diff options
Diffstat (limited to 'src/lib/libcrypto/bn/bn_exp.c')
-rw-r--r-- | src/lib/libcrypto/bn/bn_exp.c | 747 |
1 files changed, 747 insertions, 0 deletions
diff --git a/src/lib/libcrypto/bn/bn_exp.c b/src/lib/libcrypto/bn/bn_exp.c new file mode 100644 index 0000000000..afdfd580fb --- /dev/null +++ b/src/lib/libcrypto/bn/bn_exp.c | |||
@@ -0,0 +1,747 @@ | |||
1 | /* crypto/bn/bn_exp.c */ | ||
2 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) | ||
3 | * All rights reserved. | ||
4 | * | ||
5 | * This package is an SSL implementation written | ||
6 | * by Eric Young (eay@cryptsoft.com). | ||
7 | * The implementation was written so as to conform with Netscapes SSL. | ||
8 | * | ||
9 | * This library is free for commercial and non-commercial use as long as | ||
10 | * the following conditions are aheared to. The following conditions | ||
11 | * apply to all code found in this distribution, be it the RC4, RSA, | ||
12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation | ||
13 | * included with this distribution is covered by the same copyright terms | ||
14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | ||
15 | * | ||
16 | * Copyright remains Eric Young's, and as such any Copyright notices in | ||
17 | * the code are not to be removed. | ||
18 | * If this package is used in a product, Eric Young should be given attribution | ||
19 | * as the author of the parts of the library used. | ||
20 | * This can be in the form of a textual message at program startup or | ||
21 | * in documentation (online or textual) provided with the package. | ||
22 | * | ||
23 | * Redistribution and use in source and binary forms, with or without | ||
24 | * modification, are permitted provided that the following conditions | ||
25 | * are met: | ||
26 | * 1. Redistributions of source code must retain the copyright | ||
27 | * notice, this list of conditions and the following disclaimer. | ||
28 | * 2. Redistributions in binary form must reproduce the above copyright | ||
29 | * notice, this list of conditions and the following disclaimer in the | ||
30 | * documentation and/or other materials provided with the distribution. | ||
31 | * 3. All advertising materials mentioning features or use of this software | ||
32 | * must display the following acknowledgement: | ||
33 | * "This product includes cryptographic software written by | ||
34 | * Eric Young (eay@cryptsoft.com)" | ||
35 | * The word 'cryptographic' can be left out if the rouines from the library | ||
36 | * being used are not cryptographic related :-). | ||
37 | * 4. If you include any Windows specific code (or a derivative thereof) from | ||
38 | * the apps directory (application code) you must include an acknowledgement: | ||
39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | ||
40 | * | ||
41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | ||
42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | ||
44 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | ||
45 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | ||
46 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | ||
47 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
48 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | ||
49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | ||
50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | ||
51 | * SUCH DAMAGE. | ||
52 | * | ||
53 | * The licence and distribution terms for any publically available version or | ||
54 | * derivative of this code cannot be changed. i.e. this code cannot simply be | ||
55 | * copied and put under another distribution licence | ||
56 | * [including the GNU Public Licence.] | ||
57 | */ | ||
58 | /* ==================================================================== | ||
59 | * Copyright (c) 1998-2000 The OpenSSL Project. All rights reserved. | ||
60 | * | ||
61 | * Redistribution and use in source and binary forms, with or without | ||
62 | * modification, are permitted provided that the following conditions | ||
63 | * are met: | ||
64 | * | ||
65 | * 1. Redistributions of source code must retain the above copyright | ||
66 | * notice, this list of conditions and the following disclaimer. | ||
67 | * | ||
68 | * 2. Redistributions in binary form must reproduce the above copyright | ||
69 | * notice, this list of conditions and the following disclaimer in | ||
70 | * the documentation and/or other materials provided with the | ||
71 | * distribution. | ||
72 | * | ||
73 | * 3. All advertising materials mentioning features or use of this | ||
74 | * software must display the following acknowledgment: | ||
75 | * "This product includes software developed by the OpenSSL Project | ||
76 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | ||
77 | * | ||
78 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
79 | * endorse or promote products derived from this software without | ||
80 | * prior written permission. For written permission, please contact | ||
81 | * openssl-core@openssl.org. | ||
82 | * | ||
83 | * 5. Products derived from this software may not be called "OpenSSL" | ||
84 | * nor may "OpenSSL" appear in their names without prior written | ||
85 | * permission of the OpenSSL Project. | ||
86 | * | ||
87 | * 6. Redistributions of any form whatsoever must retain the following | ||
88 | * acknowledgment: | ||
89 | * "This product includes software developed by the OpenSSL Project | ||
90 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" | ||
91 | * | ||
92 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
93 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
94 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
95 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
96 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
97 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
98 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
99 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
100 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
101 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
102 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
103 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
104 | * ==================================================================== | ||
105 | * | ||
106 | * This product includes cryptographic software written by Eric Young | ||
107 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
108 | * Hudson (tjh@cryptsoft.com). | ||
109 | * | ||
110 | */ | ||
111 | |||
112 | |||
113 | #include "cryptlib.h" | ||
114 | #include "bn_lcl.h" | ||
115 | |||
116 | #define TABLE_SIZE 32 | ||
117 | |||
118 | /* this one works - simple but works */ | ||
119 | int BN_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) | ||
120 | { | ||
121 | int i,bits,ret=0; | ||
122 | BIGNUM *v,*rr; | ||
123 | |||
124 | BN_CTX_start(ctx); | ||
125 | if ((r == a) || (r == p)) | ||
126 | rr = BN_CTX_get(ctx); | ||
127 | else | ||
128 | rr = r; | ||
129 | if ((v = BN_CTX_get(ctx)) == NULL) goto err; | ||
130 | |||
131 | if (BN_copy(v,a) == NULL) goto err; | ||
132 | bits=BN_num_bits(p); | ||
133 | |||
134 | if (BN_is_odd(p)) | ||
135 | { if (BN_copy(rr,a) == NULL) goto err; } | ||
136 | else { if (!BN_one(rr)) goto err; } | ||
137 | |||
138 | for (i=1; i<bits; i++) | ||
139 | { | ||
140 | if (!BN_sqr(v,v,ctx)) goto err; | ||
141 | if (BN_is_bit_set(p,i)) | ||
142 | { | ||
143 | if (!BN_mul(rr,rr,v,ctx)) goto err; | ||
144 | } | ||
145 | } | ||
146 | ret=1; | ||
147 | err: | ||
148 | if (r != rr) BN_copy(r,rr); | ||
149 | BN_CTX_end(ctx); | ||
150 | return(ret); | ||
151 | } | ||
152 | |||
153 | |||
154 | int BN_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m, | ||
155 | BN_CTX *ctx) | ||
156 | { | ||
157 | int ret; | ||
158 | |||
159 | bn_check_top(a); | ||
160 | bn_check_top(p); | ||
161 | bn_check_top(m); | ||
162 | |||
163 | /* For even modulus m = 2^k*m_odd, it might make sense to compute | ||
164 | * a^p mod m_odd and a^p mod 2^k separately (with Montgomery | ||
165 | * exponentiation for the odd part), using appropriate exponent | ||
166 | * reductions, and combine the results using the CRT. | ||
167 | * | ||
168 | * For now, we use Montgomery only if the modulus is odd; otherwise, | ||
169 | * exponentiation using the reciprocal-based quick remaindering | ||
170 | * algorithm is used. | ||
171 | * | ||
172 | * (Timing obtained with expspeed.c [computations a^p mod m | ||
173 | * where a, p, m are of the same length: 256, 512, 1024, 2048, | ||
174 | * 4096, 8192 bits], compared to the running time of the | ||
175 | * standard algorithm: | ||
176 | * | ||
177 | * BN_mod_exp_mont 33 .. 40 % [AMD K6-2, Linux, debug configuration] | ||
178 | * 55 .. 77 % [UltraSparc processor, but | ||
179 | * debug-solaris-sparcv8-gcc conf.] | ||
180 | * | ||
181 | * BN_mod_exp_recp 50 .. 70 % [AMD K6-2, Linux, debug configuration] | ||
182 | * 62 .. 118 % [UltraSparc, debug-solaris-sparcv8-gcc] | ||
183 | * | ||
184 | * On the Sparc, BN_mod_exp_recp was faster than BN_mod_exp_mont | ||
185 | * at 2048 and more bits, but at 512 and 1024 bits, it was | ||
186 | * slower even than the standard algorithm! | ||
187 | * | ||
188 | * "Real" timings [linux-elf, solaris-sparcv9-gcc configurations] | ||
189 | * should be obtained when the new Montgomery reduction code | ||
190 | * has been integrated into OpenSSL.) | ||
191 | */ | ||
192 | |||
193 | #define MONT_MUL_MOD | ||
194 | #define MONT_EXP_WORD | ||
195 | #define RECP_MUL_MOD | ||
196 | |||
197 | #ifdef MONT_MUL_MOD | ||
198 | /* I have finally been able to take out this pre-condition of | ||
199 | * the top bit being set. It was caused by an error in BN_div | ||
200 | * with negatives. There was also another problem when for a^b%m | ||
201 | * a >= m. eay 07-May-97 */ | ||
202 | /* if ((m->d[m->top-1]&BN_TBIT) && BN_is_odd(m)) */ | ||
203 | |||
204 | if (BN_is_odd(m)) | ||
205 | { | ||
206 | # ifdef MONT_EXP_WORD | ||
207 | if (a->top == 1 && !a->neg) | ||
208 | { | ||
209 | BN_ULONG A = a->d[0]; | ||
210 | ret=BN_mod_exp_mont_word(r,A,p,m,ctx,NULL); | ||
211 | } | ||
212 | else | ||
213 | # endif | ||
214 | ret=BN_mod_exp_mont(r,a,p,m,ctx,NULL); | ||
215 | } | ||
216 | else | ||
217 | #endif | ||
218 | #ifdef RECP_MUL_MOD | ||
219 | { ret=BN_mod_exp_recp(r,a,p,m,ctx); } | ||
220 | #else | ||
221 | { ret=BN_mod_exp_simple(r,a,p,m,ctx); } | ||
222 | #endif | ||
223 | |||
224 | return(ret); | ||
225 | } | ||
226 | |||
227 | |||
228 | int BN_mod_exp_recp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, | ||
229 | const BIGNUM *m, BN_CTX *ctx) | ||
230 | { | ||
231 | int i,j,bits,ret=0,wstart,wend,window,wvalue; | ||
232 | int start=1,ts=0; | ||
233 | BIGNUM *aa; | ||
234 | BIGNUM val[TABLE_SIZE]; | ||
235 | BN_RECP_CTX recp; | ||
236 | |||
237 | bits=BN_num_bits(p); | ||
238 | |||
239 | if (bits == 0) | ||
240 | { | ||
241 | ret = BN_one(r); | ||
242 | return ret; | ||
243 | } | ||
244 | |||
245 | BN_CTX_start(ctx); | ||
246 | if ((aa = BN_CTX_get(ctx)) == NULL) goto err; | ||
247 | |||
248 | BN_RECP_CTX_init(&recp); | ||
249 | if (m->neg) | ||
250 | { | ||
251 | /* ignore sign of 'm' */ | ||
252 | if (!BN_copy(aa, m)) goto err; | ||
253 | aa->neg = 0; | ||
254 | if (BN_RECP_CTX_set(&recp,aa,ctx) <= 0) goto err; | ||
255 | } | ||
256 | else | ||
257 | { | ||
258 | if (BN_RECP_CTX_set(&recp,m,ctx) <= 0) goto err; | ||
259 | } | ||
260 | |||
261 | BN_init(&(val[0])); | ||
262 | ts=1; | ||
263 | |||
264 | if (!BN_nnmod(&(val[0]),a,m,ctx)) goto err; /* 1 */ | ||
265 | if (BN_is_zero(&(val[0]))) | ||
266 | { | ||
267 | ret = BN_zero(r); | ||
268 | goto err; | ||
269 | } | ||
270 | |||
271 | window = BN_window_bits_for_exponent_size(bits); | ||
272 | if (window > 1) | ||
273 | { | ||
274 | if (!BN_mod_mul_reciprocal(aa,&(val[0]),&(val[0]),&recp,ctx)) | ||
275 | goto err; /* 2 */ | ||
276 | j=1<<(window-1); | ||
277 | for (i=1; i<j; i++) | ||
278 | { | ||
279 | BN_init(&val[i]); | ||
280 | if (!BN_mod_mul_reciprocal(&(val[i]),&(val[i-1]),aa,&recp,ctx)) | ||
281 | goto err; | ||
282 | } | ||
283 | ts=i; | ||
284 | } | ||
285 | |||
286 | start=1; /* This is used to avoid multiplication etc | ||
287 | * when there is only the value '1' in the | ||
288 | * buffer. */ | ||
289 | wvalue=0; /* The 'value' of the window */ | ||
290 | wstart=bits-1; /* The top bit of the window */ | ||
291 | wend=0; /* The bottom bit of the window */ | ||
292 | |||
293 | if (!BN_one(r)) goto err; | ||
294 | |||
295 | for (;;) | ||
296 | { | ||
297 | if (BN_is_bit_set(p,wstart) == 0) | ||
298 | { | ||
299 | if (!start) | ||
300 | if (!BN_mod_mul_reciprocal(r,r,r,&recp,ctx)) | ||
301 | goto err; | ||
302 | if (wstart == 0) break; | ||
303 | wstart--; | ||
304 | continue; | ||
305 | } | ||
306 | /* We now have wstart on a 'set' bit, we now need to work out | ||
307 | * how bit a window to do. To do this we need to scan | ||
308 | * forward until the last set bit before the end of the | ||
309 | * window */ | ||
310 | j=wstart; | ||
311 | wvalue=1; | ||
312 | wend=0; | ||
313 | for (i=1; i<window; i++) | ||
314 | { | ||
315 | if (wstart-i < 0) break; | ||
316 | if (BN_is_bit_set(p,wstart-i)) | ||
317 | { | ||
318 | wvalue<<=(i-wend); | ||
319 | wvalue|=1; | ||
320 | wend=i; | ||
321 | } | ||
322 | } | ||
323 | |||
324 | /* wend is the size of the current window */ | ||
325 | j=wend+1; | ||
326 | /* add the 'bytes above' */ | ||
327 | if (!start) | ||
328 | for (i=0; i<j; i++) | ||
329 | { | ||
330 | if (!BN_mod_mul_reciprocal(r,r,r,&recp,ctx)) | ||
331 | goto err; | ||
332 | } | ||
333 | |||
334 | /* wvalue will be an odd number < 2^window */ | ||
335 | if (!BN_mod_mul_reciprocal(r,r,&(val[wvalue>>1]),&recp,ctx)) | ||
336 | goto err; | ||
337 | |||
338 | /* move the 'window' down further */ | ||
339 | wstart-=wend+1; | ||
340 | wvalue=0; | ||
341 | start=0; | ||
342 | if (wstart < 0) break; | ||
343 | } | ||
344 | ret=1; | ||
345 | err: | ||
346 | BN_CTX_end(ctx); | ||
347 | for (i=0; i<ts; i++) | ||
348 | BN_clear_free(&(val[i])); | ||
349 | BN_RECP_CTX_free(&recp); | ||
350 | return(ret); | ||
351 | } | ||
352 | |||
353 | |||
354 | int BN_mod_exp_mont(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p, | ||
355 | const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont) | ||
356 | { | ||
357 | int i,j,bits,ret=0,wstart,wend,window,wvalue; | ||
358 | int start=1,ts=0; | ||
359 | BIGNUM *d,*r; | ||
360 | const BIGNUM *aa; | ||
361 | BIGNUM val[TABLE_SIZE]; | ||
362 | BN_MONT_CTX *mont=NULL; | ||
363 | |||
364 | bn_check_top(a); | ||
365 | bn_check_top(p); | ||
366 | bn_check_top(m); | ||
367 | |||
368 | if (!(m->d[0] & 1)) | ||
369 | { | ||
370 | BNerr(BN_F_BN_MOD_EXP_MONT,BN_R_CALLED_WITH_EVEN_MODULUS); | ||
371 | return(0); | ||
372 | } | ||
373 | bits=BN_num_bits(p); | ||
374 | if (bits == 0) | ||
375 | { | ||
376 | ret = BN_one(rr); | ||
377 | return ret; | ||
378 | } | ||
379 | |||
380 | BN_CTX_start(ctx); | ||
381 | d = BN_CTX_get(ctx); | ||
382 | r = BN_CTX_get(ctx); | ||
383 | if (d == NULL || r == NULL) goto err; | ||
384 | |||
385 | /* If this is not done, things will break in the montgomery | ||
386 | * part */ | ||
387 | |||
388 | if (in_mont != NULL) | ||
389 | mont=in_mont; | ||
390 | else | ||
391 | { | ||
392 | if ((mont=BN_MONT_CTX_new()) == NULL) goto err; | ||
393 | if (!BN_MONT_CTX_set(mont,m,ctx)) goto err; | ||
394 | } | ||
395 | |||
396 | BN_init(&val[0]); | ||
397 | ts=1; | ||
398 | if (a->neg || BN_ucmp(a,m) >= 0) | ||
399 | { | ||
400 | if (!BN_nnmod(&(val[0]),a,m,ctx)) | ||
401 | goto err; | ||
402 | aa= &(val[0]); | ||
403 | } | ||
404 | else | ||
405 | aa=a; | ||
406 | if (BN_is_zero(aa)) | ||
407 | { | ||
408 | ret = BN_zero(rr); | ||
409 | goto err; | ||
410 | } | ||
411 | if (!BN_to_montgomery(&(val[0]),aa,mont,ctx)) goto err; /* 1 */ | ||
412 | |||
413 | window = BN_window_bits_for_exponent_size(bits); | ||
414 | if (window > 1) | ||
415 | { | ||
416 | if (!BN_mod_mul_montgomery(d,&(val[0]),&(val[0]),mont,ctx)) goto err; /* 2 */ | ||
417 | j=1<<(window-1); | ||
418 | for (i=1; i<j; i++) | ||
419 | { | ||
420 | BN_init(&(val[i])); | ||
421 | if (!BN_mod_mul_montgomery(&(val[i]),&(val[i-1]),d,mont,ctx)) | ||
422 | goto err; | ||
423 | } | ||
424 | ts=i; | ||
425 | } | ||
426 | |||
427 | start=1; /* This is used to avoid multiplication etc | ||
428 | * when there is only the value '1' in the | ||
429 | * buffer. */ | ||
430 | wvalue=0; /* The 'value' of the window */ | ||
431 | wstart=bits-1; /* The top bit of the window */ | ||
432 | wend=0; /* The bottom bit of the window */ | ||
433 | |||
434 | if (!BN_to_montgomery(r,BN_value_one(),mont,ctx)) goto err; | ||
435 | for (;;) | ||
436 | { | ||
437 | if (BN_is_bit_set(p,wstart) == 0) | ||
438 | { | ||
439 | if (!start) | ||
440 | { | ||
441 | if (!BN_mod_mul_montgomery(r,r,r,mont,ctx)) | ||
442 | goto err; | ||
443 | } | ||
444 | if (wstart == 0) break; | ||
445 | wstart--; | ||
446 | continue; | ||
447 | } | ||
448 | /* We now have wstart on a 'set' bit, we now need to work out | ||
449 | * how bit a window to do. To do this we need to scan | ||
450 | * forward until the last set bit before the end of the | ||
451 | * window */ | ||
452 | j=wstart; | ||
453 | wvalue=1; | ||
454 | wend=0; | ||
455 | for (i=1; i<window; i++) | ||
456 | { | ||
457 | if (wstart-i < 0) break; | ||
458 | if (BN_is_bit_set(p,wstart-i)) | ||
459 | { | ||
460 | wvalue<<=(i-wend); | ||
461 | wvalue|=1; | ||
462 | wend=i; | ||
463 | } | ||
464 | } | ||
465 | |||
466 | /* wend is the size of the current window */ | ||
467 | j=wend+1; | ||
468 | /* add the 'bytes above' */ | ||
469 | if (!start) | ||
470 | for (i=0; i<j; i++) | ||
471 | { | ||
472 | if (!BN_mod_mul_montgomery(r,r,r,mont,ctx)) | ||
473 | goto err; | ||
474 | } | ||
475 | |||
476 | /* wvalue will be an odd number < 2^window */ | ||
477 | if (!BN_mod_mul_montgomery(r,r,&(val[wvalue>>1]),mont,ctx)) | ||
478 | goto err; | ||
479 | |||
480 | /* move the 'window' down further */ | ||
481 | wstart-=wend+1; | ||
482 | wvalue=0; | ||
483 | start=0; | ||
484 | if (wstart < 0) break; | ||
485 | } | ||
486 | if (!BN_from_montgomery(rr,r,mont,ctx)) goto err; | ||
487 | ret=1; | ||
488 | err: | ||
489 | if ((in_mont == NULL) && (mont != NULL)) BN_MONT_CTX_free(mont); | ||
490 | BN_CTX_end(ctx); | ||
491 | for (i=0; i<ts; i++) | ||
492 | BN_clear_free(&(val[i])); | ||
493 | return(ret); | ||
494 | } | ||
495 | |||
496 | int BN_mod_exp_mont_word(BIGNUM *rr, BN_ULONG a, const BIGNUM *p, | ||
497 | const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont) | ||
498 | { | ||
499 | BN_MONT_CTX *mont = NULL; | ||
500 | int b, bits, ret=0; | ||
501 | int r_is_one; | ||
502 | BN_ULONG w, next_w; | ||
503 | BIGNUM *d, *r, *t; | ||
504 | BIGNUM *swap_tmp; | ||
505 | #define BN_MOD_MUL_WORD(r, w, m) \ | ||
506 | (BN_mul_word(r, (w)) && \ | ||
507 | (/* BN_ucmp(r, (m)) < 0 ? 1 :*/ \ | ||
508 | (BN_mod(t, r, m, ctx) && (swap_tmp = r, r = t, t = swap_tmp, 1)))) | ||
509 | /* BN_MOD_MUL_WORD is only used with 'w' large, | ||
510 | * so the BN_ucmp test is probably more overhead | ||
511 | * than always using BN_mod (which uses BN_copy if | ||
512 | * a similar test returns true). */ | ||
513 | /* We can use BN_mod and do not need BN_nnmod because our | ||
514 | * accumulator is never negative (the result of BN_mod does | ||
515 | * not depend on the sign of the modulus). | ||
516 | */ | ||
517 | #define BN_TO_MONTGOMERY_WORD(r, w, mont) \ | ||
518 | (BN_set_word(r, (w)) && BN_to_montgomery(r, r, (mont), ctx)) | ||
519 | |||
520 | bn_check_top(p); | ||
521 | bn_check_top(m); | ||
522 | |||
523 | if (m->top == 0 || !(m->d[0] & 1)) | ||
524 | { | ||
525 | BNerr(BN_F_BN_MOD_EXP_MONT_WORD,BN_R_CALLED_WITH_EVEN_MODULUS); | ||
526 | return(0); | ||
527 | } | ||
528 | if (m->top == 1) | ||
529 | a %= m->d[0]; /* make sure that 'a' is reduced */ | ||
530 | |||
531 | bits = BN_num_bits(p); | ||
532 | if (bits == 0) | ||
533 | { | ||
534 | ret = BN_one(rr); | ||
535 | return ret; | ||
536 | } | ||
537 | if (a == 0) | ||
538 | { | ||
539 | ret = BN_zero(rr); | ||
540 | return ret; | ||
541 | } | ||
542 | |||
543 | BN_CTX_start(ctx); | ||
544 | d = BN_CTX_get(ctx); | ||
545 | r = BN_CTX_get(ctx); | ||
546 | t = BN_CTX_get(ctx); | ||
547 | if (d == NULL || r == NULL || t == NULL) goto err; | ||
548 | |||
549 | if (in_mont != NULL) | ||
550 | mont=in_mont; | ||
551 | else | ||
552 | { | ||
553 | if ((mont = BN_MONT_CTX_new()) == NULL) goto err; | ||
554 | if (!BN_MONT_CTX_set(mont, m, ctx)) goto err; | ||
555 | } | ||
556 | |||
557 | r_is_one = 1; /* except for Montgomery factor */ | ||
558 | |||
559 | /* bits-1 >= 0 */ | ||
560 | |||
561 | /* The result is accumulated in the product r*w. */ | ||
562 | w = a; /* bit 'bits-1' of 'p' is always set */ | ||
563 | for (b = bits-2; b >= 0; b--) | ||
564 | { | ||
565 | /* First, square r*w. */ | ||
566 | next_w = w*w; | ||
567 | if ((next_w/w) != w) /* overflow */ | ||
568 | { | ||
569 | if (r_is_one) | ||
570 | { | ||
571 | if (!BN_TO_MONTGOMERY_WORD(r, w, mont)) goto err; | ||
572 | r_is_one = 0; | ||
573 | } | ||
574 | else | ||
575 | { | ||
576 | if (!BN_MOD_MUL_WORD(r, w, m)) goto err; | ||
577 | } | ||
578 | next_w = 1; | ||
579 | } | ||
580 | w = next_w; | ||
581 | if (!r_is_one) | ||
582 | { | ||
583 | if (!BN_mod_mul_montgomery(r, r, r, mont, ctx)) goto err; | ||
584 | } | ||
585 | |||
586 | /* Second, multiply r*w by 'a' if exponent bit is set. */ | ||
587 | if (BN_is_bit_set(p, b)) | ||
588 | { | ||
589 | next_w = w*a; | ||
590 | if ((next_w/a) != w) /* overflow */ | ||
591 | { | ||
592 | if (r_is_one) | ||
593 | { | ||
594 | if (!BN_TO_MONTGOMERY_WORD(r, w, mont)) goto err; | ||
595 | r_is_one = 0; | ||
596 | } | ||
597 | else | ||
598 | { | ||
599 | if (!BN_MOD_MUL_WORD(r, w, m)) goto err; | ||
600 | } | ||
601 | next_w = a; | ||
602 | } | ||
603 | w = next_w; | ||
604 | } | ||
605 | } | ||
606 | |||
607 | /* Finally, set r:=r*w. */ | ||
608 | if (w != 1) | ||
609 | { | ||
610 | if (r_is_one) | ||
611 | { | ||
612 | if (!BN_TO_MONTGOMERY_WORD(r, w, mont)) goto err; | ||
613 | r_is_one = 0; | ||
614 | } | ||
615 | else | ||
616 | { | ||
617 | if (!BN_MOD_MUL_WORD(r, w, m)) goto err; | ||
618 | } | ||
619 | } | ||
620 | |||
621 | if (r_is_one) /* can happen only if a == 1*/ | ||
622 | { | ||
623 | if (!BN_one(rr)) goto err; | ||
624 | } | ||
625 | else | ||
626 | { | ||
627 | if (!BN_from_montgomery(rr, r, mont, ctx)) goto err; | ||
628 | } | ||
629 | ret = 1; | ||
630 | err: | ||
631 | if ((in_mont == NULL) && (mont != NULL)) BN_MONT_CTX_free(mont); | ||
632 | BN_CTX_end(ctx); | ||
633 | return(ret); | ||
634 | } | ||
635 | |||
636 | |||
637 | /* The old fallback, simple version :-) */ | ||
638 | int BN_mod_exp_simple(BIGNUM *r, | ||
639 | const BIGNUM *a, const BIGNUM *p, const BIGNUM *m, | ||
640 | BN_CTX *ctx) | ||
641 | { | ||
642 | int i,j,bits,ret=0,wstart,wend,window,wvalue,ts=0; | ||
643 | int start=1; | ||
644 | BIGNUM *d; | ||
645 | BIGNUM val[TABLE_SIZE]; | ||
646 | |||
647 | bits=BN_num_bits(p); | ||
648 | |||
649 | if (bits == 0) | ||
650 | { | ||
651 | ret = BN_one(r); | ||
652 | return ret; | ||
653 | } | ||
654 | |||
655 | BN_CTX_start(ctx); | ||
656 | if ((d = BN_CTX_get(ctx)) == NULL) goto err; | ||
657 | |||
658 | BN_init(&(val[0])); | ||
659 | ts=1; | ||
660 | if (!BN_nnmod(&(val[0]),a,m,ctx)) goto err; /* 1 */ | ||
661 | if (BN_is_zero(&(val[0]))) | ||
662 | { | ||
663 | ret = BN_zero(r); | ||
664 | goto err; | ||
665 | } | ||
666 | |||
667 | window = BN_window_bits_for_exponent_size(bits); | ||
668 | if (window > 1) | ||
669 | { | ||
670 | if (!BN_mod_mul(d,&(val[0]),&(val[0]),m,ctx)) | ||
671 | goto err; /* 2 */ | ||
672 | j=1<<(window-1); | ||
673 | for (i=1; i<j; i++) | ||
674 | { | ||
675 | BN_init(&(val[i])); | ||
676 | if (!BN_mod_mul(&(val[i]),&(val[i-1]),d,m,ctx)) | ||
677 | goto err; | ||
678 | } | ||
679 | ts=i; | ||
680 | } | ||
681 | |||
682 | start=1; /* This is used to avoid multiplication etc | ||
683 | * when there is only the value '1' in the | ||
684 | * buffer. */ | ||
685 | wvalue=0; /* The 'value' of the window */ | ||
686 | wstart=bits-1; /* The top bit of the window */ | ||
687 | wend=0; /* The bottom bit of the window */ | ||
688 | |||
689 | if (!BN_one(r)) goto err; | ||
690 | |||
691 | for (;;) | ||
692 | { | ||
693 | if (BN_is_bit_set(p,wstart) == 0) | ||
694 | { | ||
695 | if (!start) | ||
696 | if (!BN_mod_mul(r,r,r,m,ctx)) | ||
697 | goto err; | ||
698 | if (wstart == 0) break; | ||
699 | wstart--; | ||
700 | continue; | ||
701 | } | ||
702 | /* We now have wstart on a 'set' bit, we now need to work out | ||
703 | * how bit a window to do. To do this we need to scan | ||
704 | * forward until the last set bit before the end of the | ||
705 | * window */ | ||
706 | j=wstart; | ||
707 | wvalue=1; | ||
708 | wend=0; | ||
709 | for (i=1; i<window; i++) | ||
710 | { | ||
711 | if (wstart-i < 0) break; | ||
712 | if (BN_is_bit_set(p,wstart-i)) | ||
713 | { | ||
714 | wvalue<<=(i-wend); | ||
715 | wvalue|=1; | ||
716 | wend=i; | ||
717 | } | ||
718 | } | ||
719 | |||
720 | /* wend is the size of the current window */ | ||
721 | j=wend+1; | ||
722 | /* add the 'bytes above' */ | ||
723 | if (!start) | ||
724 | for (i=0; i<j; i++) | ||
725 | { | ||
726 | if (!BN_mod_mul(r,r,r,m,ctx)) | ||
727 | goto err; | ||
728 | } | ||
729 | |||
730 | /* wvalue will be an odd number < 2^window */ | ||
731 | if (!BN_mod_mul(r,r,&(val[wvalue>>1]),m,ctx)) | ||
732 | goto err; | ||
733 | |||
734 | /* move the 'window' down further */ | ||
735 | wstart-=wend+1; | ||
736 | wvalue=0; | ||
737 | start=0; | ||
738 | if (wstart < 0) break; | ||
739 | } | ||
740 | ret=1; | ||
741 | err: | ||
742 | BN_CTX_end(ctx); | ||
743 | for (i=0; i<ts; i++) | ||
744 | BN_clear_free(&(val[i])); | ||
745 | return(ret); | ||
746 | } | ||
747 | |||