summaryrefslogtreecommitdiff
path: root/src/lib/libcrypto/bn/asm/s390x-mont.pl
diff options
context:
space:
mode:
Diffstat (limited to 'src/lib/libcrypto/bn/asm/s390x-mont.pl')
-rw-r--r--src/lib/libcrypto/bn/asm/s390x-mont.pl277
1 files changed, 277 insertions, 0 deletions
diff --git a/src/lib/libcrypto/bn/asm/s390x-mont.pl b/src/lib/libcrypto/bn/asm/s390x-mont.pl
new file mode 100644
index 0000000000..9fd64e81ee
--- /dev/null
+++ b/src/lib/libcrypto/bn/asm/s390x-mont.pl
@@ -0,0 +1,277 @@
1#!/usr/bin/env perl
2
3# ====================================================================
4# Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL
5# project. The module is, however, dual licensed under OpenSSL and
6# CRYPTOGAMS licenses depending on where you obtain it. For further
7# details see http://www.openssl.org/~appro/cryptogams/.
8# ====================================================================
9
10# April 2007.
11#
12# Performance improvement over vanilla C code varies from 85% to 45%
13# depending on key length and benchmark. Unfortunately in this context
14# these are not very impressive results [for code that utilizes "wide"
15# 64x64=128-bit multiplication, which is not commonly available to C
16# programmers], at least hand-coded bn_asm.c replacement is known to
17# provide 30-40% better results for longest keys. Well, on a second
18# thought it's not very surprising, because z-CPUs are single-issue
19# and _strictly_ in-order execution, while bn_mul_mont is more or less
20# dependent on CPU ability to pipe-line instructions and have several
21# of them "in-flight" at the same time. I mean while other methods,
22# for example Karatsuba, aim to minimize amount of multiplications at
23# the cost of other operations increase, bn_mul_mont aim to neatly
24# "overlap" multiplications and the other operations [and on most
25# platforms even minimize the amount of the other operations, in
26# particular references to memory]. But it's possible to improve this
27# module performance by implementing dedicated squaring code-path and
28# possibly by unrolling loops...
29
30# January 2009.
31#
32# Reschedule to minimize/avoid Address Generation Interlock hazard,
33# make inner loops counter-based.
34
35# November 2010.
36#
37# Adapt for -m31 build. If kernel supports what's called "highgprs"
38# feature on Linux [see /proc/cpuinfo], it's possible to use 64-bit
39# instructions and achieve "64-bit" performance even in 31-bit legacy
40# application context. The feature is not specific to any particular
41# processor, as long as it's "z-CPU". Latter implies that the code
42# remains z/Architecture specific. Compatibility with 32-bit BN_ULONG
43# is achieved by swapping words after 64-bit loads, follow _dswap-s.
44# On z990 it was measured to perform 2.6-2.2 times better than
45# compiler-generated code, less for longer keys...
46
47$flavour = shift;
48
49if ($flavour =~ /3[12]/) {
50 $SIZE_T=4;
51 $g="";
52} else {
53 $SIZE_T=8;
54 $g="g";
55}
56
57while (($output=shift) && ($output!~/^\w[\w\-]*\.\w+$/)) {}
58open STDOUT,">$output";
59
60$stdframe=16*$SIZE_T+4*8;
61
62$mn0="%r0";
63$num="%r1";
64
65# int bn_mul_mont(
66$rp="%r2"; # BN_ULONG *rp,
67$ap="%r3"; # const BN_ULONG *ap,
68$bp="%r4"; # const BN_ULONG *bp,
69$np="%r5"; # const BN_ULONG *np,
70$n0="%r6"; # const BN_ULONG *n0,
71#$num="160(%r15)" # int num);
72
73$bi="%r2"; # zaps rp
74$j="%r7";
75
76$ahi="%r8";
77$alo="%r9";
78$nhi="%r10";
79$nlo="%r11";
80$AHI="%r12";
81$NHI="%r13";
82$count="%r14";
83$sp="%r15";
84
85$code.=<<___;
86.text
87.globl bn_mul_mont
88.type bn_mul_mont,\@function
89bn_mul_mont:
90 lgf $num,`$stdframe+$SIZE_T-4`($sp) # pull $num
91 sla $num,`log($SIZE_T)/log(2)` # $num to enumerate bytes
92 la $bp,0($num,$bp)
93
94 st${g} %r2,2*$SIZE_T($sp)
95
96 cghi $num,16 #
97 lghi %r2,0 #
98 blr %r14 # if($num<16) return 0;
99___
100$code.=<<___ if ($flavour =~ /3[12]/);
101 tmll $num,4
102 bnzr %r14 # if ($num&1) return 0;
103___
104$code.=<<___ if ($flavour !~ /3[12]/);
105 cghi $num,96 #
106 bhr %r14 # if($num>96) return 0;
107___
108$code.=<<___;
109 stm${g} %r3,%r15,3*$SIZE_T($sp)
110
111 lghi $rp,-$stdframe-8 # leave room for carry bit
112 lcgr $j,$num # -$num
113 lgr %r0,$sp
114 la $rp,0($rp,$sp)
115 la $sp,0($j,$rp) # alloca
116 st${g} %r0,0($sp) # back chain
117
118 sra $num,3 # restore $num
119 la $bp,0($j,$bp) # restore $bp
120 ahi $num,-1 # adjust $num for inner loop
121 lg $n0,0($n0) # pull n0
122 _dswap $n0
123
124 lg $bi,0($bp)
125 _dswap $bi
126 lg $alo,0($ap)
127 _dswap $alo
128 mlgr $ahi,$bi # ap[0]*bp[0]
129 lgr $AHI,$ahi
130
131 lgr $mn0,$alo # "tp[0]"*n0
132 msgr $mn0,$n0
133
134 lg $nlo,0($np) #
135 _dswap $nlo
136 mlgr $nhi,$mn0 # np[0]*m1
137 algr $nlo,$alo # +="tp[0]"
138 lghi $NHI,0
139 alcgr $NHI,$nhi
140
141 la $j,8(%r0) # j=1
142 lr $count,$num
143
144.align 16
145.L1st:
146 lg $alo,0($j,$ap)
147 _dswap $alo
148 mlgr $ahi,$bi # ap[j]*bp[0]
149 algr $alo,$AHI
150 lghi $AHI,0
151 alcgr $AHI,$ahi
152
153 lg $nlo,0($j,$np)
154 _dswap $nlo
155 mlgr $nhi,$mn0 # np[j]*m1
156 algr $nlo,$NHI
157 lghi $NHI,0
158 alcgr $nhi,$NHI # +="tp[j]"
159 algr $nlo,$alo
160 alcgr $NHI,$nhi
161
162 stg $nlo,$stdframe-8($j,$sp) # tp[j-1]=
163 la $j,8($j) # j++
164 brct $count,.L1st
165
166 algr $NHI,$AHI
167 lghi $AHI,0
168 alcgr $AHI,$AHI # upmost overflow bit
169 stg $NHI,$stdframe-8($j,$sp)
170 stg $AHI,$stdframe($j,$sp)
171 la $bp,8($bp) # bp++
172
173.Louter:
174 lg $bi,0($bp) # bp[i]
175 _dswap $bi
176 lg $alo,0($ap)
177 _dswap $alo
178 mlgr $ahi,$bi # ap[0]*bp[i]
179 alg $alo,$stdframe($sp) # +=tp[0]
180 lghi $AHI,0
181 alcgr $AHI,$ahi
182
183 lgr $mn0,$alo
184 msgr $mn0,$n0 # tp[0]*n0
185
186 lg $nlo,0($np) # np[0]
187 _dswap $nlo
188 mlgr $nhi,$mn0 # np[0]*m1
189 algr $nlo,$alo # +="tp[0]"
190 lghi $NHI,0
191 alcgr $NHI,$nhi
192
193 la $j,8(%r0) # j=1
194 lr $count,$num
195
196.align 16
197.Linner:
198 lg $alo,0($j,$ap)
199 _dswap $alo
200 mlgr $ahi,$bi # ap[j]*bp[i]
201 algr $alo,$AHI
202 lghi $AHI,0
203 alcgr $ahi,$AHI
204 alg $alo,$stdframe($j,$sp)# +=tp[j]
205 alcgr $AHI,$ahi
206
207 lg $nlo,0($j,$np)
208 _dswap $nlo
209 mlgr $nhi,$mn0 # np[j]*m1
210 algr $nlo,$NHI
211 lghi $NHI,0
212 alcgr $nhi,$NHI
213 algr $nlo,$alo # +="tp[j]"
214 alcgr $NHI,$nhi
215
216 stg $nlo,$stdframe-8($j,$sp) # tp[j-1]=
217 la $j,8($j) # j++
218 brct $count,.Linner
219
220 algr $NHI,$AHI
221 lghi $AHI,0
222 alcgr $AHI,$AHI
223 alg $NHI,$stdframe($j,$sp)# accumulate previous upmost overflow bit
224 lghi $ahi,0
225 alcgr $AHI,$ahi # new upmost overflow bit
226 stg $NHI,$stdframe-8($j,$sp)
227 stg $AHI,$stdframe($j,$sp)
228
229 la $bp,8($bp) # bp++
230 cl${g} $bp,`$stdframe+8+4*$SIZE_T`($j,$sp) # compare to &bp[num]
231 jne .Louter
232
233 l${g} $rp,`$stdframe+8+2*$SIZE_T`($j,$sp) # reincarnate rp
234 la $ap,$stdframe($sp)
235 ahi $num,1 # restore $num, incidentally clears "borrow"
236
237 la $j,0(%r0)
238 lr $count,$num
239.Lsub: lg $alo,0($j,$ap)
240 lg $nlo,0($j,$np)
241 _dswap $nlo
242 slbgr $alo,$nlo
243 stg $alo,0($j,$rp)
244 la $j,8($j)
245 brct $count,.Lsub
246 lghi $ahi,0
247 slbgr $AHI,$ahi # handle upmost carry
248
249 ngr $ap,$AHI
250 lghi $np,-1
251 xgr $np,$AHI
252 ngr $np,$rp
253 ogr $ap,$np # ap=borrow?tp:rp
254
255 la $j,0(%r0)
256 lgr $count,$num
257.Lcopy: lg $alo,0($j,$ap) # copy or in-place refresh
258 _dswap $alo
259 stg $j,$stdframe($j,$sp) # zap tp
260 stg $alo,0($j,$rp)
261 la $j,8($j)
262 brct $count,.Lcopy
263
264 la %r1,`$stdframe+8+6*$SIZE_T`($j,$sp)
265 lm${g} %r6,%r15,0(%r1)
266 lghi %r2,1 # signal "processed"
267 br %r14
268.size bn_mul_mont,.-bn_mul_mont
269.string "Montgomery Multiplication for s390x, CRYPTOGAMS by <appro\@openssl.org>"
270___
271
272foreach (split("\n",$code)) {
273 s/\`([^\`]*)\`/eval $1/ge;
274 s/_dswap\s+(%r[0-9]+)/sprintf("rllg\t%s,%s,32",$1,$1) if($SIZE_T==4)/e;
275 print $_,"\n";
276}
277close STDOUT;