diff options
Diffstat (limited to 'src/lib/libcrypto/bn/bn_bpsw.c')
| -rw-r--r-- | src/lib/libcrypto/bn/bn_bpsw.c | 531 |
1 files changed, 0 insertions, 531 deletions
diff --git a/src/lib/libcrypto/bn/bn_bpsw.c b/src/lib/libcrypto/bn/bn_bpsw.c deleted file mode 100644 index 04db17b527..0000000000 --- a/src/lib/libcrypto/bn/bn_bpsw.c +++ /dev/null | |||
| @@ -1,531 +0,0 @@ | |||
| 1 | /* $OpenBSD: bn_bpsw.c,v 1.12 2025/02/13 11:10:01 tb Exp $ */ | ||
| 2 | /* | ||
| 3 | * Copyright (c) 2022 Martin Grenouilloux <martin.grenouilloux@lse.epita.fr> | ||
| 4 | * Copyright (c) 2022 Theo Buehler <tb@openbsd.org> | ||
| 5 | * | ||
| 6 | * Permission to use, copy, modify, and distribute this software for any | ||
| 7 | * purpose with or without fee is hereby granted, provided that the above | ||
| 8 | * copyright notice and this permission notice appear in all copies. | ||
| 9 | * | ||
| 10 | * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES | ||
| 11 | * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF | ||
| 12 | * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR | ||
| 13 | * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES | ||
| 14 | * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN | ||
| 15 | * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF | ||
| 16 | * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. | ||
| 17 | */ | ||
| 18 | |||
| 19 | #include <openssl/bn.h> | ||
| 20 | |||
| 21 | #include "bn_local.h" | ||
| 22 | #include "bn_prime.h" | ||
| 23 | |||
| 24 | /* | ||
| 25 | * For an odd n compute a / 2 (mod n). If a is even, we can do a plain | ||
| 26 | * division, otherwise calculate (a + n) / 2. Then reduce (mod n). | ||
| 27 | */ | ||
| 28 | |||
| 29 | static int | ||
| 30 | bn_div_by_two_mod_odd_n(BIGNUM *a, const BIGNUM *n, BN_CTX *ctx) | ||
| 31 | { | ||
| 32 | if (!BN_is_odd(n)) | ||
| 33 | return 0; | ||
| 34 | |||
| 35 | if (BN_is_odd(a)) { | ||
| 36 | if (!BN_add(a, a, n)) | ||
| 37 | return 0; | ||
| 38 | } | ||
| 39 | if (!BN_rshift1(a, a)) | ||
| 40 | return 0; | ||
| 41 | if (!BN_mod_ct(a, a, n, ctx)) | ||
| 42 | return 0; | ||
| 43 | |||
| 44 | return 1; | ||
| 45 | } | ||
| 46 | |||
| 47 | /* | ||
| 48 | * Given the next binary digit of k and the current Lucas terms U and V, this | ||
| 49 | * helper computes the next terms in the Lucas sequence defined as follows: | ||
| 50 | * | ||
| 51 | * U' = U * V (mod n) | ||
| 52 | * V' = (V^2 + D * U^2) / 2 (mod n) | ||
| 53 | * | ||
| 54 | * If digit == 0, bn_lucas_step() returns U' and V'. If digit == 1, it returns | ||
| 55 | * | ||
| 56 | * U'' = (U' + V') / 2 (mod n) | ||
| 57 | * V'' = (V' + D * U') / 2 (mod n) | ||
| 58 | * | ||
| 59 | * Compare with FIPS 186-4, Appendix C.3.3, step 6. | ||
| 60 | */ | ||
| 61 | |||
| 62 | static int | ||
| 63 | bn_lucas_step(BIGNUM *U, BIGNUM *V, int digit, const BIGNUM *D, | ||
| 64 | const BIGNUM *n, BN_CTX *ctx) | ||
| 65 | { | ||
| 66 | BIGNUM *tmp; | ||
| 67 | int ret = 0; | ||
| 68 | |||
| 69 | BN_CTX_start(ctx); | ||
| 70 | |||
| 71 | if ((tmp = BN_CTX_get(ctx)) == NULL) | ||
| 72 | goto err; | ||
| 73 | |||
| 74 | /* Calculate D * U^2 before computing U'. */ | ||
| 75 | if (!BN_sqr(tmp, U, ctx)) | ||
| 76 | goto err; | ||
| 77 | if (!BN_mul(tmp, D, tmp, ctx)) | ||
| 78 | goto err; | ||
| 79 | |||
| 80 | /* U' = U * V (mod n). */ | ||
| 81 | if (!BN_mod_mul(U, U, V, n, ctx)) | ||
| 82 | goto err; | ||
| 83 | |||
| 84 | /* V' = (V^2 + D * U^2) / 2 (mod n). */ | ||
| 85 | if (!BN_sqr(V, V, ctx)) | ||
| 86 | goto err; | ||
| 87 | if (!BN_add(V, V, tmp)) | ||
| 88 | goto err; | ||
| 89 | if (!bn_div_by_two_mod_odd_n(V, n, ctx)) | ||
| 90 | goto err; | ||
| 91 | |||
| 92 | if (digit == 1) { | ||
| 93 | /* Calculate D * U' before computing U''. */ | ||
| 94 | if (!BN_mul(tmp, D, U, ctx)) | ||
| 95 | goto err; | ||
| 96 | |||
| 97 | /* U'' = (U' + V') / 2 (mod n). */ | ||
| 98 | if (!BN_add(U, U, V)) | ||
| 99 | goto err; | ||
| 100 | if (!bn_div_by_two_mod_odd_n(U, n, ctx)) | ||
| 101 | goto err; | ||
| 102 | |||
| 103 | /* V'' = (V' + D * U') / 2 (mod n). */ | ||
| 104 | if (!BN_add(V, V, tmp)) | ||
| 105 | goto err; | ||
| 106 | if (!bn_div_by_two_mod_odd_n(V, n, ctx)) | ||
| 107 | goto err; | ||
| 108 | } | ||
| 109 | |||
| 110 | ret = 1; | ||
| 111 | |||
| 112 | err: | ||
| 113 | BN_CTX_end(ctx); | ||
| 114 | |||
| 115 | return ret; | ||
| 116 | } | ||
| 117 | |||
| 118 | /* | ||
| 119 | * Compute the Lucas terms U_k, V_k, see FIPS 186-4, Appendix C.3.3, steps 4-6. | ||
| 120 | */ | ||
| 121 | |||
| 122 | static int | ||
| 123 | bn_lucas(BIGNUM *U, BIGNUM *V, const BIGNUM *k, const BIGNUM *D, | ||
| 124 | const BIGNUM *n, BN_CTX *ctx) | ||
| 125 | { | ||
| 126 | int digit, i; | ||
| 127 | int ret = 0; | ||
| 128 | |||
| 129 | if (!BN_one(U)) | ||
| 130 | goto err; | ||
| 131 | if (!BN_one(V)) | ||
| 132 | goto err; | ||
| 133 | |||
| 134 | /* | ||
| 135 | * Iterate over the digits of k from MSB to LSB. Start at digit 2 | ||
| 136 | * since the first digit is dealt with by setting U = 1 and V = 1. | ||
| 137 | */ | ||
| 138 | |||
| 139 | for (i = BN_num_bits(k) - 2; i >= 0; i--) { | ||
| 140 | digit = BN_is_bit_set(k, i); | ||
| 141 | |||
| 142 | if (!bn_lucas_step(U, V, digit, D, n, ctx)) | ||
| 143 | goto err; | ||
| 144 | } | ||
| 145 | |||
| 146 | ret = 1; | ||
| 147 | |||
| 148 | err: | ||
| 149 | return ret; | ||
| 150 | } | ||
| 151 | |||
| 152 | /* | ||
| 153 | * This is a stronger variant of the Lucas test in FIPS 186-4, Appendix C.3.3. | ||
| 154 | * Every strong Lucas pseudoprime n is also a Lucas pseudoprime since | ||
| 155 | * U_{n+1} == 0 follows from U_k == 0 or V_{k * 2^r} == 0 for 0 <= r < s. | ||
| 156 | */ | ||
| 157 | |||
| 158 | static int | ||
| 159 | bn_strong_lucas_test(int *is_pseudoprime, const BIGNUM *n, const BIGNUM *D, | ||
| 160 | BN_CTX *ctx) | ||
| 161 | { | ||
| 162 | BIGNUM *k, *U, *V; | ||
| 163 | int r, s; | ||
| 164 | int ret = 0; | ||
| 165 | |||
| 166 | BN_CTX_start(ctx); | ||
| 167 | |||
| 168 | if ((k = BN_CTX_get(ctx)) == NULL) | ||
| 169 | goto err; | ||
| 170 | if ((U = BN_CTX_get(ctx)) == NULL) | ||
| 171 | goto err; | ||
| 172 | if ((V = BN_CTX_get(ctx)) == NULL) | ||
| 173 | goto err; | ||
| 174 | |||
| 175 | /* | ||
| 176 | * Factorize n + 1 = k * 2^s with odd k: shift away the s trailing ones | ||
| 177 | * of n and set the lowest bit of the resulting number k. | ||
| 178 | */ | ||
| 179 | |||
| 180 | s = 0; | ||
| 181 | while (BN_is_bit_set(n, s)) | ||
| 182 | s++; | ||
| 183 | if (!BN_rshift(k, n, s)) | ||
| 184 | goto err; | ||
| 185 | if (!BN_set_bit(k, 0)) | ||
| 186 | goto err; | ||
| 187 | |||
| 188 | /* | ||
| 189 | * Calculate the Lucas terms U_k and V_k. If either of them is zero, | ||
| 190 | * then n is a strong Lucas pseudoprime. | ||
| 191 | */ | ||
| 192 | |||
| 193 | if (!bn_lucas(U, V, k, D, n, ctx)) | ||
| 194 | goto err; | ||
| 195 | |||
| 196 | if (BN_is_zero(U) || BN_is_zero(V)) { | ||
| 197 | *is_pseudoprime = 1; | ||
| 198 | goto done; | ||
| 199 | } | ||
| 200 | |||
| 201 | /* | ||
| 202 | * Calculate the Lucas terms U_{k * 2^r}, V_{k * 2^r} for 1 <= r < s. | ||
| 203 | * If any V_{k * 2^r} is zero then n is a strong Lucas pseudoprime. | ||
| 204 | */ | ||
| 205 | |||
| 206 | for (r = 1; r < s; r++) { | ||
| 207 | if (!bn_lucas_step(U, V, 0, D, n, ctx)) | ||
| 208 | goto err; | ||
| 209 | |||
| 210 | if (BN_is_zero(V)) { | ||
| 211 | *is_pseudoprime = 1; | ||
| 212 | goto done; | ||
| 213 | } | ||
| 214 | } | ||
| 215 | |||
| 216 | /* | ||
| 217 | * If we got here, n is definitely composite. | ||
| 218 | */ | ||
| 219 | |||
| 220 | *is_pseudoprime = 0; | ||
| 221 | |||
| 222 | done: | ||
| 223 | ret = 1; | ||
| 224 | |||
| 225 | err: | ||
| 226 | BN_CTX_end(ctx); | ||
| 227 | |||
| 228 | return ret; | ||
| 229 | } | ||
| 230 | |||
| 231 | /* | ||
| 232 | * Test n for primality using the strong Lucas test with Selfridge's Method A. | ||
| 233 | * Returns 1 if n is prime or a strong Lucas-Selfridge pseudoprime. | ||
| 234 | * If it returns 0 then n is definitely composite. | ||
| 235 | */ | ||
| 236 | |||
| 237 | static int | ||
| 238 | bn_strong_lucas_selfridge(int *is_pseudoprime, const BIGNUM *n, BN_CTX *ctx) | ||
| 239 | { | ||
| 240 | BIGNUM *D, *two; | ||
| 241 | int is_perfect_square, jacobi_symbol, sign; | ||
| 242 | int ret = 0; | ||
| 243 | |||
| 244 | BN_CTX_start(ctx); | ||
| 245 | |||
| 246 | /* If n is a perfect square, it is composite. */ | ||
| 247 | if (!bn_is_perfect_square(&is_perfect_square, n, ctx)) | ||
| 248 | goto err; | ||
| 249 | if (is_perfect_square) { | ||
| 250 | *is_pseudoprime = 0; | ||
| 251 | goto done; | ||
| 252 | } | ||
| 253 | |||
| 254 | /* | ||
| 255 | * Find the first D in the Selfridge sequence 5, -7, 9, -11, 13, ... | ||
| 256 | * such that the Jacobi symbol (D/n) is -1. | ||
| 257 | */ | ||
| 258 | |||
| 259 | if ((D = BN_CTX_get(ctx)) == NULL) | ||
| 260 | goto err; | ||
| 261 | if ((two = BN_CTX_get(ctx)) == NULL) | ||
| 262 | goto err; | ||
| 263 | |||
| 264 | sign = 1; | ||
| 265 | if (!BN_set_word(D, 5)) | ||
| 266 | goto err; | ||
| 267 | if (!BN_set_word(two, 2)) | ||
| 268 | goto err; | ||
| 269 | |||
| 270 | while (1) { | ||
| 271 | /* For odd n the Kronecker symbol computes the Jacobi symbol. */ | ||
| 272 | if ((jacobi_symbol = BN_kronecker(D, n, ctx)) == -2) | ||
| 273 | goto err; | ||
| 274 | |||
| 275 | /* We found the value for D. */ | ||
| 276 | if (jacobi_symbol == -1) | ||
| 277 | break; | ||
| 278 | |||
| 279 | /* n and D have prime factors in common. */ | ||
| 280 | if (jacobi_symbol == 0) { | ||
| 281 | *is_pseudoprime = 0; | ||
| 282 | goto done; | ||
| 283 | } | ||
| 284 | |||
| 285 | sign = -sign; | ||
| 286 | if (!BN_uadd(D, D, two)) | ||
| 287 | goto err; | ||
| 288 | BN_set_negative(D, sign == -1); | ||
| 289 | } | ||
| 290 | |||
| 291 | if (!bn_strong_lucas_test(is_pseudoprime, n, D, ctx)) | ||
| 292 | goto err; | ||
| 293 | |||
| 294 | done: | ||
| 295 | ret = 1; | ||
| 296 | |||
| 297 | err: | ||
| 298 | BN_CTX_end(ctx); | ||
| 299 | |||
| 300 | return ret; | ||
| 301 | } | ||
| 302 | |||
| 303 | /* | ||
| 304 | * Fermat criterion in Miller-Rabin test. | ||
| 305 | * | ||
| 306 | * Check whether 1 < base < n - 1 witnesses that n is composite. For prime n: | ||
| 307 | * | ||
| 308 | * * Fermat's little theorem: base^(n-1) = 1 (mod n). | ||
| 309 | * * The only square roots of 1 (mod n) are 1 and -1. | ||
| 310 | * | ||
| 311 | * Calculate base^((n-1)/2) by writing n - 1 = k * 2^s with odd k. Iteratively | ||
| 312 | * compute power = (base^k)^(2^(s-1)) by successive squaring of base^k. | ||
| 313 | * | ||
| 314 | * If power ever reaches -1, base^(n-1) is equal to 1 and n is a pseudoprime | ||
| 315 | * for base. If power reaches 1 before -1 during successive squaring, we have | ||
| 316 | * an unexpected square root of 1 and n is composite. Otherwise base^(n-1) != 1, | ||
| 317 | * and n is composite. | ||
| 318 | */ | ||
| 319 | |||
| 320 | static int | ||
| 321 | bn_fermat(int *is_pseudoprime, const BIGNUM *n, const BIGNUM *n_minus_one, | ||
| 322 | const BIGNUM *k, int s, const BIGNUM *base, BN_CTX *ctx, BN_MONT_CTX *mctx) | ||
| 323 | { | ||
| 324 | BIGNUM *power; | ||
| 325 | int ret = 0; | ||
| 326 | int i; | ||
| 327 | |||
| 328 | BN_CTX_start(ctx); | ||
| 329 | |||
| 330 | if ((power = BN_CTX_get(ctx)) == NULL) | ||
| 331 | goto err; | ||
| 332 | |||
| 333 | /* Sanity check: ensure that 1 < base < n - 1. */ | ||
| 334 | if (BN_cmp(base, BN_value_one()) <= 0 || BN_cmp(base, n_minus_one) >= 0) | ||
| 335 | goto err; | ||
| 336 | |||
| 337 | if (!BN_mod_exp_mont_ct(power, base, k, n, ctx, mctx)) | ||
| 338 | goto err; | ||
| 339 | |||
| 340 | if (BN_is_one(power) || BN_cmp(power, n_minus_one) == 0) { | ||
| 341 | *is_pseudoprime = 1; | ||
| 342 | goto done; | ||
| 343 | } | ||
| 344 | |||
| 345 | /* Loop invariant: power is neither 1 nor -1 (mod n). */ | ||
| 346 | for (i = 1; i < s; i++) { | ||
| 347 | if (!BN_mod_sqr(power, power, n, ctx)) | ||
| 348 | goto err; | ||
| 349 | |||
| 350 | /* n is a pseudoprime for base. */ | ||
| 351 | if (BN_cmp(power, n_minus_one) == 0) { | ||
| 352 | *is_pseudoprime = 1; | ||
| 353 | goto done; | ||
| 354 | } | ||
| 355 | |||
| 356 | /* n is composite: there's a square root of unity != 1 or -1. */ | ||
| 357 | if (BN_is_one(power)) { | ||
| 358 | *is_pseudoprime = 0; | ||
| 359 | goto done; | ||
| 360 | } | ||
| 361 | } | ||
| 362 | |||
| 363 | /* | ||
| 364 | * If we get here, n is definitely composite: base^(n-1) != 1. | ||
| 365 | */ | ||
| 366 | |||
| 367 | *is_pseudoprime = 0; | ||
| 368 | |||
| 369 | done: | ||
| 370 | ret = 1; | ||
| 371 | |||
| 372 | err: | ||
| 373 | BN_CTX_end(ctx); | ||
| 374 | |||
| 375 | return ret; | ||
| 376 | } | ||
| 377 | |||
| 378 | /* | ||
| 379 | * Miller-Rabin primality test for base 2 and for |rounds| of random bases. | ||
| 380 | * On success: is_pseudoprime == 0 implies that n is composite. | ||
| 381 | */ | ||
| 382 | |||
| 383 | static int | ||
| 384 | bn_miller_rabin(int *is_pseudoprime, const BIGNUM *n, BN_CTX *ctx, | ||
| 385 | size_t rounds) | ||
| 386 | { | ||
| 387 | BN_MONT_CTX *mctx = NULL; | ||
| 388 | BIGNUM *base, *k, *n_minus_one; | ||
| 389 | size_t i; | ||
| 390 | int s; | ||
| 391 | int ret = 0; | ||
| 392 | |||
| 393 | BN_CTX_start(ctx); | ||
| 394 | |||
| 395 | if ((base = BN_CTX_get(ctx)) == NULL) | ||
| 396 | goto err; | ||
| 397 | if ((k = BN_CTX_get(ctx)) == NULL) | ||
| 398 | goto err; | ||
| 399 | if ((n_minus_one = BN_CTX_get(ctx)) == NULL) | ||
| 400 | goto err; | ||
| 401 | |||
| 402 | if (BN_is_word(n, 2) || BN_is_word(n, 3)) { | ||
| 403 | *is_pseudoprime = 1; | ||
| 404 | goto done; | ||
| 405 | } | ||
| 406 | |||
| 407 | if (BN_cmp(n, BN_value_one()) <= 0 || !BN_is_odd(n)) { | ||
| 408 | *is_pseudoprime = 0; | ||
| 409 | goto done; | ||
| 410 | } | ||
| 411 | |||
| 412 | if (!BN_sub(n_minus_one, n, BN_value_one())) | ||
| 413 | goto err; | ||
| 414 | |||
| 415 | /* | ||
| 416 | * Factorize n - 1 = k * 2^s. | ||
| 417 | */ | ||
| 418 | |||
| 419 | s = 0; | ||
| 420 | while (!BN_is_bit_set(n_minus_one, s)) | ||
| 421 | s++; | ||
| 422 | if (!BN_rshift(k, n_minus_one, s)) | ||
| 423 | goto err; | ||
| 424 | |||
| 425 | /* | ||
| 426 | * Montgomery setup for n. | ||
| 427 | */ | ||
| 428 | |||
| 429 | if ((mctx = BN_MONT_CTX_create(n, ctx)) == NULL) | ||
| 430 | goto err; | ||
| 431 | |||
| 432 | /* | ||
| 433 | * Perform a Miller-Rabin test for base 2 as required by BPSW. | ||
| 434 | */ | ||
| 435 | |||
| 436 | if (!BN_set_word(base, 2)) | ||
| 437 | goto err; | ||
| 438 | |||
| 439 | if (!bn_fermat(is_pseudoprime, n, n_minus_one, k, s, base, ctx, mctx)) | ||
| 440 | goto err; | ||
| 441 | if (!*is_pseudoprime) | ||
| 442 | goto done; | ||
| 443 | |||
| 444 | /* | ||
| 445 | * Perform Miller-Rabin tests with random 3 <= base < n - 1 to reduce | ||
| 446 | * risk of false positives in BPSW. | ||
| 447 | */ | ||
| 448 | |||
| 449 | for (i = 0; i < rounds; i++) { | ||
| 450 | if (!bn_rand_interval(base, 3, n_minus_one)) | ||
| 451 | goto err; | ||
| 452 | |||
| 453 | if (!bn_fermat(is_pseudoprime, n, n_minus_one, k, s, base, ctx, | ||
| 454 | mctx)) | ||
| 455 | goto err; | ||
| 456 | if (!*is_pseudoprime) | ||
| 457 | goto done; | ||
| 458 | } | ||
| 459 | |||
| 460 | /* | ||
| 461 | * If we got here, we have a Miller-Rabin pseudoprime. | ||
| 462 | */ | ||
| 463 | |||
| 464 | *is_pseudoprime = 1; | ||
| 465 | |||
| 466 | done: | ||
| 467 | ret = 1; | ||
| 468 | |||
| 469 | err: | ||
| 470 | BN_MONT_CTX_free(mctx); | ||
| 471 | BN_CTX_end(ctx); | ||
| 472 | |||
| 473 | return ret; | ||
| 474 | } | ||
| 475 | |||
| 476 | /* | ||
| 477 | * The Baillie-Pomerance-Selfridge-Wagstaff algorithm combines a Miller-Rabin | ||
| 478 | * test for base 2 with a Strong Lucas pseudoprime test. | ||
| 479 | */ | ||
| 480 | |||
| 481 | int | ||
| 482 | bn_is_prime_bpsw(int *is_pseudoprime, const BIGNUM *n, BN_CTX *in_ctx, | ||
| 483 | size_t rounds) | ||
| 484 | { | ||
| 485 | BN_CTX *ctx = NULL; | ||
| 486 | BN_ULONG mod; | ||
| 487 | int i; | ||
| 488 | int ret = 0; | ||
| 489 | |||
| 490 | if (BN_is_word(n, 2)) { | ||
| 491 | *is_pseudoprime = 1; | ||
| 492 | goto done; | ||
| 493 | } | ||
| 494 | |||
| 495 | if (BN_cmp(n, BN_value_one()) <= 0 || !BN_is_odd(n)) { | ||
| 496 | *is_pseudoprime = 0; | ||
| 497 | goto done; | ||
| 498 | } | ||
| 499 | |||
| 500 | /* Trial divisions with the first 2048 primes. */ | ||
| 501 | for (i = 0; i < NUMPRIMES; i++) { | ||
| 502 | if ((mod = BN_mod_word(n, primes[i])) == (BN_ULONG)-1) | ||
| 503 | goto err; | ||
| 504 | if (mod == 0) { | ||
| 505 | *is_pseudoprime = BN_is_word(n, primes[i]); | ||
| 506 | goto done; | ||
| 507 | } | ||
| 508 | } | ||
| 509 | |||
| 510 | if ((ctx = in_ctx) == NULL) | ||
| 511 | ctx = BN_CTX_new(); | ||
| 512 | if (ctx == NULL) | ||
| 513 | goto err; | ||
| 514 | |||
| 515 | if (!bn_miller_rabin(is_pseudoprime, n, ctx, rounds)) | ||
| 516 | goto err; | ||
| 517 | if (!*is_pseudoprime) | ||
| 518 | goto done; | ||
| 519 | |||
| 520 | if (!bn_strong_lucas_selfridge(is_pseudoprime, n, ctx)) | ||
| 521 | goto err; | ||
| 522 | |||
| 523 | done: | ||
| 524 | ret = 1; | ||
| 525 | |||
| 526 | err: | ||
| 527 | if (ctx != in_ctx) | ||
| 528 | BN_CTX_free(ctx); | ||
| 529 | |||
| 530 | return ret; | ||
| 531 | } | ||
