diff options
Diffstat (limited to 'src/lib/libc/crypt/crypt.c')
-rw-r--r-- | src/lib/libc/crypt/crypt.c | 713 |
1 files changed, 713 insertions, 0 deletions
diff --git a/src/lib/libc/crypt/crypt.c b/src/lib/libc/crypt/crypt.c new file mode 100644 index 0000000000..17b50b7f52 --- /dev/null +++ b/src/lib/libc/crypt/crypt.c | |||
@@ -0,0 +1,713 @@ | |||
1 | /* $OpenBSD: crypt.c,v 1.16 2002/04/29 06:26:50 pvalchev Exp $ */ | ||
2 | |||
3 | /* | ||
4 | * FreeSec: libcrypt | ||
5 | * | ||
6 | * Copyright (c) 1994 David Burren | ||
7 | * All rights reserved. | ||
8 | * | ||
9 | * Redistribution and use in source and binary forms, with or without | ||
10 | * modification, are permitted provided that the following conditions | ||
11 | * are met: | ||
12 | * 1. Redistributions of source code must retain the above copyright | ||
13 | * notice, this list of conditions and the following disclaimer. | ||
14 | * 2. Redistributions in binary form must reproduce the above copyright | ||
15 | * notice, this list of conditions and the following disclaimer in the | ||
16 | * documentation and/or other materials provided with the distribution. | ||
17 | * 4. Neither the name of the author nor the names of other contributors | ||
18 | * may be used to endorse or promote products derived from this software | ||
19 | * without specific prior written permission. | ||
20 | * | ||
21 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND | ||
22 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
23 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | ||
24 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | ||
25 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | ||
26 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | ||
27 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
28 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | ||
29 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | ||
30 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | ||
31 | * SUCH DAMAGE. | ||
32 | * | ||
33 | * | ||
34 | * This is an original implementation of the DES and the crypt(3) interfaces | ||
35 | * by David Burren <davidb@werj.com.au>. | ||
36 | * | ||
37 | * An excellent reference on the underlying algorithm (and related | ||
38 | * algorithms) is: | ||
39 | * | ||
40 | * B. Schneier, Applied Cryptography: protocols, algorithms, | ||
41 | * and source code in C, John Wiley & Sons, 1994. | ||
42 | * | ||
43 | * Note that in that book's description of DES the lookups for the initial, | ||
44 | * pbox, and final permutations are inverted (this has been brought to the | ||
45 | * attention of the author). A list of errata for this book has been | ||
46 | * posted to the sci.crypt newsgroup by the author and is available for FTP. | ||
47 | * | ||
48 | * NOTE: | ||
49 | * This file has a static version of des_setkey() so that crypt.o exports | ||
50 | * only the crypt() interface. This is required to make binaries linked | ||
51 | * against crypt.o exportable or re-exportable from the USA. | ||
52 | */ | ||
53 | |||
54 | #if defined(LIBC_SCCS) && !defined(lint) | ||
55 | static char rcsid[] = "$OpenBSD: crypt.c,v 1.16 2002/04/29 06:26:50 pvalchev Exp $"; | ||
56 | #endif /* LIBC_SCCS and not lint */ | ||
57 | |||
58 | #include <sys/types.h> | ||
59 | #include <sys/param.h> | ||
60 | #include <pwd.h> | ||
61 | #include <string.h> | ||
62 | |||
63 | #ifdef DEBUG | ||
64 | # include <stdio.h> | ||
65 | #endif | ||
66 | |||
67 | static u_char IP[64] = { | ||
68 | 58, 50, 42, 34, 26, 18, 10, 2, 60, 52, 44, 36, 28, 20, 12, 4, | ||
69 | 62, 54, 46, 38, 30, 22, 14, 6, 64, 56, 48, 40, 32, 24, 16, 8, | ||
70 | 57, 49, 41, 33, 25, 17, 9, 1, 59, 51, 43, 35, 27, 19, 11, 3, | ||
71 | 61, 53, 45, 37, 29, 21, 13, 5, 63, 55, 47, 39, 31, 23, 15, 7 | ||
72 | }; | ||
73 | |||
74 | static u_char inv_key_perm[64]; | ||
75 | static u_char u_key_perm[56]; | ||
76 | static u_char key_perm[56] = { | ||
77 | 57, 49, 41, 33, 25, 17, 9, 1, 58, 50, 42, 34, 26, 18, | ||
78 | 10, 2, 59, 51, 43, 35, 27, 19, 11, 3, 60, 52, 44, 36, | ||
79 | 63, 55, 47, 39, 31, 23, 15, 7, 62, 54, 46, 38, 30, 22, | ||
80 | 14, 6, 61, 53, 45, 37, 29, 21, 13, 5, 28, 20, 12, 4 | ||
81 | }; | ||
82 | |||
83 | static u_char key_shifts[16] = { | ||
84 | 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1 | ||
85 | }; | ||
86 | |||
87 | static u_char inv_comp_perm[56]; | ||
88 | static u_char comp_perm[48] = { | ||
89 | 14, 17, 11, 24, 1, 5, 3, 28, 15, 6, 21, 10, | ||
90 | 23, 19, 12, 4, 26, 8, 16, 7, 27, 20, 13, 2, | ||
91 | 41, 52, 31, 37, 47, 55, 30, 40, 51, 45, 33, 48, | ||
92 | 44, 49, 39, 56, 34, 53, 46, 42, 50, 36, 29, 32 | ||
93 | }; | ||
94 | |||
95 | /* | ||
96 | * No E box is used, as it's replaced by some ANDs, shifts, and ORs. | ||
97 | */ | ||
98 | |||
99 | static u_char u_sbox[8][64]; | ||
100 | static u_char sbox[8][64] = { | ||
101 | { | ||
102 | 14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7, | ||
103 | 0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8, | ||
104 | 4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0, | ||
105 | 15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13 | ||
106 | }, | ||
107 | { | ||
108 | 15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10, | ||
109 | 3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5, | ||
110 | 0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15, | ||
111 | 13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9 | ||
112 | }, | ||
113 | { | ||
114 | 10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8, | ||
115 | 13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1, | ||
116 | 13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7, | ||
117 | 1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12 | ||
118 | }, | ||
119 | { | ||
120 | 7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15, | ||
121 | 13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9, | ||
122 | 10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4, | ||
123 | 3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14 | ||
124 | }, | ||
125 | { | ||
126 | 2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9, | ||
127 | 14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6, | ||
128 | 4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14, | ||
129 | 11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3 | ||
130 | }, | ||
131 | { | ||
132 | 12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11, | ||
133 | 10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8, | ||
134 | 9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6, | ||
135 | 4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13 | ||
136 | }, | ||
137 | { | ||
138 | 4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1, | ||
139 | 13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6, | ||
140 | 1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2, | ||
141 | 6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12 | ||
142 | }, | ||
143 | { | ||
144 | 13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7, | ||
145 | 1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2, | ||
146 | 7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8, | ||
147 | 2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11 | ||
148 | } | ||
149 | }; | ||
150 | |||
151 | static u_char un_pbox[32]; | ||
152 | static u_char pbox[32] = { | ||
153 | 16, 7, 20, 21, 29, 12, 28, 17, 1, 15, 23, 26, 5, 18, 31, 10, | ||
154 | 2, 8, 24, 14, 32, 27, 3, 9, 19, 13, 30, 6, 22, 11, 4, 25 | ||
155 | }; | ||
156 | |||
157 | static u_int32_t bits32[32] = | ||
158 | { | ||
159 | 0x80000000, 0x40000000, 0x20000000, 0x10000000, | ||
160 | 0x08000000, 0x04000000, 0x02000000, 0x01000000, | ||
161 | 0x00800000, 0x00400000, 0x00200000, 0x00100000, | ||
162 | 0x00080000, 0x00040000, 0x00020000, 0x00010000, | ||
163 | 0x00008000, 0x00004000, 0x00002000, 0x00001000, | ||
164 | 0x00000800, 0x00000400, 0x00000200, 0x00000100, | ||
165 | 0x00000080, 0x00000040, 0x00000020, 0x00000010, | ||
166 | 0x00000008, 0x00000004, 0x00000002, 0x00000001 | ||
167 | }; | ||
168 | |||
169 | static u_char bits8[8] = { 0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01 }; | ||
170 | |||
171 | static u_int32_t saltbits; | ||
172 | static int32_t old_salt; | ||
173 | static u_int32_t *bits28, *bits24; | ||
174 | static u_char init_perm[64], final_perm[64]; | ||
175 | static u_int32_t en_keysl[16], en_keysr[16]; | ||
176 | static u_int32_t de_keysl[16], de_keysr[16]; | ||
177 | static int des_initialised = 0; | ||
178 | static u_char m_sbox[4][4096]; | ||
179 | static u_int32_t psbox[4][256]; | ||
180 | static u_int32_t ip_maskl[8][256], ip_maskr[8][256]; | ||
181 | static u_int32_t fp_maskl[8][256], fp_maskr[8][256]; | ||
182 | static u_int32_t key_perm_maskl[8][128], key_perm_maskr[8][128]; | ||
183 | static u_int32_t comp_maskl[8][128], comp_maskr[8][128]; | ||
184 | static u_int32_t old_rawkey0, old_rawkey1; | ||
185 | |||
186 | static u_char ascii64[] = | ||
187 | "./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"; | ||
188 | /* 0000000000111111111122222222223333333333444444444455555555556666 */ | ||
189 | /* 0123456789012345678901234567890123456789012345678901234567890123 */ | ||
190 | |||
191 | static __inline int | ||
192 | ascii_to_bin(ch) | ||
193 | char ch; | ||
194 | { | ||
195 | if (ch > 'z') | ||
196 | return(0); | ||
197 | if (ch >= 'a') | ||
198 | return(ch - 'a' + 38); | ||
199 | if (ch > 'Z') | ||
200 | return(0); | ||
201 | if (ch >= 'A') | ||
202 | return(ch - 'A' + 12); | ||
203 | if (ch > '9') | ||
204 | return(0); | ||
205 | if (ch >= '.') | ||
206 | return(ch - '.'); | ||
207 | return(0); | ||
208 | } | ||
209 | |||
210 | static void | ||
211 | des_init() | ||
212 | { | ||
213 | int i, j, b, k, inbit, obit; | ||
214 | u_int32_t *p, *il, *ir, *fl, *fr; | ||
215 | |||
216 | old_rawkey0 = old_rawkey1 = 0; | ||
217 | saltbits = 0; | ||
218 | old_salt = 0; | ||
219 | bits24 = (bits28 = bits32 + 4) + 4; | ||
220 | |||
221 | /* | ||
222 | * Invert the S-boxes, reordering the input bits. | ||
223 | */ | ||
224 | for (i = 0; i < 8; i++) | ||
225 | for (j = 0; j < 64; j++) { | ||
226 | b = (j & 0x20) | ((j & 1) << 4) | ((j >> 1) & 0xf); | ||
227 | u_sbox[i][j] = sbox[i][b]; | ||
228 | } | ||
229 | |||
230 | /* | ||
231 | * Convert the inverted S-boxes into 4 arrays of 8 bits. | ||
232 | * Each will handle 12 bits of the S-box input. | ||
233 | */ | ||
234 | for (b = 0; b < 4; b++) | ||
235 | for (i = 0; i < 64; i++) | ||
236 | for (j = 0; j < 64; j++) | ||
237 | m_sbox[b][(i << 6) | j] = | ||
238 | (u_sbox[(b << 1)][i] << 4) | | ||
239 | u_sbox[(b << 1) + 1][j]; | ||
240 | |||
241 | /* | ||
242 | * Set up the initial & final permutations into a useful form, and | ||
243 | * initialise the inverted key permutation. | ||
244 | */ | ||
245 | for (i = 0; i < 64; i++) { | ||
246 | init_perm[final_perm[i] = IP[i] - 1] = i; | ||
247 | inv_key_perm[i] = 255; | ||
248 | } | ||
249 | |||
250 | /* | ||
251 | * Invert the key permutation and initialise the inverted key | ||
252 | * compression permutation. | ||
253 | */ | ||
254 | for (i = 0; i < 56; i++) { | ||
255 | u_key_perm[i] = key_perm[i] - 1; | ||
256 | inv_key_perm[key_perm[i] - 1] = i; | ||
257 | inv_comp_perm[i] = 255; | ||
258 | } | ||
259 | |||
260 | /* | ||
261 | * Invert the key compression permutation. | ||
262 | */ | ||
263 | for (i = 0; i < 48; i++) { | ||
264 | inv_comp_perm[comp_perm[i] - 1] = i; | ||
265 | } | ||
266 | |||
267 | /* | ||
268 | * Set up the OR-mask arrays for the initial and final permutations, | ||
269 | * and for the key initial and compression permutations. | ||
270 | */ | ||
271 | for (k = 0; k < 8; k++) { | ||
272 | for (i = 0; i < 256; i++) { | ||
273 | *(il = &ip_maskl[k][i]) = 0; | ||
274 | *(ir = &ip_maskr[k][i]) = 0; | ||
275 | *(fl = &fp_maskl[k][i]) = 0; | ||
276 | *(fr = &fp_maskr[k][i]) = 0; | ||
277 | for (j = 0; j < 8; j++) { | ||
278 | inbit = 8 * k + j; | ||
279 | if (i & bits8[j]) { | ||
280 | if ((obit = init_perm[inbit]) < 32) | ||
281 | *il |= bits32[obit]; | ||
282 | else | ||
283 | *ir |= bits32[obit-32]; | ||
284 | if ((obit = final_perm[inbit]) < 32) | ||
285 | *fl |= bits32[obit]; | ||
286 | else | ||
287 | *fr |= bits32[obit - 32]; | ||
288 | } | ||
289 | } | ||
290 | } | ||
291 | for (i = 0; i < 128; i++) { | ||
292 | *(il = &key_perm_maskl[k][i]) = 0; | ||
293 | *(ir = &key_perm_maskr[k][i]) = 0; | ||
294 | for (j = 0; j < 7; j++) { | ||
295 | inbit = 8 * k + j; | ||
296 | if (i & bits8[j + 1]) { | ||
297 | if ((obit = inv_key_perm[inbit]) == 255) | ||
298 | continue; | ||
299 | if (obit < 28) | ||
300 | *il |= bits28[obit]; | ||
301 | else | ||
302 | *ir |= bits28[obit - 28]; | ||
303 | } | ||
304 | } | ||
305 | *(il = &comp_maskl[k][i]) = 0; | ||
306 | *(ir = &comp_maskr[k][i]) = 0; | ||
307 | for (j = 0; j < 7; j++) { | ||
308 | inbit = 7 * k + j; | ||
309 | if (i & bits8[j + 1]) { | ||
310 | if ((obit=inv_comp_perm[inbit]) == 255) | ||
311 | continue; | ||
312 | if (obit < 24) | ||
313 | *il |= bits24[obit]; | ||
314 | else | ||
315 | *ir |= bits24[obit - 24]; | ||
316 | } | ||
317 | } | ||
318 | } | ||
319 | } | ||
320 | |||
321 | /* | ||
322 | * Invert the P-box permutation, and convert into OR-masks for | ||
323 | * handling the output of the S-box arrays setup above. | ||
324 | */ | ||
325 | for (i = 0; i < 32; i++) | ||
326 | un_pbox[pbox[i] - 1] = i; | ||
327 | |||
328 | for (b = 0; b < 4; b++) | ||
329 | for (i = 0; i < 256; i++) { | ||
330 | *(p = &psbox[b][i]) = 0; | ||
331 | for (j = 0; j < 8; j++) { | ||
332 | if (i & bits8[j]) | ||
333 | *p |= bits32[un_pbox[8 * b + j]]; | ||
334 | } | ||
335 | } | ||
336 | |||
337 | des_initialised = 1; | ||
338 | } | ||
339 | |||
340 | static void | ||
341 | setup_salt(salt) | ||
342 | int32_t salt; | ||
343 | { | ||
344 | u_int32_t obit, saltbit; | ||
345 | int i; | ||
346 | |||
347 | if (salt == old_salt) | ||
348 | return; | ||
349 | old_salt = salt; | ||
350 | |||
351 | saltbits = 0; | ||
352 | saltbit = 1; | ||
353 | obit = 0x800000; | ||
354 | for (i = 0; i < 24; i++) { | ||
355 | if (salt & saltbit) | ||
356 | saltbits |= obit; | ||
357 | saltbit <<= 1; | ||
358 | obit >>= 1; | ||
359 | } | ||
360 | } | ||
361 | |||
362 | static int | ||
363 | des_setkey(key) | ||
364 | const char *key; | ||
365 | { | ||
366 | u_int32_t k0, k1, rawkey0, rawkey1; | ||
367 | int shifts, round; | ||
368 | |||
369 | if (!des_initialised) | ||
370 | des_init(); | ||
371 | |||
372 | rawkey0 = ntohl(*(u_int32_t *) key); | ||
373 | rawkey1 = ntohl(*(u_int32_t *) (key + 4)); | ||
374 | |||
375 | if ((rawkey0 | rawkey1) | ||
376 | && rawkey0 == old_rawkey0 | ||
377 | && rawkey1 == old_rawkey1) { | ||
378 | /* | ||
379 | * Already setup for this key. | ||
380 | * This optimisation fails on a zero key (which is weak and | ||
381 | * has bad parity anyway) in order to simplify the starting | ||
382 | * conditions. | ||
383 | */ | ||
384 | return(0); | ||
385 | } | ||
386 | old_rawkey0 = rawkey0; | ||
387 | old_rawkey1 = rawkey1; | ||
388 | |||
389 | /* | ||
390 | * Do key permutation and split into two 28-bit subkeys. | ||
391 | */ | ||
392 | k0 = key_perm_maskl[0][rawkey0 >> 25] | ||
393 | | key_perm_maskl[1][(rawkey0 >> 17) & 0x7f] | ||
394 | | key_perm_maskl[2][(rawkey0 >> 9) & 0x7f] | ||
395 | | key_perm_maskl[3][(rawkey0 >> 1) & 0x7f] | ||
396 | | key_perm_maskl[4][rawkey1 >> 25] | ||
397 | | key_perm_maskl[5][(rawkey1 >> 17) & 0x7f] | ||
398 | | key_perm_maskl[6][(rawkey1 >> 9) & 0x7f] | ||
399 | | key_perm_maskl[7][(rawkey1 >> 1) & 0x7f]; | ||
400 | k1 = key_perm_maskr[0][rawkey0 >> 25] | ||
401 | | key_perm_maskr[1][(rawkey0 >> 17) & 0x7f] | ||
402 | | key_perm_maskr[2][(rawkey0 >> 9) & 0x7f] | ||
403 | | key_perm_maskr[3][(rawkey0 >> 1) & 0x7f] | ||
404 | | key_perm_maskr[4][rawkey1 >> 25] | ||
405 | | key_perm_maskr[5][(rawkey1 >> 17) & 0x7f] | ||
406 | | key_perm_maskr[6][(rawkey1 >> 9) & 0x7f] | ||
407 | | key_perm_maskr[7][(rawkey1 >> 1) & 0x7f]; | ||
408 | /* | ||
409 | * Rotate subkeys and do compression permutation. | ||
410 | */ | ||
411 | shifts = 0; | ||
412 | for (round = 0; round < 16; round++) { | ||
413 | u_int32_t t0, t1; | ||
414 | |||
415 | shifts += key_shifts[round]; | ||
416 | |||
417 | t0 = (k0 << shifts) | (k0 >> (28 - shifts)); | ||
418 | t1 = (k1 << shifts) | (k1 >> (28 - shifts)); | ||
419 | |||
420 | de_keysl[15 - round] = | ||
421 | en_keysl[round] = comp_maskl[0][(t0 >> 21) & 0x7f] | ||
422 | | comp_maskl[1][(t0 >> 14) & 0x7f] | ||
423 | | comp_maskl[2][(t0 >> 7) & 0x7f] | ||
424 | | comp_maskl[3][t0 & 0x7f] | ||
425 | | comp_maskl[4][(t1 >> 21) & 0x7f] | ||
426 | | comp_maskl[5][(t1 >> 14) & 0x7f] | ||
427 | | comp_maskl[6][(t1 >> 7) & 0x7f] | ||
428 | | comp_maskl[7][t1 & 0x7f]; | ||
429 | |||
430 | de_keysr[15 - round] = | ||
431 | en_keysr[round] = comp_maskr[0][(t0 >> 21) & 0x7f] | ||
432 | | comp_maskr[1][(t0 >> 14) & 0x7f] | ||
433 | | comp_maskr[2][(t0 >> 7) & 0x7f] | ||
434 | | comp_maskr[3][t0 & 0x7f] | ||
435 | | comp_maskr[4][(t1 >> 21) & 0x7f] | ||
436 | | comp_maskr[5][(t1 >> 14) & 0x7f] | ||
437 | | comp_maskr[6][(t1 >> 7) & 0x7f] | ||
438 | | comp_maskr[7][t1 & 0x7f]; | ||
439 | } | ||
440 | return(0); | ||
441 | } | ||
442 | |||
443 | static int | ||
444 | do_des(l_in, r_in, l_out, r_out, count) | ||
445 | u_int32_t l_in, r_in, *l_out, *r_out; | ||
446 | int count; | ||
447 | { | ||
448 | /* | ||
449 | * l_in, r_in, l_out, and r_out are in pseudo-"big-endian" format. | ||
450 | */ | ||
451 | u_int32_t l, r, *kl, *kr, *kl1, *kr1; | ||
452 | u_int32_t f, r48l, r48r; | ||
453 | int round; | ||
454 | |||
455 | if (count == 0) { | ||
456 | return(1); | ||
457 | } else if (count > 0) { | ||
458 | /* | ||
459 | * Encrypting | ||
460 | */ | ||
461 | kl1 = en_keysl; | ||
462 | kr1 = en_keysr; | ||
463 | } else { | ||
464 | /* | ||
465 | * Decrypting | ||
466 | */ | ||
467 | count = -count; | ||
468 | kl1 = de_keysl; | ||
469 | kr1 = de_keysr; | ||
470 | } | ||
471 | |||
472 | /* | ||
473 | * Do initial permutation (IP). | ||
474 | */ | ||
475 | l = ip_maskl[0][l_in >> 24] | ||
476 | | ip_maskl[1][(l_in >> 16) & 0xff] | ||
477 | | ip_maskl[2][(l_in >> 8) & 0xff] | ||
478 | | ip_maskl[3][l_in & 0xff] | ||
479 | | ip_maskl[4][r_in >> 24] | ||
480 | | ip_maskl[5][(r_in >> 16) & 0xff] | ||
481 | | ip_maskl[6][(r_in >> 8) & 0xff] | ||
482 | | ip_maskl[7][r_in & 0xff]; | ||
483 | r = ip_maskr[0][l_in >> 24] | ||
484 | | ip_maskr[1][(l_in >> 16) & 0xff] | ||
485 | | ip_maskr[2][(l_in >> 8) & 0xff] | ||
486 | | ip_maskr[3][l_in & 0xff] | ||
487 | | ip_maskr[4][r_in >> 24] | ||
488 | | ip_maskr[5][(r_in >> 16) & 0xff] | ||
489 | | ip_maskr[6][(r_in >> 8) & 0xff] | ||
490 | | ip_maskr[7][r_in & 0xff]; | ||
491 | |||
492 | while (count--) { | ||
493 | /* | ||
494 | * Do each round. | ||
495 | */ | ||
496 | kl = kl1; | ||
497 | kr = kr1; | ||
498 | round = 16; | ||
499 | while (round--) { | ||
500 | /* | ||
501 | * Expand R to 48 bits (simulate the E-box). | ||
502 | */ | ||
503 | r48l = ((r & 0x00000001) << 23) | ||
504 | | ((r & 0xf8000000) >> 9) | ||
505 | | ((r & 0x1f800000) >> 11) | ||
506 | | ((r & 0x01f80000) >> 13) | ||
507 | | ((r & 0x001f8000) >> 15); | ||
508 | |||
509 | r48r = ((r & 0x0001f800) << 7) | ||
510 | | ((r & 0x00001f80) << 5) | ||
511 | | ((r & 0x000001f8) << 3) | ||
512 | | ((r & 0x0000001f) << 1) | ||
513 | | ((r & 0x80000000) >> 31); | ||
514 | /* | ||
515 | * Do salting for crypt() and friends, and | ||
516 | * XOR with the permuted key. | ||
517 | */ | ||
518 | f = (r48l ^ r48r) & saltbits; | ||
519 | r48l ^= f ^ *kl++; | ||
520 | r48r ^= f ^ *kr++; | ||
521 | /* | ||
522 | * Do sbox lookups (which shrink it back to 32 bits) | ||
523 | * and do the pbox permutation at the same time. | ||
524 | */ | ||
525 | f = psbox[0][m_sbox[0][r48l >> 12]] | ||
526 | | psbox[1][m_sbox[1][r48l & 0xfff]] | ||
527 | | psbox[2][m_sbox[2][r48r >> 12]] | ||
528 | | psbox[3][m_sbox[3][r48r & 0xfff]]; | ||
529 | /* | ||
530 | * Now that we've permuted things, complete f(). | ||
531 | */ | ||
532 | f ^= l; | ||
533 | l = r; | ||
534 | r = f; | ||
535 | } | ||
536 | r = l; | ||
537 | l = f; | ||
538 | } | ||
539 | /* | ||
540 | * Do final permutation (inverse of IP). | ||
541 | */ | ||
542 | *l_out = fp_maskl[0][l >> 24] | ||
543 | | fp_maskl[1][(l >> 16) & 0xff] | ||
544 | | fp_maskl[2][(l >> 8) & 0xff] | ||
545 | | fp_maskl[3][l & 0xff] | ||
546 | | fp_maskl[4][r >> 24] | ||
547 | | fp_maskl[5][(r >> 16) & 0xff] | ||
548 | | fp_maskl[6][(r >> 8) & 0xff] | ||
549 | | fp_maskl[7][r & 0xff]; | ||
550 | *r_out = fp_maskr[0][l >> 24] | ||
551 | | fp_maskr[1][(l >> 16) & 0xff] | ||
552 | | fp_maskr[2][(l >> 8) & 0xff] | ||
553 | | fp_maskr[3][l & 0xff] | ||
554 | | fp_maskr[4][r >> 24] | ||
555 | | fp_maskr[5][(r >> 16) & 0xff] | ||
556 | | fp_maskr[6][(r >> 8) & 0xff] | ||
557 | | fp_maskr[7][r & 0xff]; | ||
558 | return(0); | ||
559 | } | ||
560 | |||
561 | static int | ||
562 | des_cipher(in, out, salt, count) | ||
563 | const char *in; | ||
564 | char *out; | ||
565 | int32_t salt; | ||
566 | int count; | ||
567 | { | ||
568 | u_int32_t l_out, r_out, rawl, rawr; | ||
569 | u_int32_t x[2]; | ||
570 | int retval; | ||
571 | |||
572 | if (!des_initialised) | ||
573 | des_init(); | ||
574 | |||
575 | setup_salt(salt); | ||
576 | |||
577 | memcpy(x, in, sizeof x); | ||
578 | rawl = ntohl(x[0]); | ||
579 | rawr = ntohl(x[1]); | ||
580 | retval = do_des(rawl, rawr, &l_out, &r_out, count); | ||
581 | |||
582 | x[0] = htonl(l_out); | ||
583 | x[1] = htonl(r_out); | ||
584 | memcpy(out, x, sizeof x); | ||
585 | return(retval); | ||
586 | } | ||
587 | |||
588 | char * | ||
589 | crypt(key, setting) | ||
590 | const char *key; | ||
591 | const char *setting; | ||
592 | { | ||
593 | int i; | ||
594 | u_int32_t count, salt, l, r0, r1, keybuf[2]; | ||
595 | u_char *p, *q; | ||
596 | static u_char output[21]; | ||
597 | extern char *md5crypt(const char *, const char *); | ||
598 | extern char *bcrypt(const char *, const char *); | ||
599 | |||
600 | if (setting[0] == '$') { | ||
601 | switch (setting[1]) { | ||
602 | case '1': | ||
603 | return (md5crypt(key, setting)); | ||
604 | default: | ||
605 | return bcrypt(key, setting); | ||
606 | } | ||
607 | } | ||
608 | |||
609 | if (!des_initialised) | ||
610 | des_init(); | ||
611 | |||
612 | /* | ||
613 | * Copy the key, shifting each character up by one bit | ||
614 | * and padding with zeros. | ||
615 | */ | ||
616 | q = (u_char *) keybuf; | ||
617 | while ((q - (u_char *) keybuf) < sizeof(keybuf)) { | ||
618 | if ((*q++ = *key << 1)) | ||
619 | key++; | ||
620 | } | ||
621 | if (des_setkey((u_char *) keybuf)) | ||
622 | return(NULL); | ||
623 | |||
624 | if (*setting == _PASSWORD_EFMT1) { | ||
625 | /* | ||
626 | * "new"-style: | ||
627 | * setting - underscore, 4 bytes of count, 4 bytes of salt | ||
628 | * key - unlimited characters | ||
629 | */ | ||
630 | for (i = 1, count = 0; i < 5; i++) | ||
631 | count |= ascii_to_bin(setting[i]) << (i - 1) * 6; | ||
632 | |||
633 | for (i = 5, salt = 0; i < 9; i++) | ||
634 | salt |= ascii_to_bin(setting[i]) << (i - 5) * 6; | ||
635 | |||
636 | while (*key) { | ||
637 | /* | ||
638 | * Encrypt the key with itself. | ||
639 | */ | ||
640 | if (des_cipher((u_char*)keybuf, (u_char*)keybuf, 0, 1)) | ||
641 | return(NULL); | ||
642 | /* | ||
643 | * And XOR with the next 8 characters of the key. | ||
644 | */ | ||
645 | q = (u_char *) keybuf; | ||
646 | while (((q - (u_char *) keybuf) < sizeof(keybuf)) && | ||
647 | *key) | ||
648 | *q++ ^= *key++ << 1; | ||
649 | |||
650 | if (des_setkey((u_char *) keybuf)) | ||
651 | return(NULL); | ||
652 | } | ||
653 | strlcpy((char *)output, setting, 10); | ||
654 | |||
655 | /* | ||
656 | * Double check that we weren't given a short setting. | ||
657 | * If we were, the above code will probably have created | ||
658 | * weird values for count and salt, but we don't really care. | ||
659 | * Just make sure the output string doesn't have an extra | ||
660 | * NUL in it. | ||
661 | */ | ||
662 | p = output + strlen((const char *)output); | ||
663 | } else { | ||
664 | /* | ||
665 | * "old"-style: | ||
666 | * setting - 2 bytes of salt | ||
667 | * key - up to 8 characters | ||
668 | */ | ||
669 | count = 25; | ||
670 | |||
671 | salt = (ascii_to_bin(setting[1]) << 6) | ||
672 | | ascii_to_bin(setting[0]); | ||
673 | |||
674 | output[0] = setting[0]; | ||
675 | /* | ||
676 | * If the encrypted password that the salt was extracted from | ||
677 | * is only 1 character long, the salt will be corrupted. We | ||
678 | * need to ensure that the output string doesn't have an extra | ||
679 | * NUL in it! | ||
680 | */ | ||
681 | output[1] = setting[1] ? setting[1] : output[0]; | ||
682 | |||
683 | p = output + 2; | ||
684 | } | ||
685 | setup_salt(salt); | ||
686 | /* | ||
687 | * Do it. | ||
688 | */ | ||
689 | if (do_des(0, 0, &r0, &r1, count)) | ||
690 | return(NULL); | ||
691 | /* | ||
692 | * Now encode the result... | ||
693 | */ | ||
694 | l = (r0 >> 8); | ||
695 | *p++ = ascii64[(l >> 18) & 0x3f]; | ||
696 | *p++ = ascii64[(l >> 12) & 0x3f]; | ||
697 | *p++ = ascii64[(l >> 6) & 0x3f]; | ||
698 | *p++ = ascii64[l & 0x3f]; | ||
699 | |||
700 | l = (r0 << 16) | ((r1 >> 16) & 0xffff); | ||
701 | *p++ = ascii64[(l >> 18) & 0x3f]; | ||
702 | *p++ = ascii64[(l >> 12) & 0x3f]; | ||
703 | *p++ = ascii64[(l >> 6) & 0x3f]; | ||
704 | *p++ = ascii64[l & 0x3f]; | ||
705 | |||
706 | l = r1 << 2; | ||
707 | *p++ = ascii64[(l >> 12) & 0x3f]; | ||
708 | *p++ = ascii64[(l >> 6) & 0x3f]; | ||
709 | *p++ = ascii64[l & 0x3f]; | ||
710 | *p = 0; | ||
711 | |||
712 | return((char *)output); | ||
713 | } | ||