diff options
| author | cvs2svn <admin@example.com> | 2012-07-13 17:49:56 +0000 |
|---|---|---|
| committer | cvs2svn <admin@example.com> | 2012-07-13 17:49:56 +0000 |
| commit | ee04221ea8063435416c7e6369e6eae76843aa71 (patch) | |
| tree | 821921a1dd0a5a3cece91121e121cc63c4b68128 /src/lib/libcrypto/rc4/asm/rc4-ia64.pl | |
| parent | adf6731f6e1d04718aee00cb93435143046aee9a (diff) | |
| download | openbsd-eric_g2k12.tar.gz openbsd-eric_g2k12.tar.bz2 openbsd-eric_g2k12.zip | |
This commit was manufactured by cvs2git to create tag 'eric_g2k12'.eric_g2k12
Diffstat (limited to '')
| -rw-r--r-- | src/lib/libcrypto/rc4/asm/rc4-ia64.pl | 755 |
1 files changed, 0 insertions, 755 deletions
diff --git a/src/lib/libcrypto/rc4/asm/rc4-ia64.pl b/src/lib/libcrypto/rc4/asm/rc4-ia64.pl deleted file mode 100644 index 49cd5b5e69..0000000000 --- a/src/lib/libcrypto/rc4/asm/rc4-ia64.pl +++ /dev/null | |||
| @@ -1,755 +0,0 @@ | |||
| 1 | #!/usr/bin/env perl | ||
| 2 | # | ||
| 3 | # ==================================================================== | ||
| 4 | # Written by David Mosberger <David.Mosberger@acm.org> based on the | ||
| 5 | # Itanium optimized Crypto code which was released by HP Labs at | ||
| 6 | # http://www.hpl.hp.com/research/linux/crypto/. | ||
| 7 | # | ||
| 8 | # Copyright (c) 2005 Hewlett-Packard Development Company, L.P. | ||
| 9 | # | ||
| 10 | # Permission is hereby granted, free of charge, to any person obtaining | ||
| 11 | # a copy of this software and associated documentation files (the | ||
| 12 | # "Software"), to deal in the Software without restriction, including | ||
| 13 | # without limitation the rights to use, copy, modify, merge, publish, | ||
| 14 | # distribute, sublicense, and/or sell copies of the Software, and to | ||
| 15 | # permit persons to whom the Software is furnished to do so, subject to | ||
| 16 | # the following conditions: | ||
| 17 | # | ||
| 18 | # The above copyright notice and this permission notice shall be | ||
| 19 | # included in all copies or substantial portions of the Software. | ||
| 20 | |||
| 21 | # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, | ||
| 22 | # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF | ||
| 23 | # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND | ||
| 24 | # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE | ||
| 25 | # LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION | ||
| 26 | # OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION | ||
| 27 | # WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ | ||
| 28 | |||
| 29 | |||
| 30 | |||
| 31 | # This is a little helper program which generates a software-pipelined | ||
| 32 | # for RC4 encryption. The basic algorithm looks like this: | ||
| 33 | # | ||
| 34 | # for (counter = 0; counter < len; ++counter) | ||
| 35 | # { | ||
| 36 | # in = inp[counter]; | ||
| 37 | # SI = S[I]; | ||
| 38 | # J = (SI + J) & 0xff; | ||
| 39 | # SJ = S[J]; | ||
| 40 | # T = (SI + SJ) & 0xff; | ||
| 41 | # S[I] = SJ, S[J] = SI; | ||
| 42 | # ST = S[T]; | ||
| 43 | # outp[counter] = in ^ ST; | ||
| 44 | # I = (I + 1) & 0xff; | ||
| 45 | # } | ||
| 46 | # | ||
| 47 | # Pipelining this loop isn't easy, because the stores to the S[] array | ||
| 48 | # need to be observed in the right order. The loop generated by the | ||
| 49 | # code below has the following pipeline diagram: | ||
| 50 | # | ||
| 51 | # cycle | ||
| 52 | # | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |10 |11 |12 |13 |14 |15 |16 |17 | | ||
| 53 | # iter | ||
| 54 | # 1: xxx LDI xxx xxx xxx LDJ xxx SWP xxx LDT xxx xxx | ||
| 55 | # 2: xxx LDI xxx xxx xxx LDJ xxx SWP xxx LDT xxx xxx | ||
| 56 | # 3: xxx LDI xxx xxx xxx LDJ xxx SWP xxx LDT xxx xxx | ||
| 57 | # | ||
| 58 | # where: | ||
| 59 | # LDI = load of S[I] | ||
| 60 | # LDJ = load of S[J] | ||
| 61 | # SWP = swap of S[I] and S[J] | ||
| 62 | # LDT = load of S[T] | ||
| 63 | # | ||
| 64 | # Note that in the above diagram, the major trouble-spot is that LDI | ||
| 65 | # of the 2nd iteration is performed BEFORE the SWP of the first | ||
| 66 | # iteration. Fortunately, this is easy to detect (I of the 1st | ||
| 67 | # iteration will be equal to J of the 2nd iteration) and when this | ||
| 68 | # happens, we simply forward the proper value from the 1st iteration | ||
| 69 | # to the 2nd one. The proper value in this case is simply the value | ||
| 70 | # of S[I] from the first iteration (thanks to the fact that SWP | ||
| 71 | # simply swaps the contents of S[I] and S[J]). | ||
| 72 | # | ||
| 73 | # Another potential trouble-spot is in cycle 7, where SWP of the 1st | ||
| 74 | # iteration issues at the same time as the LDI of the 3rd iteration. | ||
| 75 | # However, thanks to IA-64 execution semantics, this can be taken | ||
| 76 | # care of simply by placing LDI later in the instruction-group than | ||
| 77 | # SWP. IA-64 CPUs will automatically forward the value if they | ||
| 78 | # detect that the SWP and LDI are accessing the same memory-location. | ||
| 79 | |||
| 80 | # The core-loop that can be pipelined then looks like this (annotated | ||
| 81 | # with McKinley/Madison issue port & latency numbers, assuming L1 | ||
| 82 | # cache hits for the most part): | ||
| 83 | |||
| 84 | # operation: instruction: issue-ports: latency | ||
| 85 | # ------------------ ----------------------------- ------------- ------- | ||
| 86 | |||
| 87 | # Data = *inp++ ld1 data = [inp], 1 M0-M1 1 cyc c0 | ||
| 88 | # shladd Iptr = I, KeyTable, 3 M0-M3, I0, I1 1 cyc | ||
| 89 | # I = (I + 1) & 0xff padd1 nextI = I, one M0-M3, I0, I1 3 cyc | ||
| 90 | # ;; | ||
| 91 | # SI = S[I] ld8 SI = [Iptr] M0-M1 1 cyc c1 * after SWAP! | ||
| 92 | # ;; | ||
| 93 | # cmp.eq.unc pBypass = I, J * after J is valid! | ||
| 94 | # J = SI + J add J = J, SI M0-M3, I0, I1 1 cyc c2 | ||
| 95 | # (pBypass) br.cond.spnt Bypass | ||
| 96 | # ;; | ||
| 97 | # --------------------------------------------------------------------------------------- | ||
| 98 | # J = J & 0xff zxt1 J = J I0, I1, 1 cyc c3 | ||
| 99 | # ;; | ||
| 100 | # shladd Jptr = J, KeyTable, 3 M0-M3, I0, I1 1 cyc c4 | ||
| 101 | # ;; | ||
| 102 | # SJ = S[J] ld8 SJ = [Jptr] M0-M1 1 cyc c5 | ||
| 103 | # ;; | ||
| 104 | # --------------------------------------------------------------------------------------- | ||
| 105 | # T = (SI + SJ) add T = SI, SJ M0-M3, I0, I1 1 cyc c6 | ||
| 106 | # ;; | ||
| 107 | # T = T & 0xff zxt1 T = T I0, I1 1 cyc | ||
| 108 | # S[I] = SJ st8 [Iptr] = SJ M2-M3 c7 | ||
| 109 | # S[J] = SI st8 [Jptr] = SI M2-M3 | ||
| 110 | # ;; | ||
| 111 | # shladd Tptr = T, KeyTable, 3 M0-M3, I0, I1 1 cyc c8 | ||
| 112 | # ;; | ||
| 113 | # --------------------------------------------------------------------------------------- | ||
| 114 | # T = S[T] ld8 T = [Tptr] M0-M1 1 cyc c9 | ||
| 115 | # ;; | ||
| 116 | # data ^= T xor data = data, T M0-M3, I0, I1 1 cyc c10 | ||
| 117 | # ;; | ||
| 118 | # *out++ = Data ^ T dep word = word, data, 8, POS I0, I1 1 cyc c11 | ||
| 119 | # ;; | ||
| 120 | # --------------------------------------------------------------------------------------- | ||
| 121 | |||
| 122 | # There are several points worth making here: | ||
| 123 | |||
| 124 | # - Note that due to the bypass/forwarding-path, the first two | ||
| 125 | # phases of the loop are strangly mingled together. In | ||
| 126 | # particular, note that the first stage of the pipeline is | ||
| 127 | # using the value of "J", as calculated by the second stage. | ||
| 128 | # - Each bundle-pair will have exactly 6 instructions. | ||
| 129 | # - Pipelined, the loop can execute in 3 cycles/iteration and | ||
| 130 | # 4 stages. However, McKinley/Madison can issue "st1" to | ||
| 131 | # the same bank at a rate of at most one per 4 cycles. Thus, | ||
| 132 | # instead of storing each byte, we accumulate them in a word | ||
| 133 | # and then write them back at once with a single "st8" (this | ||
| 134 | # implies that the setup code needs to ensure that the output | ||
| 135 | # buffer is properly aligned, if need be, by encoding the | ||
| 136 | # first few bytes separately). | ||
| 137 | # - There is no space for a "br.ctop" instruction. For this | ||
| 138 | # reason we can't use module-loop support in IA-64 and have | ||
| 139 | # to do a traditional, purely software-pipelined loop. | ||
| 140 | # - We can't replace any of the remaining "add/zxt1" pairs with | ||
| 141 | # "padd1" because the latency for that instruction is too high | ||
| 142 | # and would push the loop to the point where more bypasses | ||
| 143 | # would be needed, which we don't have space for. | ||
| 144 | # - The above loop runs at around 3.26 cycles/byte, or roughly | ||
| 145 | # 440 MByte/sec on a 1.5GHz Madison. This is well below the | ||
| 146 | # system bus bandwidth and hence with judicious use of | ||
| 147 | # "lfetch" this loop can run at (almost) peak speed even when | ||
| 148 | # the input and output data reside in memory. The | ||
| 149 | # max. latency that can be tolerated is (PREFETCH_DISTANCE * | ||
| 150 | # L2_LINE_SIZE * 3 cyc), or about 384 cycles assuming (at | ||
| 151 | # least) 1-ahead prefetching of 128 byte cache-lines. Note | ||
| 152 | # that we do NOT prefetch into L1, since that would only | ||
| 153 | # interfere with the S[] table values stored there. This is | ||
| 154 | # acceptable because there is a 10 cycle latency between | ||
| 155 | # load and first use of the input data. | ||
| 156 | # - We use a branch to out-of-line bypass-code of cycle-pressure: | ||
| 157 | # we calculate the next J, check for the need to activate the | ||
| 158 | # bypass path, and activate the bypass path ALL IN THE SAME | ||
| 159 | # CYCLE. If we didn't have these constraints, we could do | ||
| 160 | # the bypass with a simple conditional move instruction. | ||
| 161 | # Fortunately, the bypass paths get activated relatively | ||
| 162 | # infrequently, so the extra branches don't cost all that much | ||
| 163 | # (about 0.04 cycles/byte, measured on a 16396 byte file with | ||
| 164 | # random input data). | ||
| 165 | # | ||
| 166 | |||
| 167 | $phases = 4; # number of stages/phases in the pipelined-loop | ||
| 168 | $unroll_count = 6; # number of times we unrolled it | ||
| 169 | $pComI = (1 << 0); | ||
| 170 | $pComJ = (1 << 1); | ||
| 171 | $pComT = (1 << 2); | ||
| 172 | $pOut = (1 << 3); | ||
| 173 | |||
| 174 | $NData = 4; | ||
| 175 | $NIP = 3; | ||
| 176 | $NJP = 2; | ||
| 177 | $NI = 2; | ||
| 178 | $NSI = 3; | ||
| 179 | $NSJ = 2; | ||
| 180 | $NT = 2; | ||
| 181 | $NOutWord = 2; | ||
| 182 | |||
| 183 | # | ||
| 184 | # $threshold is the minimum length before we attempt to use the | ||
| 185 | # big software-pipelined loop. It MUST be greater-or-equal | ||
| 186 | # to: | ||
| 187 | # PHASES * (UNROLL_COUNT + 1) + 7 | ||
| 188 | # | ||
| 189 | # The "+ 7" comes from the fact we may have to encode up to | ||
| 190 | # 7 bytes separately before the output pointer is aligned. | ||
| 191 | # | ||
| 192 | $threshold = (3 * ($phases * ($unroll_count + 1)) + 7); | ||
| 193 | |||
| 194 | sub I { | ||
| 195 | local *code = shift; | ||
| 196 | local $format = shift; | ||
| 197 | $code .= sprintf ("\t\t".$format."\n", @_); | ||
| 198 | } | ||
| 199 | |||
| 200 | sub P { | ||
| 201 | local *code = shift; | ||
| 202 | local $format = shift; | ||
| 203 | $code .= sprintf ($format."\n", @_); | ||
| 204 | } | ||
| 205 | |||
| 206 | sub STOP { | ||
| 207 | local *code = shift; | ||
| 208 | $code .=<<___; | ||
| 209 | ;; | ||
| 210 | ___ | ||
| 211 | } | ||
| 212 | |||
| 213 | sub emit_body { | ||
| 214 | local *c = shift; | ||
| 215 | local *bypass = shift; | ||
| 216 | local ($iteration, $p) = @_; | ||
| 217 | |||
| 218 | local $i0 = $iteration; | ||
| 219 | local $i1 = $iteration - 1; | ||
| 220 | local $i2 = $iteration - 2; | ||
| 221 | local $i3 = $iteration - 3; | ||
| 222 | local $iw0 = ($iteration - 3) / 8; | ||
| 223 | local $iw1 = ($iteration > 3) ? ($iteration - 4) / 8 : 1; | ||
| 224 | local $byte_num = ($iteration - 3) % 8; | ||
| 225 | local $label = $iteration + 1; | ||
| 226 | local $pAny = ($p & 0xf) == 0xf; | ||
| 227 | local $pByp = (($p & $pComI) && ($iteration > 0)); | ||
| 228 | |||
| 229 | $c.=<<___; | ||
| 230 | ////////////////////////////////////////////////// | ||
| 231 | ___ | ||
| 232 | |||
| 233 | if (($p & 0xf) == 0) { | ||
| 234 | $c.="#ifdef HOST_IS_BIG_ENDIAN\n"; | ||
| 235 | &I(\$c,"shr.u OutWord[%u] = OutWord[%u], 32;;", | ||
| 236 | $iw1 % $NOutWord, $iw1 % $NOutWord); | ||
| 237 | $c.="#endif\n"; | ||
| 238 | &I(\$c, "st4 [OutPtr] = OutWord[%u], 4", $iw1 % $NOutWord); | ||
| 239 | return; | ||
| 240 | } | ||
| 241 | |||
| 242 | # Cycle 0 | ||
| 243 | &I(\$c, "{ .mmi") if ($pAny); | ||
| 244 | &I(\$c, "ld1 Data[%u] = [InPtr], 1", $i0 % $NData) if ($p & $pComI); | ||
| 245 | &I(\$c, "padd1 I[%u] = One, I[%u]", $i0 % $NI, $i1 % $NI)if ($p & $pComI); | ||
| 246 | &I(\$c, "zxt1 J = J") if ($p & $pComJ); | ||
| 247 | &I(\$c, "}") if ($pAny); | ||
| 248 | &I(\$c, "{ .mmi") if ($pAny); | ||
| 249 | &I(\$c, "LKEY T[%u] = [T[%u]]", $i1 % $NT, $i1 % $NT) if ($p & $pOut); | ||
| 250 | &I(\$c, "add T[%u] = SI[%u], SJ[%u]", | ||
| 251 | $i0 % $NT, $i2 % $NSI, $i1 % $NSJ) if ($p & $pComT); | ||
| 252 | &I(\$c, "KEYADDR(IPr[%u], I[%u])", $i0 % $NIP, $i1 % $NI) if ($p & $pComI); | ||
| 253 | &I(\$c, "}") if ($pAny); | ||
| 254 | &STOP(\$c); | ||
| 255 | |||
| 256 | # Cycle 1 | ||
| 257 | &I(\$c, "{ .mmi") if ($pAny); | ||
| 258 | &I(\$c, "SKEY [IPr[%u]] = SJ[%u]", $i2 % $NIP, $i1%$NSJ)if ($p & $pComT); | ||
| 259 | &I(\$c, "SKEY [JP[%u]] = SI[%u]", $i1 % $NJP, $i2%$NSI) if ($p & $pComT); | ||
| 260 | &I(\$c, "zxt1 T[%u] = T[%u]", $i0 % $NT, $i0 % $NT) if ($p & $pComT); | ||
| 261 | &I(\$c, "}") if ($pAny); | ||
| 262 | &I(\$c, "{ .mmi") if ($pAny); | ||
| 263 | &I(\$c, "LKEY SI[%u] = [IPr[%u]]", $i0 % $NSI, $i0%$NIP)if ($p & $pComI); | ||
| 264 | &I(\$c, "KEYADDR(JP[%u], J)", $i0 % $NJP) if ($p & $pComJ); | ||
| 265 | &I(\$c, "xor Data[%u] = Data[%u], T[%u]", | ||
| 266 | $i3 % $NData, $i3 % $NData, $i1 % $NT) if ($p & $pOut); | ||
| 267 | &I(\$c, "}") if ($pAny); | ||
| 268 | &STOP(\$c); | ||
| 269 | |||
| 270 | # Cycle 2 | ||
| 271 | &I(\$c, "{ .mmi") if ($pAny); | ||
| 272 | &I(\$c, "LKEY SJ[%u] = [JP[%u]]", $i0 % $NSJ, $i0%$NJP) if ($p & $pComJ); | ||
| 273 | &I(\$c, "cmp.eq pBypass, p0 = I[%u], J", $i1 % $NI) if ($pByp); | ||
| 274 | &I(\$c, "dep OutWord[%u] = Data[%u], OutWord[%u], BYTE_POS(%u), 8", | ||
| 275 | $iw0%$NOutWord, $i3%$NData, $iw1%$NOutWord, $byte_num) if ($p & $pOut); | ||
| 276 | &I(\$c, "}") if ($pAny); | ||
| 277 | &I(\$c, "{ .mmb") if ($pAny); | ||
| 278 | &I(\$c, "add J = J, SI[%u]", $i0 % $NSI) if ($p & $pComI); | ||
| 279 | &I(\$c, "KEYADDR(T[%u], T[%u])", $i0 % $NT, $i0 % $NT) if ($p & $pComT); | ||
| 280 | &P(\$c, "(pBypass)\tbr.cond.spnt.many .rc4Bypass%u",$label)if ($pByp); | ||
| 281 | &I(\$c, "}") if ($pAny); | ||
| 282 | &STOP(\$c); | ||
| 283 | |||
| 284 | &P(\$c, ".rc4Resume%u:", $label) if ($pByp); | ||
| 285 | if ($byte_num == 0 && $iteration >= $phases) { | ||
| 286 | &I(\$c, "st8 [OutPtr] = OutWord[%u], 8", | ||
| 287 | $iw1 % $NOutWord) if ($p & $pOut); | ||
| 288 | if ($iteration == (1 + $unroll_count) * $phases - 1) { | ||
| 289 | if ($unroll_count == 6) { | ||
| 290 | &I(\$c, "mov OutWord[%u] = OutWord[%u]", | ||
| 291 | $iw1 % $NOutWord, $iw0 % $NOutWord); | ||
| 292 | } | ||
| 293 | &I(\$c, "lfetch.nt1 [InPrefetch], %u", | ||
| 294 | $unroll_count * $phases); | ||
| 295 | &I(\$c, "lfetch.excl.nt1 [OutPrefetch], %u", | ||
| 296 | $unroll_count * $phases); | ||
| 297 | &I(\$c, "br.cloop.sptk.few .rc4Loop"); | ||
| 298 | } | ||
| 299 | } | ||
| 300 | |||
| 301 | if ($pByp) { | ||
| 302 | &P(\$bypass, ".rc4Bypass%u:", $label); | ||
| 303 | &I(\$bypass, "sub J = J, SI[%u]", $i0 % $NSI); | ||
| 304 | &I(\$bypass, "nop 0"); | ||
| 305 | &I(\$bypass, "nop 0"); | ||
| 306 | &I(\$bypass, ";;"); | ||
| 307 | &I(\$bypass, "add J = J, SI[%u]", $i1 % $NSI); | ||
| 308 | &I(\$bypass, "mov SI[%u] = SI[%u]", $i0 % $NSI, $i1 % $NSI); | ||
| 309 | &I(\$bypass, "br.sptk.many .rc4Resume%u\n", $label); | ||
| 310 | &I(\$bypass, ";;"); | ||
| 311 | } | ||
| 312 | } | ||
| 313 | |||
| 314 | $code=<<___; | ||
| 315 | .ident \"rc4-ia64.s, version 3.0\" | ||
| 316 | .ident \"Copyright (c) 2005 Hewlett-Packard Development Company, L.P.\" | ||
| 317 | |||
| 318 | #define LCSave r8 | ||
| 319 | #define PRSave r9 | ||
| 320 | |||
| 321 | /* Inputs become invalid once rotation begins! */ | ||
| 322 | |||
| 323 | #define StateTable in0 | ||
| 324 | #define DataLen in1 | ||
| 325 | #define InputBuffer in2 | ||
| 326 | #define OutputBuffer in3 | ||
| 327 | |||
| 328 | #define KTable r14 | ||
| 329 | #define J r15 | ||
| 330 | #define InPtr r16 | ||
| 331 | #define OutPtr r17 | ||
| 332 | #define InPrefetch r18 | ||
| 333 | #define OutPrefetch r19 | ||
| 334 | #define One r20 | ||
| 335 | #define LoopCount r21 | ||
| 336 | #define Remainder r22 | ||
| 337 | #define IFinal r23 | ||
| 338 | #define EndPtr r24 | ||
| 339 | |||
| 340 | #define tmp0 r25 | ||
| 341 | #define tmp1 r26 | ||
| 342 | |||
| 343 | #define pBypass p6 | ||
| 344 | #define pDone p7 | ||
| 345 | #define pSmall p8 | ||
| 346 | #define pAligned p9 | ||
| 347 | #define pUnaligned p10 | ||
| 348 | |||
| 349 | #define pComputeI pPhase[0] | ||
| 350 | #define pComputeJ pPhase[1] | ||
| 351 | #define pComputeT pPhase[2] | ||
| 352 | #define pOutput pPhase[3] | ||
| 353 | |||
| 354 | #define RetVal r8 | ||
| 355 | #define L_OK p7 | ||
| 356 | #define L_NOK p8 | ||
| 357 | |||
| 358 | #define _NINPUTS 4 | ||
| 359 | #define _NOUTPUT 0 | ||
| 360 | |||
| 361 | #define _NROTATE 24 | ||
| 362 | #define _NLOCALS (_NROTATE - _NINPUTS - _NOUTPUT) | ||
| 363 | |||
| 364 | #ifndef SZ | ||
| 365 | # define SZ 4 // this must be set to sizeof(RC4_INT) | ||
| 366 | #endif | ||
| 367 | |||
| 368 | #if SZ == 1 | ||
| 369 | # define LKEY ld1 | ||
| 370 | # define SKEY st1 | ||
| 371 | # define KEYADDR(dst, i) add dst = i, KTable | ||
| 372 | #elif SZ == 2 | ||
| 373 | # define LKEY ld2 | ||
| 374 | # define SKEY st2 | ||
| 375 | # define KEYADDR(dst, i) shladd dst = i, 1, KTable | ||
| 376 | #elif SZ == 4 | ||
| 377 | # define LKEY ld4 | ||
| 378 | # define SKEY st4 | ||
| 379 | # define KEYADDR(dst, i) shladd dst = i, 2, KTable | ||
| 380 | #else | ||
| 381 | # define LKEY ld8 | ||
| 382 | # define SKEY st8 | ||
| 383 | # define KEYADDR(dst, i) shladd dst = i, 3, KTable | ||
| 384 | #endif | ||
| 385 | |||
| 386 | #if defined(_HPUX_SOURCE) && !defined(_LP64) | ||
| 387 | # define ADDP addp4 | ||
| 388 | #else | ||
| 389 | # define ADDP add | ||
| 390 | #endif | ||
| 391 | |||
| 392 | /* Define a macro for the bit number of the n-th byte: */ | ||
| 393 | |||
| 394 | #if defined(_HPUX_SOURCE) || defined(B_ENDIAN) | ||
| 395 | # define HOST_IS_BIG_ENDIAN | ||
| 396 | # define BYTE_POS(n) (56 - (8 * (n))) | ||
| 397 | #else | ||
| 398 | # define BYTE_POS(n) (8 * (n)) | ||
| 399 | #endif | ||
| 400 | |||
| 401 | /* | ||
| 402 | We must perform the first phase of the pipeline explicitly since | ||
| 403 | we will always load from the stable the first time. The br.cexit | ||
| 404 | will never be taken since regardless of the number of bytes because | ||
| 405 | the epilogue count is 4. | ||
| 406 | */ | ||
| 407 | /* MODSCHED_RC4 macro was split to _PROLOGUE and _LOOP, because HP-UX | ||
| 408 | assembler failed on original macro with syntax error. <appro> */ | ||
| 409 | #define MODSCHED_RC4_PROLOGUE \\ | ||
| 410 | { \\ | ||
| 411 | ld1 Data[0] = [InPtr], 1; \\ | ||
| 412 | add IFinal = 1, I[1]; \\ | ||
| 413 | KEYADDR(IPr[0], I[1]); \\ | ||
| 414 | } ;; \\ | ||
| 415 | { \\ | ||
| 416 | LKEY SI[0] = [IPr[0]]; \\ | ||
| 417 | mov pr.rot = 0x10000; \\ | ||
| 418 | mov ar.ec = 4; \\ | ||
| 419 | } ;; \\ | ||
| 420 | { \\ | ||
| 421 | add J = J, SI[0]; \\ | ||
| 422 | zxt1 I[0] = IFinal; \\ | ||
| 423 | br.cexit.spnt.few .+16; /* never taken */ \\ | ||
| 424 | } ;; | ||
| 425 | #define MODSCHED_RC4_LOOP(label) \\ | ||
| 426 | label: \\ | ||
| 427 | { .mmi; \\ | ||
| 428 | (pComputeI) ld1 Data[0] = [InPtr], 1; \\ | ||
| 429 | (pComputeI) add IFinal = 1, I[1]; \\ | ||
| 430 | (pComputeJ) zxt1 J = J; \\ | ||
| 431 | }{ .mmi; \\ | ||
| 432 | (pOutput) LKEY T[1] = [T[1]]; \\ | ||
| 433 | (pComputeT) add T[0] = SI[2], SJ[1]; \\ | ||
| 434 | (pComputeI) KEYADDR(IPr[0], I[1]); \\ | ||
| 435 | } ;; \\ | ||
| 436 | { .mmi; \\ | ||
| 437 | (pComputeT) SKEY [IPr[2]] = SJ[1]; \\ | ||
| 438 | (pComputeT) SKEY [JP[1]] = SI[2]; \\ | ||
| 439 | (pComputeT) zxt1 T[0] = T[0]; \\ | ||
| 440 | }{ .mmi; \\ | ||
| 441 | (pComputeI) LKEY SI[0] = [IPr[0]]; \\ | ||
| 442 | (pComputeJ) KEYADDR(JP[0], J); \\ | ||
| 443 | (pComputeI) cmp.eq.unc pBypass, p0 = I[1], J; \\ | ||
| 444 | } ;; \\ | ||
| 445 | { .mmi; \\ | ||
| 446 | (pComputeJ) LKEY SJ[0] = [JP[0]]; \\ | ||
| 447 | (pOutput) xor Data[3] = Data[3], T[1]; \\ | ||
| 448 | nop 0x0; \\ | ||
| 449 | }{ .mmi; \\ | ||
| 450 | (pComputeT) KEYADDR(T[0], T[0]); \\ | ||
| 451 | (pBypass) mov SI[0] = SI[1]; \\ | ||
| 452 | (pComputeI) zxt1 I[0] = IFinal; \\ | ||
| 453 | } ;; \\ | ||
| 454 | { .mmb; \\ | ||
| 455 | (pOutput) st1 [OutPtr] = Data[3], 1; \\ | ||
| 456 | (pComputeI) add J = J, SI[0]; \\ | ||
| 457 | br.ctop.sptk.few label; \\ | ||
| 458 | } ;; | ||
| 459 | |||
| 460 | .text | ||
| 461 | |||
| 462 | .align 32 | ||
| 463 | |||
| 464 | .type RC4, \@function | ||
| 465 | .global RC4 | ||
| 466 | |||
| 467 | .proc RC4 | ||
| 468 | .prologue | ||
| 469 | |||
| 470 | RC4: | ||
| 471 | { | ||
| 472 | .mmi | ||
| 473 | alloc r2 = ar.pfs, _NINPUTS, _NLOCALS, _NOUTPUT, _NROTATE | ||
| 474 | |||
| 475 | .rotr Data[4], I[2], IPr[3], SI[3], JP[2], SJ[2], T[2], \\ | ||
| 476 | OutWord[2] | ||
| 477 | .rotp pPhase[4] | ||
| 478 | |||
| 479 | ADDP InPrefetch = 0, InputBuffer | ||
| 480 | ADDP KTable = 0, StateTable | ||
| 481 | } | ||
| 482 | { | ||
| 483 | .mmi | ||
| 484 | ADDP InPtr = 0, InputBuffer | ||
| 485 | ADDP OutPtr = 0, OutputBuffer | ||
| 486 | mov RetVal = r0 | ||
| 487 | } | ||
| 488 | ;; | ||
| 489 | { | ||
| 490 | .mmi | ||
| 491 | lfetch.nt1 [InPrefetch], 0x80 | ||
| 492 | ADDP OutPrefetch = 0, OutputBuffer | ||
| 493 | } | ||
| 494 | { // Return 0 if the input length is nonsensical | ||
| 495 | .mib | ||
| 496 | ADDP StateTable = 0, StateTable | ||
| 497 | cmp.ge.unc L_NOK, L_OK = r0, DataLen | ||
| 498 | (L_NOK) br.ret.sptk.few rp | ||
| 499 | } | ||
| 500 | ;; | ||
| 501 | { | ||
| 502 | .mib | ||
| 503 | cmp.eq.or L_NOK, L_OK = r0, InPtr | ||
| 504 | cmp.eq.or L_NOK, L_OK = r0, OutPtr | ||
| 505 | nop 0x0 | ||
| 506 | } | ||
| 507 | { | ||
| 508 | .mib | ||
| 509 | cmp.eq.or L_NOK, L_OK = r0, StateTable | ||
| 510 | nop 0x0 | ||
| 511 | (L_NOK) br.ret.sptk.few rp | ||
| 512 | } | ||
| 513 | ;; | ||
| 514 | LKEY I[1] = [KTable], SZ | ||
| 515 | /* Prefetch the state-table. It contains 256 elements of size SZ */ | ||
| 516 | |||
| 517 | #if SZ == 1 | ||
| 518 | ADDP tmp0 = 1*128, StateTable | ||
| 519 | #elif SZ == 2 | ||
| 520 | ADDP tmp0 = 3*128, StateTable | ||
| 521 | ADDP tmp1 = 2*128, StateTable | ||
| 522 | #elif SZ == 4 | ||
| 523 | ADDP tmp0 = 7*128, StateTable | ||
| 524 | ADDP tmp1 = 6*128, StateTable | ||
| 525 | #elif SZ == 8 | ||
| 526 | ADDP tmp0 = 15*128, StateTable | ||
| 527 | ADDP tmp1 = 14*128, StateTable | ||
| 528 | #endif | ||
| 529 | ;; | ||
| 530 | #if SZ >= 8 | ||
| 531 | lfetch.fault.nt1 [tmp0], -256 // 15 | ||
| 532 | lfetch.fault.nt1 [tmp1], -256;; | ||
| 533 | lfetch.fault.nt1 [tmp0], -256 // 13 | ||
| 534 | lfetch.fault.nt1 [tmp1], -256;; | ||
| 535 | lfetch.fault.nt1 [tmp0], -256 // 11 | ||
| 536 | lfetch.fault.nt1 [tmp1], -256;; | ||
| 537 | lfetch.fault.nt1 [tmp0], -256 // 9 | ||
| 538 | lfetch.fault.nt1 [tmp1], -256;; | ||
| 539 | #endif | ||
| 540 | #if SZ >= 4 | ||
| 541 | lfetch.fault.nt1 [tmp0], -256 // 7 | ||
| 542 | lfetch.fault.nt1 [tmp1], -256;; | ||
| 543 | lfetch.fault.nt1 [tmp0], -256 // 5 | ||
| 544 | lfetch.fault.nt1 [tmp1], -256;; | ||
| 545 | #endif | ||
| 546 | #if SZ >= 2 | ||
| 547 | lfetch.fault.nt1 [tmp0], -256 // 3 | ||
| 548 | lfetch.fault.nt1 [tmp1], -256;; | ||
| 549 | #endif | ||
| 550 | { | ||
| 551 | .mii | ||
| 552 | lfetch.fault.nt1 [tmp0] // 1 | ||
| 553 | add I[1]=1,I[1];; | ||
| 554 | zxt1 I[1]=I[1] | ||
| 555 | } | ||
| 556 | { | ||
| 557 | .mmi | ||
| 558 | lfetch.nt1 [InPrefetch], 0x80 | ||
| 559 | lfetch.excl.nt1 [OutPrefetch], 0x80 | ||
| 560 | .save pr, PRSave | ||
| 561 | mov PRSave = pr | ||
| 562 | } ;; | ||
| 563 | { | ||
| 564 | .mmi | ||
| 565 | lfetch.excl.nt1 [OutPrefetch], 0x80 | ||
| 566 | LKEY J = [KTable], SZ | ||
| 567 | ADDP EndPtr = DataLen, InPtr | ||
| 568 | } ;; | ||
| 569 | { | ||
| 570 | .mmi | ||
| 571 | ADDP EndPtr = -1, EndPtr // Make it point to | ||
| 572 | // last data byte. | ||
| 573 | mov One = 1 | ||
| 574 | .save ar.lc, LCSave | ||
| 575 | mov LCSave = ar.lc | ||
| 576 | .body | ||
| 577 | } ;; | ||
| 578 | { | ||
| 579 | .mmb | ||
| 580 | sub Remainder = 0, OutPtr | ||
| 581 | cmp.gtu pSmall, p0 = $threshold, DataLen | ||
| 582 | (pSmall) br.cond.dpnt .rc4Remainder // Data too small for | ||
| 583 | // big loop. | ||
| 584 | } ;; | ||
| 585 | { | ||
| 586 | .mmi | ||
| 587 | and Remainder = 0x7, Remainder | ||
| 588 | ;; | ||
| 589 | cmp.eq pAligned, pUnaligned = Remainder, r0 | ||
| 590 | nop 0x0 | ||
| 591 | } ;; | ||
| 592 | { | ||
| 593 | .mmb | ||
| 594 | .pred.rel "mutex",pUnaligned,pAligned | ||
| 595 | (pUnaligned) add Remainder = -1, Remainder | ||
| 596 | (pAligned) sub Remainder = EndPtr, InPtr | ||
| 597 | (pAligned) br.cond.dptk.many .rc4Aligned | ||
| 598 | } ;; | ||
| 599 | { | ||
| 600 | .mmi | ||
| 601 | nop 0x0 | ||
| 602 | nop 0x0 | ||
| 603 | mov.i ar.lc = Remainder | ||
| 604 | } | ||
| 605 | |||
| 606 | /* Do the initial few bytes via the compact, modulo-scheduled loop | ||
| 607 | until the output pointer is 8-byte-aligned. */ | ||
| 608 | |||
| 609 | MODSCHED_RC4_PROLOGUE | ||
| 610 | MODSCHED_RC4_LOOP(.RC4AlignLoop) | ||
| 611 | |||
| 612 | { | ||
| 613 | .mib | ||
| 614 | sub Remainder = EndPtr, InPtr | ||
| 615 | zxt1 IFinal = IFinal | ||
| 616 | clrrrb // Clear CFM.rrb.pr so | ||
| 617 | ;; // next "mov pr.rot = N" | ||
| 618 | // does the right thing. | ||
| 619 | } | ||
| 620 | { | ||
| 621 | .mmi | ||
| 622 | mov I[1] = IFinal | ||
| 623 | nop 0x0 | ||
| 624 | nop 0x0 | ||
| 625 | } ;; | ||
| 626 | |||
| 627 | |||
| 628 | .rc4Aligned: | ||
| 629 | |||
| 630 | /* | ||
| 631 | Unrolled loop count = (Remainder - ($unroll_count+1)*$phases)/($unroll_count*$phases) | ||
| 632 | */ | ||
| 633 | |||
| 634 | { | ||
| 635 | .mlx | ||
| 636 | add LoopCount = 1 - ($unroll_count + 1)*$phases, Remainder | ||
| 637 | movl Remainder = 0xaaaaaaaaaaaaaaab | ||
| 638 | } ;; | ||
| 639 | { | ||
| 640 | .mmi | ||
| 641 | setf.sig f6 = LoopCount // M2, M3 6 cyc | ||
| 642 | setf.sig f7 = Remainder // M2, M3 6 cyc | ||
| 643 | nop 0x0 | ||
| 644 | } ;; | ||
| 645 | { | ||
| 646 | .mfb | ||
| 647 | nop 0x0 | ||
| 648 | xmpy.hu f6 = f6, f7 | ||
| 649 | nop 0x0 | ||
| 650 | } ;; | ||
| 651 | { | ||
| 652 | .mmi | ||
| 653 | getf.sig LoopCount = f6;; // M2 5 cyc | ||
| 654 | nop 0x0 | ||
| 655 | shr.u LoopCount = LoopCount, 4 | ||
| 656 | } ;; | ||
| 657 | { | ||
| 658 | .mmi | ||
| 659 | nop 0x0 | ||
| 660 | nop 0x0 | ||
| 661 | mov.i ar.lc = LoopCount | ||
| 662 | } ;; | ||
| 663 | |||
| 664 | /* Now comes the unrolled loop: */ | ||
| 665 | |||
| 666 | .rc4Prologue: | ||
| 667 | ___ | ||
| 668 | |||
| 669 | $iteration = 0; | ||
| 670 | |||
| 671 | # Generate the prologue: | ||
| 672 | $predicates = 1; | ||
| 673 | for ($i = 0; $i < $phases; ++$i) { | ||
| 674 | &emit_body (\$code, \$bypass, $iteration++, $predicates); | ||
| 675 | $predicates = ($predicates << 1) | 1; | ||
| 676 | } | ||
| 677 | |||
| 678 | $code.=<<___; | ||
| 679 | .rc4Loop: | ||
| 680 | ___ | ||
| 681 | |||
| 682 | # Generate the body: | ||
| 683 | for ($i = 0; $i < $unroll_count*$phases; ++$i) { | ||
| 684 | &emit_body (\$code, \$bypass, $iteration++, $predicates); | ||
| 685 | } | ||
| 686 | |||
| 687 | $code.=<<___; | ||
| 688 | .rc4Epilogue: | ||
| 689 | ___ | ||
| 690 | |||
| 691 | # Generate the epilogue: | ||
| 692 | for ($i = 0; $i < $phases; ++$i) { | ||
| 693 | $predicates <<= 1; | ||
| 694 | &emit_body (\$code, \$bypass, $iteration++, $predicates); | ||
| 695 | } | ||
| 696 | |||
| 697 | $code.=<<___; | ||
| 698 | { | ||
| 699 | .mmi | ||
| 700 | lfetch.nt1 [EndPtr] // fetch line with last byte | ||
| 701 | mov IFinal = I[1] | ||
| 702 | nop 0x0 | ||
| 703 | } | ||
| 704 | |||
| 705 | .rc4Remainder: | ||
| 706 | { | ||
| 707 | .mmi | ||
| 708 | sub Remainder = EndPtr, InPtr // Calculate | ||
| 709 | // # of bytes | ||
| 710 | // left - 1 | ||
| 711 | nop 0x0 | ||
| 712 | nop 0x0 | ||
| 713 | } ;; | ||
| 714 | { | ||
| 715 | .mib | ||
| 716 | cmp.eq pDone, p0 = -1, Remainder // done already? | ||
| 717 | mov.i ar.lc = Remainder | ||
| 718 | (pDone) br.cond.dptk.few .rc4Complete | ||
| 719 | } | ||
| 720 | |||
| 721 | /* Do the remaining bytes via the compact, modulo-scheduled loop */ | ||
| 722 | |||
| 723 | MODSCHED_RC4_PROLOGUE | ||
| 724 | MODSCHED_RC4_LOOP(.RC4RestLoop) | ||
| 725 | |||
| 726 | .rc4Complete: | ||
| 727 | { | ||
| 728 | .mmi | ||
| 729 | add KTable = -SZ, KTable | ||
| 730 | add IFinal = -1, IFinal | ||
| 731 | mov ar.lc = LCSave | ||
| 732 | } ;; | ||
| 733 | { | ||
| 734 | .mii | ||
| 735 | SKEY [KTable] = J,-SZ | ||
| 736 | zxt1 IFinal = IFinal | ||
| 737 | mov pr = PRSave, 0x1FFFF | ||
| 738 | } ;; | ||
| 739 | { | ||
| 740 | .mib | ||
| 741 | SKEY [KTable] = IFinal | ||
| 742 | add RetVal = 1, r0 | ||
| 743 | br.ret.sptk.few rp | ||
| 744 | } ;; | ||
| 745 | ___ | ||
| 746 | |||
| 747 | # Last but not least, emit the code for the bypass-code of the unrolled loop: | ||
| 748 | |||
| 749 | $code.=$bypass; | ||
| 750 | |||
| 751 | $code.=<<___; | ||
| 752 | .endp RC4 | ||
| 753 | ___ | ||
| 754 | |||
| 755 | print $code; | ||
