diff options
Diffstat (limited to 'src/lib/libcrypto/bn/bn_gcd.c')
| -rw-r--r-- | src/lib/libcrypto/bn/bn_gcd.c | 654 |
1 files changed, 654 insertions, 0 deletions
diff --git a/src/lib/libcrypto/bn/bn_gcd.c b/src/lib/libcrypto/bn/bn_gcd.c new file mode 100644 index 0000000000..4a352119ba --- /dev/null +++ b/src/lib/libcrypto/bn/bn_gcd.c | |||
| @@ -0,0 +1,654 @@ | |||
| 1 | /* crypto/bn/bn_gcd.c */ | ||
| 2 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) | ||
| 3 | * All rights reserved. | ||
| 4 | * | ||
| 5 | * This package is an SSL implementation written | ||
| 6 | * by Eric Young (eay@cryptsoft.com). | ||
| 7 | * The implementation was written so as to conform with Netscapes SSL. | ||
| 8 | * | ||
| 9 | * This library is free for commercial and non-commercial use as long as | ||
| 10 | * the following conditions are aheared to. The following conditions | ||
| 11 | * apply to all code found in this distribution, be it the RC4, RSA, | ||
| 12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation | ||
| 13 | * included with this distribution is covered by the same copyright terms | ||
| 14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | ||
| 15 | * | ||
| 16 | * Copyright remains Eric Young's, and as such any Copyright notices in | ||
| 17 | * the code are not to be removed. | ||
| 18 | * If this package is used in a product, Eric Young should be given attribution | ||
| 19 | * as the author of the parts of the library used. | ||
| 20 | * This can be in the form of a textual message at program startup or | ||
| 21 | * in documentation (online or textual) provided with the package. | ||
| 22 | * | ||
| 23 | * Redistribution and use in source and binary forms, with or without | ||
| 24 | * modification, are permitted provided that the following conditions | ||
| 25 | * are met: | ||
| 26 | * 1. Redistributions of source code must retain the copyright | ||
| 27 | * notice, this list of conditions and the following disclaimer. | ||
| 28 | * 2. Redistributions in binary form must reproduce the above copyright | ||
| 29 | * notice, this list of conditions and the following disclaimer in the | ||
| 30 | * documentation and/or other materials provided with the distribution. | ||
| 31 | * 3. All advertising materials mentioning features or use of this software | ||
| 32 | * must display the following acknowledgement: | ||
| 33 | * "This product includes cryptographic software written by | ||
| 34 | * Eric Young (eay@cryptsoft.com)" | ||
| 35 | * The word 'cryptographic' can be left out if the rouines from the library | ||
| 36 | * being used are not cryptographic related :-). | ||
| 37 | * 4. If you include any Windows specific code (or a derivative thereof) from | ||
| 38 | * the apps directory (application code) you must include an acknowledgement: | ||
| 39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | ||
| 40 | * | ||
| 41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | ||
| 42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
| 43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | ||
| 44 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | ||
| 45 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | ||
| 46 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | ||
| 47 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
| 48 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | ||
| 49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | ||
| 50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | ||
| 51 | * SUCH DAMAGE. | ||
| 52 | * | ||
| 53 | * The licence and distribution terms for any publically available version or | ||
| 54 | * derivative of this code cannot be changed. i.e. this code cannot simply be | ||
| 55 | * copied and put under another distribution licence | ||
| 56 | * [including the GNU Public Licence.] | ||
| 57 | */ | ||
| 58 | /* ==================================================================== | ||
| 59 | * Copyright (c) 1998-2001 The OpenSSL Project. All rights reserved. | ||
| 60 | * | ||
| 61 | * Redistribution and use in source and binary forms, with or without | ||
| 62 | * modification, are permitted provided that the following conditions | ||
| 63 | * are met: | ||
| 64 | * | ||
| 65 | * 1. Redistributions of source code must retain the above copyright | ||
| 66 | * notice, this list of conditions and the following disclaimer. | ||
| 67 | * | ||
| 68 | * 2. Redistributions in binary form must reproduce the above copyright | ||
| 69 | * notice, this list of conditions and the following disclaimer in | ||
| 70 | * the documentation and/or other materials provided with the | ||
| 71 | * distribution. | ||
| 72 | * | ||
| 73 | * 3. All advertising materials mentioning features or use of this | ||
| 74 | * software must display the following acknowledgment: | ||
| 75 | * "This product includes software developed by the OpenSSL Project | ||
| 76 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | ||
| 77 | * | ||
| 78 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
| 79 | * endorse or promote products derived from this software without | ||
| 80 | * prior written permission. For written permission, please contact | ||
| 81 | * openssl-core@openssl.org. | ||
| 82 | * | ||
| 83 | * 5. Products derived from this software may not be called "OpenSSL" | ||
| 84 | * nor may "OpenSSL" appear in their names without prior written | ||
| 85 | * permission of the OpenSSL Project. | ||
| 86 | * | ||
| 87 | * 6. Redistributions of any form whatsoever must retain the following | ||
| 88 | * acknowledgment: | ||
| 89 | * "This product includes software developed by the OpenSSL Project | ||
| 90 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" | ||
| 91 | * | ||
| 92 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
| 93 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
| 94 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
| 95 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
| 96 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
| 97 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
| 98 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
| 99 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
| 100 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
| 101 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
| 102 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
| 103 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
| 104 | * ==================================================================== | ||
| 105 | * | ||
| 106 | * This product includes cryptographic software written by Eric Young | ||
| 107 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
| 108 | * Hudson (tjh@cryptsoft.com). | ||
| 109 | * | ||
| 110 | */ | ||
| 111 | |||
| 112 | #include "cryptlib.h" | ||
| 113 | #include "bn_lcl.h" | ||
| 114 | |||
| 115 | static BIGNUM *euclid(BIGNUM *a, BIGNUM *b); | ||
| 116 | |||
| 117 | int BN_gcd(BIGNUM *r, const BIGNUM *in_a, const BIGNUM *in_b, BN_CTX *ctx) | ||
| 118 | { | ||
| 119 | BIGNUM *a,*b,*t; | ||
| 120 | int ret=0; | ||
| 121 | |||
| 122 | bn_check_top(in_a); | ||
| 123 | bn_check_top(in_b); | ||
| 124 | |||
| 125 | BN_CTX_start(ctx); | ||
| 126 | a = BN_CTX_get(ctx); | ||
| 127 | b = BN_CTX_get(ctx); | ||
| 128 | if (a == NULL || b == NULL) goto err; | ||
| 129 | |||
| 130 | if (BN_copy(a,in_a) == NULL) goto err; | ||
| 131 | if (BN_copy(b,in_b) == NULL) goto err; | ||
| 132 | a->neg = 0; | ||
| 133 | b->neg = 0; | ||
| 134 | |||
| 135 | if (BN_cmp(a,b) < 0) { t=a; a=b; b=t; } | ||
| 136 | t=euclid(a,b); | ||
| 137 | if (t == NULL) goto err; | ||
| 138 | |||
| 139 | if (BN_copy(r,t) == NULL) goto err; | ||
| 140 | ret=1; | ||
| 141 | err: | ||
| 142 | BN_CTX_end(ctx); | ||
| 143 | bn_check_top(r); | ||
| 144 | return(ret); | ||
| 145 | } | ||
| 146 | |||
| 147 | static BIGNUM *euclid(BIGNUM *a, BIGNUM *b) | ||
| 148 | { | ||
| 149 | BIGNUM *t; | ||
| 150 | int shifts=0; | ||
| 151 | |||
| 152 | bn_check_top(a); | ||
| 153 | bn_check_top(b); | ||
| 154 | |||
| 155 | /* 0 <= b <= a */ | ||
| 156 | while (!BN_is_zero(b)) | ||
| 157 | { | ||
| 158 | /* 0 < b <= a */ | ||
| 159 | |||
| 160 | if (BN_is_odd(a)) | ||
| 161 | { | ||
| 162 | if (BN_is_odd(b)) | ||
| 163 | { | ||
| 164 | if (!BN_sub(a,a,b)) goto err; | ||
| 165 | if (!BN_rshift1(a,a)) goto err; | ||
| 166 | if (BN_cmp(a,b) < 0) | ||
| 167 | { t=a; a=b; b=t; } | ||
| 168 | } | ||
| 169 | else /* a odd - b even */ | ||
| 170 | { | ||
| 171 | if (!BN_rshift1(b,b)) goto err; | ||
| 172 | if (BN_cmp(a,b) < 0) | ||
| 173 | { t=a; a=b; b=t; } | ||
| 174 | } | ||
| 175 | } | ||
| 176 | else /* a is even */ | ||
| 177 | { | ||
| 178 | if (BN_is_odd(b)) | ||
| 179 | { | ||
| 180 | if (!BN_rshift1(a,a)) goto err; | ||
| 181 | if (BN_cmp(a,b) < 0) | ||
| 182 | { t=a; a=b; b=t; } | ||
| 183 | } | ||
| 184 | else /* a even - b even */ | ||
| 185 | { | ||
| 186 | if (!BN_rshift1(a,a)) goto err; | ||
| 187 | if (!BN_rshift1(b,b)) goto err; | ||
| 188 | shifts++; | ||
| 189 | } | ||
| 190 | } | ||
| 191 | /* 0 <= b <= a */ | ||
| 192 | } | ||
| 193 | |||
| 194 | if (shifts) | ||
| 195 | { | ||
| 196 | if (!BN_lshift(a,a,shifts)) goto err; | ||
| 197 | } | ||
| 198 | bn_check_top(a); | ||
| 199 | return(a); | ||
| 200 | err: | ||
| 201 | return(NULL); | ||
| 202 | } | ||
| 203 | |||
| 204 | |||
| 205 | /* solves ax == 1 (mod n) */ | ||
| 206 | static BIGNUM *BN_mod_inverse_no_branch(BIGNUM *in, | ||
| 207 | const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx); | ||
| 208 | BIGNUM *BN_mod_inverse(BIGNUM *in, | ||
| 209 | const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx) | ||
| 210 | { | ||
| 211 | BIGNUM *A,*B,*X,*Y,*M,*D,*T,*R=NULL; | ||
| 212 | BIGNUM *ret=NULL; | ||
| 213 | int sign; | ||
| 214 | |||
| 215 | if ((BN_get_flags(a, BN_FLG_CONSTTIME) != 0) || (BN_get_flags(n, BN_FLG_CONSTTIME) != 0)) | ||
| 216 | { | ||
| 217 | return BN_mod_inverse_no_branch(in, a, n, ctx); | ||
| 218 | } | ||
| 219 | |||
| 220 | bn_check_top(a); | ||
| 221 | bn_check_top(n); | ||
| 222 | |||
| 223 | BN_CTX_start(ctx); | ||
| 224 | A = BN_CTX_get(ctx); | ||
| 225 | B = BN_CTX_get(ctx); | ||
| 226 | X = BN_CTX_get(ctx); | ||
| 227 | D = BN_CTX_get(ctx); | ||
| 228 | M = BN_CTX_get(ctx); | ||
| 229 | Y = BN_CTX_get(ctx); | ||
| 230 | T = BN_CTX_get(ctx); | ||
| 231 | if (T == NULL) goto err; | ||
| 232 | |||
| 233 | if (in == NULL) | ||
| 234 | R=BN_new(); | ||
| 235 | else | ||
| 236 | R=in; | ||
| 237 | if (R == NULL) goto err; | ||
| 238 | |||
| 239 | BN_one(X); | ||
| 240 | BN_zero(Y); | ||
| 241 | if (BN_copy(B,a) == NULL) goto err; | ||
| 242 | if (BN_copy(A,n) == NULL) goto err; | ||
| 243 | A->neg = 0; | ||
| 244 | if (B->neg || (BN_ucmp(B, A) >= 0)) | ||
| 245 | { | ||
| 246 | if (!BN_nnmod(B, B, A, ctx)) goto err; | ||
| 247 | } | ||
| 248 | sign = -1; | ||
| 249 | /* From B = a mod |n|, A = |n| it follows that | ||
| 250 | * | ||
| 251 | * 0 <= B < A, | ||
| 252 | * -sign*X*a == B (mod |n|), | ||
| 253 | * sign*Y*a == A (mod |n|). | ||
| 254 | */ | ||
| 255 | |||
| 256 | if (BN_is_odd(n) && (BN_num_bits(n) <= (BN_BITS <= 32 ? 450 : 2048))) | ||
| 257 | { | ||
| 258 | /* Binary inversion algorithm; requires odd modulus. | ||
| 259 | * This is faster than the general algorithm if the modulus | ||
| 260 | * is sufficiently small (about 400 .. 500 bits on 32-bit | ||
| 261 | * sytems, but much more on 64-bit systems) */ | ||
| 262 | int shift; | ||
| 263 | |||
| 264 | while (!BN_is_zero(B)) | ||
| 265 | { | ||
| 266 | /* | ||
| 267 | * 0 < B < |n|, | ||
| 268 | * 0 < A <= |n|, | ||
| 269 | * (1) -sign*X*a == B (mod |n|), | ||
| 270 | * (2) sign*Y*a == A (mod |n|) | ||
| 271 | */ | ||
| 272 | |||
| 273 | /* Now divide B by the maximum possible power of two in the integers, | ||
| 274 | * and divide X by the same value mod |n|. | ||
| 275 | * When we're done, (1) still holds. */ | ||
| 276 | shift = 0; | ||
| 277 | while (!BN_is_bit_set(B, shift)) /* note that 0 < B */ | ||
| 278 | { | ||
| 279 | shift++; | ||
| 280 | |||
| 281 | if (BN_is_odd(X)) | ||
| 282 | { | ||
| 283 | if (!BN_uadd(X, X, n)) goto err; | ||
| 284 | } | ||
| 285 | /* now X is even, so we can easily divide it by two */ | ||
| 286 | if (!BN_rshift1(X, X)) goto err; | ||
| 287 | } | ||
| 288 | if (shift > 0) | ||
| 289 | { | ||
| 290 | if (!BN_rshift(B, B, shift)) goto err; | ||
| 291 | } | ||
| 292 | |||
| 293 | |||
| 294 | /* Same for A and Y. Afterwards, (2) still holds. */ | ||
| 295 | shift = 0; | ||
| 296 | while (!BN_is_bit_set(A, shift)) /* note that 0 < A */ | ||
| 297 | { | ||
| 298 | shift++; | ||
| 299 | |||
| 300 | if (BN_is_odd(Y)) | ||
| 301 | { | ||
| 302 | if (!BN_uadd(Y, Y, n)) goto err; | ||
| 303 | } | ||
| 304 | /* now Y is even */ | ||
| 305 | if (!BN_rshift1(Y, Y)) goto err; | ||
| 306 | } | ||
| 307 | if (shift > 0) | ||
| 308 | { | ||
| 309 | if (!BN_rshift(A, A, shift)) goto err; | ||
| 310 | } | ||
| 311 | |||
| 312 | |||
| 313 | /* We still have (1) and (2). | ||
| 314 | * Both A and B are odd. | ||
| 315 | * The following computations ensure that | ||
| 316 | * | ||
| 317 | * 0 <= B < |n|, | ||
| 318 | * 0 < A < |n|, | ||
| 319 | * (1) -sign*X*a == B (mod |n|), | ||
| 320 | * (2) sign*Y*a == A (mod |n|), | ||
| 321 | * | ||
| 322 | * and that either A or B is even in the next iteration. | ||
| 323 | */ | ||
| 324 | if (BN_ucmp(B, A) >= 0) | ||
| 325 | { | ||
| 326 | /* -sign*(X + Y)*a == B - A (mod |n|) */ | ||
| 327 | if (!BN_uadd(X, X, Y)) goto err; | ||
| 328 | /* NB: we could use BN_mod_add_quick(X, X, Y, n), but that | ||
| 329 | * actually makes the algorithm slower */ | ||
| 330 | if (!BN_usub(B, B, A)) goto err; | ||
| 331 | } | ||
| 332 | else | ||
| 333 | { | ||
| 334 | /* sign*(X + Y)*a == A - B (mod |n|) */ | ||
| 335 | if (!BN_uadd(Y, Y, X)) goto err; | ||
| 336 | /* as above, BN_mod_add_quick(Y, Y, X, n) would slow things down */ | ||
| 337 | if (!BN_usub(A, A, B)) goto err; | ||
| 338 | } | ||
| 339 | } | ||
| 340 | } | ||
| 341 | else | ||
| 342 | { | ||
| 343 | /* general inversion algorithm */ | ||
| 344 | |||
| 345 | while (!BN_is_zero(B)) | ||
| 346 | { | ||
| 347 | BIGNUM *tmp; | ||
| 348 | |||
| 349 | /* | ||
| 350 | * 0 < B < A, | ||
| 351 | * (*) -sign*X*a == B (mod |n|), | ||
| 352 | * sign*Y*a == A (mod |n|) | ||
| 353 | */ | ||
| 354 | |||
| 355 | /* (D, M) := (A/B, A%B) ... */ | ||
| 356 | if (BN_num_bits(A) == BN_num_bits(B)) | ||
| 357 | { | ||
| 358 | if (!BN_one(D)) goto err; | ||
| 359 | if (!BN_sub(M,A,B)) goto err; | ||
| 360 | } | ||
| 361 | else if (BN_num_bits(A) == BN_num_bits(B) + 1) | ||
| 362 | { | ||
| 363 | /* A/B is 1, 2, or 3 */ | ||
| 364 | if (!BN_lshift1(T,B)) goto err; | ||
| 365 | if (BN_ucmp(A,T) < 0) | ||
| 366 | { | ||
| 367 | /* A < 2*B, so D=1 */ | ||
| 368 | if (!BN_one(D)) goto err; | ||
| 369 | if (!BN_sub(M,A,B)) goto err; | ||
| 370 | } | ||
| 371 | else | ||
| 372 | { | ||
| 373 | /* A >= 2*B, so D=2 or D=3 */ | ||
| 374 | if (!BN_sub(M,A,T)) goto err; | ||
| 375 | if (!BN_add(D,T,B)) goto err; /* use D (:= 3*B) as temp */ | ||
| 376 | if (BN_ucmp(A,D) < 0) | ||
| 377 | { | ||
| 378 | /* A < 3*B, so D=2 */ | ||
| 379 | if (!BN_set_word(D,2)) goto err; | ||
| 380 | /* M (= A - 2*B) already has the correct value */ | ||
| 381 | } | ||
| 382 | else | ||
| 383 | { | ||
| 384 | /* only D=3 remains */ | ||
| 385 | if (!BN_set_word(D,3)) goto err; | ||
| 386 | /* currently M = A - 2*B, but we need M = A - 3*B */ | ||
| 387 | if (!BN_sub(M,M,B)) goto err; | ||
| 388 | } | ||
| 389 | } | ||
| 390 | } | ||
| 391 | else | ||
| 392 | { | ||
| 393 | if (!BN_div(D,M,A,B,ctx)) goto err; | ||
| 394 | } | ||
| 395 | |||
| 396 | /* Now | ||
| 397 | * A = D*B + M; | ||
| 398 | * thus we have | ||
| 399 | * (**) sign*Y*a == D*B + M (mod |n|). | ||
| 400 | */ | ||
| 401 | |||
| 402 | tmp=A; /* keep the BIGNUM object, the value does not matter */ | ||
| 403 | |||
| 404 | /* (A, B) := (B, A mod B) ... */ | ||
| 405 | A=B; | ||
| 406 | B=M; | ||
| 407 | /* ... so we have 0 <= B < A again */ | ||
| 408 | |||
| 409 | /* Since the former M is now B and the former B is now A, | ||
| 410 | * (**) translates into | ||
| 411 | * sign*Y*a == D*A + B (mod |n|), | ||
| 412 | * i.e. | ||
| 413 | * sign*Y*a - D*A == B (mod |n|). | ||
| 414 | * Similarly, (*) translates into | ||
| 415 | * -sign*X*a == A (mod |n|). | ||
| 416 | * | ||
| 417 | * Thus, | ||
| 418 | * sign*Y*a + D*sign*X*a == B (mod |n|), | ||
| 419 | * i.e. | ||
| 420 | * sign*(Y + D*X)*a == B (mod |n|). | ||
| 421 | * | ||
| 422 | * So if we set (X, Y, sign) := (Y + D*X, X, -sign), we arrive back at | ||
| 423 | * -sign*X*a == B (mod |n|), | ||
| 424 | * sign*Y*a == A (mod |n|). | ||
| 425 | * Note that X and Y stay non-negative all the time. | ||
| 426 | */ | ||
| 427 | |||
| 428 | /* most of the time D is very small, so we can optimize tmp := D*X+Y */ | ||
| 429 | if (BN_is_one(D)) | ||
| 430 | { | ||
| 431 | if (!BN_add(tmp,X,Y)) goto err; | ||
| 432 | } | ||
| 433 | else | ||
| 434 | { | ||
| 435 | if (BN_is_word(D,2)) | ||
| 436 | { | ||
| 437 | if (!BN_lshift1(tmp,X)) goto err; | ||
| 438 | } | ||
| 439 | else if (BN_is_word(D,4)) | ||
| 440 | { | ||
| 441 | if (!BN_lshift(tmp,X,2)) goto err; | ||
| 442 | } | ||
| 443 | else if (D->top == 1) | ||
| 444 | { | ||
| 445 | if (!BN_copy(tmp,X)) goto err; | ||
| 446 | if (!BN_mul_word(tmp,D->d[0])) goto err; | ||
| 447 | } | ||
| 448 | else | ||
| 449 | { | ||
| 450 | if (!BN_mul(tmp,D,X,ctx)) goto err; | ||
| 451 | } | ||
| 452 | if (!BN_add(tmp,tmp,Y)) goto err; | ||
| 453 | } | ||
| 454 | |||
| 455 | M=Y; /* keep the BIGNUM object, the value does not matter */ | ||
| 456 | Y=X; | ||
| 457 | X=tmp; | ||
| 458 | sign = -sign; | ||
| 459 | } | ||
| 460 | } | ||
| 461 | |||
| 462 | /* | ||
| 463 | * The while loop (Euclid's algorithm) ends when | ||
| 464 | * A == gcd(a,n); | ||
| 465 | * we have | ||
| 466 | * sign*Y*a == A (mod |n|), | ||
| 467 | * where Y is non-negative. | ||
| 468 | */ | ||
| 469 | |||
| 470 | if (sign < 0) | ||
| 471 | { | ||
| 472 | if (!BN_sub(Y,n,Y)) goto err; | ||
| 473 | } | ||
| 474 | /* Now Y*a == A (mod |n|). */ | ||
| 475 | |||
| 476 | |||
| 477 | if (BN_is_one(A)) | ||
| 478 | { | ||
| 479 | /* Y*a == 1 (mod |n|) */ | ||
| 480 | if (!Y->neg && BN_ucmp(Y,n) < 0) | ||
| 481 | { | ||
| 482 | if (!BN_copy(R,Y)) goto err; | ||
| 483 | } | ||
| 484 | else | ||
| 485 | { | ||
| 486 | if (!BN_nnmod(R,Y,n,ctx)) goto err; | ||
| 487 | } | ||
| 488 | } | ||
| 489 | else | ||
| 490 | { | ||
| 491 | BNerr(BN_F_BN_MOD_INVERSE,BN_R_NO_INVERSE); | ||
| 492 | goto err; | ||
| 493 | } | ||
| 494 | ret=R; | ||
| 495 | err: | ||
| 496 | if ((ret == NULL) && (in == NULL)) BN_free(R); | ||
| 497 | BN_CTX_end(ctx); | ||
| 498 | bn_check_top(ret); | ||
| 499 | return(ret); | ||
| 500 | } | ||
| 501 | |||
| 502 | |||
| 503 | /* BN_mod_inverse_no_branch is a special version of BN_mod_inverse. | ||
| 504 | * It does not contain branches that may leak sensitive information. | ||
| 505 | */ | ||
| 506 | static BIGNUM *BN_mod_inverse_no_branch(BIGNUM *in, | ||
| 507 | const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx) | ||
| 508 | { | ||
| 509 | BIGNUM *A,*B,*X,*Y,*M,*D,*T,*R=NULL; | ||
| 510 | BIGNUM local_A, local_B; | ||
| 511 | BIGNUM *pA, *pB; | ||
| 512 | BIGNUM *ret=NULL; | ||
| 513 | int sign; | ||
| 514 | |||
| 515 | bn_check_top(a); | ||
| 516 | bn_check_top(n); | ||
| 517 | |||
| 518 | BN_CTX_start(ctx); | ||
| 519 | A = BN_CTX_get(ctx); | ||
| 520 | B = BN_CTX_get(ctx); | ||
| 521 | X = BN_CTX_get(ctx); | ||
| 522 | D = BN_CTX_get(ctx); | ||
| 523 | M = BN_CTX_get(ctx); | ||
| 524 | Y = BN_CTX_get(ctx); | ||
| 525 | T = BN_CTX_get(ctx); | ||
| 526 | if (T == NULL) goto err; | ||
| 527 | |||
| 528 | if (in == NULL) | ||
| 529 | R=BN_new(); | ||
| 530 | else | ||
| 531 | R=in; | ||
| 532 | if (R == NULL) goto err; | ||
| 533 | |||
| 534 | BN_one(X); | ||
| 535 | BN_zero(Y); | ||
| 536 | if (BN_copy(B,a) == NULL) goto err; | ||
| 537 | if (BN_copy(A,n) == NULL) goto err; | ||
| 538 | A->neg = 0; | ||
| 539 | |||
| 540 | if (B->neg || (BN_ucmp(B, A) >= 0)) | ||
| 541 | { | ||
| 542 | /* Turn BN_FLG_CONSTTIME flag on, so that when BN_div is invoked, | ||
| 543 | * BN_div_no_branch will be called eventually. | ||
| 544 | */ | ||
| 545 | pB = &local_B; | ||
| 546 | BN_with_flags(pB, B, BN_FLG_CONSTTIME); | ||
| 547 | if (!BN_nnmod(B, pB, A, ctx)) goto err; | ||
| 548 | } | ||
| 549 | sign = -1; | ||
| 550 | /* From B = a mod |n|, A = |n| it follows that | ||
| 551 | * | ||
| 552 | * 0 <= B < A, | ||
| 553 | * -sign*X*a == B (mod |n|), | ||
| 554 | * sign*Y*a == A (mod |n|). | ||
| 555 | */ | ||
| 556 | |||
| 557 | while (!BN_is_zero(B)) | ||
| 558 | { | ||
| 559 | BIGNUM *tmp; | ||
| 560 | |||
| 561 | /* | ||
| 562 | * 0 < B < A, | ||
| 563 | * (*) -sign*X*a == B (mod |n|), | ||
| 564 | * sign*Y*a == A (mod |n|) | ||
| 565 | */ | ||
| 566 | |||
| 567 | /* Turn BN_FLG_CONSTTIME flag on, so that when BN_div is invoked, | ||
| 568 | * BN_div_no_branch will be called eventually. | ||
| 569 | */ | ||
| 570 | pA = &local_A; | ||
| 571 | BN_with_flags(pA, A, BN_FLG_CONSTTIME); | ||
| 572 | |||
| 573 | /* (D, M) := (A/B, A%B) ... */ | ||
| 574 | if (!BN_div(D,M,pA,B,ctx)) goto err; | ||
| 575 | |||
| 576 | /* Now | ||
| 577 | * A = D*B + M; | ||
| 578 | * thus we have | ||
| 579 | * (**) sign*Y*a == D*B + M (mod |n|). | ||
| 580 | */ | ||
| 581 | |||
| 582 | tmp=A; /* keep the BIGNUM object, the value does not matter */ | ||
| 583 | |||
| 584 | /* (A, B) := (B, A mod B) ... */ | ||
| 585 | A=B; | ||
| 586 | B=M; | ||
| 587 | /* ... so we have 0 <= B < A again */ | ||
| 588 | |||
| 589 | /* Since the former M is now B and the former B is now A, | ||
| 590 | * (**) translates into | ||
| 591 | * sign*Y*a == D*A + B (mod |n|), | ||
| 592 | * i.e. | ||
| 593 | * sign*Y*a - D*A == B (mod |n|). | ||
| 594 | * Similarly, (*) translates into | ||
| 595 | * -sign*X*a == A (mod |n|). | ||
| 596 | * | ||
| 597 | * Thus, | ||
| 598 | * sign*Y*a + D*sign*X*a == B (mod |n|), | ||
| 599 | * i.e. | ||
| 600 | * sign*(Y + D*X)*a == B (mod |n|). | ||
| 601 | * | ||
| 602 | * So if we set (X, Y, sign) := (Y + D*X, X, -sign), we arrive back at | ||
| 603 | * -sign*X*a == B (mod |n|), | ||
| 604 | * sign*Y*a == A (mod |n|). | ||
| 605 | * Note that X and Y stay non-negative all the time. | ||
| 606 | */ | ||
| 607 | |||
| 608 | if (!BN_mul(tmp,D,X,ctx)) goto err; | ||
| 609 | if (!BN_add(tmp,tmp,Y)) goto err; | ||
| 610 | |||
| 611 | M=Y; /* keep the BIGNUM object, the value does not matter */ | ||
| 612 | Y=X; | ||
| 613 | X=tmp; | ||
| 614 | sign = -sign; | ||
| 615 | } | ||
| 616 | |||
| 617 | /* | ||
| 618 | * The while loop (Euclid's algorithm) ends when | ||
| 619 | * A == gcd(a,n); | ||
| 620 | * we have | ||
| 621 | * sign*Y*a == A (mod |n|), | ||
| 622 | * where Y is non-negative. | ||
| 623 | */ | ||
| 624 | |||
| 625 | if (sign < 0) | ||
| 626 | { | ||
| 627 | if (!BN_sub(Y,n,Y)) goto err; | ||
| 628 | } | ||
| 629 | /* Now Y*a == A (mod |n|). */ | ||
| 630 | |||
| 631 | if (BN_is_one(A)) | ||
| 632 | { | ||
| 633 | /* Y*a == 1 (mod |n|) */ | ||
| 634 | if (!Y->neg && BN_ucmp(Y,n) < 0) | ||
| 635 | { | ||
| 636 | if (!BN_copy(R,Y)) goto err; | ||
| 637 | } | ||
| 638 | else | ||
| 639 | { | ||
| 640 | if (!BN_nnmod(R,Y,n,ctx)) goto err; | ||
| 641 | } | ||
| 642 | } | ||
| 643 | else | ||
| 644 | { | ||
| 645 | BNerr(BN_F_BN_MOD_INVERSE_NO_BRANCH,BN_R_NO_INVERSE); | ||
| 646 | goto err; | ||
| 647 | } | ||
| 648 | ret=R; | ||
| 649 | err: | ||
| 650 | if ((ret == NULL) && (in == NULL)) BN_free(R); | ||
| 651 | BN_CTX_end(ctx); | ||
| 652 | bn_check_top(ret); | ||
| 653 | return(ret); | ||
| 654 | } | ||
