diff options
Diffstat (limited to 'src/lib/libcrypto/bn/bn_exp.c')
| -rw-r--r-- | src/lib/libcrypto/bn/bn_exp.c | 1330 |
1 files changed, 0 insertions, 1330 deletions
diff --git a/src/lib/libcrypto/bn/bn_exp.c b/src/lib/libcrypto/bn/bn_exp.c deleted file mode 100644 index e925d325d2..0000000000 --- a/src/lib/libcrypto/bn/bn_exp.c +++ /dev/null | |||
| @@ -1,1330 +0,0 @@ | |||
| 1 | /* $OpenBSD: bn_exp.c,v 1.58 2025/02/13 11:15:09 tb Exp $ */ | ||
| 2 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) | ||
| 3 | * All rights reserved. | ||
| 4 | * | ||
| 5 | * This package is an SSL implementation written | ||
| 6 | * by Eric Young (eay@cryptsoft.com). | ||
| 7 | * The implementation was written so as to conform with Netscapes SSL. | ||
| 8 | * | ||
| 9 | * This library is free for commercial and non-commercial use as long as | ||
| 10 | * the following conditions are aheared to. The following conditions | ||
| 11 | * apply to all code found in this distribution, be it the RC4, RSA, | ||
| 12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation | ||
| 13 | * included with this distribution is covered by the same copyright terms | ||
| 14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | ||
| 15 | * | ||
| 16 | * Copyright remains Eric Young's, and as such any Copyright notices in | ||
| 17 | * the code are not to be removed. | ||
| 18 | * If this package is used in a product, Eric Young should be given attribution | ||
| 19 | * as the author of the parts of the library used. | ||
| 20 | * This can be in the form of a textual message at program startup or | ||
| 21 | * in documentation (online or textual) provided with the package. | ||
| 22 | * | ||
| 23 | * Redistribution and use in source and binary forms, with or without | ||
| 24 | * modification, are permitted provided that the following conditions | ||
| 25 | * are met: | ||
| 26 | * 1. Redistributions of source code must retain the copyright | ||
| 27 | * notice, this list of conditions and the following disclaimer. | ||
| 28 | * 2. Redistributions in binary form must reproduce the above copyright | ||
| 29 | * notice, this list of conditions and the following disclaimer in the | ||
| 30 | * documentation and/or other materials provided with the distribution. | ||
| 31 | * 3. All advertising materials mentioning features or use of this software | ||
| 32 | * must display the following acknowledgement: | ||
| 33 | * "This product includes cryptographic software written by | ||
| 34 | * Eric Young (eay@cryptsoft.com)" | ||
| 35 | * The word 'cryptographic' can be left out if the rouines from the library | ||
| 36 | * being used are not cryptographic related :-). | ||
| 37 | * 4. If you include any Windows specific code (or a derivative thereof) from | ||
| 38 | * the apps directory (application code) you must include an acknowledgement: | ||
| 39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | ||
| 40 | * | ||
| 41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | ||
| 42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
| 43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | ||
| 44 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | ||
| 45 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | ||
| 46 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | ||
| 47 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
| 48 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | ||
| 49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | ||
| 50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | ||
| 51 | * SUCH DAMAGE. | ||
| 52 | * | ||
| 53 | * The licence and distribution terms for any publically available version or | ||
| 54 | * derivative of this code cannot be changed. i.e. this code cannot simply be | ||
| 55 | * copied and put under another distribution licence | ||
| 56 | * [including the GNU Public Licence.] | ||
| 57 | */ | ||
| 58 | /* ==================================================================== | ||
| 59 | * Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved. | ||
| 60 | * | ||
| 61 | * Redistribution and use in source and binary forms, with or without | ||
| 62 | * modification, are permitted provided that the following conditions | ||
| 63 | * are met: | ||
| 64 | * | ||
| 65 | * 1. Redistributions of source code must retain the above copyright | ||
| 66 | * notice, this list of conditions and the following disclaimer. | ||
| 67 | * | ||
| 68 | * 2. Redistributions in binary form must reproduce the above copyright | ||
| 69 | * notice, this list of conditions and the following disclaimer in | ||
| 70 | * the documentation and/or other materials provided with the | ||
| 71 | * distribution. | ||
| 72 | * | ||
| 73 | * 3. All advertising materials mentioning features or use of this | ||
| 74 | * software must display the following acknowledgment: | ||
| 75 | * "This product includes software developed by the OpenSSL Project | ||
| 76 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | ||
| 77 | * | ||
| 78 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
| 79 | * endorse or promote products derived from this software without | ||
| 80 | * prior written permission. For written permission, please contact | ||
| 81 | * openssl-core@openssl.org. | ||
| 82 | * | ||
| 83 | * 5. Products derived from this software may not be called "OpenSSL" | ||
| 84 | * nor may "OpenSSL" appear in their names without prior written | ||
| 85 | * permission of the OpenSSL Project. | ||
| 86 | * | ||
| 87 | * 6. Redistributions of any form whatsoever must retain the following | ||
| 88 | * acknowledgment: | ||
| 89 | * "This product includes software developed by the OpenSSL Project | ||
| 90 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" | ||
| 91 | * | ||
| 92 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
| 93 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
| 94 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
| 95 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
| 96 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
| 97 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
| 98 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
| 99 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
| 100 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
| 101 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
| 102 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
| 103 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
| 104 | * ==================================================================== | ||
| 105 | * | ||
| 106 | * This product includes cryptographic software written by Eric Young | ||
| 107 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
| 108 | * Hudson (tjh@cryptsoft.com). | ||
| 109 | * | ||
| 110 | */ | ||
| 111 | |||
| 112 | #include <stdlib.h> | ||
| 113 | #include <string.h> | ||
| 114 | |||
| 115 | #include <openssl/err.h> | ||
| 116 | |||
| 117 | #include "bn_local.h" | ||
| 118 | #include "constant_time.h" | ||
| 119 | |||
| 120 | /* maximum precomputation table size for *variable* sliding windows */ | ||
| 121 | #define TABLE_SIZE 32 | ||
| 122 | |||
| 123 | /* Calculates r = a^p by successive squaring of a. Not constant time. */ | ||
| 124 | int | ||
| 125 | BN_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) | ||
| 126 | { | ||
| 127 | BIGNUM *rr, *v; | ||
| 128 | int i; | ||
| 129 | int ret = 0; | ||
| 130 | |||
| 131 | if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0) { | ||
| 132 | BNerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | ||
| 133 | return -1; | ||
| 134 | } | ||
| 135 | |||
| 136 | BN_CTX_start(ctx); | ||
| 137 | |||
| 138 | if ((v = BN_CTX_get(ctx)) == NULL) | ||
| 139 | goto err; | ||
| 140 | |||
| 141 | rr = r; | ||
| 142 | if (r == a || r == p) | ||
| 143 | rr = BN_CTX_get(ctx); | ||
| 144 | if (rr == NULL) | ||
| 145 | goto err; | ||
| 146 | |||
| 147 | if (!BN_one(rr)) | ||
| 148 | goto err; | ||
| 149 | if (BN_is_odd(p)) { | ||
| 150 | if (!bn_copy(rr, a)) | ||
| 151 | goto err; | ||
| 152 | } | ||
| 153 | |||
| 154 | if (!bn_copy(v, a)) | ||
| 155 | goto err; | ||
| 156 | |||
| 157 | for (i = 1; i < BN_num_bits(p); i++) { | ||
| 158 | if (!BN_sqr(v, v, ctx)) | ||
| 159 | goto err; | ||
| 160 | if (!BN_is_bit_set(p, i)) | ||
| 161 | continue; | ||
| 162 | if (!BN_mul(rr, rr, v, ctx)) | ||
| 163 | goto err; | ||
| 164 | } | ||
| 165 | |||
| 166 | if (!bn_copy(r, rr)) | ||
| 167 | goto err; | ||
| 168 | |||
| 169 | ret = 1; | ||
| 170 | |||
| 171 | err: | ||
| 172 | BN_CTX_end(ctx); | ||
| 173 | |||
| 174 | return ret; | ||
| 175 | } | ||
| 176 | LCRYPTO_ALIAS(BN_exp); | ||
| 177 | |||
| 178 | /* The old fallback, simple version :-) */ | ||
| 179 | int | ||
| 180 | BN_mod_exp_simple(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m, | ||
| 181 | BN_CTX *ctx) | ||
| 182 | { | ||
| 183 | int i, j, bits, wstart, wend, window, wvalue; | ||
| 184 | int start = 1; | ||
| 185 | BIGNUM *d, *q; | ||
| 186 | /* Table of variables obtained from 'ctx' */ | ||
| 187 | BIGNUM *val[TABLE_SIZE]; | ||
| 188 | int ret = 0; | ||
| 189 | |||
| 190 | if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0) { | ||
| 191 | /* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */ | ||
| 192 | BNerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | ||
| 193 | return -1; | ||
| 194 | } | ||
| 195 | |||
| 196 | if (r == m) { | ||
| 197 | BNerror(BN_R_INVALID_ARGUMENT); | ||
| 198 | return 0; | ||
| 199 | } | ||
| 200 | |||
| 201 | bits = BN_num_bits(p); | ||
| 202 | if (bits == 0) { | ||
| 203 | /* x**0 mod 1 is still zero. */ | ||
| 204 | if (BN_abs_is_word(m, 1)) { | ||
| 205 | ret = 1; | ||
| 206 | BN_zero(r); | ||
| 207 | } else | ||
| 208 | ret = BN_one(r); | ||
| 209 | return ret; | ||
| 210 | } | ||
| 211 | |||
| 212 | BN_CTX_start(ctx); | ||
| 213 | if ((d = BN_CTX_get(ctx)) == NULL) | ||
| 214 | goto err; | ||
| 215 | if ((q = BN_CTX_get(ctx)) == NULL) | ||
| 216 | goto err; | ||
| 217 | if ((val[0] = BN_CTX_get(ctx)) == NULL) | ||
| 218 | goto err; | ||
| 219 | |||
| 220 | if (!BN_nnmod(val[0], a, m, ctx)) | ||
| 221 | goto err; | ||
| 222 | if (BN_is_zero(val[0])) { | ||
| 223 | BN_zero(r); | ||
| 224 | goto done; | ||
| 225 | } | ||
| 226 | if (!bn_copy(q, p)) | ||
| 227 | goto err; | ||
| 228 | |||
| 229 | window = BN_window_bits_for_exponent_size(bits); | ||
| 230 | if (window > 1) { | ||
| 231 | if (!BN_mod_mul(d, val[0], val[0], m, ctx)) | ||
| 232 | goto err; | ||
| 233 | j = 1 << (window - 1); | ||
| 234 | for (i = 1; i < j; i++) { | ||
| 235 | if (((val[i] = BN_CTX_get(ctx)) == NULL) || | ||
| 236 | !BN_mod_mul(val[i], val[i - 1], d,m, ctx)) | ||
| 237 | goto err; | ||
| 238 | } | ||
| 239 | } | ||
| 240 | |||
| 241 | start = 1; /* This is used to avoid multiplication etc | ||
| 242 | * when there is only the value '1' in the | ||
| 243 | * buffer. */ | ||
| 244 | wvalue = 0; /* The 'value' of the window */ | ||
| 245 | wstart = bits - 1; /* The top bit of the window */ | ||
| 246 | wend = 0; /* The bottom bit of the window */ | ||
| 247 | |||
| 248 | if (!BN_one(r)) | ||
| 249 | goto err; | ||
| 250 | |||
| 251 | for (;;) { | ||
| 252 | if (BN_is_bit_set(q, wstart) == 0) { | ||
| 253 | if (!start) | ||
| 254 | if (!BN_mod_mul(r, r, r, m, ctx)) | ||
| 255 | goto err; | ||
| 256 | if (wstart == 0) | ||
| 257 | break; | ||
| 258 | wstart--; | ||
| 259 | continue; | ||
| 260 | } | ||
| 261 | /* We now have wstart on a 'set' bit, we now need to work out | ||
| 262 | * how bit a window to do. To do this we need to scan | ||
| 263 | * forward until the last set bit before the end of the | ||
| 264 | * window */ | ||
| 265 | j = wstart; | ||
| 266 | wvalue = 1; | ||
| 267 | wend = 0; | ||
| 268 | for (i = 1; i < window; i++) { | ||
| 269 | if (wstart - i < 0) | ||
| 270 | break; | ||
| 271 | if (BN_is_bit_set(q, wstart - i)) { | ||
| 272 | wvalue <<= (i - wend); | ||
| 273 | wvalue |= 1; | ||
| 274 | wend = i; | ||
| 275 | } | ||
| 276 | } | ||
| 277 | |||
| 278 | /* wend is the size of the current window */ | ||
| 279 | j = wend + 1; | ||
| 280 | /* add the 'bytes above' */ | ||
| 281 | if (!start) | ||
| 282 | for (i = 0; i < j; i++) { | ||
| 283 | if (!BN_mod_mul(r, r, r, m, ctx)) | ||
| 284 | goto err; | ||
| 285 | } | ||
| 286 | |||
| 287 | /* wvalue will be an odd number < 2^window */ | ||
| 288 | if (!BN_mod_mul(r, r, val[wvalue >> 1], m, ctx)) | ||
| 289 | goto err; | ||
| 290 | |||
| 291 | /* move the 'window' down further */ | ||
| 292 | wstart -= wend + 1; | ||
| 293 | wvalue = 0; | ||
| 294 | start = 0; | ||
| 295 | if (wstart < 0) | ||
| 296 | break; | ||
| 297 | } | ||
| 298 | |||
| 299 | done: | ||
| 300 | ret = 1; | ||
| 301 | |||
| 302 | err: | ||
| 303 | BN_CTX_end(ctx); | ||
| 304 | |||
| 305 | return ret; | ||
| 306 | } | ||
| 307 | |||
| 308 | /* BN_mod_exp_mont_consttime() stores the precomputed powers in a specific layout | ||
| 309 | * so that accessing any of these table values shows the same access pattern as far | ||
| 310 | * as cache lines are concerned. The following functions are used to transfer a BIGNUM | ||
| 311 | * from/to that table. */ | ||
| 312 | |||
| 313 | static int | ||
| 314 | MOD_EXP_CTIME_COPY_TO_PREBUF(const BIGNUM *b, int top, unsigned char *buf, | ||
| 315 | int idx, int window) | ||
| 316 | { | ||
| 317 | int i, j; | ||
| 318 | int width = 1 << window; | ||
| 319 | BN_ULONG *table = (BN_ULONG *)buf; | ||
| 320 | |||
| 321 | if (top > b->top) | ||
| 322 | top = b->top; /* this works because 'buf' is explicitly zeroed */ | ||
| 323 | |||
| 324 | for (i = 0, j = idx; i < top; i++, j += width) { | ||
| 325 | table[j] = b->d[i]; | ||
| 326 | } | ||
| 327 | |||
| 328 | return 1; | ||
| 329 | } | ||
| 330 | |||
| 331 | static int | ||
| 332 | MOD_EXP_CTIME_COPY_FROM_PREBUF(BIGNUM *b, int top, unsigned char *buf, int idx, | ||
| 333 | int window) | ||
| 334 | { | ||
| 335 | int i, j; | ||
| 336 | int width = 1 << window; | ||
| 337 | volatile BN_ULONG *table = (volatile BN_ULONG *)buf; | ||
| 338 | |||
| 339 | if (!bn_wexpand(b, top)) | ||
| 340 | return 0; | ||
| 341 | |||
| 342 | if (window <= 3) { | ||
| 343 | for (i = 0; i < top; i++, table += width) { | ||
| 344 | BN_ULONG acc = 0; | ||
| 345 | |||
| 346 | for (j = 0; j < width; j++) { | ||
| 347 | acc |= table[j] & | ||
| 348 | ((BN_ULONG)0 - (constant_time_eq_int(j,idx)&1)); | ||
| 349 | } | ||
| 350 | |||
| 351 | b->d[i] = acc; | ||
| 352 | } | ||
| 353 | } else { | ||
| 354 | int xstride = 1 << (window - 2); | ||
| 355 | BN_ULONG y0, y1, y2, y3; | ||
| 356 | |||
| 357 | i = idx >> (window - 2); /* equivalent of idx / xstride */ | ||
| 358 | idx &= xstride - 1; /* equivalent of idx % xstride */ | ||
| 359 | |||
| 360 | y0 = (BN_ULONG)0 - (constant_time_eq_int(i,0)&1); | ||
| 361 | y1 = (BN_ULONG)0 - (constant_time_eq_int(i,1)&1); | ||
| 362 | y2 = (BN_ULONG)0 - (constant_time_eq_int(i,2)&1); | ||
| 363 | y3 = (BN_ULONG)0 - (constant_time_eq_int(i,3)&1); | ||
| 364 | |||
| 365 | for (i = 0; i < top; i++, table += width) { | ||
| 366 | BN_ULONG acc = 0; | ||
| 367 | |||
| 368 | for (j = 0; j < xstride; j++) { | ||
| 369 | acc |= ( (table[j + 0 * xstride] & y0) | | ||
| 370 | (table[j + 1 * xstride] & y1) | | ||
| 371 | (table[j + 2 * xstride] & y2) | | ||
| 372 | (table[j + 3 * xstride] & y3) ) | ||
| 373 | & ((BN_ULONG)0 - (constant_time_eq_int(j,idx)&1)); | ||
| 374 | } | ||
| 375 | |||
| 376 | b->d[i] = acc; | ||
| 377 | } | ||
| 378 | } | ||
| 379 | b->top = top; | ||
| 380 | bn_correct_top(b); | ||
| 381 | return 1; | ||
| 382 | } | ||
| 383 | |||
| 384 | /* Given a pointer value, compute the next address that is a cache line multiple. */ | ||
| 385 | #define MOD_EXP_CTIME_ALIGN(x_) \ | ||
| 386 | ((unsigned char*)(x_) + (MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH - (((size_t)(x_)) & (MOD_EXP_CTIME_MIN_CACHE_LINE_MASK)))) | ||
| 387 | |||
| 388 | /* This variant of BN_mod_exp_mont() uses fixed windows and the special | ||
| 389 | * precomputation memory layout to limit data-dependency to a minimum | ||
| 390 | * to protect secret exponents (cf. the hyper-threading timing attacks | ||
| 391 | * pointed out by Colin Percival, | ||
| 392 | * http://www.daemonology.net/hyperthreading-considered-harmful/) | ||
| 393 | */ | ||
| 394 | int | ||
| 395 | BN_mod_exp_mont_consttime(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p, | ||
| 396 | const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont) | ||
| 397 | { | ||
| 398 | int i, bits, ret = 0, window, wvalue; | ||
| 399 | int top; | ||
| 400 | BN_MONT_CTX *mont = NULL; | ||
| 401 | int numPowers; | ||
| 402 | unsigned char *powerbufFree = NULL; | ||
| 403 | int powerbufLen = 0; | ||
| 404 | unsigned char *powerbuf = NULL; | ||
| 405 | BIGNUM tmp, am; | ||
| 406 | |||
| 407 | |||
| 408 | if (!BN_is_odd(m)) { | ||
| 409 | BNerror(BN_R_CALLED_WITH_EVEN_MODULUS); | ||
| 410 | return (0); | ||
| 411 | } | ||
| 412 | |||
| 413 | top = m->top; | ||
| 414 | |||
| 415 | bits = BN_num_bits(p); | ||
| 416 | if (bits == 0) { | ||
| 417 | /* x**0 mod 1 is still zero. */ | ||
| 418 | if (BN_abs_is_word(m, 1)) { | ||
| 419 | ret = 1; | ||
| 420 | BN_zero(rr); | ||
| 421 | } else | ||
| 422 | ret = BN_one(rr); | ||
| 423 | return ret; | ||
| 424 | } | ||
| 425 | |||
| 426 | BN_CTX_start(ctx); | ||
| 427 | |||
| 428 | if ((mont = in_mont) == NULL) | ||
| 429 | mont = BN_MONT_CTX_create(m, ctx); | ||
| 430 | if (mont == NULL) | ||
| 431 | goto err; | ||
| 432 | |||
| 433 | /* Get the window size to use with size of p. */ | ||
| 434 | window = BN_window_bits_for_ctime_exponent_size(bits); | ||
| 435 | #if defined(OPENSSL_BN_ASM_MONT5) | ||
| 436 | if (window == 6 && bits <= 1024) | ||
| 437 | window = 5; /* ~5% improvement of 2048-bit RSA sign */ | ||
| 438 | #endif | ||
| 439 | |||
| 440 | /* Allocate a buffer large enough to hold all of the pre-computed | ||
| 441 | * powers of am, am itself and tmp. | ||
| 442 | */ | ||
| 443 | numPowers = 1 << window; | ||
| 444 | powerbufLen = sizeof(m->d[0]) * (top * numPowers + | ||
| 445 | ((2*top) > numPowers ? (2*top) : numPowers)); | ||
| 446 | if ((powerbufFree = calloc(powerbufLen + | ||
| 447 | MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH, 1)) == NULL) | ||
| 448 | goto err; | ||
| 449 | powerbuf = MOD_EXP_CTIME_ALIGN(powerbufFree); | ||
| 450 | |||
| 451 | /* lay down tmp and am right after powers table */ | ||
| 452 | tmp.d = (BN_ULONG *)(powerbuf + sizeof(m->d[0]) * top * numPowers); | ||
| 453 | am.d = tmp.d + top; | ||
| 454 | tmp.top = am.top = 0; | ||
| 455 | tmp.dmax = am.dmax = top; | ||
| 456 | tmp.neg = am.neg = 0; | ||
| 457 | tmp.flags = am.flags = BN_FLG_STATIC_DATA; | ||
| 458 | |||
| 459 | /* prepare a^0 in Montgomery domain */ | ||
| 460 | #if 1 | ||
| 461 | if (!BN_to_montgomery(&tmp, BN_value_one(), mont, ctx)) | ||
| 462 | goto err; | ||
| 463 | #else | ||
| 464 | tmp.d[0] = (0 - m - >d[0]) & BN_MASK2; /* 2^(top*BN_BITS2) - m */ | ||
| 465 | for (i = 1; i < top; i++) | ||
| 466 | tmp.d[i] = (~m->d[i]) & BN_MASK2; | ||
| 467 | tmp.top = top; | ||
| 468 | #endif | ||
| 469 | |||
| 470 | /* prepare a^1 in Montgomery domain */ | ||
| 471 | if (!BN_nnmod(&am, a, m, ctx)) | ||
| 472 | goto err; | ||
| 473 | if (!BN_to_montgomery(&am, &am, mont, ctx)) | ||
| 474 | goto err; | ||
| 475 | |||
| 476 | #if defined(OPENSSL_BN_ASM_MONT5) | ||
| 477 | /* This optimization uses ideas from http://eprint.iacr.org/2011/239, | ||
| 478 | * specifically optimization of cache-timing attack countermeasures | ||
| 479 | * and pre-computation optimization. */ | ||
| 480 | |||
| 481 | /* Dedicated window==4 case improves 512-bit RSA sign by ~15%, but as | ||
| 482 | * 512-bit RSA is hardly relevant, we omit it to spare size... */ | ||
| 483 | if (window == 5 && top > 1) { | ||
| 484 | void bn_mul_mont_gather5(BN_ULONG *rp, const BN_ULONG *ap, | ||
| 485 | const void *table, const BN_ULONG *np, | ||
| 486 | const BN_ULONG *n0, int num, int power); | ||
| 487 | void bn_scatter5(const BN_ULONG *inp, size_t num, | ||
| 488 | void *table, size_t power); | ||
| 489 | void bn_gather5(BN_ULONG *out, size_t num, | ||
| 490 | void *table, size_t power); | ||
| 491 | |||
| 492 | BN_ULONG *np = mont->N.d, *n0 = mont->n0; | ||
| 493 | |||
| 494 | /* BN_to_montgomery can contaminate words above .top | ||
| 495 | * [in BN_DEBUG[_DEBUG] build]... */ | ||
| 496 | for (i = am.top; i < top; i++) | ||
| 497 | am.d[i] = 0; | ||
| 498 | for (i = tmp.top; i < top; i++) | ||
| 499 | tmp.d[i] = 0; | ||
| 500 | |||
| 501 | bn_scatter5(tmp.d, top, powerbuf, 0); | ||
| 502 | bn_scatter5(am.d, am.top, powerbuf, 1); | ||
| 503 | bn_mul_mont(tmp.d, am.d, am.d, np, n0, top); | ||
| 504 | bn_scatter5(tmp.d, top, powerbuf, 2); | ||
| 505 | |||
| 506 | #if 0 | ||
| 507 | for (i = 3; i < 32; i++) { | ||
| 508 | /* Calculate a^i = a^(i-1) * a */ | ||
| 509 | bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np, | ||
| 510 | n0, top, i - 1); | ||
| 511 | bn_scatter5(tmp.d, top, powerbuf, i); | ||
| 512 | } | ||
| 513 | #else | ||
| 514 | /* same as above, but uses squaring for 1/2 of operations */ | ||
| 515 | for (i = 4; i < 32; i*=2) { | ||
| 516 | bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top); | ||
| 517 | bn_scatter5(tmp.d, top, powerbuf, i); | ||
| 518 | } | ||
| 519 | for (i = 3; i < 8; i += 2) { | ||
| 520 | int j; | ||
| 521 | bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np, | ||
| 522 | n0, top, i - 1); | ||
| 523 | bn_scatter5(tmp.d, top, powerbuf, i); | ||
| 524 | for (j = 2 * i; j < 32; j *= 2) { | ||
| 525 | bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top); | ||
| 526 | bn_scatter5(tmp.d, top, powerbuf, j); | ||
| 527 | } | ||
| 528 | } | ||
| 529 | for (; i < 16; i += 2) { | ||
| 530 | bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np, | ||
| 531 | n0, top, i - 1); | ||
| 532 | bn_scatter5(tmp.d, top, powerbuf, i); | ||
| 533 | bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top); | ||
| 534 | bn_scatter5(tmp.d, top, powerbuf, 2*i); | ||
| 535 | } | ||
| 536 | for (; i < 32; i += 2) { | ||
| 537 | bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np, | ||
| 538 | n0, top, i - 1); | ||
| 539 | bn_scatter5(tmp.d, top, powerbuf, i); | ||
| 540 | } | ||
| 541 | #endif | ||
| 542 | bits--; | ||
| 543 | for (wvalue = 0, i = bits % 5; i >= 0; i--, bits--) | ||
| 544 | wvalue = (wvalue << 1) + BN_is_bit_set(p, bits); | ||
| 545 | bn_gather5(tmp.d, top, powerbuf, wvalue); | ||
| 546 | |||
| 547 | /* Scan the exponent one window at a time starting from the most | ||
| 548 | * significant bits. | ||
| 549 | */ | ||
| 550 | while (bits >= 0) { | ||
| 551 | for (wvalue = 0, i = 0; i < 5; i++, bits--) | ||
| 552 | wvalue = (wvalue << 1) + BN_is_bit_set(p, bits); | ||
| 553 | |||
| 554 | bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top); | ||
| 555 | bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top); | ||
| 556 | bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top); | ||
| 557 | bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top); | ||
| 558 | bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top); | ||
| 559 | bn_mul_mont_gather5(tmp.d, tmp.d, powerbuf, np, n0, top, wvalue); | ||
| 560 | } | ||
| 561 | |||
| 562 | tmp.top = top; | ||
| 563 | bn_correct_top(&tmp); | ||
| 564 | } else | ||
| 565 | #endif | ||
| 566 | { | ||
| 567 | if (!MOD_EXP_CTIME_COPY_TO_PREBUF(&tmp, top, powerbuf, 0, | ||
| 568 | window)) | ||
| 569 | goto err; | ||
| 570 | if (!MOD_EXP_CTIME_COPY_TO_PREBUF(&am, top, powerbuf, 1, | ||
| 571 | window)) | ||
| 572 | goto err; | ||
| 573 | |||
| 574 | /* If the window size is greater than 1, then calculate | ||
| 575 | * val[i=2..2^winsize-1]. Powers are computed as a*a^(i-1) | ||
| 576 | * (even powers could instead be computed as (a^(i/2))^2 | ||
| 577 | * to use the slight performance advantage of sqr over mul). | ||
| 578 | */ | ||
| 579 | if (window > 1) { | ||
| 580 | if (!BN_mod_mul_montgomery(&tmp, &am, &am, mont, ctx)) | ||
| 581 | goto err; | ||
| 582 | if (!MOD_EXP_CTIME_COPY_TO_PREBUF(&tmp, top, powerbuf, | ||
| 583 | 2, window)) | ||
| 584 | goto err; | ||
| 585 | for (i = 3; i < numPowers; i++) { | ||
| 586 | /* Calculate a^i = a^(i-1) * a */ | ||
| 587 | if (!BN_mod_mul_montgomery(&tmp, &am, &tmp, | ||
| 588 | mont, ctx)) | ||
| 589 | goto err; | ||
| 590 | if (!MOD_EXP_CTIME_COPY_TO_PREBUF(&tmp, top, | ||
| 591 | powerbuf, i, window)) | ||
| 592 | goto err; | ||
| 593 | } | ||
| 594 | } | ||
| 595 | |||
| 596 | bits--; | ||
| 597 | for (wvalue = 0, i = bits % window; i >= 0; i--, bits--) | ||
| 598 | wvalue = (wvalue << 1) + BN_is_bit_set(p, bits); | ||
| 599 | if (!MOD_EXP_CTIME_COPY_FROM_PREBUF(&tmp, top, powerbuf, | ||
| 600 | wvalue, window)) | ||
| 601 | goto err; | ||
| 602 | |||
| 603 | /* Scan the exponent one window at a time starting from the most | ||
| 604 | * significant bits. | ||
| 605 | */ | ||
| 606 | while (bits >= 0) { | ||
| 607 | wvalue = 0; /* The 'value' of the window */ | ||
| 608 | |||
| 609 | /* Scan the window, squaring the result as we go */ | ||
| 610 | for (i = 0; i < window; i++, bits--) { | ||
| 611 | if (!BN_mod_mul_montgomery(&tmp, &tmp, &tmp, | ||
| 612 | mont, ctx)) | ||
| 613 | goto err; | ||
| 614 | wvalue = (wvalue << 1) + BN_is_bit_set(p, bits); | ||
| 615 | } | ||
| 616 | |||
| 617 | /* Fetch the appropriate pre-computed value from the pre-buf */ | ||
| 618 | if (!MOD_EXP_CTIME_COPY_FROM_PREBUF(&am, top, powerbuf, | ||
| 619 | wvalue, window)) | ||
| 620 | goto err; | ||
| 621 | |||
| 622 | /* Multiply the result into the intermediate result */ | ||
| 623 | if (!BN_mod_mul_montgomery(&tmp, &tmp, &am, mont, ctx)) | ||
| 624 | goto err; | ||
| 625 | } | ||
| 626 | } | ||
| 627 | |||
| 628 | /* Convert the final result from montgomery to standard format */ | ||
| 629 | if (!BN_from_montgomery(rr, &tmp, mont, ctx)) | ||
| 630 | goto err; | ||
| 631 | |||
| 632 | ret = 1; | ||
| 633 | |||
| 634 | err: | ||
| 635 | if (mont != in_mont) | ||
| 636 | BN_MONT_CTX_free(mont); | ||
| 637 | BN_CTX_end(ctx); | ||
| 638 | freezero(powerbufFree, powerbufLen + MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH); | ||
| 639 | |||
| 640 | return ret; | ||
| 641 | } | ||
| 642 | LCRYPTO_ALIAS(BN_mod_exp_mont_consttime); | ||
| 643 | |||
| 644 | static int | ||
| 645 | BN_mod_exp_mont_internal(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m, | ||
| 646 | BN_CTX *ctx, BN_MONT_CTX *in_mont, int ct) | ||
| 647 | { | ||
| 648 | int i, j, bits, ret = 0, wstart, wend, window, wvalue; | ||
| 649 | int start = 1; | ||
| 650 | BIGNUM *d, *r; | ||
| 651 | const BIGNUM *aa; | ||
| 652 | /* Table of variables obtained from 'ctx' */ | ||
| 653 | BIGNUM *val[TABLE_SIZE]; | ||
| 654 | BN_MONT_CTX *mont = NULL; | ||
| 655 | |||
| 656 | if (ct) { | ||
| 657 | return BN_mod_exp_mont_consttime(rr, a, p, m, ctx, in_mont); | ||
| 658 | } | ||
| 659 | |||
| 660 | |||
| 661 | if (!BN_is_odd(m)) { | ||
| 662 | BNerror(BN_R_CALLED_WITH_EVEN_MODULUS); | ||
| 663 | return (0); | ||
| 664 | } | ||
| 665 | |||
| 666 | bits = BN_num_bits(p); | ||
| 667 | if (bits == 0) { | ||
| 668 | /* x**0 mod 1 is still zero. */ | ||
| 669 | if (BN_abs_is_word(m, 1)) { | ||
| 670 | ret = 1; | ||
| 671 | BN_zero(rr); | ||
| 672 | } else | ||
| 673 | ret = BN_one(rr); | ||
| 674 | return ret; | ||
| 675 | } | ||
| 676 | |||
| 677 | BN_CTX_start(ctx); | ||
| 678 | if ((d = BN_CTX_get(ctx)) == NULL) | ||
| 679 | goto err; | ||
| 680 | if ((r = BN_CTX_get(ctx)) == NULL) | ||
| 681 | goto err; | ||
| 682 | if ((val[0] = BN_CTX_get(ctx)) == NULL) | ||
| 683 | goto err; | ||
| 684 | |||
| 685 | if ((mont = in_mont) == NULL) | ||
| 686 | mont = BN_MONT_CTX_create(m, ctx); | ||
| 687 | if (mont == NULL) | ||
| 688 | goto err; | ||
| 689 | |||
| 690 | if (!BN_nnmod(val[0], a,m, ctx)) | ||
| 691 | goto err; | ||
| 692 | aa = val[0]; | ||
| 693 | if (BN_is_zero(aa)) { | ||
| 694 | BN_zero(rr); | ||
| 695 | ret = 1; | ||
| 696 | goto err; | ||
| 697 | } | ||
| 698 | if (!BN_to_montgomery(val[0], aa, mont, ctx)) | ||
| 699 | goto err; | ||
| 700 | |||
| 701 | window = BN_window_bits_for_exponent_size(bits); | ||
| 702 | if (window > 1) { | ||
| 703 | if (!BN_mod_mul_montgomery(d, val[0], val[0], mont, ctx)) | ||
| 704 | goto err; | ||
| 705 | j = 1 << (window - 1); | ||
| 706 | for (i = 1; i < j; i++) { | ||
| 707 | if (((val[i] = BN_CTX_get(ctx)) == NULL) || | ||
| 708 | !BN_mod_mul_montgomery(val[i], val[i - 1], | ||
| 709 | d, mont, ctx)) | ||
| 710 | goto err; | ||
| 711 | } | ||
| 712 | } | ||
| 713 | |||
| 714 | start = 1; /* This is used to avoid multiplication etc | ||
| 715 | * when there is only the value '1' in the | ||
| 716 | * buffer. */ | ||
| 717 | wvalue = 0; /* The 'value' of the window */ | ||
| 718 | wstart = bits - 1; /* The top bit of the window */ | ||
| 719 | wend = 0; /* The bottom bit of the window */ | ||
| 720 | |||
| 721 | if (!BN_to_montgomery(r, BN_value_one(), mont, ctx)) | ||
| 722 | goto err; | ||
| 723 | for (;;) { | ||
| 724 | if (BN_is_bit_set(p, wstart) == 0) { | ||
| 725 | if (!start) { | ||
| 726 | if (!BN_mod_mul_montgomery(r, r, r, mont, ctx)) | ||
| 727 | goto err; | ||
| 728 | } | ||
| 729 | if (wstart == 0) | ||
| 730 | break; | ||
| 731 | wstart--; | ||
| 732 | continue; | ||
| 733 | } | ||
| 734 | /* We now have wstart on a 'set' bit, we now need to work out | ||
| 735 | * how bit a window to do. To do this we need to scan | ||
| 736 | * forward until the last set bit before the end of the | ||
| 737 | * window */ | ||
| 738 | j = wstart; | ||
| 739 | wvalue = 1; | ||
| 740 | wend = 0; | ||
| 741 | for (i = 1; i < window; i++) { | ||
| 742 | if (wstart - i < 0) | ||
| 743 | break; | ||
| 744 | if (BN_is_bit_set(p, wstart - i)) { | ||
| 745 | wvalue <<= (i - wend); | ||
| 746 | wvalue |= 1; | ||
| 747 | wend = i; | ||
| 748 | } | ||
| 749 | } | ||
| 750 | |||
| 751 | /* wend is the size of the current window */ | ||
| 752 | j = wend + 1; | ||
| 753 | /* add the 'bytes above' */ | ||
| 754 | if (!start) | ||
| 755 | for (i = 0; i < j; i++) { | ||
| 756 | if (!BN_mod_mul_montgomery(r, r, r, mont, ctx)) | ||
| 757 | goto err; | ||
| 758 | } | ||
| 759 | |||
| 760 | /* wvalue will be an odd number < 2^window */ | ||
| 761 | if (!BN_mod_mul_montgomery(r, r, val[wvalue >> 1], mont, ctx)) | ||
| 762 | goto err; | ||
| 763 | |||
| 764 | /* move the 'window' down further */ | ||
| 765 | wstart -= wend + 1; | ||
| 766 | wvalue = 0; | ||
| 767 | start = 0; | ||
| 768 | if (wstart < 0) | ||
| 769 | break; | ||
| 770 | } | ||
| 771 | if (!BN_from_montgomery(rr, r,mont, ctx)) | ||
| 772 | goto err; | ||
| 773 | |||
| 774 | ret = 1; | ||
| 775 | |||
| 776 | err: | ||
| 777 | if (mont != in_mont) | ||
| 778 | BN_MONT_CTX_free(mont); | ||
| 779 | BN_CTX_end(ctx); | ||
| 780 | |||
| 781 | return ret; | ||
| 782 | } | ||
| 783 | |||
| 784 | int | ||
| 785 | BN_mod_exp_mont(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m, | ||
| 786 | BN_CTX *ctx, BN_MONT_CTX *in_mont) | ||
| 787 | { | ||
| 788 | return BN_mod_exp_mont_internal(rr, a, p, m, ctx, in_mont, | ||
| 789 | (BN_get_flags(p, BN_FLG_CONSTTIME) != 0)); | ||
| 790 | } | ||
| 791 | LCRYPTO_ALIAS(BN_mod_exp_mont); | ||
| 792 | |||
| 793 | int | ||
| 794 | BN_mod_exp_mont_ct(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m, | ||
| 795 | BN_CTX *ctx, BN_MONT_CTX *in_mont) | ||
| 796 | { | ||
| 797 | return BN_mod_exp_mont_internal(rr, a, p, m, ctx, in_mont, 1); | ||
| 798 | } | ||
| 799 | |||
| 800 | int | ||
| 801 | BN_mod_exp_mont_nonct(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m, | ||
| 802 | BN_CTX *ctx, BN_MONT_CTX *in_mont) | ||
| 803 | { | ||
| 804 | return BN_mod_exp_mont_internal(rr, a, p, m, ctx, in_mont, 0); | ||
| 805 | } | ||
| 806 | |||
| 807 | int | ||
| 808 | BN_mod_exp_mont_word(BIGNUM *rr, BN_ULONG a, const BIGNUM *p, const BIGNUM *m, | ||
| 809 | BN_CTX *ctx, BN_MONT_CTX *in_mont) | ||
| 810 | { | ||
| 811 | BN_MONT_CTX *mont = NULL; | ||
| 812 | int b, bits, ret = 0; | ||
| 813 | int r_is_one; | ||
| 814 | BN_ULONG w, next_w; | ||
| 815 | BIGNUM *d, *r, *t; | ||
| 816 | BIGNUM *swap_tmp; | ||
| 817 | |||
| 818 | #define BN_MOD_MUL_WORD(r, w, m) \ | ||
| 819 | (BN_mul_word(r, (w)) && \ | ||
| 820 | (/* BN_ucmp(r, (m)) < 0 ? 1 :*/ \ | ||
| 821 | (BN_mod_ct(t, r, m, ctx) && (swap_tmp = r, r = t, t = swap_tmp, 1)))) | ||
| 822 | /* BN_MOD_MUL_WORD is only used with 'w' large, | ||
| 823 | * so the BN_ucmp test is probably more overhead | ||
| 824 | * than always using BN_mod (which uses bn_copy if | ||
| 825 | * a similar test returns true). */ | ||
| 826 | /* We can use BN_mod and do not need BN_nnmod because our | ||
| 827 | * accumulator is never negative (the result of BN_mod does | ||
| 828 | * not depend on the sign of the modulus). | ||
| 829 | */ | ||
| 830 | #define BN_TO_MONTGOMERY_WORD(r, w, mont) \ | ||
| 831 | (BN_set_word(r, (w)) && BN_to_montgomery(r, r, (mont), ctx)) | ||
| 832 | |||
| 833 | if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0) { | ||
| 834 | /* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */ | ||
| 835 | BNerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | ||
| 836 | return -1; | ||
| 837 | } | ||
| 838 | |||
| 839 | |||
| 840 | if (!BN_is_odd(m)) { | ||
| 841 | BNerror(BN_R_CALLED_WITH_EVEN_MODULUS); | ||
| 842 | return (0); | ||
| 843 | } | ||
| 844 | if (m->top == 1) | ||
| 845 | a %= m->d[0]; /* make sure that 'a' is reduced */ | ||
| 846 | |||
| 847 | bits = BN_num_bits(p); | ||
| 848 | if (bits == 0) { | ||
| 849 | /* x**0 mod 1 is still zero. */ | ||
| 850 | if (BN_abs_is_word(m, 1)) { | ||
| 851 | ret = 1; | ||
| 852 | BN_zero(rr); | ||
| 853 | } else | ||
| 854 | ret = BN_one(rr); | ||
| 855 | return ret; | ||
| 856 | } | ||
| 857 | if (a == 0) { | ||
| 858 | BN_zero(rr); | ||
| 859 | ret = 1; | ||
| 860 | return ret; | ||
| 861 | } | ||
| 862 | |||
| 863 | BN_CTX_start(ctx); | ||
| 864 | if ((d = BN_CTX_get(ctx)) == NULL) | ||
| 865 | goto err; | ||
| 866 | if ((r = BN_CTX_get(ctx)) == NULL) | ||
| 867 | goto err; | ||
| 868 | if ((t = BN_CTX_get(ctx)) == NULL) | ||
| 869 | goto err; | ||
| 870 | |||
| 871 | if ((mont = in_mont) == NULL) | ||
| 872 | mont = BN_MONT_CTX_create(m, ctx); | ||
| 873 | if (mont == NULL) | ||
| 874 | goto err; | ||
| 875 | |||
| 876 | r_is_one = 1; /* except for Montgomery factor */ | ||
| 877 | |||
| 878 | /* bits-1 >= 0 */ | ||
| 879 | |||
| 880 | /* The result is accumulated in the product r*w. */ | ||
| 881 | w = a; /* bit 'bits-1' of 'p' is always set */ | ||
| 882 | for (b = bits - 2; b >= 0; b--) { | ||
| 883 | /* First, square r*w. */ | ||
| 884 | next_w = w * w; | ||
| 885 | if ((next_w / w) != w) /* overflow */ | ||
| 886 | { | ||
| 887 | if (r_is_one) { | ||
| 888 | if (!BN_TO_MONTGOMERY_WORD(r, w, mont)) | ||
| 889 | goto err; | ||
| 890 | r_is_one = 0; | ||
| 891 | } else { | ||
| 892 | if (!BN_MOD_MUL_WORD(r, w, m)) | ||
| 893 | goto err; | ||
| 894 | } | ||
| 895 | next_w = 1; | ||
| 896 | } | ||
| 897 | w = next_w; | ||
| 898 | if (!r_is_one) { | ||
| 899 | if (!BN_mod_mul_montgomery(r, r, r, mont, ctx)) | ||
| 900 | goto err; | ||
| 901 | } | ||
| 902 | |||
| 903 | /* Second, multiply r*w by 'a' if exponent bit is set. */ | ||
| 904 | if (BN_is_bit_set(p, b)) { | ||
| 905 | next_w = w * a; | ||
| 906 | if ((next_w / a) != w) /* overflow */ | ||
| 907 | { | ||
| 908 | if (r_is_one) { | ||
| 909 | if (!BN_TO_MONTGOMERY_WORD(r, w, mont)) | ||
| 910 | goto err; | ||
| 911 | r_is_one = 0; | ||
| 912 | } else { | ||
| 913 | if (!BN_MOD_MUL_WORD(r, w, m)) | ||
| 914 | goto err; | ||
| 915 | } | ||
| 916 | next_w = a; | ||
| 917 | } | ||
| 918 | w = next_w; | ||
| 919 | } | ||
| 920 | } | ||
| 921 | |||
| 922 | /* Finally, set r:=r*w. */ | ||
| 923 | if (w != 1) { | ||
| 924 | if (r_is_one) { | ||
| 925 | if (!BN_TO_MONTGOMERY_WORD(r, w, mont)) | ||
| 926 | goto err; | ||
| 927 | r_is_one = 0; | ||
| 928 | } else { | ||
| 929 | if (!BN_MOD_MUL_WORD(r, w, m)) | ||
| 930 | goto err; | ||
| 931 | } | ||
| 932 | } | ||
| 933 | |||
| 934 | if (r_is_one) /* can happen only if a == 1*/ | ||
| 935 | { | ||
| 936 | if (!BN_one(rr)) | ||
| 937 | goto err; | ||
| 938 | } else { | ||
| 939 | if (!BN_from_montgomery(rr, r, mont, ctx)) | ||
| 940 | goto err; | ||
| 941 | } | ||
| 942 | |||
| 943 | ret = 1; | ||
| 944 | |||
| 945 | err: | ||
| 946 | if (mont != in_mont) | ||
| 947 | BN_MONT_CTX_free(mont); | ||
| 948 | BN_CTX_end(ctx); | ||
| 949 | |||
| 950 | return ret; | ||
| 951 | } | ||
| 952 | |||
| 953 | int | ||
| 954 | BN_mod_exp_reciprocal(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m, | ||
| 955 | BN_CTX *ctx) | ||
| 956 | { | ||
| 957 | int i, j, bits, wstart, wend, window, wvalue; | ||
| 958 | int start = 1; | ||
| 959 | BIGNUM *aa, *q; | ||
| 960 | /* Table of variables obtained from 'ctx' */ | ||
| 961 | BIGNUM *val[TABLE_SIZE]; | ||
| 962 | BN_RECP_CTX *recp = NULL; | ||
| 963 | int ret = 0; | ||
| 964 | |||
| 965 | if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0) { | ||
| 966 | /* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */ | ||
| 967 | BNerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | ||
| 968 | return -1; | ||
| 969 | } | ||
| 970 | |||
| 971 | bits = BN_num_bits(p); | ||
| 972 | if (bits == 0) { | ||
| 973 | /* x**0 mod 1 is still zero. */ | ||
| 974 | if (BN_abs_is_word(m, 1)) { | ||
| 975 | ret = 1; | ||
| 976 | BN_zero(r); | ||
| 977 | } else | ||
| 978 | ret = BN_one(r); | ||
| 979 | return ret; | ||
| 980 | } | ||
| 981 | |||
| 982 | BN_CTX_start(ctx); | ||
| 983 | if ((aa = BN_CTX_get(ctx)) == NULL) | ||
| 984 | goto err; | ||
| 985 | if ((q = BN_CTX_get(ctx)) == NULL) | ||
| 986 | goto err; | ||
| 987 | if ((val[0] = BN_CTX_get(ctx)) == NULL) | ||
| 988 | goto err; | ||
| 989 | |||
| 990 | if ((recp = BN_RECP_CTX_create(m)) == NULL) | ||
| 991 | goto err; | ||
| 992 | |||
| 993 | if (!BN_nnmod(val[0], a, m, ctx)) | ||
| 994 | goto err; | ||
| 995 | if (BN_is_zero(val[0])) { | ||
| 996 | BN_zero(r); | ||
| 997 | goto done; | ||
| 998 | } | ||
| 999 | if (!bn_copy(q, p)) | ||
| 1000 | goto err; | ||
| 1001 | |||
| 1002 | window = BN_window_bits_for_exponent_size(bits); | ||
| 1003 | if (window > 1) { | ||
| 1004 | if (!BN_mod_sqr_reciprocal(aa, val[0], recp, ctx)) | ||
| 1005 | goto err; | ||
| 1006 | j = 1 << (window - 1); | ||
| 1007 | for (i = 1; i < j; i++) { | ||
| 1008 | if (((val[i] = BN_CTX_get(ctx)) == NULL) || | ||
| 1009 | !BN_mod_mul_reciprocal(val[i], val[i - 1], | ||
| 1010 | aa, recp, ctx)) | ||
| 1011 | goto err; | ||
| 1012 | } | ||
| 1013 | } | ||
| 1014 | |||
| 1015 | start = 1; /* This is used to avoid multiplication etc | ||
| 1016 | * when there is only the value '1' in the | ||
| 1017 | * buffer. */ | ||
| 1018 | wvalue = 0; /* The 'value' of the window */ | ||
| 1019 | wstart = bits - 1; /* The top bit of the window */ | ||
| 1020 | wend = 0; /* The bottom bit of the window */ | ||
| 1021 | |||
| 1022 | if (!BN_one(r)) | ||
| 1023 | goto err; | ||
| 1024 | |||
| 1025 | for (;;) { | ||
| 1026 | if (BN_is_bit_set(q, wstart) == 0) { | ||
| 1027 | if (!start) | ||
| 1028 | if (!BN_mod_sqr_reciprocal(r, r, recp, ctx)) | ||
| 1029 | goto err; | ||
| 1030 | if (wstart == 0) | ||
| 1031 | break; | ||
| 1032 | wstart--; | ||
| 1033 | continue; | ||
| 1034 | } | ||
| 1035 | /* We now have wstart on a 'set' bit, we now need to work out | ||
| 1036 | * how bit a window to do. To do this we need to scan | ||
| 1037 | * forward until the last set bit before the end of the | ||
| 1038 | * window */ | ||
| 1039 | j = wstart; | ||
| 1040 | wvalue = 1; | ||
| 1041 | wend = 0; | ||
| 1042 | for (i = 1; i < window; i++) { | ||
| 1043 | if (wstart - i < 0) | ||
| 1044 | break; | ||
| 1045 | if (BN_is_bit_set(q, wstart - i)) { | ||
| 1046 | wvalue <<= (i - wend); | ||
| 1047 | wvalue |= 1; | ||
| 1048 | wend = i; | ||
| 1049 | } | ||
| 1050 | } | ||
| 1051 | |||
| 1052 | /* wend is the size of the current window */ | ||
| 1053 | j = wend + 1; | ||
| 1054 | /* add the 'bytes above' */ | ||
| 1055 | if (!start) | ||
| 1056 | for (i = 0; i < j; i++) { | ||
| 1057 | if (!BN_mod_sqr_reciprocal(r, r, recp, ctx)) | ||
| 1058 | goto err; | ||
| 1059 | } | ||
| 1060 | |||
| 1061 | /* wvalue will be an odd number < 2^window */ | ||
| 1062 | if (!BN_mod_mul_reciprocal(r, r, val[wvalue >> 1], recp, ctx)) | ||
| 1063 | goto err; | ||
| 1064 | |||
| 1065 | /* move the 'window' down further */ | ||
| 1066 | wstart -= wend + 1; | ||
| 1067 | wvalue = 0; | ||
| 1068 | start = 0; | ||
| 1069 | if (wstart < 0) | ||
| 1070 | break; | ||
| 1071 | } | ||
| 1072 | |||
| 1073 | done: | ||
| 1074 | ret = 1; | ||
| 1075 | |||
| 1076 | err: | ||
| 1077 | BN_CTX_end(ctx); | ||
| 1078 | BN_RECP_CTX_free(recp); | ||
| 1079 | |||
| 1080 | return ret; | ||
| 1081 | } | ||
| 1082 | |||
| 1083 | static int | ||
| 1084 | BN_mod_exp_internal(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m, | ||
| 1085 | BN_CTX *ctx, int ct) | ||
| 1086 | { | ||
| 1087 | int ret; | ||
| 1088 | |||
| 1089 | |||
| 1090 | /* For even modulus m = 2^k*m_odd, it might make sense to compute | ||
| 1091 | * a^p mod m_odd and a^p mod 2^k separately (with Montgomery | ||
| 1092 | * exponentiation for the odd part), using appropriate exponent | ||
| 1093 | * reductions, and combine the results using the CRT. | ||
| 1094 | * | ||
| 1095 | * For now, we use Montgomery only if the modulus is odd; otherwise, | ||
| 1096 | * exponentiation using the reciprocal-based quick remaindering | ||
| 1097 | * algorithm is used. | ||
| 1098 | * | ||
| 1099 | * (Timing obtained with expspeed.c [computations a^p mod m | ||
| 1100 | * where a, p, m are of the same length: 256, 512, 1024, 2048, | ||
| 1101 | * 4096, 8192 bits], compared to the running time of the | ||
| 1102 | * standard algorithm: | ||
| 1103 | * | ||
| 1104 | * BN_mod_exp_mont 33 .. 40 % [AMD K6-2, Linux, debug configuration] | ||
| 1105 | * 55 .. 77 % [UltraSparc processor, but | ||
| 1106 | * debug-solaris-sparcv8-gcc conf.] | ||
| 1107 | * | ||
| 1108 | * BN_mod_exp_recp 50 .. 70 % [AMD K6-2, Linux, debug configuration] | ||
| 1109 | * 62 .. 118 % [UltraSparc, debug-solaris-sparcv8-gcc] | ||
| 1110 | * | ||
| 1111 | * On the Sparc, BN_mod_exp_recp was faster than BN_mod_exp_mont | ||
| 1112 | * at 2048 and more bits, but at 512 and 1024 bits, it was | ||
| 1113 | * slower even than the standard algorithm! | ||
| 1114 | * | ||
| 1115 | * "Real" timings [linux-elf, solaris-sparcv9-gcc configurations] | ||
| 1116 | * should be obtained when the new Montgomery reduction code | ||
| 1117 | * has been integrated into OpenSSL.) | ||
| 1118 | */ | ||
| 1119 | |||
| 1120 | if (BN_is_odd(m)) { | ||
| 1121 | if (a->top == 1 && !a->neg && !ct) { | ||
| 1122 | BN_ULONG A = a->d[0]; | ||
| 1123 | ret = BN_mod_exp_mont_word(r, A,p, m,ctx, NULL); | ||
| 1124 | } else | ||
| 1125 | ret = BN_mod_exp_mont_ct(r, a,p, m,ctx, NULL); | ||
| 1126 | } else { | ||
| 1127 | ret = BN_mod_exp_reciprocal(r, a,p, m, ctx); | ||
| 1128 | } | ||
| 1129 | |||
| 1130 | return (ret); | ||
| 1131 | } | ||
| 1132 | |||
| 1133 | int | ||
| 1134 | BN_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m, | ||
| 1135 | BN_CTX *ctx) | ||
| 1136 | { | ||
| 1137 | return BN_mod_exp_internal(r, a, p, m, ctx, | ||
| 1138 | (BN_get_flags(p, BN_FLG_CONSTTIME) != 0)); | ||
| 1139 | } | ||
| 1140 | LCRYPTO_ALIAS(BN_mod_exp); | ||
| 1141 | |||
| 1142 | int | ||
| 1143 | BN_mod_exp_ct(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m, | ||
| 1144 | BN_CTX *ctx) | ||
| 1145 | { | ||
| 1146 | return BN_mod_exp_internal(r, a, p, m, ctx, 1); | ||
| 1147 | } | ||
| 1148 | |||
| 1149 | int | ||
| 1150 | BN_mod_exp_nonct(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m, | ||
| 1151 | BN_CTX *ctx) | ||
| 1152 | { | ||
| 1153 | return BN_mod_exp_internal(r, a, p, m, ctx, 0); | ||
| 1154 | } | ||
| 1155 | |||
| 1156 | int | ||
| 1157 | BN_mod_exp2_mont(BIGNUM *rr, const BIGNUM *a1, const BIGNUM *p1, | ||
| 1158 | const BIGNUM *a2, const BIGNUM *p2, const BIGNUM *m, BN_CTX *ctx, | ||
| 1159 | BN_MONT_CTX *in_mont) | ||
| 1160 | { | ||
| 1161 | int i, j, bits, b, bits1, bits2, ret = 0, wpos1, wpos2, window1, window2, wvalue1, wvalue2; | ||
| 1162 | int r_is_one = 1; | ||
| 1163 | BIGNUM *d, *r; | ||
| 1164 | const BIGNUM *a_mod_m; | ||
| 1165 | /* Tables of variables obtained from 'ctx' */ | ||
| 1166 | BIGNUM *val1[TABLE_SIZE], *val2[TABLE_SIZE]; | ||
| 1167 | BN_MONT_CTX *mont = NULL; | ||
| 1168 | |||
| 1169 | |||
| 1170 | if (!BN_is_odd(m)) { | ||
| 1171 | BNerror(BN_R_CALLED_WITH_EVEN_MODULUS); | ||
| 1172 | return (0); | ||
| 1173 | } | ||
| 1174 | bits1 = BN_num_bits(p1); | ||
| 1175 | bits2 = BN_num_bits(p2); | ||
| 1176 | if ((bits1 == 0) && (bits2 == 0)) { | ||
| 1177 | ret = BN_one(rr); | ||
| 1178 | return ret; | ||
| 1179 | } | ||
| 1180 | |||
| 1181 | bits = (bits1 > bits2) ? bits1 : bits2; | ||
| 1182 | |||
| 1183 | BN_CTX_start(ctx); | ||
| 1184 | if ((d = BN_CTX_get(ctx)) == NULL) | ||
| 1185 | goto err; | ||
| 1186 | if ((r = BN_CTX_get(ctx)) == NULL) | ||
| 1187 | goto err; | ||
| 1188 | if ((val1[0] = BN_CTX_get(ctx)) == NULL) | ||
| 1189 | goto err; | ||
| 1190 | if ((val2[0] = BN_CTX_get(ctx)) == NULL) | ||
| 1191 | goto err; | ||
| 1192 | |||
| 1193 | if ((mont = in_mont) == NULL) | ||
| 1194 | mont = BN_MONT_CTX_create(m, ctx); | ||
| 1195 | if (mont == NULL) | ||
| 1196 | goto err; | ||
| 1197 | |||
| 1198 | window1 = BN_window_bits_for_exponent_size(bits1); | ||
| 1199 | window2 = BN_window_bits_for_exponent_size(bits2); | ||
| 1200 | |||
| 1201 | /* | ||
| 1202 | * Build table for a1: val1[i] := a1^(2*i + 1) mod m for i = 0 .. 2^(window1-1) | ||
| 1203 | */ | ||
| 1204 | if (!BN_nnmod(val1[0], a1, m, ctx)) | ||
| 1205 | goto err; | ||
| 1206 | a_mod_m = val1[0]; | ||
| 1207 | if (BN_is_zero(a_mod_m)) { | ||
| 1208 | BN_zero(rr); | ||
| 1209 | ret = 1; | ||
| 1210 | goto err; | ||
| 1211 | } | ||
| 1212 | |||
| 1213 | if (!BN_to_montgomery(val1[0], a_mod_m, mont, ctx)) | ||
| 1214 | goto err; | ||
| 1215 | if (window1 > 1) { | ||
| 1216 | if (!BN_mod_mul_montgomery(d, val1[0], val1[0], mont, ctx)) | ||
| 1217 | goto err; | ||
| 1218 | |||
| 1219 | j = 1 << (window1 - 1); | ||
| 1220 | for (i = 1; i < j; i++) { | ||
| 1221 | if (((val1[i] = BN_CTX_get(ctx)) == NULL) || | ||
| 1222 | !BN_mod_mul_montgomery(val1[i], val1[i - 1], | ||
| 1223 | d, mont, ctx)) | ||
| 1224 | goto err; | ||
| 1225 | } | ||
| 1226 | } | ||
| 1227 | |||
| 1228 | |||
| 1229 | /* | ||
| 1230 | * Build table for a2: val2[i] := a2^(2*i + 1) mod m for i = 0 .. 2^(window2-1) | ||
| 1231 | */ | ||
| 1232 | if (!BN_nnmod(val2[0], a2, m, ctx)) | ||
| 1233 | goto err; | ||
| 1234 | a_mod_m = val2[0]; | ||
| 1235 | if (BN_is_zero(a_mod_m)) { | ||
| 1236 | BN_zero(rr); | ||
| 1237 | ret = 1; | ||
| 1238 | goto err; | ||
| 1239 | } | ||
| 1240 | if (!BN_to_montgomery(val2[0], a_mod_m, mont, ctx)) | ||
| 1241 | goto err; | ||
| 1242 | if (window2 > 1) { | ||
| 1243 | if (!BN_mod_mul_montgomery(d, val2[0], val2[0], mont, ctx)) | ||
| 1244 | goto err; | ||
| 1245 | |||
| 1246 | j = 1 << (window2 - 1); | ||
| 1247 | for (i = 1; i < j; i++) { | ||
| 1248 | if (((val2[i] = BN_CTX_get(ctx)) == NULL) || | ||
| 1249 | !BN_mod_mul_montgomery(val2[i], val2[i - 1], | ||
| 1250 | d, mont, ctx)) | ||
| 1251 | goto err; | ||
| 1252 | } | ||
| 1253 | } | ||
| 1254 | |||
| 1255 | |||
| 1256 | /* Now compute the power product, using independent windows. */ | ||
| 1257 | r_is_one = 1; | ||
| 1258 | wvalue1 = 0; /* The 'value' of the first window */ | ||
| 1259 | wvalue2 = 0; /* The 'value' of the second window */ | ||
| 1260 | wpos1 = 0; /* If wvalue1 > 0, the bottom bit of the first window */ | ||
| 1261 | wpos2 = 0; /* If wvalue2 > 0, the bottom bit of the second window */ | ||
| 1262 | |||
| 1263 | if (!BN_to_montgomery(r, BN_value_one(), mont, ctx)) | ||
| 1264 | goto err; | ||
| 1265 | for (b = bits - 1; b >= 0; b--) { | ||
| 1266 | if (!r_is_one) { | ||
| 1267 | if (!BN_mod_mul_montgomery(r, r,r, mont, ctx)) | ||
| 1268 | goto err; | ||
| 1269 | } | ||
| 1270 | |||
| 1271 | if (!wvalue1) | ||
| 1272 | if (BN_is_bit_set(p1, b)) { | ||
| 1273 | /* consider bits b-window1+1 .. b for this window */ | ||
| 1274 | i = b - window1 + 1; | ||
| 1275 | while (!BN_is_bit_set(p1, i)) /* works for i<0 */ | ||
| 1276 | i++; | ||
| 1277 | wpos1 = i; | ||
| 1278 | wvalue1 = 1; | ||
| 1279 | for (i = b - 1; i >= wpos1; i--) { | ||
| 1280 | wvalue1 <<= 1; | ||
| 1281 | if (BN_is_bit_set(p1, i)) | ||
| 1282 | wvalue1++; | ||
| 1283 | } | ||
| 1284 | } | ||
| 1285 | |||
| 1286 | if (!wvalue2) | ||
| 1287 | if (BN_is_bit_set(p2, b)) { | ||
| 1288 | /* consider bits b-window2+1 .. b for this window */ | ||
| 1289 | i = b - window2 + 1; | ||
| 1290 | while (!BN_is_bit_set(p2, i)) | ||
| 1291 | i++; | ||
| 1292 | wpos2 = i; | ||
| 1293 | wvalue2 = 1; | ||
| 1294 | for (i = b - 1; i >= wpos2; i--) { | ||
| 1295 | wvalue2 <<= 1; | ||
| 1296 | if (BN_is_bit_set(p2, i)) | ||
| 1297 | wvalue2++; | ||
| 1298 | } | ||
| 1299 | } | ||
| 1300 | |||
| 1301 | if (wvalue1 && b == wpos1) { | ||
| 1302 | /* wvalue1 is odd and < 2^window1 */ | ||
| 1303 | if (!BN_mod_mul_montgomery(r, r, val1[wvalue1 >> 1], | ||
| 1304 | mont, ctx)) | ||
| 1305 | goto err; | ||
| 1306 | wvalue1 = 0; | ||
| 1307 | r_is_one = 0; | ||
| 1308 | } | ||
| 1309 | |||
| 1310 | if (wvalue2 && b == wpos2) { | ||
| 1311 | /* wvalue2 is odd and < 2^window2 */ | ||
| 1312 | if (!BN_mod_mul_montgomery(r, r, val2[wvalue2 >> 1], | ||
| 1313 | mont, ctx)) | ||
| 1314 | goto err; | ||
| 1315 | wvalue2 = 0; | ||
| 1316 | r_is_one = 0; | ||
| 1317 | } | ||
| 1318 | } | ||
| 1319 | if (!BN_from_montgomery(rr, r,mont, ctx)) | ||
| 1320 | goto err; | ||
| 1321 | |||
| 1322 | ret = 1; | ||
| 1323 | |||
| 1324 | err: | ||
| 1325 | if (mont != in_mont) | ||
| 1326 | BN_MONT_CTX_free(mont); | ||
| 1327 | BN_CTX_end(ctx); | ||
| 1328 | |||
| 1329 | return ret; | ||
| 1330 | } | ||
