summaryrefslogtreecommitdiff
path: root/src/lib/libcrypto/bn/asm/x86-gf2m.pl
diff options
context:
space:
mode:
Diffstat (limited to 'src/lib/libcrypto/bn/asm/x86-gf2m.pl')
-rw-r--r--src/lib/libcrypto/bn/asm/x86-gf2m.pl313
1 files changed, 0 insertions, 313 deletions
diff --git a/src/lib/libcrypto/bn/asm/x86-gf2m.pl b/src/lib/libcrypto/bn/asm/x86-gf2m.pl
deleted file mode 100644
index 808a1e5969..0000000000
--- a/src/lib/libcrypto/bn/asm/x86-gf2m.pl
+++ /dev/null
@@ -1,313 +0,0 @@
1#!/usr/bin/env perl
2#
3# ====================================================================
4# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
5# project. The module is, however, dual licensed under OpenSSL and
6# CRYPTOGAMS licenses depending on where you obtain it. For further
7# details see http://www.openssl.org/~appro/cryptogams/.
8# ====================================================================
9#
10# May 2011
11#
12# The module implements bn_GF2m_mul_2x2 polynomial multiplication used
13# in bn_gf2m.c. It's kind of low-hanging mechanical port from C for
14# the time being... Except that it has three code paths: pure integer
15# code suitable for any x86 CPU, MMX code suitable for PIII and later
16# and PCLMULQDQ suitable for Westmere and later. Improvement varies
17# from one benchmark and µ-arch to another. Below are interval values
18# for 163- and 571-bit ECDH benchmarks relative to compiler-generated
19# code:
20#
21# PIII 16%-30%
22# P4 12%-12%
23# Opteron 18%-40%
24# Core2 19%-44%
25# Atom 38%-64%
26# Westmere 53%-121%(PCLMULQDQ)/20%-32%(MMX)
27# Sandy Bridge 72%-127%(PCLMULQDQ)/27%-23%(MMX)
28#
29# Note that above improvement coefficients are not coefficients for
30# bn_GF2m_mul_2x2 itself. For example 120% ECDH improvement is result
31# of bn_GF2m_mul_2x2 being >4x faster. As it gets faster, benchmark
32# is more and more dominated by other subroutines, most notably by
33# BN_GF2m_mod[_mul]_arr...
34
35$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
36push(@INC,"${dir}","${dir}../../perlasm");
37require "x86asm.pl";
38
39&asm_init($ARGV[0],$0,$x86only = $ARGV[$#ARGV] eq "386");
40
41$sse2=0;
42for (@ARGV) { $sse2=1 if (/-DOPENSSL_IA32_SSE2/); }
43
44&external_label("OPENSSL_ia32cap_P") if ($sse2);
45
46$a="eax";
47$b="ebx";
48($a1,$a2,$a4)=("ecx","edx","ebp");
49
50$R="mm0";
51@T=("mm1","mm2");
52($A,$B,$B30,$B31)=("mm2","mm3","mm4","mm5");
53@i=("esi","edi");
54
55 if (!$x86only) {
56&function_begin_B("_mul_1x1_mmx");
57 &sub ("esp",32+4);
58 &mov ($a1,$a);
59 &lea ($a2,&DWP(0,$a,$a));
60 &and ($a1,0x3fffffff);
61 &lea ($a4,&DWP(0,$a2,$a2));
62 &mov (&DWP(0*4,"esp"),0);
63 &and ($a2,0x7fffffff);
64 &movd ($A,$a);
65 &movd ($B,$b);
66 &mov (&DWP(1*4,"esp"),$a1); # a1
67 &xor ($a1,$a2); # a1^a2
68 &pxor ($B31,$B31);
69 &pxor ($B30,$B30);
70 &mov (&DWP(2*4,"esp"),$a2); # a2
71 &xor ($a2,$a4); # a2^a4
72 &mov (&DWP(3*4,"esp"),$a1); # a1^a2
73 &pcmpgtd($B31,$A); # broadcast 31st bit
74 &paddd ($A,$A); # $A<<=1
75 &xor ($a1,$a2); # a1^a4=a1^a2^a2^a4
76 &mov (&DWP(4*4,"esp"),$a4); # a4
77 &xor ($a4,$a2); # a2=a4^a2^a4
78 &pand ($B31,$B);
79 &pcmpgtd($B30,$A); # broadcast 30th bit
80 &mov (&DWP(5*4,"esp"),$a1); # a1^a4
81 &xor ($a4,$a1); # a1^a2^a4
82 &psllq ($B31,31);
83 &pand ($B30,$B);
84 &mov (&DWP(6*4,"esp"),$a2); # a2^a4
85 &mov (@i[0],0x7);
86 &mov (&DWP(7*4,"esp"),$a4); # a1^a2^a4
87 &mov ($a4,@i[0]);
88 &and (@i[0],$b);
89 &shr ($b,3);
90 &mov (@i[1],$a4);
91 &psllq ($B30,30);
92 &and (@i[1],$b);
93 &shr ($b,3);
94 &movd ($R,&DWP(0,"esp",@i[0],4));
95 &mov (@i[0],$a4);
96 &and (@i[0],$b);
97 &shr ($b,3);
98 for($n=1;$n<9;$n++) {
99 &movd (@T[1],&DWP(0,"esp",@i[1],4));
100 &mov (@i[1],$a4);
101 &psllq (@T[1],3*$n);
102 &and (@i[1],$b);
103 &shr ($b,3);
104 &pxor ($R,@T[1]);
105
106 push(@i,shift(@i)); push(@T,shift(@T));
107 }
108 &movd (@T[1],&DWP(0,"esp",@i[1],4));
109 &pxor ($R,$B30);
110 &psllq (@T[1],3*$n++);
111 &pxor ($R,@T[1]);
112
113 &movd (@T[0],&DWP(0,"esp",@i[0],4));
114 &pxor ($R,$B31);
115 &psllq (@T[0],3*$n);
116 &add ("esp",32+4);
117 &pxor ($R,@T[0]);
118 &ret ();
119&function_end_B("_mul_1x1_mmx");
120 }
121
122($lo,$hi)=("eax","edx");
123@T=("ecx","ebp");
124
125&function_begin_B("_mul_1x1_ialu");
126 &sub ("esp",32+4);
127 &mov ($a1,$a);
128 &lea ($a2,&DWP(0,$a,$a));
129 &lea ($a4,&DWP(0,"",$a,4));
130 &and ($a1,0x3fffffff);
131 &lea (@i[1],&DWP(0,$lo,$lo));
132 &sar ($lo,31); # broadcast 31st bit
133 &mov (&DWP(0*4,"esp"),0);
134 &and ($a2,0x7fffffff);
135 &mov (&DWP(1*4,"esp"),$a1); # a1
136 &xor ($a1,$a2); # a1^a2
137 &mov (&DWP(2*4,"esp"),$a2); # a2
138 &xor ($a2,$a4); # a2^a4
139 &mov (&DWP(3*4,"esp"),$a1); # a1^a2
140 &xor ($a1,$a2); # a1^a4=a1^a2^a2^a4
141 &mov (&DWP(4*4,"esp"),$a4); # a4
142 &xor ($a4,$a2); # a2=a4^a2^a4
143 &mov (&DWP(5*4,"esp"),$a1); # a1^a4
144 &xor ($a4,$a1); # a1^a2^a4
145 &sar (@i[1],31); # broardcast 30th bit
146 &and ($lo,$b);
147 &mov (&DWP(6*4,"esp"),$a2); # a2^a4
148 &and (@i[1],$b);
149 &mov (&DWP(7*4,"esp"),$a4); # a1^a2^a4
150 &mov ($hi,$lo);
151 &shl ($lo,31);
152 &mov (@T[0],@i[1]);
153 &shr ($hi,1);
154
155 &mov (@i[0],0x7);
156 &shl (@i[1],30);
157 &and (@i[0],$b);
158 &shr (@T[0],2);
159 &xor ($lo,@i[1]);
160
161 &shr ($b,3);
162 &mov (@i[1],0x7); # 5-byte instruction!?
163 &and (@i[1],$b);
164 &shr ($b,3);
165 &xor ($hi,@T[0]);
166 &xor ($lo,&DWP(0,"esp",@i[0],4));
167 &mov (@i[0],0x7);
168 &and (@i[0],$b);
169 &shr ($b,3);
170 for($n=1;$n<9;$n++) {
171 &mov (@T[1],&DWP(0,"esp",@i[1],4));
172 &mov (@i[1],0x7);
173 &mov (@T[0],@T[1]);
174 &shl (@T[1],3*$n);
175 &and (@i[1],$b);
176 &shr (@T[0],32-3*$n);
177 &xor ($lo,@T[1]);
178 &shr ($b,3);
179 &xor ($hi,@T[0]);
180
181 push(@i,shift(@i)); push(@T,shift(@T));
182 }
183 &mov (@T[1],&DWP(0,"esp",@i[1],4));
184 &mov (@T[0],@T[1]);
185 &shl (@T[1],3*$n);
186 &mov (@i[1],&DWP(0,"esp",@i[0],4));
187 &shr (@T[0],32-3*$n); $n++;
188 &mov (@i[0],@i[1]);
189 &xor ($lo,@T[1]);
190 &shl (@i[1],3*$n);
191 &xor ($hi,@T[0]);
192 &shr (@i[0],32-3*$n);
193 &xor ($lo,@i[1]);
194 &xor ($hi,@i[0]);
195
196 &add ("esp",32+4);
197 &ret ();
198&function_end_B("_mul_1x1_ialu");
199
200# void bn_GF2m_mul_2x2(BN_ULONG *r, BN_ULONG a1, BN_ULONG a0, BN_ULONG b1, BN_ULONG b0);
201&function_begin_B("bn_GF2m_mul_2x2");
202if (!$x86only) {
203 &picmeup("edx","OPENSSL_ia32cap_P");
204 &mov ("eax",&DWP(0,"edx"));
205 &mov ("edx",&DWP(4,"edx"));
206 &test ("eax",1<<23); # check MMX bit
207 &jz (&label("ialu"));
208if ($sse2) {
209 &test ("eax",1<<24); # check FXSR bit
210 &jz (&label("mmx"));
211 &test ("edx",1<<1); # check PCLMULQDQ bit
212 &jz (&label("mmx"));
213
214 &movups ("xmm0",&QWP(8,"esp"));
215 &shufps ("xmm0","xmm0",0b10110001);
216 &pclmulqdq ("xmm0","xmm0",1);
217 &mov ("eax",&DWP(4,"esp"));
218 &movups (&QWP(0,"eax"),"xmm0");
219 &ret ();
220
221&set_label("mmx",16);
222}
223 &push ("ebp");
224 &push ("ebx");
225 &push ("esi");
226 &push ("edi");
227 &mov ($a,&wparam(1));
228 &mov ($b,&wparam(3));
229 &call ("_mul_1x1_mmx"); # a1·b1
230 &movq ("mm7",$R);
231
232 &mov ($a,&wparam(2));
233 &mov ($b,&wparam(4));
234 &call ("_mul_1x1_mmx"); # a0·b0
235 &movq ("mm6",$R);
236
237 &mov ($a,&wparam(1));
238 &mov ($b,&wparam(3));
239 &xor ($a,&wparam(2));
240 &xor ($b,&wparam(4));
241 &call ("_mul_1x1_mmx"); # (a0+a1)·(b0+b1)
242 &pxor ($R,"mm7");
243 &mov ($a,&wparam(0));
244 &pxor ($R,"mm6"); # (a0+a1)·(b0+b1)-a1·b1-a0·b0
245
246 &movq ($A,$R);
247 &psllq ($R,32);
248 &pop ("edi");
249 &psrlq ($A,32);
250 &pop ("esi");
251 &pxor ($R,"mm6");
252 &pop ("ebx");
253 &pxor ($A,"mm7");
254 &movq (&QWP(0,$a),$R);
255 &pop ("ebp");
256 &movq (&QWP(8,$a),$A);
257 &emms ();
258 &ret ();
259&set_label("ialu",16);
260}
261 &push ("ebp");
262 &push ("ebx");
263 &push ("esi");
264 &push ("edi");
265 &stack_push(4+1);
266
267 &mov ($a,&wparam(1));
268 &mov ($b,&wparam(3));
269 &call ("_mul_1x1_ialu"); # a1·b1
270 &mov (&DWP(8,"esp"),$lo);
271 &mov (&DWP(12,"esp"),$hi);
272
273 &mov ($a,&wparam(2));
274 &mov ($b,&wparam(4));
275 &call ("_mul_1x1_ialu"); # a0·b0
276 &mov (&DWP(0,"esp"),$lo);
277 &mov (&DWP(4,"esp"),$hi);
278
279 &mov ($a,&wparam(1));
280 &mov ($b,&wparam(3));
281 &xor ($a,&wparam(2));
282 &xor ($b,&wparam(4));
283 &call ("_mul_1x1_ialu"); # (a0+a1)·(b0+b1)
284
285 &mov ("ebp",&wparam(0));
286 @r=("ebx","ecx","edi","esi");
287 &mov (@r[0],&DWP(0,"esp"));
288 &mov (@r[1],&DWP(4,"esp"));
289 &mov (@r[2],&DWP(8,"esp"));
290 &mov (@r[3],&DWP(12,"esp"));
291
292 &xor ($lo,$hi);
293 &xor ($hi,@r[1]);
294 &xor ($lo,@r[0]);
295 &mov (&DWP(0,"ebp"),@r[0]);
296 &xor ($hi,@r[2]);
297 &mov (&DWP(12,"ebp"),@r[3]);
298 &xor ($lo,@r[3]);
299 &stack_pop(4+1);
300 &xor ($hi,@r[3]);
301 &pop ("edi");
302 &xor ($lo,$hi);
303 &pop ("esi");
304 &mov (&DWP(8,"ebp"),$hi);
305 &pop ("ebx");
306 &mov (&DWP(4,"ebp"),$lo);
307 &pop ("ebp");
308 &ret ();
309&function_end_B("bn_GF2m_mul_2x2");
310
311&asciz ("GF(2^m) Multiplication for x86, CRYPTOGAMS by <appro\@openssl.org>");
312
313&asm_finish();