diff options
| author | cvs2svn <admin@example.com> | 2012-07-13 17:49:56 +0000 |
|---|---|---|
| committer | cvs2svn <admin@example.com> | 2012-07-13 17:49:56 +0000 |
| commit | ee04221ea8063435416c7e6369e6eae76843aa71 (patch) | |
| tree | 821921a1dd0a5a3cece91121e121cc63c4b68128 /src/lib/libcrypto/rc4/asm | |
| parent | adf6731f6e1d04718aee00cb93435143046aee9a (diff) | |
| download | openbsd-eric_g2k12.tar.gz openbsd-eric_g2k12.tar.bz2 openbsd-eric_g2k12.zip | |
This commit was manufactured by cvs2git to create tag 'eric_g2k12'.eric_g2k12
Diffstat (limited to '')
| -rw-r--r-- | src/lib/libcrypto/rc4/asm/rc4-586.pl | 270 | ||||
| -rw-r--r-- | src/lib/libcrypto/rc4/asm/rc4-ia64.pl | 755 | ||||
| -rw-r--r-- | src/lib/libcrypto/rc4/asm/rc4-s390x.pl | 205 | ||||
| -rwxr-xr-x | src/lib/libcrypto/rc4/asm/rc4-x86_64.pl | 504 |
4 files changed, 0 insertions, 1734 deletions
diff --git a/src/lib/libcrypto/rc4/asm/rc4-586.pl b/src/lib/libcrypto/rc4/asm/rc4-586.pl deleted file mode 100644 index 38a44a70ef..0000000000 --- a/src/lib/libcrypto/rc4/asm/rc4-586.pl +++ /dev/null | |||
| @@ -1,270 +0,0 @@ | |||
| 1 | #!/usr/bin/env perl | ||
| 2 | |||
| 3 | # ==================================================================== | ||
| 4 | # [Re]written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL | ||
| 5 | # project. The module is, however, dual licensed under OpenSSL and | ||
| 6 | # CRYPTOGAMS licenses depending on where you obtain it. For further | ||
| 7 | # details see http://www.openssl.org/~appro/cryptogams/. | ||
| 8 | # ==================================================================== | ||
| 9 | |||
| 10 | # At some point it became apparent that the original SSLeay RC4 | ||
| 11 | # assembler implementation performs suboptimally on latest IA-32 | ||
| 12 | # microarchitectures. After re-tuning performance has changed as | ||
| 13 | # following: | ||
| 14 | # | ||
| 15 | # Pentium -10% | ||
| 16 | # Pentium III +12% | ||
| 17 | # AMD +50%(*) | ||
| 18 | # P4 +250%(**) | ||
| 19 | # | ||
| 20 | # (*) This number is actually a trade-off:-) It's possible to | ||
| 21 | # achieve +72%, but at the cost of -48% off PIII performance. | ||
| 22 | # In other words code performing further 13% faster on AMD | ||
| 23 | # would perform almost 2 times slower on Intel PIII... | ||
| 24 | # For reference! This code delivers ~80% of rc4-amd64.pl | ||
| 25 | # performance on the same Opteron machine. | ||
| 26 | # (**) This number requires compressed key schedule set up by | ||
| 27 | # RC4_set_key [see commentary below for further details]. | ||
| 28 | # | ||
| 29 | # <appro@fy.chalmers.se> | ||
| 30 | |||
| 31 | $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; | ||
| 32 | push(@INC,"${dir}","${dir}../../perlasm"); | ||
| 33 | require "x86asm.pl"; | ||
| 34 | |||
| 35 | &asm_init($ARGV[0],"rc4-586.pl"); | ||
| 36 | |||
| 37 | $xx="eax"; | ||
| 38 | $yy="ebx"; | ||
| 39 | $tx="ecx"; | ||
| 40 | $ty="edx"; | ||
| 41 | $inp="esi"; | ||
| 42 | $out="ebp"; | ||
| 43 | $dat="edi"; | ||
| 44 | |||
| 45 | sub RC4_loop { | ||
| 46 | my $i=shift; | ||
| 47 | my $func = ($i==0)?*mov:*or; | ||
| 48 | |||
| 49 | &add (&LB($yy),&LB($tx)); | ||
| 50 | &mov ($ty,&DWP(0,$dat,$yy,4)); | ||
| 51 | &mov (&DWP(0,$dat,$yy,4),$tx); | ||
| 52 | &mov (&DWP(0,$dat,$xx,4),$ty); | ||
| 53 | &add ($ty,$tx); | ||
| 54 | &inc (&LB($xx)); | ||
| 55 | &and ($ty,0xff); | ||
| 56 | &ror ($out,8) if ($i!=0); | ||
| 57 | if ($i<3) { | ||
| 58 | &mov ($tx,&DWP(0,$dat,$xx,4)); | ||
| 59 | } else { | ||
| 60 | &mov ($tx,&wparam(3)); # reload [re-biased] out | ||
| 61 | } | ||
| 62 | &$func ($out,&DWP(0,$dat,$ty,4)); | ||
| 63 | } | ||
| 64 | |||
| 65 | # void RC4(RC4_KEY *key,size_t len,const unsigned char *inp,unsigned char *out); | ||
| 66 | &function_begin("RC4"); | ||
| 67 | &mov ($dat,&wparam(0)); # load key schedule pointer | ||
| 68 | &mov ($ty, &wparam(1)); # load len | ||
| 69 | &mov ($inp,&wparam(2)); # load inp | ||
| 70 | &mov ($out,&wparam(3)); # load out | ||
| 71 | |||
| 72 | &xor ($xx,$xx); # avoid partial register stalls | ||
| 73 | &xor ($yy,$yy); | ||
| 74 | |||
| 75 | &cmp ($ty,0); # safety net | ||
| 76 | &je (&label("abort")); | ||
| 77 | |||
| 78 | &mov (&LB($xx),&BP(0,$dat)); # load key->x | ||
| 79 | &mov (&LB($yy),&BP(4,$dat)); # load key->y | ||
| 80 | &add ($dat,8); | ||
| 81 | |||
| 82 | &lea ($tx,&DWP(0,$inp,$ty)); | ||
| 83 | &sub ($out,$inp); # re-bias out | ||
| 84 | &mov (&wparam(1),$tx); # save input+len | ||
| 85 | |||
| 86 | &inc (&LB($xx)); | ||
| 87 | |||
| 88 | # detect compressed key schedule... | ||
| 89 | &cmp (&DWP(256,$dat),-1); | ||
| 90 | &je (&label("RC4_CHAR")); | ||
| 91 | |||
| 92 | &mov ($tx,&DWP(0,$dat,$xx,4)); | ||
| 93 | |||
| 94 | &and ($ty,-4); # how many 4-byte chunks? | ||
| 95 | &jz (&label("loop1")); | ||
| 96 | |||
| 97 | &lea ($ty,&DWP(-4,$inp,$ty)); | ||
| 98 | &mov (&wparam(2),$ty); # save input+(len/4)*4-4 | ||
| 99 | &mov (&wparam(3),$out); # $out as accumulator in this loop | ||
| 100 | |||
| 101 | &set_label("loop4",16); | ||
| 102 | for ($i=0;$i<4;$i++) { RC4_loop($i); } | ||
| 103 | &ror ($out,8); | ||
| 104 | &xor ($out,&DWP(0,$inp)); | ||
| 105 | &cmp ($inp,&wparam(2)); # compare to input+(len/4)*4-4 | ||
| 106 | &mov (&DWP(0,$tx,$inp),$out);# $tx holds re-biased out here | ||
| 107 | &lea ($inp,&DWP(4,$inp)); | ||
| 108 | &mov ($tx,&DWP(0,$dat,$xx,4)); | ||
| 109 | &jb (&label("loop4")); | ||
| 110 | |||
| 111 | &cmp ($inp,&wparam(1)); # compare to input+len | ||
| 112 | &je (&label("done")); | ||
| 113 | &mov ($out,&wparam(3)); # restore $out | ||
| 114 | |||
| 115 | &set_label("loop1",16); | ||
| 116 | &add (&LB($yy),&LB($tx)); | ||
| 117 | &mov ($ty,&DWP(0,$dat,$yy,4)); | ||
| 118 | &mov (&DWP(0,$dat,$yy,4),$tx); | ||
| 119 | &mov (&DWP(0,$dat,$xx,4),$ty); | ||
| 120 | &add ($ty,$tx); | ||
| 121 | &inc (&LB($xx)); | ||
| 122 | &and ($ty,0xff); | ||
| 123 | &mov ($ty,&DWP(0,$dat,$ty,4)); | ||
| 124 | &xor (&LB($ty),&BP(0,$inp)); | ||
| 125 | &lea ($inp,&DWP(1,$inp)); | ||
| 126 | &mov ($tx,&DWP(0,$dat,$xx,4)); | ||
| 127 | &cmp ($inp,&wparam(1)); # compare to input+len | ||
| 128 | &mov (&BP(-1,$out,$inp),&LB($ty)); | ||
| 129 | &jb (&label("loop1")); | ||
| 130 | |||
| 131 | &jmp (&label("done")); | ||
| 132 | |||
| 133 | # this is essentially Intel P4 specific codepath... | ||
| 134 | &set_label("RC4_CHAR",16); | ||
| 135 | &movz ($tx,&BP(0,$dat,$xx)); | ||
| 136 | # strangely enough unrolled loop performs over 20% slower... | ||
| 137 | &set_label("cloop1"); | ||
| 138 | &add (&LB($yy),&LB($tx)); | ||
| 139 | &movz ($ty,&BP(0,$dat,$yy)); | ||
| 140 | &mov (&BP(0,$dat,$yy),&LB($tx)); | ||
| 141 | &mov (&BP(0,$dat,$xx),&LB($ty)); | ||
| 142 | &add (&LB($ty),&LB($tx)); | ||
| 143 | &movz ($ty,&BP(0,$dat,$ty)); | ||
| 144 | &add (&LB($xx),1); | ||
| 145 | &xor (&LB($ty),&BP(0,$inp)); | ||
| 146 | &lea ($inp,&DWP(1,$inp)); | ||
| 147 | &movz ($tx,&BP(0,$dat,$xx)); | ||
| 148 | &cmp ($inp,&wparam(1)); | ||
| 149 | &mov (&BP(-1,$out,$inp),&LB($ty)); | ||
| 150 | &jb (&label("cloop1")); | ||
| 151 | |||
| 152 | &set_label("done"); | ||
| 153 | &dec (&LB($xx)); | ||
| 154 | &mov (&BP(-4,$dat),&LB($yy)); # save key->y | ||
| 155 | &mov (&BP(-8,$dat),&LB($xx)); # save key->x | ||
| 156 | &set_label("abort"); | ||
| 157 | &function_end("RC4"); | ||
| 158 | |||
| 159 | ######################################################################## | ||
| 160 | |||
| 161 | $inp="esi"; | ||
| 162 | $out="edi"; | ||
| 163 | $idi="ebp"; | ||
| 164 | $ido="ecx"; | ||
| 165 | $idx="edx"; | ||
| 166 | |||
| 167 | &external_label("OPENSSL_ia32cap_P"); | ||
| 168 | |||
| 169 | # void RC4_set_key(RC4_KEY *key,int len,const unsigned char *data); | ||
| 170 | &function_begin("RC4_set_key"); | ||
| 171 | &mov ($out,&wparam(0)); # load key | ||
| 172 | &mov ($idi,&wparam(1)); # load len | ||
| 173 | &mov ($inp,&wparam(2)); # load data | ||
| 174 | &picmeup($idx,"OPENSSL_ia32cap_P"); | ||
| 175 | |||
| 176 | &lea ($out,&DWP(2*4,$out)); # &key->data | ||
| 177 | &lea ($inp,&DWP(0,$inp,$idi)); # $inp to point at the end | ||
| 178 | &neg ($idi); | ||
| 179 | &xor ("eax","eax"); | ||
| 180 | &mov (&DWP(-4,$out),$idi); # borrow key->y | ||
| 181 | |||
| 182 | &bt (&DWP(0,$idx),20); # check for bit#20 | ||
| 183 | &jc (&label("c1stloop")); | ||
| 184 | |||
| 185 | &set_label("w1stloop",16); | ||
| 186 | &mov (&DWP(0,$out,"eax",4),"eax"); # key->data[i]=i; | ||
| 187 | &add (&LB("eax"),1); # i++; | ||
| 188 | &jnc (&label("w1stloop")); | ||
| 189 | |||
| 190 | &xor ($ido,$ido); | ||
| 191 | &xor ($idx,$idx); | ||
| 192 | |||
| 193 | &set_label("w2ndloop",16); | ||
| 194 | &mov ("eax",&DWP(0,$out,$ido,4)); | ||
| 195 | &add (&LB($idx),&BP(0,$inp,$idi)); | ||
| 196 | &add (&LB($idx),&LB("eax")); | ||
| 197 | &add ($idi,1); | ||
| 198 | &mov ("ebx",&DWP(0,$out,$idx,4)); | ||
| 199 | &jnz (&label("wnowrap")); | ||
| 200 | &mov ($idi,&DWP(-4,$out)); | ||
| 201 | &set_label("wnowrap"); | ||
| 202 | &mov (&DWP(0,$out,$idx,4),"eax"); | ||
| 203 | &mov (&DWP(0,$out,$ido,4),"ebx"); | ||
| 204 | &add (&LB($ido),1); | ||
| 205 | &jnc (&label("w2ndloop")); | ||
| 206 | &jmp (&label("exit")); | ||
| 207 | |||
| 208 | # Unlike all other x86 [and x86_64] implementations, Intel P4 core | ||
| 209 | # [including EM64T] was found to perform poorly with above "32-bit" key | ||
| 210 | # schedule, a.k.a. RC4_INT. Performance improvement for IA-32 hand-coded | ||
| 211 | # assembler turned out to be 3.5x if re-coded for compressed 8-bit one, | ||
| 212 | # a.k.a. RC4_CHAR! It's however inappropriate to just switch to 8-bit | ||
| 213 | # schedule for x86[_64], because non-P4 implementations suffer from | ||
| 214 | # significant performance losses then, e.g. PIII exhibits >2x | ||
| 215 | # deterioration, and so does Opteron. In order to assure optimal | ||
| 216 | # all-round performance, we detect P4 at run-time and set up compressed | ||
| 217 | # key schedule, which is recognized by RC4 procedure. | ||
| 218 | |||
| 219 | &set_label("c1stloop",16); | ||
| 220 | &mov (&BP(0,$out,"eax"),&LB("eax")); # key->data[i]=i; | ||
| 221 | &add (&LB("eax"),1); # i++; | ||
| 222 | &jnc (&label("c1stloop")); | ||
| 223 | |||
| 224 | &xor ($ido,$ido); | ||
| 225 | &xor ($idx,$idx); | ||
| 226 | &xor ("ebx","ebx"); | ||
| 227 | |||
| 228 | &set_label("c2ndloop",16); | ||
| 229 | &mov (&LB("eax"),&BP(0,$out,$ido)); | ||
| 230 | &add (&LB($idx),&BP(0,$inp,$idi)); | ||
| 231 | &add (&LB($idx),&LB("eax")); | ||
| 232 | &add ($idi,1); | ||
| 233 | &mov (&LB("ebx"),&BP(0,$out,$idx)); | ||
| 234 | &jnz (&label("cnowrap")); | ||
| 235 | &mov ($idi,&DWP(-4,$out)); | ||
| 236 | &set_label("cnowrap"); | ||
| 237 | &mov (&BP(0,$out,$idx),&LB("eax")); | ||
| 238 | &mov (&BP(0,$out,$ido),&LB("ebx")); | ||
| 239 | &add (&LB($ido),1); | ||
| 240 | &jnc (&label("c2ndloop")); | ||
| 241 | |||
| 242 | &mov (&DWP(256,$out),-1); # mark schedule as compressed | ||
| 243 | |||
| 244 | &set_label("exit"); | ||
| 245 | &xor ("eax","eax"); | ||
| 246 | &mov (&DWP(-8,$out),"eax"); # key->x=0; | ||
| 247 | &mov (&DWP(-4,$out),"eax"); # key->y=0; | ||
| 248 | &function_end("RC4_set_key"); | ||
| 249 | |||
| 250 | # const char *RC4_options(void); | ||
| 251 | &function_begin_B("RC4_options"); | ||
| 252 | &call (&label("pic_point")); | ||
| 253 | &set_label("pic_point"); | ||
| 254 | &blindpop("eax"); | ||
| 255 | &lea ("eax",&DWP(&label("opts")."-".&label("pic_point"),"eax")); | ||
| 256 | &picmeup("edx","OPENSSL_ia32cap_P"); | ||
| 257 | &bt (&DWP(0,"edx"),20); | ||
| 258 | &jnc (&label("skip")); | ||
| 259 | &add ("eax",12); | ||
| 260 | &set_label("skip"); | ||
| 261 | &ret (); | ||
| 262 | &set_label("opts",64); | ||
| 263 | &asciz ("rc4(4x,int)"); | ||
| 264 | &asciz ("rc4(1x,char)"); | ||
| 265 | &asciz ("RC4 for x86, CRYPTOGAMS by <appro\@openssl.org>"); | ||
| 266 | &align (64); | ||
| 267 | &function_end_B("RC4_options"); | ||
| 268 | |||
| 269 | &asm_finish(); | ||
| 270 | |||
diff --git a/src/lib/libcrypto/rc4/asm/rc4-ia64.pl b/src/lib/libcrypto/rc4/asm/rc4-ia64.pl deleted file mode 100644 index 49cd5b5e69..0000000000 --- a/src/lib/libcrypto/rc4/asm/rc4-ia64.pl +++ /dev/null | |||
| @@ -1,755 +0,0 @@ | |||
| 1 | #!/usr/bin/env perl | ||
| 2 | # | ||
| 3 | # ==================================================================== | ||
| 4 | # Written by David Mosberger <David.Mosberger@acm.org> based on the | ||
| 5 | # Itanium optimized Crypto code which was released by HP Labs at | ||
| 6 | # http://www.hpl.hp.com/research/linux/crypto/. | ||
| 7 | # | ||
| 8 | # Copyright (c) 2005 Hewlett-Packard Development Company, L.P. | ||
| 9 | # | ||
| 10 | # Permission is hereby granted, free of charge, to any person obtaining | ||
| 11 | # a copy of this software and associated documentation files (the | ||
| 12 | # "Software"), to deal in the Software without restriction, including | ||
| 13 | # without limitation the rights to use, copy, modify, merge, publish, | ||
| 14 | # distribute, sublicense, and/or sell copies of the Software, and to | ||
| 15 | # permit persons to whom the Software is furnished to do so, subject to | ||
| 16 | # the following conditions: | ||
| 17 | # | ||
| 18 | # The above copyright notice and this permission notice shall be | ||
| 19 | # included in all copies or substantial portions of the Software. | ||
| 20 | |||
| 21 | # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, | ||
| 22 | # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF | ||
| 23 | # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND | ||
| 24 | # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE | ||
| 25 | # LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION | ||
| 26 | # OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION | ||
| 27 | # WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ | ||
| 28 | |||
| 29 | |||
| 30 | |||
| 31 | # This is a little helper program which generates a software-pipelined | ||
| 32 | # for RC4 encryption. The basic algorithm looks like this: | ||
| 33 | # | ||
| 34 | # for (counter = 0; counter < len; ++counter) | ||
| 35 | # { | ||
| 36 | # in = inp[counter]; | ||
| 37 | # SI = S[I]; | ||
| 38 | # J = (SI + J) & 0xff; | ||
| 39 | # SJ = S[J]; | ||
| 40 | # T = (SI + SJ) & 0xff; | ||
| 41 | # S[I] = SJ, S[J] = SI; | ||
| 42 | # ST = S[T]; | ||
| 43 | # outp[counter] = in ^ ST; | ||
| 44 | # I = (I + 1) & 0xff; | ||
| 45 | # } | ||
| 46 | # | ||
| 47 | # Pipelining this loop isn't easy, because the stores to the S[] array | ||
| 48 | # need to be observed in the right order. The loop generated by the | ||
| 49 | # code below has the following pipeline diagram: | ||
| 50 | # | ||
| 51 | # cycle | ||
| 52 | # | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |10 |11 |12 |13 |14 |15 |16 |17 | | ||
| 53 | # iter | ||
| 54 | # 1: xxx LDI xxx xxx xxx LDJ xxx SWP xxx LDT xxx xxx | ||
| 55 | # 2: xxx LDI xxx xxx xxx LDJ xxx SWP xxx LDT xxx xxx | ||
| 56 | # 3: xxx LDI xxx xxx xxx LDJ xxx SWP xxx LDT xxx xxx | ||
| 57 | # | ||
| 58 | # where: | ||
| 59 | # LDI = load of S[I] | ||
| 60 | # LDJ = load of S[J] | ||
| 61 | # SWP = swap of S[I] and S[J] | ||
| 62 | # LDT = load of S[T] | ||
| 63 | # | ||
| 64 | # Note that in the above diagram, the major trouble-spot is that LDI | ||
| 65 | # of the 2nd iteration is performed BEFORE the SWP of the first | ||
| 66 | # iteration. Fortunately, this is easy to detect (I of the 1st | ||
| 67 | # iteration will be equal to J of the 2nd iteration) and when this | ||
| 68 | # happens, we simply forward the proper value from the 1st iteration | ||
| 69 | # to the 2nd one. The proper value in this case is simply the value | ||
| 70 | # of S[I] from the first iteration (thanks to the fact that SWP | ||
| 71 | # simply swaps the contents of S[I] and S[J]). | ||
| 72 | # | ||
| 73 | # Another potential trouble-spot is in cycle 7, where SWP of the 1st | ||
| 74 | # iteration issues at the same time as the LDI of the 3rd iteration. | ||
| 75 | # However, thanks to IA-64 execution semantics, this can be taken | ||
| 76 | # care of simply by placing LDI later in the instruction-group than | ||
| 77 | # SWP. IA-64 CPUs will automatically forward the value if they | ||
| 78 | # detect that the SWP and LDI are accessing the same memory-location. | ||
| 79 | |||
| 80 | # The core-loop that can be pipelined then looks like this (annotated | ||
| 81 | # with McKinley/Madison issue port & latency numbers, assuming L1 | ||
| 82 | # cache hits for the most part): | ||
| 83 | |||
| 84 | # operation: instruction: issue-ports: latency | ||
| 85 | # ------------------ ----------------------------- ------------- ------- | ||
| 86 | |||
| 87 | # Data = *inp++ ld1 data = [inp], 1 M0-M1 1 cyc c0 | ||
| 88 | # shladd Iptr = I, KeyTable, 3 M0-M3, I0, I1 1 cyc | ||
| 89 | # I = (I + 1) & 0xff padd1 nextI = I, one M0-M3, I0, I1 3 cyc | ||
| 90 | # ;; | ||
| 91 | # SI = S[I] ld8 SI = [Iptr] M0-M1 1 cyc c1 * after SWAP! | ||
| 92 | # ;; | ||
| 93 | # cmp.eq.unc pBypass = I, J * after J is valid! | ||
| 94 | # J = SI + J add J = J, SI M0-M3, I0, I1 1 cyc c2 | ||
| 95 | # (pBypass) br.cond.spnt Bypass | ||
| 96 | # ;; | ||
| 97 | # --------------------------------------------------------------------------------------- | ||
| 98 | # J = J & 0xff zxt1 J = J I0, I1, 1 cyc c3 | ||
| 99 | # ;; | ||
| 100 | # shladd Jptr = J, KeyTable, 3 M0-M3, I0, I1 1 cyc c4 | ||
| 101 | # ;; | ||
| 102 | # SJ = S[J] ld8 SJ = [Jptr] M0-M1 1 cyc c5 | ||
| 103 | # ;; | ||
| 104 | # --------------------------------------------------------------------------------------- | ||
| 105 | # T = (SI + SJ) add T = SI, SJ M0-M3, I0, I1 1 cyc c6 | ||
| 106 | # ;; | ||
| 107 | # T = T & 0xff zxt1 T = T I0, I1 1 cyc | ||
| 108 | # S[I] = SJ st8 [Iptr] = SJ M2-M3 c7 | ||
| 109 | # S[J] = SI st8 [Jptr] = SI M2-M3 | ||
| 110 | # ;; | ||
| 111 | # shladd Tptr = T, KeyTable, 3 M0-M3, I0, I1 1 cyc c8 | ||
| 112 | # ;; | ||
| 113 | # --------------------------------------------------------------------------------------- | ||
| 114 | # T = S[T] ld8 T = [Tptr] M0-M1 1 cyc c9 | ||
| 115 | # ;; | ||
| 116 | # data ^= T xor data = data, T M0-M3, I0, I1 1 cyc c10 | ||
| 117 | # ;; | ||
| 118 | # *out++ = Data ^ T dep word = word, data, 8, POS I0, I1 1 cyc c11 | ||
| 119 | # ;; | ||
| 120 | # --------------------------------------------------------------------------------------- | ||
| 121 | |||
| 122 | # There are several points worth making here: | ||
| 123 | |||
| 124 | # - Note that due to the bypass/forwarding-path, the first two | ||
| 125 | # phases of the loop are strangly mingled together. In | ||
| 126 | # particular, note that the first stage of the pipeline is | ||
| 127 | # using the value of "J", as calculated by the second stage. | ||
| 128 | # - Each bundle-pair will have exactly 6 instructions. | ||
| 129 | # - Pipelined, the loop can execute in 3 cycles/iteration and | ||
| 130 | # 4 stages. However, McKinley/Madison can issue "st1" to | ||
| 131 | # the same bank at a rate of at most one per 4 cycles. Thus, | ||
| 132 | # instead of storing each byte, we accumulate them in a word | ||
| 133 | # and then write them back at once with a single "st8" (this | ||
| 134 | # implies that the setup code needs to ensure that the output | ||
| 135 | # buffer is properly aligned, if need be, by encoding the | ||
| 136 | # first few bytes separately). | ||
| 137 | # - There is no space for a "br.ctop" instruction. For this | ||
| 138 | # reason we can't use module-loop support in IA-64 and have | ||
| 139 | # to do a traditional, purely software-pipelined loop. | ||
| 140 | # - We can't replace any of the remaining "add/zxt1" pairs with | ||
| 141 | # "padd1" because the latency for that instruction is too high | ||
| 142 | # and would push the loop to the point where more bypasses | ||
| 143 | # would be needed, which we don't have space for. | ||
| 144 | # - The above loop runs at around 3.26 cycles/byte, or roughly | ||
| 145 | # 440 MByte/sec on a 1.5GHz Madison. This is well below the | ||
| 146 | # system bus bandwidth and hence with judicious use of | ||
| 147 | # "lfetch" this loop can run at (almost) peak speed even when | ||
| 148 | # the input and output data reside in memory. The | ||
| 149 | # max. latency that can be tolerated is (PREFETCH_DISTANCE * | ||
| 150 | # L2_LINE_SIZE * 3 cyc), or about 384 cycles assuming (at | ||
| 151 | # least) 1-ahead prefetching of 128 byte cache-lines. Note | ||
| 152 | # that we do NOT prefetch into L1, since that would only | ||
| 153 | # interfere with the S[] table values stored there. This is | ||
| 154 | # acceptable because there is a 10 cycle latency between | ||
| 155 | # load and first use of the input data. | ||
| 156 | # - We use a branch to out-of-line bypass-code of cycle-pressure: | ||
| 157 | # we calculate the next J, check for the need to activate the | ||
| 158 | # bypass path, and activate the bypass path ALL IN THE SAME | ||
| 159 | # CYCLE. If we didn't have these constraints, we could do | ||
| 160 | # the bypass with a simple conditional move instruction. | ||
| 161 | # Fortunately, the bypass paths get activated relatively | ||
| 162 | # infrequently, so the extra branches don't cost all that much | ||
| 163 | # (about 0.04 cycles/byte, measured on a 16396 byte file with | ||
| 164 | # random input data). | ||
| 165 | # | ||
| 166 | |||
| 167 | $phases = 4; # number of stages/phases in the pipelined-loop | ||
| 168 | $unroll_count = 6; # number of times we unrolled it | ||
| 169 | $pComI = (1 << 0); | ||
| 170 | $pComJ = (1 << 1); | ||
| 171 | $pComT = (1 << 2); | ||
| 172 | $pOut = (1 << 3); | ||
| 173 | |||
| 174 | $NData = 4; | ||
| 175 | $NIP = 3; | ||
| 176 | $NJP = 2; | ||
| 177 | $NI = 2; | ||
| 178 | $NSI = 3; | ||
| 179 | $NSJ = 2; | ||
| 180 | $NT = 2; | ||
| 181 | $NOutWord = 2; | ||
| 182 | |||
| 183 | # | ||
| 184 | # $threshold is the minimum length before we attempt to use the | ||
| 185 | # big software-pipelined loop. It MUST be greater-or-equal | ||
| 186 | # to: | ||
| 187 | # PHASES * (UNROLL_COUNT + 1) + 7 | ||
| 188 | # | ||
| 189 | # The "+ 7" comes from the fact we may have to encode up to | ||
| 190 | # 7 bytes separately before the output pointer is aligned. | ||
| 191 | # | ||
| 192 | $threshold = (3 * ($phases * ($unroll_count + 1)) + 7); | ||
| 193 | |||
| 194 | sub I { | ||
| 195 | local *code = shift; | ||
| 196 | local $format = shift; | ||
| 197 | $code .= sprintf ("\t\t".$format."\n", @_); | ||
| 198 | } | ||
| 199 | |||
| 200 | sub P { | ||
| 201 | local *code = shift; | ||
| 202 | local $format = shift; | ||
| 203 | $code .= sprintf ($format."\n", @_); | ||
| 204 | } | ||
| 205 | |||
| 206 | sub STOP { | ||
| 207 | local *code = shift; | ||
| 208 | $code .=<<___; | ||
| 209 | ;; | ||
| 210 | ___ | ||
| 211 | } | ||
| 212 | |||
| 213 | sub emit_body { | ||
| 214 | local *c = shift; | ||
| 215 | local *bypass = shift; | ||
| 216 | local ($iteration, $p) = @_; | ||
| 217 | |||
| 218 | local $i0 = $iteration; | ||
| 219 | local $i1 = $iteration - 1; | ||
| 220 | local $i2 = $iteration - 2; | ||
| 221 | local $i3 = $iteration - 3; | ||
| 222 | local $iw0 = ($iteration - 3) / 8; | ||
| 223 | local $iw1 = ($iteration > 3) ? ($iteration - 4) / 8 : 1; | ||
| 224 | local $byte_num = ($iteration - 3) % 8; | ||
| 225 | local $label = $iteration + 1; | ||
| 226 | local $pAny = ($p & 0xf) == 0xf; | ||
| 227 | local $pByp = (($p & $pComI) && ($iteration > 0)); | ||
| 228 | |||
| 229 | $c.=<<___; | ||
| 230 | ////////////////////////////////////////////////// | ||
| 231 | ___ | ||
| 232 | |||
| 233 | if (($p & 0xf) == 0) { | ||
| 234 | $c.="#ifdef HOST_IS_BIG_ENDIAN\n"; | ||
| 235 | &I(\$c,"shr.u OutWord[%u] = OutWord[%u], 32;;", | ||
| 236 | $iw1 % $NOutWord, $iw1 % $NOutWord); | ||
| 237 | $c.="#endif\n"; | ||
| 238 | &I(\$c, "st4 [OutPtr] = OutWord[%u], 4", $iw1 % $NOutWord); | ||
| 239 | return; | ||
| 240 | } | ||
| 241 | |||
| 242 | # Cycle 0 | ||
| 243 | &I(\$c, "{ .mmi") if ($pAny); | ||
| 244 | &I(\$c, "ld1 Data[%u] = [InPtr], 1", $i0 % $NData) if ($p & $pComI); | ||
| 245 | &I(\$c, "padd1 I[%u] = One, I[%u]", $i0 % $NI, $i1 % $NI)if ($p & $pComI); | ||
| 246 | &I(\$c, "zxt1 J = J") if ($p & $pComJ); | ||
| 247 | &I(\$c, "}") if ($pAny); | ||
| 248 | &I(\$c, "{ .mmi") if ($pAny); | ||
| 249 | &I(\$c, "LKEY T[%u] = [T[%u]]", $i1 % $NT, $i1 % $NT) if ($p & $pOut); | ||
| 250 | &I(\$c, "add T[%u] = SI[%u], SJ[%u]", | ||
| 251 | $i0 % $NT, $i2 % $NSI, $i1 % $NSJ) if ($p & $pComT); | ||
| 252 | &I(\$c, "KEYADDR(IPr[%u], I[%u])", $i0 % $NIP, $i1 % $NI) if ($p & $pComI); | ||
| 253 | &I(\$c, "}") if ($pAny); | ||
| 254 | &STOP(\$c); | ||
| 255 | |||
| 256 | # Cycle 1 | ||
| 257 | &I(\$c, "{ .mmi") if ($pAny); | ||
| 258 | &I(\$c, "SKEY [IPr[%u]] = SJ[%u]", $i2 % $NIP, $i1%$NSJ)if ($p & $pComT); | ||
| 259 | &I(\$c, "SKEY [JP[%u]] = SI[%u]", $i1 % $NJP, $i2%$NSI) if ($p & $pComT); | ||
| 260 | &I(\$c, "zxt1 T[%u] = T[%u]", $i0 % $NT, $i0 % $NT) if ($p & $pComT); | ||
| 261 | &I(\$c, "}") if ($pAny); | ||
| 262 | &I(\$c, "{ .mmi") if ($pAny); | ||
| 263 | &I(\$c, "LKEY SI[%u] = [IPr[%u]]", $i0 % $NSI, $i0%$NIP)if ($p & $pComI); | ||
| 264 | &I(\$c, "KEYADDR(JP[%u], J)", $i0 % $NJP) if ($p & $pComJ); | ||
| 265 | &I(\$c, "xor Data[%u] = Data[%u], T[%u]", | ||
| 266 | $i3 % $NData, $i3 % $NData, $i1 % $NT) if ($p & $pOut); | ||
| 267 | &I(\$c, "}") if ($pAny); | ||
| 268 | &STOP(\$c); | ||
| 269 | |||
| 270 | # Cycle 2 | ||
| 271 | &I(\$c, "{ .mmi") if ($pAny); | ||
| 272 | &I(\$c, "LKEY SJ[%u] = [JP[%u]]", $i0 % $NSJ, $i0%$NJP) if ($p & $pComJ); | ||
| 273 | &I(\$c, "cmp.eq pBypass, p0 = I[%u], J", $i1 % $NI) if ($pByp); | ||
| 274 | &I(\$c, "dep OutWord[%u] = Data[%u], OutWord[%u], BYTE_POS(%u), 8", | ||
| 275 | $iw0%$NOutWord, $i3%$NData, $iw1%$NOutWord, $byte_num) if ($p & $pOut); | ||
| 276 | &I(\$c, "}") if ($pAny); | ||
| 277 | &I(\$c, "{ .mmb") if ($pAny); | ||
| 278 | &I(\$c, "add J = J, SI[%u]", $i0 % $NSI) if ($p & $pComI); | ||
| 279 | &I(\$c, "KEYADDR(T[%u], T[%u])", $i0 % $NT, $i0 % $NT) if ($p & $pComT); | ||
| 280 | &P(\$c, "(pBypass)\tbr.cond.spnt.many .rc4Bypass%u",$label)if ($pByp); | ||
| 281 | &I(\$c, "}") if ($pAny); | ||
| 282 | &STOP(\$c); | ||
| 283 | |||
| 284 | &P(\$c, ".rc4Resume%u:", $label) if ($pByp); | ||
| 285 | if ($byte_num == 0 && $iteration >= $phases) { | ||
| 286 | &I(\$c, "st8 [OutPtr] = OutWord[%u], 8", | ||
| 287 | $iw1 % $NOutWord) if ($p & $pOut); | ||
| 288 | if ($iteration == (1 + $unroll_count) * $phases - 1) { | ||
| 289 | if ($unroll_count == 6) { | ||
| 290 | &I(\$c, "mov OutWord[%u] = OutWord[%u]", | ||
| 291 | $iw1 % $NOutWord, $iw0 % $NOutWord); | ||
| 292 | } | ||
| 293 | &I(\$c, "lfetch.nt1 [InPrefetch], %u", | ||
| 294 | $unroll_count * $phases); | ||
| 295 | &I(\$c, "lfetch.excl.nt1 [OutPrefetch], %u", | ||
| 296 | $unroll_count * $phases); | ||
| 297 | &I(\$c, "br.cloop.sptk.few .rc4Loop"); | ||
| 298 | } | ||
| 299 | } | ||
| 300 | |||
| 301 | if ($pByp) { | ||
| 302 | &P(\$bypass, ".rc4Bypass%u:", $label); | ||
| 303 | &I(\$bypass, "sub J = J, SI[%u]", $i0 % $NSI); | ||
| 304 | &I(\$bypass, "nop 0"); | ||
| 305 | &I(\$bypass, "nop 0"); | ||
| 306 | &I(\$bypass, ";;"); | ||
| 307 | &I(\$bypass, "add J = J, SI[%u]", $i1 % $NSI); | ||
| 308 | &I(\$bypass, "mov SI[%u] = SI[%u]", $i0 % $NSI, $i1 % $NSI); | ||
| 309 | &I(\$bypass, "br.sptk.many .rc4Resume%u\n", $label); | ||
| 310 | &I(\$bypass, ";;"); | ||
| 311 | } | ||
| 312 | } | ||
| 313 | |||
| 314 | $code=<<___; | ||
| 315 | .ident \"rc4-ia64.s, version 3.0\" | ||
| 316 | .ident \"Copyright (c) 2005 Hewlett-Packard Development Company, L.P.\" | ||
| 317 | |||
| 318 | #define LCSave r8 | ||
| 319 | #define PRSave r9 | ||
| 320 | |||
| 321 | /* Inputs become invalid once rotation begins! */ | ||
| 322 | |||
| 323 | #define StateTable in0 | ||
| 324 | #define DataLen in1 | ||
| 325 | #define InputBuffer in2 | ||
| 326 | #define OutputBuffer in3 | ||
| 327 | |||
| 328 | #define KTable r14 | ||
| 329 | #define J r15 | ||
| 330 | #define InPtr r16 | ||
| 331 | #define OutPtr r17 | ||
| 332 | #define InPrefetch r18 | ||
| 333 | #define OutPrefetch r19 | ||
| 334 | #define One r20 | ||
| 335 | #define LoopCount r21 | ||
| 336 | #define Remainder r22 | ||
| 337 | #define IFinal r23 | ||
| 338 | #define EndPtr r24 | ||
| 339 | |||
| 340 | #define tmp0 r25 | ||
| 341 | #define tmp1 r26 | ||
| 342 | |||
| 343 | #define pBypass p6 | ||
| 344 | #define pDone p7 | ||
| 345 | #define pSmall p8 | ||
| 346 | #define pAligned p9 | ||
| 347 | #define pUnaligned p10 | ||
| 348 | |||
| 349 | #define pComputeI pPhase[0] | ||
| 350 | #define pComputeJ pPhase[1] | ||
| 351 | #define pComputeT pPhase[2] | ||
| 352 | #define pOutput pPhase[3] | ||
| 353 | |||
| 354 | #define RetVal r8 | ||
| 355 | #define L_OK p7 | ||
| 356 | #define L_NOK p8 | ||
| 357 | |||
| 358 | #define _NINPUTS 4 | ||
| 359 | #define _NOUTPUT 0 | ||
| 360 | |||
| 361 | #define _NROTATE 24 | ||
| 362 | #define _NLOCALS (_NROTATE - _NINPUTS - _NOUTPUT) | ||
| 363 | |||
| 364 | #ifndef SZ | ||
| 365 | # define SZ 4 // this must be set to sizeof(RC4_INT) | ||
| 366 | #endif | ||
| 367 | |||
| 368 | #if SZ == 1 | ||
| 369 | # define LKEY ld1 | ||
| 370 | # define SKEY st1 | ||
| 371 | # define KEYADDR(dst, i) add dst = i, KTable | ||
| 372 | #elif SZ == 2 | ||
| 373 | # define LKEY ld2 | ||
| 374 | # define SKEY st2 | ||
| 375 | # define KEYADDR(dst, i) shladd dst = i, 1, KTable | ||
| 376 | #elif SZ == 4 | ||
| 377 | # define LKEY ld4 | ||
| 378 | # define SKEY st4 | ||
| 379 | # define KEYADDR(dst, i) shladd dst = i, 2, KTable | ||
| 380 | #else | ||
| 381 | # define LKEY ld8 | ||
| 382 | # define SKEY st8 | ||
| 383 | # define KEYADDR(dst, i) shladd dst = i, 3, KTable | ||
| 384 | #endif | ||
| 385 | |||
| 386 | #if defined(_HPUX_SOURCE) && !defined(_LP64) | ||
| 387 | # define ADDP addp4 | ||
| 388 | #else | ||
| 389 | # define ADDP add | ||
| 390 | #endif | ||
| 391 | |||
| 392 | /* Define a macro for the bit number of the n-th byte: */ | ||
| 393 | |||
| 394 | #if defined(_HPUX_SOURCE) || defined(B_ENDIAN) | ||
| 395 | # define HOST_IS_BIG_ENDIAN | ||
| 396 | # define BYTE_POS(n) (56 - (8 * (n))) | ||
| 397 | #else | ||
| 398 | # define BYTE_POS(n) (8 * (n)) | ||
| 399 | #endif | ||
| 400 | |||
| 401 | /* | ||
| 402 | We must perform the first phase of the pipeline explicitly since | ||
| 403 | we will always load from the stable the first time. The br.cexit | ||
| 404 | will never be taken since regardless of the number of bytes because | ||
| 405 | the epilogue count is 4. | ||
| 406 | */ | ||
| 407 | /* MODSCHED_RC4 macro was split to _PROLOGUE and _LOOP, because HP-UX | ||
| 408 | assembler failed on original macro with syntax error. <appro> */ | ||
| 409 | #define MODSCHED_RC4_PROLOGUE \\ | ||
| 410 | { \\ | ||
| 411 | ld1 Data[0] = [InPtr], 1; \\ | ||
| 412 | add IFinal = 1, I[1]; \\ | ||
| 413 | KEYADDR(IPr[0], I[1]); \\ | ||
| 414 | } ;; \\ | ||
| 415 | { \\ | ||
| 416 | LKEY SI[0] = [IPr[0]]; \\ | ||
| 417 | mov pr.rot = 0x10000; \\ | ||
| 418 | mov ar.ec = 4; \\ | ||
| 419 | } ;; \\ | ||
| 420 | { \\ | ||
| 421 | add J = J, SI[0]; \\ | ||
| 422 | zxt1 I[0] = IFinal; \\ | ||
| 423 | br.cexit.spnt.few .+16; /* never taken */ \\ | ||
| 424 | } ;; | ||
| 425 | #define MODSCHED_RC4_LOOP(label) \\ | ||
| 426 | label: \\ | ||
| 427 | { .mmi; \\ | ||
| 428 | (pComputeI) ld1 Data[0] = [InPtr], 1; \\ | ||
| 429 | (pComputeI) add IFinal = 1, I[1]; \\ | ||
| 430 | (pComputeJ) zxt1 J = J; \\ | ||
| 431 | }{ .mmi; \\ | ||
| 432 | (pOutput) LKEY T[1] = [T[1]]; \\ | ||
| 433 | (pComputeT) add T[0] = SI[2], SJ[1]; \\ | ||
| 434 | (pComputeI) KEYADDR(IPr[0], I[1]); \\ | ||
| 435 | } ;; \\ | ||
| 436 | { .mmi; \\ | ||
| 437 | (pComputeT) SKEY [IPr[2]] = SJ[1]; \\ | ||
| 438 | (pComputeT) SKEY [JP[1]] = SI[2]; \\ | ||
| 439 | (pComputeT) zxt1 T[0] = T[0]; \\ | ||
| 440 | }{ .mmi; \\ | ||
| 441 | (pComputeI) LKEY SI[0] = [IPr[0]]; \\ | ||
| 442 | (pComputeJ) KEYADDR(JP[0], J); \\ | ||
| 443 | (pComputeI) cmp.eq.unc pBypass, p0 = I[1], J; \\ | ||
| 444 | } ;; \\ | ||
| 445 | { .mmi; \\ | ||
| 446 | (pComputeJ) LKEY SJ[0] = [JP[0]]; \\ | ||
| 447 | (pOutput) xor Data[3] = Data[3], T[1]; \\ | ||
| 448 | nop 0x0; \\ | ||
| 449 | }{ .mmi; \\ | ||
| 450 | (pComputeT) KEYADDR(T[0], T[0]); \\ | ||
| 451 | (pBypass) mov SI[0] = SI[1]; \\ | ||
| 452 | (pComputeI) zxt1 I[0] = IFinal; \\ | ||
| 453 | } ;; \\ | ||
| 454 | { .mmb; \\ | ||
| 455 | (pOutput) st1 [OutPtr] = Data[3], 1; \\ | ||
| 456 | (pComputeI) add J = J, SI[0]; \\ | ||
| 457 | br.ctop.sptk.few label; \\ | ||
| 458 | } ;; | ||
| 459 | |||
| 460 | .text | ||
| 461 | |||
| 462 | .align 32 | ||
| 463 | |||
| 464 | .type RC4, \@function | ||
| 465 | .global RC4 | ||
| 466 | |||
| 467 | .proc RC4 | ||
| 468 | .prologue | ||
| 469 | |||
| 470 | RC4: | ||
| 471 | { | ||
| 472 | .mmi | ||
| 473 | alloc r2 = ar.pfs, _NINPUTS, _NLOCALS, _NOUTPUT, _NROTATE | ||
| 474 | |||
| 475 | .rotr Data[4], I[2], IPr[3], SI[3], JP[2], SJ[2], T[2], \\ | ||
| 476 | OutWord[2] | ||
| 477 | .rotp pPhase[4] | ||
| 478 | |||
| 479 | ADDP InPrefetch = 0, InputBuffer | ||
| 480 | ADDP KTable = 0, StateTable | ||
| 481 | } | ||
| 482 | { | ||
| 483 | .mmi | ||
| 484 | ADDP InPtr = 0, InputBuffer | ||
| 485 | ADDP OutPtr = 0, OutputBuffer | ||
| 486 | mov RetVal = r0 | ||
| 487 | } | ||
| 488 | ;; | ||
| 489 | { | ||
| 490 | .mmi | ||
| 491 | lfetch.nt1 [InPrefetch], 0x80 | ||
| 492 | ADDP OutPrefetch = 0, OutputBuffer | ||
| 493 | } | ||
| 494 | { // Return 0 if the input length is nonsensical | ||
| 495 | .mib | ||
| 496 | ADDP StateTable = 0, StateTable | ||
| 497 | cmp.ge.unc L_NOK, L_OK = r0, DataLen | ||
| 498 | (L_NOK) br.ret.sptk.few rp | ||
| 499 | } | ||
| 500 | ;; | ||
| 501 | { | ||
| 502 | .mib | ||
| 503 | cmp.eq.or L_NOK, L_OK = r0, InPtr | ||
| 504 | cmp.eq.or L_NOK, L_OK = r0, OutPtr | ||
| 505 | nop 0x0 | ||
| 506 | } | ||
| 507 | { | ||
| 508 | .mib | ||
| 509 | cmp.eq.or L_NOK, L_OK = r0, StateTable | ||
| 510 | nop 0x0 | ||
| 511 | (L_NOK) br.ret.sptk.few rp | ||
| 512 | } | ||
| 513 | ;; | ||
| 514 | LKEY I[1] = [KTable], SZ | ||
| 515 | /* Prefetch the state-table. It contains 256 elements of size SZ */ | ||
| 516 | |||
| 517 | #if SZ == 1 | ||
| 518 | ADDP tmp0 = 1*128, StateTable | ||
| 519 | #elif SZ == 2 | ||
| 520 | ADDP tmp0 = 3*128, StateTable | ||
| 521 | ADDP tmp1 = 2*128, StateTable | ||
| 522 | #elif SZ == 4 | ||
| 523 | ADDP tmp0 = 7*128, StateTable | ||
| 524 | ADDP tmp1 = 6*128, StateTable | ||
| 525 | #elif SZ == 8 | ||
| 526 | ADDP tmp0 = 15*128, StateTable | ||
| 527 | ADDP tmp1 = 14*128, StateTable | ||
| 528 | #endif | ||
| 529 | ;; | ||
| 530 | #if SZ >= 8 | ||
| 531 | lfetch.fault.nt1 [tmp0], -256 // 15 | ||
| 532 | lfetch.fault.nt1 [tmp1], -256;; | ||
| 533 | lfetch.fault.nt1 [tmp0], -256 // 13 | ||
| 534 | lfetch.fault.nt1 [tmp1], -256;; | ||
| 535 | lfetch.fault.nt1 [tmp0], -256 // 11 | ||
| 536 | lfetch.fault.nt1 [tmp1], -256;; | ||
| 537 | lfetch.fault.nt1 [tmp0], -256 // 9 | ||
| 538 | lfetch.fault.nt1 [tmp1], -256;; | ||
| 539 | #endif | ||
| 540 | #if SZ >= 4 | ||
| 541 | lfetch.fault.nt1 [tmp0], -256 // 7 | ||
| 542 | lfetch.fault.nt1 [tmp1], -256;; | ||
| 543 | lfetch.fault.nt1 [tmp0], -256 // 5 | ||
| 544 | lfetch.fault.nt1 [tmp1], -256;; | ||
| 545 | #endif | ||
| 546 | #if SZ >= 2 | ||
| 547 | lfetch.fault.nt1 [tmp0], -256 // 3 | ||
| 548 | lfetch.fault.nt1 [tmp1], -256;; | ||
| 549 | #endif | ||
| 550 | { | ||
| 551 | .mii | ||
| 552 | lfetch.fault.nt1 [tmp0] // 1 | ||
| 553 | add I[1]=1,I[1];; | ||
| 554 | zxt1 I[1]=I[1] | ||
| 555 | } | ||
| 556 | { | ||
| 557 | .mmi | ||
| 558 | lfetch.nt1 [InPrefetch], 0x80 | ||
| 559 | lfetch.excl.nt1 [OutPrefetch], 0x80 | ||
| 560 | .save pr, PRSave | ||
| 561 | mov PRSave = pr | ||
| 562 | } ;; | ||
| 563 | { | ||
| 564 | .mmi | ||
| 565 | lfetch.excl.nt1 [OutPrefetch], 0x80 | ||
| 566 | LKEY J = [KTable], SZ | ||
| 567 | ADDP EndPtr = DataLen, InPtr | ||
| 568 | } ;; | ||
| 569 | { | ||
| 570 | .mmi | ||
| 571 | ADDP EndPtr = -1, EndPtr // Make it point to | ||
| 572 | // last data byte. | ||
| 573 | mov One = 1 | ||
| 574 | .save ar.lc, LCSave | ||
| 575 | mov LCSave = ar.lc | ||
| 576 | .body | ||
| 577 | } ;; | ||
| 578 | { | ||
| 579 | .mmb | ||
| 580 | sub Remainder = 0, OutPtr | ||
| 581 | cmp.gtu pSmall, p0 = $threshold, DataLen | ||
| 582 | (pSmall) br.cond.dpnt .rc4Remainder // Data too small for | ||
| 583 | // big loop. | ||
| 584 | } ;; | ||
| 585 | { | ||
| 586 | .mmi | ||
| 587 | and Remainder = 0x7, Remainder | ||
| 588 | ;; | ||
| 589 | cmp.eq pAligned, pUnaligned = Remainder, r0 | ||
| 590 | nop 0x0 | ||
| 591 | } ;; | ||
| 592 | { | ||
| 593 | .mmb | ||
| 594 | .pred.rel "mutex",pUnaligned,pAligned | ||
| 595 | (pUnaligned) add Remainder = -1, Remainder | ||
| 596 | (pAligned) sub Remainder = EndPtr, InPtr | ||
| 597 | (pAligned) br.cond.dptk.many .rc4Aligned | ||
| 598 | } ;; | ||
| 599 | { | ||
| 600 | .mmi | ||
| 601 | nop 0x0 | ||
| 602 | nop 0x0 | ||
| 603 | mov.i ar.lc = Remainder | ||
| 604 | } | ||
| 605 | |||
| 606 | /* Do the initial few bytes via the compact, modulo-scheduled loop | ||
| 607 | until the output pointer is 8-byte-aligned. */ | ||
| 608 | |||
| 609 | MODSCHED_RC4_PROLOGUE | ||
| 610 | MODSCHED_RC4_LOOP(.RC4AlignLoop) | ||
| 611 | |||
| 612 | { | ||
| 613 | .mib | ||
| 614 | sub Remainder = EndPtr, InPtr | ||
| 615 | zxt1 IFinal = IFinal | ||
| 616 | clrrrb // Clear CFM.rrb.pr so | ||
| 617 | ;; // next "mov pr.rot = N" | ||
| 618 | // does the right thing. | ||
| 619 | } | ||
| 620 | { | ||
| 621 | .mmi | ||
| 622 | mov I[1] = IFinal | ||
| 623 | nop 0x0 | ||
| 624 | nop 0x0 | ||
| 625 | } ;; | ||
| 626 | |||
| 627 | |||
| 628 | .rc4Aligned: | ||
| 629 | |||
| 630 | /* | ||
| 631 | Unrolled loop count = (Remainder - ($unroll_count+1)*$phases)/($unroll_count*$phases) | ||
| 632 | */ | ||
| 633 | |||
| 634 | { | ||
| 635 | .mlx | ||
| 636 | add LoopCount = 1 - ($unroll_count + 1)*$phases, Remainder | ||
| 637 | movl Remainder = 0xaaaaaaaaaaaaaaab | ||
| 638 | } ;; | ||
| 639 | { | ||
| 640 | .mmi | ||
| 641 | setf.sig f6 = LoopCount // M2, M3 6 cyc | ||
| 642 | setf.sig f7 = Remainder // M2, M3 6 cyc | ||
| 643 | nop 0x0 | ||
| 644 | } ;; | ||
| 645 | { | ||
| 646 | .mfb | ||
| 647 | nop 0x0 | ||
| 648 | xmpy.hu f6 = f6, f7 | ||
| 649 | nop 0x0 | ||
| 650 | } ;; | ||
| 651 | { | ||
| 652 | .mmi | ||
| 653 | getf.sig LoopCount = f6;; // M2 5 cyc | ||
| 654 | nop 0x0 | ||
| 655 | shr.u LoopCount = LoopCount, 4 | ||
| 656 | } ;; | ||
| 657 | { | ||
| 658 | .mmi | ||
| 659 | nop 0x0 | ||
| 660 | nop 0x0 | ||
| 661 | mov.i ar.lc = LoopCount | ||
| 662 | } ;; | ||
| 663 | |||
| 664 | /* Now comes the unrolled loop: */ | ||
| 665 | |||
| 666 | .rc4Prologue: | ||
| 667 | ___ | ||
| 668 | |||
| 669 | $iteration = 0; | ||
| 670 | |||
| 671 | # Generate the prologue: | ||
| 672 | $predicates = 1; | ||
| 673 | for ($i = 0; $i < $phases; ++$i) { | ||
| 674 | &emit_body (\$code, \$bypass, $iteration++, $predicates); | ||
| 675 | $predicates = ($predicates << 1) | 1; | ||
| 676 | } | ||
| 677 | |||
| 678 | $code.=<<___; | ||
| 679 | .rc4Loop: | ||
| 680 | ___ | ||
| 681 | |||
| 682 | # Generate the body: | ||
| 683 | for ($i = 0; $i < $unroll_count*$phases; ++$i) { | ||
| 684 | &emit_body (\$code, \$bypass, $iteration++, $predicates); | ||
| 685 | } | ||
| 686 | |||
| 687 | $code.=<<___; | ||
| 688 | .rc4Epilogue: | ||
| 689 | ___ | ||
| 690 | |||
| 691 | # Generate the epilogue: | ||
| 692 | for ($i = 0; $i < $phases; ++$i) { | ||
| 693 | $predicates <<= 1; | ||
| 694 | &emit_body (\$code, \$bypass, $iteration++, $predicates); | ||
| 695 | } | ||
| 696 | |||
| 697 | $code.=<<___; | ||
| 698 | { | ||
| 699 | .mmi | ||
| 700 | lfetch.nt1 [EndPtr] // fetch line with last byte | ||
| 701 | mov IFinal = I[1] | ||
| 702 | nop 0x0 | ||
| 703 | } | ||
| 704 | |||
| 705 | .rc4Remainder: | ||
| 706 | { | ||
| 707 | .mmi | ||
| 708 | sub Remainder = EndPtr, InPtr // Calculate | ||
| 709 | // # of bytes | ||
| 710 | // left - 1 | ||
| 711 | nop 0x0 | ||
| 712 | nop 0x0 | ||
| 713 | } ;; | ||
| 714 | { | ||
| 715 | .mib | ||
| 716 | cmp.eq pDone, p0 = -1, Remainder // done already? | ||
| 717 | mov.i ar.lc = Remainder | ||
| 718 | (pDone) br.cond.dptk.few .rc4Complete | ||
| 719 | } | ||
| 720 | |||
| 721 | /* Do the remaining bytes via the compact, modulo-scheduled loop */ | ||
| 722 | |||
| 723 | MODSCHED_RC4_PROLOGUE | ||
| 724 | MODSCHED_RC4_LOOP(.RC4RestLoop) | ||
| 725 | |||
| 726 | .rc4Complete: | ||
| 727 | { | ||
| 728 | .mmi | ||
| 729 | add KTable = -SZ, KTable | ||
| 730 | add IFinal = -1, IFinal | ||
| 731 | mov ar.lc = LCSave | ||
| 732 | } ;; | ||
| 733 | { | ||
| 734 | .mii | ||
| 735 | SKEY [KTable] = J,-SZ | ||
| 736 | zxt1 IFinal = IFinal | ||
| 737 | mov pr = PRSave, 0x1FFFF | ||
| 738 | } ;; | ||
| 739 | { | ||
| 740 | .mib | ||
| 741 | SKEY [KTable] = IFinal | ||
| 742 | add RetVal = 1, r0 | ||
| 743 | br.ret.sptk.few rp | ||
| 744 | } ;; | ||
| 745 | ___ | ||
| 746 | |||
| 747 | # Last but not least, emit the code for the bypass-code of the unrolled loop: | ||
| 748 | |||
| 749 | $code.=$bypass; | ||
| 750 | |||
| 751 | $code.=<<___; | ||
| 752 | .endp RC4 | ||
| 753 | ___ | ||
| 754 | |||
| 755 | print $code; | ||
diff --git a/src/lib/libcrypto/rc4/asm/rc4-s390x.pl b/src/lib/libcrypto/rc4/asm/rc4-s390x.pl deleted file mode 100644 index 96681fa05e..0000000000 --- a/src/lib/libcrypto/rc4/asm/rc4-s390x.pl +++ /dev/null | |||
| @@ -1,205 +0,0 @@ | |||
| 1 | #!/usr/bin/env perl | ||
| 2 | # | ||
| 3 | # ==================================================================== | ||
| 4 | # Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL | ||
| 5 | # project. The module is, however, dual licensed under OpenSSL and | ||
| 6 | # CRYPTOGAMS licenses depending on where you obtain it. For further | ||
| 7 | # details see http://www.openssl.org/~appro/cryptogams/. | ||
| 8 | # ==================================================================== | ||
| 9 | # | ||
| 10 | # February 2009 | ||
| 11 | # | ||
| 12 | # Performance is 2x of gcc 3.4.6 on z10. Coding "secret" is to | ||
| 13 | # "cluster" Address Generation Interlocks, so that one pipeline stall | ||
| 14 | # resolves several dependencies. | ||
| 15 | |||
| 16 | $rp="%r14"; | ||
| 17 | $sp="%r15"; | ||
| 18 | $code=<<___; | ||
| 19 | .text | ||
| 20 | |||
| 21 | ___ | ||
| 22 | |||
| 23 | # void RC4(RC4_KEY *key,size_t len,const void *inp,void *out) | ||
| 24 | { | ||
| 25 | $acc="%r0"; | ||
| 26 | $cnt="%r1"; | ||
| 27 | $key="%r2"; | ||
| 28 | $len="%r3"; | ||
| 29 | $inp="%r4"; | ||
| 30 | $out="%r5"; | ||
| 31 | |||
| 32 | @XX=("%r6","%r7"); | ||
| 33 | @TX=("%r8","%r9"); | ||
| 34 | $YY="%r10"; | ||
| 35 | $TY="%r11"; | ||
| 36 | |||
| 37 | $code.=<<___; | ||
| 38 | .globl RC4 | ||
| 39 | .type RC4,\@function | ||
| 40 | .align 64 | ||
| 41 | RC4: | ||
| 42 | stmg %r6,%r11,48($sp) | ||
| 43 | llgc $XX[0],0($key) | ||
| 44 | llgc $YY,1($key) | ||
| 45 | la $XX[0],1($XX[0]) | ||
| 46 | nill $XX[0],0xff | ||
| 47 | srlg $cnt,$len,3 | ||
| 48 | ltgr $cnt,$cnt | ||
| 49 | llgc $TX[0],2($XX[0],$key) | ||
| 50 | jz .Lshort | ||
| 51 | j .Loop8 | ||
| 52 | |||
| 53 | .align 64 | ||
| 54 | .Loop8: | ||
| 55 | ___ | ||
| 56 | for ($i=0;$i<8;$i++) { | ||
| 57 | $code.=<<___; | ||
| 58 | la $YY,0($YY,$TX[0]) # $i | ||
| 59 | nill $YY,255 | ||
| 60 | la $XX[1],1($XX[0]) | ||
| 61 | nill $XX[1],255 | ||
| 62 | ___ | ||
| 63 | $code.=<<___ if ($i==1); | ||
| 64 | llgc $acc,2($TY,$key) | ||
| 65 | ___ | ||
| 66 | $code.=<<___ if ($i>1); | ||
| 67 | sllg $acc,$acc,8 | ||
| 68 | ic $acc,2($TY,$key) | ||
| 69 | ___ | ||
| 70 | $code.=<<___; | ||
| 71 | llgc $TY,2($YY,$key) | ||
| 72 | stc $TX[0],2($YY,$key) | ||
| 73 | llgc $TX[1],2($XX[1],$key) | ||
| 74 | stc $TY,2($XX[0],$key) | ||
| 75 | cr $XX[1],$YY | ||
| 76 | jne .Lcmov$i | ||
| 77 | la $TX[1],0($TX[0]) | ||
| 78 | .Lcmov$i: | ||
| 79 | la $TY,0($TY,$TX[0]) | ||
| 80 | nill $TY,255 | ||
| 81 | ___ | ||
| 82 | push(@TX,shift(@TX)); push(@XX,shift(@XX)); # "rotate" registers | ||
| 83 | } | ||
| 84 | |||
| 85 | $code.=<<___; | ||
| 86 | lg $TX[1],0($inp) | ||
| 87 | sllg $acc,$acc,8 | ||
| 88 | la $inp,8($inp) | ||
| 89 | ic $acc,2($TY,$key) | ||
| 90 | xgr $acc,$TX[1] | ||
| 91 | stg $acc,0($out) | ||
| 92 | la $out,8($out) | ||
| 93 | brct $cnt,.Loop8 | ||
| 94 | |||
| 95 | .Lshort: | ||
| 96 | lghi $acc,7 | ||
| 97 | ngr $len,$acc | ||
| 98 | jz .Lexit | ||
| 99 | j .Loop1 | ||
| 100 | |||
| 101 | .align 16 | ||
| 102 | .Loop1: | ||
| 103 | la $YY,0($YY,$TX[0]) | ||
| 104 | nill $YY,255 | ||
| 105 | llgc $TY,2($YY,$key) | ||
| 106 | stc $TX[0],2($YY,$key) | ||
| 107 | stc $TY,2($XX[0],$key) | ||
| 108 | ar $TY,$TX[0] | ||
| 109 | ahi $XX[0],1 | ||
| 110 | nill $TY,255 | ||
| 111 | nill $XX[0],255 | ||
| 112 | llgc $acc,0($inp) | ||
| 113 | la $inp,1($inp) | ||
| 114 | llgc $TY,2($TY,$key) | ||
| 115 | llgc $TX[0],2($XX[0],$key) | ||
| 116 | xr $acc,$TY | ||
| 117 | stc $acc,0($out) | ||
| 118 | la $out,1($out) | ||
| 119 | brct $len,.Loop1 | ||
| 120 | |||
| 121 | .Lexit: | ||
| 122 | ahi $XX[0],-1 | ||
| 123 | stc $XX[0],0($key) | ||
| 124 | stc $YY,1($key) | ||
| 125 | lmg %r6,%r11,48($sp) | ||
| 126 | br $rp | ||
| 127 | .size RC4,.-RC4 | ||
| 128 | .string "RC4 for s390x, CRYPTOGAMS by <appro\@openssl.org>" | ||
| 129 | |||
| 130 | ___ | ||
| 131 | } | ||
| 132 | |||
| 133 | # void RC4_set_key(RC4_KEY *key,unsigned int len,const void *inp) | ||
| 134 | { | ||
| 135 | $cnt="%r0"; | ||
| 136 | $idx="%r1"; | ||
| 137 | $key="%r2"; | ||
| 138 | $len="%r3"; | ||
| 139 | $inp="%r4"; | ||
| 140 | $acc="%r5"; | ||
| 141 | $dat="%r6"; | ||
| 142 | $ikey="%r7"; | ||
| 143 | $iinp="%r8"; | ||
| 144 | |||
| 145 | $code.=<<___; | ||
| 146 | .globl RC4_set_key | ||
| 147 | .type RC4_set_key,\@function | ||
| 148 | .align 64 | ||
| 149 | RC4_set_key: | ||
| 150 | stmg %r6,%r8,48($sp) | ||
| 151 | lhi $cnt,256 | ||
| 152 | la $idx,0(%r0) | ||
| 153 | sth $idx,0($key) | ||
| 154 | .align 4 | ||
| 155 | .L1stloop: | ||
| 156 | stc $idx,2($idx,$key) | ||
| 157 | la $idx,1($idx) | ||
| 158 | brct $cnt,.L1stloop | ||
| 159 | |||
| 160 | lghi $ikey,-256 | ||
| 161 | lr $cnt,$len | ||
| 162 | la $iinp,0(%r0) | ||
| 163 | la $idx,0(%r0) | ||
| 164 | .align 16 | ||
| 165 | .L2ndloop: | ||
| 166 | llgc $acc,2+256($ikey,$key) | ||
| 167 | llgc $dat,0($iinp,$inp) | ||
| 168 | la $idx,0($idx,$acc) | ||
| 169 | la $ikey,1($ikey) | ||
| 170 | la $idx,0($idx,$dat) | ||
| 171 | nill $idx,255 | ||
| 172 | la $iinp,1($iinp) | ||
| 173 | tml $ikey,255 | ||
| 174 | llgc $dat,2($idx,$key) | ||
| 175 | stc $dat,2+256-1($ikey,$key) | ||
| 176 | stc $acc,2($idx,$key) | ||
| 177 | jz .Ldone | ||
| 178 | brct $cnt,.L2ndloop | ||
| 179 | lr $cnt,$len | ||
| 180 | la $iinp,0(%r0) | ||
| 181 | j .L2ndloop | ||
| 182 | .Ldone: | ||
| 183 | lmg %r6,%r8,48($sp) | ||
| 184 | br $rp | ||
| 185 | .size RC4_set_key,.-RC4_set_key | ||
| 186 | |||
| 187 | ___ | ||
| 188 | } | ||
| 189 | |||
| 190 | # const char *RC4_options() | ||
| 191 | $code.=<<___; | ||
| 192 | .globl RC4_options | ||
| 193 | .type RC4_options,\@function | ||
| 194 | .align 16 | ||
| 195 | RC4_options: | ||
| 196 | larl %r2,.Loptions | ||
| 197 | br %r14 | ||
| 198 | .size RC4_options,.-RC4_options | ||
| 199 | .section .rodata | ||
| 200 | .Loptions: | ||
| 201 | .align 8 | ||
| 202 | .string "rc4(8x,char)" | ||
| 203 | ___ | ||
| 204 | |||
| 205 | print $code; | ||
diff --git a/src/lib/libcrypto/rc4/asm/rc4-x86_64.pl b/src/lib/libcrypto/rc4/asm/rc4-x86_64.pl deleted file mode 100755 index 544386bf53..0000000000 --- a/src/lib/libcrypto/rc4/asm/rc4-x86_64.pl +++ /dev/null | |||
| @@ -1,504 +0,0 @@ | |||
| 1 | #!/usr/bin/env perl | ||
| 2 | # | ||
| 3 | # ==================================================================== | ||
| 4 | # Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL | ||
| 5 | # project. The module is, however, dual licensed under OpenSSL and | ||
| 6 | # CRYPTOGAMS licenses depending on where you obtain it. For further | ||
| 7 | # details see http://www.openssl.org/~appro/cryptogams/. | ||
| 8 | # ==================================================================== | ||
| 9 | # | ||
| 10 | # 2.22x RC4 tune-up:-) It should be noted though that my hand [as in | ||
| 11 | # "hand-coded assembler"] doesn't stand for the whole improvement | ||
| 12 | # coefficient. It turned out that eliminating RC4_CHAR from config | ||
| 13 | # line results in ~40% improvement (yes, even for C implementation). | ||
| 14 | # Presumably it has everything to do with AMD cache architecture and | ||
| 15 | # RAW or whatever penalties. Once again! The module *requires* config | ||
| 16 | # line *without* RC4_CHAR! As for coding "secret," I bet on partial | ||
| 17 | # register arithmetics. For example instead of 'inc %r8; and $255,%r8' | ||
| 18 | # I simply 'inc %r8b'. Even though optimization manual discourages | ||
| 19 | # to operate on partial registers, it turned out to be the best bet. | ||
| 20 | # At least for AMD... How IA32E would perform remains to be seen... | ||
| 21 | |||
| 22 | # As was shown by Marc Bevand reordering of couple of load operations | ||
| 23 | # results in even higher performance gain of 3.3x:-) At least on | ||
| 24 | # Opteron... For reference, 1x in this case is RC4_CHAR C-code | ||
| 25 | # compiled with gcc 3.3.2, which performs at ~54MBps per 1GHz clock. | ||
| 26 | # Latter means that if you want to *estimate* what to expect from | ||
| 27 | # *your* Opteron, then multiply 54 by 3.3 and clock frequency in GHz. | ||
| 28 | |||
| 29 | # Intel P4 EM64T core was found to run the AMD64 code really slow... | ||
| 30 | # The only way to achieve comparable performance on P4 was to keep | ||
| 31 | # RC4_CHAR. Kind of ironic, huh? As it's apparently impossible to | ||
| 32 | # compose blended code, which would perform even within 30% marginal | ||
| 33 | # on either AMD and Intel platforms, I implement both cases. See | ||
| 34 | # rc4_skey.c for further details... | ||
| 35 | |||
| 36 | # P4 EM64T core appears to be "allergic" to 64-bit inc/dec. Replacing | ||
| 37 | # those with add/sub results in 50% performance improvement of folded | ||
| 38 | # loop... | ||
| 39 | |||
| 40 | # As was shown by Zou Nanhai loop unrolling can improve Intel EM64T | ||
| 41 | # performance by >30% [unlike P4 32-bit case that is]. But this is | ||
| 42 | # provided that loads are reordered even more aggressively! Both code | ||
| 43 | # pathes, AMD64 and EM64T, reorder loads in essentially same manner | ||
| 44 | # as my IA-64 implementation. On Opteron this resulted in modest 5% | ||
| 45 | # improvement [I had to test it], while final Intel P4 performance | ||
| 46 | # achieves respectful 432MBps on 2.8GHz processor now. For reference. | ||
| 47 | # If executed on Xeon, current RC4_CHAR code-path is 2.7x faster than | ||
| 48 | # RC4_INT code-path. While if executed on Opteron, it's only 25% | ||
| 49 | # slower than the RC4_INT one [meaning that if CPU µ-arch detection | ||
| 50 | # is not implemented, then this final RC4_CHAR code-path should be | ||
| 51 | # preferred, as it provides better *all-round* performance]. | ||
| 52 | |||
| 53 | # Intel Core2 was observed to perform poorly on both code paths:-( It | ||
| 54 | # apparently suffers from some kind of partial register stall, which | ||
| 55 | # occurs in 64-bit mode only [as virtually identical 32-bit loop was | ||
| 56 | # observed to outperform 64-bit one by almost 50%]. Adding two movzb to | ||
| 57 | # cloop1 boosts its performance by 80%! This loop appears to be optimal | ||
| 58 | # fit for Core2 and therefore the code was modified to skip cloop8 on | ||
| 59 | # this CPU. | ||
| 60 | |||
| 61 | $flavour = shift; | ||
| 62 | $output = shift; | ||
| 63 | if ($flavour =~ /\./) { $output = $flavour; undef $flavour; } | ||
| 64 | |||
| 65 | $win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/); | ||
| 66 | |||
| 67 | $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; | ||
| 68 | ( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or | ||
| 69 | ( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or | ||
| 70 | die "can't locate x86_64-xlate.pl"; | ||
| 71 | |||
| 72 | open STDOUT,"| $^X $xlate $flavour $output"; | ||
| 73 | |||
| 74 | $dat="%rdi"; # arg1 | ||
| 75 | $len="%rsi"; # arg2 | ||
| 76 | $inp="%rdx"; # arg3 | ||
| 77 | $out="%rcx"; # arg4 | ||
| 78 | |||
| 79 | @XX=("%r8","%r10"); | ||
| 80 | @TX=("%r9","%r11"); | ||
| 81 | $YY="%r12"; | ||
| 82 | $TY="%r13"; | ||
| 83 | |||
| 84 | $code=<<___; | ||
| 85 | .text | ||
| 86 | |||
| 87 | .globl RC4 | ||
| 88 | .type RC4,\@function,4 | ||
| 89 | .align 16 | ||
| 90 | RC4: or $len,$len | ||
| 91 | jne .Lentry | ||
| 92 | ret | ||
| 93 | .Lentry: | ||
| 94 | push %rbx | ||
| 95 | push %r12 | ||
| 96 | push %r13 | ||
| 97 | .Lprologue: | ||
| 98 | |||
| 99 | add \$8,$dat | ||
| 100 | movl -8($dat),$XX[0]#d | ||
| 101 | movl -4($dat),$YY#d | ||
| 102 | cmpl \$-1,256($dat) | ||
| 103 | je .LRC4_CHAR | ||
| 104 | inc $XX[0]#b | ||
| 105 | movl ($dat,$XX[0],4),$TX[0]#d | ||
| 106 | test \$-8,$len | ||
| 107 | jz .Lloop1 | ||
| 108 | jmp .Lloop8 | ||
| 109 | .align 16 | ||
| 110 | .Lloop8: | ||
| 111 | ___ | ||
| 112 | for ($i=0;$i<8;$i++) { | ||
| 113 | $code.=<<___; | ||
| 114 | add $TX[0]#b,$YY#b | ||
| 115 | mov $XX[0],$XX[1] | ||
| 116 | movl ($dat,$YY,4),$TY#d | ||
| 117 | ror \$8,%rax # ror is redundant when $i=0 | ||
| 118 | inc $XX[1]#b | ||
| 119 | movl ($dat,$XX[1],4),$TX[1]#d | ||
| 120 | cmp $XX[1],$YY | ||
| 121 | movl $TX[0]#d,($dat,$YY,4) | ||
| 122 | cmove $TX[0],$TX[1] | ||
| 123 | movl $TY#d,($dat,$XX[0],4) | ||
| 124 | add $TX[0]#b,$TY#b | ||
| 125 | movb ($dat,$TY,4),%al | ||
| 126 | ___ | ||
| 127 | push(@TX,shift(@TX)); push(@XX,shift(@XX)); # "rotate" registers | ||
| 128 | } | ||
| 129 | $code.=<<___; | ||
| 130 | ror \$8,%rax | ||
| 131 | sub \$8,$len | ||
| 132 | |||
| 133 | xor ($inp),%rax | ||
| 134 | add \$8,$inp | ||
| 135 | mov %rax,($out) | ||
| 136 | add \$8,$out | ||
| 137 | |||
| 138 | test \$-8,$len | ||
| 139 | jnz .Lloop8 | ||
| 140 | cmp \$0,$len | ||
| 141 | jne .Lloop1 | ||
| 142 | jmp .Lexit | ||
| 143 | |||
| 144 | .align 16 | ||
| 145 | .Lloop1: | ||
| 146 | add $TX[0]#b,$YY#b | ||
| 147 | movl ($dat,$YY,4),$TY#d | ||
| 148 | movl $TX[0]#d,($dat,$YY,4) | ||
| 149 | movl $TY#d,($dat,$XX[0],4) | ||
| 150 | add $TY#b,$TX[0]#b | ||
| 151 | inc $XX[0]#b | ||
| 152 | movl ($dat,$TX[0],4),$TY#d | ||
| 153 | movl ($dat,$XX[0],4),$TX[0]#d | ||
| 154 | xorb ($inp),$TY#b | ||
| 155 | inc $inp | ||
| 156 | movb $TY#b,($out) | ||
| 157 | inc $out | ||
| 158 | dec $len | ||
| 159 | jnz .Lloop1 | ||
| 160 | jmp .Lexit | ||
| 161 | |||
| 162 | .align 16 | ||
| 163 | .LRC4_CHAR: | ||
| 164 | add \$1,$XX[0]#b | ||
| 165 | movzb ($dat,$XX[0]),$TX[0]#d | ||
| 166 | test \$-8,$len | ||
| 167 | jz .Lcloop1 | ||
| 168 | cmpl \$0,260($dat) | ||
| 169 | jnz .Lcloop1 | ||
| 170 | jmp .Lcloop8 | ||
| 171 | .align 16 | ||
| 172 | .Lcloop8: | ||
| 173 | mov ($inp),%eax | ||
| 174 | mov 4($inp),%ebx | ||
| 175 | ___ | ||
| 176 | # unroll 2x4-wise, because 64-bit rotates kill Intel P4... | ||
| 177 | for ($i=0;$i<4;$i++) { | ||
| 178 | $code.=<<___; | ||
| 179 | add $TX[0]#b,$YY#b | ||
| 180 | lea 1($XX[0]),$XX[1] | ||
| 181 | movzb ($dat,$YY),$TY#d | ||
| 182 | movzb $XX[1]#b,$XX[1]#d | ||
| 183 | movzb ($dat,$XX[1]),$TX[1]#d | ||
| 184 | movb $TX[0]#b,($dat,$YY) | ||
| 185 | cmp $XX[1],$YY | ||
| 186 | movb $TY#b,($dat,$XX[0]) | ||
| 187 | jne .Lcmov$i # Intel cmov is sloooow... | ||
| 188 | mov $TX[0],$TX[1] | ||
| 189 | .Lcmov$i: | ||
| 190 | add $TX[0]#b,$TY#b | ||
| 191 | xor ($dat,$TY),%al | ||
| 192 | ror \$8,%eax | ||
| 193 | ___ | ||
| 194 | push(@TX,shift(@TX)); push(@XX,shift(@XX)); # "rotate" registers | ||
| 195 | } | ||
| 196 | for ($i=4;$i<8;$i++) { | ||
| 197 | $code.=<<___; | ||
| 198 | add $TX[0]#b,$YY#b | ||
| 199 | lea 1($XX[0]),$XX[1] | ||
| 200 | movzb ($dat,$YY),$TY#d | ||
| 201 | movzb $XX[1]#b,$XX[1]#d | ||
| 202 | movzb ($dat,$XX[1]),$TX[1]#d | ||
| 203 | movb $TX[0]#b,($dat,$YY) | ||
| 204 | cmp $XX[1],$YY | ||
| 205 | movb $TY#b,($dat,$XX[0]) | ||
| 206 | jne .Lcmov$i # Intel cmov is sloooow... | ||
| 207 | mov $TX[0],$TX[1] | ||
| 208 | .Lcmov$i: | ||
| 209 | add $TX[0]#b,$TY#b | ||
| 210 | xor ($dat,$TY),%bl | ||
| 211 | ror \$8,%ebx | ||
| 212 | ___ | ||
| 213 | push(@TX,shift(@TX)); push(@XX,shift(@XX)); # "rotate" registers | ||
| 214 | } | ||
| 215 | $code.=<<___; | ||
| 216 | lea -8($len),$len | ||
| 217 | mov %eax,($out) | ||
| 218 | lea 8($inp),$inp | ||
| 219 | mov %ebx,4($out) | ||
| 220 | lea 8($out),$out | ||
| 221 | |||
| 222 | test \$-8,$len | ||
| 223 | jnz .Lcloop8 | ||
| 224 | cmp \$0,$len | ||
| 225 | jne .Lcloop1 | ||
| 226 | jmp .Lexit | ||
| 227 | ___ | ||
| 228 | $code.=<<___; | ||
| 229 | .align 16 | ||
| 230 | .Lcloop1: | ||
| 231 | add $TX[0]#b,$YY#b | ||
| 232 | movzb ($dat,$YY),$TY#d | ||
| 233 | movb $TX[0]#b,($dat,$YY) | ||
| 234 | movb $TY#b,($dat,$XX[0]) | ||
| 235 | add $TX[0]#b,$TY#b | ||
| 236 | add \$1,$XX[0]#b | ||
| 237 | movzb $TY#b,$TY#d | ||
| 238 | movzb $XX[0]#b,$XX[0]#d | ||
| 239 | movzb ($dat,$TY),$TY#d | ||
| 240 | movzb ($dat,$XX[0]),$TX[0]#d | ||
| 241 | xorb ($inp),$TY#b | ||
| 242 | lea 1($inp),$inp | ||
| 243 | movb $TY#b,($out) | ||
| 244 | lea 1($out),$out | ||
| 245 | sub \$1,$len | ||
| 246 | jnz .Lcloop1 | ||
| 247 | jmp .Lexit | ||
| 248 | |||
| 249 | .align 16 | ||
| 250 | .Lexit: | ||
| 251 | sub \$1,$XX[0]#b | ||
| 252 | movl $XX[0]#d,-8($dat) | ||
| 253 | movl $YY#d,-4($dat) | ||
| 254 | |||
| 255 | mov (%rsp),%r13 | ||
| 256 | mov 8(%rsp),%r12 | ||
| 257 | mov 16(%rsp),%rbx | ||
| 258 | add \$24,%rsp | ||
| 259 | .Lepilogue: | ||
| 260 | ret | ||
| 261 | .size RC4,.-RC4 | ||
| 262 | ___ | ||
| 263 | |||
| 264 | $idx="%r8"; | ||
| 265 | $ido="%r9"; | ||
| 266 | |||
| 267 | $code.=<<___; | ||
| 268 | .extern OPENSSL_ia32cap_P | ||
| 269 | .globl RC4_set_key | ||
| 270 | .type RC4_set_key,\@function,3 | ||
| 271 | .align 16 | ||
| 272 | RC4_set_key: | ||
| 273 | lea 8($dat),$dat | ||
| 274 | lea ($inp,$len),$inp | ||
| 275 | neg $len | ||
| 276 | mov $len,%rcx | ||
| 277 | xor %eax,%eax | ||
| 278 | xor $ido,$ido | ||
| 279 | xor %r10,%r10 | ||
| 280 | xor %r11,%r11 | ||
| 281 | |||
| 282 | mov PIC_GOT(OPENSSL_ia32cap_P),$idx#d | ||
| 283 | bt \$20,$idx#d | ||
| 284 | jnc .Lw1stloop | ||
| 285 | bt \$30,$idx#d | ||
| 286 | setc $ido#b | ||
| 287 | mov $ido#d,260($dat) | ||
| 288 | jmp .Lc1stloop | ||
| 289 | |||
| 290 | .align 16 | ||
| 291 | .Lw1stloop: | ||
| 292 | mov %eax,($dat,%rax,4) | ||
| 293 | add \$1,%al | ||
| 294 | jnc .Lw1stloop | ||
| 295 | |||
| 296 | xor $ido,$ido | ||
| 297 | xor $idx,$idx | ||
| 298 | .align 16 | ||
| 299 | .Lw2ndloop: | ||
| 300 | mov ($dat,$ido,4),%r10d | ||
| 301 | add ($inp,$len,1),$idx#b | ||
| 302 | add %r10b,$idx#b | ||
| 303 | add \$1,$len | ||
| 304 | mov ($dat,$idx,4),%r11d | ||
| 305 | cmovz %rcx,$len | ||
| 306 | mov %r10d,($dat,$idx,4) | ||
| 307 | mov %r11d,($dat,$ido,4) | ||
| 308 | add \$1,$ido#b | ||
| 309 | jnc .Lw2ndloop | ||
| 310 | jmp .Lexit_key | ||
| 311 | |||
| 312 | .align 16 | ||
| 313 | .Lc1stloop: | ||
| 314 | mov %al,($dat,%rax) | ||
| 315 | add \$1,%al | ||
| 316 | jnc .Lc1stloop | ||
| 317 | |||
| 318 | xor $ido,$ido | ||
| 319 | xor $idx,$idx | ||
| 320 | .align 16 | ||
| 321 | .Lc2ndloop: | ||
| 322 | mov ($dat,$ido),%r10b | ||
| 323 | add ($inp,$len),$idx#b | ||
| 324 | add %r10b,$idx#b | ||
| 325 | add \$1,$len | ||
| 326 | mov ($dat,$idx),%r11b | ||
| 327 | jnz .Lcnowrap | ||
| 328 | mov %rcx,$len | ||
| 329 | .Lcnowrap: | ||
| 330 | mov %r10b,($dat,$idx) | ||
| 331 | mov %r11b,($dat,$ido) | ||
| 332 | add \$1,$ido#b | ||
| 333 | jnc .Lc2ndloop | ||
| 334 | movl \$-1,256($dat) | ||
| 335 | |||
| 336 | .align 16 | ||
| 337 | .Lexit_key: | ||
| 338 | xor %eax,%eax | ||
| 339 | mov %eax,-8($dat) | ||
| 340 | mov %eax,-4($dat) | ||
| 341 | ret | ||
| 342 | .size RC4_set_key,.-RC4_set_key | ||
| 343 | |||
| 344 | .globl RC4_options | ||
| 345 | .type RC4_options,\@abi-omnipotent | ||
| 346 | .align 16 | ||
| 347 | RC4_options: | ||
| 348 | lea .Lopts(%rip),%rax | ||
| 349 | mov PIC_GOT(OPENSSL_ia32cap_P),%edx | ||
| 350 | bt \$20,%edx | ||
| 351 | jnc .Ldone | ||
| 352 | add \$12,%rax | ||
| 353 | bt \$30,%edx | ||
| 354 | jnc .Ldone | ||
| 355 | add \$13,%rax | ||
| 356 | .Ldone: | ||
| 357 | ret | ||
| 358 | .align 64 | ||
| 359 | .Lopts: | ||
| 360 | .asciz "rc4(8x,int)" | ||
| 361 | .asciz "rc4(8x,char)" | ||
| 362 | .asciz "rc4(1x,char)" | ||
| 363 | .asciz "RC4 for x86_64, CRYPTOGAMS by <appro\@openssl.org>" | ||
| 364 | .align 64 | ||
| 365 | .size RC4_options,.-RC4_options | ||
| 366 | ___ | ||
| 367 | |||
| 368 | # EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame, | ||
| 369 | # CONTEXT *context,DISPATCHER_CONTEXT *disp) | ||
| 370 | if ($win64) { | ||
| 371 | $rec="%rcx"; | ||
| 372 | $frame="%rdx"; | ||
| 373 | $context="%r8"; | ||
| 374 | $disp="%r9"; | ||
| 375 | |||
| 376 | $code.=<<___; | ||
| 377 | .extern __imp_RtlVirtualUnwind | ||
| 378 | .type stream_se_handler,\@abi-omnipotent | ||
| 379 | .align 16 | ||
| 380 | stream_se_handler: | ||
| 381 | push %rsi | ||
| 382 | push %rdi | ||
| 383 | push %rbx | ||
| 384 | push %rbp | ||
| 385 | push %r12 | ||
| 386 | push %r13 | ||
| 387 | push %r14 | ||
| 388 | push %r15 | ||
| 389 | pushfq | ||
| 390 | sub \$64,%rsp | ||
| 391 | |||
| 392 | mov 120($context),%rax # pull context->Rax | ||
| 393 | mov 248($context),%rbx # pull context->Rip | ||
| 394 | |||
| 395 | lea .Lprologue(%rip),%r10 | ||
| 396 | cmp %r10,%rbx # context->Rip<prologue label | ||
| 397 | jb .Lin_prologue | ||
| 398 | |||
| 399 | mov 152($context),%rax # pull context->Rsp | ||
| 400 | |||
| 401 | lea .Lepilogue(%rip),%r10 | ||
| 402 | cmp %r10,%rbx # context->Rip>=epilogue label | ||
| 403 | jae .Lin_prologue | ||
| 404 | |||
| 405 | lea 24(%rax),%rax | ||
| 406 | |||
| 407 | mov -8(%rax),%rbx | ||
| 408 | mov -16(%rax),%r12 | ||
| 409 | mov -24(%rax),%r13 | ||
| 410 | mov %rbx,144($context) # restore context->Rbx | ||
| 411 | mov %r12,216($context) # restore context->R12 | ||
| 412 | mov %r13,224($context) # restore context->R13 | ||
| 413 | |||
| 414 | .Lin_prologue: | ||
| 415 | mov 8(%rax),%rdi | ||
| 416 | mov 16(%rax),%rsi | ||
| 417 | mov %rax,152($context) # restore context->Rsp | ||
| 418 | mov %rsi,168($context) # restore context->Rsi | ||
| 419 | mov %rdi,176($context) # restore context->Rdi | ||
| 420 | |||
| 421 | jmp .Lcommon_seh_exit | ||
| 422 | .size stream_se_handler,.-stream_se_handler | ||
| 423 | |||
| 424 | .type key_se_handler,\@abi-omnipotent | ||
| 425 | .align 16 | ||
| 426 | key_se_handler: | ||
| 427 | push %rsi | ||
| 428 | push %rdi | ||
| 429 | push %rbx | ||
| 430 | push %rbp | ||
| 431 | push %r12 | ||
| 432 | push %r13 | ||
| 433 | push %r14 | ||
| 434 | push %r15 | ||
| 435 | pushfq | ||
| 436 | sub \$64,%rsp | ||
| 437 | |||
| 438 | mov 152($context),%rax # pull context->Rsp | ||
| 439 | mov 8(%rax),%rdi | ||
| 440 | mov 16(%rax),%rsi | ||
| 441 | mov %rsi,168($context) # restore context->Rsi | ||
| 442 | mov %rdi,176($context) # restore context->Rdi | ||
| 443 | |||
| 444 | .Lcommon_seh_exit: | ||
| 445 | |||
| 446 | mov 40($disp),%rdi # disp->ContextRecord | ||
| 447 | mov $context,%rsi # context | ||
| 448 | mov \$154,%ecx # sizeof(CONTEXT) | ||
| 449 | .long 0xa548f3fc # cld; rep movsq | ||
| 450 | |||
| 451 | mov $disp,%rsi | ||
| 452 | xor %rcx,%rcx # arg1, UNW_FLAG_NHANDLER | ||
| 453 | mov 8(%rsi),%rdx # arg2, disp->ImageBase | ||
| 454 | mov 0(%rsi),%r8 # arg3, disp->ControlPc | ||
| 455 | mov 16(%rsi),%r9 # arg4, disp->FunctionEntry | ||
| 456 | mov 40(%rsi),%r10 # disp->ContextRecord | ||
| 457 | lea 56(%rsi),%r11 # &disp->HandlerData | ||
| 458 | lea 24(%rsi),%r12 # &disp->EstablisherFrame | ||
| 459 | mov %r10,32(%rsp) # arg5 | ||
| 460 | mov %r11,40(%rsp) # arg6 | ||
| 461 | mov %r12,48(%rsp) # arg7 | ||
| 462 | mov %rcx,56(%rsp) # arg8, (NULL) | ||
| 463 | call *__imp_RtlVirtualUnwind(%rip) | ||
| 464 | |||
| 465 | mov \$1,%eax # ExceptionContinueSearch | ||
| 466 | add \$64,%rsp | ||
| 467 | popfq | ||
| 468 | pop %r15 | ||
| 469 | pop %r14 | ||
| 470 | pop %r13 | ||
| 471 | pop %r12 | ||
| 472 | pop %rbp | ||
| 473 | pop %rbx | ||
| 474 | pop %rdi | ||
| 475 | pop %rsi | ||
| 476 | ret | ||
| 477 | .size key_se_handler,.-key_se_handler | ||
| 478 | |||
| 479 | .section .pdata | ||
| 480 | .align 4 | ||
| 481 | .rva .LSEH_begin_RC4 | ||
| 482 | .rva .LSEH_end_RC4 | ||
| 483 | .rva .LSEH_info_RC4 | ||
| 484 | |||
| 485 | .rva .LSEH_begin_RC4_set_key | ||
| 486 | .rva .LSEH_end_RC4_set_key | ||
| 487 | .rva .LSEH_info_RC4_set_key | ||
| 488 | |||
| 489 | .section .xdata | ||
| 490 | .align 8 | ||
| 491 | .LSEH_info_RC4: | ||
| 492 | .byte 9,0,0,0 | ||
| 493 | .rva stream_se_handler | ||
| 494 | .LSEH_info_RC4_set_key: | ||
| 495 | .byte 9,0,0,0 | ||
| 496 | .rva key_se_handler | ||
| 497 | ___ | ||
| 498 | } | ||
| 499 | |||
| 500 | $code =~ s/#([bwd])/$1/gm; | ||
| 501 | |||
| 502 | print $code; | ||
| 503 | |||
| 504 | close STDOUT; | ||
