diff options
Diffstat (limited to 'src/lib/libcrypto/bn/bn_exp.c')
| -rw-r--r-- | src/lib/libcrypto/bn/bn_exp.c | 600 |
1 files changed, 397 insertions, 203 deletions
diff --git a/src/lib/libcrypto/bn/bn_exp.c b/src/lib/libcrypto/bn/bn_exp.c index c056a5083f..afdfd580fb 100644 --- a/src/lib/libcrypto/bn/bn_exp.c +++ b/src/lib/libcrypto/bn/bn_exp.c | |||
| @@ -55,112 +55,145 @@ | |||
| 55 | * copied and put under another distribution licence | 55 | * copied and put under another distribution licence |
| 56 | * [including the GNU Public Licence.] | 56 | * [including the GNU Public Licence.] |
| 57 | */ | 57 | */ |
| 58 | /* ==================================================================== | ||
| 59 | * Copyright (c) 1998-2000 The OpenSSL Project. All rights reserved. | ||
| 60 | * | ||
| 61 | * Redistribution and use in source and binary forms, with or without | ||
| 62 | * modification, are permitted provided that the following conditions | ||
| 63 | * are met: | ||
| 64 | * | ||
| 65 | * 1. Redistributions of source code must retain the above copyright | ||
| 66 | * notice, this list of conditions and the following disclaimer. | ||
| 67 | * | ||
| 68 | * 2. Redistributions in binary form must reproduce the above copyright | ||
| 69 | * notice, this list of conditions and the following disclaimer in | ||
| 70 | * the documentation and/or other materials provided with the | ||
| 71 | * distribution. | ||
| 72 | * | ||
| 73 | * 3. All advertising materials mentioning features or use of this | ||
| 74 | * software must display the following acknowledgment: | ||
| 75 | * "This product includes software developed by the OpenSSL Project | ||
| 76 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | ||
| 77 | * | ||
| 78 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
| 79 | * endorse or promote products derived from this software without | ||
| 80 | * prior written permission. For written permission, please contact | ||
| 81 | * openssl-core@openssl.org. | ||
| 82 | * | ||
| 83 | * 5. Products derived from this software may not be called "OpenSSL" | ||
| 84 | * nor may "OpenSSL" appear in their names without prior written | ||
| 85 | * permission of the OpenSSL Project. | ||
| 86 | * | ||
| 87 | * 6. Redistributions of any form whatsoever must retain the following | ||
| 88 | * acknowledgment: | ||
| 89 | * "This product includes software developed by the OpenSSL Project | ||
| 90 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" | ||
| 91 | * | ||
| 92 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
| 93 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
| 94 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
| 95 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
| 96 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
| 97 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
| 98 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
| 99 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
| 100 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
| 101 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
| 102 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
| 103 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
| 104 | * ==================================================================== | ||
| 105 | * | ||
| 106 | * This product includes cryptographic software written by Eric Young | ||
| 107 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
| 108 | * Hudson (tjh@cryptsoft.com). | ||
| 109 | * | ||
| 110 | */ | ||
| 111 | |||
| 58 | 112 | ||
| 59 | #include <stdio.h> | ||
| 60 | #include "cryptlib.h" | 113 | #include "cryptlib.h" |
| 61 | #include "bn_lcl.h" | 114 | #include "bn_lcl.h" |
| 62 | 115 | ||
| 63 | /* slow but works */ | 116 | #define TABLE_SIZE 32 |
| 64 | int BN_mod_mul(ret, a, b, m, ctx) | ||
| 65 | BIGNUM *ret; | ||
| 66 | BIGNUM *a; | ||
| 67 | BIGNUM *b; | ||
| 68 | BIGNUM *m; | ||
| 69 | BN_CTX *ctx; | ||
| 70 | { | ||
| 71 | BIGNUM *t; | ||
| 72 | int r=0; | ||
| 73 | |||
| 74 | t=ctx->bn[ctx->tos++]; | ||
| 75 | if (a == b) | ||
| 76 | { if (!BN_sqr(t,a,ctx)) goto err; } | ||
| 77 | else | ||
| 78 | { if (!BN_mul(t,a,b)) goto err; } | ||
| 79 | if (!BN_mod(ret,t,m,ctx)) goto err; | ||
| 80 | r=1; | ||
| 81 | err: | ||
| 82 | ctx->tos--; | ||
| 83 | return(r); | ||
| 84 | } | ||
| 85 | 117 | ||
| 86 | #if 0 | ||
| 87 | /* this one works - simple but works */ | 118 | /* this one works - simple but works */ |
| 88 | int BN_mod_exp(r,a,p,m,ctx) | 119 | int BN_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) |
| 89 | BIGNUM *r,*a,*p,*m; | ||
| 90 | BN_CTX *ctx; | ||
| 91 | { | 120 | { |
| 92 | int i,bits,ret=0; | 121 | int i,bits,ret=0; |
| 93 | BIGNUM *v,*tmp; | 122 | BIGNUM *v,*rr; |
| 94 | 123 | ||
| 95 | v=ctx->bn[ctx->tos++]; | 124 | BN_CTX_start(ctx); |
| 96 | tmp=ctx->bn[ctx->tos++]; | 125 | if ((r == a) || (r == p)) |
| 126 | rr = BN_CTX_get(ctx); | ||
| 127 | else | ||
| 128 | rr = r; | ||
| 129 | if ((v = BN_CTX_get(ctx)) == NULL) goto err; | ||
| 97 | 130 | ||
| 98 | if (BN_copy(v,a) == NULL) goto err; | 131 | if (BN_copy(v,a) == NULL) goto err; |
| 99 | bits=BN_num_bits(p); | 132 | bits=BN_num_bits(p); |
| 100 | 133 | ||
| 101 | if (BN_is_odd(p)) | 134 | if (BN_is_odd(p)) |
| 102 | { if (BN_copy(r,a) == NULL) goto err; } | 135 | { if (BN_copy(rr,a) == NULL) goto err; } |
| 103 | else { if (BN_one(r)) goto err; } | 136 | else { if (!BN_one(rr)) goto err; } |
| 104 | 137 | ||
| 105 | for (i=1; i<bits; i++) | 138 | for (i=1; i<bits; i++) |
| 106 | { | 139 | { |
| 107 | if (!BN_sqr(tmp,v,ctx)) goto err; | 140 | if (!BN_sqr(v,v,ctx)) goto err; |
| 108 | if (!BN_mod(v,tmp,m,ctx)) goto err; | ||
| 109 | if (BN_is_bit_set(p,i)) | 141 | if (BN_is_bit_set(p,i)) |
| 110 | { | 142 | { |
| 111 | if (!BN_mul(tmp,r,v)) goto err; | 143 | if (!BN_mul(rr,rr,v,ctx)) goto err; |
| 112 | if (!BN_mod(r,tmp,m,ctx)) goto err; | ||
| 113 | } | 144 | } |
| 114 | } | 145 | } |
| 115 | ret=1; | 146 | ret=1; |
| 116 | err: | 147 | err: |
| 117 | ctx->tos-=2; | 148 | if (r != rr) BN_copy(r,rr); |
| 149 | BN_CTX_end(ctx); | ||
| 118 | return(ret); | 150 | return(ret); |
| 119 | } | 151 | } |
| 120 | 152 | ||
| 121 | #endif | ||
| 122 | |||
| 123 | /* this one works - simple but works */ | ||
| 124 | int BN_exp(r,a,p,ctx) | ||
| 125 | BIGNUM *r,*a,*p; | ||
| 126 | BN_CTX *ctx; | ||
| 127 | { | ||
| 128 | int i,bits,ret=0; | ||
| 129 | BIGNUM *v,*tmp; | ||
| 130 | |||
| 131 | v=ctx->bn[ctx->tos++]; | ||
| 132 | tmp=ctx->bn[ctx->tos++]; | ||
| 133 | |||
| 134 | if (BN_copy(v,a) == NULL) goto err; | ||
| 135 | bits=BN_num_bits(p); | ||
| 136 | |||
| 137 | if (BN_is_odd(p)) | ||
| 138 | { if (BN_copy(r,a) == NULL) goto err; } | ||
| 139 | else { if (BN_one(r)) goto err; } | ||
| 140 | |||
| 141 | for (i=1; i<bits; i++) | ||
| 142 | { | ||
| 143 | if (!BN_sqr(tmp,v,ctx)) goto err; | ||
| 144 | if (BN_is_bit_set(p,i)) | ||
| 145 | { | ||
| 146 | if (!BN_mul(tmp,r,v)) goto err; | ||
| 147 | } | ||
| 148 | } | ||
| 149 | ret=1; | ||
| 150 | err: | ||
| 151 | ctx->tos-=2; | ||
| 152 | return(ret); | ||
| 153 | } | ||
| 154 | 153 | ||
| 155 | int BN_mod_exp(r,a,p,m,ctx) | 154 | int BN_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m, |
| 156 | BIGNUM *r; | 155 | BN_CTX *ctx) |
| 157 | BIGNUM *a; | ||
| 158 | BIGNUM *p; | ||
| 159 | BIGNUM *m; | ||
| 160 | BN_CTX *ctx; | ||
| 161 | { | 156 | { |
| 162 | int ret; | 157 | int ret; |
| 163 | 158 | ||
| 159 | bn_check_top(a); | ||
| 160 | bn_check_top(p); | ||
| 161 | bn_check_top(m); | ||
| 162 | |||
| 163 | /* For even modulus m = 2^k*m_odd, it might make sense to compute | ||
| 164 | * a^p mod m_odd and a^p mod 2^k separately (with Montgomery | ||
| 165 | * exponentiation for the odd part), using appropriate exponent | ||
| 166 | * reductions, and combine the results using the CRT. | ||
| 167 | * | ||
| 168 | * For now, we use Montgomery only if the modulus is odd; otherwise, | ||
| 169 | * exponentiation using the reciprocal-based quick remaindering | ||
| 170 | * algorithm is used. | ||
| 171 | * | ||
| 172 | * (Timing obtained with expspeed.c [computations a^p mod m | ||
| 173 | * where a, p, m are of the same length: 256, 512, 1024, 2048, | ||
| 174 | * 4096, 8192 bits], compared to the running time of the | ||
| 175 | * standard algorithm: | ||
| 176 | * | ||
| 177 | * BN_mod_exp_mont 33 .. 40 % [AMD K6-2, Linux, debug configuration] | ||
| 178 | * 55 .. 77 % [UltraSparc processor, but | ||
| 179 | * debug-solaris-sparcv8-gcc conf.] | ||
| 180 | * | ||
| 181 | * BN_mod_exp_recp 50 .. 70 % [AMD K6-2, Linux, debug configuration] | ||
| 182 | * 62 .. 118 % [UltraSparc, debug-solaris-sparcv8-gcc] | ||
| 183 | * | ||
| 184 | * On the Sparc, BN_mod_exp_recp was faster than BN_mod_exp_mont | ||
| 185 | * at 2048 and more bits, but at 512 and 1024 bits, it was | ||
| 186 | * slower even than the standard algorithm! | ||
| 187 | * | ||
| 188 | * "Real" timings [linux-elf, solaris-sparcv9-gcc configurations] | ||
| 189 | * should be obtained when the new Montgomery reduction code | ||
| 190 | * has been integrated into OpenSSL.) | ||
| 191 | */ | ||
| 192 | |||
| 193 | #define MONT_MUL_MOD | ||
| 194 | #define MONT_EXP_WORD | ||
| 195 | #define RECP_MUL_MOD | ||
| 196 | |||
| 164 | #ifdef MONT_MUL_MOD | 197 | #ifdef MONT_MUL_MOD |
| 165 | /* I have finally been able to take out this pre-condition of | 198 | /* I have finally been able to take out this pre-condition of |
| 166 | * the top bit being set. It was caused by an error in BN_div | 199 | * the top bit being set. It was caused by an error in BN_div |
| @@ -169,7 +202,17 @@ BN_CTX *ctx; | |||
| 169 | /* if ((m->d[m->top-1]&BN_TBIT) && BN_is_odd(m)) */ | 202 | /* if ((m->d[m->top-1]&BN_TBIT) && BN_is_odd(m)) */ |
| 170 | 203 | ||
| 171 | if (BN_is_odd(m)) | 204 | if (BN_is_odd(m)) |
| 172 | { ret=BN_mod_exp_mont(r,a,p,m,ctx,NULL); } | 205 | { |
| 206 | # ifdef MONT_EXP_WORD | ||
| 207 | if (a->top == 1 && !a->neg) | ||
| 208 | { | ||
| 209 | BN_ULONG A = a->d[0]; | ||
| 210 | ret=BN_mod_exp_mont_word(r,A,p,m,ctx,NULL); | ||
| 211 | } | ||
| 212 | else | ||
| 213 | # endif | ||
| 214 | ret=BN_mod_exp_mont(r,a,p,m,ctx,NULL); | ||
| 215 | } | ||
| 173 | else | 216 | else |
| 174 | #endif | 217 | #endif |
| 175 | #ifdef RECP_MUL_MOD | 218 | #ifdef RECP_MUL_MOD |
| @@ -181,55 +224,65 @@ BN_CTX *ctx; | |||
| 181 | return(ret); | 224 | return(ret); |
| 182 | } | 225 | } |
| 183 | 226 | ||
| 184 | /* #ifdef RECP_MUL_MOD */ | 227 | |
| 185 | int BN_mod_exp_recp(r,a,p,m,ctx) | 228 | int BN_mod_exp_recp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, |
| 186 | BIGNUM *r; | 229 | const BIGNUM *m, BN_CTX *ctx) |
| 187 | BIGNUM *a; | ||
| 188 | BIGNUM *p; | ||
| 189 | BIGNUM *m; | ||
| 190 | BN_CTX *ctx; | ||
| 191 | { | 230 | { |
| 192 | int nb,i,j,bits,ret=0,wstart,wend,window,wvalue; | 231 | int i,j,bits,ret=0,wstart,wend,window,wvalue; |
| 193 | int start=1; | 232 | int start=1,ts=0; |
| 194 | BIGNUM *d,*aa; | 233 | BIGNUM *aa; |
| 195 | BIGNUM *val[16]; | 234 | BIGNUM val[TABLE_SIZE]; |
| 235 | BN_RECP_CTX recp; | ||
| 196 | 236 | ||
| 197 | d=ctx->bn[ctx->tos++]; | ||
| 198 | aa=ctx->bn[ctx->tos++]; | ||
| 199 | bits=BN_num_bits(p); | 237 | bits=BN_num_bits(p); |
| 200 | 238 | ||
| 201 | if (bits == 0) | 239 | if (bits == 0) |
| 202 | { | 240 | { |
| 203 | BN_one(r); | 241 | ret = BN_one(r); |
| 204 | return(1); | 242 | return ret; |
| 243 | } | ||
| 244 | |||
| 245 | BN_CTX_start(ctx); | ||
| 246 | if ((aa = BN_CTX_get(ctx)) == NULL) goto err; | ||
| 247 | |||
| 248 | BN_RECP_CTX_init(&recp); | ||
| 249 | if (m->neg) | ||
| 250 | { | ||
| 251 | /* ignore sign of 'm' */ | ||
| 252 | if (!BN_copy(aa, m)) goto err; | ||
| 253 | aa->neg = 0; | ||
| 254 | if (BN_RECP_CTX_set(&recp,aa,ctx) <= 0) goto err; | ||
| 205 | } | 255 | } |
| 206 | nb=BN_reciprocal(d,m,ctx); | ||
| 207 | if (nb == -1) goto err; | ||
| 208 | |||
| 209 | val[0]=BN_new(); | ||
| 210 | if (!BN_mod(val[0],a,m,ctx)) goto err; /* 1 */ | ||
| 211 | if (!BN_mod_mul_reciprocal(aa,val[0],val[0],m,d,nb,ctx)) | ||
| 212 | goto err; /* 2 */ | ||
| 213 | |||
| 214 | if (bits <= 17) /* This is probably 3 or 0x10001, so just do singles */ | ||
| 215 | window=1; | ||
| 216 | else if (bits >= 256) | ||
| 217 | window=5; /* max size of window */ | ||
| 218 | else if (bits >= 128) | ||
| 219 | window=4; | ||
| 220 | else | 256 | else |
| 221 | window=3; | 257 | { |
| 258 | if (BN_RECP_CTX_set(&recp,m,ctx) <= 0) goto err; | ||
| 259 | } | ||
| 260 | |||
| 261 | BN_init(&(val[0])); | ||
| 262 | ts=1; | ||
| 222 | 263 | ||
| 223 | j=1<<(window-1); | 264 | if (!BN_nnmod(&(val[0]),a,m,ctx)) goto err; /* 1 */ |
| 224 | for (i=1; i<j; i++) | 265 | if (BN_is_zero(&(val[0]))) |
| 225 | { | 266 | { |
| 226 | val[i]=BN_new(); | 267 | ret = BN_zero(r); |
| 227 | if (!BN_mod_mul_reciprocal(val[i],val[i-1],aa,m,d,nb,ctx)) | 268 | goto err; |
| 228 | goto err; | ||
| 229 | } | 269 | } |
| 230 | for (; i<16; i++) | ||
| 231 | val[i]=NULL; | ||
| 232 | 270 | ||
| 271 | window = BN_window_bits_for_exponent_size(bits); | ||
| 272 | if (window > 1) | ||
| 273 | { | ||
| 274 | if (!BN_mod_mul_reciprocal(aa,&(val[0]),&(val[0]),&recp,ctx)) | ||
| 275 | goto err; /* 2 */ | ||
| 276 | j=1<<(window-1); | ||
| 277 | for (i=1; i<j; i++) | ||
| 278 | { | ||
| 279 | BN_init(&val[i]); | ||
| 280 | if (!BN_mod_mul_reciprocal(&(val[i]),&(val[i-1]),aa,&recp,ctx)) | ||
| 281 | goto err; | ||
| 282 | } | ||
| 283 | ts=i; | ||
| 284 | } | ||
| 285 | |||
| 233 | start=1; /* This is used to avoid multiplication etc | 286 | start=1; /* This is used to avoid multiplication etc |
| 234 | * when there is only the value '1' in the | 287 | * when there is only the value '1' in the |
| 235 | * buffer. */ | 288 | * buffer. */ |
| @@ -244,7 +297,7 @@ BN_CTX *ctx; | |||
| 244 | if (BN_is_bit_set(p,wstart) == 0) | 297 | if (BN_is_bit_set(p,wstart) == 0) |
| 245 | { | 298 | { |
| 246 | if (!start) | 299 | if (!start) |
| 247 | if (!BN_mod_mul_reciprocal(r,r,r,m,d,nb,ctx)) | 300 | if (!BN_mod_mul_reciprocal(r,r,r,&recp,ctx)) |
| 248 | goto err; | 301 | goto err; |
| 249 | if (wstart == 0) break; | 302 | if (wstart == 0) break; |
| 250 | wstart--; | 303 | wstart--; |
| @@ -274,12 +327,12 @@ BN_CTX *ctx; | |||
| 274 | if (!start) | 327 | if (!start) |
| 275 | for (i=0; i<j; i++) | 328 | for (i=0; i<j; i++) |
| 276 | { | 329 | { |
| 277 | if (!BN_mod_mul_reciprocal(r,r,r,m,d,nb,ctx)) | 330 | if (!BN_mod_mul_reciprocal(r,r,r,&recp,ctx)) |
| 278 | goto err; | 331 | goto err; |
| 279 | } | 332 | } |
| 280 | 333 | ||
| 281 | /* wvalue will be an odd number < 2^window */ | 334 | /* wvalue will be an odd number < 2^window */ |
| 282 | if (!BN_mod_mul_reciprocal(r,r,val[wvalue>>1],m,d,nb,ctx)) | 335 | if (!BN_mod_mul_reciprocal(r,r,&(val[wvalue>>1]),&recp,ctx)) |
| 283 | goto err; | 336 | goto err; |
| 284 | 337 | ||
| 285 | /* move the 'window' down further */ | 338 | /* move the 'window' down further */ |
| @@ -290,84 +343,86 @@ BN_CTX *ctx; | |||
| 290 | } | 343 | } |
| 291 | ret=1; | 344 | ret=1; |
| 292 | err: | 345 | err: |
| 293 | ctx->tos-=2; | 346 | BN_CTX_end(ctx); |
| 294 | for (i=0; i<16; i++) | 347 | for (i=0; i<ts; i++) |
| 295 | if (val[i] != NULL) BN_clear_free(val[i]); | 348 | BN_clear_free(&(val[i])); |
| 349 | BN_RECP_CTX_free(&recp); | ||
| 296 | return(ret); | 350 | return(ret); |
| 297 | } | 351 | } |
| 298 | /* #endif */ | 352 | |
| 299 | 353 | ||
| 300 | /* #ifdef MONT_MUL_MOD */ | 354 | int BN_mod_exp_mont(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p, |
| 301 | int BN_mod_exp_mont(r,a,p,m,ctx,in_mont) | 355 | const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont) |
| 302 | BIGNUM *r; | ||
| 303 | BIGNUM *a; | ||
| 304 | BIGNUM *p; | ||
| 305 | BIGNUM *m; | ||
| 306 | BN_CTX *ctx; | ||
| 307 | BN_MONT_CTX *in_mont; | ||
| 308 | { | 356 | { |
| 309 | #define TABLE_SIZE 16 | ||
| 310 | int i,j,bits,ret=0,wstart,wend,window,wvalue; | 357 | int i,j,bits,ret=0,wstart,wend,window,wvalue; |
| 311 | int start=1; | 358 | int start=1,ts=0; |
| 312 | BIGNUM *d,*aa; | 359 | BIGNUM *d,*r; |
| 313 | BIGNUM *val[TABLE_SIZE]; | 360 | const BIGNUM *aa; |
| 361 | BIGNUM val[TABLE_SIZE]; | ||
| 314 | BN_MONT_CTX *mont=NULL; | 362 | BN_MONT_CTX *mont=NULL; |
| 315 | 363 | ||
| 364 | bn_check_top(a); | ||
| 365 | bn_check_top(p); | ||
| 366 | bn_check_top(m); | ||
| 367 | |||
| 316 | if (!(m->d[0] & 1)) | 368 | if (!(m->d[0] & 1)) |
| 317 | { | 369 | { |
| 318 | BNerr(BN_F_BN_MOD_EXP_MONT,BN_R_CALLED_WITH_EVEN_MODULUS); | 370 | BNerr(BN_F_BN_MOD_EXP_MONT,BN_R_CALLED_WITH_EVEN_MODULUS); |
| 319 | return(0); | 371 | return(0); |
| 320 | } | 372 | } |
| 321 | d=ctx->bn[ctx->tos++]; | ||
| 322 | bits=BN_num_bits(p); | 373 | bits=BN_num_bits(p); |
| 323 | if (bits == 0) | 374 | if (bits == 0) |
| 324 | { | 375 | { |
| 325 | BN_one(r); | 376 | ret = BN_one(rr); |
| 326 | return(1); | 377 | return ret; |
| 327 | } | 378 | } |
| 328 | 379 | ||
| 380 | BN_CTX_start(ctx); | ||
| 381 | d = BN_CTX_get(ctx); | ||
| 382 | r = BN_CTX_get(ctx); | ||
| 383 | if (d == NULL || r == NULL) goto err; | ||
| 384 | |||
| 329 | /* If this is not done, things will break in the montgomery | 385 | /* If this is not done, things will break in the montgomery |
| 330 | * part */ | 386 | * part */ |
| 331 | 387 | ||
| 332 | #if 1 | ||
| 333 | if (in_mont != NULL) | 388 | if (in_mont != NULL) |
| 334 | mont=in_mont; | 389 | mont=in_mont; |
| 335 | else | 390 | else |
| 336 | #endif | ||
| 337 | { | 391 | { |
| 338 | if ((mont=BN_MONT_CTX_new()) == NULL) goto err; | 392 | if ((mont=BN_MONT_CTX_new()) == NULL) goto err; |
| 339 | if (!BN_MONT_CTX_set(mont,m,ctx)) goto err; | 393 | if (!BN_MONT_CTX_set(mont,m,ctx)) goto err; |
| 340 | } | 394 | } |
| 341 | 395 | ||
| 342 | val[0]=BN_new(); | 396 | BN_init(&val[0]); |
| 343 | if (BN_ucmp(a,m) >= 0) | 397 | ts=1; |
| 398 | if (a->neg || BN_ucmp(a,m) >= 0) | ||
| 344 | { | 399 | { |
| 345 | BN_mod(val[0],a,m,ctx); | 400 | if (!BN_nnmod(&(val[0]),a,m,ctx)) |
| 346 | aa=val[0]; | 401 | goto err; |
| 402 | aa= &(val[0]); | ||
| 347 | } | 403 | } |
| 348 | else | 404 | else |
| 349 | aa=a; | 405 | aa=a; |
| 350 | if (!BN_to_montgomery(val[0],aa,mont,ctx)) goto err; /* 1 */ | 406 | if (BN_is_zero(aa)) |
| 351 | if (!BN_mod_mul_montgomery(d,val[0],val[0],mont,ctx)) goto err; /* 2 */ | 407 | { |
| 352 | 408 | ret = BN_zero(rr); | |
| 353 | if (bits <= 20) /* This is probably 3 or 0x10001, so just do singles */ | 409 | goto err; |
| 354 | window=1; | 410 | } |
| 355 | else if (bits > 250) | 411 | if (!BN_to_montgomery(&(val[0]),aa,mont,ctx)) goto err; /* 1 */ |
| 356 | window=5; /* max size of window */ | ||
| 357 | else if (bits >= 120) | ||
| 358 | window=4; | ||
| 359 | else | ||
| 360 | window=3; | ||
| 361 | 412 | ||
| 362 | j=1<<(window-1); | 413 | window = BN_window_bits_for_exponent_size(bits); |
| 363 | for (i=1; i<j; i++) | 414 | if (window > 1) |
| 364 | { | 415 | { |
| 365 | val[i]=BN_new(); | 416 | if (!BN_mod_mul_montgomery(d,&(val[0]),&(val[0]),mont,ctx)) goto err; /* 2 */ |
| 366 | if (!BN_mod_mul_montgomery(val[i],val[i-1],d,mont,ctx)) | 417 | j=1<<(window-1); |
| 367 | goto err; | 418 | for (i=1; i<j; i++) |
| 419 | { | ||
| 420 | BN_init(&(val[i])); | ||
| 421 | if (!BN_mod_mul_montgomery(&(val[i]),&(val[i-1]),d,mont,ctx)) | ||
| 422 | goto err; | ||
| 423 | } | ||
| 424 | ts=i; | ||
| 368 | } | 425 | } |
| 369 | for (; i<TABLE_SIZE; i++) | ||
| 370 | val[i]=NULL; | ||
| 371 | 426 | ||
| 372 | start=1; /* This is used to avoid multiplication etc | 427 | start=1; /* This is used to avoid multiplication etc |
| 373 | * when there is only the value '1' in the | 428 | * when there is only the value '1' in the |
| @@ -376,7 +431,7 @@ BN_MONT_CTX *in_mont; | |||
| 376 | wstart=bits-1; /* The top bit of the window */ | 431 | wstart=bits-1; /* The top bit of the window */ |
| 377 | wend=0; /* The bottom bit of the window */ | 432 | wend=0; /* The bottom bit of the window */ |
| 378 | 433 | ||
| 379 | if (!BN_to_montgomery(r,BN_value_one(),mont,ctx)) goto err; | 434 | if (!BN_to_montgomery(r,BN_value_one(),mont,ctx)) goto err; |
| 380 | for (;;) | 435 | for (;;) |
| 381 | { | 436 | { |
| 382 | if (BN_is_bit_set(p,wstart) == 0) | 437 | if (BN_is_bit_set(p,wstart) == 0) |
| @@ -419,7 +474,7 @@ BN_MONT_CTX *in_mont; | |||
| 419 | } | 474 | } |
| 420 | 475 | ||
| 421 | /* wvalue will be an odd number < 2^window */ | 476 | /* wvalue will be an odd number < 2^window */ |
| 422 | if (!BN_mod_mul_montgomery(r,r,val[wvalue>>1],mont,ctx)) | 477 | if (!BN_mod_mul_montgomery(r,r,&(val[wvalue>>1]),mont,ctx)) |
| 423 | goto err; | 478 | goto err; |
| 424 | 479 | ||
| 425 | /* move the 'window' down further */ | 480 | /* move the 'window' down further */ |
| @@ -428,62 +483,201 @@ BN_MONT_CTX *in_mont; | |||
| 428 | start=0; | 483 | start=0; |
| 429 | if (wstart < 0) break; | 484 | if (wstart < 0) break; |
| 430 | } | 485 | } |
| 431 | BN_from_montgomery(r,r,mont,ctx); | 486 | if (!BN_from_montgomery(rr,r,mont,ctx)) goto err; |
| 432 | ret=1; | 487 | ret=1; |
| 433 | err: | 488 | err: |
| 434 | if ((in_mont == NULL) && (mont != NULL)) BN_MONT_CTX_free(mont); | 489 | if ((in_mont == NULL) && (mont != NULL)) BN_MONT_CTX_free(mont); |
| 435 | ctx->tos--; | 490 | BN_CTX_end(ctx); |
| 436 | for (i=0; i<TABLE_SIZE; i++) | 491 | for (i=0; i<ts; i++) |
| 437 | if (val[i] != NULL) BN_clear_free(val[i]); | 492 | BN_clear_free(&(val[i])); |
| 438 | return(ret); | 493 | return(ret); |
| 439 | } | 494 | } |
| 440 | /* #endif */ | 495 | |
| 496 | int BN_mod_exp_mont_word(BIGNUM *rr, BN_ULONG a, const BIGNUM *p, | ||
| 497 | const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont) | ||
| 498 | { | ||
| 499 | BN_MONT_CTX *mont = NULL; | ||
| 500 | int b, bits, ret=0; | ||
| 501 | int r_is_one; | ||
| 502 | BN_ULONG w, next_w; | ||
| 503 | BIGNUM *d, *r, *t; | ||
| 504 | BIGNUM *swap_tmp; | ||
| 505 | #define BN_MOD_MUL_WORD(r, w, m) \ | ||
| 506 | (BN_mul_word(r, (w)) && \ | ||
| 507 | (/* BN_ucmp(r, (m)) < 0 ? 1 :*/ \ | ||
| 508 | (BN_mod(t, r, m, ctx) && (swap_tmp = r, r = t, t = swap_tmp, 1)))) | ||
| 509 | /* BN_MOD_MUL_WORD is only used with 'w' large, | ||
| 510 | * so the BN_ucmp test is probably more overhead | ||
| 511 | * than always using BN_mod (which uses BN_copy if | ||
| 512 | * a similar test returns true). */ | ||
| 513 | /* We can use BN_mod and do not need BN_nnmod because our | ||
| 514 | * accumulator is never negative (the result of BN_mod does | ||
| 515 | * not depend on the sign of the modulus). | ||
| 516 | */ | ||
| 517 | #define BN_TO_MONTGOMERY_WORD(r, w, mont) \ | ||
| 518 | (BN_set_word(r, (w)) && BN_to_montgomery(r, r, (mont), ctx)) | ||
| 519 | |||
| 520 | bn_check_top(p); | ||
| 521 | bn_check_top(m); | ||
| 522 | |||
| 523 | if (m->top == 0 || !(m->d[0] & 1)) | ||
| 524 | { | ||
| 525 | BNerr(BN_F_BN_MOD_EXP_MONT_WORD,BN_R_CALLED_WITH_EVEN_MODULUS); | ||
| 526 | return(0); | ||
| 527 | } | ||
| 528 | if (m->top == 1) | ||
| 529 | a %= m->d[0]; /* make sure that 'a' is reduced */ | ||
| 530 | |||
| 531 | bits = BN_num_bits(p); | ||
| 532 | if (bits == 0) | ||
| 533 | { | ||
| 534 | ret = BN_one(rr); | ||
| 535 | return ret; | ||
| 536 | } | ||
| 537 | if (a == 0) | ||
| 538 | { | ||
| 539 | ret = BN_zero(rr); | ||
| 540 | return ret; | ||
| 541 | } | ||
| 542 | |||
| 543 | BN_CTX_start(ctx); | ||
| 544 | d = BN_CTX_get(ctx); | ||
| 545 | r = BN_CTX_get(ctx); | ||
| 546 | t = BN_CTX_get(ctx); | ||
| 547 | if (d == NULL || r == NULL || t == NULL) goto err; | ||
| 548 | |||
| 549 | if (in_mont != NULL) | ||
| 550 | mont=in_mont; | ||
| 551 | else | ||
| 552 | { | ||
| 553 | if ((mont = BN_MONT_CTX_new()) == NULL) goto err; | ||
| 554 | if (!BN_MONT_CTX_set(mont, m, ctx)) goto err; | ||
| 555 | } | ||
| 556 | |||
| 557 | r_is_one = 1; /* except for Montgomery factor */ | ||
| 558 | |||
| 559 | /* bits-1 >= 0 */ | ||
| 560 | |||
| 561 | /* The result is accumulated in the product r*w. */ | ||
| 562 | w = a; /* bit 'bits-1' of 'p' is always set */ | ||
| 563 | for (b = bits-2; b >= 0; b--) | ||
| 564 | { | ||
| 565 | /* First, square r*w. */ | ||
| 566 | next_w = w*w; | ||
| 567 | if ((next_w/w) != w) /* overflow */ | ||
| 568 | { | ||
| 569 | if (r_is_one) | ||
| 570 | { | ||
| 571 | if (!BN_TO_MONTGOMERY_WORD(r, w, mont)) goto err; | ||
| 572 | r_is_one = 0; | ||
| 573 | } | ||
| 574 | else | ||
| 575 | { | ||
| 576 | if (!BN_MOD_MUL_WORD(r, w, m)) goto err; | ||
| 577 | } | ||
| 578 | next_w = 1; | ||
| 579 | } | ||
| 580 | w = next_w; | ||
| 581 | if (!r_is_one) | ||
| 582 | { | ||
| 583 | if (!BN_mod_mul_montgomery(r, r, r, mont, ctx)) goto err; | ||
| 584 | } | ||
| 585 | |||
| 586 | /* Second, multiply r*w by 'a' if exponent bit is set. */ | ||
| 587 | if (BN_is_bit_set(p, b)) | ||
| 588 | { | ||
| 589 | next_w = w*a; | ||
| 590 | if ((next_w/a) != w) /* overflow */ | ||
| 591 | { | ||
| 592 | if (r_is_one) | ||
| 593 | { | ||
| 594 | if (!BN_TO_MONTGOMERY_WORD(r, w, mont)) goto err; | ||
| 595 | r_is_one = 0; | ||
| 596 | } | ||
| 597 | else | ||
| 598 | { | ||
| 599 | if (!BN_MOD_MUL_WORD(r, w, m)) goto err; | ||
| 600 | } | ||
| 601 | next_w = a; | ||
| 602 | } | ||
| 603 | w = next_w; | ||
| 604 | } | ||
| 605 | } | ||
| 606 | |||
| 607 | /* Finally, set r:=r*w. */ | ||
| 608 | if (w != 1) | ||
| 609 | { | ||
| 610 | if (r_is_one) | ||
| 611 | { | ||
| 612 | if (!BN_TO_MONTGOMERY_WORD(r, w, mont)) goto err; | ||
| 613 | r_is_one = 0; | ||
| 614 | } | ||
| 615 | else | ||
| 616 | { | ||
| 617 | if (!BN_MOD_MUL_WORD(r, w, m)) goto err; | ||
| 618 | } | ||
| 619 | } | ||
| 620 | |||
| 621 | if (r_is_one) /* can happen only if a == 1*/ | ||
| 622 | { | ||
| 623 | if (!BN_one(rr)) goto err; | ||
| 624 | } | ||
| 625 | else | ||
| 626 | { | ||
| 627 | if (!BN_from_montgomery(rr, r, mont, ctx)) goto err; | ||
| 628 | } | ||
| 629 | ret = 1; | ||
| 630 | err: | ||
| 631 | if ((in_mont == NULL) && (mont != NULL)) BN_MONT_CTX_free(mont); | ||
| 632 | BN_CTX_end(ctx); | ||
| 633 | return(ret); | ||
| 634 | } | ||
| 635 | |||
| 441 | 636 | ||
| 442 | /* The old fallback, simple version :-) */ | 637 | /* The old fallback, simple version :-) */ |
| 443 | int BN_mod_exp_simple(r,a,p,m,ctx) | 638 | int BN_mod_exp_simple(BIGNUM *r, |
| 444 | BIGNUM *r; | 639 | const BIGNUM *a, const BIGNUM *p, const BIGNUM *m, |
| 445 | BIGNUM *a; | 640 | BN_CTX *ctx) |
| 446 | BIGNUM *p; | ||
| 447 | BIGNUM *m; | ||
| 448 | BN_CTX *ctx; | ||
| 449 | { | 641 | { |
| 450 | int i,j,bits,ret=0,wstart,wend,window,wvalue; | 642 | int i,j,bits,ret=0,wstart,wend,window,wvalue,ts=0; |
| 451 | int start=1; | 643 | int start=1; |
| 452 | BIGNUM *d; | 644 | BIGNUM *d; |
| 453 | BIGNUM *val[16]; | 645 | BIGNUM val[TABLE_SIZE]; |
| 454 | 646 | ||
| 455 | d=ctx->bn[ctx->tos++]; | ||
| 456 | bits=BN_num_bits(p); | 647 | bits=BN_num_bits(p); |
| 457 | 648 | ||
| 458 | if (bits == 0) | 649 | if (bits == 0) |
| 459 | { | 650 | { |
| 460 | BN_one(r); | 651 | ret = BN_one(r); |
| 461 | return(1); | 652 | return ret; |
| 462 | } | 653 | } |
| 463 | 654 | ||
| 464 | val[0]=BN_new(); | 655 | BN_CTX_start(ctx); |
| 465 | if (!BN_mod(val[0],a,m,ctx)) goto err; /* 1 */ | 656 | if ((d = BN_CTX_get(ctx)) == NULL) goto err; |
| 466 | if (!BN_mod_mul(d,val[0],val[0],m,ctx)) | ||
| 467 | goto err; /* 2 */ | ||
| 468 | |||
| 469 | if (bits <= 17) /* This is probably 3 or 0x10001, so just do singles */ | ||
| 470 | window=1; | ||
| 471 | else if (bits >= 256) | ||
| 472 | window=5; /* max size of window */ | ||
| 473 | else if (bits >= 128) | ||
| 474 | window=4; | ||
| 475 | else | ||
| 476 | window=3; | ||
| 477 | 657 | ||
| 478 | j=1<<(window-1); | 658 | BN_init(&(val[0])); |
| 479 | for (i=1; i<j; i++) | 659 | ts=1; |
| 660 | if (!BN_nnmod(&(val[0]),a,m,ctx)) goto err; /* 1 */ | ||
| 661 | if (BN_is_zero(&(val[0]))) | ||
| 480 | { | 662 | { |
| 481 | val[i]=BN_new(); | 663 | ret = BN_zero(r); |
| 482 | if (!BN_mod_mul(val[i],val[i-1],d,m,ctx)) | 664 | goto err; |
| 483 | goto err; | 665 | } |
| 666 | |||
| 667 | window = BN_window_bits_for_exponent_size(bits); | ||
| 668 | if (window > 1) | ||
| 669 | { | ||
| 670 | if (!BN_mod_mul(d,&(val[0]),&(val[0]),m,ctx)) | ||
| 671 | goto err; /* 2 */ | ||
| 672 | j=1<<(window-1); | ||
| 673 | for (i=1; i<j; i++) | ||
| 674 | { | ||
| 675 | BN_init(&(val[i])); | ||
| 676 | if (!BN_mod_mul(&(val[i]),&(val[i-1]),d,m,ctx)) | ||
| 677 | goto err; | ||
| 678 | } | ||
| 679 | ts=i; | ||
| 484 | } | 680 | } |
| 485 | for (; i<16; i++) | ||
| 486 | val[i]=NULL; | ||
| 487 | 681 | ||
| 488 | start=1; /* This is used to avoid multiplication etc | 682 | start=1; /* This is used to avoid multiplication etc |
| 489 | * when there is only the value '1' in the | 683 | * when there is only the value '1' in the |
| @@ -534,7 +728,7 @@ BN_CTX *ctx; | |||
| 534 | } | 728 | } |
| 535 | 729 | ||
| 536 | /* wvalue will be an odd number < 2^window */ | 730 | /* wvalue will be an odd number < 2^window */ |
| 537 | if (!BN_mod_mul(r,r,val[wvalue>>1],m,ctx)) | 731 | if (!BN_mod_mul(r,r,&(val[wvalue>>1]),m,ctx)) |
| 538 | goto err; | 732 | goto err; |
| 539 | 733 | ||
| 540 | /* move the 'window' down further */ | 734 | /* move the 'window' down further */ |
| @@ -545,9 +739,9 @@ BN_CTX *ctx; | |||
| 545 | } | 739 | } |
| 546 | ret=1; | 740 | ret=1; |
| 547 | err: | 741 | err: |
| 548 | ctx->tos--; | 742 | BN_CTX_end(ctx); |
| 549 | for (i=0; i<16; i++) | 743 | for (i=0; i<ts; i++) |
| 550 | if (val[i] != NULL) BN_clear_free(val[i]); | 744 | BN_clear_free(&(val[i])); |
| 551 | return(ret); | 745 | return(ret); |
| 552 | } | 746 | } |
| 553 | 747 | ||
