diff options
Diffstat (limited to 'src/lib/libcrypto/bn/bn_isqrt.c')
| -rw-r--r-- | src/lib/libcrypto/bn/bn_isqrt.c | 234 |
1 files changed, 0 insertions, 234 deletions
diff --git a/src/lib/libcrypto/bn/bn_isqrt.c b/src/lib/libcrypto/bn/bn_isqrt.c deleted file mode 100644 index 018d5f34bd..0000000000 --- a/src/lib/libcrypto/bn/bn_isqrt.c +++ /dev/null | |||
| @@ -1,234 +0,0 @@ | |||
| 1 | /* $OpenBSD: bn_isqrt.c,v 1.10 2023/06/04 17:28:35 tb Exp $ */ | ||
| 2 | /* | ||
| 3 | * Copyright (c) 2022 Theo Buehler <tb@openbsd.org> | ||
| 4 | * | ||
| 5 | * Permission to use, copy, modify, and distribute this software for any | ||
| 6 | * purpose with or without fee is hereby granted, provided that the above | ||
| 7 | * copyright notice and this permission notice appear in all copies. | ||
| 8 | * | ||
| 9 | * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES | ||
| 10 | * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF | ||
| 11 | * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR | ||
| 12 | * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES | ||
| 13 | * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN | ||
| 14 | * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF | ||
| 15 | * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. | ||
| 16 | */ | ||
| 17 | |||
| 18 | #include <stddef.h> | ||
| 19 | #include <stdint.h> | ||
| 20 | |||
| 21 | #include <openssl/bn.h> | ||
| 22 | #include <openssl/err.h> | ||
| 23 | |||
| 24 | #include "bn_local.h" | ||
| 25 | #include "crypto_internal.h" | ||
| 26 | |||
| 27 | /* | ||
| 28 | * Calculate integer square root of |n| using a variant of Newton's method. | ||
| 29 | * | ||
| 30 | * Returns the integer square root of |n| in the caller-provided |out_sqrt|; | ||
| 31 | * |*out_perfect| is set to 1 if and only if |n| is a perfect square. | ||
| 32 | * One of |out_sqrt| and |out_perfect| can be NULL; |in_ctx| can be NULL. | ||
| 33 | * | ||
| 34 | * Returns 0 on error, 1 on success. | ||
| 35 | * | ||
| 36 | * Adapted from pure Python describing cpython's math.isqrt(), without bothering | ||
| 37 | * with any of the optimizations in the C code. A correctness proof is here: | ||
| 38 | * https://github.com/mdickinson/snippets/blob/master/proofs/isqrt/src/isqrt.lean | ||
| 39 | * The comments in the Python code also give a rather detailed proof. | ||
| 40 | */ | ||
| 41 | |||
| 42 | int | ||
| 43 | bn_isqrt(BIGNUM *out_sqrt, int *out_perfect, const BIGNUM *n, BN_CTX *in_ctx) | ||
| 44 | { | ||
| 45 | BN_CTX *ctx = NULL; | ||
| 46 | BIGNUM *a, *b; | ||
| 47 | int c, d, e, s; | ||
| 48 | int cmp, perfect; | ||
| 49 | int ret = 0; | ||
| 50 | |||
| 51 | if (out_perfect == NULL && out_sqrt == NULL) { | ||
| 52 | BNerror(ERR_R_PASSED_NULL_PARAMETER); | ||
| 53 | goto err; | ||
| 54 | } | ||
| 55 | |||
| 56 | if (BN_is_negative(n)) { | ||
| 57 | BNerror(BN_R_INVALID_RANGE); | ||
| 58 | goto err; | ||
| 59 | } | ||
| 60 | |||
| 61 | if ((ctx = in_ctx) == NULL) | ||
| 62 | ctx = BN_CTX_new(); | ||
| 63 | if (ctx == NULL) | ||
| 64 | goto err; | ||
| 65 | |||
| 66 | BN_CTX_start(ctx); | ||
| 67 | |||
| 68 | if ((a = BN_CTX_get(ctx)) == NULL) | ||
| 69 | goto err; | ||
| 70 | if ((b = BN_CTX_get(ctx)) == NULL) | ||
| 71 | goto err; | ||
| 72 | |||
| 73 | if (BN_is_zero(n)) { | ||
| 74 | perfect = 1; | ||
| 75 | BN_zero(a); | ||
| 76 | goto done; | ||
| 77 | } | ||
| 78 | |||
| 79 | if (!BN_one(a)) | ||
| 80 | goto err; | ||
| 81 | |||
| 82 | c = (BN_num_bits(n) - 1) / 2; | ||
| 83 | d = 0; | ||
| 84 | |||
| 85 | /* Calculate s = floor(log(c)). */ | ||
| 86 | if (!BN_set_word(b, c)) | ||
| 87 | goto err; | ||
| 88 | s = BN_num_bits(b) - 1; | ||
| 89 | |||
| 90 | /* | ||
| 91 | * By definition, the loop below is run <= floor(log(log(n))) times. | ||
| 92 | * Comments in the cpython code establish the loop invariant that | ||
| 93 | * | ||
| 94 | * (a - 1)^2 < n / 4^(c - d) < (a + 1)^2 | ||
| 95 | * | ||
| 96 | * holds true in every iteration. Once this is proved via induction, | ||
| 97 | * correctness of the algorithm is easy. | ||
| 98 | * | ||
| 99 | * Roughly speaking, A = (a << (d - e)) is used for one Newton step | ||
| 100 | * "a = (A >> 1) + (m >> 1) / A" approximating m = (n >> 2 * (c - d)). | ||
| 101 | */ | ||
| 102 | |||
| 103 | for (; s >= 0; s--) { | ||
| 104 | e = d; | ||
| 105 | d = c >> s; | ||
| 106 | |||
| 107 | if (!BN_rshift(b, n, 2 * c - d - e + 1)) | ||
| 108 | goto err; | ||
| 109 | |||
| 110 | if (!BN_div_ct(b, NULL, b, a, ctx)) | ||
| 111 | goto err; | ||
| 112 | |||
| 113 | if (!BN_lshift(a, a, d - e - 1)) | ||
| 114 | goto err; | ||
| 115 | |||
| 116 | if (!BN_add(a, a, b)) | ||
| 117 | goto err; | ||
| 118 | } | ||
| 119 | |||
| 120 | /* | ||
| 121 | * The loop invariant implies that either a or a - 1 is isqrt(n). | ||
| 122 | * Figure out which one it is. The invariant also implies that for | ||
| 123 | * a perfect square n, a must be the square root. | ||
| 124 | */ | ||
| 125 | |||
| 126 | if (!BN_sqr(b, a, ctx)) | ||
| 127 | goto err; | ||
| 128 | |||
| 129 | /* If a^2 > n, we must have isqrt(n) == a - 1. */ | ||
| 130 | if ((cmp = BN_cmp(b, n)) > 0) { | ||
| 131 | if (!BN_sub_word(a, 1)) | ||
| 132 | goto err; | ||
| 133 | } | ||
| 134 | |||
| 135 | perfect = cmp == 0; | ||
| 136 | |||
| 137 | done: | ||
| 138 | if (out_perfect != NULL) | ||
| 139 | *out_perfect = perfect; | ||
| 140 | |||
| 141 | if (out_sqrt != NULL) { | ||
| 142 | if (!bn_copy(out_sqrt, a)) | ||
| 143 | goto err; | ||
| 144 | } | ||
| 145 | |||
| 146 | ret = 1; | ||
| 147 | |||
| 148 | err: | ||
| 149 | BN_CTX_end(ctx); | ||
| 150 | |||
| 151 | if (ctx != in_ctx) | ||
| 152 | BN_CTX_free(ctx); | ||
| 153 | |||
| 154 | return ret; | ||
| 155 | } | ||
| 156 | |||
| 157 | /* | ||
| 158 | * is_square_mod_N[r % N] indicates whether r % N has a square root modulo N. | ||
| 159 | * The tables are generated in regress/lib/libcrypto/bn/bn_isqrt.c. | ||
| 160 | */ | ||
| 161 | |||
| 162 | const uint8_t is_square_mod_11[] = { | ||
| 163 | 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, | ||
| 164 | }; | ||
| 165 | CTASSERT(sizeof(is_square_mod_11) == 11); | ||
| 166 | |||
| 167 | const uint8_t is_square_mod_63[] = { | ||
| 168 | 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, | ||
| 169 | 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, | ||
| 170 | 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, | ||
| 171 | 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, | ||
| 172 | }; | ||
| 173 | CTASSERT(sizeof(is_square_mod_63) == 63); | ||
| 174 | |||
| 175 | const uint8_t is_square_mod_64[] = { | ||
| 176 | 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, | ||
| 177 | 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, | ||
| 178 | 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, | ||
| 179 | 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, | ||
| 180 | }; | ||
| 181 | CTASSERT(sizeof(is_square_mod_64) == 64); | ||
| 182 | |||
| 183 | const uint8_t is_square_mod_65[] = { | ||
| 184 | 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, | ||
| 185 | 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, | ||
| 186 | 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, | ||
| 187 | 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, | ||
| 188 | 1, | ||
| 189 | }; | ||
| 190 | CTASSERT(sizeof(is_square_mod_65) == 65); | ||
| 191 | |||
| 192 | /* | ||
| 193 | * Determine whether n is a perfect square or not. | ||
| 194 | * | ||
| 195 | * Returns 1 on success and 0 on error. In case of success, |*out_perfect| is | ||
| 196 | * set to 1 if and only if |n| is a perfect square. | ||
| 197 | */ | ||
| 198 | |||
| 199 | int | ||
| 200 | bn_is_perfect_square(int *out_perfect, const BIGNUM *n, BN_CTX *ctx) | ||
| 201 | { | ||
| 202 | BN_ULONG r; | ||
| 203 | |||
| 204 | *out_perfect = 0; | ||
| 205 | |||
| 206 | if (BN_is_negative(n)) | ||
| 207 | return 1; | ||
| 208 | |||
| 209 | /* | ||
| 210 | * Before performing an expensive bn_isqrt() operation, weed out many | ||
| 211 | * obvious non-squares. See H. Cohen, "A course in computational | ||
| 212 | * algebraic number theory", Algorithm 1.7.3. | ||
| 213 | * | ||
| 214 | * The idea is that a square remains a square when reduced modulo any | ||
| 215 | * number. The moduli are chosen in such a way that a non-square has | ||
| 216 | * probability < 1% of passing the four table lookups. | ||
| 217 | */ | ||
| 218 | |||
| 219 | /* n % 64 */ | ||
| 220 | r = BN_lsw(n) & 0x3f; | ||
| 221 | |||
| 222 | if (!is_square_mod_64[r % 64]) | ||
| 223 | return 1; | ||
| 224 | |||
| 225 | if ((r = BN_mod_word(n, 11 * 63 * 65)) == (BN_ULONG)-1) | ||
| 226 | return 0; | ||
| 227 | |||
| 228 | if (!is_square_mod_63[r % 63] || | ||
| 229 | !is_square_mod_65[r % 65] || | ||
| 230 | !is_square_mod_11[r % 11]) | ||
| 231 | return 1; | ||
| 232 | |||
| 233 | return bn_isqrt(NULL, out_perfect, n, ctx); | ||
| 234 | } | ||
