diff options
Diffstat (limited to 'src/lib/libcrypto/bn/bn_mont.c')
| -rw-r--r-- | src/lib/libcrypto/bn/bn_mont.c | 621 |
1 files changed, 0 insertions, 621 deletions
diff --git a/src/lib/libcrypto/bn/bn_mont.c b/src/lib/libcrypto/bn/bn_mont.c deleted file mode 100644 index edd7bcd0c8..0000000000 --- a/src/lib/libcrypto/bn/bn_mont.c +++ /dev/null | |||
| @@ -1,621 +0,0 @@ | |||
| 1 | /* $OpenBSD: bn_mont.c,v 1.66 2025/03/09 15:22:40 tb Exp $ */ | ||
| 2 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) | ||
| 3 | * All rights reserved. | ||
| 4 | * | ||
| 5 | * This package is an SSL implementation written | ||
| 6 | * by Eric Young (eay@cryptsoft.com). | ||
| 7 | * The implementation was written so as to conform with Netscapes SSL. | ||
| 8 | * | ||
| 9 | * This library is free for commercial and non-commercial use as long as | ||
| 10 | * the following conditions are aheared to. The following conditions | ||
| 11 | * apply to all code found in this distribution, be it the RC4, RSA, | ||
| 12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation | ||
| 13 | * included with this distribution is covered by the same copyright terms | ||
| 14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | ||
| 15 | * | ||
| 16 | * Copyright remains Eric Young's, and as such any Copyright notices in | ||
| 17 | * the code are not to be removed. | ||
| 18 | * If this package is used in a product, Eric Young should be given attribution | ||
| 19 | * as the author of the parts of the library used. | ||
| 20 | * This can be in the form of a textual message at program startup or | ||
| 21 | * in documentation (online or textual) provided with the package. | ||
| 22 | * | ||
| 23 | * Redistribution and use in source and binary forms, with or without | ||
| 24 | * modification, are permitted provided that the following conditions | ||
| 25 | * are met: | ||
| 26 | * 1. Redistributions of source code must retain the copyright | ||
| 27 | * notice, this list of conditions and the following disclaimer. | ||
| 28 | * 2. Redistributions in binary form must reproduce the above copyright | ||
| 29 | * notice, this list of conditions and the following disclaimer in the | ||
| 30 | * documentation and/or other materials provided with the distribution. | ||
| 31 | * 3. All advertising materials mentioning features or use of this software | ||
| 32 | * must display the following acknowledgement: | ||
| 33 | * "This product includes cryptographic software written by | ||
| 34 | * Eric Young (eay@cryptsoft.com)" | ||
| 35 | * The word 'cryptographic' can be left out if the rouines from the library | ||
| 36 | * being used are not cryptographic related :-). | ||
| 37 | * 4. If you include any Windows specific code (or a derivative thereof) from | ||
| 38 | * the apps directory (application code) you must include an acknowledgement: | ||
| 39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | ||
| 40 | * | ||
| 41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | ||
| 42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
| 43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | ||
| 44 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | ||
| 45 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | ||
| 46 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | ||
| 47 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
| 48 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | ||
| 49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | ||
| 50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | ||
| 51 | * SUCH DAMAGE. | ||
| 52 | * | ||
| 53 | * The licence and distribution terms for any publically available version or | ||
| 54 | * derivative of this code cannot be changed. i.e. this code cannot simply be | ||
| 55 | * copied and put under another distribution licence | ||
| 56 | * [including the GNU Public Licence.] | ||
| 57 | */ | ||
| 58 | /* ==================================================================== | ||
| 59 | * Copyright (c) 1998-2006 The OpenSSL Project. All rights reserved. | ||
| 60 | * | ||
| 61 | * Redistribution and use in source and binary forms, with or without | ||
| 62 | * modification, are permitted provided that the following conditions | ||
| 63 | * are met: | ||
| 64 | * | ||
| 65 | * 1. Redistributions of source code must retain the above copyright | ||
| 66 | * notice, this list of conditions and the following disclaimer. | ||
| 67 | * | ||
| 68 | * 2. Redistributions in binary form must reproduce the above copyright | ||
| 69 | * notice, this list of conditions and the following disclaimer in | ||
| 70 | * the documentation and/or other materials provided with the | ||
| 71 | * distribution. | ||
| 72 | * | ||
| 73 | * 3. All advertising materials mentioning features or use of this | ||
| 74 | * software must display the following acknowledgment: | ||
| 75 | * "This product includes software developed by the OpenSSL Project | ||
| 76 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | ||
| 77 | * | ||
| 78 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
| 79 | * endorse or promote products derived from this software without | ||
| 80 | * prior written permission. For written permission, please contact | ||
| 81 | * openssl-core@openssl.org. | ||
| 82 | * | ||
| 83 | * 5. Products derived from this software may not be called "OpenSSL" | ||
| 84 | * nor may "OpenSSL" appear in their names without prior written | ||
| 85 | * permission of the OpenSSL Project. | ||
| 86 | * | ||
| 87 | * 6. Redistributions of any form whatsoever must retain the following | ||
| 88 | * acknowledgment: | ||
| 89 | * "This product includes software developed by the OpenSSL Project | ||
| 90 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" | ||
| 91 | * | ||
| 92 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
| 93 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
| 94 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
| 95 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
| 96 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
| 97 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
| 98 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
| 99 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
| 100 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
| 101 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
| 102 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
| 103 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
| 104 | * ==================================================================== | ||
| 105 | * | ||
| 106 | * This product includes cryptographic software written by Eric Young | ||
| 107 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
| 108 | * Hudson (tjh@cryptsoft.com). | ||
| 109 | * | ||
| 110 | */ | ||
| 111 | |||
| 112 | /* | ||
| 113 | * Details about Montgomery multiplication algorithms can be found at | ||
| 114 | * http://security.ece.orst.edu/publications.html, e.g. | ||
| 115 | * http://security.ece.orst.edu/koc/papers/j37acmon.pdf and | ||
| 116 | * sections 3.8 and 4.2 in http://security.ece.orst.edu/koc/papers/r01rsasw.pdf | ||
| 117 | */ | ||
| 118 | |||
| 119 | #include <stdio.h> | ||
| 120 | #include <stdint.h> | ||
| 121 | #include <string.h> | ||
| 122 | |||
| 123 | #include "bn_internal.h" | ||
| 124 | #include "bn_local.h" | ||
| 125 | |||
| 126 | BN_MONT_CTX * | ||
| 127 | BN_MONT_CTX_new(void) | ||
| 128 | { | ||
| 129 | BN_MONT_CTX *mctx; | ||
| 130 | |||
| 131 | if ((mctx = calloc(1, sizeof(BN_MONT_CTX))) == NULL) | ||
| 132 | return NULL; | ||
| 133 | mctx->flags = BN_FLG_MALLOCED; | ||
| 134 | |||
| 135 | BN_init(&mctx->RR); | ||
| 136 | BN_init(&mctx->N); | ||
| 137 | |||
| 138 | return mctx; | ||
| 139 | } | ||
| 140 | LCRYPTO_ALIAS(BN_MONT_CTX_new); | ||
| 141 | |||
| 142 | void | ||
| 143 | BN_MONT_CTX_free(BN_MONT_CTX *mctx) | ||
| 144 | { | ||
| 145 | if (mctx == NULL) | ||
| 146 | return; | ||
| 147 | |||
| 148 | BN_free(&mctx->RR); | ||
| 149 | BN_free(&mctx->N); | ||
| 150 | |||
| 151 | if (mctx->flags & BN_FLG_MALLOCED) | ||
| 152 | free(mctx); | ||
| 153 | } | ||
| 154 | LCRYPTO_ALIAS(BN_MONT_CTX_free); | ||
| 155 | |||
| 156 | BN_MONT_CTX * | ||
| 157 | BN_MONT_CTX_create(const BIGNUM *bn, BN_CTX *bn_ctx) | ||
| 158 | { | ||
| 159 | BN_MONT_CTX *mctx; | ||
| 160 | |||
| 161 | if ((mctx = BN_MONT_CTX_new()) == NULL) | ||
| 162 | goto err; | ||
| 163 | if (!BN_MONT_CTX_set(mctx, bn, bn_ctx)) | ||
| 164 | goto err; | ||
| 165 | |||
| 166 | return mctx; | ||
| 167 | |||
| 168 | err: | ||
| 169 | BN_MONT_CTX_free(mctx); | ||
| 170 | |||
| 171 | return NULL; | ||
| 172 | } | ||
| 173 | |||
| 174 | BN_MONT_CTX * | ||
| 175 | BN_MONT_CTX_copy(BN_MONT_CTX *dst, const BN_MONT_CTX *src) | ||
| 176 | { | ||
| 177 | if (dst == src) | ||
| 178 | return dst; | ||
| 179 | |||
| 180 | if (!bn_copy(&dst->RR, &src->RR)) | ||
| 181 | return NULL; | ||
| 182 | if (!bn_copy(&dst->N, &src->N)) | ||
| 183 | return NULL; | ||
| 184 | |||
| 185 | dst->ri = src->ri; | ||
| 186 | dst->n0[0] = src->n0[0]; | ||
| 187 | dst->n0[1] = src->n0[1]; | ||
| 188 | |||
| 189 | return dst; | ||
| 190 | } | ||
| 191 | LCRYPTO_ALIAS(BN_MONT_CTX_copy); | ||
| 192 | |||
| 193 | int | ||
| 194 | BN_MONT_CTX_set(BN_MONT_CTX *mont, const BIGNUM *mod, BN_CTX *ctx) | ||
| 195 | { | ||
| 196 | BIGNUM *N, *Ninv, *Rinv, *R; | ||
| 197 | int ret = 0; | ||
| 198 | |||
| 199 | BN_CTX_start(ctx); | ||
| 200 | |||
| 201 | if ((N = BN_CTX_get(ctx)) == NULL) | ||
| 202 | goto err; | ||
| 203 | if ((Ninv = BN_CTX_get(ctx)) == NULL) | ||
| 204 | goto err; | ||
| 205 | if ((R = BN_CTX_get(ctx)) == NULL) | ||
| 206 | goto err; | ||
| 207 | if ((Rinv = BN_CTX_get(ctx)) == NULL) | ||
| 208 | goto err; | ||
| 209 | |||
| 210 | /* Save modulus and determine length of R. */ | ||
| 211 | if (BN_is_zero(mod)) | ||
| 212 | goto err; | ||
| 213 | if (!bn_copy(&mont->N, mod)) | ||
| 214 | goto err; | ||
| 215 | mont->N.neg = 0; | ||
| 216 | mont->ri = ((BN_num_bits(mod) + BN_BITS2 - 1) / BN_BITS2) * BN_BITS2; | ||
| 217 | if (mont->ri * 2 < mont->ri) | ||
| 218 | goto err; | ||
| 219 | |||
| 220 | /* | ||
| 221 | * Compute Ninv = (R * Rinv - 1)/N mod R, for R = 2^64. This provides | ||
| 222 | * a single or double word result (dependent on BN word size), that is | ||
| 223 | * later used to implement Montgomery reduction. | ||
| 224 | */ | ||
| 225 | BN_zero(R); | ||
| 226 | if (!BN_set_bit(R, 64)) | ||
| 227 | goto err; | ||
| 228 | |||
| 229 | /* N = N mod R. */ | ||
| 230 | if (!bn_wexpand(N, 2)) | ||
| 231 | goto err; | ||
| 232 | if (!BN_set_word(N, mod->d[0])) | ||
| 233 | goto err; | ||
| 234 | #if BN_BITS2 == 32 | ||
| 235 | if (mod->top > 1) { | ||
| 236 | N->d[1] = mod->d[1]; | ||
| 237 | N->top += bn_ct_ne_zero(N->d[1]); | ||
| 238 | } | ||
| 239 | #endif | ||
| 240 | |||
| 241 | /* Rinv = R^-1 mod N */ | ||
| 242 | if ((BN_mod_inverse_ct(Rinv, R, N, ctx)) == NULL) | ||
| 243 | goto err; | ||
| 244 | |||
| 245 | /* Ninv = (R * Rinv - 1) / N */ | ||
| 246 | if (!BN_lshift(Ninv, Rinv, 64)) | ||
| 247 | goto err; | ||
| 248 | if (BN_is_zero(Ninv)) { | ||
| 249 | /* R * Rinv == 0, set to R so that R * Rinv - 1 is mod R. */ | ||
| 250 | if (!BN_set_bit(Ninv, 64)) | ||
| 251 | goto err; | ||
| 252 | } | ||
| 253 | if (!BN_sub_word(Ninv, 1)) | ||
| 254 | goto err; | ||
| 255 | if (!BN_div_ct(Ninv, NULL, Ninv, N, ctx)) | ||
| 256 | goto err; | ||
| 257 | |||
| 258 | /* Store least significant word(s) of Ninv. */ | ||
| 259 | mont->n0[0] = mont->n0[1] = 0; | ||
| 260 | if (Ninv->top > 0) | ||
| 261 | mont->n0[0] = Ninv->d[0]; | ||
| 262 | #if BN_BITS2 == 32 | ||
| 263 | /* Some BN_BITS2 == 32 platforms (namely parisc) use two words of Ninv. */ | ||
| 264 | if (Ninv->top > 1) | ||
| 265 | mont->n0[1] = Ninv->d[1]; | ||
| 266 | #endif | ||
| 267 | |||
| 268 | /* Compute RR = R * R mod N, for use when converting to Montgomery form. */ | ||
| 269 | BN_zero(&mont->RR); | ||
| 270 | if (!BN_set_bit(&mont->RR, mont->ri * 2)) | ||
| 271 | goto err; | ||
| 272 | if (!BN_mod_ct(&mont->RR, &mont->RR, &mont->N, ctx)) | ||
| 273 | goto err; | ||
| 274 | |||
| 275 | ret = 1; | ||
| 276 | err: | ||
| 277 | BN_CTX_end(ctx); | ||
| 278 | |||
| 279 | return ret; | ||
| 280 | } | ||
| 281 | LCRYPTO_ALIAS(BN_MONT_CTX_set); | ||
| 282 | |||
| 283 | BN_MONT_CTX * | ||
| 284 | BN_MONT_CTX_set_locked(BN_MONT_CTX **pmctx, int lock, const BIGNUM *mod, | ||
| 285 | BN_CTX *ctx) | ||
| 286 | { | ||
| 287 | BN_MONT_CTX *mctx = NULL; | ||
| 288 | |||
| 289 | CRYPTO_r_lock(lock); | ||
| 290 | mctx = *pmctx; | ||
| 291 | CRYPTO_r_unlock(lock); | ||
| 292 | |||
| 293 | if (mctx != NULL) | ||
| 294 | goto done; | ||
| 295 | |||
| 296 | if ((mctx = BN_MONT_CTX_create(mod, ctx)) == NULL) | ||
| 297 | goto err; | ||
| 298 | |||
| 299 | CRYPTO_w_lock(lock); | ||
| 300 | if (*pmctx != NULL) { | ||
| 301 | /* Someone else raced us... */ | ||
| 302 | BN_MONT_CTX_free(mctx); | ||
| 303 | mctx = *pmctx; | ||
| 304 | } else { | ||
| 305 | *pmctx = mctx; | ||
| 306 | } | ||
| 307 | CRYPTO_w_unlock(lock); | ||
| 308 | |||
| 309 | goto done; | ||
| 310 | err: | ||
| 311 | BN_MONT_CTX_free(mctx); | ||
| 312 | mctx = NULL; | ||
| 313 | done: | ||
| 314 | return mctx; | ||
| 315 | } | ||
| 316 | LCRYPTO_ALIAS(BN_MONT_CTX_set_locked); | ||
| 317 | |||
| 318 | /* | ||
| 319 | * bn_montgomery_reduce() performs Montgomery reduction, reducing the input | ||
| 320 | * from its Montgomery form aR to a, returning the result in r. Note that the | ||
| 321 | * input is mutated in the process of performing the reduction, destroying its | ||
| 322 | * original value. | ||
| 323 | */ | ||
| 324 | static int | ||
| 325 | bn_montgomery_reduce(BIGNUM *r, BIGNUM *a, BN_MONT_CTX *mctx) | ||
| 326 | { | ||
| 327 | BIGNUM *n; | ||
| 328 | BN_ULONG *ap, *rp, n0, v, carry, mask; | ||
| 329 | int i, max, n_len; | ||
| 330 | |||
| 331 | n = &mctx->N; | ||
| 332 | n_len = mctx->N.top; | ||
| 333 | |||
| 334 | if (n_len == 0) { | ||
| 335 | BN_zero(r); | ||
| 336 | return 1; | ||
| 337 | } | ||
| 338 | |||
| 339 | if (!bn_wexpand(r, n_len)) | ||
| 340 | return 0; | ||
| 341 | |||
| 342 | /* | ||
| 343 | * Expand a to twice the length of the modulus, zero if necessary. | ||
| 344 | * XXX - make this a requirement of the caller. | ||
| 345 | */ | ||
| 346 | if ((max = 2 * n_len) < n_len) | ||
| 347 | return 0; | ||
| 348 | if (!bn_wexpand(a, max)) | ||
| 349 | return 0; | ||
| 350 | for (i = a->top; i < max; i++) | ||
| 351 | a->d[i] = 0; | ||
| 352 | |||
| 353 | carry = 0; | ||
| 354 | n0 = mctx->n0[0]; | ||
| 355 | |||
| 356 | /* Add multiples of the modulus, so that it becomes divisible by R. */ | ||
| 357 | for (i = 0; i < n_len; i++) { | ||
| 358 | v = bn_mul_add_words(&a->d[i], n->d, n_len, a->d[i] * n0); | ||
| 359 | bn_addw_addw(v, a->d[i + n_len], carry, &carry, | ||
| 360 | &a->d[i + n_len]); | ||
| 361 | } | ||
| 362 | |||
| 363 | /* Divide by R (this is the equivalent of right shifting by n_len). */ | ||
| 364 | ap = &a->d[n_len]; | ||
| 365 | |||
| 366 | /* | ||
| 367 | * The output is now in the range of [0, 2N). Attempt to reduce once by | ||
| 368 | * subtracting the modulus. If the reduction was necessary then the | ||
| 369 | * result is already in r, otherwise copy the value prior to reduction | ||
| 370 | * from the top half of a. | ||
| 371 | */ | ||
| 372 | mask = carry - bn_sub_words(r->d, ap, n->d, n_len); | ||
| 373 | |||
| 374 | rp = r->d; | ||
| 375 | for (i = 0; i < n_len; i++) { | ||
| 376 | *rp = (*rp & ~mask) | (*ap & mask); | ||
| 377 | rp++; | ||
| 378 | ap++; | ||
| 379 | } | ||
| 380 | r->top = n_len; | ||
| 381 | |||
| 382 | bn_correct_top(r); | ||
| 383 | |||
| 384 | BN_set_negative(r, a->neg ^ n->neg); | ||
| 385 | |||
| 386 | return 1; | ||
| 387 | } | ||
| 388 | |||
| 389 | static int | ||
| 390 | bn_mod_mul_montgomery_simple(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, | ||
| 391 | BN_MONT_CTX *mctx, BN_CTX *ctx) | ||
| 392 | { | ||
| 393 | BIGNUM *tmp; | ||
| 394 | int ret = 0; | ||
| 395 | |||
| 396 | BN_CTX_start(ctx); | ||
| 397 | |||
| 398 | if ((tmp = BN_CTX_get(ctx)) == NULL) | ||
| 399 | goto err; | ||
| 400 | |||
| 401 | if (a == b) { | ||
| 402 | if (!BN_sqr(tmp, a, ctx)) | ||
| 403 | goto err; | ||
| 404 | } else { | ||
| 405 | if (!BN_mul(tmp, a, b, ctx)) | ||
| 406 | goto err; | ||
| 407 | } | ||
| 408 | |||
| 409 | /* Reduce from aRR to aR. */ | ||
| 410 | if (!bn_montgomery_reduce(r, tmp, mctx)) | ||
| 411 | goto err; | ||
| 412 | |||
| 413 | ret = 1; | ||
| 414 | err: | ||
| 415 | BN_CTX_end(ctx); | ||
| 416 | |||
| 417 | return ret; | ||
| 418 | } | ||
| 419 | |||
| 420 | static void | ||
| 421 | bn_montgomery_multiply_word(const BN_ULONG *ap, BN_ULONG b, const BN_ULONG *np, | ||
| 422 | BN_ULONG *tp, BN_ULONG w, BN_ULONG *carry_a, BN_ULONG *carry_n, int n_len) | ||
| 423 | { | ||
| 424 | BN_ULONG x3, x2, x1, x0; | ||
| 425 | |||
| 426 | *carry_a = *carry_n = 0; | ||
| 427 | |||
| 428 | while (n_len & ~3) { | ||
| 429 | bn_qwmulw_addqw_addw(ap[3], ap[2], ap[1], ap[0], b, | ||
| 430 | tp[3], tp[2], tp[1], tp[0], *carry_a, carry_a, | ||
| 431 | &x3, &x2, &x1, &x0); | ||
| 432 | bn_qwmulw_addqw_addw(np[3], np[2], np[1], np[0], w, | ||
| 433 | x3, x2, x1, x0, *carry_n, carry_n, | ||
| 434 | &tp[3], &tp[2], &tp[1], &tp[0]); | ||
| 435 | ap += 4; | ||
| 436 | np += 4; | ||
| 437 | tp += 4; | ||
| 438 | n_len -= 4; | ||
| 439 | } | ||
| 440 | while (n_len > 0) { | ||
| 441 | bn_mulw_addw_addw(ap[0], b, tp[0], *carry_a, carry_a, &x0); | ||
| 442 | bn_mulw_addw_addw(np[0], w, x0, *carry_n, carry_n, &tp[0]); | ||
| 443 | ap++; | ||
| 444 | np++; | ||
| 445 | tp++; | ||
| 446 | n_len--; | ||
| 447 | } | ||
| 448 | } | ||
| 449 | |||
| 450 | /* | ||
| 451 | * bn_montgomery_multiply_words() computes r = aR * bR * R^-1 = abR for the | ||
| 452 | * given word arrays. The caller must ensure that rp, ap, bp and np are all | ||
| 453 | * n_len words in length, while tp must be n_len * 2 + 2 words in length. | ||
| 454 | */ | ||
| 455 | static void | ||
| 456 | bn_montgomery_multiply_words(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, | ||
| 457 | const BN_ULONG *np, BN_ULONG *tp, BN_ULONG n0, int n_len) | ||
| 458 | { | ||
| 459 | BN_ULONG a0, b, carry_a, carry_n, carry, mask, w; | ||
| 460 | int i; | ||
| 461 | |||
| 462 | carry = 0; | ||
| 463 | |||
| 464 | for (i = 0; i < n_len; i++) | ||
| 465 | tp[i] = 0; | ||
| 466 | |||
| 467 | a0 = ap[0]; | ||
| 468 | |||
| 469 | for (i = 0; i < n_len; i++) { | ||
| 470 | b = bp[i]; | ||
| 471 | |||
| 472 | /* Compute new t[0] * n0, as we need it for this iteration. */ | ||
| 473 | w = (a0 * b + tp[0]) * n0; | ||
| 474 | |||
| 475 | bn_montgomery_multiply_word(ap, b, np, tp, w, &carry_a, | ||
| 476 | &carry_n, n_len); | ||
| 477 | bn_addw_addw(carry_a, carry_n, carry, &carry, &tp[n_len]); | ||
| 478 | |||
| 479 | tp++; | ||
| 480 | } | ||
| 481 | tp[n_len] = carry; | ||
| 482 | |||
| 483 | /* | ||
| 484 | * The output is now in the range of [0, 2N). Attempt to reduce once by | ||
| 485 | * subtracting the modulus. If the reduction was necessary then the | ||
| 486 | * result is already in r, otherwise copy the value prior to reduction | ||
| 487 | * from tp. | ||
| 488 | */ | ||
| 489 | mask = bn_ct_ne_zero(tp[n_len]) - bn_sub_words(rp, tp, np, n_len); | ||
| 490 | |||
| 491 | for (i = 0; i < n_len; i++) { | ||
| 492 | *rp = (*rp & ~mask) | (*tp & mask); | ||
| 493 | rp++; | ||
| 494 | tp++; | ||
| 495 | } | ||
| 496 | } | ||
| 497 | |||
| 498 | /* | ||
| 499 | * bn_montgomery_multiply() computes r = aR * bR * R^-1 = abR for the given | ||
| 500 | * BIGNUMs. The caller must ensure that the modulus is two or more words in | ||
| 501 | * length and that a and b have the same number of words as the modulus. | ||
| 502 | */ | ||
| 503 | static int | ||
| 504 | bn_montgomery_multiply(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, | ||
| 505 | BN_MONT_CTX *mctx, BN_CTX *ctx) | ||
| 506 | { | ||
| 507 | BIGNUM *t; | ||
| 508 | int ret = 0; | ||
| 509 | |||
| 510 | BN_CTX_start(ctx); | ||
| 511 | |||
| 512 | if (mctx->N.top <= 1 || a->top != mctx->N.top || b->top != mctx->N.top) | ||
| 513 | goto err; | ||
| 514 | if (!bn_wexpand(r, mctx->N.top)) | ||
| 515 | goto err; | ||
| 516 | |||
| 517 | if ((t = BN_CTX_get(ctx)) == NULL) | ||
| 518 | goto err; | ||
| 519 | if (!bn_wexpand(t, mctx->N.top * 2 + 2)) | ||
| 520 | goto err; | ||
| 521 | |||
| 522 | bn_montgomery_multiply_words(r->d, a->d, b->d, mctx->N.d, t->d, | ||
| 523 | mctx->n0[0], mctx->N.top); | ||
| 524 | |||
| 525 | r->top = mctx->N.top; | ||
| 526 | bn_correct_top(r); | ||
| 527 | |||
| 528 | BN_set_negative(r, a->neg ^ b->neg); | ||
| 529 | |||
| 530 | ret = 1; | ||
| 531 | err: | ||
| 532 | BN_CTX_end(ctx); | ||
| 533 | |||
| 534 | return ret; | ||
| 535 | } | ||
| 536 | |||
| 537 | #ifndef OPENSSL_BN_ASM_MONT | ||
| 538 | static int | ||
| 539 | bn_mod_mul_montgomery(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, | ||
| 540 | BN_MONT_CTX *mctx, BN_CTX *ctx) | ||
| 541 | { | ||
| 542 | if (mctx->N.top <= 1 || a->top != mctx->N.top || b->top != mctx->N.top) | ||
| 543 | return bn_mod_mul_montgomery_simple(r, a, b, mctx, ctx); | ||
| 544 | |||
| 545 | return bn_montgomery_multiply(r, a, b, mctx, ctx); | ||
| 546 | } | ||
| 547 | #else | ||
| 548 | |||
| 549 | static int | ||
| 550 | bn_mod_mul_montgomery(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, | ||
| 551 | BN_MONT_CTX *mctx, BN_CTX *ctx) | ||
| 552 | { | ||
| 553 | if (mctx->N.top <= 1 || a->top != mctx->N.top || b->top != mctx->N.top) | ||
| 554 | return bn_mod_mul_montgomery_simple(r, a, b, mctx, ctx); | ||
| 555 | |||
| 556 | /* | ||
| 557 | * Legacy bn_mul_mont() performs stack based allocation, without | ||
| 558 | * size limitation. Allowing a large size results in the stack | ||
| 559 | * being blown. | ||
| 560 | */ | ||
| 561 | if (mctx->N.top > (8 * 1024 / sizeof(BN_ULONG))) | ||
| 562 | return bn_montgomery_multiply(r, a, b, mctx, ctx); | ||
| 563 | |||
| 564 | if (!bn_wexpand(r, mctx->N.top)) | ||
| 565 | return 0; | ||
| 566 | |||
| 567 | /* | ||
| 568 | * Legacy bn_mul_mont() can indicate that we should "fallback" to | ||
| 569 | * another implementation. | ||
| 570 | */ | ||
| 571 | if (!bn_mul_mont(r->d, a->d, b->d, mctx->N.d, mctx->n0, mctx->N.top)) | ||
| 572 | return bn_montgomery_multiply(r, a, b, mctx, ctx); | ||
| 573 | |||
| 574 | r->top = mctx->N.top; | ||
| 575 | bn_correct_top(r); | ||
| 576 | |||
| 577 | BN_set_negative(r, a->neg ^ b->neg); | ||
| 578 | |||
| 579 | return (1); | ||
| 580 | } | ||
| 581 | #endif | ||
| 582 | |||
| 583 | int | ||
| 584 | BN_mod_mul_montgomery(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, | ||
| 585 | BN_MONT_CTX *mctx, BN_CTX *ctx) | ||
| 586 | { | ||
| 587 | /* Compute r = aR * bR * R^-1 mod N = abR mod N */ | ||
| 588 | return bn_mod_mul_montgomery(r, a, b, mctx, ctx); | ||
| 589 | } | ||
| 590 | LCRYPTO_ALIAS(BN_mod_mul_montgomery); | ||
| 591 | |||
| 592 | int | ||
| 593 | BN_to_montgomery(BIGNUM *r, const BIGNUM *a, BN_MONT_CTX *mctx, BN_CTX *ctx) | ||
| 594 | { | ||
| 595 | /* Compute r = a * R * R * R^-1 mod N = aR mod N */ | ||
| 596 | return bn_mod_mul_montgomery(r, a, &mctx->RR, mctx, ctx); | ||
| 597 | } | ||
| 598 | LCRYPTO_ALIAS(BN_to_montgomery); | ||
| 599 | |||
| 600 | int | ||
| 601 | BN_from_montgomery(BIGNUM *r, const BIGNUM *a, BN_MONT_CTX *mctx, BN_CTX *ctx) | ||
| 602 | { | ||
| 603 | BIGNUM *tmp; | ||
| 604 | int ret = 0; | ||
| 605 | |||
| 606 | BN_CTX_start(ctx); | ||
| 607 | |||
| 608 | if ((tmp = BN_CTX_get(ctx)) == NULL) | ||
| 609 | goto err; | ||
| 610 | if (!bn_copy(tmp, a)) | ||
| 611 | goto err; | ||
| 612 | if (!bn_montgomery_reduce(r, tmp, mctx)) | ||
| 613 | goto err; | ||
| 614 | |||
| 615 | ret = 1; | ||
| 616 | err: | ||
| 617 | BN_CTX_end(ctx); | ||
| 618 | |||
| 619 | return ret; | ||
| 620 | } | ||
| 621 | LCRYPTO_ALIAS(BN_from_montgomery); | ||
