diff options
Diffstat (limited to '')
| -rw-r--r-- | src/lib/libcrypto/bn/s2n_bignum.h | 845 | ||||
| -rw-r--r-- | src/lib/libcrypto/bn/s2n_bignum_internal.h | 17 |
2 files changed, 862 insertions, 0 deletions
diff --git a/src/lib/libcrypto/bn/s2n_bignum.h b/src/lib/libcrypto/bn/s2n_bignum.h new file mode 100644 index 0000000000..d0c1df66eb --- /dev/null +++ b/src/lib/libcrypto/bn/s2n_bignum.h | |||
| @@ -0,0 +1,845 @@ | |||
| 1 | // Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. | ||
| 2 | // SPDX-License-Identifier: Apache-2.0 OR ISC | ||
| 3 | |||
| 4 | // ---------------------------------------------------------------------------- | ||
| 5 | // C prototypes for s2n-bignum functions, so you can use them in C programs via | ||
| 6 | // | ||
| 7 | // #include "s2n-bignum.h" | ||
| 8 | // | ||
| 9 | // The functions are listed in alphabetical order with a brief description | ||
| 10 | // in comments for each one. For more detailed documentation see the comment | ||
| 11 | // banner at the top of the corresponding assembly (.S) file, and | ||
| 12 | // for the last word in what properties it satisfies see the spec in the | ||
| 13 | // formal proof (the .ml file in the architecture-specific directory). | ||
| 14 | // | ||
| 15 | // For some functions there are additional variants with names ending in | ||
| 16 | // "_alt". These have the same core mathematical functionality as their | ||
| 17 | // non-"alt" versions, but can be better suited to some microarchitectures: | ||
| 18 | // | ||
| 19 | // - On x86, the "_alt" forms avoid BMI and ADX instruction set | ||
| 20 | // extensions, so will run on any x86_64 machine, even older ones | ||
| 21 | // | ||
| 22 | // - On ARM, the "_alt" forms target machines with higher multiplier | ||
| 23 | // throughput, generally offering higher performance there. | ||
| 24 | // ---------------------------------------------------------------------------- | ||
| 25 | |||
| 26 | // Add, z := x + y | ||
| 27 | // Inputs x[m], y[n]; outputs function return (carry-out) and z[p] | ||
| 28 | extern uint64_t bignum_add (uint64_t p, uint64_t *z, uint64_t m, uint64_t *x, uint64_t n, uint64_t *y); | ||
| 29 | |||
| 30 | // Add modulo p_25519, z := (x + y) mod p_25519, assuming x and y reduced | ||
| 31 | // Inputs x[4], y[4]; output z[4] | ||
| 32 | extern void bignum_add_p25519 (uint64_t z[static 4], uint64_t x[static 4], uint64_t y[static 4]); | ||
| 33 | |||
| 34 | // Add modulo p_256, z := (x + y) mod p_256, assuming x and y reduced | ||
| 35 | // Inputs x[4], y[4]; output z[4] | ||
| 36 | extern void bignum_add_p256 (uint64_t z[static 4], uint64_t x[static 4], uint64_t y[static 4]); | ||
| 37 | |||
| 38 | // Add modulo p_256k1, z := (x + y) mod p_256k1, assuming x and y reduced | ||
| 39 | // Inputs x[4], y[4]; output z[4] | ||
| 40 | extern void bignum_add_p256k1 (uint64_t z[static 4], uint64_t x[static 4], uint64_t y[static 4]); | ||
| 41 | |||
| 42 | // Add modulo p_384, z := (x + y) mod p_384, assuming x and y reduced | ||
| 43 | // Inputs x[6], y[6]; output z[6] | ||
| 44 | extern void bignum_add_p384 (uint64_t z[static 6], uint64_t x[static 6], uint64_t y[static 6]); | ||
| 45 | |||
| 46 | // Add modulo p_521, z := (x + y) mod p_521, assuming x and y reduced | ||
| 47 | // Inputs x[9], y[9]; output z[9] | ||
| 48 | extern void bignum_add_p521 (uint64_t z[static 9], uint64_t x[static 9], uint64_t y[static 9]); | ||
| 49 | |||
| 50 | // Compute "amontification" constant z :== 2^{128k} (congruent mod m) | ||
| 51 | // Input m[k]; output z[k]; temporary buffer t[>=k] | ||
| 52 | extern void bignum_amontifier (uint64_t k, uint64_t *z, uint64_t *m, uint64_t *t); | ||
| 53 | |||
| 54 | // Almost-Montgomery multiply, z :== (x * y / 2^{64k}) (congruent mod m) | ||
| 55 | // Inputs x[k], y[k], m[k]; output z[k] | ||
| 56 | extern void bignum_amontmul (uint64_t k, uint64_t *z, uint64_t *x, uint64_t *y, uint64_t *m); | ||
| 57 | |||
| 58 | // Almost-Montgomery reduce, z :== (x' / 2^{64p}) (congruent mod m) | ||
| 59 | // Inputs x[n], m[k], p; output z[k] | ||
| 60 | extern void bignum_amontredc (uint64_t k, uint64_t *z, uint64_t n, uint64_t *x, uint64_t *m, uint64_t p); | ||
| 61 | |||
| 62 | // Almost-Montgomery square, z :== (x^2 / 2^{64k}) (congruent mod m) | ||
| 63 | // Inputs x[k], m[k]; output z[k] | ||
| 64 | extern void bignum_amontsqr (uint64_t k, uint64_t *z, uint64_t *x, uint64_t *m); | ||
| 65 | |||
| 66 | // Convert 4-digit (256-bit) bignum to/from big-endian form | ||
| 67 | // Input x[4]; output z[4] | ||
| 68 | extern void bignum_bigendian_4 (uint64_t z[static 4], uint64_t x[static 4]); | ||
| 69 | |||
| 70 | // Convert 6-digit (384-bit) bignum to/from big-endian form | ||
| 71 | // Input x[6]; output z[6] | ||
| 72 | extern void bignum_bigendian_6 (uint64_t z[static 6], uint64_t x[static 6]); | ||
| 73 | |||
| 74 | // Select bitfield starting at bit n with length l <= 64 | ||
| 75 | // Inputs x[k], n, l; output function return | ||
| 76 | extern uint64_t bignum_bitfield (uint64_t k, uint64_t *x, uint64_t n, uint64_t l); | ||
| 77 | |||
| 78 | // Return size of bignum in bits | ||
| 79 | // Input x[k]; output function return | ||
| 80 | extern uint64_t bignum_bitsize (uint64_t k, uint64_t *x); | ||
| 81 | |||
| 82 | // Divide by a single (nonzero) word, z := x / m and return x mod m | ||
| 83 | // Inputs x[n], m; outputs function return (remainder) and z[k] | ||
| 84 | extern uint64_t bignum_cdiv (uint64_t k, uint64_t *z, uint64_t n, uint64_t *x, uint64_t m); | ||
| 85 | |||
| 86 | // Divide by a single word, z := x / m when known to be exact | ||
| 87 | // Inputs x[n], m; output z[k] | ||
| 88 | extern void bignum_cdiv_exact (uint64_t k, uint64_t *z, uint64_t n, uint64_t *x, uint64_t m); | ||
| 89 | |||
| 90 | // Count leading zero digits (64-bit words) | ||
| 91 | // Input x[k]; output function return | ||
| 92 | extern uint64_t bignum_cld (uint64_t k, uint64_t *x); | ||
| 93 | |||
| 94 | // Count leading zero bits | ||
| 95 | // Input x[k]; output function return | ||
| 96 | extern uint64_t bignum_clz (uint64_t k, uint64_t *x); | ||
| 97 | |||
| 98 | // Multiply-add with single-word multiplier, z := z + c * y | ||
| 99 | // Inputs c, y[n]; outputs function return (carry-out) and z[k] | ||
| 100 | extern uint64_t bignum_cmadd (uint64_t k, uint64_t *z, uint64_t c, uint64_t n, uint64_t *y); | ||
| 101 | |||
| 102 | // Negated multiply-add with single-word multiplier, z := z - c * y | ||
| 103 | // Inputs c, y[n]; outputs function return (negative carry-out) and z[k] | ||
| 104 | extern uint64_t bignum_cmnegadd (uint64_t k, uint64_t *z, uint64_t c, uint64_t n, uint64_t *y); | ||
| 105 | |||
| 106 | // Find modulus of bignum w.r.t. single nonzero word m, returning x mod m | ||
| 107 | // Input x[k], m; output function return | ||
| 108 | extern uint64_t bignum_cmod (uint64_t k, uint64_t *x, uint64_t m); | ||
| 109 | |||
| 110 | // Multiply by a single word, z := c * y | ||
| 111 | // Inputs c, y[n]; outputs function return (carry-out) and z[k] | ||
| 112 | extern uint64_t bignum_cmul (uint64_t k, uint64_t *z, uint64_t c, uint64_t n, uint64_t *y); | ||
| 113 | |||
| 114 | // Multiply by a single word modulo p_25519, z := (c * x) mod p_25519, assuming x reduced | ||
| 115 | // Inputs c, x[4]; output z[4] | ||
| 116 | extern void bignum_cmul_p25519 (uint64_t z[static 4], uint64_t c, uint64_t x[static 4]); | ||
| 117 | extern void bignum_cmul_p25519_alt (uint64_t z[static 4], uint64_t c, uint64_t x[static 4]); | ||
| 118 | |||
| 119 | // Multiply by a single word modulo p_256, z := (c * x) mod p_256, assuming x reduced | ||
| 120 | // Inputs c, x[4]; output z[4] | ||
| 121 | extern void bignum_cmul_p256 (uint64_t z[static 4], uint64_t c, uint64_t x[static 4]); | ||
| 122 | extern void bignum_cmul_p256_alt (uint64_t z[static 4], uint64_t c, uint64_t x[static 4]); | ||
| 123 | |||
| 124 | // Multiply by a single word modulo p_256k1, z := (c * x) mod p_256k1, assuming x reduced | ||
| 125 | // Inputs c, x[4]; output z[4] | ||
| 126 | extern void bignum_cmul_p256k1 (uint64_t z[static 4], uint64_t c, uint64_t x[static 4]); | ||
| 127 | extern void bignum_cmul_p256k1_alt (uint64_t z[static 4], uint64_t c, uint64_t x[static 4]); | ||
| 128 | |||
| 129 | // Multiply by a single word modulo p_384, z := (c * x) mod p_384, assuming x reduced | ||
| 130 | // Inputs c, x[6]; output z[6] | ||
| 131 | extern void bignum_cmul_p384 (uint64_t z[static 6], uint64_t c, uint64_t x[static 6]); | ||
| 132 | extern void bignum_cmul_p384_alt (uint64_t z[static 6], uint64_t c, uint64_t x[static 6]); | ||
| 133 | |||
| 134 | // Multiply by a single word modulo p_521, z := (c * x) mod p_521, assuming x reduced | ||
| 135 | // Inputs c, x[9]; output z[9] | ||
| 136 | extern void bignum_cmul_p521 (uint64_t z[static 9], uint64_t c, uint64_t x[static 9]); | ||
| 137 | extern void bignum_cmul_p521_alt (uint64_t z[static 9], uint64_t c, uint64_t x[static 9]); | ||
| 138 | |||
| 139 | // Test bignums for coprimality, gcd(x,y) = 1 | ||
| 140 | // Inputs x[m], y[n]; output function return; temporary buffer t[>=2*max(m,n)] | ||
| 141 | extern uint64_t bignum_coprime (uint64_t m, uint64_t *x, uint64_t n, uint64_t *y, uint64_t *t); | ||
| 142 | |||
| 143 | // Copy bignum with zero-extension or truncation, z := x | ||
| 144 | // Input x[n]; output z[k] | ||
| 145 | extern void bignum_copy (uint64_t k, uint64_t *z, uint64_t n, uint64_t *x); | ||
| 146 | |||
| 147 | // Count trailing zero digits (64-bit words) | ||
| 148 | // Input x[k]; output function return | ||
| 149 | extern uint64_t bignum_ctd (uint64_t k, uint64_t *x); | ||
| 150 | |||
| 151 | // Count trailing zero bits | ||
| 152 | // Input x[k]; output function return | ||
| 153 | extern uint64_t bignum_ctz (uint64_t k, uint64_t *x); | ||
| 154 | |||
| 155 | // Convert from almost-Montgomery form, z := (x / 2^256) mod p_256 | ||
| 156 | // Input x[4]; output z[4] | ||
| 157 | extern void bignum_deamont_p256 (uint64_t z[static 4], uint64_t x[static 4]); | ||
| 158 | extern void bignum_deamont_p256_alt (uint64_t z[static 4], uint64_t x[static 4]); | ||
| 159 | |||
| 160 | // Convert from almost-Montgomery form, z := (x / 2^256) mod p_256k1 | ||
| 161 | // Input x[4]; output z[4] | ||
| 162 | extern void bignum_deamont_p256k1 (uint64_t z[static 4], uint64_t x[static 4]); | ||
| 163 | |||
| 164 | // Convert from almost-Montgomery form, z := (x / 2^384) mod p_384 | ||
| 165 | // Input x[6]; output z[6] | ||
| 166 | extern void bignum_deamont_p384 (uint64_t z[static 6], uint64_t x[static 6]); | ||
| 167 | extern void bignum_deamont_p384_alt (uint64_t z[static 6], uint64_t x[static 6]); | ||
| 168 | |||
| 169 | // Convert from almost-Montgomery form z := (x / 2^576) mod p_521 | ||
| 170 | // Input x[9]; output z[9] | ||
| 171 | extern void bignum_deamont_p521 (uint64_t z[static 9], uint64_t x[static 9]); | ||
| 172 | |||
| 173 | // Convert from (almost-)Montgomery form z := (x / 2^{64k}) mod m | ||
| 174 | // Inputs x[k], m[k]; output z[k] | ||
| 175 | extern void bignum_demont (uint64_t k, uint64_t *z, uint64_t *x, uint64_t *m); | ||
| 176 | |||
| 177 | // Convert from Montgomery form z := (x / 2^256) mod p_256, assuming x reduced | ||
| 178 | // Input x[4]; output z[4] | ||
| 179 | extern void bignum_demont_p256 (uint64_t z[static 4], uint64_t x[static 4]); | ||
| 180 | extern void bignum_demont_p256_alt (uint64_t z[static 4], uint64_t x[static 4]); | ||
| 181 | |||
| 182 | // Convert from Montgomery form z := (x / 2^256) mod p_256k1, assuming x reduced | ||
| 183 | // Input x[4]; output z[4] | ||
| 184 | extern void bignum_demont_p256k1 (uint64_t z[static 4], uint64_t x[static 4]); | ||
| 185 | |||
| 186 | // Convert from Montgomery form z := (x / 2^384) mod p_384, assuming x reduced | ||
| 187 | // Input x[6]; output z[6] | ||
| 188 | extern void bignum_demont_p384 (uint64_t z[static 6], uint64_t x[static 6]); | ||
| 189 | extern void bignum_demont_p384_alt (uint64_t z[static 6], uint64_t x[static 6]); | ||
| 190 | |||
| 191 | // Convert from Montgomery form z := (x / 2^576) mod p_521, assuming x reduced | ||
| 192 | // Input x[9]; output z[9] | ||
| 193 | extern void bignum_demont_p521 (uint64_t z[static 9], uint64_t x[static 9]); | ||
| 194 | |||
| 195 | // Select digit x[n] | ||
| 196 | // Inputs x[k], n; output function return | ||
| 197 | extern uint64_t bignum_digit (uint64_t k, uint64_t *x, uint64_t n); | ||
| 198 | |||
| 199 | // Return size of bignum in digits (64-bit word) | ||
| 200 | // Input x[k]; output function return | ||
| 201 | extern uint64_t bignum_digitsize (uint64_t k, uint64_t *x); | ||
| 202 | |||
| 203 | // Divide bignum by 10: z' := z div 10, returning remainder z mod 10 | ||
| 204 | // Inputs z[k]; outputs function return (remainder) and z[k] | ||
| 205 | extern uint64_t bignum_divmod10 (uint64_t k, uint64_t *z); | ||
| 206 | |||
| 207 | // Double modulo p_25519, z := (2 * x) mod p_25519, assuming x reduced | ||
| 208 | // Input x[4]; output z[4] | ||
| 209 | extern void bignum_double_p25519 (uint64_t z[static 4], uint64_t x[static 4]); | ||
| 210 | |||
| 211 | // Double modulo p_256, z := (2 * x) mod p_256, assuming x reduced | ||
| 212 | // Input x[4]; output z[4] | ||
| 213 | extern void bignum_double_p256 (uint64_t z[static 4], uint64_t x[static 4]); | ||
| 214 | |||
| 215 | // Double modulo p_256k1, z := (2 * x) mod p_256k1, assuming x reduced | ||
| 216 | // Input x[4]; output z[4] | ||
| 217 | extern void bignum_double_p256k1 (uint64_t z[static 4], uint64_t x[static 4]); | ||
| 218 | |||
| 219 | // Double modulo p_384, z := (2 * x) mod p_384, assuming x reduced | ||
| 220 | // Input x[6]; output z[6] | ||
| 221 | extern void bignum_double_p384 (uint64_t z[static 6], uint64_t x[static 6]); | ||
| 222 | |||
| 223 | // Double modulo p_521, z := (2 * x) mod p_521, assuming x reduced | ||
| 224 | // Input x[9]; output z[9] | ||
| 225 | extern void bignum_double_p521 (uint64_t z[static 9], uint64_t x[static 9]); | ||
| 226 | |||
| 227 | // Extended Montgomery reduce, returning results in input-output buffer | ||
| 228 | // Inputs z[2*k], m[k], w; outputs function return (extra result bit) and z[2*k] | ||
| 229 | extern uint64_t bignum_emontredc (uint64_t k, uint64_t *z, uint64_t *m, uint64_t w); | ||
| 230 | |||
| 231 | // Extended Montgomery reduce in 8-digit blocks, results in input-output buffer | ||
| 232 | // Inputs z[2*k], m[k], w; outputs function return (extra result bit) and z[2*k] | ||
| 233 | extern uint64_t bignum_emontredc_8n (uint64_t k, uint64_t *z, uint64_t *m, uint64_t w); | ||
| 234 | |||
| 235 | // Test bignums for equality, x = y | ||
| 236 | // Inputs x[m], y[n]; output function return | ||
| 237 | extern uint64_t bignum_eq (uint64_t m, uint64_t *x, uint64_t n, uint64_t *y); | ||
| 238 | |||
| 239 | // Test bignum for even-ness | ||
| 240 | // Input x[k]; output function return | ||
| 241 | extern uint64_t bignum_even (uint64_t k, uint64_t *x); | ||
| 242 | |||
| 243 | // Convert 4-digit (256-bit) bignum from big-endian bytes | ||
| 244 | // Input x[32] (bytes); output z[4] | ||
| 245 | extern void bignum_frombebytes_4 (uint64_t z[static 4], uint8_t x[static 32]); | ||
| 246 | |||
| 247 | // Convert 6-digit (384-bit) bignum from big-endian bytes | ||
| 248 | // Input x[48] (bytes); output z[6] | ||
| 249 | extern void bignum_frombebytes_6 (uint64_t z[static 6], uint8_t x[static 48]); | ||
| 250 | |||
| 251 | // Convert 4-digit (256-bit) bignum from little-endian bytes | ||
| 252 | // Input x[32] (bytes); output z[4] | ||
| 253 | extern void bignum_fromlebytes_4 (uint64_t z[static 4], uint8_t x[static 32]); | ||
| 254 | |||
| 255 | // Convert 6-digit (384-bit) bignum from little-endian bytes | ||
| 256 | // Input x[48] (bytes); output z[6] | ||
| 257 | extern void bignum_fromlebytes_6 (uint64_t z[static 6], uint8_t x[static 48]); | ||
| 258 | |||
| 259 | // Convert little-endian bytes to 9-digit 528-bit bignum | ||
| 260 | // Input x[66] (bytes); output z[9] | ||
| 261 | extern void bignum_fromlebytes_p521 (uint64_t z[static 9],uint8_t x[static 66]); | ||
| 262 | |||
| 263 | // Compare bignums, x >= y | ||
| 264 | // Inputs x[m], y[n]; output function return | ||
| 265 | extern uint64_t bignum_ge (uint64_t m, uint64_t *x, uint64_t n, uint64_t *y); | ||
| 266 | |||
| 267 | // Compare bignums, x > y | ||
| 268 | // Inputs x[m], y[n]; output function return | ||
| 269 | extern uint64_t bignum_gt (uint64_t m, uint64_t *x, uint64_t n, uint64_t *y); | ||
| 270 | |||
| 271 | // Halve modulo p_256, z := (x / 2) mod p_256, assuming x reduced | ||
| 272 | // Input x[4]; output z[4] | ||
| 273 | extern void bignum_half_p256 (uint64_t z[static 4], uint64_t x[static 4]); | ||
| 274 | |||
| 275 | // Halve modulo p_256k1, z := (x / 2) mod p_256k1, assuming x reduced | ||
| 276 | // Input x[4]; output z[4] | ||
| 277 | extern void bignum_half_p256k1 (uint64_t z[static 4], uint64_t x[static 4]); | ||
| 278 | |||
| 279 | // Halve modulo p_384, z := (x / 2) mod p_384, assuming x reduced | ||
| 280 | // Input x[6]; output z[6] | ||
| 281 | extern void bignum_half_p384 (uint64_t z[static 6], uint64_t x[static 6]); | ||
| 282 | |||
| 283 | // Halve modulo p_521, z := (x / 2) mod p_521, assuming x reduced | ||
| 284 | // Input x[9]; output z[9] | ||
| 285 | extern void bignum_half_p521 (uint64_t z[static 9], uint64_t x[static 9]); | ||
| 286 | |||
| 287 | // Test bignum for zero-ness, x = 0 | ||
| 288 | // Input x[k]; output function return | ||
| 289 | extern uint64_t bignum_iszero (uint64_t k, uint64_t *x); | ||
| 290 | |||
| 291 | // Multiply z := x * y | ||
| 292 | // Inputs x[16], y[16]; output z[32]; temporary buffer t[>=32] | ||
| 293 | extern void bignum_kmul_16_32 (uint64_t z[static 32], uint64_t x[static 16], uint64_t y[static 16], uint64_t t[static 32]); | ||
| 294 | |||
| 295 | // Multiply z := x * y | ||
| 296 | // Inputs x[32], y[32]; output z[64]; temporary buffer t[>=96] | ||
| 297 | extern void bignum_kmul_32_64 (uint64_t z[static 64], uint64_t x[static 32], uint64_t y[static 32], uint64_t t[static 96]); | ||
| 298 | |||
| 299 | // Square, z := x^2 | ||
| 300 | // Input x[16]; output z[32]; temporary buffer t[>=24] | ||
| 301 | extern void bignum_ksqr_16_32 (uint64_t z[static 32], uint64_t x[static 16], uint64_t t[static 24]); | ||
| 302 | |||
| 303 | // Square, z := x^2 | ||
| 304 | // Input x[32]; output z[64]; temporary buffer t[>=72] | ||
| 305 | extern void bignum_ksqr_32_64 (uint64_t z[static 64], uint64_t x[static 32], uint64_t t[static 72]); | ||
| 306 | |||
| 307 | // Compare bignums, x <= y | ||
| 308 | // Inputs x[m], y[n]; output function return | ||
| 309 | extern uint64_t bignum_le (uint64_t m, uint64_t *x, uint64_t n, uint64_t *y); | ||
| 310 | |||
| 311 | // Convert 4-digit (256-bit) bignum to/from little-endian form | ||
| 312 | // Input x[4]; output z[4] | ||
| 313 | extern void bignum_littleendian_4 (uint64_t z[static 4], uint64_t x[static 4]); | ||
| 314 | |||
| 315 | // Convert 6-digit (384-bit) bignum to/from little-endian form | ||
| 316 | // Input x[6]; output z[6] | ||
| 317 | extern void bignum_littleendian_6 (uint64_t z[static 6], uint64_t x[static 6]); | ||
| 318 | |||
| 319 | // Compare bignums, x < y | ||
| 320 | // Inputs x[m], y[n]; output function return | ||
| 321 | extern uint64_t bignum_lt (uint64_t m, uint64_t *x, uint64_t n, uint64_t *y); | ||
| 322 | |||
| 323 | // Multiply-add, z := z + x * y | ||
| 324 | // Inputs x[m], y[n]; outputs function return (carry-out) and z[k] | ||
| 325 | extern uint64_t bignum_madd (uint64_t k, uint64_t *z, uint64_t m, uint64_t *x, uint64_t n, uint64_t *y); | ||
| 326 | |||
| 327 | // Reduce modulo group order, z := x mod n_256 | ||
| 328 | // Input x[k]; output z[4] | ||
| 329 | extern void bignum_mod_n256 (uint64_t z[static 4], uint64_t k, uint64_t *x); | ||
| 330 | extern void bignum_mod_n256_alt (uint64_t z[static 4], uint64_t k, uint64_t *x); | ||
| 331 | |||
| 332 | // Reduce modulo group order, z := x mod n_256 | ||
| 333 | // Input x[4]; output z[4] | ||
| 334 | extern void bignum_mod_n256_4 (uint64_t z[static 4], uint64_t x[static 4]); | ||
| 335 | |||
| 336 | // Reduce modulo group order, z := x mod n_256k1 | ||
| 337 | // Input x[4]; output z[4] | ||
| 338 | extern void bignum_mod_n256k1_4 (uint64_t z[static 4], uint64_t x[static 4]); | ||
| 339 | |||
| 340 | // Reduce modulo group order, z := x mod n_384 | ||
| 341 | // Input x[k]; output z[6] | ||
| 342 | extern void bignum_mod_n384 (uint64_t z[static 6], uint64_t k, uint64_t *x); | ||
| 343 | extern void bignum_mod_n384_alt (uint64_t z[static 6], uint64_t k, uint64_t *x); | ||
| 344 | |||
| 345 | // Reduce modulo group order, z := x mod n_384 | ||
| 346 | // Input x[6]; output z[6] | ||
| 347 | extern void bignum_mod_n384_6 (uint64_t z[static 6], uint64_t x[static 6]); | ||
| 348 | |||
| 349 | // Reduce modulo group order, z := x mod n_521 | ||
| 350 | // Input x[9]; output z[9] | ||
| 351 | extern void bignum_mod_n521_9 (uint64_t z[static 9], uint64_t x[static 9]); | ||
| 352 | extern void bignum_mod_n521_9_alt (uint64_t z[static 9], uint64_t x[static 9]); | ||
| 353 | |||
| 354 | // Reduce modulo field characteristic, z := x mod p_25519 | ||
| 355 | // Input x[4]; output z[4] | ||
| 356 | extern void bignum_mod_p25519_4 (uint64_t z[static 4], uint64_t x[static 4]); | ||
| 357 | |||
| 358 | // Reduce modulo field characteristic, z := x mod p_256 | ||
| 359 | // Input x[k]; output z[4] | ||
| 360 | extern void bignum_mod_p256 (uint64_t z[static 4], uint64_t k, uint64_t *x); | ||
| 361 | extern void bignum_mod_p256_alt (uint64_t z[static 4], uint64_t k, uint64_t *x); | ||
| 362 | |||
| 363 | // Reduce modulo field characteristic, z := x mod p_256 | ||
| 364 | // Input x[4]; output z[4] | ||
| 365 | extern void bignum_mod_p256_4 (uint64_t z[static 4], uint64_t x[static 4]); | ||
| 366 | |||
| 367 | // Reduce modulo field characteristic, z := x mod p_256k1 | ||
| 368 | // Input x[4]; output z[4] | ||
| 369 | extern void bignum_mod_p256k1_4 (uint64_t z[static 4], uint64_t x[static 4]); | ||
| 370 | |||
| 371 | // Reduce modulo field characteristic, z := x mod p_384 | ||
| 372 | // Input x[k]; output z[6] | ||
| 373 | extern void bignum_mod_p384 (uint64_t z[static 6], uint64_t k, uint64_t *x); | ||
| 374 | extern void bignum_mod_p384_alt (uint64_t z[static 6], uint64_t k, uint64_t *x); | ||
| 375 | |||
| 376 | // Reduce modulo field characteristic, z := x mod p_384 | ||
| 377 | // Input x[6]; output z[6] | ||
| 378 | extern void bignum_mod_p384_6 (uint64_t z[static 6], uint64_t x[static 6]); | ||
| 379 | |||
| 380 | // Reduce modulo field characteristic, z := x mod p_521 | ||
| 381 | // Input x[9]; output z[9] | ||
| 382 | extern void bignum_mod_p521_9 (uint64_t z[static 9], uint64_t x[static 9]); | ||
| 383 | |||
| 384 | // Add modulo m, z := (x + y) mod m, assuming x and y reduced | ||
| 385 | // Inputs x[k], y[k], m[k]; output z[k] | ||
| 386 | extern void bignum_modadd (uint64_t k, uint64_t *z, uint64_t *x, uint64_t *y, uint64_t *m); | ||
| 387 | |||
| 388 | // Double modulo m, z := (2 * x) mod m, assuming x reduced | ||
| 389 | // Inputs x[k], m[k]; output z[k] | ||
| 390 | extern void bignum_moddouble (uint64_t k, uint64_t *z, uint64_t *x, uint64_t *m); | ||
| 391 | |||
| 392 | // Compute "modification" constant z := 2^{64k} mod m | ||
| 393 | // Input m[k]; output z[k]; temporary buffer t[>=k] | ||
| 394 | extern void bignum_modifier (uint64_t k, uint64_t *z, uint64_t *m, uint64_t *t); | ||
| 395 | |||
| 396 | // Invert modulo m, z = (1/a) mod b, assuming b is an odd number > 1, a coprime to b | ||
| 397 | // Inputs a[k], b[k]; output z[k]; temporary buffer t[>=3*k] | ||
| 398 | extern void bignum_modinv (uint64_t k, uint64_t *z, uint64_t *a, uint64_t *b, uint64_t *t); | ||
| 399 | |||
| 400 | // Optionally negate modulo m, z := (-x) mod m (if p nonzero) or z := x (if p zero), assuming x reduced | ||
| 401 | // Inputs p, x[k], m[k]; output z[k] | ||
| 402 | extern void bignum_modoptneg (uint64_t k, uint64_t *z, uint64_t p, uint64_t *x, uint64_t *m); | ||
| 403 | |||
| 404 | // Subtract modulo m, z := (x - y) mod m, assuming x and y reduced | ||
| 405 | // Inputs x[k], y[k], m[k]; output z[k] | ||
| 406 | extern void bignum_modsub (uint64_t k, uint64_t *z, uint64_t *x, uint64_t *y, uint64_t *m); | ||
| 407 | |||
| 408 | // Compute "montification" constant z := 2^{128k} mod m | ||
| 409 | // Input m[k]; output z[k]; temporary buffer t[>=k] | ||
| 410 | extern void bignum_montifier (uint64_t k, uint64_t *z, uint64_t *m, uint64_t *t); | ||
| 411 | |||
| 412 | // Montgomery multiply, z := (x * y / 2^{64k}) mod m | ||
| 413 | // Inputs x[k], y[k], m[k]; output z[k] | ||
| 414 | extern void bignum_montmul (uint64_t k, uint64_t *z, uint64_t *x, uint64_t *y, uint64_t *m); | ||
| 415 | |||
| 416 | // Montgomery multiply, z := (x * y / 2^256) mod p_256 | ||
| 417 | // Inputs x[4], y[4]; output z[4] | ||
| 418 | extern void bignum_montmul_p256 (uint64_t z[static 4], uint64_t x[static 4], uint64_t y[static 4]); | ||
| 419 | extern void bignum_montmul_p256_alt (uint64_t z[static 4], uint64_t x[static 4], uint64_t y[static 4]); | ||
| 420 | |||
| 421 | // Montgomery multiply, z := (x * y / 2^256) mod p_256k1 | ||
| 422 | // Inputs x[4], y[4]; output z[4] | ||
| 423 | extern void bignum_montmul_p256k1 (uint64_t z[static 4], uint64_t x[static 4], uint64_t y[static 4]); | ||
| 424 | extern void bignum_montmul_p256k1_alt (uint64_t z[static 4], uint64_t x[static 4], uint64_t y[static 4]); | ||
| 425 | |||
| 426 | // Montgomery multiply, z := (x * y / 2^384) mod p_384 | ||
| 427 | // Inputs x[6], y[6]; output z[6] | ||
| 428 | extern void bignum_montmul_p384 (uint64_t z[static 6], uint64_t x[static 6], uint64_t y[static 6]); | ||
| 429 | extern void bignum_montmul_p384_alt (uint64_t z[static 6], uint64_t x[static 6], uint64_t y[static 6]); | ||
| 430 | |||
| 431 | // Montgomery multiply, z := (x * y / 2^576) mod p_521 | ||
| 432 | // Inputs x[9], y[9]; output z[9] | ||
| 433 | extern void bignum_montmul_p521 (uint64_t z[static 9], uint64_t x[static 9], uint64_t y[static 9]); | ||
| 434 | extern void bignum_montmul_p521_alt (uint64_t z[static 9], uint64_t x[static 9], uint64_t y[static 9]); | ||
| 435 | |||
| 436 | // Montgomery reduce, z := (x' / 2^{64p}) MOD m | ||
| 437 | // Inputs x[n], m[k], p; output z[k] | ||
| 438 | extern void bignum_montredc (uint64_t k, uint64_t *z, uint64_t n, uint64_t *x, uint64_t *m, uint64_t p); | ||
| 439 | |||
| 440 | // Montgomery square, z := (x^2 / 2^{64k}) mod m | ||
| 441 | // Inputs x[k], m[k]; output z[k] | ||
| 442 | extern void bignum_montsqr (uint64_t k, uint64_t *z, uint64_t *x, uint64_t *m); | ||
| 443 | |||
| 444 | // Montgomery square, z := (x^2 / 2^256) mod p_256 | ||
| 445 | // Input x[4]; output z[4] | ||
| 446 | extern void bignum_montsqr_p256 (uint64_t z[static 4], uint64_t x[static 4]); | ||
| 447 | extern void bignum_montsqr_p256_alt (uint64_t z[static 4], uint64_t x[static 4]); | ||
| 448 | |||
| 449 | // Montgomery square, z := (x^2 / 2^256) mod p_256k1 | ||
| 450 | // Input x[4]; output z[4] | ||
| 451 | extern void bignum_montsqr_p256k1 (uint64_t z[static 4], uint64_t x[static 4]); | ||
| 452 | extern void bignum_montsqr_p256k1_alt (uint64_t z[static 4], uint64_t x[static 4]); | ||
| 453 | |||
| 454 | // Montgomery square, z := (x^2 / 2^384) mod p_384 | ||
| 455 | // Input x[6]; output z[6] | ||
| 456 | extern void bignum_montsqr_p384 (uint64_t z[static 6], uint64_t x[static 6]); | ||
| 457 | extern void bignum_montsqr_p384_alt (uint64_t z[static 6], uint64_t x[static 6]); | ||
| 458 | |||
| 459 | // Montgomery square, z := (x^2 / 2^576) mod p_521 | ||
| 460 | // Input x[9]; output z[9] | ||
| 461 | extern void bignum_montsqr_p521 (uint64_t z[static 9], uint64_t x[static 9]); | ||
| 462 | extern void bignum_montsqr_p521_alt (uint64_t z[static 9], uint64_t x[static 9]); | ||
| 463 | |||
| 464 | // Multiply z := x * y | ||
| 465 | // Inputs x[m], y[n]; output z[k] | ||
| 466 | extern void bignum_mul (uint64_t k, uint64_t *z, uint64_t m, uint64_t *x, uint64_t n, uint64_t *y); | ||
| 467 | |||
| 468 | // Multiply z := x * y | ||
| 469 | // Inputs x[4], y[4]; output z[8] | ||
| 470 | extern void bignum_mul_4_8 (uint64_t z[static 8], uint64_t x[static 4], uint64_t y[static 4]); | ||
| 471 | extern void bignum_mul_4_8_alt (uint64_t z[static 8], uint64_t x[static 4], uint64_t y[static 4]); | ||
| 472 | |||
| 473 | // Multiply z := x * y | ||
| 474 | // Inputs x[6], y[6]; output z[12] | ||
| 475 | extern void bignum_mul_6_12 (uint64_t z[static 12], uint64_t x[static 6], uint64_t y[static 6]); | ||
| 476 | extern void bignum_mul_6_12_alt (uint64_t z[static 12], uint64_t x[static 6], uint64_t y[static 6]); | ||
| 477 | |||
| 478 | // Multiply z := x * y | ||
| 479 | // Inputs x[8], y[8]; output z[16] | ||
| 480 | extern void bignum_mul_8_16 (uint64_t z[static 16], uint64_t x[static 8], uint64_t y[static 8]); | ||
| 481 | extern void bignum_mul_8_16_alt (uint64_t z[static 16], uint64_t x[static 8], uint64_t y[static 8]); | ||
| 482 | |||
| 483 | // Multiply modulo p_25519, z := (x * y) mod p_25519 | ||
| 484 | // Inputs x[4], y[4]; output z[4] | ||
| 485 | extern void bignum_mul_p25519 (uint64_t z[static 4], uint64_t x[static 4], uint64_t y[static 4]); | ||
| 486 | extern void bignum_mul_p25519_alt (uint64_t z[static 4], uint64_t x[static 4], uint64_t y[static 4]); | ||
| 487 | |||
| 488 | // Multiply modulo p_256k1, z := (x * y) mod p_256k1 | ||
| 489 | // Inputs x[4], y[4]; output z[4] | ||
| 490 | extern void bignum_mul_p256k1 (uint64_t z[static 4], uint64_t x[static 4], uint64_t y[static 4]); | ||
| 491 | extern void bignum_mul_p256k1_alt (uint64_t z[static 4], uint64_t x[static 4], uint64_t y[static 4]); | ||
| 492 | |||
| 493 | // Multiply modulo p_521, z := (x * y) mod p_521, assuming x and y reduced | ||
| 494 | // Inputs x[9], y[9]; output z[9] | ||
| 495 | extern void bignum_mul_p521 (uint64_t z[static 9], uint64_t x[static 9], uint64_t y[static 9]); | ||
| 496 | extern void bignum_mul_p521_alt (uint64_t z[static 9], uint64_t x[static 9], uint64_t y[static 9]); | ||
| 497 | |||
| 498 | // Multiply bignum by 10 and add word: z := 10 * z + d | ||
| 499 | // Inputs z[k], d; outputs function return (carry) and z[k] | ||
| 500 | extern uint64_t bignum_muladd10 (uint64_t k, uint64_t *z, uint64_t d); | ||
| 501 | |||
| 502 | // Multiplex/select z := x (if p nonzero) or z := y (if p zero) | ||
| 503 | // Inputs p, x[k], y[k]; output z[k] | ||
| 504 | extern void bignum_mux (uint64_t p, uint64_t k, uint64_t *z, uint64_t *x, uint64_t *y); | ||
| 505 | |||
| 506 | // 256-bit multiplex/select z := x (if p nonzero) or z := y (if p zero) | ||
| 507 | // Inputs p, x[4], y[4]; output z[4] | ||
| 508 | extern void bignum_mux_4 (uint64_t p, uint64_t z[static 4],uint64_t x[static 4], uint64_t y[static 4]); | ||
| 509 | |||
| 510 | // 384-bit multiplex/select z := x (if p nonzero) or z := y (if p zero) | ||
| 511 | // Inputs p, x[6], y[6]; output z[6] | ||
| 512 | extern void bignum_mux_6 (uint64_t p, uint64_t z[static 6],uint64_t x[static 6], uint64_t y[static 6]); | ||
| 513 | |||
| 514 | // Select element from 16-element table, z := xs[k*i] | ||
| 515 | // Inputs xs[16*k], i; output z[k] | ||
| 516 | extern void bignum_mux16 (uint64_t k, uint64_t *z, uint64_t *xs, uint64_t i); | ||
| 517 | |||
| 518 | // Negate modulo p_25519, z := (-x) mod p_25519, assuming x reduced | ||
| 519 | // Input x[4]; output z[4] | ||
| 520 | extern void bignum_neg_p25519 (uint64_t z[static 4], uint64_t x[static 4]); | ||
| 521 | |||
| 522 | // Negate modulo p_256, z := (-x) mod p_256, assuming x reduced | ||
| 523 | // Input x[4]; output z[4] | ||
| 524 | extern void bignum_neg_p256 (uint64_t z[static 4], uint64_t x[static 4]); | ||
| 525 | |||
| 526 | // Negate modulo p_256k1, z := (-x) mod p_256k1, assuming x reduced | ||
| 527 | // Input x[4]; output z[4] | ||
| 528 | extern void bignum_neg_p256k1 (uint64_t z[static 4], uint64_t x[static 4]); | ||
| 529 | |||
| 530 | // Negate modulo p_384, z := (-x) mod p_384, assuming x reduced | ||
| 531 | // Input x[6]; output z[6] | ||
| 532 | extern void bignum_neg_p384 (uint64_t z[static 6], uint64_t x[static 6]); | ||
| 533 | |||
| 534 | // Negate modulo p_521, z := (-x) mod p_521, assuming x reduced | ||
| 535 | // Input x[9]; output z[9] | ||
| 536 | extern void bignum_neg_p521 (uint64_t z[static 9], uint64_t x[static 9]); | ||
| 537 | |||
| 538 | // Negated modular inverse, z := (-1/x) mod 2^{64k} | ||
| 539 | // Input x[k]; output z[k] | ||
| 540 | extern void bignum_negmodinv (uint64_t k, uint64_t *z, uint64_t *x); | ||
| 541 | |||
| 542 | // Test bignum for nonzero-ness x =/= 0 | ||
| 543 | // Input x[k]; output function return | ||
| 544 | extern uint64_t bignum_nonzero (uint64_t k, uint64_t *x); | ||
| 545 | |||
| 546 | // Test 256-bit bignum for nonzero-ness x =/= 0 | ||
| 547 | // Input x[4]; output function return | ||
| 548 | extern uint64_t bignum_nonzero_4(uint64_t x[static 4]); | ||
| 549 | |||
| 550 | // Test 384-bit bignum for nonzero-ness x =/= 0 | ||
| 551 | // Input x[6]; output function return | ||
| 552 | extern uint64_t bignum_nonzero_6(uint64_t x[static 6]); | ||
| 553 | |||
| 554 | // Normalize bignum in-place by shifting left till top bit is 1 | ||
| 555 | // Input z[k]; outputs function return (bits shifted left) and z[k] | ||
| 556 | extern uint64_t bignum_normalize (uint64_t k, uint64_t *z); | ||
| 557 | |||
| 558 | // Test bignum for odd-ness | ||
| 559 | // Input x[k]; output function return | ||
| 560 | extern uint64_t bignum_odd (uint64_t k, uint64_t *x); | ||
| 561 | |||
| 562 | // Convert single digit to bignum, z := n | ||
| 563 | // Input n; output z[k] | ||
| 564 | extern void bignum_of_word (uint64_t k, uint64_t *z, uint64_t n); | ||
| 565 | |||
| 566 | // Optionally add, z := x + y (if p nonzero) or z := x (if p zero) | ||
| 567 | // Inputs x[k], p, y[k]; outputs function return (carry-out) and z[k] | ||
| 568 | extern uint64_t bignum_optadd (uint64_t k, uint64_t *z, uint64_t *x, uint64_t p, uint64_t *y); | ||
| 569 | |||
| 570 | // Optionally negate, z := -x (if p nonzero) or z := x (if p zero) | ||
| 571 | // Inputs p, x[k]; outputs function return (nonzero input) and z[k] | ||
| 572 | extern uint64_t bignum_optneg (uint64_t k, uint64_t *z, uint64_t p, uint64_t *x); | ||
| 573 | |||
| 574 | // Optionally negate modulo p_25519, z := (-x) mod p_25519 (if p nonzero) or z := x (if p zero), assuming x reduced | ||
| 575 | // Inputs p, x[4]; output z[4] | ||
| 576 | extern void bignum_optneg_p25519 (uint64_t z[static 4], uint64_t p, uint64_t x[static 4]); | ||
| 577 | |||
| 578 | // Optionally negate modulo p_256, z := (-x) mod p_256 (if p nonzero) or z := x (if p zero), assuming x reduced | ||
| 579 | // Inputs p, x[4]; output z[4] | ||
| 580 | extern void bignum_optneg_p256 (uint64_t z[static 4], uint64_t p, uint64_t x[static 4]); | ||
| 581 | |||
| 582 | // Optionally negate modulo p_256k1, z := (-x) mod p_256k1 (if p nonzero) or z := x (if p zero), assuming x reduced | ||
| 583 | // Inputs p, x[4]; output z[4] | ||
| 584 | extern void bignum_optneg_p256k1 (uint64_t z[static 4], uint64_t p, uint64_t x[static 4]); | ||
| 585 | |||
| 586 | // Optionally negate modulo p_384, z := (-x) mod p_384 (if p nonzero) or z := x (if p zero), assuming x reduced | ||
| 587 | // Inputs p, x[6]; output z[6] | ||
| 588 | extern void bignum_optneg_p384 (uint64_t z[static 6], uint64_t p, uint64_t x[static 6]); | ||
| 589 | |||
| 590 | // Optionally negate modulo p_521, z := (-x) mod p_521 (if p nonzero) or z := x (if p zero), assuming x reduced | ||
| 591 | // Inputs p, x[9]; output z[9] | ||
| 592 | extern void bignum_optneg_p521 (uint64_t z[static 9], uint64_t p, uint64_t x[static 9]); | ||
| 593 | |||
| 594 | // Optionally subtract, z := x - y (if p nonzero) or z := x (if p zero) | ||
| 595 | // Inputs x[k], p, y[k]; outputs function return (carry-out) and z[k] | ||
| 596 | extern uint64_t bignum_optsub (uint64_t k, uint64_t *z, uint64_t *x, uint64_t p, uint64_t *y); | ||
| 597 | |||
| 598 | // Optionally subtract or add, z := x + sgn(p) * y interpreting p as signed | ||
| 599 | // Inputs x[k], p, y[k]; outputs function return (carry-out) and z[k] | ||
| 600 | extern uint64_t bignum_optsubadd (uint64_t k, uint64_t *z, uint64_t *x, uint64_t p, uint64_t *y); | ||
| 601 | |||
| 602 | // Return bignum of power of 2, z := 2^n | ||
| 603 | // Input n; output z[k] | ||
| 604 | extern void bignum_pow2 (uint64_t k, uint64_t *z, uint64_t n); | ||
| 605 | |||
| 606 | // Shift bignum left by c < 64 bits z := x * 2^c | ||
| 607 | // Inputs x[n], c; outputs function return (carry-out) and z[k] | ||
| 608 | extern uint64_t bignum_shl_small (uint64_t k, uint64_t *z, uint64_t n, uint64_t *x, uint64_t c); | ||
| 609 | |||
| 610 | // Shift bignum right by c < 64 bits z := floor(x / 2^c) | ||
| 611 | // Inputs x[n], c; outputs function return (bits shifted out) and z[k] | ||
| 612 | extern uint64_t bignum_shr_small (uint64_t k, uint64_t *z, uint64_t n, uint64_t *x, uint64_t c); | ||
| 613 | |||
| 614 | // Square, z := x^2 | ||
| 615 | // Input x[n]; output z[k] | ||
| 616 | extern void bignum_sqr (uint64_t k, uint64_t *z, uint64_t n, uint64_t *x); | ||
| 617 | |||
| 618 | // Square, z := x^2 | ||
| 619 | // Input x[4]; output z[8] | ||
| 620 | extern void bignum_sqr_4_8 (uint64_t z[static 8], uint64_t x[static 4]); | ||
| 621 | extern void bignum_sqr_4_8_alt (uint64_t z[static 8], uint64_t x[static 4]); | ||
| 622 | |||
| 623 | // Square, z := x^2 | ||
| 624 | // Input x[6]; output z[12] | ||
| 625 | extern void bignum_sqr_6_12 (uint64_t z[static 12], uint64_t x[static 6]); | ||
| 626 | extern void bignum_sqr_6_12_alt (uint64_t z[static 12], uint64_t x[static 6]); | ||
| 627 | |||
| 628 | // Square, z := x^2 | ||
| 629 | // Input x[8]; output z[16] | ||
| 630 | extern void bignum_sqr_8_16 (uint64_t z[static 16], uint64_t x[static 8]); | ||
| 631 | extern void bignum_sqr_8_16_alt (uint64_t z[static 16], uint64_t x[static 8]); | ||
| 632 | |||
| 633 | // Square modulo p_25519, z := (x^2) mod p_25519 | ||
| 634 | // Input x[4]; output z[4] | ||
| 635 | extern void bignum_sqr_p25519 (uint64_t z[static 4], uint64_t x[static 4]); | ||
| 636 | extern void bignum_sqr_p25519_alt (uint64_t z[static 4], uint64_t x[static 4]); | ||
| 637 | |||
| 638 | // Square modulo p_256k1, z := (x^2) mod p_256k1 | ||
| 639 | // Input x[4]; output z[4] | ||
| 640 | extern void bignum_sqr_p256k1 (uint64_t z[static 4], uint64_t x[static 4]); | ||
| 641 | extern void bignum_sqr_p256k1_alt (uint64_t z[static 4], uint64_t x[static 4]); | ||
| 642 | |||
| 643 | // Square modulo p_521, z := (x^2) mod p_521, assuming x reduced | ||
| 644 | // Input x[9]; output z[9] | ||
| 645 | extern void bignum_sqr_p521 (uint64_t z[static 9], uint64_t x[static 9]); | ||
| 646 | extern void bignum_sqr_p521_alt (uint64_t z[static 9], uint64_t x[static 9]); | ||
| 647 | |||
| 648 | // Subtract, z := x - y | ||
| 649 | // Inputs x[m], y[n]; outputs function return (carry-out) and z[p] | ||
| 650 | extern uint64_t bignum_sub (uint64_t p, uint64_t *z, uint64_t m, uint64_t *x, uint64_t n, uint64_t *y); | ||
| 651 | |||
| 652 | // Subtract modulo p_25519, z := (x - y) mod p_25519, assuming x and y reduced | ||
| 653 | // Inputs x[4], y[4]; output z[4] | ||
| 654 | extern void bignum_sub_p25519 (uint64_t z[static 4], uint64_t x[static 4], uint64_t y[static 4]); | ||
| 655 | |||
| 656 | // Subtract modulo p_256, z := (x - y) mod p_256, assuming x and y reduced | ||
| 657 | // Inputs x[4], y[4]; output z[4] | ||
| 658 | extern void bignum_sub_p256 (uint64_t z[static 4], uint64_t x[static 4], uint64_t y[static 4]); | ||
| 659 | |||
| 660 | // Subtract modulo p_256k1, z := (x - y) mod p_256k1, assuming x and y reduced | ||
| 661 | // Inputs x[4], y[4]; output z[4] | ||
| 662 | extern void bignum_sub_p256k1 (uint64_t z[static 4], uint64_t x[static 4], uint64_t y[static 4]); | ||
| 663 | |||
| 664 | // Subtract modulo p_384, z := (x - y) mod p_384, assuming x and y reduced | ||
| 665 | // Inputs x[6], y[6]; output z[6] | ||
| 666 | extern void bignum_sub_p384 (uint64_t z[static 6], uint64_t x[static 6], uint64_t y[static 6]); | ||
| 667 | |||
| 668 | // Subtract modulo p_521, z := (x - y) mod p_521, assuming x and y reduced | ||
| 669 | // Inputs x[9], y[9]; output z[9] | ||
| 670 | extern void bignum_sub_p521 (uint64_t z[static 9], uint64_t x[static 9], uint64_t y[static 9]); | ||
| 671 | |||
| 672 | // Convert 4-digit (256-bit) bignum to big-endian bytes | ||
| 673 | // Input x[4]; output z[32] (bytes) | ||
| 674 | extern void bignum_tobebytes_4 (uint8_t z[static 32], uint64_t x[static 4]); | ||
| 675 | |||
| 676 | // Convert 6-digit (384-bit) bignum to big-endian bytes | ||
| 677 | // Input x[6]; output z[48] (bytes) | ||
| 678 | extern void bignum_tobebytes_6 (uint8_t z[static 48], uint64_t x[static 6]); | ||
| 679 | |||
| 680 | // Convert 4-digit (256-bit) bignum to little-endian bytes | ||
| 681 | // Input x[4]; output z[32] (bytes) | ||
| 682 | extern void bignum_tolebytes_4 (uint8_t z[static 32], uint64_t x[static 4]); | ||
| 683 | |||
| 684 | // Convert 6-digit (384-bit) bignum to little-endian bytes | ||
| 685 | // Input x[6]; output z[48] (bytes) | ||
| 686 | extern void bignum_tolebytes_6 (uint8_t z[static 48], uint64_t x[static 6]); | ||
| 687 | |||
| 688 | // Convert 9-digit 528-bit bignum to little-endian bytes | ||
| 689 | // Input x[6]; output z[66] (bytes) | ||
| 690 | extern void bignum_tolebytes_p521 (uint8_t z[static 66], uint64_t x[static 9]); | ||
| 691 | |||
| 692 | // Convert to Montgomery form z := (2^256 * x) mod p_256 | ||
| 693 | // Input x[4]; output z[4] | ||
| 694 | extern void bignum_tomont_p256 (uint64_t z[static 4], uint64_t x[static 4]); | ||
| 695 | extern void bignum_tomont_p256_alt (uint64_t z[static 4], uint64_t x[static 4]); | ||
| 696 | |||
| 697 | // Convert to Montgomery form z := (2^256 * x) mod p_256k1 | ||
| 698 | // Input x[4]; output z[4] | ||
| 699 | extern void bignum_tomont_p256k1 (uint64_t z[static 4], uint64_t x[static 4]); | ||
| 700 | extern void bignum_tomont_p256k1_alt (uint64_t z[static 4], uint64_t x[static 4]); | ||
| 701 | |||
| 702 | // Convert to Montgomery form z := (2^384 * x) mod p_384 | ||
| 703 | // Input x[6]; output z[6] | ||
| 704 | extern void bignum_tomont_p384 (uint64_t z[static 6], uint64_t x[static 6]); | ||
| 705 | extern void bignum_tomont_p384_alt (uint64_t z[static 6], uint64_t x[static 6]); | ||
| 706 | |||
| 707 | // Convert to Montgomery form z := (2^576 * x) mod p_521 | ||
| 708 | // Input x[9]; output z[9] | ||
| 709 | extern void bignum_tomont_p521 (uint64_t z[static 9], uint64_t x[static 9]); | ||
| 710 | |||
| 711 | // Triple modulo p_256, z := (3 * x) mod p_256 | ||
| 712 | // Input x[4]; output z[4] | ||
| 713 | extern void bignum_triple_p256 (uint64_t z[static 4], uint64_t x[static 4]); | ||
| 714 | extern void bignum_triple_p256_alt (uint64_t z[static 4], uint64_t x[static 4]); | ||
| 715 | |||
| 716 | // Triple modulo p_256k1, z := (3 * x) mod p_256k1 | ||
| 717 | // Input x[4]; output z[4] | ||
| 718 | extern void bignum_triple_p256k1 (uint64_t z[static 4], uint64_t x[static 4]); | ||
| 719 | extern void bignum_triple_p256k1_alt (uint64_t z[static 4], uint64_t x[static 4]); | ||
| 720 | |||
| 721 | // Triple modulo p_384, z := (3 * x) mod p_384 | ||
| 722 | // Input x[6]; output z[6] | ||
| 723 | extern void bignum_triple_p384 (uint64_t z[static 6], uint64_t x[static 6]); | ||
| 724 | extern void bignum_triple_p384_alt (uint64_t z[static 6], uint64_t x[static 6]); | ||
| 725 | |||
| 726 | // Triple modulo p_521, z := (3 * x) mod p_521, assuming x reduced | ||
| 727 | // Input x[9]; output z[9] | ||
| 728 | extern void bignum_triple_p521 (uint64_t z[static 9], uint64_t x[static 9]); | ||
| 729 | extern void bignum_triple_p521_alt (uint64_t z[static 9], uint64_t x[static 9]); | ||
| 730 | |||
| 731 | // Montgomery ladder step for curve25519 | ||
| 732 | // Inputs point[8], pp[16], b; output rr[16] | ||
| 733 | extern void curve25519_ladderstep(uint64_t rr[16],uint64_t point[8],uint64_t pp[16],uint64_t b); | ||
| 734 | extern void curve25519_ladderstep_alt(uint64_t rr[16],uint64_t point[8],uint64_t pp[16],uint64_t b); | ||
| 735 | |||
| 736 | // Projective scalar multiplication, x coordinate only, for curve25519 | ||
| 737 | // Inputs scalar[4], point[4]; output res[8] | ||
| 738 | extern void curve25519_pxscalarmul(uint64_t res[static 8],uint64_t scalar[static 4],uint64_t point[static 4]); | ||
| 739 | extern void curve25519_pxscalarmul_alt(uint64_t res[static 8],uint64_t scalar[static 4],uint64_t point[static 4]); | ||
| 740 | |||
| 741 | // x25519 function for curve25519 | ||
| 742 | // Inputs scalar[4], point[4]; output res[4] | ||
| 743 | extern void curve25519_x25519(uint64_t res[static 4],uint64_t scalar[static 4],uint64_t point[static 4]); | ||
| 744 | extern void curve25519_x25519_alt(uint64_t res[static 4],uint64_t scalar[static 4],uint64_t point[static 4]); | ||
| 745 | |||
| 746 | // x25519 function for curve25519 on base element 9 | ||
| 747 | // Input scalar[4]; output res[4] | ||
| 748 | extern void curve25519_x25519base(uint64_t res[static 4],uint64_t scalar[static 4]); | ||
| 749 | extern void curve25519_x25519base_alt(uint64_t res[static 4],uint64_t scalar[static 4]); | ||
| 750 | |||
| 751 | // Extended projective addition for edwards25519 | ||
| 752 | // Inputs p1[16], p2[16]; output p3[16] | ||
| 753 | extern void edwards25519_epadd(uint64_t p3[static 16],uint64_t p1[static 16],uint64_t p2[static 16]); | ||
| 754 | extern void edwards25519_epadd_alt(uint64_t p3[static 16],uint64_t p1[static 16],uint64_t p2[static 16]); | ||
| 755 | |||
| 756 | // Extended projective doubling for edwards25519 | ||
| 757 | // Inputs p1[12]; output p3[16] | ||
| 758 | extern void edwards25519_epdouble(uint64_t p3[static 16],uint64_t p1[static 12]); | ||
| 759 | extern void edwards25519_epdouble_alt(uint64_t p3[static 16],uint64_t p1[static 12]); | ||
| 760 | |||
| 761 | // Projective doubling for edwards25519 | ||
| 762 | // Inputs p1[12]; output p3[12] | ||
| 763 | extern void edwards25519_pdouble(uint64_t p3[static 12],uint64_t p1[static 12]); | ||
| 764 | extern void edwards25519_pdouble_alt(uint64_t p3[static 12],uint64_t p1[static 12]); | ||
| 765 | |||
| 766 | // Extended projective + precomputed mixed addition for edwards25519 | ||
| 767 | // Inputs p1[16], p2[12]; output p3[16] | ||
| 768 | extern void edwards25519_pepadd(uint64_t p3[static 16],uint64_t p1[static 16],uint64_t p2[static 12]); | ||
| 769 | extern void edwards25519_pepadd_alt(uint64_t p3[static 16],uint64_t p1[static 16],uint64_t p2[static 12]); | ||
| 770 | |||
| 771 | // Point addition on NIST curve P-256 in Montgomery-Jacobian coordinates | ||
| 772 | // Inputs p1[12], p2[12]; output p3[12] | ||
| 773 | extern void p256_montjadd(uint64_t p3[static 12],uint64_t p1[static 12],uint64_t p2[static 12]); | ||
| 774 | |||
| 775 | // Point doubling on NIST curve P-256 in Montgomery-Jacobian coordinates | ||
| 776 | // Inputs p1[12]; output p3[12] | ||
| 777 | extern void p256_montjdouble(uint64_t p3[static 12],uint64_t p1[static 12]); | ||
| 778 | |||
| 779 | // Point mixed addition on NIST curve P-256 in Montgomery-Jacobian coordinates | ||
| 780 | // Inputs p1[12], p2[8]; output p3[12] | ||
| 781 | extern void p256_montjmixadd(uint64_t p3[static 12],uint64_t p1[static 12],uint64_t p2[static 8]); | ||
| 782 | |||
| 783 | // Point addition on NIST curve P-384 in Montgomery-Jacobian coordinates | ||
| 784 | // Inputs p1[18], p2[18]; output p3[18] | ||
| 785 | extern void p384_montjadd(uint64_t p3[static 18],uint64_t p1[static 18],uint64_t p2[static 18]); | ||
| 786 | |||
| 787 | // Point doubling on NIST curve P-384 in Montgomery-Jacobian coordinates | ||
| 788 | // Inputs p1[18]; output p3[18] | ||
| 789 | extern void p384_montjdouble(uint64_t p3[static 18],uint64_t p1[static 18]); | ||
| 790 | |||
| 791 | // Point mixed addition on NIST curve P-384 in Montgomery-Jacobian coordinates | ||
| 792 | // Inputs p1[18], p2[12]; output p3[18] | ||
| 793 | extern void p384_montjmixadd(uint64_t p3[static 18],uint64_t p1[static 18],uint64_t p2[static 12]); | ||
| 794 | |||
| 795 | // Point addition on NIST curve P-521 in Jacobian coordinates | ||
| 796 | // Inputs p1[27], p2[27]; output p3[27] | ||
| 797 | extern void p521_jadd(uint64_t p3[static 27],uint64_t p1[static 27],uint64_t p2[static 27]); | ||
| 798 | |||
| 799 | // Point doubling on NIST curve P-521 in Jacobian coordinates | ||
| 800 | // Input p1[27]; output p3[27] | ||
| 801 | extern void p521_jdouble(uint64_t p3[static 27],uint64_t p1[static 27]); | ||
| 802 | |||
| 803 | // Point mixed addition on NIST curve P-521 in Jacobian coordinates | ||
| 804 | // Inputs p1[27], p2[18]; output p3[27] | ||
| 805 | extern void p521_jmixadd(uint64_t p3[static 27],uint64_t p1[static 27],uint64_t p2[static 18]); | ||
| 806 | |||
| 807 | // Point addition on SECG curve secp256k1 in Jacobian coordinates | ||
| 808 | // Inputs p1[12], p2[12]; output p3[12] | ||
| 809 | extern void secp256k1_jadd(uint64_t p3[static 12],uint64_t p1[static 12],uint64_t p2[static 12]); | ||
| 810 | |||
| 811 | // Point doubling on SECG curve secp256k1 in Jacobian coordinates | ||
| 812 | // Input p1[12]; output p3[12] | ||
| 813 | extern void secp256k1_jdouble(uint64_t p3[static 12],uint64_t p1[static 12]); | ||
| 814 | |||
| 815 | // Point mixed addition on SECG curve secp256k1 in Jacobian coordinates | ||
| 816 | // Inputs p1[12], p2[8]; output p3[12] | ||
| 817 | extern void secp256k1_jmixadd(uint64_t p3[static 12],uint64_t p1[static 12],uint64_t p2[static 8]); | ||
| 818 | |||
| 819 | // Reverse the bytes in a single word | ||
| 820 | // Input a; output function return | ||
| 821 | extern uint64_t word_bytereverse (uint64_t a); | ||
| 822 | |||
| 823 | // Count leading zero bits in a single word | ||
| 824 | // Input a; output function return | ||
| 825 | extern uint64_t word_clz (uint64_t a); | ||
| 826 | |||
| 827 | // Count trailing zero bits in a single word | ||
| 828 | // Input a; output function return | ||
| 829 | extern uint64_t word_ctz (uint64_t a); | ||
| 830 | |||
| 831 | // Return maximum of two unsigned 64-bit words | ||
| 832 | // Inputs a, b; output function return | ||
| 833 | extern uint64_t word_max (uint64_t a, uint64_t b); | ||
| 834 | |||
| 835 | // Return minimum of two unsigned 64-bit words | ||
| 836 | // Inputs a, b; output function return | ||
| 837 | extern uint64_t word_min (uint64_t a, uint64_t b); | ||
| 838 | |||
| 839 | // Single-word negated modular inverse (-1/a) mod 2^64 | ||
| 840 | // Input a; output function return | ||
| 841 | extern uint64_t word_negmodinv (uint64_t a); | ||
| 842 | |||
| 843 | // Single-word reciprocal, 2^64 + ret = ceil(2^128/a) - 1 if MSB of "a" is set | ||
| 844 | // Input a; output function return | ||
| 845 | extern uint64_t word_recip (uint64_t a); | ||
diff --git a/src/lib/libcrypto/bn/s2n_bignum_internal.h b/src/lib/libcrypto/bn/s2n_bignum_internal.h new file mode 100644 index 0000000000..ac675836f3 --- /dev/null +++ b/src/lib/libcrypto/bn/s2n_bignum_internal.h | |||
| @@ -0,0 +1,17 @@ | |||
| 1 | |||
| 2 | #ifdef __APPLE__ | ||
| 3 | # define S2N_BN_SYMBOL(NAME) _##NAME | ||
| 4 | #else | ||
| 5 | # define S2N_BN_SYMBOL(name) name | ||
| 6 | #endif | ||
| 7 | |||
| 8 | #define S2N_BN_SYM_VISIBILITY_DIRECTIVE(name) .globl S2N_BN_SYMBOL(name) | ||
| 9 | #ifdef S2N_BN_HIDE_SYMBOLS | ||
| 10 | # ifdef __APPLE__ | ||
| 11 | # define S2N_BN_SYM_PRIVACY_DIRECTIVE(name) .private_extern S2N_BN_SYMBOL(name) | ||
| 12 | # else | ||
| 13 | # define S2N_BN_SYM_PRIVACY_DIRECTIVE(name) .hidden S2N_BN_SYMBOL(name) | ||
| 14 | # endif | ||
| 15 | #else | ||
| 16 | # define S2N_BN_SYM_PRIVACY_DIRECTIVE(name) /* NO-OP: S2N_BN_SYM_PRIVACY_DIRECTIVE */ | ||
| 17 | #endif | ||
