diff options
Diffstat (limited to 'src/lib/libcrypto/bn/bn_asm.c')
| -rw-r--r-- | src/lib/libcrypto/bn/bn_asm.c | 1030 |
1 files changed, 1030 insertions, 0 deletions
diff --git a/src/lib/libcrypto/bn/bn_asm.c b/src/lib/libcrypto/bn/bn_asm.c new file mode 100644 index 0000000000..c43c91cc09 --- /dev/null +++ b/src/lib/libcrypto/bn/bn_asm.c | |||
| @@ -0,0 +1,1030 @@ | |||
| 1 | /* crypto/bn/bn_asm.c */ | ||
| 2 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) | ||
| 3 | * All rights reserved. | ||
| 4 | * | ||
| 5 | * This package is an SSL implementation written | ||
| 6 | * by Eric Young (eay@cryptsoft.com). | ||
| 7 | * The implementation was written so as to conform with Netscapes SSL. | ||
| 8 | * | ||
| 9 | * This library is free for commercial and non-commercial use as long as | ||
| 10 | * the following conditions are aheared to. The following conditions | ||
| 11 | * apply to all code found in this distribution, be it the RC4, RSA, | ||
| 12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation | ||
| 13 | * included with this distribution is covered by the same copyright terms | ||
| 14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | ||
| 15 | * | ||
| 16 | * Copyright remains Eric Young's, and as such any Copyright notices in | ||
| 17 | * the code are not to be removed. | ||
| 18 | * If this package is used in a product, Eric Young should be given attribution | ||
| 19 | * as the author of the parts of the library used. | ||
| 20 | * This can be in the form of a textual message at program startup or | ||
| 21 | * in documentation (online or textual) provided with the package. | ||
| 22 | * | ||
| 23 | * Redistribution and use in source and binary forms, with or without | ||
| 24 | * modification, are permitted provided that the following conditions | ||
| 25 | * are met: | ||
| 26 | * 1. Redistributions of source code must retain the copyright | ||
| 27 | * notice, this list of conditions and the following disclaimer. | ||
| 28 | * 2. Redistributions in binary form must reproduce the above copyright | ||
| 29 | * notice, this list of conditions and the following disclaimer in the | ||
| 30 | * documentation and/or other materials provided with the distribution. | ||
| 31 | * 3. All advertising materials mentioning features or use of this software | ||
| 32 | * must display the following acknowledgement: | ||
| 33 | * "This product includes cryptographic software written by | ||
| 34 | * Eric Young (eay@cryptsoft.com)" | ||
| 35 | * The word 'cryptographic' can be left out if the rouines from the library | ||
| 36 | * being used are not cryptographic related :-). | ||
| 37 | * 4. If you include any Windows specific code (or a derivative thereof) from | ||
| 38 | * the apps directory (application code) you must include an acknowledgement: | ||
| 39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | ||
| 40 | * | ||
| 41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | ||
| 42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
| 43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | ||
| 44 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | ||
| 45 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | ||
| 46 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | ||
| 47 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
| 48 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | ||
| 49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | ||
| 50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | ||
| 51 | * SUCH DAMAGE. | ||
| 52 | * | ||
| 53 | * The licence and distribution terms for any publically available version or | ||
| 54 | * derivative of this code cannot be changed. i.e. this code cannot simply be | ||
| 55 | * copied and put under another distribution licence | ||
| 56 | * [including the GNU Public Licence.] | ||
| 57 | */ | ||
| 58 | |||
| 59 | #ifndef BN_DEBUG | ||
| 60 | # undef NDEBUG /* avoid conflicting definitions */ | ||
| 61 | # define NDEBUG | ||
| 62 | #endif | ||
| 63 | |||
| 64 | #include <stdio.h> | ||
| 65 | #include <assert.h> | ||
| 66 | #include "cryptlib.h" | ||
| 67 | #include "bn_lcl.h" | ||
| 68 | |||
| 69 | #if defined(BN_LLONG) || defined(BN_UMULT_HIGH) | ||
| 70 | |||
| 71 | BN_ULONG bn_mul_add_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w) | ||
| 72 | { | ||
| 73 | BN_ULONG c1=0; | ||
| 74 | |||
| 75 | assert(num >= 0); | ||
| 76 | if (num <= 0) return(c1); | ||
| 77 | |||
| 78 | #ifndef OPENSSL_SMALL_FOOTPRINT | ||
| 79 | while (num&~3) | ||
| 80 | { | ||
| 81 | mul_add(rp[0],ap[0],w,c1); | ||
| 82 | mul_add(rp[1],ap[1],w,c1); | ||
| 83 | mul_add(rp[2],ap[2],w,c1); | ||
| 84 | mul_add(rp[3],ap[3],w,c1); | ||
| 85 | ap+=4; rp+=4; num-=4; | ||
| 86 | } | ||
| 87 | #endif | ||
| 88 | while (num) | ||
| 89 | { | ||
| 90 | mul_add(rp[0],ap[0],w,c1); | ||
| 91 | ap++; rp++; num--; | ||
| 92 | } | ||
| 93 | |||
| 94 | return(c1); | ||
| 95 | } | ||
| 96 | |||
| 97 | BN_ULONG bn_mul_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w) | ||
| 98 | { | ||
| 99 | BN_ULONG c1=0; | ||
| 100 | |||
| 101 | assert(num >= 0); | ||
| 102 | if (num <= 0) return(c1); | ||
| 103 | |||
| 104 | #ifndef OPENSSL_SMALL_FOOTPRINT | ||
| 105 | while (num&~3) | ||
| 106 | { | ||
| 107 | mul(rp[0],ap[0],w,c1); | ||
| 108 | mul(rp[1],ap[1],w,c1); | ||
| 109 | mul(rp[2],ap[2],w,c1); | ||
| 110 | mul(rp[3],ap[3],w,c1); | ||
| 111 | ap+=4; rp+=4; num-=4; | ||
| 112 | } | ||
| 113 | #endif | ||
| 114 | while (num) | ||
| 115 | { | ||
| 116 | mul(rp[0],ap[0],w,c1); | ||
| 117 | ap++; rp++; num--; | ||
| 118 | } | ||
| 119 | return(c1); | ||
| 120 | } | ||
| 121 | |||
| 122 | void bn_sqr_words(BN_ULONG *r, const BN_ULONG *a, int n) | ||
| 123 | { | ||
| 124 | assert(n >= 0); | ||
| 125 | if (n <= 0) return; | ||
| 126 | |||
| 127 | #ifndef OPENSSL_SMALL_FOOTPRINT | ||
| 128 | while (n&~3) | ||
| 129 | { | ||
| 130 | sqr(r[0],r[1],a[0]); | ||
| 131 | sqr(r[2],r[3],a[1]); | ||
| 132 | sqr(r[4],r[5],a[2]); | ||
| 133 | sqr(r[6],r[7],a[3]); | ||
| 134 | a+=4; r+=8; n-=4; | ||
| 135 | } | ||
| 136 | #endif | ||
| 137 | while (n) | ||
| 138 | { | ||
| 139 | sqr(r[0],r[1],a[0]); | ||
| 140 | a++; r+=2; n--; | ||
| 141 | } | ||
| 142 | } | ||
| 143 | |||
| 144 | #else /* !(defined(BN_LLONG) || defined(BN_UMULT_HIGH)) */ | ||
| 145 | |||
| 146 | BN_ULONG bn_mul_add_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w) | ||
| 147 | { | ||
| 148 | BN_ULONG c=0; | ||
| 149 | BN_ULONG bl,bh; | ||
| 150 | |||
| 151 | assert(num >= 0); | ||
| 152 | if (num <= 0) return((BN_ULONG)0); | ||
| 153 | |||
| 154 | bl=LBITS(w); | ||
| 155 | bh=HBITS(w); | ||
| 156 | |||
| 157 | #ifndef OPENSSL_SMALL_FOOTPRINT | ||
| 158 | while (num&~3) | ||
| 159 | { | ||
| 160 | mul_add(rp[0],ap[0],bl,bh,c); | ||
| 161 | mul_add(rp[1],ap[1],bl,bh,c); | ||
| 162 | mul_add(rp[2],ap[2],bl,bh,c); | ||
| 163 | mul_add(rp[3],ap[3],bl,bh,c); | ||
| 164 | ap+=4; rp+=4; num-=4; | ||
| 165 | } | ||
| 166 | #endif | ||
| 167 | while (num) | ||
| 168 | { | ||
| 169 | mul_add(rp[0],ap[0],bl,bh,c); | ||
| 170 | ap++; rp++; num--; | ||
| 171 | } | ||
| 172 | return(c); | ||
| 173 | } | ||
| 174 | |||
| 175 | BN_ULONG bn_mul_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w) | ||
| 176 | { | ||
| 177 | BN_ULONG carry=0; | ||
| 178 | BN_ULONG bl,bh; | ||
| 179 | |||
| 180 | assert(num >= 0); | ||
| 181 | if (num <= 0) return((BN_ULONG)0); | ||
| 182 | |||
| 183 | bl=LBITS(w); | ||
| 184 | bh=HBITS(w); | ||
| 185 | |||
| 186 | #ifndef OPENSSL_SMALL_FOOTPRINT | ||
| 187 | while (num&~3) | ||
| 188 | { | ||
| 189 | mul(rp[0],ap[0],bl,bh,carry); | ||
| 190 | mul(rp[1],ap[1],bl,bh,carry); | ||
| 191 | mul(rp[2],ap[2],bl,bh,carry); | ||
| 192 | mul(rp[3],ap[3],bl,bh,carry); | ||
| 193 | ap+=4; rp+=4; num-=4; | ||
| 194 | } | ||
| 195 | #endif | ||
| 196 | while (num) | ||
| 197 | { | ||
| 198 | mul(rp[0],ap[0],bl,bh,carry); | ||
| 199 | ap++; rp++; num--; | ||
| 200 | } | ||
| 201 | return(carry); | ||
| 202 | } | ||
| 203 | |||
| 204 | void bn_sqr_words(BN_ULONG *r, const BN_ULONG *a, int n) | ||
| 205 | { | ||
| 206 | assert(n >= 0); | ||
| 207 | if (n <= 0) return; | ||
| 208 | |||
| 209 | #ifndef OPENSSL_SMALL_FOOTPRINT | ||
| 210 | while (n&~3) | ||
| 211 | { | ||
| 212 | sqr64(r[0],r[1],a[0]); | ||
| 213 | sqr64(r[2],r[3],a[1]); | ||
| 214 | sqr64(r[4],r[5],a[2]); | ||
| 215 | sqr64(r[6],r[7],a[3]); | ||
| 216 | a+=4; r+=8; n-=4; | ||
| 217 | } | ||
| 218 | #endif | ||
| 219 | while (n) | ||
| 220 | { | ||
| 221 | sqr64(r[0],r[1],a[0]); | ||
| 222 | a++; r+=2; n--; | ||
| 223 | } | ||
| 224 | } | ||
| 225 | |||
| 226 | #endif /* !(defined(BN_LLONG) || defined(BN_UMULT_HIGH)) */ | ||
| 227 | |||
| 228 | #if defined(BN_LLONG) && defined(BN_DIV2W) | ||
| 229 | |||
| 230 | BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d) | ||
| 231 | { | ||
| 232 | return((BN_ULONG)(((((BN_ULLONG)h)<<BN_BITS2)|l)/(BN_ULLONG)d)); | ||
| 233 | } | ||
| 234 | |||
| 235 | #else | ||
| 236 | |||
| 237 | /* Divide h,l by d and return the result. */ | ||
| 238 | /* I need to test this some more :-( */ | ||
| 239 | BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d) | ||
| 240 | { | ||
| 241 | BN_ULONG dh,dl,q,ret=0,th,tl,t; | ||
| 242 | int i,count=2; | ||
| 243 | |||
| 244 | if (d == 0) return(BN_MASK2); | ||
| 245 | |||
| 246 | i=BN_num_bits_word(d); | ||
| 247 | assert((i == BN_BITS2) || (h <= (BN_ULONG)1<<i)); | ||
| 248 | |||
| 249 | i=BN_BITS2-i; | ||
| 250 | if (h >= d) h-=d; | ||
| 251 | |||
| 252 | if (i) | ||
| 253 | { | ||
| 254 | d<<=i; | ||
| 255 | h=(h<<i)|(l>>(BN_BITS2-i)); | ||
| 256 | l<<=i; | ||
| 257 | } | ||
| 258 | dh=(d&BN_MASK2h)>>BN_BITS4; | ||
| 259 | dl=(d&BN_MASK2l); | ||
| 260 | for (;;) | ||
| 261 | { | ||
| 262 | if ((h>>BN_BITS4) == dh) | ||
| 263 | q=BN_MASK2l; | ||
| 264 | else | ||
| 265 | q=h/dh; | ||
| 266 | |||
| 267 | th=q*dh; | ||
| 268 | tl=dl*q; | ||
| 269 | for (;;) | ||
| 270 | { | ||
| 271 | t=h-th; | ||
| 272 | if ((t&BN_MASK2h) || | ||
| 273 | ((tl) <= ( | ||
| 274 | (t<<BN_BITS4)| | ||
| 275 | ((l&BN_MASK2h)>>BN_BITS4)))) | ||
| 276 | break; | ||
| 277 | q--; | ||
| 278 | th-=dh; | ||
| 279 | tl-=dl; | ||
| 280 | } | ||
| 281 | t=(tl>>BN_BITS4); | ||
| 282 | tl=(tl<<BN_BITS4)&BN_MASK2h; | ||
| 283 | th+=t; | ||
| 284 | |||
| 285 | if (l < tl) th++; | ||
| 286 | l-=tl; | ||
| 287 | if (h < th) | ||
| 288 | { | ||
| 289 | h+=d; | ||
| 290 | q--; | ||
| 291 | } | ||
| 292 | h-=th; | ||
| 293 | |||
| 294 | if (--count == 0) break; | ||
| 295 | |||
| 296 | ret=q<<BN_BITS4; | ||
| 297 | h=((h<<BN_BITS4)|(l>>BN_BITS4))&BN_MASK2; | ||
| 298 | l=(l&BN_MASK2l)<<BN_BITS4; | ||
| 299 | } | ||
| 300 | ret|=q; | ||
| 301 | return(ret); | ||
| 302 | } | ||
| 303 | #endif /* !defined(BN_LLONG) && defined(BN_DIV2W) */ | ||
| 304 | |||
| 305 | #ifdef BN_LLONG | ||
| 306 | BN_ULONG bn_add_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, int n) | ||
| 307 | { | ||
| 308 | BN_ULLONG ll=0; | ||
| 309 | |||
| 310 | assert(n >= 0); | ||
| 311 | if (n <= 0) return((BN_ULONG)0); | ||
| 312 | |||
| 313 | #ifndef OPENSSL_SMALL_FOOTPRINT | ||
| 314 | while (n&~3) | ||
| 315 | { | ||
| 316 | ll+=(BN_ULLONG)a[0]+b[0]; | ||
| 317 | r[0]=(BN_ULONG)ll&BN_MASK2; | ||
| 318 | ll>>=BN_BITS2; | ||
| 319 | ll+=(BN_ULLONG)a[1]+b[1]; | ||
| 320 | r[1]=(BN_ULONG)ll&BN_MASK2; | ||
| 321 | ll>>=BN_BITS2; | ||
| 322 | ll+=(BN_ULLONG)a[2]+b[2]; | ||
| 323 | r[2]=(BN_ULONG)ll&BN_MASK2; | ||
| 324 | ll>>=BN_BITS2; | ||
| 325 | ll+=(BN_ULLONG)a[3]+b[3]; | ||
| 326 | r[3]=(BN_ULONG)ll&BN_MASK2; | ||
| 327 | ll>>=BN_BITS2; | ||
| 328 | a+=4; b+=4; r+=4; n-=4; | ||
| 329 | } | ||
| 330 | #endif | ||
| 331 | while (n) | ||
| 332 | { | ||
| 333 | ll+=(BN_ULLONG)a[0]+b[0]; | ||
| 334 | r[0]=(BN_ULONG)ll&BN_MASK2; | ||
| 335 | ll>>=BN_BITS2; | ||
| 336 | a++; b++; r++; n--; | ||
| 337 | } | ||
| 338 | return((BN_ULONG)ll); | ||
| 339 | } | ||
| 340 | #else /* !BN_LLONG */ | ||
| 341 | BN_ULONG bn_add_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, int n) | ||
| 342 | { | ||
| 343 | BN_ULONG c,l,t; | ||
| 344 | |||
| 345 | assert(n >= 0); | ||
| 346 | if (n <= 0) return((BN_ULONG)0); | ||
| 347 | |||
| 348 | c=0; | ||
| 349 | #ifndef OPENSSL_SMALL_FOOTPRINT | ||
| 350 | while (n&~3) | ||
| 351 | { | ||
| 352 | t=a[0]; | ||
| 353 | t=(t+c)&BN_MASK2; | ||
| 354 | c=(t < c); | ||
| 355 | l=(t+b[0])&BN_MASK2; | ||
| 356 | c+=(l < t); | ||
| 357 | r[0]=l; | ||
| 358 | t=a[1]; | ||
| 359 | t=(t+c)&BN_MASK2; | ||
| 360 | c=(t < c); | ||
| 361 | l=(t+b[1])&BN_MASK2; | ||
| 362 | c+=(l < t); | ||
| 363 | r[1]=l; | ||
| 364 | t=a[2]; | ||
| 365 | t=(t+c)&BN_MASK2; | ||
| 366 | c=(t < c); | ||
| 367 | l=(t+b[2])&BN_MASK2; | ||
| 368 | c+=(l < t); | ||
| 369 | r[2]=l; | ||
| 370 | t=a[3]; | ||
| 371 | t=(t+c)&BN_MASK2; | ||
| 372 | c=(t < c); | ||
| 373 | l=(t+b[3])&BN_MASK2; | ||
| 374 | c+=(l < t); | ||
| 375 | r[3]=l; | ||
| 376 | a+=4; b+=4; r+=4; n-=4; | ||
| 377 | } | ||
| 378 | #endif | ||
| 379 | while(n) | ||
| 380 | { | ||
| 381 | t=a[0]; | ||
| 382 | t=(t+c)&BN_MASK2; | ||
| 383 | c=(t < c); | ||
| 384 | l=(t+b[0])&BN_MASK2; | ||
| 385 | c+=(l < t); | ||
| 386 | r[0]=l; | ||
| 387 | a++; b++; r++; n--; | ||
| 388 | } | ||
| 389 | return((BN_ULONG)c); | ||
| 390 | } | ||
| 391 | #endif /* !BN_LLONG */ | ||
| 392 | |||
| 393 | BN_ULONG bn_sub_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, int n) | ||
| 394 | { | ||
| 395 | BN_ULONG t1,t2; | ||
| 396 | int c=0; | ||
| 397 | |||
| 398 | assert(n >= 0); | ||
| 399 | if (n <= 0) return((BN_ULONG)0); | ||
| 400 | |||
| 401 | #ifndef OPENSSL_SMALL_FOOTPRINT | ||
| 402 | while (n&~3) | ||
| 403 | { | ||
| 404 | t1=a[0]; t2=b[0]; | ||
| 405 | r[0]=(t1-t2-c)&BN_MASK2; | ||
| 406 | if (t1 != t2) c=(t1 < t2); | ||
| 407 | t1=a[1]; t2=b[1]; | ||
| 408 | r[1]=(t1-t2-c)&BN_MASK2; | ||
| 409 | if (t1 != t2) c=(t1 < t2); | ||
| 410 | t1=a[2]; t2=b[2]; | ||
| 411 | r[2]=(t1-t2-c)&BN_MASK2; | ||
| 412 | if (t1 != t2) c=(t1 < t2); | ||
| 413 | t1=a[3]; t2=b[3]; | ||
| 414 | r[3]=(t1-t2-c)&BN_MASK2; | ||
| 415 | if (t1 != t2) c=(t1 < t2); | ||
| 416 | a+=4; b+=4; r+=4; n-=4; | ||
| 417 | } | ||
| 418 | #endif | ||
| 419 | while (n) | ||
| 420 | { | ||
| 421 | t1=a[0]; t2=b[0]; | ||
| 422 | r[0]=(t1-t2-c)&BN_MASK2; | ||
| 423 | if (t1 != t2) c=(t1 < t2); | ||
| 424 | a++; b++; r++; n--; | ||
| 425 | } | ||
| 426 | return(c); | ||
| 427 | } | ||
| 428 | |||
| 429 | #if defined(BN_MUL_COMBA) && !defined(OPENSSL_SMALL_FOOTPRINT) | ||
| 430 | |||
| 431 | #undef bn_mul_comba8 | ||
| 432 | #undef bn_mul_comba4 | ||
| 433 | #undef bn_sqr_comba8 | ||
| 434 | #undef bn_sqr_comba4 | ||
| 435 | |||
| 436 | /* mul_add_c(a,b,c0,c1,c2) -- c+=a*b for three word number c=(c2,c1,c0) */ | ||
| 437 | /* mul_add_c2(a,b,c0,c1,c2) -- c+=2*a*b for three word number c=(c2,c1,c0) */ | ||
| 438 | /* sqr_add_c(a,i,c0,c1,c2) -- c+=a[i]^2 for three word number c=(c2,c1,c0) */ | ||
| 439 | /* sqr_add_c2(a,i,c0,c1,c2) -- c+=2*a[i]*a[j] for three word number c=(c2,c1,c0) */ | ||
| 440 | |||
| 441 | #ifdef BN_LLONG | ||
| 442 | #define mul_add_c(a,b,c0,c1,c2) \ | ||
| 443 | t=(BN_ULLONG)a*b; \ | ||
| 444 | t1=(BN_ULONG)Lw(t); \ | ||
| 445 | t2=(BN_ULONG)Hw(t); \ | ||
| 446 | c0=(c0+t1)&BN_MASK2; if ((c0) < t1) t2++; \ | ||
| 447 | c1=(c1+t2)&BN_MASK2; if ((c1) < t2) c2++; | ||
| 448 | |||
| 449 | #define mul_add_c2(a,b,c0,c1,c2) \ | ||
| 450 | t=(BN_ULLONG)a*b; \ | ||
| 451 | tt=(t+t)&BN_MASK; \ | ||
| 452 | if (tt < t) c2++; \ | ||
| 453 | t1=(BN_ULONG)Lw(tt); \ | ||
| 454 | t2=(BN_ULONG)Hw(tt); \ | ||
| 455 | c0=(c0+t1)&BN_MASK2; \ | ||
| 456 | if ((c0 < t1) && (((++t2)&BN_MASK2) == 0)) c2++; \ | ||
| 457 | c1=(c1+t2)&BN_MASK2; if ((c1) < t2) c2++; | ||
| 458 | |||
| 459 | #define sqr_add_c(a,i,c0,c1,c2) \ | ||
| 460 | t=(BN_ULLONG)a[i]*a[i]; \ | ||
| 461 | t1=(BN_ULONG)Lw(t); \ | ||
| 462 | t2=(BN_ULONG)Hw(t); \ | ||
| 463 | c0=(c0+t1)&BN_MASK2; if ((c0) < t1) t2++; \ | ||
| 464 | c1=(c1+t2)&BN_MASK2; if ((c1) < t2) c2++; | ||
| 465 | |||
| 466 | #define sqr_add_c2(a,i,j,c0,c1,c2) \ | ||
| 467 | mul_add_c2((a)[i],(a)[j],c0,c1,c2) | ||
| 468 | |||
| 469 | #elif defined(BN_UMULT_LOHI) | ||
| 470 | |||
| 471 | #define mul_add_c(a,b,c0,c1,c2) { \ | ||
| 472 | BN_ULONG ta=(a),tb=(b); \ | ||
| 473 | BN_UMULT_LOHI(t1,t2,ta,tb); \ | ||
| 474 | c0 += t1; t2 += (c0<t1)?1:0; \ | ||
| 475 | c1 += t2; c2 += (c1<t2)?1:0; \ | ||
| 476 | } | ||
| 477 | |||
| 478 | #define mul_add_c2(a,b,c0,c1,c2) { \ | ||
| 479 | BN_ULONG ta=(a),tb=(b),t0; \ | ||
| 480 | BN_UMULT_LOHI(t0,t1,ta,tb); \ | ||
| 481 | t2 = t1+t1; c2 += (t2<t1)?1:0; \ | ||
| 482 | t1 = t0+t0; t2 += (t1<t0)?1:0; \ | ||
| 483 | c0 += t1; t2 += (c0<t1)?1:0; \ | ||
| 484 | c1 += t2; c2 += (c1<t2)?1:0; \ | ||
| 485 | } | ||
| 486 | |||
| 487 | #define sqr_add_c(a,i,c0,c1,c2) { \ | ||
| 488 | BN_ULONG ta=(a)[i]; \ | ||
| 489 | BN_UMULT_LOHI(t1,t2,ta,ta); \ | ||
| 490 | c0 += t1; t2 += (c0<t1)?1:0; \ | ||
| 491 | c1 += t2; c2 += (c1<t2)?1:0; \ | ||
| 492 | } | ||
| 493 | |||
| 494 | #define sqr_add_c2(a,i,j,c0,c1,c2) \ | ||
| 495 | mul_add_c2((a)[i],(a)[j],c0,c1,c2) | ||
| 496 | |||
| 497 | #elif defined(BN_UMULT_HIGH) | ||
| 498 | |||
| 499 | #define mul_add_c(a,b,c0,c1,c2) { \ | ||
| 500 | BN_ULONG ta=(a),tb=(b); \ | ||
| 501 | t1 = ta * tb; \ | ||
| 502 | t2 = BN_UMULT_HIGH(ta,tb); \ | ||
| 503 | c0 += t1; t2 += (c0<t1)?1:0; \ | ||
| 504 | c1 += t2; c2 += (c1<t2)?1:0; \ | ||
| 505 | } | ||
| 506 | |||
| 507 | #define mul_add_c2(a,b,c0,c1,c2) { \ | ||
| 508 | BN_ULONG ta=(a),tb=(b),t0; \ | ||
| 509 | t1 = BN_UMULT_HIGH(ta,tb); \ | ||
| 510 | t0 = ta * tb; \ | ||
| 511 | t2 = t1+t1; c2 += (t2<t1)?1:0; \ | ||
| 512 | t1 = t0+t0; t2 += (t1<t0)?1:0; \ | ||
| 513 | c0 += t1; t2 += (c0<t1)?1:0; \ | ||
| 514 | c1 += t2; c2 += (c1<t2)?1:0; \ | ||
| 515 | } | ||
| 516 | |||
| 517 | #define sqr_add_c(a,i,c0,c1,c2) { \ | ||
| 518 | BN_ULONG ta=(a)[i]; \ | ||
| 519 | t1 = ta * ta; \ | ||
| 520 | t2 = BN_UMULT_HIGH(ta,ta); \ | ||
| 521 | c0 += t1; t2 += (c0<t1)?1:0; \ | ||
| 522 | c1 += t2; c2 += (c1<t2)?1:0; \ | ||
| 523 | } | ||
| 524 | |||
| 525 | #define sqr_add_c2(a,i,j,c0,c1,c2) \ | ||
| 526 | mul_add_c2((a)[i],(a)[j],c0,c1,c2) | ||
| 527 | |||
| 528 | #else /* !BN_LLONG */ | ||
| 529 | #define mul_add_c(a,b,c0,c1,c2) \ | ||
| 530 | t1=LBITS(a); t2=HBITS(a); \ | ||
| 531 | bl=LBITS(b); bh=HBITS(b); \ | ||
| 532 | mul64(t1,t2,bl,bh); \ | ||
| 533 | c0=(c0+t1)&BN_MASK2; if ((c0) < t1) t2++; \ | ||
| 534 | c1=(c1+t2)&BN_MASK2; if ((c1) < t2) c2++; | ||
| 535 | |||
| 536 | #define mul_add_c2(a,b,c0,c1,c2) \ | ||
| 537 | t1=LBITS(a); t2=HBITS(a); \ | ||
| 538 | bl=LBITS(b); bh=HBITS(b); \ | ||
| 539 | mul64(t1,t2,bl,bh); \ | ||
| 540 | if (t2 & BN_TBIT) c2++; \ | ||
| 541 | t2=(t2+t2)&BN_MASK2; \ | ||
| 542 | if (t1 & BN_TBIT) t2++; \ | ||
| 543 | t1=(t1+t1)&BN_MASK2; \ | ||
| 544 | c0=(c0+t1)&BN_MASK2; \ | ||
| 545 | if ((c0 < t1) && (((++t2)&BN_MASK2) == 0)) c2++; \ | ||
| 546 | c1=(c1+t2)&BN_MASK2; if ((c1) < t2) c2++; | ||
| 547 | |||
| 548 | #define sqr_add_c(a,i,c0,c1,c2) \ | ||
| 549 | sqr64(t1,t2,(a)[i]); \ | ||
| 550 | c0=(c0+t1)&BN_MASK2; if ((c0) < t1) t2++; \ | ||
| 551 | c1=(c1+t2)&BN_MASK2; if ((c1) < t2) c2++; | ||
| 552 | |||
| 553 | #define sqr_add_c2(a,i,j,c0,c1,c2) \ | ||
| 554 | mul_add_c2((a)[i],(a)[j],c0,c1,c2) | ||
| 555 | #endif /* !BN_LLONG */ | ||
| 556 | |||
| 557 | void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b) | ||
| 558 | { | ||
| 559 | #ifdef BN_LLONG | ||
| 560 | BN_ULLONG t; | ||
| 561 | #else | ||
| 562 | BN_ULONG bl,bh; | ||
| 563 | #endif | ||
| 564 | BN_ULONG t1,t2; | ||
| 565 | BN_ULONG c1,c2,c3; | ||
| 566 | |||
| 567 | c1=0; | ||
| 568 | c2=0; | ||
| 569 | c3=0; | ||
| 570 | mul_add_c(a[0],b[0],c1,c2,c3); | ||
| 571 | r[0]=c1; | ||
| 572 | c1=0; | ||
| 573 | mul_add_c(a[0],b[1],c2,c3,c1); | ||
| 574 | mul_add_c(a[1],b[0],c2,c3,c1); | ||
| 575 | r[1]=c2; | ||
| 576 | c2=0; | ||
| 577 | mul_add_c(a[2],b[0],c3,c1,c2); | ||
| 578 | mul_add_c(a[1],b[1],c3,c1,c2); | ||
| 579 | mul_add_c(a[0],b[2],c3,c1,c2); | ||
| 580 | r[2]=c3; | ||
| 581 | c3=0; | ||
| 582 | mul_add_c(a[0],b[3],c1,c2,c3); | ||
| 583 | mul_add_c(a[1],b[2],c1,c2,c3); | ||
| 584 | mul_add_c(a[2],b[1],c1,c2,c3); | ||
| 585 | mul_add_c(a[3],b[0],c1,c2,c3); | ||
| 586 | r[3]=c1; | ||
| 587 | c1=0; | ||
| 588 | mul_add_c(a[4],b[0],c2,c3,c1); | ||
| 589 | mul_add_c(a[3],b[1],c2,c3,c1); | ||
| 590 | mul_add_c(a[2],b[2],c2,c3,c1); | ||
| 591 | mul_add_c(a[1],b[3],c2,c3,c1); | ||
| 592 | mul_add_c(a[0],b[4],c2,c3,c1); | ||
| 593 | r[4]=c2; | ||
| 594 | c2=0; | ||
| 595 | mul_add_c(a[0],b[5],c3,c1,c2); | ||
| 596 | mul_add_c(a[1],b[4],c3,c1,c2); | ||
| 597 | mul_add_c(a[2],b[3],c3,c1,c2); | ||
| 598 | mul_add_c(a[3],b[2],c3,c1,c2); | ||
| 599 | mul_add_c(a[4],b[1],c3,c1,c2); | ||
| 600 | mul_add_c(a[5],b[0],c3,c1,c2); | ||
| 601 | r[5]=c3; | ||
| 602 | c3=0; | ||
| 603 | mul_add_c(a[6],b[0],c1,c2,c3); | ||
| 604 | mul_add_c(a[5],b[1],c1,c2,c3); | ||
| 605 | mul_add_c(a[4],b[2],c1,c2,c3); | ||
| 606 | mul_add_c(a[3],b[3],c1,c2,c3); | ||
| 607 | mul_add_c(a[2],b[4],c1,c2,c3); | ||
| 608 | mul_add_c(a[1],b[5],c1,c2,c3); | ||
| 609 | mul_add_c(a[0],b[6],c1,c2,c3); | ||
| 610 | r[6]=c1; | ||
| 611 | c1=0; | ||
| 612 | mul_add_c(a[0],b[7],c2,c3,c1); | ||
| 613 | mul_add_c(a[1],b[6],c2,c3,c1); | ||
| 614 | mul_add_c(a[2],b[5],c2,c3,c1); | ||
| 615 | mul_add_c(a[3],b[4],c2,c3,c1); | ||
| 616 | mul_add_c(a[4],b[3],c2,c3,c1); | ||
| 617 | mul_add_c(a[5],b[2],c2,c3,c1); | ||
| 618 | mul_add_c(a[6],b[1],c2,c3,c1); | ||
| 619 | mul_add_c(a[7],b[0],c2,c3,c1); | ||
| 620 | r[7]=c2; | ||
| 621 | c2=0; | ||
| 622 | mul_add_c(a[7],b[1],c3,c1,c2); | ||
| 623 | mul_add_c(a[6],b[2],c3,c1,c2); | ||
| 624 | mul_add_c(a[5],b[3],c3,c1,c2); | ||
| 625 | mul_add_c(a[4],b[4],c3,c1,c2); | ||
| 626 | mul_add_c(a[3],b[5],c3,c1,c2); | ||
| 627 | mul_add_c(a[2],b[6],c3,c1,c2); | ||
| 628 | mul_add_c(a[1],b[7],c3,c1,c2); | ||
| 629 | r[8]=c3; | ||
| 630 | c3=0; | ||
| 631 | mul_add_c(a[2],b[7],c1,c2,c3); | ||
| 632 | mul_add_c(a[3],b[6],c1,c2,c3); | ||
| 633 | mul_add_c(a[4],b[5],c1,c2,c3); | ||
| 634 | mul_add_c(a[5],b[4],c1,c2,c3); | ||
| 635 | mul_add_c(a[6],b[3],c1,c2,c3); | ||
| 636 | mul_add_c(a[7],b[2],c1,c2,c3); | ||
| 637 | r[9]=c1; | ||
| 638 | c1=0; | ||
| 639 | mul_add_c(a[7],b[3],c2,c3,c1); | ||
| 640 | mul_add_c(a[6],b[4],c2,c3,c1); | ||
| 641 | mul_add_c(a[5],b[5],c2,c3,c1); | ||
| 642 | mul_add_c(a[4],b[6],c2,c3,c1); | ||
| 643 | mul_add_c(a[3],b[7],c2,c3,c1); | ||
| 644 | r[10]=c2; | ||
| 645 | c2=0; | ||
| 646 | mul_add_c(a[4],b[7],c3,c1,c2); | ||
| 647 | mul_add_c(a[5],b[6],c3,c1,c2); | ||
| 648 | mul_add_c(a[6],b[5],c3,c1,c2); | ||
| 649 | mul_add_c(a[7],b[4],c3,c1,c2); | ||
| 650 | r[11]=c3; | ||
| 651 | c3=0; | ||
| 652 | mul_add_c(a[7],b[5],c1,c2,c3); | ||
| 653 | mul_add_c(a[6],b[6],c1,c2,c3); | ||
| 654 | mul_add_c(a[5],b[7],c1,c2,c3); | ||
| 655 | r[12]=c1; | ||
| 656 | c1=0; | ||
| 657 | mul_add_c(a[6],b[7],c2,c3,c1); | ||
| 658 | mul_add_c(a[7],b[6],c2,c3,c1); | ||
| 659 | r[13]=c2; | ||
| 660 | c2=0; | ||
| 661 | mul_add_c(a[7],b[7],c3,c1,c2); | ||
| 662 | r[14]=c3; | ||
| 663 | r[15]=c1; | ||
| 664 | } | ||
| 665 | |||
| 666 | void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b) | ||
| 667 | { | ||
| 668 | #ifdef BN_LLONG | ||
| 669 | BN_ULLONG t; | ||
| 670 | #else | ||
| 671 | BN_ULONG bl,bh; | ||
| 672 | #endif | ||
| 673 | BN_ULONG t1,t2; | ||
| 674 | BN_ULONG c1,c2,c3; | ||
| 675 | |||
| 676 | c1=0; | ||
| 677 | c2=0; | ||
| 678 | c3=0; | ||
| 679 | mul_add_c(a[0],b[0],c1,c2,c3); | ||
| 680 | r[0]=c1; | ||
| 681 | c1=0; | ||
| 682 | mul_add_c(a[0],b[1],c2,c3,c1); | ||
| 683 | mul_add_c(a[1],b[0],c2,c3,c1); | ||
| 684 | r[1]=c2; | ||
| 685 | c2=0; | ||
| 686 | mul_add_c(a[2],b[0],c3,c1,c2); | ||
| 687 | mul_add_c(a[1],b[1],c3,c1,c2); | ||
| 688 | mul_add_c(a[0],b[2],c3,c1,c2); | ||
| 689 | r[2]=c3; | ||
| 690 | c3=0; | ||
| 691 | mul_add_c(a[0],b[3],c1,c2,c3); | ||
| 692 | mul_add_c(a[1],b[2],c1,c2,c3); | ||
| 693 | mul_add_c(a[2],b[1],c1,c2,c3); | ||
| 694 | mul_add_c(a[3],b[0],c1,c2,c3); | ||
| 695 | r[3]=c1; | ||
| 696 | c1=0; | ||
| 697 | mul_add_c(a[3],b[1],c2,c3,c1); | ||
| 698 | mul_add_c(a[2],b[2],c2,c3,c1); | ||
| 699 | mul_add_c(a[1],b[3],c2,c3,c1); | ||
| 700 | r[4]=c2; | ||
| 701 | c2=0; | ||
| 702 | mul_add_c(a[2],b[3],c3,c1,c2); | ||
| 703 | mul_add_c(a[3],b[2],c3,c1,c2); | ||
| 704 | r[5]=c3; | ||
| 705 | c3=0; | ||
| 706 | mul_add_c(a[3],b[3],c1,c2,c3); | ||
| 707 | r[6]=c1; | ||
| 708 | r[7]=c2; | ||
| 709 | } | ||
| 710 | |||
| 711 | void bn_sqr_comba8(BN_ULONG *r, const BN_ULONG *a) | ||
| 712 | { | ||
| 713 | #ifdef BN_LLONG | ||
| 714 | BN_ULLONG t,tt; | ||
| 715 | #else | ||
| 716 | BN_ULONG bl,bh; | ||
| 717 | #endif | ||
| 718 | BN_ULONG t1,t2; | ||
| 719 | BN_ULONG c1,c2,c3; | ||
| 720 | |||
| 721 | c1=0; | ||
| 722 | c2=0; | ||
| 723 | c3=0; | ||
| 724 | sqr_add_c(a,0,c1,c2,c3); | ||
| 725 | r[0]=c1; | ||
| 726 | c1=0; | ||
| 727 | sqr_add_c2(a,1,0,c2,c3,c1); | ||
| 728 | r[1]=c2; | ||
| 729 | c2=0; | ||
| 730 | sqr_add_c(a,1,c3,c1,c2); | ||
| 731 | sqr_add_c2(a,2,0,c3,c1,c2); | ||
| 732 | r[2]=c3; | ||
| 733 | c3=0; | ||
| 734 | sqr_add_c2(a,3,0,c1,c2,c3); | ||
| 735 | sqr_add_c2(a,2,1,c1,c2,c3); | ||
| 736 | r[3]=c1; | ||
| 737 | c1=0; | ||
| 738 | sqr_add_c(a,2,c2,c3,c1); | ||
| 739 | sqr_add_c2(a,3,1,c2,c3,c1); | ||
| 740 | sqr_add_c2(a,4,0,c2,c3,c1); | ||
| 741 | r[4]=c2; | ||
| 742 | c2=0; | ||
| 743 | sqr_add_c2(a,5,0,c3,c1,c2); | ||
| 744 | sqr_add_c2(a,4,1,c3,c1,c2); | ||
| 745 | sqr_add_c2(a,3,2,c3,c1,c2); | ||
| 746 | r[5]=c3; | ||
| 747 | c3=0; | ||
| 748 | sqr_add_c(a,3,c1,c2,c3); | ||
| 749 | sqr_add_c2(a,4,2,c1,c2,c3); | ||
| 750 | sqr_add_c2(a,5,1,c1,c2,c3); | ||
| 751 | sqr_add_c2(a,6,0,c1,c2,c3); | ||
| 752 | r[6]=c1; | ||
| 753 | c1=0; | ||
| 754 | sqr_add_c2(a,7,0,c2,c3,c1); | ||
| 755 | sqr_add_c2(a,6,1,c2,c3,c1); | ||
| 756 | sqr_add_c2(a,5,2,c2,c3,c1); | ||
| 757 | sqr_add_c2(a,4,3,c2,c3,c1); | ||
| 758 | r[7]=c2; | ||
| 759 | c2=0; | ||
| 760 | sqr_add_c(a,4,c3,c1,c2); | ||
| 761 | sqr_add_c2(a,5,3,c3,c1,c2); | ||
| 762 | sqr_add_c2(a,6,2,c3,c1,c2); | ||
| 763 | sqr_add_c2(a,7,1,c3,c1,c2); | ||
| 764 | r[8]=c3; | ||
| 765 | c3=0; | ||
| 766 | sqr_add_c2(a,7,2,c1,c2,c3); | ||
| 767 | sqr_add_c2(a,6,3,c1,c2,c3); | ||
| 768 | sqr_add_c2(a,5,4,c1,c2,c3); | ||
| 769 | r[9]=c1; | ||
| 770 | c1=0; | ||
| 771 | sqr_add_c(a,5,c2,c3,c1); | ||
| 772 | sqr_add_c2(a,6,4,c2,c3,c1); | ||
| 773 | sqr_add_c2(a,7,3,c2,c3,c1); | ||
| 774 | r[10]=c2; | ||
| 775 | c2=0; | ||
| 776 | sqr_add_c2(a,7,4,c3,c1,c2); | ||
| 777 | sqr_add_c2(a,6,5,c3,c1,c2); | ||
| 778 | r[11]=c3; | ||
| 779 | c3=0; | ||
| 780 | sqr_add_c(a,6,c1,c2,c3); | ||
| 781 | sqr_add_c2(a,7,5,c1,c2,c3); | ||
| 782 | r[12]=c1; | ||
| 783 | c1=0; | ||
| 784 | sqr_add_c2(a,7,6,c2,c3,c1); | ||
| 785 | r[13]=c2; | ||
| 786 | c2=0; | ||
| 787 | sqr_add_c(a,7,c3,c1,c2); | ||
| 788 | r[14]=c3; | ||
| 789 | r[15]=c1; | ||
| 790 | } | ||
| 791 | |||
| 792 | void bn_sqr_comba4(BN_ULONG *r, const BN_ULONG *a) | ||
| 793 | { | ||
| 794 | #ifdef BN_LLONG | ||
| 795 | BN_ULLONG t,tt; | ||
| 796 | #else | ||
| 797 | BN_ULONG bl,bh; | ||
| 798 | #endif | ||
| 799 | BN_ULONG t1,t2; | ||
| 800 | BN_ULONG c1,c2,c3; | ||
| 801 | |||
| 802 | c1=0; | ||
| 803 | c2=0; | ||
| 804 | c3=0; | ||
| 805 | sqr_add_c(a,0,c1,c2,c3); | ||
| 806 | r[0]=c1; | ||
| 807 | c1=0; | ||
| 808 | sqr_add_c2(a,1,0,c2,c3,c1); | ||
| 809 | r[1]=c2; | ||
| 810 | c2=0; | ||
| 811 | sqr_add_c(a,1,c3,c1,c2); | ||
| 812 | sqr_add_c2(a,2,0,c3,c1,c2); | ||
| 813 | r[2]=c3; | ||
| 814 | c3=0; | ||
| 815 | sqr_add_c2(a,3,0,c1,c2,c3); | ||
| 816 | sqr_add_c2(a,2,1,c1,c2,c3); | ||
| 817 | r[3]=c1; | ||
| 818 | c1=0; | ||
| 819 | sqr_add_c(a,2,c2,c3,c1); | ||
| 820 | sqr_add_c2(a,3,1,c2,c3,c1); | ||
| 821 | r[4]=c2; | ||
| 822 | c2=0; | ||
| 823 | sqr_add_c2(a,3,2,c3,c1,c2); | ||
| 824 | r[5]=c3; | ||
| 825 | c3=0; | ||
| 826 | sqr_add_c(a,3,c1,c2,c3); | ||
| 827 | r[6]=c1; | ||
| 828 | r[7]=c2; | ||
| 829 | } | ||
| 830 | |||
| 831 | #ifdef OPENSSL_NO_ASM | ||
| 832 | #ifdef OPENSSL_BN_ASM_MONT | ||
| 833 | #include <alloca.h> | ||
| 834 | /* | ||
| 835 | * This is essentially reference implementation, which may or may not | ||
| 836 | * result in performance improvement. E.g. on IA-32 this routine was | ||
| 837 | * observed to give 40% faster rsa1024 private key operations and 10% | ||
| 838 | * faster rsa4096 ones, while on AMD64 it improves rsa1024 sign only | ||
| 839 | * by 10% and *worsens* rsa4096 sign by 15%. Once again, it's a | ||
| 840 | * reference implementation, one to be used as starting point for | ||
| 841 | * platform-specific assembler. Mentioned numbers apply to compiler | ||
| 842 | * generated code compiled with and without -DOPENSSL_BN_ASM_MONT and | ||
| 843 | * can vary not only from platform to platform, but even for compiler | ||
| 844 | * versions. Assembler vs. assembler improvement coefficients can | ||
| 845 | * [and are known to] differ and are to be documented elsewhere. | ||
| 846 | */ | ||
| 847 | int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, const BN_ULONG *np,const BN_ULONG *n0p, int num) | ||
| 848 | { | ||
| 849 | BN_ULONG c0,c1,ml,*tp,n0; | ||
| 850 | #ifdef mul64 | ||
| 851 | BN_ULONG mh; | ||
| 852 | #endif | ||
| 853 | volatile BN_ULONG *vp; | ||
| 854 | int i=0,j; | ||
| 855 | |||
| 856 | #if 0 /* template for platform-specific implementation */ | ||
| 857 | if (ap==bp) return bn_sqr_mont(rp,ap,np,n0p,num); | ||
| 858 | #endif | ||
| 859 | vp = tp = alloca((num+2)*sizeof(BN_ULONG)); | ||
| 860 | |||
| 861 | n0 = *n0p; | ||
| 862 | |||
| 863 | c0 = 0; | ||
| 864 | ml = bp[0]; | ||
| 865 | #ifdef mul64 | ||
| 866 | mh = HBITS(ml); | ||
| 867 | ml = LBITS(ml); | ||
| 868 | for (j=0;j<num;++j) | ||
| 869 | mul(tp[j],ap[j],ml,mh,c0); | ||
| 870 | #else | ||
| 871 | for (j=0;j<num;++j) | ||
| 872 | mul(tp[j],ap[j],ml,c0); | ||
| 873 | #endif | ||
| 874 | |||
| 875 | tp[num] = c0; | ||
| 876 | tp[num+1] = 0; | ||
| 877 | goto enter; | ||
| 878 | |||
| 879 | for(i=0;i<num;i++) | ||
| 880 | { | ||
| 881 | c0 = 0; | ||
| 882 | ml = bp[i]; | ||
| 883 | #ifdef mul64 | ||
| 884 | mh = HBITS(ml); | ||
| 885 | ml = LBITS(ml); | ||
| 886 | for (j=0;j<num;++j) | ||
| 887 | mul_add(tp[j],ap[j],ml,mh,c0); | ||
| 888 | #else | ||
| 889 | for (j=0;j<num;++j) | ||
| 890 | mul_add(tp[j],ap[j],ml,c0); | ||
| 891 | #endif | ||
| 892 | c1 = (tp[num] + c0)&BN_MASK2; | ||
| 893 | tp[num] = c1; | ||
| 894 | tp[num+1] = (c1<c0?1:0); | ||
| 895 | enter: | ||
| 896 | c1 = tp[0]; | ||
| 897 | ml = (c1*n0)&BN_MASK2; | ||
| 898 | c0 = 0; | ||
| 899 | #ifdef mul64 | ||
| 900 | mh = HBITS(ml); | ||
| 901 | ml = LBITS(ml); | ||
| 902 | mul_add(c1,np[0],ml,mh,c0); | ||
| 903 | #else | ||
| 904 | mul_add(c1,ml,np[0],c0); | ||
| 905 | #endif | ||
| 906 | for(j=1;j<num;j++) | ||
| 907 | { | ||
| 908 | c1 = tp[j]; | ||
| 909 | #ifdef mul64 | ||
| 910 | mul_add(c1,np[j],ml,mh,c0); | ||
| 911 | #else | ||
| 912 | mul_add(c1,ml,np[j],c0); | ||
| 913 | #endif | ||
| 914 | tp[j-1] = c1&BN_MASK2; | ||
| 915 | } | ||
| 916 | c1 = (tp[num] + c0)&BN_MASK2; | ||
| 917 | tp[num-1] = c1; | ||
| 918 | tp[num] = tp[num+1] + (c1<c0?1:0); | ||
| 919 | } | ||
| 920 | |||
| 921 | if (tp[num]!=0 || tp[num-1]>=np[num-1]) | ||
| 922 | { | ||
| 923 | c0 = bn_sub_words(rp,tp,np,num); | ||
| 924 | if (tp[num]!=0 || c0==0) | ||
| 925 | { | ||
| 926 | for(i=0;i<num+2;i++) vp[i] = 0; | ||
| 927 | return 1; | ||
| 928 | } | ||
| 929 | } | ||
| 930 | for(i=0;i<num;i++) rp[i] = tp[i], vp[i] = 0; | ||
| 931 | vp[num] = 0; | ||
| 932 | vp[num+1] = 0; | ||
| 933 | return 1; | ||
| 934 | } | ||
| 935 | #else | ||
| 936 | /* | ||
| 937 | * Return value of 0 indicates that multiplication/convolution was not | ||
| 938 | * performed to signal the caller to fall down to alternative/original | ||
| 939 | * code-path. | ||
| 940 | */ | ||
| 941 | int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, const BN_ULONG *np,const BN_ULONG *n0, int num) | ||
| 942 | { return 0; } | ||
| 943 | #endif /* OPENSSL_BN_ASM_MONT */ | ||
| 944 | #endif | ||
| 945 | |||
| 946 | #else /* !BN_MUL_COMBA */ | ||
| 947 | |||
| 948 | /* hmm... is it faster just to do a multiply? */ | ||
| 949 | #undef bn_sqr_comba4 | ||
| 950 | void bn_sqr_comba4(BN_ULONG *r, const BN_ULONG *a) | ||
| 951 | { | ||
| 952 | BN_ULONG t[8]; | ||
| 953 | bn_sqr_normal(r,a,4,t); | ||
| 954 | } | ||
| 955 | |||
| 956 | #undef bn_sqr_comba8 | ||
| 957 | void bn_sqr_comba8(BN_ULONG *r, const BN_ULONG *a) | ||
| 958 | { | ||
| 959 | BN_ULONG t[16]; | ||
| 960 | bn_sqr_normal(r,a,8,t); | ||
| 961 | } | ||
| 962 | |||
| 963 | void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b) | ||
| 964 | { | ||
| 965 | r[4]=bn_mul_words( &(r[0]),a,4,b[0]); | ||
| 966 | r[5]=bn_mul_add_words(&(r[1]),a,4,b[1]); | ||
| 967 | r[6]=bn_mul_add_words(&(r[2]),a,4,b[2]); | ||
| 968 | r[7]=bn_mul_add_words(&(r[3]),a,4,b[3]); | ||
| 969 | } | ||
| 970 | |||
| 971 | void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b) | ||
| 972 | { | ||
| 973 | r[ 8]=bn_mul_words( &(r[0]),a,8,b[0]); | ||
| 974 | r[ 9]=bn_mul_add_words(&(r[1]),a,8,b[1]); | ||
| 975 | r[10]=bn_mul_add_words(&(r[2]),a,8,b[2]); | ||
| 976 | r[11]=bn_mul_add_words(&(r[3]),a,8,b[3]); | ||
| 977 | r[12]=bn_mul_add_words(&(r[4]),a,8,b[4]); | ||
| 978 | r[13]=bn_mul_add_words(&(r[5]),a,8,b[5]); | ||
| 979 | r[14]=bn_mul_add_words(&(r[6]),a,8,b[6]); | ||
| 980 | r[15]=bn_mul_add_words(&(r[7]),a,8,b[7]); | ||
| 981 | } | ||
| 982 | |||
| 983 | #ifdef OPENSSL_NO_ASM | ||
| 984 | #ifdef OPENSSL_BN_ASM_MONT | ||
| 985 | #include <alloca.h> | ||
| 986 | int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, const BN_ULONG *np,const BN_ULONG *n0p, int num) | ||
| 987 | { | ||
| 988 | BN_ULONG c0,c1,*tp,n0=*n0p; | ||
| 989 | volatile BN_ULONG *vp; | ||
| 990 | int i=0,j; | ||
| 991 | |||
| 992 | vp = tp = alloca((num+2)*sizeof(BN_ULONG)); | ||
| 993 | |||
| 994 | for(i=0;i<=num;i++) tp[i]=0; | ||
| 995 | |||
| 996 | for(i=0;i<num;i++) | ||
| 997 | { | ||
| 998 | c0 = bn_mul_add_words(tp,ap,num,bp[i]); | ||
| 999 | c1 = (tp[num] + c0)&BN_MASK2; | ||
| 1000 | tp[num] = c1; | ||
| 1001 | tp[num+1] = (c1<c0?1:0); | ||
| 1002 | |||
| 1003 | c0 = bn_mul_add_words(tp,np,num,tp[0]*n0); | ||
| 1004 | c1 = (tp[num] + c0)&BN_MASK2; | ||
| 1005 | tp[num] = c1; | ||
| 1006 | tp[num+1] += (c1<c0?1:0); | ||
| 1007 | for(j=0;j<=num;j++) tp[j]=tp[j+1]; | ||
| 1008 | } | ||
| 1009 | |||
| 1010 | if (tp[num]!=0 || tp[num-1]>=np[num-1]) | ||
| 1011 | { | ||
| 1012 | c0 = bn_sub_words(rp,tp,np,num); | ||
| 1013 | if (tp[num]!=0 || c0==0) | ||
| 1014 | { | ||
| 1015 | for(i=0;i<num+2;i++) vp[i] = 0; | ||
| 1016 | return 1; | ||
| 1017 | } | ||
| 1018 | } | ||
| 1019 | for(i=0;i<num;i++) rp[i] = tp[i], vp[i] = 0; | ||
| 1020 | vp[num] = 0; | ||
| 1021 | vp[num+1] = 0; | ||
| 1022 | return 1; | ||
| 1023 | } | ||
| 1024 | #else | ||
| 1025 | int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, const BN_ULONG *np,const BN_ULONG *n0, int num) | ||
| 1026 | { return 0; } | ||
| 1027 | #endif /* OPENSSL_BN_ASM_MONT */ | ||
| 1028 | #endif | ||
| 1029 | |||
| 1030 | #endif /* !BN_MUL_COMBA */ | ||
