diff options
Diffstat (limited to 'src/lib/libcrypto/bn/bn_exp.c')
-rw-r--r-- | src/lib/libcrypto/bn/bn_exp.c | 553 |
1 files changed, 553 insertions, 0 deletions
diff --git a/src/lib/libcrypto/bn/bn_exp.c b/src/lib/libcrypto/bn/bn_exp.c new file mode 100644 index 0000000000..c056a5083f --- /dev/null +++ b/src/lib/libcrypto/bn/bn_exp.c | |||
@@ -0,0 +1,553 @@ | |||
1 | /* crypto/bn/bn_exp.c */ | ||
2 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) | ||
3 | * All rights reserved. | ||
4 | * | ||
5 | * This package is an SSL implementation written | ||
6 | * by Eric Young (eay@cryptsoft.com). | ||
7 | * The implementation was written so as to conform with Netscapes SSL. | ||
8 | * | ||
9 | * This library is free for commercial and non-commercial use as long as | ||
10 | * the following conditions are aheared to. The following conditions | ||
11 | * apply to all code found in this distribution, be it the RC4, RSA, | ||
12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation | ||
13 | * included with this distribution is covered by the same copyright terms | ||
14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | ||
15 | * | ||
16 | * Copyright remains Eric Young's, and as such any Copyright notices in | ||
17 | * the code are not to be removed. | ||
18 | * If this package is used in a product, Eric Young should be given attribution | ||
19 | * as the author of the parts of the library used. | ||
20 | * This can be in the form of a textual message at program startup or | ||
21 | * in documentation (online or textual) provided with the package. | ||
22 | * | ||
23 | * Redistribution and use in source and binary forms, with or without | ||
24 | * modification, are permitted provided that the following conditions | ||
25 | * are met: | ||
26 | * 1. Redistributions of source code must retain the copyright | ||
27 | * notice, this list of conditions and the following disclaimer. | ||
28 | * 2. Redistributions in binary form must reproduce the above copyright | ||
29 | * notice, this list of conditions and the following disclaimer in the | ||
30 | * documentation and/or other materials provided with the distribution. | ||
31 | * 3. All advertising materials mentioning features or use of this software | ||
32 | * must display the following acknowledgement: | ||
33 | * "This product includes cryptographic software written by | ||
34 | * Eric Young (eay@cryptsoft.com)" | ||
35 | * The word 'cryptographic' can be left out if the rouines from the library | ||
36 | * being used are not cryptographic related :-). | ||
37 | * 4. If you include any Windows specific code (or a derivative thereof) from | ||
38 | * the apps directory (application code) you must include an acknowledgement: | ||
39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | ||
40 | * | ||
41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | ||
42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | ||
44 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | ||
45 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | ||
46 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | ||
47 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
48 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | ||
49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | ||
50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | ||
51 | * SUCH DAMAGE. | ||
52 | * | ||
53 | * The licence and distribution terms for any publically available version or | ||
54 | * derivative of this code cannot be changed. i.e. this code cannot simply be | ||
55 | * copied and put under another distribution licence | ||
56 | * [including the GNU Public Licence.] | ||
57 | */ | ||
58 | |||
59 | #include <stdio.h> | ||
60 | #include "cryptlib.h" | ||
61 | #include "bn_lcl.h" | ||
62 | |||
63 | /* slow but works */ | ||
64 | int BN_mod_mul(ret, a, b, m, ctx) | ||
65 | BIGNUM *ret; | ||
66 | BIGNUM *a; | ||
67 | BIGNUM *b; | ||
68 | BIGNUM *m; | ||
69 | BN_CTX *ctx; | ||
70 | { | ||
71 | BIGNUM *t; | ||
72 | int r=0; | ||
73 | |||
74 | t=ctx->bn[ctx->tos++]; | ||
75 | if (a == b) | ||
76 | { if (!BN_sqr(t,a,ctx)) goto err; } | ||
77 | else | ||
78 | { if (!BN_mul(t,a,b)) goto err; } | ||
79 | if (!BN_mod(ret,t,m,ctx)) goto err; | ||
80 | r=1; | ||
81 | err: | ||
82 | ctx->tos--; | ||
83 | return(r); | ||
84 | } | ||
85 | |||
86 | #if 0 | ||
87 | /* this one works - simple but works */ | ||
88 | int BN_mod_exp(r,a,p,m,ctx) | ||
89 | BIGNUM *r,*a,*p,*m; | ||
90 | BN_CTX *ctx; | ||
91 | { | ||
92 | int i,bits,ret=0; | ||
93 | BIGNUM *v,*tmp; | ||
94 | |||
95 | v=ctx->bn[ctx->tos++]; | ||
96 | tmp=ctx->bn[ctx->tos++]; | ||
97 | |||
98 | if (BN_copy(v,a) == NULL) goto err; | ||
99 | bits=BN_num_bits(p); | ||
100 | |||
101 | if (BN_is_odd(p)) | ||
102 | { if (BN_copy(r,a) == NULL) goto err; } | ||
103 | else { if (BN_one(r)) goto err; } | ||
104 | |||
105 | for (i=1; i<bits; i++) | ||
106 | { | ||
107 | if (!BN_sqr(tmp,v,ctx)) goto err; | ||
108 | if (!BN_mod(v,tmp,m,ctx)) goto err; | ||
109 | if (BN_is_bit_set(p,i)) | ||
110 | { | ||
111 | if (!BN_mul(tmp,r,v)) goto err; | ||
112 | if (!BN_mod(r,tmp,m,ctx)) goto err; | ||
113 | } | ||
114 | } | ||
115 | ret=1; | ||
116 | err: | ||
117 | ctx->tos-=2; | ||
118 | return(ret); | ||
119 | } | ||
120 | |||
121 | #endif | ||
122 | |||
123 | /* this one works - simple but works */ | ||
124 | int BN_exp(r,a,p,ctx) | ||
125 | BIGNUM *r,*a,*p; | ||
126 | BN_CTX *ctx; | ||
127 | { | ||
128 | int i,bits,ret=0; | ||
129 | BIGNUM *v,*tmp; | ||
130 | |||
131 | v=ctx->bn[ctx->tos++]; | ||
132 | tmp=ctx->bn[ctx->tos++]; | ||
133 | |||
134 | if (BN_copy(v,a) == NULL) goto err; | ||
135 | bits=BN_num_bits(p); | ||
136 | |||
137 | if (BN_is_odd(p)) | ||
138 | { if (BN_copy(r,a) == NULL) goto err; } | ||
139 | else { if (BN_one(r)) goto err; } | ||
140 | |||
141 | for (i=1; i<bits; i++) | ||
142 | { | ||
143 | if (!BN_sqr(tmp,v,ctx)) goto err; | ||
144 | if (BN_is_bit_set(p,i)) | ||
145 | { | ||
146 | if (!BN_mul(tmp,r,v)) goto err; | ||
147 | } | ||
148 | } | ||
149 | ret=1; | ||
150 | err: | ||
151 | ctx->tos-=2; | ||
152 | return(ret); | ||
153 | } | ||
154 | |||
155 | int BN_mod_exp(r,a,p,m,ctx) | ||
156 | BIGNUM *r; | ||
157 | BIGNUM *a; | ||
158 | BIGNUM *p; | ||
159 | BIGNUM *m; | ||
160 | BN_CTX *ctx; | ||
161 | { | ||
162 | int ret; | ||
163 | |||
164 | #ifdef MONT_MUL_MOD | ||
165 | /* I have finally been able to take out this pre-condition of | ||
166 | * the top bit being set. It was caused by an error in BN_div | ||
167 | * with negatives. There was also another problem when for a^b%m | ||
168 | * a >= m. eay 07-May-97 */ | ||
169 | /* if ((m->d[m->top-1]&BN_TBIT) && BN_is_odd(m)) */ | ||
170 | |||
171 | if (BN_is_odd(m)) | ||
172 | { ret=BN_mod_exp_mont(r,a,p,m,ctx,NULL); } | ||
173 | else | ||
174 | #endif | ||
175 | #ifdef RECP_MUL_MOD | ||
176 | { ret=BN_mod_exp_recp(r,a,p,m,ctx); } | ||
177 | #else | ||
178 | { ret=BN_mod_exp_simple(r,a,p,m,ctx); } | ||
179 | #endif | ||
180 | |||
181 | return(ret); | ||
182 | } | ||
183 | |||
184 | /* #ifdef RECP_MUL_MOD */ | ||
185 | int BN_mod_exp_recp(r,a,p,m,ctx) | ||
186 | BIGNUM *r; | ||
187 | BIGNUM *a; | ||
188 | BIGNUM *p; | ||
189 | BIGNUM *m; | ||
190 | BN_CTX *ctx; | ||
191 | { | ||
192 | int nb,i,j,bits,ret=0,wstart,wend,window,wvalue; | ||
193 | int start=1; | ||
194 | BIGNUM *d,*aa; | ||
195 | BIGNUM *val[16]; | ||
196 | |||
197 | d=ctx->bn[ctx->tos++]; | ||
198 | aa=ctx->bn[ctx->tos++]; | ||
199 | bits=BN_num_bits(p); | ||
200 | |||
201 | if (bits == 0) | ||
202 | { | ||
203 | BN_one(r); | ||
204 | return(1); | ||
205 | } | ||
206 | nb=BN_reciprocal(d,m,ctx); | ||
207 | if (nb == -1) goto err; | ||
208 | |||
209 | val[0]=BN_new(); | ||
210 | if (!BN_mod(val[0],a,m,ctx)) goto err; /* 1 */ | ||
211 | if (!BN_mod_mul_reciprocal(aa,val[0],val[0],m,d,nb,ctx)) | ||
212 | goto err; /* 2 */ | ||
213 | |||
214 | if (bits <= 17) /* This is probably 3 or 0x10001, so just do singles */ | ||
215 | window=1; | ||
216 | else if (bits >= 256) | ||
217 | window=5; /* max size of window */ | ||
218 | else if (bits >= 128) | ||
219 | window=4; | ||
220 | else | ||
221 | window=3; | ||
222 | |||
223 | j=1<<(window-1); | ||
224 | for (i=1; i<j; i++) | ||
225 | { | ||
226 | val[i]=BN_new(); | ||
227 | if (!BN_mod_mul_reciprocal(val[i],val[i-1],aa,m,d,nb,ctx)) | ||
228 | goto err; | ||
229 | } | ||
230 | for (; i<16; i++) | ||
231 | val[i]=NULL; | ||
232 | |||
233 | start=1; /* This is used to avoid multiplication etc | ||
234 | * when there is only the value '1' in the | ||
235 | * buffer. */ | ||
236 | wvalue=0; /* The 'value' of the window */ | ||
237 | wstart=bits-1; /* The top bit of the window */ | ||
238 | wend=0; /* The bottom bit of the window */ | ||
239 | |||
240 | if (!BN_one(r)) goto err; | ||
241 | |||
242 | for (;;) | ||
243 | { | ||
244 | if (BN_is_bit_set(p,wstart) == 0) | ||
245 | { | ||
246 | if (!start) | ||
247 | if (!BN_mod_mul_reciprocal(r,r,r,m,d,nb,ctx)) | ||
248 | goto err; | ||
249 | if (wstart == 0) break; | ||
250 | wstart--; | ||
251 | continue; | ||
252 | } | ||
253 | /* We now have wstart on a 'set' bit, we now need to work out | ||
254 | * how bit a window to do. To do this we need to scan | ||
255 | * forward until the last set bit before the end of the | ||
256 | * window */ | ||
257 | j=wstart; | ||
258 | wvalue=1; | ||
259 | wend=0; | ||
260 | for (i=1; i<window; i++) | ||
261 | { | ||
262 | if (wstart-i < 0) break; | ||
263 | if (BN_is_bit_set(p,wstart-i)) | ||
264 | { | ||
265 | wvalue<<=(i-wend); | ||
266 | wvalue|=1; | ||
267 | wend=i; | ||
268 | } | ||
269 | } | ||
270 | |||
271 | /* wend is the size of the current window */ | ||
272 | j=wend+1; | ||
273 | /* add the 'bytes above' */ | ||
274 | if (!start) | ||
275 | for (i=0; i<j; i++) | ||
276 | { | ||
277 | if (!BN_mod_mul_reciprocal(r,r,r,m,d,nb,ctx)) | ||
278 | goto err; | ||
279 | } | ||
280 | |||
281 | /* wvalue will be an odd number < 2^window */ | ||
282 | if (!BN_mod_mul_reciprocal(r,r,val[wvalue>>1],m,d,nb,ctx)) | ||
283 | goto err; | ||
284 | |||
285 | /* move the 'window' down further */ | ||
286 | wstart-=wend+1; | ||
287 | wvalue=0; | ||
288 | start=0; | ||
289 | if (wstart < 0) break; | ||
290 | } | ||
291 | ret=1; | ||
292 | err: | ||
293 | ctx->tos-=2; | ||
294 | for (i=0; i<16; i++) | ||
295 | if (val[i] != NULL) BN_clear_free(val[i]); | ||
296 | return(ret); | ||
297 | } | ||
298 | /* #endif */ | ||
299 | |||
300 | /* #ifdef MONT_MUL_MOD */ | ||
301 | int BN_mod_exp_mont(r,a,p,m,ctx,in_mont) | ||
302 | BIGNUM *r; | ||
303 | BIGNUM *a; | ||
304 | BIGNUM *p; | ||
305 | BIGNUM *m; | ||
306 | BN_CTX *ctx; | ||
307 | BN_MONT_CTX *in_mont; | ||
308 | { | ||
309 | #define TABLE_SIZE 16 | ||
310 | int i,j,bits,ret=0,wstart,wend,window,wvalue; | ||
311 | int start=1; | ||
312 | BIGNUM *d,*aa; | ||
313 | BIGNUM *val[TABLE_SIZE]; | ||
314 | BN_MONT_CTX *mont=NULL; | ||
315 | |||
316 | if (!(m->d[0] & 1)) | ||
317 | { | ||
318 | BNerr(BN_F_BN_MOD_EXP_MONT,BN_R_CALLED_WITH_EVEN_MODULUS); | ||
319 | return(0); | ||
320 | } | ||
321 | d=ctx->bn[ctx->tos++]; | ||
322 | bits=BN_num_bits(p); | ||
323 | if (bits == 0) | ||
324 | { | ||
325 | BN_one(r); | ||
326 | return(1); | ||
327 | } | ||
328 | |||
329 | /* If this is not done, things will break in the montgomery | ||
330 | * part */ | ||
331 | |||
332 | #if 1 | ||
333 | if (in_mont != NULL) | ||
334 | mont=in_mont; | ||
335 | else | ||
336 | #endif | ||
337 | { | ||
338 | if ((mont=BN_MONT_CTX_new()) == NULL) goto err; | ||
339 | if (!BN_MONT_CTX_set(mont,m,ctx)) goto err; | ||
340 | } | ||
341 | |||
342 | val[0]=BN_new(); | ||
343 | if (BN_ucmp(a,m) >= 0) | ||
344 | { | ||
345 | BN_mod(val[0],a,m,ctx); | ||
346 | aa=val[0]; | ||
347 | } | ||
348 | else | ||
349 | aa=a; | ||
350 | if (!BN_to_montgomery(val[0],aa,mont,ctx)) goto err; /* 1 */ | ||
351 | if (!BN_mod_mul_montgomery(d,val[0],val[0],mont,ctx)) goto err; /* 2 */ | ||
352 | |||
353 | if (bits <= 20) /* This is probably 3 or 0x10001, so just do singles */ | ||
354 | window=1; | ||
355 | else if (bits > 250) | ||
356 | window=5; /* max size of window */ | ||
357 | else if (bits >= 120) | ||
358 | window=4; | ||
359 | else | ||
360 | window=3; | ||
361 | |||
362 | j=1<<(window-1); | ||
363 | for (i=1; i<j; i++) | ||
364 | { | ||
365 | val[i]=BN_new(); | ||
366 | if (!BN_mod_mul_montgomery(val[i],val[i-1],d,mont,ctx)) | ||
367 | goto err; | ||
368 | } | ||
369 | for (; i<TABLE_SIZE; i++) | ||
370 | val[i]=NULL; | ||
371 | |||
372 | start=1; /* This is used to avoid multiplication etc | ||
373 | * when there is only the value '1' in the | ||
374 | * buffer. */ | ||
375 | wvalue=0; /* The 'value' of the window */ | ||
376 | wstart=bits-1; /* The top bit of the window */ | ||
377 | wend=0; /* The bottom bit of the window */ | ||
378 | |||
379 | if (!BN_to_montgomery(r,BN_value_one(),mont,ctx)) goto err; | ||
380 | for (;;) | ||
381 | { | ||
382 | if (BN_is_bit_set(p,wstart) == 0) | ||
383 | { | ||
384 | if (!start) | ||
385 | { | ||
386 | if (!BN_mod_mul_montgomery(r,r,r,mont,ctx)) | ||
387 | goto err; | ||
388 | } | ||
389 | if (wstart == 0) break; | ||
390 | wstart--; | ||
391 | continue; | ||
392 | } | ||
393 | /* We now have wstart on a 'set' bit, we now need to work out | ||
394 | * how bit a window to do. To do this we need to scan | ||
395 | * forward until the last set bit before the end of the | ||
396 | * window */ | ||
397 | j=wstart; | ||
398 | wvalue=1; | ||
399 | wend=0; | ||
400 | for (i=1; i<window; i++) | ||
401 | { | ||
402 | if (wstart-i < 0) break; | ||
403 | if (BN_is_bit_set(p,wstart-i)) | ||
404 | { | ||
405 | wvalue<<=(i-wend); | ||
406 | wvalue|=1; | ||
407 | wend=i; | ||
408 | } | ||
409 | } | ||
410 | |||
411 | /* wend is the size of the current window */ | ||
412 | j=wend+1; | ||
413 | /* add the 'bytes above' */ | ||
414 | if (!start) | ||
415 | for (i=0; i<j; i++) | ||
416 | { | ||
417 | if (!BN_mod_mul_montgomery(r,r,r,mont,ctx)) | ||
418 | goto err; | ||
419 | } | ||
420 | |||
421 | /* wvalue will be an odd number < 2^window */ | ||
422 | if (!BN_mod_mul_montgomery(r,r,val[wvalue>>1],mont,ctx)) | ||
423 | goto err; | ||
424 | |||
425 | /* move the 'window' down further */ | ||
426 | wstart-=wend+1; | ||
427 | wvalue=0; | ||
428 | start=0; | ||
429 | if (wstart < 0) break; | ||
430 | } | ||
431 | BN_from_montgomery(r,r,mont,ctx); | ||
432 | ret=1; | ||
433 | err: | ||
434 | if ((in_mont == NULL) && (mont != NULL)) BN_MONT_CTX_free(mont); | ||
435 | ctx->tos--; | ||
436 | for (i=0; i<TABLE_SIZE; i++) | ||
437 | if (val[i] != NULL) BN_clear_free(val[i]); | ||
438 | return(ret); | ||
439 | } | ||
440 | /* #endif */ | ||
441 | |||
442 | /* The old fallback, simple version :-) */ | ||
443 | int BN_mod_exp_simple(r,a,p,m,ctx) | ||
444 | BIGNUM *r; | ||
445 | BIGNUM *a; | ||
446 | BIGNUM *p; | ||
447 | BIGNUM *m; | ||
448 | BN_CTX *ctx; | ||
449 | { | ||
450 | int i,j,bits,ret=0,wstart,wend,window,wvalue; | ||
451 | int start=1; | ||
452 | BIGNUM *d; | ||
453 | BIGNUM *val[16]; | ||
454 | |||
455 | d=ctx->bn[ctx->tos++]; | ||
456 | bits=BN_num_bits(p); | ||
457 | |||
458 | if (bits == 0) | ||
459 | { | ||
460 | BN_one(r); | ||
461 | return(1); | ||
462 | } | ||
463 | |||
464 | val[0]=BN_new(); | ||
465 | if (!BN_mod(val[0],a,m,ctx)) goto err; /* 1 */ | ||
466 | if (!BN_mod_mul(d,val[0],val[0],m,ctx)) | ||
467 | goto err; /* 2 */ | ||
468 | |||
469 | if (bits <= 17) /* This is probably 3 or 0x10001, so just do singles */ | ||
470 | window=1; | ||
471 | else if (bits >= 256) | ||
472 | window=5; /* max size of window */ | ||
473 | else if (bits >= 128) | ||
474 | window=4; | ||
475 | else | ||
476 | window=3; | ||
477 | |||
478 | j=1<<(window-1); | ||
479 | for (i=1; i<j; i++) | ||
480 | { | ||
481 | val[i]=BN_new(); | ||
482 | if (!BN_mod_mul(val[i],val[i-1],d,m,ctx)) | ||
483 | goto err; | ||
484 | } | ||
485 | for (; i<16; i++) | ||
486 | val[i]=NULL; | ||
487 | |||
488 | start=1; /* This is used to avoid multiplication etc | ||
489 | * when there is only the value '1' in the | ||
490 | * buffer. */ | ||
491 | wvalue=0; /* The 'value' of the window */ | ||
492 | wstart=bits-1; /* The top bit of the window */ | ||
493 | wend=0; /* The bottom bit of the window */ | ||
494 | |||
495 | if (!BN_one(r)) goto err; | ||
496 | |||
497 | for (;;) | ||
498 | { | ||
499 | if (BN_is_bit_set(p,wstart) == 0) | ||
500 | { | ||
501 | if (!start) | ||
502 | if (!BN_mod_mul(r,r,r,m,ctx)) | ||
503 | goto err; | ||
504 | if (wstart == 0) break; | ||
505 | wstart--; | ||
506 | continue; | ||
507 | } | ||
508 | /* We now have wstart on a 'set' bit, we now need to work out | ||
509 | * how bit a window to do. To do this we need to scan | ||
510 | * forward until the last set bit before the end of the | ||
511 | * window */ | ||
512 | j=wstart; | ||
513 | wvalue=1; | ||
514 | wend=0; | ||
515 | for (i=1; i<window; i++) | ||
516 | { | ||
517 | if (wstart-i < 0) break; | ||
518 | if (BN_is_bit_set(p,wstart-i)) | ||
519 | { | ||
520 | wvalue<<=(i-wend); | ||
521 | wvalue|=1; | ||
522 | wend=i; | ||
523 | } | ||
524 | } | ||
525 | |||
526 | /* wend is the size of the current window */ | ||
527 | j=wend+1; | ||
528 | /* add the 'bytes above' */ | ||
529 | if (!start) | ||
530 | for (i=0; i<j; i++) | ||
531 | { | ||
532 | if (!BN_mod_mul(r,r,r,m,ctx)) | ||
533 | goto err; | ||
534 | } | ||
535 | |||
536 | /* wvalue will be an odd number < 2^window */ | ||
537 | if (!BN_mod_mul(r,r,val[wvalue>>1],m,ctx)) | ||
538 | goto err; | ||
539 | |||
540 | /* move the 'window' down further */ | ||
541 | wstart-=wend+1; | ||
542 | wvalue=0; | ||
543 | start=0; | ||
544 | if (wstart < 0) break; | ||
545 | } | ||
546 | ret=1; | ||
547 | err: | ||
548 | ctx->tos--; | ||
549 | for (i=0; i<16; i++) | ||
550 | if (val[i] != NULL) BN_clear_free(val[i]); | ||
551 | return(ret); | ||
552 | } | ||
553 | |||