diff options
Diffstat (limited to 'src/lib/libcrypto/bn/bn_mul.c')
| -rw-r--r-- | src/lib/libcrypto/bn/bn_mul.c | 539 |
1 files changed, 453 insertions, 86 deletions
diff --git a/src/lib/libcrypto/bn/bn_mul.c b/src/lib/libcrypto/bn/bn_mul.c index 3ae3822bc2..b848c8cc60 100644 --- a/src/lib/libcrypto/bn/bn_mul.c +++ b/src/lib/libcrypto/bn/bn_mul.c | |||
| @@ -56,10 +56,325 @@ | |||
| 56 | * [including the GNU Public Licence.] | 56 | * [including the GNU Public Licence.] |
| 57 | */ | 57 | */ |
| 58 | 58 | ||
| 59 | #ifndef BN_DEBUG | ||
| 60 | # undef NDEBUG /* avoid conflicting definitions */ | ||
| 61 | # define NDEBUG | ||
| 62 | #endif | ||
| 63 | |||
| 59 | #include <stdio.h> | 64 | #include <stdio.h> |
| 65 | #include <assert.h> | ||
| 60 | #include "cryptlib.h" | 66 | #include "cryptlib.h" |
| 61 | #include "bn_lcl.h" | 67 | #include "bn_lcl.h" |
| 62 | 68 | ||
| 69 | #if defined(OPENSSL_NO_ASM) || !defined(OPENSSL_BN_ASM_PART_WORDS) | ||
| 70 | /* Here follows specialised variants of bn_add_words() and | ||
| 71 | bn_sub_words(). They have the property performing operations on | ||
| 72 | arrays of different sizes. The sizes of those arrays is expressed through | ||
| 73 | cl, which is the common length ( basicall, min(len(a),len(b)) ), and dl, | ||
| 74 | which is the delta between the two lengths, calculated as len(a)-len(b). | ||
| 75 | All lengths are the number of BN_ULONGs... For the operations that require | ||
| 76 | a result array as parameter, it must have the length cl+abs(dl). | ||
| 77 | These functions should probably end up in bn_asm.c as soon as there are | ||
| 78 | assembler counterparts for the systems that use assembler files. */ | ||
| 79 | |||
| 80 | BN_ULONG bn_sub_part_words(BN_ULONG *r, | ||
| 81 | const BN_ULONG *a, const BN_ULONG *b, | ||
| 82 | int cl, int dl) | ||
| 83 | { | ||
| 84 | BN_ULONG c, t; | ||
| 85 | |||
| 86 | assert(cl >= 0); | ||
| 87 | c = bn_sub_words(r, a, b, cl); | ||
| 88 | |||
| 89 | if (dl == 0) | ||
| 90 | return c; | ||
| 91 | |||
| 92 | r += cl; | ||
| 93 | a += cl; | ||
| 94 | b += cl; | ||
| 95 | |||
| 96 | if (dl < 0) | ||
| 97 | { | ||
| 98 | #ifdef BN_COUNT | ||
| 99 | fprintf(stderr, " bn_sub_part_words %d + %d (dl < 0, c = %d)\n", cl, dl, c); | ||
| 100 | #endif | ||
| 101 | for (;;) | ||
| 102 | { | ||
| 103 | t = b[0]; | ||
| 104 | r[0] = (0-t-c)&BN_MASK2; | ||
| 105 | if (t != 0) c=1; | ||
| 106 | if (++dl >= 0) break; | ||
| 107 | |||
| 108 | t = b[1]; | ||
| 109 | r[1] = (0-t-c)&BN_MASK2; | ||
| 110 | if (t != 0) c=1; | ||
| 111 | if (++dl >= 0) break; | ||
| 112 | |||
| 113 | t = b[2]; | ||
| 114 | r[2] = (0-t-c)&BN_MASK2; | ||
| 115 | if (t != 0) c=1; | ||
| 116 | if (++dl >= 0) break; | ||
| 117 | |||
| 118 | t = b[3]; | ||
| 119 | r[3] = (0-t-c)&BN_MASK2; | ||
| 120 | if (t != 0) c=1; | ||
| 121 | if (++dl >= 0) break; | ||
| 122 | |||
| 123 | b += 4; | ||
| 124 | r += 4; | ||
| 125 | } | ||
| 126 | } | ||
| 127 | else | ||
| 128 | { | ||
| 129 | int save_dl = dl; | ||
| 130 | #ifdef BN_COUNT | ||
| 131 | fprintf(stderr, " bn_sub_part_words %d + %d (dl > 0, c = %d)\n", cl, dl, c); | ||
| 132 | #endif | ||
| 133 | while(c) | ||
| 134 | { | ||
| 135 | t = a[0]; | ||
| 136 | r[0] = (t-c)&BN_MASK2; | ||
| 137 | if (t != 0) c=0; | ||
| 138 | if (--dl <= 0) break; | ||
| 139 | |||
| 140 | t = a[1]; | ||
| 141 | r[1] = (t-c)&BN_MASK2; | ||
| 142 | if (t != 0) c=0; | ||
| 143 | if (--dl <= 0) break; | ||
| 144 | |||
| 145 | t = a[2]; | ||
| 146 | r[2] = (t-c)&BN_MASK2; | ||
| 147 | if (t != 0) c=0; | ||
| 148 | if (--dl <= 0) break; | ||
| 149 | |||
| 150 | t = a[3]; | ||
| 151 | r[3] = (t-c)&BN_MASK2; | ||
| 152 | if (t != 0) c=0; | ||
| 153 | if (--dl <= 0) break; | ||
| 154 | |||
| 155 | save_dl = dl; | ||
| 156 | a += 4; | ||
| 157 | r += 4; | ||
| 158 | } | ||
| 159 | if (dl > 0) | ||
| 160 | { | ||
| 161 | #ifdef BN_COUNT | ||
| 162 | fprintf(stderr, " bn_sub_part_words %d + %d (dl > 0, c == 0)\n", cl, dl); | ||
| 163 | #endif | ||
| 164 | if (save_dl > dl) | ||
| 165 | { | ||
| 166 | switch (save_dl - dl) | ||
| 167 | { | ||
| 168 | case 1: | ||
| 169 | r[1] = a[1]; | ||
| 170 | if (--dl <= 0) break; | ||
| 171 | case 2: | ||
| 172 | r[2] = a[2]; | ||
| 173 | if (--dl <= 0) break; | ||
| 174 | case 3: | ||
| 175 | r[3] = a[3]; | ||
| 176 | if (--dl <= 0) break; | ||
| 177 | } | ||
| 178 | a += 4; | ||
| 179 | r += 4; | ||
| 180 | } | ||
| 181 | } | ||
| 182 | if (dl > 0) | ||
| 183 | { | ||
| 184 | #ifdef BN_COUNT | ||
| 185 | fprintf(stderr, " bn_sub_part_words %d + %d (dl > 0, copy)\n", cl, dl); | ||
| 186 | #endif | ||
| 187 | for(;;) | ||
| 188 | { | ||
| 189 | r[0] = a[0]; | ||
| 190 | if (--dl <= 0) break; | ||
| 191 | r[1] = a[1]; | ||
| 192 | if (--dl <= 0) break; | ||
| 193 | r[2] = a[2]; | ||
| 194 | if (--dl <= 0) break; | ||
| 195 | r[3] = a[3]; | ||
| 196 | if (--dl <= 0) break; | ||
| 197 | |||
| 198 | a += 4; | ||
| 199 | r += 4; | ||
| 200 | } | ||
| 201 | } | ||
| 202 | } | ||
| 203 | return c; | ||
| 204 | } | ||
| 205 | #endif | ||
| 206 | |||
| 207 | BN_ULONG bn_add_part_words(BN_ULONG *r, | ||
| 208 | const BN_ULONG *a, const BN_ULONG *b, | ||
| 209 | int cl, int dl) | ||
| 210 | { | ||
| 211 | BN_ULONG c, l, t; | ||
| 212 | |||
| 213 | assert(cl >= 0); | ||
| 214 | c = bn_add_words(r, a, b, cl); | ||
| 215 | |||
| 216 | if (dl == 0) | ||
| 217 | return c; | ||
| 218 | |||
| 219 | r += cl; | ||
| 220 | a += cl; | ||
| 221 | b += cl; | ||
| 222 | |||
| 223 | if (dl < 0) | ||
| 224 | { | ||
| 225 | int save_dl = dl; | ||
| 226 | #ifdef BN_COUNT | ||
| 227 | fprintf(stderr, " bn_add_part_words %d + %d (dl < 0, c = %d)\n", cl, dl, c); | ||
| 228 | #endif | ||
| 229 | while (c) | ||
| 230 | { | ||
| 231 | l=(c+b[0])&BN_MASK2; | ||
| 232 | c=(l < c); | ||
| 233 | r[0]=l; | ||
| 234 | if (++dl >= 0) break; | ||
| 235 | |||
| 236 | l=(c+b[1])&BN_MASK2; | ||
| 237 | c=(l < c); | ||
| 238 | r[1]=l; | ||
| 239 | if (++dl >= 0) break; | ||
| 240 | |||
| 241 | l=(c+b[2])&BN_MASK2; | ||
| 242 | c=(l < c); | ||
| 243 | r[2]=l; | ||
| 244 | if (++dl >= 0) break; | ||
| 245 | |||
| 246 | l=(c+b[3])&BN_MASK2; | ||
| 247 | c=(l < c); | ||
| 248 | r[3]=l; | ||
| 249 | if (++dl >= 0) break; | ||
| 250 | |||
| 251 | save_dl = dl; | ||
| 252 | b+=4; | ||
| 253 | r+=4; | ||
| 254 | } | ||
| 255 | if (dl < 0) | ||
| 256 | { | ||
| 257 | #ifdef BN_COUNT | ||
| 258 | fprintf(stderr, " bn_add_part_words %d + %d (dl < 0, c == 0)\n", cl, dl); | ||
| 259 | #endif | ||
| 260 | if (save_dl < dl) | ||
| 261 | { | ||
| 262 | switch (dl - save_dl) | ||
| 263 | { | ||
| 264 | case 1: | ||
| 265 | r[1] = b[1]; | ||
| 266 | if (++dl >= 0) break; | ||
| 267 | case 2: | ||
| 268 | r[2] = b[2]; | ||
| 269 | if (++dl >= 0) break; | ||
| 270 | case 3: | ||
| 271 | r[3] = b[3]; | ||
| 272 | if (++dl >= 0) break; | ||
| 273 | } | ||
| 274 | b += 4; | ||
| 275 | r += 4; | ||
| 276 | } | ||
| 277 | } | ||
| 278 | if (dl < 0) | ||
| 279 | { | ||
| 280 | #ifdef BN_COUNT | ||
| 281 | fprintf(stderr, " bn_add_part_words %d + %d (dl < 0, copy)\n", cl, dl); | ||
| 282 | #endif | ||
| 283 | for(;;) | ||
| 284 | { | ||
| 285 | r[0] = b[0]; | ||
| 286 | if (++dl >= 0) break; | ||
| 287 | r[1] = b[1]; | ||
| 288 | if (++dl >= 0) break; | ||
| 289 | r[2] = b[2]; | ||
| 290 | if (++dl >= 0) break; | ||
| 291 | r[3] = b[3]; | ||
| 292 | if (++dl >= 0) break; | ||
| 293 | |||
| 294 | b += 4; | ||
| 295 | r += 4; | ||
| 296 | } | ||
| 297 | } | ||
| 298 | } | ||
| 299 | else | ||
| 300 | { | ||
| 301 | int save_dl = dl; | ||
| 302 | #ifdef BN_COUNT | ||
| 303 | fprintf(stderr, " bn_add_part_words %d + %d (dl > 0)\n", cl, dl); | ||
| 304 | #endif | ||
| 305 | while (c) | ||
| 306 | { | ||
| 307 | t=(a[0]+c)&BN_MASK2; | ||
| 308 | c=(t < c); | ||
| 309 | r[0]=t; | ||
| 310 | if (--dl <= 0) break; | ||
| 311 | |||
| 312 | t=(a[1]+c)&BN_MASK2; | ||
| 313 | c=(t < c); | ||
| 314 | r[1]=t; | ||
| 315 | if (--dl <= 0) break; | ||
| 316 | |||
| 317 | t=(a[2]+c)&BN_MASK2; | ||
| 318 | c=(t < c); | ||
| 319 | r[2]=t; | ||
| 320 | if (--dl <= 0) break; | ||
| 321 | |||
| 322 | t=(a[3]+c)&BN_MASK2; | ||
| 323 | c=(t < c); | ||
| 324 | r[3]=t; | ||
| 325 | if (--dl <= 0) break; | ||
| 326 | |||
| 327 | save_dl = dl; | ||
| 328 | a+=4; | ||
| 329 | r+=4; | ||
| 330 | } | ||
| 331 | #ifdef BN_COUNT | ||
| 332 | fprintf(stderr, " bn_add_part_words %d + %d (dl > 0, c == 0)\n", cl, dl); | ||
| 333 | #endif | ||
| 334 | if (dl > 0) | ||
| 335 | { | ||
| 336 | if (save_dl > dl) | ||
| 337 | { | ||
| 338 | switch (save_dl - dl) | ||
| 339 | { | ||
| 340 | case 1: | ||
| 341 | r[1] = a[1]; | ||
| 342 | if (--dl <= 0) break; | ||
| 343 | case 2: | ||
| 344 | r[2] = a[2]; | ||
| 345 | if (--dl <= 0) break; | ||
| 346 | case 3: | ||
| 347 | r[3] = a[3]; | ||
| 348 | if (--dl <= 0) break; | ||
| 349 | } | ||
| 350 | a += 4; | ||
| 351 | r += 4; | ||
| 352 | } | ||
| 353 | } | ||
| 354 | if (dl > 0) | ||
| 355 | { | ||
| 356 | #ifdef BN_COUNT | ||
| 357 | fprintf(stderr, " bn_add_part_words %d + %d (dl > 0, copy)\n", cl, dl); | ||
| 358 | #endif | ||
| 359 | for(;;) | ||
| 360 | { | ||
| 361 | r[0] = a[0]; | ||
| 362 | if (--dl <= 0) break; | ||
| 363 | r[1] = a[1]; | ||
| 364 | if (--dl <= 0) break; | ||
| 365 | r[2] = a[2]; | ||
| 366 | if (--dl <= 0) break; | ||
| 367 | r[3] = a[3]; | ||
| 368 | if (--dl <= 0) break; | ||
| 369 | |||
| 370 | a += 4; | ||
| 371 | r += 4; | ||
| 372 | } | ||
| 373 | } | ||
| 374 | } | ||
| 375 | return c; | ||
| 376 | } | ||
| 377 | |||
| 63 | #ifdef BN_RECURSION | 378 | #ifdef BN_RECURSION |
| 64 | /* Karatsuba recursive multiplication algorithm | 379 | /* Karatsuba recursive multiplication algorithm |
| 65 | * (cf. Knuth, The Art of Computer Programming, Vol. 2) */ | 380 | * (cf. Knuth, The Art of Computer Programming, Vol. 2) */ |
| @@ -74,15 +389,17 @@ | |||
| 74 | * a[0]*b[0]+a[1]*b[1]+(a[0]-a[1])*(b[1]-b[0]) | 389 | * a[0]*b[0]+a[1]*b[1]+(a[0]-a[1])*(b[1]-b[0]) |
| 75 | * a[1]*b[1] | 390 | * a[1]*b[1] |
| 76 | */ | 391 | */ |
| 392 | /* dnX may not be positive, but n2/2+dnX has to be */ | ||
| 77 | void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2, | 393 | void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2, |
| 78 | BN_ULONG *t) | 394 | int dna, int dnb, BN_ULONG *t) |
| 79 | { | 395 | { |
| 80 | int n=n2/2,c1,c2; | 396 | int n=n2/2,c1,c2; |
| 397 | int tna=n+dna, tnb=n+dnb; | ||
| 81 | unsigned int neg,zero; | 398 | unsigned int neg,zero; |
| 82 | BN_ULONG ln,lo,*p; | 399 | BN_ULONG ln,lo,*p; |
| 83 | 400 | ||
| 84 | # ifdef BN_COUNT | 401 | # ifdef BN_COUNT |
| 85 | printf(" bn_mul_recursive %d * %d\n",n2,n2); | 402 | fprintf(stderr," bn_mul_recursive %d%+d * %d%+d\n",n2,dna,n2,dnb); |
| 86 | # endif | 403 | # endif |
| 87 | # ifdef BN_MUL_COMBA | 404 | # ifdef BN_MUL_COMBA |
| 88 | # if 0 | 405 | # if 0 |
| @@ -92,34 +409,40 @@ void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2, | |||
| 92 | return; | 409 | return; |
| 93 | } | 410 | } |
| 94 | # endif | 411 | # endif |
| 95 | if (n2 == 8) | 412 | /* Only call bn_mul_comba 8 if n2 == 8 and the |
| 413 | * two arrays are complete [steve] | ||
| 414 | */ | ||
| 415 | if (n2 == 8 && dna == 0 && dnb == 0) | ||
| 96 | { | 416 | { |
| 97 | bn_mul_comba8(r,a,b); | 417 | bn_mul_comba8(r,a,b); |
| 98 | return; | 418 | return; |
| 99 | } | 419 | } |
| 100 | # endif /* BN_MUL_COMBA */ | 420 | # endif /* BN_MUL_COMBA */ |
| 421 | /* Else do normal multiply */ | ||
| 101 | if (n2 < BN_MUL_RECURSIVE_SIZE_NORMAL) | 422 | if (n2 < BN_MUL_RECURSIVE_SIZE_NORMAL) |
| 102 | { | 423 | { |
| 103 | /* This should not happen */ | 424 | bn_mul_normal(r,a,n2+dna,b,n2+dnb); |
| 104 | bn_mul_normal(r,a,n2,b,n2); | 425 | if ((dna + dnb) < 0) |
| 426 | memset(&r[2*n2 + dna + dnb], 0, | ||
| 427 | sizeof(BN_ULONG) * -(dna + dnb)); | ||
| 105 | return; | 428 | return; |
| 106 | } | 429 | } |
| 107 | /* r=(a[0]-a[1])*(b[1]-b[0]) */ | 430 | /* r=(a[0]-a[1])*(b[1]-b[0]) */ |
| 108 | c1=bn_cmp_words(a,&(a[n]),n); | 431 | c1=bn_cmp_part_words(a,&(a[n]),tna,n-tna); |
| 109 | c2=bn_cmp_words(&(b[n]),b,n); | 432 | c2=bn_cmp_part_words(&(b[n]),b,tnb,tnb-n); |
| 110 | zero=neg=0; | 433 | zero=neg=0; |
| 111 | switch (c1*3+c2) | 434 | switch (c1*3+c2) |
| 112 | { | 435 | { |
| 113 | case -4: | 436 | case -4: |
| 114 | bn_sub_words(t, &(a[n]),a, n); /* - */ | 437 | bn_sub_part_words(t, &(a[n]),a, tna,tna-n); /* - */ |
| 115 | bn_sub_words(&(t[n]),b, &(b[n]),n); /* - */ | 438 | bn_sub_part_words(&(t[n]),b, &(b[n]),tnb,n-tnb); /* - */ |
| 116 | break; | 439 | break; |
| 117 | case -3: | 440 | case -3: |
| 118 | zero=1; | 441 | zero=1; |
| 119 | break; | 442 | break; |
| 120 | case -2: | 443 | case -2: |
| 121 | bn_sub_words(t, &(a[n]),a, n); /* - */ | 444 | bn_sub_part_words(t, &(a[n]),a, tna,tna-n); /* - */ |
| 122 | bn_sub_words(&(t[n]),&(b[n]),b, n); /* + */ | 445 | bn_sub_part_words(&(t[n]),&(b[n]),b, tnb,tnb-n); /* + */ |
| 123 | neg=1; | 446 | neg=1; |
| 124 | break; | 447 | break; |
| 125 | case -1: | 448 | case -1: |
| @@ -128,21 +451,22 @@ void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2, | |||
| 128 | zero=1; | 451 | zero=1; |
| 129 | break; | 452 | break; |
| 130 | case 2: | 453 | case 2: |
| 131 | bn_sub_words(t, a, &(a[n]),n); /* + */ | 454 | bn_sub_part_words(t, a, &(a[n]),tna,n-tna); /* + */ |
| 132 | bn_sub_words(&(t[n]),b, &(b[n]),n); /* - */ | 455 | bn_sub_part_words(&(t[n]),b, &(b[n]),tnb,n-tnb); /* - */ |
| 133 | neg=1; | 456 | neg=1; |
| 134 | break; | 457 | break; |
| 135 | case 3: | 458 | case 3: |
| 136 | zero=1; | 459 | zero=1; |
| 137 | break; | 460 | break; |
| 138 | case 4: | 461 | case 4: |
| 139 | bn_sub_words(t, a, &(a[n]),n); | 462 | bn_sub_part_words(t, a, &(a[n]),tna,n-tna); |
| 140 | bn_sub_words(&(t[n]),&(b[n]),b, n); | 463 | bn_sub_part_words(&(t[n]),&(b[n]),b, tnb,tnb-n); |
| 141 | break; | 464 | break; |
| 142 | } | 465 | } |
| 143 | 466 | ||
| 144 | # ifdef BN_MUL_COMBA | 467 | # ifdef BN_MUL_COMBA |
| 145 | if (n == 4) | 468 | if (n == 4 && dna == 0 && dnb == 0) /* XXX: bn_mul_comba4 could take |
| 469 | extra args to do this well */ | ||
| 146 | { | 470 | { |
| 147 | if (!zero) | 471 | if (!zero) |
| 148 | bn_mul_comba4(&(t[n2]),t,&(t[n])); | 472 | bn_mul_comba4(&(t[n2]),t,&(t[n])); |
| @@ -152,7 +476,9 @@ void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2, | |||
| 152 | bn_mul_comba4(r,a,b); | 476 | bn_mul_comba4(r,a,b); |
| 153 | bn_mul_comba4(&(r[n2]),&(a[n]),&(b[n])); | 477 | bn_mul_comba4(&(r[n2]),&(a[n]),&(b[n])); |
| 154 | } | 478 | } |
| 155 | else if (n == 8) | 479 | else if (n == 8 && dna == 0 && dnb == 0) /* XXX: bn_mul_comba8 could |
| 480 | take extra args to do this | ||
| 481 | well */ | ||
| 156 | { | 482 | { |
| 157 | if (!zero) | 483 | if (!zero) |
| 158 | bn_mul_comba8(&(t[n2]),t,&(t[n])); | 484 | bn_mul_comba8(&(t[n2]),t,&(t[n])); |
| @@ -167,11 +493,11 @@ void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2, | |||
| 167 | { | 493 | { |
| 168 | p= &(t[n2*2]); | 494 | p= &(t[n2*2]); |
| 169 | if (!zero) | 495 | if (!zero) |
| 170 | bn_mul_recursive(&(t[n2]),t,&(t[n]),n,p); | 496 | bn_mul_recursive(&(t[n2]),t,&(t[n]),n,0,0,p); |
| 171 | else | 497 | else |
| 172 | memset(&(t[n2]),0,n2*sizeof(BN_ULONG)); | 498 | memset(&(t[n2]),0,n2*sizeof(BN_ULONG)); |
| 173 | bn_mul_recursive(r,a,b,n,p); | 499 | bn_mul_recursive(r,a,b,n,0,0,p); |
| 174 | bn_mul_recursive(&(r[n2]),&(a[n]),&(b[n]),n,p); | 500 | bn_mul_recursive(&(r[n2]),&(a[n]),&(b[n]),n,dna,dnb,p); |
| 175 | } | 501 | } |
| 176 | 502 | ||
| 177 | /* t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign | 503 | /* t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign |
| @@ -220,39 +546,40 @@ void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2, | |||
| 220 | 546 | ||
| 221 | /* n+tn is the word length | 547 | /* n+tn is the word length |
| 222 | * t needs to be n*4 is size, as does r */ | 548 | * t needs to be n*4 is size, as does r */ |
| 223 | void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int tn, | 549 | /* tnX may not be negative but less than n */ |
| 224 | int n, BN_ULONG *t) | 550 | void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n, |
| 551 | int tna, int tnb, BN_ULONG *t) | ||
| 225 | { | 552 | { |
| 226 | int i,j,n2=n*2; | 553 | int i,j,n2=n*2; |
| 227 | int c1,c2,neg,zero; | 554 | int c1,c2,neg,zero; |
| 228 | BN_ULONG ln,lo,*p; | 555 | BN_ULONG ln,lo,*p; |
| 229 | 556 | ||
| 230 | # ifdef BN_COUNT | 557 | # ifdef BN_COUNT |
| 231 | printf(" bn_mul_part_recursive %d * %d\n",tn+n,tn+n); | 558 | fprintf(stderr," bn_mul_part_recursive (%d%+d) * (%d%+d)\n", |
| 559 | n, tna, n, tnb); | ||
| 232 | # endif | 560 | # endif |
| 233 | if (n < 8) | 561 | if (n < 8) |
| 234 | { | 562 | { |
| 235 | i=tn+n; | 563 | bn_mul_normal(r,a,n+tna,b,n+tnb); |
| 236 | bn_mul_normal(r,a,i,b,i); | ||
| 237 | return; | 564 | return; |
| 238 | } | 565 | } |
| 239 | 566 | ||
| 240 | /* r=(a[0]-a[1])*(b[1]-b[0]) */ | 567 | /* r=(a[0]-a[1])*(b[1]-b[0]) */ |
| 241 | c1=bn_cmp_words(a,&(a[n]),n); | 568 | c1=bn_cmp_part_words(a,&(a[n]),tna,n-tna); |
| 242 | c2=bn_cmp_words(&(b[n]),b,n); | 569 | c2=bn_cmp_part_words(&(b[n]),b,tnb,tnb-n); |
| 243 | zero=neg=0; | 570 | zero=neg=0; |
| 244 | switch (c1*3+c2) | 571 | switch (c1*3+c2) |
| 245 | { | 572 | { |
| 246 | case -4: | 573 | case -4: |
| 247 | bn_sub_words(t, &(a[n]),a, n); /* - */ | 574 | bn_sub_part_words(t, &(a[n]),a, tna,tna-n); /* - */ |
| 248 | bn_sub_words(&(t[n]),b, &(b[n]),n); /* - */ | 575 | bn_sub_part_words(&(t[n]),b, &(b[n]),tnb,n-tnb); /* - */ |
| 249 | break; | 576 | break; |
| 250 | case -3: | 577 | case -3: |
| 251 | zero=1; | 578 | zero=1; |
| 252 | /* break; */ | 579 | /* break; */ |
| 253 | case -2: | 580 | case -2: |
| 254 | bn_sub_words(t, &(a[n]),a, n); /* - */ | 581 | bn_sub_part_words(t, &(a[n]),a, tna,tna-n); /* - */ |
| 255 | bn_sub_words(&(t[n]),&(b[n]),b, n); /* + */ | 582 | bn_sub_part_words(&(t[n]),&(b[n]),b, tnb,tnb-n); /* + */ |
| 256 | neg=1; | 583 | neg=1; |
| 257 | break; | 584 | break; |
| 258 | case -1: | 585 | case -1: |
| @@ -261,16 +588,16 @@ void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int tn, | |||
| 261 | zero=1; | 588 | zero=1; |
| 262 | /* break; */ | 589 | /* break; */ |
| 263 | case 2: | 590 | case 2: |
| 264 | bn_sub_words(t, a, &(a[n]),n); /* + */ | 591 | bn_sub_part_words(t, a, &(a[n]),tna,n-tna); /* + */ |
| 265 | bn_sub_words(&(t[n]),b, &(b[n]),n); /* - */ | 592 | bn_sub_part_words(&(t[n]),b, &(b[n]),tnb,n-tnb); /* - */ |
| 266 | neg=1; | 593 | neg=1; |
| 267 | break; | 594 | break; |
| 268 | case 3: | 595 | case 3: |
| 269 | zero=1; | 596 | zero=1; |
| 270 | /* break; */ | 597 | /* break; */ |
| 271 | case 4: | 598 | case 4: |
| 272 | bn_sub_words(t, a, &(a[n]),n); | 599 | bn_sub_part_words(t, a, &(a[n]),tna,n-tna); |
| 273 | bn_sub_words(&(t[n]),&(b[n]),b, n); | 600 | bn_sub_part_words(&(t[n]),&(b[n]),b, tnb,tnb-n); |
| 274 | break; | 601 | break; |
| 275 | } | 602 | } |
| 276 | /* The zero case isn't yet implemented here. The speedup | 603 | /* The zero case isn't yet implemented here. The speedup |
| @@ -289,54 +616,62 @@ void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int tn, | |||
| 289 | { | 616 | { |
| 290 | bn_mul_comba8(&(t[n2]),t,&(t[n])); | 617 | bn_mul_comba8(&(t[n2]),t,&(t[n])); |
| 291 | bn_mul_comba8(r,a,b); | 618 | bn_mul_comba8(r,a,b); |
| 292 | bn_mul_normal(&(r[n2]),&(a[n]),tn,&(b[n]),tn); | 619 | bn_mul_normal(&(r[n2]),&(a[n]),tna,&(b[n]),tnb); |
| 293 | memset(&(r[n2+tn*2]),0,sizeof(BN_ULONG)*(n2-tn*2)); | 620 | memset(&(r[n2+tna+tnb]),0,sizeof(BN_ULONG)*(n2-tna-tnb)); |
| 294 | } | 621 | } |
| 295 | else | 622 | else |
| 296 | { | 623 | { |
| 297 | p= &(t[n2*2]); | 624 | p= &(t[n2*2]); |
| 298 | bn_mul_recursive(&(t[n2]),t,&(t[n]),n,p); | 625 | bn_mul_recursive(&(t[n2]),t,&(t[n]),n,0,0,p); |
| 299 | bn_mul_recursive(r,a,b,n,p); | 626 | bn_mul_recursive(r,a,b,n,0,0,p); |
| 300 | i=n/2; | 627 | i=n/2; |
| 301 | /* If there is only a bottom half to the number, | 628 | /* If there is only a bottom half to the number, |
| 302 | * just do it */ | 629 | * just do it */ |
| 303 | j=tn-i; | 630 | if (tna > tnb) |
| 631 | j = tna - i; | ||
| 632 | else | ||
| 633 | j = tnb - i; | ||
| 304 | if (j == 0) | 634 | if (j == 0) |
| 305 | { | 635 | { |
| 306 | bn_mul_recursive(&(r[n2]),&(a[n]),&(b[n]),i,p); | 636 | bn_mul_recursive(&(r[n2]),&(a[n]),&(b[n]), |
| 637 | i,tna-i,tnb-i,p); | ||
| 307 | memset(&(r[n2+i*2]),0,sizeof(BN_ULONG)*(n2-i*2)); | 638 | memset(&(r[n2+i*2]),0,sizeof(BN_ULONG)*(n2-i*2)); |
| 308 | } | 639 | } |
| 309 | else if (j > 0) /* eg, n == 16, i == 8 and tn == 11 */ | 640 | else if (j > 0) /* eg, n == 16, i == 8 and tn == 11 */ |
| 310 | { | 641 | { |
| 311 | bn_mul_part_recursive(&(r[n2]),&(a[n]),&(b[n]), | 642 | bn_mul_part_recursive(&(r[n2]),&(a[n]),&(b[n]), |
| 312 | j,i,p); | 643 | i,tna-i,tnb-i,p); |
| 313 | memset(&(r[n2+tn*2]),0, | 644 | memset(&(r[n2+tna+tnb]),0, |
| 314 | sizeof(BN_ULONG)*(n2-tn*2)); | 645 | sizeof(BN_ULONG)*(n2-tna-tnb)); |
| 315 | } | 646 | } |
| 316 | else /* (j < 0) eg, n == 16, i == 8 and tn == 5 */ | 647 | else /* (j < 0) eg, n == 16, i == 8 and tn == 5 */ |
| 317 | { | 648 | { |
| 318 | memset(&(r[n2]),0,sizeof(BN_ULONG)*n2); | 649 | memset(&(r[n2]),0,sizeof(BN_ULONG)*n2); |
| 319 | if (tn < BN_MUL_RECURSIVE_SIZE_NORMAL) | 650 | if (tna < BN_MUL_RECURSIVE_SIZE_NORMAL |
| 651 | && tnb < BN_MUL_RECURSIVE_SIZE_NORMAL) | ||
| 320 | { | 652 | { |
| 321 | bn_mul_normal(&(r[n2]),&(a[n]),tn,&(b[n]),tn); | 653 | bn_mul_normal(&(r[n2]),&(a[n]),tna,&(b[n]),tnb); |
| 322 | } | 654 | } |
| 323 | else | 655 | else |
| 324 | { | 656 | { |
| 325 | for (;;) | 657 | for (;;) |
| 326 | { | 658 | { |
| 327 | i/=2; | 659 | i/=2; |
| 328 | if (i < tn) | 660 | /* these simplified conditions work |
| 661 | * exclusively because difference | ||
| 662 | * between tna and tnb is 1 or 0 */ | ||
| 663 | if (i < tna || i < tnb) | ||
| 329 | { | 664 | { |
| 330 | bn_mul_part_recursive(&(r[n2]), | 665 | bn_mul_part_recursive(&(r[n2]), |
| 331 | &(a[n]),&(b[n]), | 666 | &(a[n]),&(b[n]), |
| 332 | tn-i,i,p); | 667 | i,tna-i,tnb-i,p); |
| 333 | break; | 668 | break; |
| 334 | } | 669 | } |
| 335 | else if (i == tn) | 670 | else if (i == tna || i == tnb) |
| 336 | { | 671 | { |
| 337 | bn_mul_recursive(&(r[n2]), | 672 | bn_mul_recursive(&(r[n2]), |
| 338 | &(a[n]),&(b[n]), | 673 | &(a[n]),&(b[n]), |
| 339 | i,p); | 674 | i,tna-i,tnb-i,p); |
| 340 | break; | 675 | break; |
| 341 | } | 676 | } |
| 342 | } | 677 | } |
| @@ -397,10 +732,10 @@ void bn_mul_low_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2, | |||
| 397 | int n=n2/2; | 732 | int n=n2/2; |
| 398 | 733 | ||
| 399 | # ifdef BN_COUNT | 734 | # ifdef BN_COUNT |
| 400 | printf(" bn_mul_low_recursive %d * %d\n",n2,n2); | 735 | fprintf(stderr," bn_mul_low_recursive %d * %d\n",n2,n2); |
| 401 | # endif | 736 | # endif |
| 402 | 737 | ||
| 403 | bn_mul_recursive(r,a,b,n,&(t[0])); | 738 | bn_mul_recursive(r,a,b,n,0,0,&(t[0])); |
| 404 | if (n >= BN_MUL_LOW_RECURSIVE_SIZE_NORMAL) | 739 | if (n >= BN_MUL_LOW_RECURSIVE_SIZE_NORMAL) |
| 405 | { | 740 | { |
| 406 | bn_mul_low_recursive(&(t[0]),&(a[0]),&(b[n]),n,&(t[n2])); | 741 | bn_mul_low_recursive(&(t[0]),&(a[0]),&(b[n]),n,&(t[n2])); |
| @@ -431,7 +766,7 @@ void bn_mul_high(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, BN_ULONG *l, int n2, | |||
| 431 | BN_ULONG ll,lc,*lp,*mp; | 766 | BN_ULONG ll,lc,*lp,*mp; |
| 432 | 767 | ||
| 433 | # ifdef BN_COUNT | 768 | # ifdef BN_COUNT |
| 434 | printf(" bn_mul_high %d * %d\n",n2,n2); | 769 | fprintf(stderr," bn_mul_high %d * %d\n",n2,n2); |
| 435 | # endif | 770 | # endif |
| 436 | n=n2/2; | 771 | n=n2/2; |
| 437 | 772 | ||
| @@ -484,8 +819,8 @@ void bn_mul_high(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, BN_ULONG *l, int n2, | |||
| 484 | else | 819 | else |
| 485 | # endif | 820 | # endif |
| 486 | { | 821 | { |
| 487 | bn_mul_recursive(&(t[0]),&(r[0]),&(r[n]),n,&(t[n2])); | 822 | bn_mul_recursive(&(t[0]),&(r[0]),&(r[n]),n,0,0,&(t[n2])); |
| 488 | bn_mul_recursive(r,&(a[n]),&(b[n]),n,&(t[n2])); | 823 | bn_mul_recursive(r,&(a[n]),&(b[n]),n,0,0,&(t[n2])); |
| 489 | } | 824 | } |
| 490 | 825 | ||
| 491 | /* s0 == low(al*bl) | 826 | /* s0 == low(al*bl) |
| @@ -610,19 +945,19 @@ void bn_mul_high(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, BN_ULONG *l, int n2, | |||
| 610 | 945 | ||
| 611 | int BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) | 946 | int BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) |
| 612 | { | 947 | { |
| 948 | int ret=0; | ||
| 613 | int top,al,bl; | 949 | int top,al,bl; |
| 614 | BIGNUM *rr; | 950 | BIGNUM *rr; |
| 615 | int ret = 0; | ||
| 616 | #if defined(BN_MUL_COMBA) || defined(BN_RECURSION) | 951 | #if defined(BN_MUL_COMBA) || defined(BN_RECURSION) |
| 617 | int i; | 952 | int i; |
| 618 | #endif | 953 | #endif |
| 619 | #ifdef BN_RECURSION | 954 | #ifdef BN_RECURSION |
| 620 | BIGNUM *t; | 955 | BIGNUM *t=NULL; |
| 621 | int j,k; | 956 | int j=0,k; |
| 622 | #endif | 957 | #endif |
| 623 | 958 | ||
| 624 | #ifdef BN_COUNT | 959 | #ifdef BN_COUNT |
| 625 | printf("BN_mul %d * %d\n",a->top,b->top); | 960 | fprintf(stderr,"BN_mul %d * %d\n",a->top,b->top); |
| 626 | #endif | 961 | #endif |
| 627 | 962 | ||
| 628 | bn_check_top(a); | 963 | bn_check_top(a); |
| @@ -634,7 +969,7 @@ int BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) | |||
| 634 | 969 | ||
| 635 | if ((al == 0) || (bl == 0)) | 970 | if ((al == 0) || (bl == 0)) |
| 636 | { | 971 | { |
| 637 | if (!BN_zero(r)) goto err; | 972 | BN_zero(r); |
| 638 | return(1); | 973 | return(1); |
| 639 | } | 974 | } |
| 640 | top=al+bl; | 975 | top=al+bl; |
| @@ -675,21 +1010,55 @@ int BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) | |||
| 675 | #ifdef BN_RECURSION | 1010 | #ifdef BN_RECURSION |
| 676 | if ((al >= BN_MULL_SIZE_NORMAL) && (bl >= BN_MULL_SIZE_NORMAL)) | 1011 | if ((al >= BN_MULL_SIZE_NORMAL) && (bl >= BN_MULL_SIZE_NORMAL)) |
| 677 | { | 1012 | { |
| 678 | if (i == 1 && !BN_get_flags(b,BN_FLG_STATIC_DATA) && bl<b->dmax) | 1013 | if (i >= -1 && i <= 1) |
| 679 | { | 1014 | { |
| 680 | #if 0 /* tribute to const-ification, bl<b->dmax above covers for this */ | 1015 | int sav_j =0; |
| 681 | if (bn_wexpand(b,al) == NULL) goto err; | 1016 | /* Find out the power of two lower or equal |
| 682 | #endif | 1017 | to the longest of the two numbers */ |
| 683 | b->d[bl]=0; | 1018 | if (i >= 0) |
| 1019 | { | ||
| 1020 | j = BN_num_bits_word((BN_ULONG)al); | ||
| 1021 | } | ||
| 1022 | if (i == -1) | ||
| 1023 | { | ||
| 1024 | j = BN_num_bits_word((BN_ULONG)bl); | ||
| 1025 | } | ||
| 1026 | sav_j = j; | ||
| 1027 | j = 1<<(j-1); | ||
| 1028 | assert(j <= al || j <= bl); | ||
| 1029 | k = j+j; | ||
| 1030 | t = BN_CTX_get(ctx); | ||
| 1031 | if (al > j || bl > j) | ||
| 1032 | { | ||
| 1033 | bn_wexpand(t,k*4); | ||
| 1034 | bn_wexpand(rr,k*4); | ||
| 1035 | bn_mul_part_recursive(rr->d,a->d,b->d, | ||
| 1036 | j,al-j,bl-j,t->d); | ||
| 1037 | } | ||
| 1038 | else /* al <= j || bl <= j */ | ||
| 1039 | { | ||
| 1040 | bn_wexpand(t,k*2); | ||
| 1041 | bn_wexpand(rr,k*2); | ||
| 1042 | bn_mul_recursive(rr->d,a->d,b->d, | ||
| 1043 | j,al-j,bl-j,t->d); | ||
| 1044 | } | ||
| 1045 | rr->top=top; | ||
| 1046 | goto end; | ||
| 1047 | } | ||
| 1048 | #if 0 | ||
| 1049 | if (i == 1 && !BN_get_flags(b,BN_FLG_STATIC_DATA)) | ||
| 1050 | { | ||
| 1051 | BIGNUM *tmp_bn = (BIGNUM *)b; | ||
| 1052 | if (bn_wexpand(tmp_bn,al) == NULL) goto err; | ||
| 1053 | tmp_bn->d[bl]=0; | ||
| 684 | bl++; | 1054 | bl++; |
| 685 | i--; | 1055 | i--; |
| 686 | } | 1056 | } |
| 687 | else if (i == -1 && !BN_get_flags(a,BN_FLG_STATIC_DATA) && al<a->dmax) | 1057 | else if (i == -1 && !BN_get_flags(a,BN_FLG_STATIC_DATA)) |
| 688 | { | 1058 | { |
| 689 | #if 0 /* tribute to const-ification, al<a->dmax above covers for this */ | 1059 | BIGNUM *tmp_bn = (BIGNUM *)a; |
| 690 | if (bn_wexpand(a,bl) == NULL) goto err; | 1060 | if (bn_wexpand(tmp_bn,bl) == NULL) goto err; |
| 691 | #endif | 1061 | tmp_bn->d[al]=0; |
| 692 | a->d[al]=0; | ||
| 693 | al++; | 1062 | al++; |
| 694 | i++; | 1063 | i++; |
| 695 | } | 1064 | } |
| @@ -706,26 +1075,17 @@ int BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) | |||
| 706 | if (bn_wexpand(t,k*2) == NULL) goto err; | 1075 | if (bn_wexpand(t,k*2) == NULL) goto err; |
| 707 | if (bn_wexpand(rr,k*2) == NULL) goto err; | 1076 | if (bn_wexpand(rr,k*2) == NULL) goto err; |
| 708 | bn_mul_recursive(rr->d,a->d,b->d,al,t->d); | 1077 | bn_mul_recursive(rr->d,a->d,b->d,al,t->d); |
| 709 | rr->top=top; | ||
| 710 | goto end; | ||
| 711 | } | 1078 | } |
| 712 | #if 0 /* tribute to const-ification, rsa/dsa performance is not affected */ | ||
| 713 | else | 1079 | else |
| 714 | { | 1080 | { |
| 715 | if (bn_wexpand(a,k) == NULL ) goto err; | 1081 | if (bn_wexpand(t,k*4) == NULL) goto err; |
| 716 | if (bn_wexpand(b,k) == NULL ) goto err; | 1082 | if (bn_wexpand(rr,k*4) == NULL) goto err; |
| 717 | if (bn_wexpand(t,k*4) == NULL ) goto err; | ||
| 718 | if (bn_wexpand(rr,k*4) == NULL ) goto err; | ||
| 719 | for (i=a->top; i<k; i++) | ||
| 720 | a->d[i]=0; | ||
| 721 | for (i=b->top; i<k; i++) | ||
| 722 | b->d[i]=0; | ||
| 723 | bn_mul_part_recursive(rr->d,a->d,b->d,al-j,j,t->d); | 1083 | bn_mul_part_recursive(rr->d,a->d,b->d,al-j,j,t->d); |
| 724 | } | 1084 | } |
| 725 | rr->top=top; | 1085 | rr->top=top; |
| 726 | goto end; | 1086 | goto end; |
| 727 | #endif | ||
| 728 | } | 1087 | } |
| 1088 | #endif | ||
| 729 | } | 1089 | } |
| 730 | #endif /* BN_RECURSION */ | 1090 | #endif /* BN_RECURSION */ |
| 731 | if (bn_wexpand(rr,top) == NULL) goto err; | 1091 | if (bn_wexpand(rr,top) == NULL) goto err; |
| @@ -735,10 +1095,11 @@ int BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) | |||
| 735 | #if defined(BN_MUL_COMBA) || defined(BN_RECURSION) | 1095 | #if defined(BN_MUL_COMBA) || defined(BN_RECURSION) |
| 736 | end: | 1096 | end: |
| 737 | #endif | 1097 | #endif |
| 738 | bn_fix_top(rr); | 1098 | bn_correct_top(rr); |
| 739 | if (r != rr) BN_copy(r,rr); | 1099 | if (r != rr) BN_copy(r,rr); |
| 740 | ret=1; | 1100 | ret=1; |
| 741 | err: | 1101 | err: |
| 1102 | bn_check_top(r); | ||
| 742 | BN_CTX_end(ctx); | 1103 | BN_CTX_end(ctx); |
| 743 | return(ret); | 1104 | return(ret); |
| 744 | } | 1105 | } |
| @@ -748,7 +1109,7 @@ void bn_mul_normal(BN_ULONG *r, BN_ULONG *a, int na, BN_ULONG *b, int nb) | |||
| 748 | BN_ULONG *rr; | 1109 | BN_ULONG *rr; |
| 749 | 1110 | ||
| 750 | #ifdef BN_COUNT | 1111 | #ifdef BN_COUNT |
| 751 | printf(" bn_mul_normal %d * %d\n",na,nb); | 1112 | fprintf(stderr," bn_mul_normal %d * %d\n",na,nb); |
| 752 | #endif | 1113 | #endif |
| 753 | 1114 | ||
| 754 | if (na < nb) | 1115 | if (na < nb) |
| @@ -761,7 +1122,13 @@ void bn_mul_normal(BN_ULONG *r, BN_ULONG *a, int na, BN_ULONG *b, int nb) | |||
| 761 | 1122 | ||
| 762 | } | 1123 | } |
| 763 | rr= &(r[na]); | 1124 | rr= &(r[na]); |
| 764 | rr[0]=bn_mul_words(r,a,na,b[0]); | 1125 | if (nb <= 0) |
| 1126 | { | ||
| 1127 | (void)bn_mul_words(r,a,na,0); | ||
| 1128 | return; | ||
| 1129 | } | ||
| 1130 | else | ||
| 1131 | rr[0]=bn_mul_words(r,a,na,b[0]); | ||
| 765 | 1132 | ||
| 766 | for (;;) | 1133 | for (;;) |
| 767 | { | 1134 | { |
| @@ -782,7 +1149,7 @@ void bn_mul_normal(BN_ULONG *r, BN_ULONG *a, int na, BN_ULONG *b, int nb) | |||
| 782 | void bn_mul_low_normal(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n) | 1149 | void bn_mul_low_normal(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n) |
| 783 | { | 1150 | { |
| 784 | #ifdef BN_COUNT | 1151 | #ifdef BN_COUNT |
| 785 | printf(" bn_mul_low_normal %d * %d\n",n,n); | 1152 | fprintf(stderr," bn_mul_low_normal %d * %d\n",n,n); |
| 786 | #endif | 1153 | #endif |
| 787 | bn_mul_words(r,a,n,b[0]); | 1154 | bn_mul_words(r,a,n,b[0]); |
| 788 | 1155 | ||
