summaryrefslogtreecommitdiff
path: root/src/lib/libcrypto/bn/asm/mo-586.pl
diff options
context:
space:
mode:
Diffstat (limited to 'src/lib/libcrypto/bn/asm/mo-586.pl')
-rw-r--r--src/lib/libcrypto/bn/asm/mo-586.pl603
1 files changed, 603 insertions, 0 deletions
diff --git a/src/lib/libcrypto/bn/asm/mo-586.pl b/src/lib/libcrypto/bn/asm/mo-586.pl
new file mode 100644
index 0000000000..0982293094
--- /dev/null
+++ b/src/lib/libcrypto/bn/asm/mo-586.pl
@@ -0,0 +1,603 @@
1#!/usr/bin/env perl
2
3# This is crypto/bn/asm/x86-mont.pl (with asciz from crypto/perlasm/x86asm.pl)
4# from OpenSSL 0.9.9-dev
5
6sub ::asciz
7{ my @str=unpack("C*",shift);
8 push @str,0;
9 while ($#str>15) {
10 &data_byte(@str[0..15]);
11 foreach (0..15) { shift @str; }
12 }
13 &data_byte(@str) if (@str);
14}
15
16# ====================================================================
17# Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL
18# project. The module is, however, dual licensed under OpenSSL and
19# CRYPTOGAMS licenses depending on where you obtain it. For further
20# details see http://www.openssl.org/~appro/cryptogams/.
21# ====================================================================
22
23# October 2005
24#
25# This is a "teaser" code, as it can be improved in several ways...
26# First of all non-SSE2 path should be implemented (yes, for now it
27# performs Montgomery multiplication/convolution only on SSE2-capable
28# CPUs such as P4, others fall down to original code). Then inner loop
29# can be unrolled and modulo-scheduled to improve ILP and possibly
30# moved to 128-bit XMM register bank (though it would require input
31# rearrangement and/or increase bus bandwidth utilization). Dedicated
32# squaring procedure should give further performance improvement...
33# Yet, for being draft, the code improves rsa512 *sign* benchmark by
34# 110%(!), rsa1024 one - by 70% and rsa4096 - by 20%:-)
35
36# December 2006
37#
38# Modulo-scheduling SSE2 loops results in further 15-20% improvement.
39# Integer-only code [being equipped with dedicated squaring procedure]
40# gives ~40% on rsa512 sign benchmark...
41
42push(@INC,"perlasm","../../perlasm");
43require "x86asm.pl";
44
45&asm_init($ARGV[0],$0);
46
47$sse2=0;
48for (@ARGV) { $sse2=1 if (/-DOPENSSL_IA32_SSE2/); }
49
50&external_label("OPENSSL_ia32cap_P") if ($sse2);
51
52&function_begin("bn_mul_mont");
53
54$i="edx";
55$j="ecx";
56$ap="esi"; $tp="esi"; # overlapping variables!!!
57$rp="edi"; $bp="edi"; # overlapping variables!!!
58$np="ebp";
59$num="ebx";
60
61$_num=&DWP(4*0,"esp"); # stack top layout
62$_rp=&DWP(4*1,"esp");
63$_ap=&DWP(4*2,"esp");
64$_bp=&DWP(4*3,"esp");
65$_np=&DWP(4*4,"esp");
66$_n0=&DWP(4*5,"esp"); $_n0q=&QWP(4*5,"esp");
67$_sp=&DWP(4*6,"esp");
68$_bpend=&DWP(4*7,"esp");
69$frame=32; # size of above frame rounded up to 16n
70
71 &xor ("eax","eax");
72 &mov ("edi",&wparam(5)); # int num
73 &cmp ("edi",4);
74 &jl (&label("just_leave"));
75
76 &lea ("esi",&wparam(0)); # put aside pointer to argument block
77 &lea ("edx",&wparam(1)); # load ap
78 &mov ("ebp","esp"); # saved stack pointer!
79 &add ("edi",2); # extra two words on top of tp
80 &neg ("edi");
81 &lea ("esp",&DWP(-$frame,"esp","edi",4)); # alloca($frame+4*(num+2))
82 &neg ("edi");
83
84 # minimize cache contention by arraning 2K window between stack
85 # pointer and ap argument [np is also position sensitive vector,
86 # but it's assumed to be near ap, as it's allocated at ~same
87 # time].
88 &mov ("eax","esp");
89 &sub ("eax","edx");
90 &and ("eax",2047);
91 &sub ("esp","eax"); # this aligns sp and ap modulo 2048
92
93 &xor ("edx","esp");
94 &and ("edx",2048);
95 &xor ("edx",2048);
96 &sub ("esp","edx"); # this splits them apart modulo 4096
97
98 &and ("esp",-64); # align to cache line
99
100 ################################# load argument block...
101 &mov ("eax",&DWP(0*4,"esi"));# BN_ULONG *rp
102 &mov ("ebx",&DWP(1*4,"esi"));# const BN_ULONG *ap
103 &mov ("ecx",&DWP(2*4,"esi"));# const BN_ULONG *bp
104 &mov ("edx",&DWP(3*4,"esi"));# const BN_ULONG *np
105 &mov ("esi",&DWP(4*4,"esi"));# const BN_ULONG *n0
106 #&mov ("edi",&DWP(5*4,"esi"));# int num
107
108 &mov ("esi",&DWP(0,"esi")); # pull n0[0]
109 &mov ($_rp,"eax"); # ... save a copy of argument block
110 &mov ($_ap,"ebx");
111 &mov ($_bp,"ecx");
112 &mov ($_np,"edx");
113 &mov ($_n0,"esi");
114 &lea ($num,&DWP(-3,"edi")); # num=num-1 to assist modulo-scheduling
115 #&mov ($_num,$num); # redundant as $num is not reused
116 &mov ($_sp,"ebp"); # saved stack pointer!
117
118if($sse2) {
119$acc0="mm0"; # mmx register bank layout
120$acc1="mm1";
121$car0="mm2";
122$car1="mm3";
123$mul0="mm4";
124$mul1="mm5";
125$temp="mm6";
126$mask="mm7";
127
128 &picmeup("eax","OPENSSL_ia32cap_P");
129 &bt (&DWP(0,"eax"),26);
130 &jnc (&label("non_sse2"));
131
132 &mov ("eax",-1);
133 &movd ($mask,"eax"); # mask 32 lower bits
134
135 &mov ($ap,$_ap); # load input pointers
136 &mov ($bp,$_bp);
137 &mov ($np,$_np);
138
139 &xor ($i,$i); # i=0
140 &xor ($j,$j); # j=0
141
142 &movd ($mul0,&DWP(0,$bp)); # bp[0]
143 &movd ($mul1,&DWP(0,$ap)); # ap[0]
144 &movd ($car1,&DWP(0,$np)); # np[0]
145
146 &pmuludq($mul1,$mul0); # ap[0]*bp[0]
147 &movq ($car0,$mul1);
148 &movq ($acc0,$mul1); # I wish movd worked for
149 &pand ($acc0,$mask); # inter-register transfers
150
151 &pmuludq($mul1,$_n0q); # *=n0
152
153 &pmuludq($car1,$mul1); # "t[0]"*np[0]*n0
154 &paddq ($car1,$acc0);
155
156 &movd ($acc1,&DWP(4,$np)); # np[1]
157 &movd ($acc0,&DWP(4,$ap)); # ap[1]
158
159 &psrlq ($car0,32);
160 &psrlq ($car1,32);
161
162 &inc ($j); # j++
163&set_label("1st",16);
164 &pmuludq($acc0,$mul0); # ap[j]*bp[0]
165 &pmuludq($acc1,$mul1); # np[j]*m1
166 &paddq ($car0,$acc0); # +=c0
167 &paddq ($car1,$acc1); # +=c1
168
169 &movq ($acc0,$car0);
170 &pand ($acc0,$mask);
171 &movd ($acc1,&DWP(4,$np,$j,4)); # np[j+1]
172 &paddq ($car1,$acc0); # +=ap[j]*bp[0];
173 &movd ($acc0,&DWP(4,$ap,$j,4)); # ap[j+1]
174 &psrlq ($car0,32);
175 &movd (&DWP($frame-4,"esp",$j,4),$car1); # tp[j-1]=
176 &psrlq ($car1,32);
177
178 &lea ($j,&DWP(1,$j));
179 &cmp ($j,$num);
180 &jl (&label("1st"));
181
182 &pmuludq($acc0,$mul0); # ap[num-1]*bp[0]
183 &pmuludq($acc1,$mul1); # np[num-1]*m1
184 &paddq ($car0,$acc0); # +=c0
185 &paddq ($car1,$acc1); # +=c1
186
187 &movq ($acc0,$car0);
188 &pand ($acc0,$mask);
189 &paddq ($car1,$acc0); # +=ap[num-1]*bp[0];
190 &movd (&DWP($frame-4,"esp",$j,4),$car1); # tp[num-2]=
191
192 &psrlq ($car0,32);
193 &psrlq ($car1,32);
194
195 &paddq ($car1,$car0);
196 &movq (&QWP($frame,"esp",$num,4),$car1); # tp[num].tp[num-1]
197
198 &inc ($i); # i++
199&set_label("outer");
200 &xor ($j,$j); # j=0
201
202 &movd ($mul0,&DWP(0,$bp,$i,4)); # bp[i]
203 &movd ($mul1,&DWP(0,$ap)); # ap[0]
204 &movd ($temp,&DWP($frame,"esp")); # tp[0]
205 &movd ($car1,&DWP(0,$np)); # np[0]
206 &pmuludq($mul1,$mul0); # ap[0]*bp[i]
207
208 &paddq ($mul1,$temp); # +=tp[0]
209 &movq ($acc0,$mul1);
210 &movq ($car0,$mul1);
211 &pand ($acc0,$mask);
212
213 &pmuludq($mul1,$_n0q); # *=n0
214
215 &pmuludq($car1,$mul1);
216 &paddq ($car1,$acc0);
217
218 &movd ($temp,&DWP($frame+4,"esp")); # tp[1]
219 &movd ($acc1,&DWP(4,$np)); # np[1]
220 &movd ($acc0,&DWP(4,$ap)); # ap[1]
221
222 &psrlq ($car0,32);
223 &psrlq ($car1,32);
224 &paddq ($car0,$temp); # +=tp[1]
225
226 &inc ($j); # j++
227 &dec ($num);
228&set_label("inner");
229 &pmuludq($acc0,$mul0); # ap[j]*bp[i]
230 &pmuludq($acc1,$mul1); # np[j]*m1
231 &paddq ($car0,$acc0); # +=c0
232 &paddq ($car1,$acc1); # +=c1
233
234 &movq ($acc0,$car0);
235 &movd ($temp,&DWP($frame+4,"esp",$j,4));# tp[j+1]
236 &pand ($acc0,$mask);
237 &movd ($acc1,&DWP(4,$np,$j,4)); # np[j+1]
238 &paddq ($car1,$acc0); # +=ap[j]*bp[i]+tp[j]
239 &movd ($acc0,&DWP(4,$ap,$j,4)); # ap[j+1]
240 &psrlq ($car0,32);
241 &movd (&DWP($frame-4,"esp",$j,4),$car1);# tp[j-1]=
242 &psrlq ($car1,32);
243 &paddq ($car0,$temp); # +=tp[j+1]
244
245 &dec ($num);
246 &lea ($j,&DWP(1,$j)); # j++
247 &jnz (&label("inner"));
248
249 &mov ($num,$j);
250 &pmuludq($acc0,$mul0); # ap[num-1]*bp[i]
251 &pmuludq($acc1,$mul1); # np[num-1]*m1
252 &paddq ($car0,$acc0); # +=c0
253 &paddq ($car1,$acc1); # +=c1
254
255 &movq ($acc0,$car0);
256 &pand ($acc0,$mask);
257 &paddq ($car1,$acc0); # +=ap[num-1]*bp[i]+tp[num-1]
258 &movd (&DWP($frame-4,"esp",$j,4),$car1); # tp[num-2]=
259 &psrlq ($car0,32);
260 &psrlq ($car1,32);
261
262 &movd ($temp,&DWP($frame+4,"esp",$num,4)); # += tp[num]
263 &paddq ($car1,$car0);
264 &paddq ($car1,$temp);
265 &movq (&QWP($frame,"esp",$num,4),$car1); # tp[num].tp[num-1]
266
267 &lea ($i,&DWP(1,$i)); # i++
268 &cmp ($i,$num);
269 &jle (&label("outer"));
270
271 &emms (); # done with mmx bank
272 &jmp (&label("common_tail"));
273
274&set_label("non_sse2",16);
275}
276
277if (0) {
278 &mov ("esp",$_sp);
279 &xor ("eax","eax"); # signal "not fast enough [yet]"
280 &jmp (&label("just_leave"));
281 # While the below code provides competitive performance for
282 # all key lengthes on modern Intel cores, it's still more
283 # than 10% slower for 4096-bit key elsewhere:-( "Competitive"
284 # means compared to the original integer-only assembler.
285 # 512-bit RSA sign is better by ~40%, but that's about all
286 # one can say about all CPUs...
287} else {
288$inp="esi"; # integer path uses these registers differently
289$word="edi";
290$carry="ebp";
291
292 &mov ($inp,$_ap);
293 &lea ($carry,&DWP(1,$num));
294 &mov ($word,$_bp);
295 &xor ($j,$j); # j=0
296 &mov ("edx",$inp);
297 &and ($carry,1); # see if num is even
298 &sub ("edx",$word); # see if ap==bp
299 &lea ("eax",&DWP(4,$word,$num,4)); # &bp[num]
300 &or ($carry,"edx");
301 &mov ($word,&DWP(0,$word)); # bp[0]
302 &jz (&label("bn_sqr_mont"));
303 &mov ($_bpend,"eax");
304 &mov ("eax",&DWP(0,$inp));
305 &xor ("edx","edx");
306
307&set_label("mull",16);
308 &mov ($carry,"edx");
309 &mul ($word); # ap[j]*bp[0]
310 &add ($carry,"eax");
311 &lea ($j,&DWP(1,$j));
312 &adc ("edx",0);
313 &mov ("eax",&DWP(0,$inp,$j,4)); # ap[j+1]
314 &cmp ($j,$num);
315 &mov (&DWP($frame-4,"esp",$j,4),$carry); # tp[j]=
316 &jl (&label("mull"));
317
318 &mov ($carry,"edx");
319 &mul ($word); # ap[num-1]*bp[0]
320 &mov ($word,$_n0);
321 &add ("eax",$carry);
322 &mov ($inp,$_np);
323 &adc ("edx",0);
324 &imul ($word,&DWP($frame,"esp")); # n0*tp[0]
325
326 &mov (&DWP($frame,"esp",$num,4),"eax"); # tp[num-1]=
327 &xor ($j,$j);
328 &mov (&DWP($frame+4,"esp",$num,4),"edx"); # tp[num]=
329 &mov (&DWP($frame+8,"esp",$num,4),$j); # tp[num+1]=
330
331 &mov ("eax",&DWP(0,$inp)); # np[0]
332 &mul ($word); # np[0]*m
333 &add ("eax",&DWP($frame,"esp")); # +=tp[0]
334 &mov ("eax",&DWP(4,$inp)); # np[1]
335 &adc ("edx",0);
336 &inc ($j);
337
338 &jmp (&label("2ndmadd"));
339
340&set_label("1stmadd",16);
341 &mov ($carry,"edx");
342 &mul ($word); # ap[j]*bp[i]
343 &add ($carry,&DWP($frame,"esp",$j,4)); # +=tp[j]
344 &lea ($j,&DWP(1,$j));
345 &adc ("edx",0);
346 &add ($carry,"eax");
347 &mov ("eax",&DWP(0,$inp,$j,4)); # ap[j+1]
348 &adc ("edx",0);
349 &cmp ($j,$num);
350 &mov (&DWP($frame-4,"esp",$j,4),$carry); # tp[j]=
351 &jl (&label("1stmadd"));
352
353 &mov ($carry,"edx");
354 &mul ($word); # ap[num-1]*bp[i]
355 &add ("eax",&DWP($frame,"esp",$num,4)); # +=tp[num-1]
356 &mov ($word,$_n0);
357 &adc ("edx",0);
358 &mov ($inp,$_np);
359 &add ($carry,"eax");
360 &adc ("edx",0);
361 &imul ($word,&DWP($frame,"esp")); # n0*tp[0]
362
363 &xor ($j,$j);
364 &add ("edx",&DWP($frame+4,"esp",$num,4)); # carry+=tp[num]
365 &mov (&DWP($frame,"esp",$num,4),$carry); # tp[num-1]=
366 &adc ($j,0);
367 &mov ("eax",&DWP(0,$inp)); # np[0]
368 &mov (&DWP($frame+4,"esp",$num,4),"edx"); # tp[num]=
369 &mov (&DWP($frame+8,"esp",$num,4),$j); # tp[num+1]=
370
371 &mul ($word); # np[0]*m
372 &add ("eax",&DWP($frame,"esp")); # +=tp[0]
373 &mov ("eax",&DWP(4,$inp)); # np[1]
374 &adc ("edx",0);
375 &mov ($j,1);
376
377&set_label("2ndmadd",16);
378 &mov ($carry,"edx");
379 &mul ($word); # np[j]*m
380 &add ($carry,&DWP($frame,"esp",$j,4)); # +=tp[j]
381 &lea ($j,&DWP(1,$j));
382 &adc ("edx",0);
383 &add ($carry,"eax");
384 &mov ("eax",&DWP(0,$inp,$j,4)); # np[j+1]
385 &adc ("edx",0);
386 &cmp ($j,$num);
387 &mov (&DWP($frame-8,"esp",$j,4),$carry); # tp[j-1]=
388 &jl (&label("2ndmadd"));
389
390 &mov ($carry,"edx");
391 &mul ($word); # np[j]*m
392 &add ($carry,&DWP($frame,"esp",$num,4)); # +=tp[num-1]
393 &adc ("edx",0);
394 &add ($carry,"eax");
395 &adc ("edx",0);
396 &mov (&DWP($frame-4,"esp",$num,4),$carry); # tp[num-2]=
397
398 &xor ("eax","eax");
399 &mov ($j,$_bp); # &bp[i]
400 &add ("edx",&DWP($frame+4,"esp",$num,4)); # carry+=tp[num]
401 &adc ("eax",&DWP($frame+8,"esp",$num,4)); # +=tp[num+1]
402 &lea ($j,&DWP(4,$j));
403 &mov (&DWP($frame,"esp",$num,4),"edx"); # tp[num-1]=
404 &cmp ($j,$_bpend);
405 &mov (&DWP($frame+4,"esp",$num,4),"eax"); # tp[num]=
406 &je (&label("common_tail"));
407
408 &mov ($word,&DWP(0,$j)); # bp[i+1]
409 &mov ($inp,$_ap);
410 &mov ($_bp,$j); # &bp[++i]
411 &xor ($j,$j);
412 &xor ("edx","edx");
413 &mov ("eax",&DWP(0,$inp));
414 &jmp (&label("1stmadd"));
415
416&set_label("bn_sqr_mont",16);
417$sbit=$num;
418 &mov ($_num,$num);
419 &mov ($_bp,$j); # i=0
420
421 &mov ("eax",$word); # ap[0]
422 &mul ($word); # ap[0]*ap[0]
423 &mov (&DWP($frame,"esp"),"eax"); # tp[0]=
424 &mov ($sbit,"edx");
425 &shr ("edx",1);
426 &and ($sbit,1);
427 &inc ($j);
428&set_label("sqr",16);
429 &mov ("eax",&DWP(0,$inp,$j,4)); # ap[j]
430 &mov ($carry,"edx");
431 &mul ($word); # ap[j]*ap[0]
432 &add ("eax",$carry);
433 &lea ($j,&DWP(1,$j));
434 &adc ("edx",0);
435 &lea ($carry,&DWP(0,$sbit,"eax",2));
436 &shr ("eax",31);
437 &cmp ($j,$_num);
438 &mov ($sbit,"eax");
439 &mov (&DWP($frame-4,"esp",$j,4),$carry); # tp[j]=
440 &jl (&label("sqr"));
441
442 &mov ("eax",&DWP(0,$inp,$j,4)); # ap[num-1]
443 &mov ($carry,"edx");
444 &mul ($word); # ap[num-1]*ap[0]
445 &add ("eax",$carry);
446 &mov ($word,$_n0);
447 &adc ("edx",0);
448 &mov ($inp,$_np);
449 &lea ($carry,&DWP(0,$sbit,"eax",2));
450 &imul ($word,&DWP($frame,"esp")); # n0*tp[0]
451 &shr ("eax",31);
452 &mov (&DWP($frame,"esp",$j,4),$carry); # tp[num-1]=
453
454 &lea ($carry,&DWP(0,"eax","edx",2));
455 &mov ("eax",&DWP(0,$inp)); # np[0]
456 &shr ("edx",31);
457 &mov (&DWP($frame+4,"esp",$j,4),$carry); # tp[num]=
458 &mov (&DWP($frame+8,"esp",$j,4),"edx"); # tp[num+1]=
459
460 &mul ($word); # np[0]*m
461 &add ("eax",&DWP($frame,"esp")); # +=tp[0]
462 &mov ($num,$j);
463 &adc ("edx",0);
464 &mov ("eax",&DWP(4,$inp)); # np[1]
465 &mov ($j,1);
466
467&set_label("3rdmadd",16);
468 &mov ($carry,"edx");
469 &mul ($word); # np[j]*m
470 &add ($carry,&DWP($frame,"esp",$j,4)); # +=tp[j]
471 &adc ("edx",0);
472 &add ($carry,"eax");
473 &mov ("eax",&DWP(4,$inp,$j,4)); # np[j+1]
474 &adc ("edx",0);
475 &mov (&DWP($frame-4,"esp",$j,4),$carry); # tp[j-1]=
476
477 &mov ($carry,"edx");
478 &mul ($word); # np[j+1]*m
479 &add ($carry,&DWP($frame+4,"esp",$j,4)); # +=tp[j+1]
480 &lea ($j,&DWP(2,$j));
481 &adc ("edx",0);
482 &add ($carry,"eax");
483 &mov ("eax",&DWP(0,$inp,$j,4)); # np[j+2]
484 &adc ("edx",0);
485 &cmp ($j,$num);
486 &mov (&DWP($frame-8,"esp",$j,4),$carry); # tp[j]=
487 &jl (&label("3rdmadd"));
488
489 &mov ($carry,"edx");
490 &mul ($word); # np[j]*m
491 &add ($carry,&DWP($frame,"esp",$num,4)); # +=tp[num-1]
492 &adc ("edx",0);
493 &add ($carry,"eax");
494 &adc ("edx",0);
495 &mov (&DWP($frame-4,"esp",$num,4),$carry); # tp[num-2]=
496
497 &mov ($j,$_bp); # i
498 &xor ("eax","eax");
499 &mov ($inp,$_ap);
500 &add ("edx",&DWP($frame+4,"esp",$num,4)); # carry+=tp[num]
501 &adc ("eax",&DWP($frame+8,"esp",$num,4)); # +=tp[num+1]
502 &mov (&DWP($frame,"esp",$num,4),"edx"); # tp[num-1]=
503 &cmp ($j,$num);
504 &mov (&DWP($frame+4,"esp",$num,4),"eax"); # tp[num]=
505 &je (&label("common_tail"));
506
507 &mov ($word,&DWP(4,$inp,$j,4)); # ap[i]
508 &lea ($j,&DWP(1,$j));
509 &mov ("eax",$word);
510 &mov ($_bp,$j); # ++i
511 &mul ($word); # ap[i]*ap[i]
512 &add ("eax",&DWP($frame,"esp",$j,4)); # +=tp[i]
513 &adc ("edx",0);
514 &mov (&DWP($frame,"esp",$j,4),"eax"); # tp[i]=
515 &xor ($carry,$carry);
516 &cmp ($j,$num);
517 &lea ($j,&DWP(1,$j));
518 &je (&label("sqrlast"));
519
520 &mov ($sbit,"edx"); # zaps $num
521 &shr ("edx",1);
522 &and ($sbit,1);
523&set_label("sqradd",16);
524 &mov ("eax",&DWP(0,$inp,$j,4)); # ap[j]
525 &mov ($carry,"edx");
526 &mul ($word); # ap[j]*ap[i]
527 &add ("eax",$carry);
528 &lea ($carry,&DWP(0,"eax","eax"));
529 &adc ("edx",0);
530 &shr ("eax",31);
531 &add ($carry,&DWP($frame,"esp",$j,4)); # +=tp[j]
532 &lea ($j,&DWP(1,$j));
533 &adc ("eax",0);
534 &add ($carry,$sbit);
535 &adc ("eax",0);
536 &cmp ($j,$_num);
537 &mov (&DWP($frame-4,"esp",$j,4),$carry); # tp[j]=
538 &mov ($sbit,"eax");
539 &jle (&label("sqradd"));
540
541 &mov ($carry,"edx");
542 &lea ("edx",&DWP(0,$sbit,"edx",2));
543 &shr ($carry,31);
544&set_label("sqrlast");
545 &mov ($word,$_n0);
546 &mov ($inp,$_np);
547 &imul ($word,&DWP($frame,"esp")); # n0*tp[0]
548
549 &add ("edx",&DWP($frame,"esp",$j,4)); # +=tp[num]
550 &mov ("eax",&DWP(0,$inp)); # np[0]
551 &adc ($carry,0);
552 &mov (&DWP($frame,"esp",$j,4),"edx"); # tp[num]=
553 &mov (&DWP($frame+4,"esp",$j,4),$carry); # tp[num+1]=
554
555 &mul ($word); # np[0]*m
556 &add ("eax",&DWP($frame,"esp")); # +=tp[0]
557 &lea ($num,&DWP(-1,$j));
558 &adc ("edx",0);
559 &mov ($j,1);
560 &mov ("eax",&DWP(4,$inp)); # np[1]
561
562 &jmp (&label("3rdmadd"));
563}
564
565&set_label("common_tail",16);
566 &mov ($np,$_np); # load modulus pointer
567 &mov ($rp,$_rp); # load result pointer
568 &lea ($tp,&DWP($frame,"esp")); # [$ap and $bp are zapped]
569
570 &mov ("eax",&DWP(0,$tp)); # tp[0]
571 &mov ($j,$num); # j=num-1
572 &xor ($i,$i); # i=0 and clear CF!
573
574&set_label("sub",16);
575 &sbb ("eax",&DWP(0,$np,$i,4));
576 &mov (&DWP(0,$rp,$i,4),"eax"); # rp[i]=tp[i]-np[i]
577 &dec ($j); # doesn't affect CF!
578 &mov ("eax",&DWP(4,$tp,$i,4)); # tp[i+1]
579 &lea ($i,&DWP(1,$i)); # i++
580 &jge (&label("sub"));
581
582 &sbb ("eax",0); # handle upmost overflow bit
583 &and ($tp,"eax");
584 &not ("eax");
585 &mov ($np,$rp);
586 &and ($np,"eax");
587 &or ($tp,$np); # tp=carry?tp:rp
588
589&set_label("copy",16); # copy or in-place refresh
590 &mov ("eax",&DWP(0,$tp,$num,4));
591 &mov (&DWP(0,$rp,$num,4),"eax"); # rp[i]=tp[i]
592 &mov (&DWP($frame,"esp",$num,4),$j); # zap temporary vector
593 &dec ($num);
594 &jge (&label("copy"));
595
596 &mov ("esp",$_sp); # pull saved stack pointer
597 &mov ("eax",1);
598&set_label("just_leave");
599&function_end("bn_mul_mont");
600
601&asciz("Montgomery Multiplication for x86, CRYPTOGAMS by <appro\@openssl.org>");
602
603&asm_finish();