diff options
Diffstat (limited to 'src/lib/libcrypto/bn/bn_exp.c')
| -rw-r--r-- | src/lib/libcrypto/bn/bn_exp.c | 990 |
1 files changed, 990 insertions, 0 deletions
diff --git a/src/lib/libcrypto/bn/bn_exp.c b/src/lib/libcrypto/bn/bn_exp.c new file mode 100644 index 0000000000..70a33f0d93 --- /dev/null +++ b/src/lib/libcrypto/bn/bn_exp.c | |||
| @@ -0,0 +1,990 @@ | |||
| 1 | /* crypto/bn/bn_exp.c */ | ||
| 2 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) | ||
| 3 | * All rights reserved. | ||
| 4 | * | ||
| 5 | * This package is an SSL implementation written | ||
| 6 | * by Eric Young (eay@cryptsoft.com). | ||
| 7 | * The implementation was written so as to conform with Netscapes SSL. | ||
| 8 | * | ||
| 9 | * This library is free for commercial and non-commercial use as long as | ||
| 10 | * the following conditions are aheared to. The following conditions | ||
| 11 | * apply to all code found in this distribution, be it the RC4, RSA, | ||
| 12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation | ||
| 13 | * included with this distribution is covered by the same copyright terms | ||
| 14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | ||
| 15 | * | ||
| 16 | * Copyright remains Eric Young's, and as such any Copyright notices in | ||
| 17 | * the code are not to be removed. | ||
| 18 | * If this package is used in a product, Eric Young should be given attribution | ||
| 19 | * as the author of the parts of the library used. | ||
| 20 | * This can be in the form of a textual message at program startup or | ||
| 21 | * in documentation (online or textual) provided with the package. | ||
| 22 | * | ||
| 23 | * Redistribution and use in source and binary forms, with or without | ||
| 24 | * modification, are permitted provided that the following conditions | ||
| 25 | * are met: | ||
| 26 | * 1. Redistributions of source code must retain the copyright | ||
| 27 | * notice, this list of conditions and the following disclaimer. | ||
| 28 | * 2. Redistributions in binary form must reproduce the above copyright | ||
| 29 | * notice, this list of conditions and the following disclaimer in the | ||
| 30 | * documentation and/or other materials provided with the distribution. | ||
| 31 | * 3. All advertising materials mentioning features or use of this software | ||
| 32 | * must display the following acknowledgement: | ||
| 33 | * "This product includes cryptographic software written by | ||
| 34 | * Eric Young (eay@cryptsoft.com)" | ||
| 35 | * The word 'cryptographic' can be left out if the rouines from the library | ||
| 36 | * being used are not cryptographic related :-). | ||
| 37 | * 4. If you include any Windows specific code (or a derivative thereof) from | ||
| 38 | * the apps directory (application code) you must include an acknowledgement: | ||
| 39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | ||
| 40 | * | ||
| 41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | ||
| 42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
| 43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | ||
| 44 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | ||
| 45 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | ||
| 46 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | ||
| 47 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
| 48 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | ||
| 49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | ||
| 50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | ||
| 51 | * SUCH DAMAGE. | ||
| 52 | * | ||
| 53 | * The licence and distribution terms for any publically available version or | ||
| 54 | * derivative of this code cannot be changed. i.e. this code cannot simply be | ||
| 55 | * copied and put under another distribution licence | ||
| 56 | * [including the GNU Public Licence.] | ||
| 57 | */ | ||
| 58 | /* ==================================================================== | ||
| 59 | * Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved. | ||
| 60 | * | ||
| 61 | * Redistribution and use in source and binary forms, with or without | ||
| 62 | * modification, are permitted provided that the following conditions | ||
| 63 | * are met: | ||
| 64 | * | ||
| 65 | * 1. Redistributions of source code must retain the above copyright | ||
| 66 | * notice, this list of conditions and the following disclaimer. | ||
| 67 | * | ||
| 68 | * 2. Redistributions in binary form must reproduce the above copyright | ||
| 69 | * notice, this list of conditions and the following disclaimer in | ||
| 70 | * the documentation and/or other materials provided with the | ||
| 71 | * distribution. | ||
| 72 | * | ||
| 73 | * 3. All advertising materials mentioning features or use of this | ||
| 74 | * software must display the following acknowledgment: | ||
| 75 | * "This product includes software developed by the OpenSSL Project | ||
| 76 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | ||
| 77 | * | ||
| 78 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
| 79 | * endorse or promote products derived from this software without | ||
| 80 | * prior written permission. For written permission, please contact | ||
| 81 | * openssl-core@openssl.org. | ||
| 82 | * | ||
| 83 | * 5. Products derived from this software may not be called "OpenSSL" | ||
| 84 | * nor may "OpenSSL" appear in their names without prior written | ||
| 85 | * permission of the OpenSSL Project. | ||
| 86 | * | ||
| 87 | * 6. Redistributions of any form whatsoever must retain the following | ||
| 88 | * acknowledgment: | ||
| 89 | * "This product includes software developed by the OpenSSL Project | ||
| 90 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" | ||
| 91 | * | ||
| 92 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
| 93 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
| 94 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
| 95 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
| 96 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
| 97 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
| 98 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
| 99 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
| 100 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
| 101 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
| 102 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
| 103 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
| 104 | * ==================================================================== | ||
| 105 | * | ||
| 106 | * This product includes cryptographic software written by Eric Young | ||
| 107 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
| 108 | * Hudson (tjh@cryptsoft.com). | ||
| 109 | * | ||
| 110 | */ | ||
| 111 | |||
| 112 | |||
| 113 | #include "cryptlib.h" | ||
| 114 | #include "bn_lcl.h" | ||
| 115 | |||
| 116 | /* maximum precomputation table size for *variable* sliding windows */ | ||
| 117 | #define TABLE_SIZE 32 | ||
| 118 | |||
| 119 | /* this one works - simple but works */ | ||
| 120 | int BN_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) | ||
| 121 | { | ||
| 122 | int i,bits,ret=0; | ||
| 123 | BIGNUM *v,*rr; | ||
| 124 | |||
| 125 | if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0) | ||
| 126 | { | ||
| 127 | /* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */ | ||
| 128 | BNerr(BN_F_BN_EXP,ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | ||
| 129 | return -1; | ||
| 130 | } | ||
| 131 | |||
| 132 | BN_CTX_start(ctx); | ||
| 133 | if ((r == a) || (r == p)) | ||
| 134 | rr = BN_CTX_get(ctx); | ||
| 135 | else | ||
| 136 | rr = r; | ||
| 137 | if ((v = BN_CTX_get(ctx)) == NULL) goto err; | ||
| 138 | |||
| 139 | if (BN_copy(v,a) == NULL) goto err; | ||
| 140 | bits=BN_num_bits(p); | ||
| 141 | |||
| 142 | if (BN_is_odd(p)) | ||
| 143 | { if (BN_copy(rr,a) == NULL) goto err; } | ||
| 144 | else { if (!BN_one(rr)) goto err; } | ||
| 145 | |||
| 146 | for (i=1; i<bits; i++) | ||
| 147 | { | ||
| 148 | if (!BN_sqr(v,v,ctx)) goto err; | ||
| 149 | if (BN_is_bit_set(p,i)) | ||
| 150 | { | ||
| 151 | if (!BN_mul(rr,rr,v,ctx)) goto err; | ||
| 152 | } | ||
| 153 | } | ||
| 154 | ret=1; | ||
| 155 | err: | ||
| 156 | if (r != rr) BN_copy(r,rr); | ||
| 157 | BN_CTX_end(ctx); | ||
| 158 | bn_check_top(r); | ||
| 159 | return(ret); | ||
| 160 | } | ||
| 161 | |||
| 162 | |||
| 163 | int BN_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m, | ||
| 164 | BN_CTX *ctx) | ||
| 165 | { | ||
| 166 | int ret; | ||
| 167 | |||
| 168 | bn_check_top(a); | ||
| 169 | bn_check_top(p); | ||
| 170 | bn_check_top(m); | ||
| 171 | |||
| 172 | /* For even modulus m = 2^k*m_odd, it might make sense to compute | ||
| 173 | * a^p mod m_odd and a^p mod 2^k separately (with Montgomery | ||
| 174 | * exponentiation for the odd part), using appropriate exponent | ||
| 175 | * reductions, and combine the results using the CRT. | ||
| 176 | * | ||
| 177 | * For now, we use Montgomery only if the modulus is odd; otherwise, | ||
| 178 | * exponentiation using the reciprocal-based quick remaindering | ||
| 179 | * algorithm is used. | ||
| 180 | * | ||
| 181 | * (Timing obtained with expspeed.c [computations a^p mod m | ||
| 182 | * where a, p, m are of the same length: 256, 512, 1024, 2048, | ||
| 183 | * 4096, 8192 bits], compared to the running time of the | ||
| 184 | * standard algorithm: | ||
| 185 | * | ||
| 186 | * BN_mod_exp_mont 33 .. 40 % [AMD K6-2, Linux, debug configuration] | ||
| 187 | * 55 .. 77 % [UltraSparc processor, but | ||
| 188 | * debug-solaris-sparcv8-gcc conf.] | ||
| 189 | * | ||
| 190 | * BN_mod_exp_recp 50 .. 70 % [AMD K6-2, Linux, debug configuration] | ||
| 191 | * 62 .. 118 % [UltraSparc, debug-solaris-sparcv8-gcc] | ||
| 192 | * | ||
| 193 | * On the Sparc, BN_mod_exp_recp was faster than BN_mod_exp_mont | ||
| 194 | * at 2048 and more bits, but at 512 and 1024 bits, it was | ||
| 195 | * slower even than the standard algorithm! | ||
| 196 | * | ||
| 197 | * "Real" timings [linux-elf, solaris-sparcv9-gcc configurations] | ||
| 198 | * should be obtained when the new Montgomery reduction code | ||
| 199 | * has been integrated into OpenSSL.) | ||
| 200 | */ | ||
| 201 | |||
| 202 | #define MONT_MUL_MOD | ||
| 203 | #define MONT_EXP_WORD | ||
| 204 | #define RECP_MUL_MOD | ||
| 205 | |||
| 206 | #ifdef MONT_MUL_MOD | ||
| 207 | /* I have finally been able to take out this pre-condition of | ||
| 208 | * the top bit being set. It was caused by an error in BN_div | ||
| 209 | * with negatives. There was also another problem when for a^b%m | ||
| 210 | * a >= m. eay 07-May-97 */ | ||
| 211 | /* if ((m->d[m->top-1]&BN_TBIT) && BN_is_odd(m)) */ | ||
| 212 | |||
| 213 | if (BN_is_odd(m)) | ||
| 214 | { | ||
| 215 | # ifdef MONT_EXP_WORD | ||
| 216 | if (a->top == 1 && !a->neg && (BN_get_flags(p, BN_FLG_CONSTTIME) == 0)) | ||
| 217 | { | ||
| 218 | BN_ULONG A = a->d[0]; | ||
| 219 | ret=BN_mod_exp_mont_word(r,A,p,m,ctx,NULL); | ||
| 220 | } | ||
| 221 | else | ||
| 222 | # endif | ||
| 223 | ret=BN_mod_exp_mont(r,a,p,m,ctx,NULL); | ||
| 224 | } | ||
| 225 | else | ||
| 226 | #endif | ||
| 227 | #ifdef RECP_MUL_MOD | ||
| 228 | { ret=BN_mod_exp_recp(r,a,p,m,ctx); } | ||
| 229 | #else | ||
| 230 | { ret=BN_mod_exp_simple(r,a,p,m,ctx); } | ||
| 231 | #endif | ||
| 232 | |||
| 233 | bn_check_top(r); | ||
| 234 | return(ret); | ||
| 235 | } | ||
| 236 | |||
| 237 | |||
| 238 | int BN_mod_exp_recp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, | ||
| 239 | const BIGNUM *m, BN_CTX *ctx) | ||
| 240 | { | ||
| 241 | int i,j,bits,ret=0,wstart,wend,window,wvalue; | ||
| 242 | int start=1; | ||
| 243 | BIGNUM *aa; | ||
| 244 | /* Table of variables obtained from 'ctx' */ | ||
| 245 | BIGNUM *val[TABLE_SIZE]; | ||
| 246 | BN_RECP_CTX recp; | ||
| 247 | |||
| 248 | if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0) | ||
| 249 | { | ||
| 250 | /* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */ | ||
| 251 | BNerr(BN_F_BN_MOD_EXP_RECP,ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | ||
| 252 | return -1; | ||
| 253 | } | ||
| 254 | |||
| 255 | bits=BN_num_bits(p); | ||
| 256 | |||
| 257 | if (bits == 0) | ||
| 258 | { | ||
| 259 | ret = BN_one(r); | ||
| 260 | return ret; | ||
| 261 | } | ||
| 262 | |||
| 263 | BN_CTX_start(ctx); | ||
| 264 | aa = BN_CTX_get(ctx); | ||
| 265 | val[0] = BN_CTX_get(ctx); | ||
| 266 | if(!aa || !val[0]) goto err; | ||
| 267 | |||
| 268 | BN_RECP_CTX_init(&recp); | ||
| 269 | if (m->neg) | ||
| 270 | { | ||
| 271 | /* ignore sign of 'm' */ | ||
| 272 | if (!BN_copy(aa, m)) goto err; | ||
| 273 | aa->neg = 0; | ||
| 274 | if (BN_RECP_CTX_set(&recp,aa,ctx) <= 0) goto err; | ||
| 275 | } | ||
| 276 | else | ||
| 277 | { | ||
| 278 | if (BN_RECP_CTX_set(&recp,m,ctx) <= 0) goto err; | ||
| 279 | } | ||
| 280 | |||
| 281 | if (!BN_nnmod(val[0],a,m,ctx)) goto err; /* 1 */ | ||
| 282 | if (BN_is_zero(val[0])) | ||
| 283 | { | ||
| 284 | BN_zero(r); | ||
| 285 | ret = 1; | ||
| 286 | goto err; | ||
| 287 | } | ||
| 288 | |||
| 289 | window = BN_window_bits_for_exponent_size(bits); | ||
| 290 | if (window > 1) | ||
| 291 | { | ||
| 292 | if (!BN_mod_mul_reciprocal(aa,val[0],val[0],&recp,ctx)) | ||
| 293 | goto err; /* 2 */ | ||
| 294 | j=1<<(window-1); | ||
| 295 | for (i=1; i<j; i++) | ||
| 296 | { | ||
| 297 | if(((val[i] = BN_CTX_get(ctx)) == NULL) || | ||
| 298 | !BN_mod_mul_reciprocal(val[i],val[i-1], | ||
| 299 | aa,&recp,ctx)) | ||
| 300 | goto err; | ||
| 301 | } | ||
| 302 | } | ||
| 303 | |||
| 304 | start=1; /* This is used to avoid multiplication etc | ||
| 305 | * when there is only the value '1' in the | ||
| 306 | * buffer. */ | ||
| 307 | wvalue=0; /* The 'value' of the window */ | ||
| 308 | wstart=bits-1; /* The top bit of the window */ | ||
| 309 | wend=0; /* The bottom bit of the window */ | ||
| 310 | |||
| 311 | if (!BN_one(r)) goto err; | ||
| 312 | |||
| 313 | for (;;) | ||
| 314 | { | ||
| 315 | if (BN_is_bit_set(p,wstart) == 0) | ||
| 316 | { | ||
| 317 | if (!start) | ||
| 318 | if (!BN_mod_mul_reciprocal(r,r,r,&recp,ctx)) | ||
| 319 | goto err; | ||
| 320 | if (wstart == 0) break; | ||
| 321 | wstart--; | ||
| 322 | continue; | ||
| 323 | } | ||
| 324 | /* We now have wstart on a 'set' bit, we now need to work out | ||
| 325 | * how bit a window to do. To do this we need to scan | ||
| 326 | * forward until the last set bit before the end of the | ||
| 327 | * window */ | ||
| 328 | j=wstart; | ||
| 329 | wvalue=1; | ||
| 330 | wend=0; | ||
| 331 | for (i=1; i<window; i++) | ||
| 332 | { | ||
| 333 | if (wstart-i < 0) break; | ||
| 334 | if (BN_is_bit_set(p,wstart-i)) | ||
| 335 | { | ||
| 336 | wvalue<<=(i-wend); | ||
| 337 | wvalue|=1; | ||
| 338 | wend=i; | ||
| 339 | } | ||
| 340 | } | ||
| 341 | |||
| 342 | /* wend is the size of the current window */ | ||
| 343 | j=wend+1; | ||
| 344 | /* add the 'bytes above' */ | ||
| 345 | if (!start) | ||
| 346 | for (i=0; i<j; i++) | ||
| 347 | { | ||
| 348 | if (!BN_mod_mul_reciprocal(r,r,r,&recp,ctx)) | ||
| 349 | goto err; | ||
| 350 | } | ||
| 351 | |||
| 352 | /* wvalue will be an odd number < 2^window */ | ||
| 353 | if (!BN_mod_mul_reciprocal(r,r,val[wvalue>>1],&recp,ctx)) | ||
| 354 | goto err; | ||
| 355 | |||
| 356 | /* move the 'window' down further */ | ||
| 357 | wstart-=wend+1; | ||
| 358 | wvalue=0; | ||
| 359 | start=0; | ||
| 360 | if (wstart < 0) break; | ||
| 361 | } | ||
| 362 | ret=1; | ||
| 363 | err: | ||
| 364 | BN_CTX_end(ctx); | ||
| 365 | BN_RECP_CTX_free(&recp); | ||
| 366 | bn_check_top(r); | ||
| 367 | return(ret); | ||
| 368 | } | ||
| 369 | |||
| 370 | |||
| 371 | int BN_mod_exp_mont(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p, | ||
| 372 | const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont) | ||
| 373 | { | ||
| 374 | int i,j,bits,ret=0,wstart,wend,window,wvalue; | ||
| 375 | int start=1; | ||
| 376 | BIGNUM *d,*r; | ||
| 377 | const BIGNUM *aa; | ||
| 378 | /* Table of variables obtained from 'ctx' */ | ||
| 379 | BIGNUM *val[TABLE_SIZE]; | ||
| 380 | BN_MONT_CTX *mont=NULL; | ||
| 381 | |||
| 382 | if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0) | ||
| 383 | { | ||
| 384 | return BN_mod_exp_mont_consttime(rr, a, p, m, ctx, in_mont); | ||
| 385 | } | ||
| 386 | |||
| 387 | bn_check_top(a); | ||
| 388 | bn_check_top(p); | ||
| 389 | bn_check_top(m); | ||
| 390 | |||
| 391 | if (!BN_is_odd(m)) | ||
| 392 | { | ||
| 393 | BNerr(BN_F_BN_MOD_EXP_MONT,BN_R_CALLED_WITH_EVEN_MODULUS); | ||
| 394 | return(0); | ||
| 395 | } | ||
| 396 | bits=BN_num_bits(p); | ||
| 397 | if (bits == 0) | ||
| 398 | { | ||
| 399 | ret = BN_one(rr); | ||
| 400 | return ret; | ||
| 401 | } | ||
| 402 | |||
| 403 | BN_CTX_start(ctx); | ||
| 404 | d = BN_CTX_get(ctx); | ||
| 405 | r = BN_CTX_get(ctx); | ||
| 406 | val[0] = BN_CTX_get(ctx); | ||
| 407 | if (!d || !r || !val[0]) goto err; | ||
| 408 | |||
| 409 | /* If this is not done, things will break in the montgomery | ||
| 410 | * part */ | ||
| 411 | |||
| 412 | if (in_mont != NULL) | ||
| 413 | mont=in_mont; | ||
| 414 | else | ||
| 415 | { | ||
| 416 | if ((mont=BN_MONT_CTX_new()) == NULL) goto err; | ||
| 417 | if (!BN_MONT_CTX_set(mont,m,ctx)) goto err; | ||
| 418 | } | ||
| 419 | |||
| 420 | if (a->neg || BN_ucmp(a,m) >= 0) | ||
| 421 | { | ||
| 422 | if (!BN_nnmod(val[0],a,m,ctx)) | ||
| 423 | goto err; | ||
| 424 | aa= val[0]; | ||
| 425 | } | ||
| 426 | else | ||
| 427 | aa=a; | ||
| 428 | if (BN_is_zero(aa)) | ||
| 429 | { | ||
| 430 | BN_zero(rr); | ||
| 431 | ret = 1; | ||
| 432 | goto err; | ||
| 433 | } | ||
| 434 | if (!BN_to_montgomery(val[0],aa,mont,ctx)) goto err; /* 1 */ | ||
| 435 | |||
| 436 | window = BN_window_bits_for_exponent_size(bits); | ||
| 437 | if (window > 1) | ||
| 438 | { | ||
| 439 | if (!BN_mod_mul_montgomery(d,val[0],val[0],mont,ctx)) goto err; /* 2 */ | ||
| 440 | j=1<<(window-1); | ||
| 441 | for (i=1; i<j; i++) | ||
| 442 | { | ||
| 443 | if(((val[i] = BN_CTX_get(ctx)) == NULL) || | ||
| 444 | !BN_mod_mul_montgomery(val[i],val[i-1], | ||
| 445 | d,mont,ctx)) | ||
| 446 | goto err; | ||
| 447 | } | ||
| 448 | } | ||
| 449 | |||
| 450 | start=1; /* This is used to avoid multiplication etc | ||
| 451 | * when there is only the value '1' in the | ||
| 452 | * buffer. */ | ||
| 453 | wvalue=0; /* The 'value' of the window */ | ||
| 454 | wstart=bits-1; /* The top bit of the window */ | ||
| 455 | wend=0; /* The bottom bit of the window */ | ||
| 456 | |||
| 457 | if (!BN_to_montgomery(r,BN_value_one(),mont,ctx)) goto err; | ||
| 458 | for (;;) | ||
| 459 | { | ||
| 460 | if (BN_is_bit_set(p,wstart) == 0) | ||
| 461 | { | ||
| 462 | if (!start) | ||
| 463 | { | ||
| 464 | if (!BN_mod_mul_montgomery(r,r,r,mont,ctx)) | ||
| 465 | goto err; | ||
| 466 | } | ||
| 467 | if (wstart == 0) break; | ||
| 468 | wstart--; | ||
| 469 | continue; | ||
| 470 | } | ||
| 471 | /* We now have wstart on a 'set' bit, we now need to work out | ||
| 472 | * how bit a window to do. To do this we need to scan | ||
| 473 | * forward until the last set bit before the end of the | ||
| 474 | * window */ | ||
| 475 | j=wstart; | ||
| 476 | wvalue=1; | ||
| 477 | wend=0; | ||
| 478 | for (i=1; i<window; i++) | ||
| 479 | { | ||
| 480 | if (wstart-i < 0) break; | ||
| 481 | if (BN_is_bit_set(p,wstart-i)) | ||
| 482 | { | ||
| 483 | wvalue<<=(i-wend); | ||
| 484 | wvalue|=1; | ||
| 485 | wend=i; | ||
| 486 | } | ||
| 487 | } | ||
| 488 | |||
| 489 | /* wend is the size of the current window */ | ||
| 490 | j=wend+1; | ||
| 491 | /* add the 'bytes above' */ | ||
| 492 | if (!start) | ||
| 493 | for (i=0; i<j; i++) | ||
| 494 | { | ||
| 495 | if (!BN_mod_mul_montgomery(r,r,r,mont,ctx)) | ||
| 496 | goto err; | ||
| 497 | } | ||
| 498 | |||
| 499 | /* wvalue will be an odd number < 2^window */ | ||
| 500 | if (!BN_mod_mul_montgomery(r,r,val[wvalue>>1],mont,ctx)) | ||
| 501 | goto err; | ||
| 502 | |||
| 503 | /* move the 'window' down further */ | ||
| 504 | wstart-=wend+1; | ||
| 505 | wvalue=0; | ||
| 506 | start=0; | ||
| 507 | if (wstart < 0) break; | ||
| 508 | } | ||
| 509 | if (!BN_from_montgomery(rr,r,mont,ctx)) goto err; | ||
| 510 | ret=1; | ||
| 511 | err: | ||
| 512 | if ((in_mont == NULL) && (mont != NULL)) BN_MONT_CTX_free(mont); | ||
| 513 | BN_CTX_end(ctx); | ||
| 514 | bn_check_top(rr); | ||
| 515 | return(ret); | ||
| 516 | } | ||
| 517 | |||
| 518 | |||
| 519 | /* BN_mod_exp_mont_consttime() stores the precomputed powers in a specific layout | ||
| 520 | * so that accessing any of these table values shows the same access pattern as far | ||
| 521 | * as cache lines are concerned. The following functions are used to transfer a BIGNUM | ||
| 522 | * from/to that table. */ | ||
| 523 | |||
| 524 | static int MOD_EXP_CTIME_COPY_TO_PREBUF(BIGNUM *b, int top, unsigned char *buf, int idx, int width) | ||
| 525 | { | ||
| 526 | size_t i, j; | ||
| 527 | |||
| 528 | if (bn_wexpand(b, top) == NULL) | ||
| 529 | return 0; | ||
| 530 | while (b->top < top) | ||
| 531 | { | ||
| 532 | b->d[b->top++] = 0; | ||
| 533 | } | ||
| 534 | |||
| 535 | for (i = 0, j=idx; i < top * sizeof b->d[0]; i++, j+=width) | ||
| 536 | { | ||
| 537 | buf[j] = ((unsigned char*)b->d)[i]; | ||
| 538 | } | ||
| 539 | |||
| 540 | bn_correct_top(b); | ||
| 541 | return 1; | ||
| 542 | } | ||
| 543 | |||
| 544 | static int MOD_EXP_CTIME_COPY_FROM_PREBUF(BIGNUM *b, int top, unsigned char *buf, int idx, int width) | ||
| 545 | { | ||
| 546 | size_t i, j; | ||
| 547 | |||
| 548 | if (bn_wexpand(b, top) == NULL) | ||
| 549 | return 0; | ||
| 550 | |||
| 551 | for (i=0, j=idx; i < top * sizeof b->d[0]; i++, j+=width) | ||
| 552 | { | ||
| 553 | ((unsigned char*)b->d)[i] = buf[j]; | ||
| 554 | } | ||
| 555 | |||
| 556 | b->top = top; | ||
| 557 | bn_correct_top(b); | ||
| 558 | return 1; | ||
| 559 | } | ||
| 560 | |||
| 561 | /* Given a pointer value, compute the next address that is a cache line multiple. */ | ||
| 562 | #define MOD_EXP_CTIME_ALIGN(x_) \ | ||
| 563 | ((unsigned char*)(x_) + (MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH - (((BN_ULONG)(x_)) & (MOD_EXP_CTIME_MIN_CACHE_LINE_MASK)))) | ||
| 564 | |||
| 565 | /* This variant of BN_mod_exp_mont() uses fixed windows and the special | ||
| 566 | * precomputation memory layout to limit data-dependency to a minimum | ||
| 567 | * to protect secret exponents (cf. the hyper-threading timing attacks | ||
| 568 | * pointed out by Colin Percival, | ||
| 569 | * http://www.daemonology.net/hyperthreading-considered-harmful/) | ||
| 570 | */ | ||
| 571 | int BN_mod_exp_mont_consttime(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p, | ||
| 572 | const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont) | ||
| 573 | { | ||
| 574 | int i,bits,ret=0,idx,window,wvalue; | ||
| 575 | int top; | ||
| 576 | BIGNUM *r; | ||
| 577 | const BIGNUM *aa; | ||
| 578 | BN_MONT_CTX *mont=NULL; | ||
| 579 | |||
| 580 | int numPowers; | ||
| 581 | unsigned char *powerbufFree=NULL; | ||
| 582 | int powerbufLen = 0; | ||
| 583 | unsigned char *powerbuf=NULL; | ||
| 584 | BIGNUM *computeTemp=NULL, *am=NULL; | ||
| 585 | |||
| 586 | bn_check_top(a); | ||
| 587 | bn_check_top(p); | ||
| 588 | bn_check_top(m); | ||
| 589 | |||
| 590 | top = m->top; | ||
| 591 | |||
| 592 | if (!(m->d[0] & 1)) | ||
| 593 | { | ||
| 594 | BNerr(BN_F_BN_MOD_EXP_MONT_CONSTTIME,BN_R_CALLED_WITH_EVEN_MODULUS); | ||
| 595 | return(0); | ||
| 596 | } | ||
| 597 | bits=BN_num_bits(p); | ||
| 598 | if (bits == 0) | ||
| 599 | { | ||
| 600 | ret = BN_one(rr); | ||
| 601 | return ret; | ||
| 602 | } | ||
| 603 | |||
| 604 | /* Initialize BIGNUM context and allocate intermediate result */ | ||
| 605 | BN_CTX_start(ctx); | ||
| 606 | r = BN_CTX_get(ctx); | ||
| 607 | if (r == NULL) goto err; | ||
| 608 | |||
| 609 | /* Allocate a montgomery context if it was not supplied by the caller. | ||
| 610 | * If this is not done, things will break in the montgomery part. | ||
| 611 | */ | ||
| 612 | if (in_mont != NULL) | ||
| 613 | mont=in_mont; | ||
| 614 | else | ||
| 615 | { | ||
| 616 | if ((mont=BN_MONT_CTX_new()) == NULL) goto err; | ||
| 617 | if (!BN_MONT_CTX_set(mont,m,ctx)) goto err; | ||
| 618 | } | ||
| 619 | |||
| 620 | /* Get the window size to use with size of p. */ | ||
| 621 | window = BN_window_bits_for_ctime_exponent_size(bits); | ||
| 622 | |||
| 623 | /* Allocate a buffer large enough to hold all of the pre-computed | ||
| 624 | * powers of a. | ||
| 625 | */ | ||
| 626 | numPowers = 1 << window; | ||
| 627 | powerbufLen = sizeof(m->d[0])*top*numPowers; | ||
| 628 | if ((powerbufFree=(unsigned char*)OPENSSL_malloc(powerbufLen+MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH)) == NULL) | ||
| 629 | goto err; | ||
| 630 | |||
| 631 | powerbuf = MOD_EXP_CTIME_ALIGN(powerbufFree); | ||
| 632 | memset(powerbuf, 0, powerbufLen); | ||
| 633 | |||
| 634 | /* Initialize the intermediate result. Do this early to save double conversion, | ||
| 635 | * once each for a^0 and intermediate result. | ||
| 636 | */ | ||
| 637 | if (!BN_to_montgomery(r,BN_value_one(),mont,ctx)) goto err; | ||
| 638 | if (!MOD_EXP_CTIME_COPY_TO_PREBUF(r, top, powerbuf, 0, numPowers)) goto err; | ||
| 639 | |||
| 640 | /* Initialize computeTemp as a^1 with montgomery precalcs */ | ||
| 641 | computeTemp = BN_CTX_get(ctx); | ||
| 642 | am = BN_CTX_get(ctx); | ||
| 643 | if (computeTemp==NULL || am==NULL) goto err; | ||
| 644 | |||
| 645 | if (a->neg || BN_ucmp(a,m) >= 0) | ||
| 646 | { | ||
| 647 | if (!BN_mod(am,a,m,ctx)) | ||
| 648 | goto err; | ||
| 649 | aa= am; | ||
| 650 | } | ||
| 651 | else | ||
| 652 | aa=a; | ||
| 653 | if (!BN_to_montgomery(am,aa,mont,ctx)) goto err; | ||
| 654 | if (!BN_copy(computeTemp, am)) goto err; | ||
| 655 | if (!MOD_EXP_CTIME_COPY_TO_PREBUF(am, top, powerbuf, 1, numPowers)) goto err; | ||
| 656 | |||
| 657 | /* If the window size is greater than 1, then calculate | ||
| 658 | * val[i=2..2^winsize-1]. Powers are computed as a*a^(i-1) | ||
| 659 | * (even powers could instead be computed as (a^(i/2))^2 | ||
| 660 | * to use the slight performance advantage of sqr over mul). | ||
| 661 | */ | ||
| 662 | if (window > 1) | ||
| 663 | { | ||
| 664 | for (i=2; i<numPowers; i++) | ||
| 665 | { | ||
| 666 | /* Calculate a^i = a^(i-1) * a */ | ||
| 667 | if (!BN_mod_mul_montgomery(computeTemp,am,computeTemp,mont,ctx)) | ||
| 668 | goto err; | ||
| 669 | if (!MOD_EXP_CTIME_COPY_TO_PREBUF(computeTemp, top, powerbuf, i, numPowers)) goto err; | ||
| 670 | } | ||
| 671 | } | ||
| 672 | |||
| 673 | /* Adjust the number of bits up to a multiple of the window size. | ||
| 674 | * If the exponent length is not a multiple of the window size, then | ||
| 675 | * this pads the most significant bits with zeros to normalize the | ||
| 676 | * scanning loop to there's no special cases. | ||
| 677 | * | ||
| 678 | * * NOTE: Making the window size a power of two less than the native | ||
| 679 | * * word size ensures that the padded bits won't go past the last | ||
| 680 | * * word in the internal BIGNUM structure. Going past the end will | ||
| 681 | * * still produce the correct result, but causes a different branch | ||
| 682 | * * to be taken in the BN_is_bit_set function. | ||
| 683 | */ | ||
| 684 | bits = ((bits+window-1)/window)*window; | ||
| 685 | idx=bits-1; /* The top bit of the window */ | ||
| 686 | |||
| 687 | /* Scan the exponent one window at a time starting from the most | ||
| 688 | * significant bits. | ||
| 689 | */ | ||
| 690 | while (idx >= 0) | ||
| 691 | { | ||
| 692 | wvalue=0; /* The 'value' of the window */ | ||
| 693 | |||
| 694 | /* Scan the window, squaring the result as we go */ | ||
| 695 | for (i=0; i<window; i++,idx--) | ||
| 696 | { | ||
| 697 | if (!BN_mod_mul_montgomery(r,r,r,mont,ctx)) goto err; | ||
| 698 | wvalue = (wvalue<<1)+BN_is_bit_set(p,idx); | ||
| 699 | } | ||
| 700 | |||
| 701 | /* Fetch the appropriate pre-computed value from the pre-buf */ | ||
| 702 | if (!MOD_EXP_CTIME_COPY_FROM_PREBUF(computeTemp, top, powerbuf, wvalue, numPowers)) goto err; | ||
| 703 | |||
| 704 | /* Multiply the result into the intermediate result */ | ||
| 705 | if (!BN_mod_mul_montgomery(r,r,computeTemp,mont,ctx)) goto err; | ||
| 706 | } | ||
| 707 | |||
| 708 | /* Convert the final result from montgomery to standard format */ | ||
| 709 | if (!BN_from_montgomery(rr,r,mont,ctx)) goto err; | ||
| 710 | ret=1; | ||
| 711 | err: | ||
| 712 | if ((in_mont == NULL) && (mont != NULL)) BN_MONT_CTX_free(mont); | ||
| 713 | if (powerbuf!=NULL) | ||
| 714 | { | ||
| 715 | OPENSSL_cleanse(powerbuf,powerbufLen); | ||
| 716 | OPENSSL_free(powerbufFree); | ||
| 717 | } | ||
| 718 | if (am!=NULL) BN_clear(am); | ||
| 719 | if (computeTemp!=NULL) BN_clear(computeTemp); | ||
| 720 | BN_CTX_end(ctx); | ||
| 721 | return(ret); | ||
| 722 | } | ||
| 723 | |||
| 724 | int BN_mod_exp_mont_word(BIGNUM *rr, BN_ULONG a, const BIGNUM *p, | ||
| 725 | const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont) | ||
| 726 | { | ||
| 727 | BN_MONT_CTX *mont = NULL; | ||
| 728 | int b, bits, ret=0; | ||
| 729 | int r_is_one; | ||
| 730 | BN_ULONG w, next_w; | ||
| 731 | BIGNUM *d, *r, *t; | ||
| 732 | BIGNUM *swap_tmp; | ||
| 733 | #define BN_MOD_MUL_WORD(r, w, m) \ | ||
| 734 | (BN_mul_word(r, (w)) && \ | ||
| 735 | (/* BN_ucmp(r, (m)) < 0 ? 1 :*/ \ | ||
| 736 | (BN_mod(t, r, m, ctx) && (swap_tmp = r, r = t, t = swap_tmp, 1)))) | ||
| 737 | /* BN_MOD_MUL_WORD is only used with 'w' large, | ||
| 738 | * so the BN_ucmp test is probably more overhead | ||
| 739 | * than always using BN_mod (which uses BN_copy if | ||
| 740 | * a similar test returns true). */ | ||
| 741 | /* We can use BN_mod and do not need BN_nnmod because our | ||
| 742 | * accumulator is never negative (the result of BN_mod does | ||
| 743 | * not depend on the sign of the modulus). | ||
| 744 | */ | ||
| 745 | #define BN_TO_MONTGOMERY_WORD(r, w, mont) \ | ||
| 746 | (BN_set_word(r, (w)) && BN_to_montgomery(r, r, (mont), ctx)) | ||
| 747 | |||
| 748 | if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0) | ||
| 749 | { | ||
| 750 | /* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */ | ||
| 751 | BNerr(BN_F_BN_MOD_EXP_MONT_WORD,ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | ||
| 752 | return -1; | ||
| 753 | } | ||
| 754 | |||
| 755 | bn_check_top(p); | ||
| 756 | bn_check_top(m); | ||
| 757 | |||
| 758 | if (!BN_is_odd(m)) | ||
| 759 | { | ||
| 760 | BNerr(BN_F_BN_MOD_EXP_MONT_WORD,BN_R_CALLED_WITH_EVEN_MODULUS); | ||
| 761 | return(0); | ||
| 762 | } | ||
| 763 | if (m->top == 1) | ||
| 764 | a %= m->d[0]; /* make sure that 'a' is reduced */ | ||
| 765 | |||
| 766 | bits = BN_num_bits(p); | ||
| 767 | if (bits == 0) | ||
| 768 | { | ||
| 769 | ret = BN_one(rr); | ||
| 770 | return ret; | ||
| 771 | } | ||
| 772 | if (a == 0) | ||
| 773 | { | ||
| 774 | BN_zero(rr); | ||
| 775 | ret = 1; | ||
| 776 | return ret; | ||
| 777 | } | ||
| 778 | |||
| 779 | BN_CTX_start(ctx); | ||
| 780 | d = BN_CTX_get(ctx); | ||
| 781 | r = BN_CTX_get(ctx); | ||
| 782 | t = BN_CTX_get(ctx); | ||
| 783 | if (d == NULL || r == NULL || t == NULL) goto err; | ||
| 784 | |||
| 785 | if (in_mont != NULL) | ||
| 786 | mont=in_mont; | ||
| 787 | else | ||
| 788 | { | ||
| 789 | if ((mont = BN_MONT_CTX_new()) == NULL) goto err; | ||
| 790 | if (!BN_MONT_CTX_set(mont, m, ctx)) goto err; | ||
| 791 | } | ||
| 792 | |||
| 793 | r_is_one = 1; /* except for Montgomery factor */ | ||
| 794 | |||
| 795 | /* bits-1 >= 0 */ | ||
| 796 | |||
| 797 | /* The result is accumulated in the product r*w. */ | ||
| 798 | w = a; /* bit 'bits-1' of 'p' is always set */ | ||
| 799 | for (b = bits-2; b >= 0; b--) | ||
| 800 | { | ||
| 801 | /* First, square r*w. */ | ||
| 802 | next_w = w*w; | ||
| 803 | if ((next_w/w) != w) /* overflow */ | ||
| 804 | { | ||
| 805 | if (r_is_one) | ||
| 806 | { | ||
| 807 | if (!BN_TO_MONTGOMERY_WORD(r, w, mont)) goto err; | ||
| 808 | r_is_one = 0; | ||
| 809 | } | ||
| 810 | else | ||
| 811 | { | ||
| 812 | if (!BN_MOD_MUL_WORD(r, w, m)) goto err; | ||
| 813 | } | ||
| 814 | next_w = 1; | ||
| 815 | } | ||
| 816 | w = next_w; | ||
| 817 | if (!r_is_one) | ||
| 818 | { | ||
| 819 | if (!BN_mod_mul_montgomery(r, r, r, mont, ctx)) goto err; | ||
| 820 | } | ||
| 821 | |||
| 822 | /* Second, multiply r*w by 'a' if exponent bit is set. */ | ||
| 823 | if (BN_is_bit_set(p, b)) | ||
| 824 | { | ||
| 825 | next_w = w*a; | ||
| 826 | if ((next_w/a) != w) /* overflow */ | ||
| 827 | { | ||
| 828 | if (r_is_one) | ||
| 829 | { | ||
| 830 | if (!BN_TO_MONTGOMERY_WORD(r, w, mont)) goto err; | ||
| 831 | r_is_one = 0; | ||
| 832 | } | ||
| 833 | else | ||
| 834 | { | ||
| 835 | if (!BN_MOD_MUL_WORD(r, w, m)) goto err; | ||
| 836 | } | ||
| 837 | next_w = a; | ||
| 838 | } | ||
| 839 | w = next_w; | ||
| 840 | } | ||
| 841 | } | ||
| 842 | |||
| 843 | /* Finally, set r:=r*w. */ | ||
| 844 | if (w != 1) | ||
| 845 | { | ||
| 846 | if (r_is_one) | ||
| 847 | { | ||
| 848 | if (!BN_TO_MONTGOMERY_WORD(r, w, mont)) goto err; | ||
| 849 | r_is_one = 0; | ||
| 850 | } | ||
| 851 | else | ||
| 852 | { | ||
| 853 | if (!BN_MOD_MUL_WORD(r, w, m)) goto err; | ||
| 854 | } | ||
| 855 | } | ||
| 856 | |||
| 857 | if (r_is_one) /* can happen only if a == 1*/ | ||
| 858 | { | ||
| 859 | if (!BN_one(rr)) goto err; | ||
| 860 | } | ||
| 861 | else | ||
| 862 | { | ||
| 863 | if (!BN_from_montgomery(rr, r, mont, ctx)) goto err; | ||
| 864 | } | ||
| 865 | ret = 1; | ||
| 866 | err: | ||
| 867 | if ((in_mont == NULL) && (mont != NULL)) BN_MONT_CTX_free(mont); | ||
| 868 | BN_CTX_end(ctx); | ||
| 869 | bn_check_top(rr); | ||
| 870 | return(ret); | ||
| 871 | } | ||
| 872 | |||
| 873 | |||
| 874 | /* The old fallback, simple version :-) */ | ||
| 875 | int BN_mod_exp_simple(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, | ||
| 876 | const BIGNUM *m, BN_CTX *ctx) | ||
| 877 | { | ||
| 878 | int i,j,bits,ret=0,wstart,wend,window,wvalue; | ||
| 879 | int start=1; | ||
| 880 | BIGNUM *d; | ||
| 881 | /* Table of variables obtained from 'ctx' */ | ||
| 882 | BIGNUM *val[TABLE_SIZE]; | ||
| 883 | |||
| 884 | if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0) | ||
| 885 | { | ||
| 886 | /* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */ | ||
| 887 | BNerr(BN_F_BN_MOD_EXP_SIMPLE,ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | ||
| 888 | return -1; | ||
| 889 | } | ||
| 890 | |||
| 891 | bits=BN_num_bits(p); | ||
| 892 | |||
| 893 | if (bits == 0) | ||
| 894 | { | ||
| 895 | ret = BN_one(r); | ||
| 896 | return ret; | ||
| 897 | } | ||
| 898 | |||
| 899 | BN_CTX_start(ctx); | ||
| 900 | d = BN_CTX_get(ctx); | ||
| 901 | val[0] = BN_CTX_get(ctx); | ||
| 902 | if(!d || !val[0]) goto err; | ||
| 903 | |||
| 904 | if (!BN_nnmod(val[0],a,m,ctx)) goto err; /* 1 */ | ||
| 905 | if (BN_is_zero(val[0])) | ||
| 906 | { | ||
| 907 | BN_zero(r); | ||
| 908 | ret = 1; | ||
| 909 | goto err; | ||
| 910 | } | ||
| 911 | |||
| 912 | window = BN_window_bits_for_exponent_size(bits); | ||
| 913 | if (window > 1) | ||
| 914 | { | ||
| 915 | if (!BN_mod_mul(d,val[0],val[0],m,ctx)) | ||
| 916 | goto err; /* 2 */ | ||
| 917 | j=1<<(window-1); | ||
| 918 | for (i=1; i<j; i++) | ||
| 919 | { | ||
| 920 | if(((val[i] = BN_CTX_get(ctx)) == NULL) || | ||
| 921 | !BN_mod_mul(val[i],val[i-1],d,m,ctx)) | ||
| 922 | goto err; | ||
| 923 | } | ||
| 924 | } | ||
| 925 | |||
| 926 | start=1; /* This is used to avoid multiplication etc | ||
| 927 | * when there is only the value '1' in the | ||
| 928 | * buffer. */ | ||
| 929 | wvalue=0; /* The 'value' of the window */ | ||
| 930 | wstart=bits-1; /* The top bit of the window */ | ||
| 931 | wend=0; /* The bottom bit of the window */ | ||
| 932 | |||
| 933 | if (!BN_one(r)) goto err; | ||
| 934 | |||
| 935 | for (;;) | ||
| 936 | { | ||
| 937 | if (BN_is_bit_set(p,wstart) == 0) | ||
| 938 | { | ||
| 939 | if (!start) | ||
| 940 | if (!BN_mod_mul(r,r,r,m,ctx)) | ||
| 941 | goto err; | ||
| 942 | if (wstart == 0) break; | ||
| 943 | wstart--; | ||
| 944 | continue; | ||
| 945 | } | ||
| 946 | /* We now have wstart on a 'set' bit, we now need to work out | ||
| 947 | * how bit a window to do. To do this we need to scan | ||
| 948 | * forward until the last set bit before the end of the | ||
| 949 | * window */ | ||
| 950 | j=wstart; | ||
| 951 | wvalue=1; | ||
| 952 | wend=0; | ||
| 953 | for (i=1; i<window; i++) | ||
| 954 | { | ||
| 955 | if (wstart-i < 0) break; | ||
| 956 | if (BN_is_bit_set(p,wstart-i)) | ||
| 957 | { | ||
| 958 | wvalue<<=(i-wend); | ||
| 959 | wvalue|=1; | ||
| 960 | wend=i; | ||
| 961 | } | ||
| 962 | } | ||
| 963 | |||
| 964 | /* wend is the size of the current window */ | ||
| 965 | j=wend+1; | ||
| 966 | /* add the 'bytes above' */ | ||
| 967 | if (!start) | ||
| 968 | for (i=0; i<j; i++) | ||
| 969 | { | ||
| 970 | if (!BN_mod_mul(r,r,r,m,ctx)) | ||
| 971 | goto err; | ||
| 972 | } | ||
| 973 | |||
| 974 | /* wvalue will be an odd number < 2^window */ | ||
| 975 | if (!BN_mod_mul(r,r,val[wvalue>>1],m,ctx)) | ||
| 976 | goto err; | ||
| 977 | |||
| 978 | /* move the 'window' down further */ | ||
| 979 | wstart-=wend+1; | ||
| 980 | wvalue=0; | ||
| 981 | start=0; | ||
| 982 | if (wstart < 0) break; | ||
| 983 | } | ||
| 984 | ret=1; | ||
| 985 | err: | ||
| 986 | BN_CTX_end(ctx); | ||
| 987 | bn_check_top(r); | ||
| 988 | return(ret); | ||
| 989 | } | ||
| 990 | |||
