diff options
| author | markus <> | 2013-02-14 15:11:44 +0000 |
|---|---|---|
| committer | markus <> | 2013-02-14 15:11:44 +0000 |
| commit | 4383d44ca79eba8836d9f92c612c44ba8aeb87bd (patch) | |
| tree | cd2035e8f8ac3d4ade1ee779dcaabbe671c2003a /src/lib/libssl/s3_cbc.c | |
| parent | 4fd69672e5f9867343486cefcdfdd970465430d6 (diff) | |
| download | openbsd-4383d44ca79eba8836d9f92c612c44ba8aeb87bd.tar.gz openbsd-4383d44ca79eba8836d9f92c612c44ba8aeb87bd.tar.bz2 openbsd-4383d44ca79eba8836d9f92c612c44ba8aeb87bd.zip | |
cherry pick bugfixes for http://www.openssl.org/news/secadv_20130205.txt
from the openssl git (changes between openssl 1.0.1c and 1.0.1d).
ok djm@
Diffstat (limited to 'src/lib/libssl/s3_cbc.c')
| -rw-r--r-- | src/lib/libssl/s3_cbc.c | 790 |
1 files changed, 790 insertions, 0 deletions
diff --git a/src/lib/libssl/s3_cbc.c b/src/lib/libssl/s3_cbc.c new file mode 100644 index 0000000000..443a31e746 --- /dev/null +++ b/src/lib/libssl/s3_cbc.c | |||
| @@ -0,0 +1,790 @@ | |||
| 1 | /* ssl/s3_cbc.c */ | ||
| 2 | /* ==================================================================== | ||
| 3 | * Copyright (c) 2012 The OpenSSL Project. All rights reserved. | ||
| 4 | * | ||
| 5 | * Redistribution and use in source and binary forms, with or without | ||
| 6 | * modification, are permitted provided that the following conditions | ||
| 7 | * are met: | ||
| 8 | * | ||
| 9 | * 1. Redistributions of source code must retain the above copyright | ||
| 10 | * notice, this list of conditions and the following disclaimer. | ||
| 11 | * | ||
| 12 | * 2. Redistributions in binary form must reproduce the above copyright | ||
| 13 | * notice, this list of conditions and the following disclaimer in | ||
| 14 | * the documentation and/or other materials provided with the | ||
| 15 | * distribution. | ||
| 16 | * | ||
| 17 | * 3. All advertising materials mentioning features or use of this | ||
| 18 | * software must display the following acknowledgment: | ||
| 19 | * "This product includes software developed by the OpenSSL Project | ||
| 20 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | ||
| 21 | * | ||
| 22 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
| 23 | * endorse or promote products derived from this software without | ||
| 24 | * prior written permission. For written permission, please contact | ||
| 25 | * openssl-core@openssl.org. | ||
| 26 | * | ||
| 27 | * 5. Products derived from this software may not be called "OpenSSL" | ||
| 28 | * nor may "OpenSSL" appear in their names without prior written | ||
| 29 | * permission of the OpenSSL Project. | ||
| 30 | * | ||
| 31 | * 6. Redistributions of any form whatsoever must retain the following | ||
| 32 | * acknowledgment: | ||
| 33 | * "This product includes software developed by the OpenSSL Project | ||
| 34 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" | ||
| 35 | * | ||
| 36 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
| 37 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
| 38 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
| 39 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
| 40 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
| 41 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
| 42 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
| 43 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
| 44 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
| 45 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
| 46 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
| 47 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
| 48 | * ==================================================================== | ||
| 49 | * | ||
| 50 | * This product includes cryptographic software written by Eric Young | ||
| 51 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
| 52 | * Hudson (tjh@cryptsoft.com). | ||
| 53 | * | ||
| 54 | */ | ||
| 55 | |||
| 56 | #include "ssl_locl.h" | ||
| 57 | |||
| 58 | #include <openssl/md5.h> | ||
| 59 | #include <openssl/sha.h> | ||
| 60 | |||
| 61 | /* MAX_HASH_BIT_COUNT_BYTES is the maximum number of bytes in the hash's length | ||
| 62 | * field. (SHA-384/512 have 128-bit length.) */ | ||
| 63 | #define MAX_HASH_BIT_COUNT_BYTES 16 | ||
| 64 | |||
| 65 | /* MAX_HASH_BLOCK_SIZE is the maximum hash block size that we'll support. | ||
| 66 | * Currently SHA-384/512 has a 128-byte block size and that's the largest | ||
| 67 | * supported by TLS.) */ | ||
| 68 | #define MAX_HASH_BLOCK_SIZE 128 | ||
| 69 | |||
| 70 | /* Some utility functions are needed: | ||
| 71 | * | ||
| 72 | * These macros return the given value with the MSB copied to all the other | ||
| 73 | * bits. They use the fact that arithmetic shift shifts-in the sign bit. | ||
| 74 | * However, this is not ensured by the C standard so you may need to replace | ||
| 75 | * them with something else on odd CPUs. */ | ||
| 76 | #define DUPLICATE_MSB_TO_ALL(x) ( (unsigned)( (int)(x) >> (sizeof(int)*8-1) ) ) | ||
| 77 | #define DUPLICATE_MSB_TO_ALL_8(x) ((unsigned char)(DUPLICATE_MSB_TO_ALL(x))) | ||
| 78 | |||
| 79 | /* constant_time_lt returns 0xff if a<b and 0x00 otherwise. */ | ||
| 80 | static unsigned constant_time_lt(unsigned a, unsigned b) | ||
| 81 | { | ||
| 82 | a -= b; | ||
| 83 | return DUPLICATE_MSB_TO_ALL(a); | ||
| 84 | } | ||
| 85 | |||
| 86 | /* constant_time_ge returns 0xff if a>=b and 0x00 otherwise. */ | ||
| 87 | static unsigned constant_time_ge(unsigned a, unsigned b) | ||
| 88 | { | ||
| 89 | a -= b; | ||
| 90 | return DUPLICATE_MSB_TO_ALL(~a); | ||
| 91 | } | ||
| 92 | |||
| 93 | /* constant_time_eq_8 returns 0xff if a==b and 0x00 otherwise. */ | ||
| 94 | static unsigned char constant_time_eq_8(unsigned a, unsigned b) | ||
| 95 | { | ||
| 96 | unsigned c = a ^ b; | ||
| 97 | c--; | ||
| 98 | return DUPLICATE_MSB_TO_ALL_8(c); | ||
| 99 | } | ||
| 100 | |||
| 101 | /* ssl3_cbc_remove_padding removes padding from the decrypted, SSLv3, CBC | ||
| 102 | * record in |rec| by updating |rec->length| in constant time. | ||
| 103 | * | ||
| 104 | * block_size: the block size of the cipher used to encrypt the record. | ||
| 105 | * returns: | ||
| 106 | * 0: (in non-constant time) if the record is publicly invalid. | ||
| 107 | * 1: if the padding was valid | ||
| 108 | * -1: otherwise. */ | ||
| 109 | int ssl3_cbc_remove_padding(const SSL* s, | ||
| 110 | SSL3_RECORD *rec, | ||
| 111 | unsigned block_size, | ||
| 112 | unsigned mac_size) | ||
| 113 | { | ||
| 114 | unsigned padding_length, good; | ||
| 115 | const unsigned overhead = 1 /* padding length byte */ + mac_size; | ||
| 116 | |||
| 117 | /* These lengths are all public so we can test them in non-constant | ||
| 118 | * time. */ | ||
| 119 | if (overhead > rec->length) | ||
| 120 | return 0; | ||
| 121 | |||
| 122 | padding_length = rec->data[rec->length-1]; | ||
| 123 | good = constant_time_ge(rec->length, padding_length+overhead); | ||
| 124 | /* SSLv3 requires that the padding is minimal. */ | ||
| 125 | good &= constant_time_ge(block_size, padding_length+1); | ||
| 126 | padding_length = good & (padding_length+1); | ||
| 127 | rec->length -= padding_length; | ||
| 128 | rec->type |= padding_length<<8; /* kludge: pass padding length */ | ||
| 129 | return (int)((good & 1) | (~good & -1)); | ||
| 130 | } | ||
| 131 | |||
| 132 | /* tls1_cbc_remove_padding removes the CBC padding from the decrypted, TLS, CBC | ||
| 133 | * record in |rec| in constant time and returns 1 if the padding is valid and | ||
| 134 | * -1 otherwise. It also removes any explicit IV from the start of the record | ||
| 135 | * without leaking any timing about whether there was enough space after the | ||
| 136 | * padding was removed. | ||
| 137 | * | ||
| 138 | * block_size: the block size of the cipher used to encrypt the record. | ||
| 139 | * returns: | ||
| 140 | * 0: (in non-constant time) if the record is publicly invalid. | ||
| 141 | * 1: if the padding was valid | ||
| 142 | * -1: otherwise. */ | ||
| 143 | int tls1_cbc_remove_padding(const SSL* s, | ||
| 144 | SSL3_RECORD *rec, | ||
| 145 | unsigned block_size, | ||
| 146 | unsigned mac_size) | ||
| 147 | { | ||
| 148 | unsigned padding_length, good, to_check, i; | ||
| 149 | const unsigned overhead = 1 /* padding length byte */ + mac_size; | ||
| 150 | /* Check if version requires explicit IV */ | ||
| 151 | if (s->version >= TLS1_1_VERSION || s->version == DTLS1_BAD_VER) | ||
| 152 | { | ||
| 153 | /* These lengths are all public so we can test them in | ||
| 154 | * non-constant time. | ||
| 155 | */ | ||
| 156 | if (overhead + block_size > rec->length) | ||
| 157 | return 0; | ||
| 158 | /* We can now safely skip explicit IV */ | ||
| 159 | rec->data += block_size; | ||
| 160 | rec->input += block_size; | ||
| 161 | rec->length -= block_size; | ||
| 162 | } | ||
| 163 | else if (overhead > rec->length) | ||
| 164 | return 0; | ||
| 165 | |||
| 166 | padding_length = rec->data[rec->length-1]; | ||
| 167 | |||
| 168 | /* NB: if compression is in operation the first packet may not be of | ||
| 169 | * even length so the padding bug check cannot be performed. This bug | ||
| 170 | * workaround has been around since SSLeay so hopefully it is either | ||
| 171 | * fixed now or no buggy implementation supports compression [steve] | ||
| 172 | */ | ||
| 173 | if ( (s->options&SSL_OP_TLS_BLOCK_PADDING_BUG) && !s->expand) | ||
| 174 | { | ||
| 175 | /* First packet is even in size, so check */ | ||
| 176 | if ((memcmp(s->s3->read_sequence, "\0\0\0\0\0\0\0\0",8) == 0) && | ||
| 177 | !(padding_length & 1)) | ||
| 178 | { | ||
| 179 | s->s3->flags|=TLS1_FLAGS_TLS_PADDING_BUG; | ||
| 180 | } | ||
| 181 | if ((s->s3->flags & TLS1_FLAGS_TLS_PADDING_BUG) && | ||
| 182 | padding_length > 0) | ||
| 183 | { | ||
| 184 | padding_length--; | ||
| 185 | } | ||
| 186 | } | ||
| 187 | |||
| 188 | if (EVP_CIPHER_flags(s->enc_read_ctx->cipher)&EVP_CIPH_FLAG_AEAD_CIPHER) | ||
| 189 | { | ||
| 190 | /* padding is already verified */ | ||
| 191 | rec->length -= padding_length + 1; | ||
| 192 | return 1; | ||
| 193 | } | ||
| 194 | |||
| 195 | good = constant_time_ge(rec->length, overhead+padding_length); | ||
| 196 | /* The padding consists of a length byte at the end of the record and | ||
| 197 | * then that many bytes of padding, all with the same value as the | ||
| 198 | * length byte. Thus, with the length byte included, there are i+1 | ||
| 199 | * bytes of padding. | ||
| 200 | * | ||
| 201 | * We can't check just |padding_length+1| bytes because that leaks | ||
| 202 | * decrypted information. Therefore we always have to check the maximum | ||
| 203 | * amount of padding possible. (Again, the length of the record is | ||
| 204 | * public information so we can use it.) */ | ||
| 205 | to_check = 255; /* maximum amount of padding. */ | ||
| 206 | if (to_check > rec->length-1) | ||
| 207 | to_check = rec->length-1; | ||
| 208 | |||
| 209 | for (i = 0; i < to_check; i++) | ||
| 210 | { | ||
| 211 | unsigned char mask = constant_time_ge(padding_length, i); | ||
| 212 | unsigned char b = rec->data[rec->length-1-i]; | ||
| 213 | /* The final |padding_length+1| bytes should all have the value | ||
| 214 | * |padding_length|. Therefore the XOR should be zero. */ | ||
| 215 | good &= ~(mask&(padding_length ^ b)); | ||
| 216 | } | ||
| 217 | |||
| 218 | /* If any of the final |padding_length+1| bytes had the wrong value, | ||
| 219 | * one or more of the lower eight bits of |good| will be cleared. We | ||
| 220 | * AND the bottom 8 bits together and duplicate the result to all the | ||
| 221 | * bits. */ | ||
| 222 | good &= good >> 4; | ||
| 223 | good &= good >> 2; | ||
| 224 | good &= good >> 1; | ||
| 225 | good <<= sizeof(good)*8-1; | ||
| 226 | good = DUPLICATE_MSB_TO_ALL(good); | ||
| 227 | |||
| 228 | padding_length = good & (padding_length+1); | ||
| 229 | rec->length -= padding_length; | ||
| 230 | rec->type |= padding_length<<8; /* kludge: pass padding length */ | ||
| 231 | |||
| 232 | return (int)((good & 1) | (~good & -1)); | ||
| 233 | } | ||
| 234 | |||
| 235 | /* ssl3_cbc_copy_mac copies |md_size| bytes from the end of |rec| to |out| in | ||
| 236 | * constant time (independent of the concrete value of rec->length, which may | ||
| 237 | * vary within a 256-byte window). | ||
| 238 | * | ||
| 239 | * ssl3_cbc_remove_padding or tls1_cbc_remove_padding must be called prior to | ||
| 240 | * this function. | ||
| 241 | * | ||
| 242 | * On entry: | ||
| 243 | * rec->orig_len >= md_size | ||
| 244 | * md_size <= EVP_MAX_MD_SIZE | ||
| 245 | * | ||
| 246 | * If CBC_MAC_ROTATE_IN_PLACE is defined then the rotation is performed with | ||
| 247 | * variable accesses in a 64-byte-aligned buffer. Assuming that this fits into | ||
| 248 | * a single or pair of cache-lines, then the variable memory accesses don't | ||
| 249 | * actually affect the timing. CPUs with smaller cache-lines [if any] are | ||
| 250 | * not multi-core and are not considered vulnerable to cache-timing attacks. | ||
| 251 | */ | ||
| 252 | #define CBC_MAC_ROTATE_IN_PLACE | ||
| 253 | |||
| 254 | void ssl3_cbc_copy_mac(unsigned char* out, | ||
| 255 | const SSL3_RECORD *rec, | ||
| 256 | unsigned md_size,unsigned orig_len) | ||
| 257 | { | ||
| 258 | #if defined(CBC_MAC_ROTATE_IN_PLACE) | ||
| 259 | unsigned char rotated_mac_buf[64+EVP_MAX_MD_SIZE]; | ||
| 260 | unsigned char *rotated_mac; | ||
| 261 | #else | ||
| 262 | unsigned char rotated_mac[EVP_MAX_MD_SIZE]; | ||
| 263 | #endif | ||
| 264 | |||
| 265 | /* mac_end is the index of |rec->data| just after the end of the MAC. */ | ||
| 266 | unsigned mac_end = rec->length; | ||
| 267 | unsigned mac_start = mac_end - md_size; | ||
| 268 | /* scan_start contains the number of bytes that we can ignore because | ||
| 269 | * the MAC's position can only vary by 255 bytes. */ | ||
| 270 | unsigned scan_start = 0; | ||
| 271 | unsigned i, j; | ||
| 272 | unsigned div_spoiler; | ||
| 273 | unsigned rotate_offset; | ||
| 274 | |||
| 275 | OPENSSL_assert(orig_len >= md_size); | ||
| 276 | OPENSSL_assert(md_size <= EVP_MAX_MD_SIZE); | ||
| 277 | |||
| 278 | #if defined(CBC_MAC_ROTATE_IN_PLACE) | ||
| 279 | rotated_mac = rotated_mac_buf + ((0-(size_t)rotated_mac_buf)&63); | ||
| 280 | #endif | ||
| 281 | |||
| 282 | /* This information is public so it's safe to branch based on it. */ | ||
| 283 | if (orig_len > md_size + 255 + 1) | ||
| 284 | scan_start = orig_len - (md_size + 255 + 1); | ||
| 285 | /* div_spoiler contains a multiple of md_size that is used to cause the | ||
| 286 | * modulo operation to be constant time. Without this, the time varies | ||
| 287 | * based on the amount of padding when running on Intel chips at least. | ||
| 288 | * | ||
| 289 | * The aim of right-shifting md_size is so that the compiler doesn't | ||
| 290 | * figure out that it can remove div_spoiler as that would require it | ||
| 291 | * to prove that md_size is always even, which I hope is beyond it. */ | ||
| 292 | div_spoiler = md_size >> 1; | ||
| 293 | div_spoiler <<= (sizeof(div_spoiler)-1)*8; | ||
| 294 | rotate_offset = (div_spoiler + mac_start - scan_start) % md_size; | ||
| 295 | |||
| 296 | memset(rotated_mac, 0, md_size); | ||
| 297 | for (i = scan_start, j = 0; i < orig_len; i++) | ||
| 298 | { | ||
| 299 | unsigned char mac_started = constant_time_ge(i, mac_start); | ||
| 300 | unsigned char mac_ended = constant_time_ge(i, mac_end); | ||
| 301 | unsigned char b = rec->data[i]; | ||
| 302 | rotated_mac[j++] |= b & mac_started & ~mac_ended; | ||
| 303 | j &= constant_time_lt(j,md_size); | ||
| 304 | } | ||
| 305 | |||
| 306 | /* Now rotate the MAC */ | ||
| 307 | #if defined(CBC_MAC_ROTATE_IN_PLACE) | ||
| 308 | j = 0; | ||
| 309 | for (i = 0; i < md_size; i++) | ||
| 310 | { | ||
| 311 | /* in case cache-line is 32 bytes, touch second line */ | ||
| 312 | ((volatile unsigned char *)rotated_mac)[rotate_offset^32]; | ||
| 313 | out[j++] = rotated_mac[rotate_offset++]; | ||
| 314 | rotate_offset &= constant_time_lt(rotate_offset,md_size); | ||
| 315 | } | ||
| 316 | #else | ||
| 317 | memset(out, 0, md_size); | ||
| 318 | rotate_offset = md_size - rotate_offset; | ||
| 319 | rotate_offset &= constant_time_lt(rotate_offset,md_size); | ||
| 320 | for (i = 0; i < md_size; i++) | ||
| 321 | { | ||
| 322 | for (j = 0; j < md_size; j++) | ||
| 323 | out[j] |= rotated_mac[i] & constant_time_eq_8(j, rotate_offset); | ||
| 324 | rotate_offset++; | ||
| 325 | rotate_offset &= constant_time_lt(rotate_offset,md_size); | ||
| 326 | } | ||
| 327 | #endif | ||
| 328 | } | ||
| 329 | |||
| 330 | /* u32toLE serialises an unsigned, 32-bit number (n) as four bytes at (p) in | ||
| 331 | * little-endian order. The value of p is advanced by four. */ | ||
| 332 | #define u32toLE(n, p) \ | ||
| 333 | (*((p)++)=(unsigned char)(n), \ | ||
| 334 | *((p)++)=(unsigned char)(n>>8), \ | ||
| 335 | *((p)++)=(unsigned char)(n>>16), \ | ||
| 336 | *((p)++)=(unsigned char)(n>>24)) | ||
| 337 | |||
| 338 | /* These functions serialize the state of a hash and thus perform the standard | ||
| 339 | * "final" operation without adding the padding and length that such a function | ||
| 340 | * typically does. */ | ||
| 341 | static void tls1_md5_final_raw(void* ctx, unsigned char *md_out) | ||
| 342 | { | ||
| 343 | MD5_CTX *md5 = ctx; | ||
| 344 | u32toLE(md5->A, md_out); | ||
| 345 | u32toLE(md5->B, md_out); | ||
| 346 | u32toLE(md5->C, md_out); | ||
| 347 | u32toLE(md5->D, md_out); | ||
| 348 | } | ||
| 349 | |||
| 350 | static void tls1_sha1_final_raw(void* ctx, unsigned char *md_out) | ||
| 351 | { | ||
| 352 | SHA_CTX *sha1 = ctx; | ||
| 353 | l2n(sha1->h0, md_out); | ||
| 354 | l2n(sha1->h1, md_out); | ||
| 355 | l2n(sha1->h2, md_out); | ||
| 356 | l2n(sha1->h3, md_out); | ||
| 357 | l2n(sha1->h4, md_out); | ||
| 358 | } | ||
| 359 | #define LARGEST_DIGEST_CTX SHA_CTX | ||
| 360 | |||
| 361 | #ifndef OPENSSL_NO_SHA256 | ||
| 362 | static void tls1_sha256_final_raw(void* ctx, unsigned char *md_out) | ||
| 363 | { | ||
| 364 | SHA256_CTX *sha256 = ctx; | ||
| 365 | unsigned i; | ||
| 366 | |||
| 367 | for (i = 0; i < 8; i++) | ||
| 368 | { | ||
| 369 | l2n(sha256->h[i], md_out); | ||
| 370 | } | ||
| 371 | } | ||
| 372 | #undef LARGEST_DIGEST_CTX | ||
| 373 | #define LARGEST_DIGEST_CTX SHA256_CTX | ||
| 374 | #endif | ||
| 375 | |||
| 376 | #ifndef OPENSSL_NO_SHA512 | ||
| 377 | static void tls1_sha512_final_raw(void* ctx, unsigned char *md_out) | ||
| 378 | { | ||
| 379 | SHA512_CTX *sha512 = ctx; | ||
| 380 | unsigned i; | ||
| 381 | |||
| 382 | for (i = 0; i < 8; i++) | ||
| 383 | { | ||
| 384 | l2n8(sha512->h[i], md_out); | ||
| 385 | } | ||
| 386 | } | ||
| 387 | #undef LARGEST_DIGEST_CTX | ||
| 388 | #define LARGEST_DIGEST_CTX SHA512_CTX | ||
| 389 | #endif | ||
| 390 | |||
| 391 | /* ssl3_cbc_record_digest_supported returns 1 iff |ctx| uses a hash function | ||
| 392 | * which ssl3_cbc_digest_record supports. */ | ||
| 393 | char ssl3_cbc_record_digest_supported(const EVP_MD_CTX *ctx) | ||
| 394 | { | ||
| 395 | #ifdef OPENSSL_FIPS | ||
| 396 | if (FIPS_mode()) | ||
| 397 | return 0; | ||
| 398 | #endif | ||
| 399 | switch (EVP_MD_CTX_type(ctx)) | ||
| 400 | { | ||
| 401 | case NID_md5: | ||
| 402 | case NID_sha1: | ||
| 403 | #ifndef OPENSSL_NO_SHA256 | ||
| 404 | case NID_sha224: | ||
| 405 | case NID_sha256: | ||
| 406 | #endif | ||
| 407 | #ifndef OPENSSL_NO_SHA512 | ||
| 408 | case NID_sha384: | ||
| 409 | case NID_sha512: | ||
| 410 | #endif | ||
| 411 | return 1; | ||
| 412 | default: | ||
| 413 | return 0; | ||
| 414 | } | ||
| 415 | } | ||
| 416 | |||
| 417 | /* ssl3_cbc_digest_record computes the MAC of a decrypted, padded SSLv3/TLS | ||
| 418 | * record. | ||
| 419 | * | ||
| 420 | * ctx: the EVP_MD_CTX from which we take the hash function. | ||
| 421 | * ssl3_cbc_record_digest_supported must return true for this EVP_MD_CTX. | ||
| 422 | * md_out: the digest output. At most EVP_MAX_MD_SIZE bytes will be written. | ||
| 423 | * md_out_size: if non-NULL, the number of output bytes is written here. | ||
| 424 | * header: the 13-byte, TLS record header. | ||
| 425 | * data: the record data itself, less any preceeding explicit IV. | ||
| 426 | * data_plus_mac_size: the secret, reported length of the data and MAC | ||
| 427 | * once the padding has been removed. | ||
| 428 | * data_plus_mac_plus_padding_size: the public length of the whole | ||
| 429 | * record, including padding. | ||
| 430 | * is_sslv3: non-zero if we are to use SSLv3. Otherwise, TLS. | ||
| 431 | * | ||
| 432 | * On entry: by virtue of having been through one of the remove_padding | ||
| 433 | * functions, above, we know that data_plus_mac_size is large enough to contain | ||
| 434 | * a padding byte and MAC. (If the padding was invalid, it might contain the | ||
| 435 | * padding too. ) */ | ||
| 436 | void ssl3_cbc_digest_record( | ||
| 437 | const EVP_MD_CTX *ctx, | ||
| 438 | unsigned char* md_out, | ||
| 439 | size_t* md_out_size, | ||
| 440 | const unsigned char header[13], | ||
| 441 | const unsigned char *data, | ||
| 442 | size_t data_plus_mac_size, | ||
| 443 | size_t data_plus_mac_plus_padding_size, | ||
| 444 | const unsigned char *mac_secret, | ||
| 445 | unsigned mac_secret_length, | ||
| 446 | char is_sslv3) | ||
| 447 | { | ||
| 448 | union { double align; | ||
| 449 | unsigned char c[sizeof(LARGEST_DIGEST_CTX)]; } md_state; | ||
| 450 | void (*md_final_raw)(void *ctx, unsigned char *md_out); | ||
| 451 | void (*md_transform)(void *ctx, const unsigned char *block); | ||
| 452 | unsigned md_size, md_block_size = 64; | ||
| 453 | unsigned sslv3_pad_length = 40, header_length, variance_blocks, | ||
| 454 | len, max_mac_bytes, num_blocks, | ||
| 455 | num_starting_blocks, k, mac_end_offset, c, index_a, index_b; | ||
| 456 | unsigned int bits; /* at most 18 bits */ | ||
| 457 | unsigned char length_bytes[MAX_HASH_BIT_COUNT_BYTES]; | ||
| 458 | /* hmac_pad is the masked HMAC key. */ | ||
| 459 | unsigned char hmac_pad[MAX_HASH_BLOCK_SIZE]; | ||
| 460 | unsigned char first_block[MAX_HASH_BLOCK_SIZE]; | ||
| 461 | unsigned char mac_out[EVP_MAX_MD_SIZE]; | ||
| 462 | unsigned i, j, md_out_size_u; | ||
| 463 | EVP_MD_CTX md_ctx; | ||
| 464 | /* mdLengthSize is the number of bytes in the length field that terminates | ||
| 465 | * the hash. */ | ||
| 466 | unsigned md_length_size = 8; | ||
| 467 | char length_is_big_endian = 1; | ||
| 468 | |||
| 469 | /* This is a, hopefully redundant, check that allows us to forget about | ||
| 470 | * many possible overflows later in this function. */ | ||
| 471 | OPENSSL_assert(data_plus_mac_plus_padding_size < 1024*1024); | ||
| 472 | |||
| 473 | switch (EVP_MD_CTX_type(ctx)) | ||
| 474 | { | ||
| 475 | case NID_md5: | ||
| 476 | MD5_Init((MD5_CTX*)md_state.c); | ||
| 477 | md_final_raw = tls1_md5_final_raw; | ||
| 478 | md_transform = (void(*)(void *ctx, const unsigned char *block)) MD5_Transform; | ||
| 479 | md_size = 16; | ||
| 480 | sslv3_pad_length = 48; | ||
| 481 | length_is_big_endian = 0; | ||
| 482 | break; | ||
| 483 | case NID_sha1: | ||
| 484 | SHA1_Init((SHA_CTX*)md_state.c); | ||
| 485 | md_final_raw = tls1_sha1_final_raw; | ||
| 486 | md_transform = (void(*)(void *ctx, const unsigned char *block)) SHA1_Transform; | ||
| 487 | md_size = 20; | ||
| 488 | break; | ||
| 489 | #ifndef OPENSSL_NO_SHA256 | ||
| 490 | case NID_sha224: | ||
| 491 | SHA224_Init((SHA256_CTX*)md_state.c); | ||
| 492 | md_final_raw = tls1_sha256_final_raw; | ||
| 493 | md_transform = (void(*)(void *ctx, const unsigned char *block)) SHA256_Transform; | ||
| 494 | md_size = 224/8; | ||
| 495 | break; | ||
| 496 | case NID_sha256: | ||
| 497 | SHA256_Init((SHA256_CTX*)md_state.c); | ||
| 498 | md_final_raw = tls1_sha256_final_raw; | ||
| 499 | md_transform = (void(*)(void *ctx, const unsigned char *block)) SHA256_Transform; | ||
| 500 | md_size = 32; | ||
| 501 | break; | ||
| 502 | #endif | ||
| 503 | #ifndef OPENSSL_NO_SHA512 | ||
| 504 | case NID_sha384: | ||
| 505 | SHA384_Init((SHA512_CTX*)md_state.c); | ||
| 506 | md_final_raw = tls1_sha512_final_raw; | ||
| 507 | md_transform = (void(*)(void *ctx, const unsigned char *block)) SHA512_Transform; | ||
| 508 | md_size = 384/8; | ||
| 509 | md_block_size = 128; | ||
| 510 | md_length_size = 16; | ||
| 511 | break; | ||
| 512 | case NID_sha512: | ||
| 513 | SHA512_Init((SHA512_CTX*)md_state.c); | ||
| 514 | md_final_raw = tls1_sha512_final_raw; | ||
| 515 | md_transform = (void(*)(void *ctx, const unsigned char *block)) SHA512_Transform; | ||
| 516 | md_size = 64; | ||
| 517 | md_block_size = 128; | ||
| 518 | md_length_size = 16; | ||
| 519 | break; | ||
| 520 | #endif | ||
| 521 | default: | ||
| 522 | /* ssl3_cbc_record_digest_supported should have been | ||
| 523 | * called first to check that the hash function is | ||
| 524 | * supported. */ | ||
| 525 | OPENSSL_assert(0); | ||
| 526 | if (md_out_size) | ||
| 527 | *md_out_size = -1; | ||
| 528 | return; | ||
| 529 | } | ||
| 530 | |||
| 531 | OPENSSL_assert(md_length_size <= MAX_HASH_BIT_COUNT_BYTES); | ||
| 532 | OPENSSL_assert(md_block_size <= MAX_HASH_BLOCK_SIZE); | ||
| 533 | OPENSSL_assert(md_size <= EVP_MAX_MD_SIZE); | ||
| 534 | |||
| 535 | header_length = 13; | ||
| 536 | if (is_sslv3) | ||
| 537 | { | ||
| 538 | header_length = | ||
| 539 | mac_secret_length + | ||
| 540 | sslv3_pad_length + | ||
| 541 | 8 /* sequence number */ + | ||
| 542 | 1 /* record type */ + | ||
| 543 | 2 /* record length */; | ||
| 544 | } | ||
| 545 | |||
| 546 | /* variance_blocks is the number of blocks of the hash that we have to | ||
| 547 | * calculate in constant time because they could be altered by the | ||
| 548 | * padding value. | ||
| 549 | * | ||
| 550 | * In SSLv3, the padding must be minimal so the end of the plaintext | ||
| 551 | * varies by, at most, 15+20 = 35 bytes. (We conservatively assume that | ||
| 552 | * the MAC size varies from 0..20 bytes.) In case the 9 bytes of hash | ||
| 553 | * termination (0x80 + 64-bit length) don't fit in the final block, we | ||
| 554 | * say that the final two blocks can vary based on the padding. | ||
| 555 | * | ||
| 556 | * TLSv1 has MACs up to 48 bytes long (SHA-384) and the padding is not | ||
| 557 | * required to be minimal. Therefore we say that the final six blocks | ||
| 558 | * can vary based on the padding. | ||
| 559 | * | ||
| 560 | * Later in the function, if the message is short and there obviously | ||
| 561 | * cannot be this many blocks then variance_blocks can be reduced. */ | ||
| 562 | variance_blocks = is_sslv3 ? 2 : 6; | ||
| 563 | /* From now on we're dealing with the MAC, which conceptually has 13 | ||
| 564 | * bytes of `header' before the start of the data (TLS) or 71/75 bytes | ||
| 565 | * (SSLv3) */ | ||
| 566 | len = data_plus_mac_plus_padding_size + header_length; | ||
| 567 | /* max_mac_bytes contains the maximum bytes of bytes in the MAC, including | ||
| 568 | * |header|, assuming that there's no padding. */ | ||
| 569 | max_mac_bytes = len - md_size - 1; | ||
| 570 | /* num_blocks is the maximum number of hash blocks. */ | ||
| 571 | num_blocks = (max_mac_bytes + 1 + md_length_size + md_block_size - 1) / md_block_size; | ||
| 572 | /* In order to calculate the MAC in constant time we have to handle | ||
| 573 | * the final blocks specially because the padding value could cause the | ||
| 574 | * end to appear somewhere in the final |variance_blocks| blocks and we | ||
| 575 | * can't leak where. However, |num_starting_blocks| worth of data can | ||
| 576 | * be hashed right away because no padding value can affect whether | ||
| 577 | * they are plaintext. */ | ||
| 578 | num_starting_blocks = 0; | ||
| 579 | /* k is the starting byte offset into the conceptual header||data where | ||
| 580 | * we start processing. */ | ||
| 581 | k = 0; | ||
| 582 | /* mac_end_offset is the index just past the end of the data to be | ||
| 583 | * MACed. */ | ||
| 584 | mac_end_offset = data_plus_mac_size + header_length - md_size; | ||
| 585 | /* c is the index of the 0x80 byte in the final hash block that | ||
| 586 | * contains application data. */ | ||
| 587 | c = mac_end_offset % md_block_size; | ||
| 588 | /* index_a is the hash block number that contains the 0x80 terminating | ||
| 589 | * value. */ | ||
| 590 | index_a = mac_end_offset / md_block_size; | ||
| 591 | /* index_b is the hash block number that contains the 64-bit hash | ||
| 592 | * length, in bits. */ | ||
| 593 | index_b = (mac_end_offset + md_length_size) / md_block_size; | ||
| 594 | /* bits is the hash-length in bits. It includes the additional hash | ||
| 595 | * block for the masked HMAC key, or whole of |header| in the case of | ||
| 596 | * SSLv3. */ | ||
| 597 | |||
| 598 | /* For SSLv3, if we're going to have any starting blocks then we need | ||
| 599 | * at least two because the header is larger than a single block. */ | ||
| 600 | if (num_blocks > variance_blocks + (is_sslv3 ? 1 : 0)) | ||
| 601 | { | ||
| 602 | num_starting_blocks = num_blocks - variance_blocks; | ||
| 603 | k = md_block_size*num_starting_blocks; | ||
| 604 | } | ||
| 605 | |||
| 606 | bits = 8*mac_end_offset; | ||
| 607 | if (!is_sslv3) | ||
| 608 | { | ||
| 609 | /* Compute the initial HMAC block. For SSLv3, the padding and | ||
| 610 | * secret bytes are included in |header| because they take more | ||
| 611 | * than a single block. */ | ||
| 612 | bits += 8*md_block_size; | ||
| 613 | memset(hmac_pad, 0, md_block_size); | ||
| 614 | OPENSSL_assert(mac_secret_length <= sizeof(hmac_pad)); | ||
| 615 | memcpy(hmac_pad, mac_secret, mac_secret_length); | ||
| 616 | for (i = 0; i < md_block_size; i++) | ||
| 617 | hmac_pad[i] ^= 0x36; | ||
| 618 | |||
| 619 | md_transform(md_state.c, hmac_pad); | ||
| 620 | } | ||
| 621 | |||
| 622 | if (length_is_big_endian) | ||
| 623 | { | ||
| 624 | memset(length_bytes,0,md_length_size-4); | ||
| 625 | length_bytes[md_length_size-4] = (unsigned char)(bits>>24); | ||
| 626 | length_bytes[md_length_size-3] = (unsigned char)(bits>>16); | ||
| 627 | length_bytes[md_length_size-2] = (unsigned char)(bits>>8); | ||
| 628 | length_bytes[md_length_size-1] = (unsigned char)bits; | ||
| 629 | } | ||
| 630 | else | ||
| 631 | { | ||
| 632 | memset(length_bytes,0,md_length_size); | ||
| 633 | length_bytes[md_length_size-5] = (unsigned char)(bits>>24); | ||
| 634 | length_bytes[md_length_size-6] = (unsigned char)(bits>>16); | ||
| 635 | length_bytes[md_length_size-7] = (unsigned char)(bits>>8); | ||
| 636 | length_bytes[md_length_size-8] = (unsigned char)bits; | ||
| 637 | } | ||
| 638 | |||
| 639 | if (k > 0) | ||
| 640 | { | ||
| 641 | if (is_sslv3) | ||
| 642 | { | ||
| 643 | /* The SSLv3 header is larger than a single block. | ||
| 644 | * overhang is the number of bytes beyond a single | ||
| 645 | * block that the header consumes: either 7 bytes | ||
| 646 | * (SHA1) or 11 bytes (MD5). */ | ||
| 647 | unsigned overhang = header_length-md_block_size; | ||
| 648 | md_transform(md_state.c, header); | ||
| 649 | memcpy(first_block, header + md_block_size, overhang); | ||
| 650 | memcpy(first_block + overhang, data, md_block_size-overhang); | ||
| 651 | md_transform(md_state.c, first_block); | ||
| 652 | for (i = 1; i < k/md_block_size - 1; i++) | ||
| 653 | md_transform(md_state.c, data + md_block_size*i - overhang); | ||
| 654 | } | ||
| 655 | else | ||
| 656 | { | ||
| 657 | /* k is a multiple of md_block_size. */ | ||
| 658 | memcpy(first_block, header, 13); | ||
| 659 | memcpy(first_block+13, data, md_block_size-13); | ||
| 660 | md_transform(md_state.c, first_block); | ||
| 661 | for (i = 1; i < k/md_block_size; i++) | ||
| 662 | md_transform(md_state.c, data + md_block_size*i - 13); | ||
| 663 | } | ||
| 664 | } | ||
| 665 | |||
| 666 | memset(mac_out, 0, sizeof(mac_out)); | ||
| 667 | |||
| 668 | /* We now process the final hash blocks. For each block, we construct | ||
| 669 | * it in constant time. If the |i==index_a| then we'll include the 0x80 | ||
| 670 | * bytes and zero pad etc. For each block we selectively copy it, in | ||
| 671 | * constant time, to |mac_out|. */ | ||
| 672 | for (i = num_starting_blocks; i <= num_starting_blocks+variance_blocks; i++) | ||
| 673 | { | ||
| 674 | unsigned char block[MAX_HASH_BLOCK_SIZE]; | ||
| 675 | unsigned char is_block_a = constant_time_eq_8(i, index_a); | ||
| 676 | unsigned char is_block_b = constant_time_eq_8(i, index_b); | ||
| 677 | for (j = 0; j < md_block_size; j++) | ||
| 678 | { | ||
| 679 | unsigned char b = 0, is_past_c, is_past_cp1; | ||
| 680 | if (k < header_length) | ||
| 681 | b = header[k]; | ||
| 682 | else if (k < data_plus_mac_plus_padding_size + header_length) | ||
| 683 | b = data[k-header_length]; | ||
| 684 | k++; | ||
| 685 | |||
| 686 | is_past_c = is_block_a & constant_time_ge(j, c); | ||
| 687 | is_past_cp1 = is_block_a & constant_time_ge(j, c+1); | ||
| 688 | /* If this is the block containing the end of the | ||
| 689 | * application data, and we are at the offset for the | ||
| 690 | * 0x80 value, then overwrite b with 0x80. */ | ||
| 691 | b = (b&~is_past_c) | (0x80&is_past_c); | ||
| 692 | /* If this the the block containing the end of the | ||
| 693 | * application data and we're past the 0x80 value then | ||
| 694 | * just write zero. */ | ||
| 695 | b = b&~is_past_cp1; | ||
| 696 | /* If this is index_b (the final block), but not | ||
| 697 | * index_a (the end of the data), then the 64-bit | ||
| 698 | * length didn't fit into index_a and we're having to | ||
| 699 | * add an extra block of zeros. */ | ||
| 700 | b &= ~is_block_b | is_block_a; | ||
| 701 | |||
| 702 | /* The final bytes of one of the blocks contains the | ||
| 703 | * length. */ | ||
| 704 | if (j >= md_block_size - md_length_size) | ||
| 705 | { | ||
| 706 | /* If this is index_b, write a length byte. */ | ||
| 707 | b = (b&~is_block_b) | (is_block_b&length_bytes[j-(md_block_size-md_length_size)]); | ||
| 708 | } | ||
| 709 | block[j] = b; | ||
| 710 | } | ||
| 711 | |||
| 712 | md_transform(md_state.c, block); | ||
| 713 | md_final_raw(md_state.c, block); | ||
| 714 | /* If this is index_b, copy the hash value to |mac_out|. */ | ||
| 715 | for (j = 0; j < md_size; j++) | ||
| 716 | mac_out[j] |= block[j]&is_block_b; | ||
| 717 | } | ||
| 718 | |||
| 719 | EVP_MD_CTX_init(&md_ctx); | ||
| 720 | EVP_DigestInit_ex(&md_ctx, ctx->digest, NULL /* engine */); | ||
| 721 | if (is_sslv3) | ||
| 722 | { | ||
| 723 | /* We repurpose |hmac_pad| to contain the SSLv3 pad2 block. */ | ||
| 724 | memset(hmac_pad, 0x5c, sslv3_pad_length); | ||
| 725 | |||
| 726 | EVP_DigestUpdate(&md_ctx, mac_secret, mac_secret_length); | ||
| 727 | EVP_DigestUpdate(&md_ctx, hmac_pad, sslv3_pad_length); | ||
| 728 | EVP_DigestUpdate(&md_ctx, mac_out, md_size); | ||
| 729 | } | ||
| 730 | else | ||
| 731 | { | ||
| 732 | /* Complete the HMAC in the standard manner. */ | ||
| 733 | for (i = 0; i < md_block_size; i++) | ||
| 734 | hmac_pad[i] ^= 0x6a; | ||
| 735 | |||
| 736 | EVP_DigestUpdate(&md_ctx, hmac_pad, md_block_size); | ||
| 737 | EVP_DigestUpdate(&md_ctx, mac_out, md_size); | ||
| 738 | } | ||
| 739 | EVP_DigestFinal(&md_ctx, md_out, &md_out_size_u); | ||
| 740 | if (md_out_size) | ||
| 741 | *md_out_size = md_out_size_u; | ||
| 742 | EVP_MD_CTX_cleanup(&md_ctx); | ||
| 743 | } | ||
| 744 | |||
| 745 | #ifdef OPENSSL_FIPS | ||
| 746 | |||
| 747 | /* Due to the need to use EVP in FIPS mode we can't reimplement digests but | ||
| 748 | * we can ensure the number of blocks processed is equal for all cases | ||
| 749 | * by digesting additional data. | ||
| 750 | */ | ||
| 751 | |||
| 752 | void tls_fips_digest_extra( | ||
| 753 | const EVP_CIPHER_CTX *cipher_ctx, EVP_MD_CTX *mac_ctx, | ||
| 754 | const unsigned char *data, size_t data_len, size_t orig_len) | ||
| 755 | { | ||
| 756 | size_t block_size, digest_pad, blocks_data, blocks_orig; | ||
| 757 | if (EVP_CIPHER_CTX_mode(cipher_ctx) != EVP_CIPH_CBC_MODE) | ||
| 758 | return; | ||
| 759 | block_size = EVP_MD_CTX_block_size(mac_ctx); | ||
| 760 | /* We are in FIPS mode if we get this far so we know we have only SHA* | ||
| 761 | * digests and TLS to deal with. | ||
| 762 | * Minimum digest padding length is 17 for SHA384/SHA512 and 9 | ||
| 763 | * otherwise. | ||
| 764 | * Additional header is 13 bytes. To get the number of digest blocks | ||
| 765 | * processed round up the amount of data plus padding to the nearest | ||
| 766 | * block length. Block length is 128 for SHA384/SHA512 and 64 otherwise. | ||
| 767 | * So we have: | ||
| 768 | * blocks = (payload_len + digest_pad + 13 + block_size - 1)/block_size | ||
| 769 | * equivalently: | ||
| 770 | * blocks = (payload_len + digest_pad + 12)/block_size + 1 | ||
| 771 | * HMAC adds a constant overhead. | ||
| 772 | * We're ultimately only interested in differences so this becomes | ||
| 773 | * blocks = (payload_len + 29)/128 | ||
| 774 | * for SHA384/SHA512 and | ||
| 775 | * blocks = (payload_len + 21)/64 | ||
| 776 | * otherwise. | ||
| 777 | */ | ||
| 778 | digest_pad = block_size == 64 ? 21 : 29; | ||
| 779 | blocks_orig = (orig_len + digest_pad)/block_size; | ||
| 780 | blocks_data = (data_len + digest_pad)/block_size; | ||
| 781 | /* MAC enough blocks to make up the difference between the original | ||
| 782 | * and actual lengths plus one extra block to ensure this is never a | ||
| 783 | * no op. The "data" pointer should always have enough space to | ||
| 784 | * perform this operation as it is large enough for a maximum | ||
| 785 | * length TLS buffer. | ||
| 786 | */ | ||
| 787 | EVP_DigestSignUpdate(mac_ctx, data, | ||
| 788 | (blocks_orig - blocks_data + 1) * block_size); | ||
| 789 | } | ||
| 790 | #endif | ||
