8d,0xef,0x2f,0x0c,0x9e,0x53,0xf1,0xf7,0x5d,0x78,0x53,0x65,0x9e,0x2a,0x20, | ||
1667 | 0xee,0xb2,0xb2,0x2a,0xaf,0xde,0x64,0x19,0xa0,0x58,0xab,0x4f,0x6f,0x74,0x6b,0xf4, | ||
1668 | 0x0f,0xc0,0xc3,0xb7,0x80,0xf2,0x44,0x45,0x2d,0xa3,0xeb,0xf1,0xc5,0xd8,0x2c,0xde, | ||
1669 | 0xa2,0x41,0x89,0x97,0x20,0x0e,0xf8,0x2e,0x44,0xae,0x7e,0x3f}, | ||
1670 | T18[]= {0xa4,0x4a,0x82,0x66,0xee,0x1c,0x8e,0xb0,0xc8,0xb5,0xd4,0xcf,0x5a,0xe9,0xf1,0x9a}; | ||
1671 | |||
1672 | #define TEST_CASE(n) do { \ | ||
1673 | u8 out[sizeof(P##n)]; \ | ||
1674 | AES_set_encrypt_key(K##n,sizeof(K##n)*8,&key); \ | ||
1675 | CRYPTO_gcm128_init(&ctx,&key,(block128_f)AES_encrypt); \ | ||
1676 | CRYPTO_gcm128_setiv(&ctx,IV##n,sizeof(IV##n)); \ | ||
1677 | memset(out,0,sizeof(out)); \ | ||
1678 | if (A##n) CRYPTO_gcm128_aad(&ctx,A##n,sizeof(A##n)); \ | ||
1679 | if (P##n) CRYPTO_gcm128_encrypt(&ctx,P##n,out,sizeof(out)); \ | ||
1680 | if (CRYPTO_gcm128_finish(&ctx,T##n,16) || \ | ||
1681 | (C##n && memcmp(out,C##n,sizeof(out)))) \ | ||
1682 | ret++, printf ("encrypt test#%d failed.\n",n); \ | ||
1683 | CRYPTO_gcm128_setiv(&ctx,IV##n,sizeof(IV##n)); \ | ||
1684 | memset(out,0,sizeof(out)); \ | ||
1685 | if (A##n) CRYPTO_gcm128_aad(&ctx,A##n,sizeof(A##n)); \ | ||
1686 | if (C##n) CRYPTO_gcm128_decrypt(&ctx,C##n,out,sizeof(out)); \ | ||
1687 | if (CRYPTO_gcm128_finish(&ctx,T##n,16) || \ | ||
1688 | (P##n && memcmp(out,P##n,sizeof(out)))) \ | ||
1689 | ret++, printf ("decrypt test#%d failed.\n",n); \ | ||
1690 | } while(0) | ||
1691 | |||
1692 | int main() | ||
1693 | { | ||
1694 | GCM128_CONTEXT ctx; | ||
1695 | AES_KEY key; | ||
1696 | int ret=0; | ||
1697 | |||
1698 | TEST_CASE(1); | ||
1699 | TEST_CASE(2); | ||
1700 | TEST_CASE(3); | ||
1701 | TEST_CASE(4); | ||
1702 | TEST_CASE(5); | ||
1703 | TEST_CASE(6); | ||
1704 | TEST_CASE(7); | ||
1705 | TEST_CASE(8); | ||
1706 | TEST_CASE(9); | ||
1707 | TEST_CASE(10); | ||
1708 | TEST_CASE(11); | ||
1709 | TEST_CASE(12); | ||
1710 | TEST_CASE(13); | ||
1711 | TEST_CASE(14); | ||
1712 | TEST_CASE(15); | ||
1713 | TEST_CASE(16); | ||
1714 | TEST_CASE(17); | ||
1715 | TEST_CASE(18); | ||
1716 | |||
1717 | #ifdef OPENSSL_CPUID_OBJ | ||
1718 | { | ||
1719 | size_t start,stop,gcm_t,ctr_t,OPENSSL_rdtsc(); | ||
1720 | union { u64 u; u8 c[1024]; } buf; | ||
1721 | int i; | ||
1722 | |||
1723 | AES_set_encrypt_key(K1,sizeof(K1)*8,&key); | ||
1724 | CRYPTO_gcm128_init(&ctx,&key,(block128_f)AES_encrypt); | ||
1725 | CRYPTO_gcm128_setiv(&ctx,IV1,sizeof(IV1)); | ||
1726 | |||
1727 | CRYPTO_gcm128_encrypt(&ctx,buf.c,buf.c,sizeof(buf)); | ||
1728 | start = OPENSSL_rdtsc(); | ||
1729 | CRYPTO_gcm128_encrypt(&ctx,buf.c,buf.c,sizeof(buf)); | ||
1730 | gcm_t = OPENSSL_rdtsc() - start; | ||
1731 | |||
1732 | CRYPTO_ctr128_encrypt(buf.c,buf.c,sizeof(buf), | ||
1733 | &key,ctx.Yi.c,ctx.EKi.c,&ctx.mres, | ||
1734 | (block128_f)AES_encrypt); | ||
1735 | start = OPENSSL_rdtsc(); | ||
1736 | CRYPTO_ctr128_encrypt(buf.c,buf.c,sizeof(buf), | ||
1737 | &key,ctx.Yi.c,ctx.EKi.c,&ctx.mres, | ||
1738 | (block128_f)AES_encrypt); | ||
1739 | ctr_t = OPENSSL_rdtsc() - start; | ||
1740 | |||
1741 | printf("%.2f-%.2f=%.2f\n", | ||
1742 | gcm_t/(double)sizeof(buf), | ||
1743 | ctr_t/(double)sizeof(buf), | ||
1744 | (gcm_t-ctr_t)/(double)sizeof(buf)); | ||
1745 | #ifdef GHASH | ||
1746 | GHASH(&ctx,buf.c,sizeof(buf)); | ||
1747 | start = OPENSSL_rdtsc(); | ||
1748 | for (i=0;i<100;++i) GHASH(&ctx,buf.c,sizeof(buf)); | ||
1749 | gcm_t = OPENSSL_rdtsc() - start; | ||
1750 | printf("%.2f\n",gcm_t/(double)sizeof(buf)/(double)i); | ||
1751 | #endif | ||
1752 | } | ||
1753 | #endif | ||
1754 | |||
1755 | return ret; | ||
1756 | } | ||
1757 | #endif | ||
diff --git a/src/lib/libcrypto/modes/modes.h b/src/lib/libcrypto/modes/modes.h index af8d97d795..f18215bb2b 100644 --- a/src/lib/libcrypto/modes/modes.h +++ b/src/lib/libcrypto/modes/modes.h | |||
@@ -15,6 +15,14 @@ typedef void (*cbc128_f)(const unsigned char *in, unsigned char *out, | |||
15 | size_t len, const void *key, | 15 | size_t len, const void *key, |
16 | unsigned char ivec[16], int enc); | 16 | unsigned char ivec[16], int enc); |
17 | 17 | ||
18 | typedef void (*ctr128_f)(const unsigned char *in, unsigned char *out, | ||
19 | size_t blocks, const void *key, | ||
20 | const unsigned char ivec[16]); | ||
21 | |||
22 | typedef void (*ccm128_f)(const unsigned char *in, unsigned char *out, | ||
23 | size_t blocks, const void *key, | ||
24 | const unsigned char ivec[16],unsigned char cmac[16]); | ||
25 | |||
18 | void CRYPTO_cbc128_encrypt(const unsigned char *in, unsigned char *out, | 26 | void CRYPTO_cbc128_encrypt(const unsigned char *in, unsigned char *out, |
19 | size_t len, const void *key, | 27 | size_t len, const void *key, |
20 | unsigned char ivec[16], block128_f block); | 28 | unsigned char ivec[16], block128_f block); |
@@ -27,6 +35,11 @@ void CRYPTO_ctr128_encrypt(const unsigned char *in, unsigned char *out, | |||
27 | unsigned char ivec[16], unsigned char ecount_buf[16], | 35 | unsigned char ivec[16], unsigned char ecount_buf[16], |
28 | unsigned int *num, block128_f block); | 36 | unsigned int *num, block128_f block); |
29 | 37 | ||
38 | void CRYPTO_ctr128_encrypt_ctr32(const unsigned char *in, unsigned char *out, | ||
39 | size_t len, const void *key, | ||
40 | unsigned char ivec[16], unsigned char ecount_buf[16], | ||
41 | unsigned int *num, ctr128_f ctr); | ||
42 | |||
30 | void CRYPTO_ofb128_encrypt(const unsigned char *in, unsigned char *out, | 43 | void CRYPTO_ofb128_encrypt(const unsigned char *in, unsigned char *out, |
31 | size_t len, const void *key, | 44 | size_t len, const void *key, |
32 | unsigned char ivec[16], int *num, | 45 | unsigned char ivec[16], int *num, |
@@ -57,3 +70,66 @@ size_t CRYPTO_cts128_decrypt_block(const unsigned char *in, unsigned char *out, | |||
57 | size_t CRYPTO_cts128_decrypt(const unsigned char *in, unsigned char *out, | 70 | size_t CRYPTO_cts128_decrypt(const unsigned char *in, unsigned char *out, |
58 | size_t len, const void *key, | 71 | size_t len, const void *key, |
59 | unsigned char ivec[16], cbc128_f cbc); | 72 | unsigned char ivec[16], cbc128_f cbc); |
73 | |||
74 | size_t CRYPTO_nistcts128_encrypt_block(const unsigned char *in, unsigned char *out, | ||
75 | size_t len, const void *key, | ||
76 | unsigned char ivec[16], block128_f block); | ||
77 | size_t CRYPTO_nistcts128_encrypt(const unsigned char *in, unsigned char *out, | ||
78 | size_t len, const void *key, | ||
79 | unsigned char ivec[16], cbc128_f cbc); | ||
80 | size_t CRYPTO_nistcts128_decrypt_block(const unsigned char *in, unsigned char *out, | ||
81 | size_t len, const void *key, | ||
82 | unsigned char ivec[16], block128_f block); | ||
83 | size_t CRYPTO_nistcts128_decrypt(const unsigned char *in, unsigned char *out, | ||
84 | size_t len, const void *key, | ||
85 | unsigned char ivec[16], cbc128_f cbc); | ||
86 | |||
87 | typedef struct gcm128_context GCM128_CONTEXT; | ||
88 | |||
89 | GCM128_CONTEXT *CRYPTO_gcm128_new(void *key, block128_f block); | ||
90 | void CRYPTO_gcm128_init(GCM128_CONTEXT *ctx,void *key,block128_f block); | ||
91 | void CRYPTO_gcm128_setiv(GCM128_CONTEXT *ctx, const unsigned char *iv, | ||
92 | size_t len); | ||
93 | int CRYPTO_gcm128_aad(GCM128_CONTEXT *ctx, const unsigned char *aad, | ||
94 | size_t len); | ||
95 | int CRYPTO_gcm128_encrypt(GCM128_CONTEXT *ctx, | ||
96 | const unsigned char *in, unsigned char *out, | ||
97 | size_t len); | ||
98 | int CRYPTO_gcm128_decrypt(GCM128_CONTEXT *ctx, | ||
99 | const unsigned char *in, unsigned char *out, | ||
100 | size_t len); | ||
101 | int CRYPTO_gcm128_encrypt_ctr32(GCM128_CONTEXT *ctx, | ||
102 | const unsigned char *in, unsigned char *out, | ||
103 | size_t len, ctr128_f stream); | ||
104 | int CRYPTO_gcm128_decrypt_ctr32(GCM128_CONTEXT *ctx, | ||
105 | const unsigned char *in, unsigned char *out, | ||
106 | size_t len, ctr128_f stream); | ||
107 | int CRYPTO_gcm128_finish(GCM128_CONTEXT *ctx,const unsigned char *tag, | ||
108 | size_t len); | ||
109 | void CRYPTO_gcm128_tag(GCM128_CONTEXT *ctx, unsigned char *tag, size_t len); | ||
110 | void CRYPTO_gcm128_release(GCM128_CONTEXT *ctx); | ||
111 | |||
112 | typedef struct ccm128_context CCM128_CONTEXT; | ||
113 | |||
114 | void CRYPTO_ccm128_init(CCM128_CONTEXT *ctx, | ||
115 | unsigned int M, unsigned int L, void *key,block128_f block); | ||
116 | int CRYPTO_ccm128_setiv(CCM128_CONTEXT *ctx, | ||
117 | const unsigned char *nonce, size_t nlen, size_t mlen); | ||
118 | void CRYPTO_ccm128_aad(CCM128_CONTEXT *ctx, | ||
119 | const unsigned char *aad, size_t alen); | ||
120 | int CRYPTO_ccm128_encrypt(CCM128_CONTEXT *ctx, | ||
121 | const unsigned char *inp, unsigned char *out, size_t len); | ||
122 | int CRYPTO_ccm128_decrypt(CCM128_CONTEXT *ctx, | ||
123 | const unsigned char *inp, unsigned char *out, size_t len); | ||
124 | int CRYPTO_ccm128_encrypt_ccm64(CCM128_CONTEXT *ctx, | ||
125 | const unsigned char *inp, unsigned char *out, size_t len, | ||
126 | ccm128_f stream); | ||
127 | int CRYPTO_ccm128_decrypt_ccm64(CCM128_CONTEXT *ctx, | ||
128 | const unsigned char *inp, unsigned char *out, size_t len, | ||
129 | ccm128_f stream); | ||
130 | size_t CRYPTO_ccm128_tag(CCM128_CONTEXT *ctx, unsigned char *tag, size_t len); | ||
131 | |||
132 | typedef struct xts128_context XTS128_CONTEXT; | ||
133 | |||
134 | int CRYPTO_xts128_encrypt(const XTS128_CONTEXT *ctx, const unsigned char iv[16], | ||
135 | const unsigned char *inp, unsigned char *out, size_t len, int enc); | ||
diff --git a/src/lib/libcrypto/modes/modes_lcl.h b/src/lib/libcrypto/modes/modes_lcl.h new file mode 100644 index 0000000000..b6dc3c336f --- /dev/null +++ b/src/lib/libcrypto/modes/modes_lcl.h | |||
@@ -0,0 +1,131 @@ | |||
1 | /* ==================================================================== | ||
2 | * Copyright (c) 2010 The OpenSSL Project. All rights reserved. | ||
3 | * | ||
4 | * Redistribution and use is governed by OpenSSL license. | ||
5 | * ==================================================================== | ||
6 | */ | ||
7 | |||
8 | #include <openssl/modes.h> | ||
9 | |||
10 | |||
11 | #if (defined(_WIN32) || defined(_WIN64)) && !defined(__MINGW32__) | ||
12 | typedef __int64 i64; | ||
13 | typedef unsigned __int64 u64; | ||
14 | #define U64(C) C##UI64 | ||
15 | #elif defined(__arch64__) | ||
16 | typedef long i64; | ||
17 | typedef unsigned long u64; | ||
18 | #define U64(C) C##UL | ||
19 | #else | ||
20 | typedef long long i64; | ||
21 | typedef unsigned long long u64; | ||
22 | #define U64(C) C##ULL | ||
23 | #endif | ||
24 | |||
25 | typedef unsigned int u32; | ||
26 | typedef unsigned char u8; | ||
27 | |||
28 | #define STRICT_ALIGNMENT 1 | ||
29 | #if defined(__i386) || defined(__i386__) || \ | ||
30 | defined(__x86_64) || defined(__x86_64__) || \ | ||
31 | defined(_M_IX86) || defined(_M_AMD64) || defined(_M_X64) || \ | ||
32 | defined(__s390__) || defined(__s390x__) || \ | ||
33 | ( (defined(__arm__) || defined(__arm)) && \ | ||
34 | (defined(__ARM_ARCH_7__) || defined(__ARM_ARCH_7A__) || \ | ||
35 | defined(__ARM_ARCH_7R__) || defined(__ARM_ARCH_7M__)) ) | ||
36 | # undef STRICT_ALIGNMENT | ||
37 | #endif | ||
38 | |||
39 | #if !defined(PEDANTIC) && !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM) | ||
40 | #if defined(__GNUC__) && __GNUC__>=2 | ||
41 | # if defined(__x86_64) || defined(__x86_64__) | ||
42 | # define BSWAP8(x) ({ u64 ret=(x); \ | ||
43 | asm ("bswapq %0" \ | ||
44 | : "+r"(ret)); ret; }) | ||
45 | # define BSWAP4(x) ({ u32 ret=(x); \ | ||
46 | asm ("bswapl %0" \ | ||
47 | : "+r"(ret)); ret; }) | ||
48 | # elif (defined(__i386) || defined(__i386__)) && !defined(I386_ONLY) | ||
49 | # define BSWAP8(x) ({ u32 lo=(u64)(x)>>32,hi=(x); \ | ||
50 | asm ("bswapl %0; bswapl %1" \ | ||
51 | : "+r"(hi),"+r"(lo)); \ | ||
52 | (u64)hi<<32|lo; }) | ||
53 | # define BSWAP4(x) ({ u32 ret=(x); \ | ||
54 | asm ("bswapl %0" \ | ||
55 | : "+r"(ret)); ret; }) | ||
56 | # elif (defined(__arm__) || defined(__arm)) && !defined(STRICT_ALIGNMENT) | ||
57 | # define BSWAP8(x) ({ u32 lo=(u64)(x)>>32,hi=(x); \ | ||
58 | asm ("rev %0,%0; rev %1,%1" \ | ||
59 | : "+r"(hi),"+r"(lo)); \ | ||
60 | (u64)hi<<32|lo; }) | ||
61 | # define BSWAP4(x) ({ u32 ret; \ | ||
62 | asm ("rev %0,%1" \ | ||
63 | : "=r"(ret) : "r"((u32)(x))); \ | ||
64 | ret; }) | ||
65 | # endif | ||
66 | #elif defined(_MSC_VER) | ||
67 | # if _MSC_VER>=1300 | ||
68 | # pragma intrinsic(_byteswap_uint64,_byteswap_ulong) | ||
69 | # define BSWAP8(x) _byteswap_uint64((u64)(x)) | ||
70 | # define BSWAP4(x) _byteswap_ulong((u32)(x)) | ||
71 | # elif defined(_M_IX86) | ||
72 | __inline u32 _bswap4(u32 val) { | ||
73 | _asm mov eax,val | ||
74 | _asm bswap eax | ||
75 | } | ||
76 | # define BSWAP4(x) _bswap4(x) | ||
77 | # endif | ||
78 | #endif | ||
79 | #endif | ||
80 | |||
81 | #if defined(BSWAP4) && !defined(STRICT_ALIGNMENT) | ||
82 | #define GETU32(p) BSWAP4(*(const u32 *)(p)) | ||
83 | #define PUTU32(p,v) *(u32 *)(p) = BSWAP4(v) | ||
84 | #else | ||
85 | #define GETU32(p) ((u32)(p)[0]<<24|(u32)(p)[1]<<16|(u32)(p)[2]<<8|(u32)(p)[3]) | ||
86 | #define PUTU32(p,v) ((p)[0]=(u8)((v)>>24),(p)[1]=(u8)((v)>>16),(p)[2]=(u8)((v)>>8),(p)[3]=(u8)(v)) | ||
87 | #endif | ||
88 | |||
89 | /* GCM definitions */ | ||
90 | |||
91 | typedef struct { u64 hi,lo; } u128; | ||
92 | |||
93 | #ifdef TABLE_BITS | ||
94 | #undef TABLE_BITS | ||
95 | #endif | ||
96 | /* | ||
97 | * Even though permitted values for TABLE_BITS are 8, 4 and 1, it should | ||
98 | * never be set to 8 [or 1]. For further information see gcm128.c. | ||
99 | */ | ||
100 | #define TABLE_BITS 4 | ||
101 | |||
102 | struct gcm128_context { | ||
103 | /* Following 6 names follow names in GCM specification */ | ||
104 | union { u64 u[2]; u32 d[4]; u8 c[16]; } Yi,EKi,EK0,len, | ||
105 | Xi,H; | ||
106 | /* Relative position of Xi, H and pre-computed Htable is used | ||
107 | * in some assembler modules, i.e. don't change the order! */ | ||
108 | #if TABLE_BITS==8 | ||
109 | u128 Htable[256]; | ||
110 | #else | ||
111 | u128 Htable[16]; | ||
112 | void (*gmult)(u64 Xi[2],const u128 Htable[16]); | ||
113 | void (*ghash)(u64 Xi[2],const u128 Htable[16],const u8 *inp,size_t len); | ||
114 | #endif | ||
115 | unsigned int mres, ares; | ||
116 | block128_f block; | ||
117 | void *key; | ||
118 | }; | ||
119 | |||
120 | struct xts128_context { | ||
121 | void *key1, *key2; | ||
122 | block128_f block1,block2; | ||
123 | }; | ||
124 | |||
125 | struct ccm128_context { | ||
126 | union { u64 u[2]; u8 c[16]; } nonce, cmac; | ||
127 | u64 blocks; | ||
128 | block128_f block; | ||
129 | void *key; | ||
130 | }; | ||
131 | |||
diff --git a/src/lib/libcrypto/modes/ofb128.c b/src/lib/libcrypto/modes/ofb128.c index c732e2ec58..01c01702c4 100644 --- a/src/lib/libcrypto/modes/ofb128.c +++ b/src/lib/libcrypto/modes/ofb128.c | |||
@@ -48,7 +48,8 @@ | |||
48 | * | 48 | * |
49 | */ | 49 | */ |
50 | 50 | ||
51 | #include "modes.h" | 51 | #include <openssl/crypto.h> |
52 | #include "modes_lcl.h" | ||
52 | #include <string.h> | 53 | #include <string.h> |
53 | 54 | ||
54 | #ifndef MODES_DEBUG | 55 | #ifndef MODES_DEBUG |
@@ -58,14 +59,6 @@ | |||
58 | #endif | 59 | #endif |
59 | #include <assert.h> | 60 | #include <assert.h> |
60 | 61 | ||
61 | #define STRICT_ALIGNMENT | ||
62 | #if defined(__i386) || defined(__i386__) || \ | ||
63 | defined(__x86_64) || defined(__x86_64__) || \ | ||
64 | defined(_M_IX86) || defined(_M_AMD64) || defined(_M_X64) || \ | ||
65 | defined(__s390__) || defined(__s390x__) | ||
66 | # undef STRICT_ALIGNMENT | ||
67 | #endif | ||
68 | |||
69 | /* The input and output encrypted as though 128bit ofb mode is being | 62 | /* The input and output encrypted as though 128bit ofb mode is being |
70 | * used. The extra state information to record how much of the | 63 | * used. The extra state information to record how much of the |
71 | * 128bit block we have used is contained in *num; | 64 | * 128bit block we have used is contained in *num; |
diff --git a/src/lib/libcrypto/modes/xts128.c b/src/lib/libcrypto/modes/xts128.c new file mode 100644 index 0000000000..9cf27a25e9 --- /dev/null +++ b/src/lib/libcrypto/modes/xts128.c | |||
@@ -0,0 +1,187 @@ | |||
1 | /* ==================================================================== | ||
2 | * Copyright (c) 2011 The OpenSSL Project. All rights reserved. | ||
3 | * | ||
4 | * Redistribution and use in source and binary forms, with or without | ||
5 | * modification, are permitted provided that the following conditions | ||
6 | * are met: | ||
7 | * | ||
8 | * 1. Redistributions of source code must retain the above copyright | ||
9 | * notice, this list of conditions and the following disclaimer. | ||
10 | * | ||
11 | * 2. Redistributions in binary form must reproduce the above copyright | ||
12 | * notice, this list of conditions and the following disclaimer in | ||
13 | * the documentation and/or other materials provided with the | ||
14 | * distribution. | ||
15 | * | ||
16 | * 3. All advertising materials mentioning features or use of this | ||
17 | * software must display the following acknowledgment: | ||
18 | * "This product includes software developed by the OpenSSL Project | ||
19 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | ||
20 | * | ||
21 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
22 | * endorse or promote products derived from this software without | ||
23 | * prior written permission. For written permission, please contact | ||
24 | * openssl-core@openssl.org. | ||
25 | * | ||
26 | * 5. Products derived from this software may not be called "OpenSSL" | ||
27 | * nor may "OpenSSL" appear in their names without prior written | ||
28 | * permission of the OpenSSL Project. | ||
29 | * | ||
30 | * 6. Redistributions of any form whatsoever must retain the following | ||
31 | * acknowledgment: | ||
32 | * "This product includes software developed by the OpenSSL Project | ||
33 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" | ||
34 | * | ||
35 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
36 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
37 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
38 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
39 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
40 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
41 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
42 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
43 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
44 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
45 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
46 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
47 | * ==================================================================== | ||
48 | */ | ||
49 | |||
50 | #include <openssl/crypto.h> | ||
51 | #include "modes_lcl.h" | ||
52 | #include <string.h> | ||
53 | |||
54 | #ifndef MODES_DEBUG | ||
55 | # ifndef NDEBUG | ||
56 | # define NDEBUG | ||
57 | # endif | ||
58 | #endif | ||
59 | #include <assert.h> | ||
60 | |||
61 | int CRYPTO_xts128_encrypt(const XTS128_CONTEXT *ctx, const unsigned char iv[16], | ||
62 | const unsigned char *inp, unsigned char *out, | ||
63 | size_t len, int enc) | ||
64 | { | ||
65 | const union { long one; char little; } is_endian = {1}; | ||
66 | union { u64 u[2]; u32 d[4]; u8 c[16]; } tweak, scratch; | ||
67 | unsigned int i; | ||
68 | |||
69 | if (len<16) return -1; | ||
70 | |||
71 | memcpy(tweak.c, iv, 16); | ||
72 | |||
73 | (*ctx->block2)(tweak.c,tweak.c,ctx->key2); | ||
74 | |||
75 | if (!enc && (len%16)) len-=16; | ||
76 | |||
77 | while (len>=16) { | ||
78 | #if defined(STRICT_ALIGNMENT) | ||
79 | memcpy(scratch.c,inp,16); | ||
80 | scratch.u[0] ^= tweak.u[0]; | ||
81 | scratch.u[1] ^= tweak.u[1]; | ||
82 | #else | ||
83 | scratch.u[0] = ((u64*)inp)[0]^tweak.u[0]; | ||
84 | scratch.u[1] = ((u64*)inp)[1]^tweak.u[1]; | ||
85 | #endif | ||
86 | (*ctx->block1)(scratch.c,scratch.c,ctx->key1); | ||
87 | #if defined(STRICT_ALIGNMENT) | ||
88 | scratch.u[0] ^= tweak.u[0]; | ||
89 | scratch.u[1] ^= tweak.u[1]; | ||
90 | memcpy(out,scratch.c,16); | ||
91 | #else | ||
92 | ((u64*)out)[0] = scratch.u[0]^=tweak.u[0]; | ||
93 | ((u64*)out)[1] = scratch.u[1]^=tweak.u[1]; | ||
94 | #endif | ||
95 | inp += 16; | ||
96 | out += 16; | ||
97 | len -= 16; | ||
98 | |||
99 | if (len==0) return 0; | ||
100 | |||
101 | if (is_endian.little) { | ||
102 | unsigned int carry,res; | ||
103 | |||
104 | res = 0x87&(((int)tweak.d[3])>>31); | ||
105 | carry = (unsigned int)(tweak.u[0]>>63); | ||
106 | tweak.u[0] = (tweak.u[0]<<1)^res; | ||
107 | tweak.u[1] = (tweak.u[1]<<1)|carry; | ||
108 | } | ||
109 | else { | ||
110 | size_t c; | ||
111 | |||
112 | for (c=0,i=0;i<16;++i) { | ||
113 | /*+ substitutes for |, because c is 1 bit */ | ||
114 | c += ((size_t)tweak.c[i])<<1; | ||
115 | tweak.c[i] = (u8)c; | ||
116 | c = c>>8; | ||
117 | } | ||
118 | tweak.c[0] ^= (u8)(0x87&(0-c)); | ||
119 | } | ||
120 | } | ||
121 | if (enc) { | ||
122 | for (i=0;i<len;++i) { | ||
123 | u8 c = inp[i]; | ||
124 | out[i] = scratch.c[i]; | ||
125 | scratch.c[i] = c; | ||
126 | } | ||
127 | scratch.u[0] ^= tweak.u[0]; | ||
128 | scratch.u[1] ^= tweak.u[1]; | ||
129 | (*ctx->block1)(scratch.c,scratch.c,ctx->key1); | ||
130 | scratch.u[0] ^= tweak.u[0]; | ||
131 | scratch.u[1] ^= tweak.u[1]; | ||
132 | memcpy(out-16,scratch.c,16); | ||
133 | } | ||
134 | else { | ||
135 | union { u64 u[2]; u8 c[16]; } tweak1; | ||
136 | |||
137 | if (is_endian.little) { | ||
138 | unsigned int carry,res; | ||
139 | |||
140 | res = 0x87&(((int)tweak.d[3])>>31); | ||
141 | carry = (unsigned int)(tweak.u[0]>>63); | ||
142 | tweak1.u[0] = (tweak.u[0]<<1)^res; | ||
143 | tweak1.u[1] = (tweak.u[1]<<1)|carry; | ||
144 | } | ||
145 | else { | ||
146 | size_t c; | ||
147 | |||
148 | for (c=0,i=0;i<16;++i) { | ||
149 | /*+ substitutes for |, because c is 1 bit */ | ||
150 | c += ((size_t)tweak.c[i])<<1; | ||
151 | tweak1.c[i] = (u8)c; | ||
152 | c = c>>8; | ||
153 | } | ||
154 | tweak1.c[0] ^= (u8)(0x87&(0-c)); | ||
155 | } | ||
156 | #if defined(STRICT_ALIGNMENT) | ||
157 | memcpy(scratch.c,inp,16); | ||
158 | scratch.u[0] ^= tweak1.u[0]; | ||
159 | scratch.u[1] ^= tweak1.u[1]; | ||
160 | #else | ||
161 | scratch.u[0] = ((u64*)inp)[0]^tweak1.u[0]; | ||
162 | scratch.u[1] = ((u64*)inp)[1]^tweak1.u[1]; | ||
163 | #endif | ||
164 | (*ctx->block1)(scratch.c,scratch.c,ctx->key1); | ||
165 | scratch.u[0] ^= tweak1.u[0]; | ||
166 | scratch.u[1] ^= tweak1.u[1]; | ||
167 | |||
168 | for (i=0;i<len;++i) { | ||
169 | u8 c = inp[16+i]; | ||
170 | out[16+i] = scratch.c[i]; | ||
171 | scratch.c[i] = c; | ||
172 | } | ||
173 | scratch.u[0] ^= tweak.u[0]; | ||
174 | scratch.u[1] ^= tweak.u[1]; | ||
175 | (*ctx->block1)(scratch.c,scratch.c,ctx->key1); | ||
176 | #if defined(STRICT_ALIGNMENT) | ||
177 | scratch.u[0] ^= tweak.u[0]; | ||
178 | scratch.u[1] ^= tweak.u[1]; | ||
179 | memcpy (out,scratch.c,16); | ||
180 | #else | ||
181 | ((u64*)out)[0] = scratch.u[0]^tweak.u[0]; | ||
182 | ((u64*)out)[1] = scratch.u[1]^tweak.u[1]; | ||
183 | #endif | ||
184 | } | ||
185 | |||
186 | return 0; | ||
187 | } | ||