diff options
Diffstat (limited to 'src/lib/libcrypto/bn/bn_mul.c')
| -rw-r--r-- | src/lib/libcrypto/bn/bn_mul.c | 423 |
1 files changed, 1 insertions, 422 deletions
diff --git a/src/lib/libcrypto/bn/bn_mul.c b/src/lib/libcrypto/bn/bn_mul.c index fe3f29617f..118e8cddc5 100644 --- a/src/lib/libcrypto/bn/bn_mul.c +++ b/src/lib/libcrypto/bn/bn_mul.c | |||
| @@ -1,4 +1,4 @@ | |||
| 1 | /* $OpenBSD: bn_mul.c,v 1.36 2023/03/30 14:28:56 tb Exp $ */ | 1 | /* $OpenBSD: bn_mul.c,v 1.37 2023/04/19 10:51:22 jsing Exp $ */ |
| 2 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) | 2 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) |
| 3 | * All rights reserved. | 3 | * All rights reserved. |
| 4 | * | 4 | * |
| @@ -313,323 +313,8 @@ bn_mul_normal(BN_ULONG *r, BN_ULONG *a, int na, BN_ULONG *b, int nb) | |||
| 313 | } | 313 | } |
| 314 | } | 314 | } |
| 315 | 315 | ||
| 316 | #ifdef BN_RECURSION | ||
| 317 | /* Karatsuba recursive multiplication algorithm | ||
| 318 | * (cf. Knuth, The Art of Computer Programming, Vol. 2) */ | ||
| 319 | |||
| 320 | /* r is 2*n2 words in size, | ||
| 321 | * a and b are both n2 words in size. | ||
| 322 | * n2 must be a power of 2. | ||
| 323 | * We multiply and return the result. | ||
| 324 | * t must be 2*n2 words in size | ||
| 325 | * We calculate | ||
| 326 | * a[0]*b[0] | ||
| 327 | * a[0]*b[0]+a[1]*b[1]+(a[0]-a[1])*(b[1]-b[0]) | ||
| 328 | * a[1]*b[1] | ||
| 329 | */ | ||
| 330 | /* dnX may not be positive, but n2/2+dnX has to be */ | ||
| 331 | void | ||
| 332 | bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2, int dna, | ||
| 333 | int dnb, BN_ULONG *t) | ||
| 334 | { | ||
| 335 | int n = n2 / 2, c1, c2; | ||
| 336 | int tna = n + dna, tnb = n + dnb; | ||
| 337 | unsigned int neg, zero; | ||
| 338 | BN_ULONG ln, lo, *p; | ||
| 339 | |||
| 340 | # ifdef BN_MUL_COMBA | ||
| 341 | # if 0 | ||
| 342 | if (n2 == 4) { | ||
| 343 | bn_mul_comba4(r, a, b); | ||
| 344 | return; | ||
| 345 | } | ||
| 346 | # endif | ||
| 347 | /* Only call bn_mul_comba 8 if n2 == 8 and the | ||
| 348 | * two arrays are complete [steve] | ||
| 349 | */ | ||
| 350 | if (n2 == 8 && dna == 0 && dnb == 0) { | ||
| 351 | bn_mul_comba8(r, a, b); | ||
| 352 | return; | ||
| 353 | } | ||
| 354 | # endif /* BN_MUL_COMBA */ | ||
| 355 | /* Else do normal multiply */ | ||
| 356 | if (n2 < BN_MUL_RECURSIVE_SIZE_NORMAL) { | ||
| 357 | bn_mul_normal(r, a, n2 + dna, b, n2 + dnb); | ||
| 358 | if ((dna + dnb) < 0) | ||
| 359 | memset(&r[2*n2 + dna + dnb], 0, | ||
| 360 | sizeof(BN_ULONG) * -(dna + dnb)); | ||
| 361 | return; | ||
| 362 | } | ||
| 363 | /* r=(a[0]-a[1])*(b[1]-b[0]) */ | ||
| 364 | c1 = bn_cmp_part_words(a, &(a[n]), tna, n - tna); | ||
| 365 | c2 = bn_cmp_part_words(&(b[n]), b,tnb, tnb - n); | ||
| 366 | zero = neg = 0; | ||
| 367 | switch (c1 * 3 + c2) { | ||
| 368 | case -4: | ||
| 369 | bn_sub(t, n, &a[n], tna, a, n); /* - */ | ||
| 370 | bn_sub(&t[n], n, b, n, &b[n], tnb); /* - */ | ||
| 371 | break; | ||
| 372 | case -3: | ||
| 373 | zero = 1; | ||
| 374 | break; | ||
| 375 | case -2: | ||
| 376 | bn_sub(t, n, &a[n], tna, a, n); /* - */ | ||
| 377 | bn_sub(&t[n], n, &b[n], tnb, b, n); /* + */ | ||
| 378 | neg = 1; | ||
| 379 | break; | ||
| 380 | case -1: | ||
| 381 | case 0: | ||
| 382 | case 1: | ||
| 383 | zero = 1; | ||
| 384 | break; | ||
| 385 | case 2: | ||
| 386 | bn_sub(t, n, a, n, &a[n], tna); /* + */ | ||
| 387 | bn_sub(&t[n], n, b, n, &b[n], tnb); /* - */ | ||
| 388 | neg = 1; | ||
| 389 | break; | ||
| 390 | case 3: | ||
| 391 | zero = 1; | ||
| 392 | break; | ||
| 393 | case 4: | ||
| 394 | bn_sub(t, n, a, n, &a[n], tna); | ||
| 395 | bn_sub(&t[n], n, &b[n], tnb, b, n); | ||
| 396 | break; | ||
| 397 | } | ||
| 398 | |||
| 399 | # ifdef BN_MUL_COMBA | ||
| 400 | if (n == 4 && dna == 0 && dnb == 0) /* XXX: bn_mul_comba4 could take | ||
| 401 | extra args to do this well */ | ||
| 402 | { | ||
| 403 | if (!zero) | ||
| 404 | bn_mul_comba4(&(t[n2]), t, &(t[n])); | ||
| 405 | else | ||
| 406 | memset(&(t[n2]), 0, 8 * sizeof(BN_ULONG)); | ||
| 407 | |||
| 408 | bn_mul_comba4(r, a, b); | ||
| 409 | bn_mul_comba4(&(r[n2]), &(a[n]), &(b[n])); | ||
| 410 | } else if (n == 8 && dna == 0 && dnb == 0) /* XXX: bn_mul_comba8 could | ||
| 411 | take extra args to do this | ||
| 412 | well */ | ||
| 413 | { | ||
| 414 | if (!zero) | ||
| 415 | bn_mul_comba8(&(t[n2]), t, &(t[n])); | ||
| 416 | else | ||
| 417 | memset(&(t[n2]), 0, 16 * sizeof(BN_ULONG)); | ||
| 418 | |||
| 419 | bn_mul_comba8(r, a, b); | ||
| 420 | bn_mul_comba8(&(r[n2]), &(a[n]), &(b[n])); | ||
| 421 | } else | ||
| 422 | # endif /* BN_MUL_COMBA */ | ||
| 423 | { | ||
| 424 | p = &(t[n2 * 2]); | ||
| 425 | if (!zero) | ||
| 426 | bn_mul_recursive(&(t[n2]), t, &(t[n]), n, 0, 0, p); | ||
| 427 | else | ||
| 428 | memset(&(t[n2]), 0, n2 * sizeof(BN_ULONG)); | ||
| 429 | bn_mul_recursive(r, a, b, n, 0, 0, p); | ||
| 430 | bn_mul_recursive(&(r[n2]), &(a[n]), &(b[n]), n, dna, dnb, p); | ||
| 431 | } | ||
| 432 | |||
| 433 | /* t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign | ||
| 434 | * r[10] holds (a[0]*b[0]) | ||
| 435 | * r[32] holds (b[1]*b[1]) | ||
| 436 | */ | ||
| 437 | |||
| 438 | c1 = (int)(bn_add_words(t, r, &(r[n2]), n2)); | ||
| 439 | |||
| 440 | if (neg) /* if t[32] is negative */ | ||
| 441 | { | ||
| 442 | c1 -= (int)(bn_sub_words(&(t[n2]), t, &(t[n2]), n2)); | ||
| 443 | } else { | ||
| 444 | /* Might have a carry */ | ||
| 445 | c1 += (int)(bn_add_words(&(t[n2]), &(t[n2]), t, n2)); | ||
| 446 | } | ||
| 447 | |||
| 448 | /* t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1]) | ||
| 449 | * r[10] holds (a[0]*b[0]) | ||
| 450 | * r[32] holds (b[1]*b[1]) | ||
| 451 | * c1 holds the carry bits | ||
| 452 | */ | ||
| 453 | c1 += (int)(bn_add_words(&(r[n]), &(r[n]), &(t[n2]), n2)); | ||
| 454 | if (c1) { | ||
| 455 | p = &(r[n + n2]); | ||
| 456 | lo= *p; | ||
| 457 | ln = (lo + c1) & BN_MASK2; | ||
| 458 | *p = ln; | ||
| 459 | |||
| 460 | /* The overflow will stop before we over write | ||
| 461 | * words we should not overwrite */ | ||
| 462 | if (ln < (BN_ULONG)c1) { | ||
| 463 | do { | ||
| 464 | p++; | ||
| 465 | lo= *p; | ||
| 466 | ln = (lo + 1) & BN_MASK2; | ||
| 467 | *p = ln; | ||
| 468 | } while (ln == 0); | ||
| 469 | } | ||
| 470 | } | ||
| 471 | } | ||
| 472 | |||
| 473 | /* n+tn is the word length | ||
| 474 | * t needs to be n*4 is size, as does r */ | ||
| 475 | /* tnX may not be negative but less than n */ | ||
| 476 | void | ||
| 477 | bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n, int tna, | ||
| 478 | int tnb, BN_ULONG *t) | ||
| 479 | { | ||
| 480 | int i, j, n2 = n * 2; | ||
| 481 | int c1, c2, neg; | ||
| 482 | BN_ULONG ln, lo, *p; | ||
| 483 | |||
| 484 | if (n < 8) { | ||
| 485 | bn_mul_normal(r, a, n + tna, b, n + tnb); | ||
| 486 | return; | ||
| 487 | } | ||
| 488 | |||
| 489 | /* r=(a[0]-a[1])*(b[1]-b[0]) */ | ||
| 490 | c1 = bn_cmp_part_words(a, &(a[n]), tna, n - tna); | ||
| 491 | c2 = bn_cmp_part_words(&(b[n]), b, tnb, tnb - n); | ||
| 492 | neg = 0; | ||
| 493 | switch (c1 * 3 + c2) { | ||
| 494 | case -4: | ||
| 495 | bn_sub(t, n, &a[n], tna, a, n); /* - */ | ||
| 496 | bn_sub(&t[n], n, b, n, &b[n], tnb); /* - */ | ||
| 497 | break; | ||
| 498 | case -3: | ||
| 499 | /* break; */ | ||
| 500 | case -2: | ||
| 501 | bn_sub(t, n, &a[n], tna, a, n); /* - */ | ||
| 502 | bn_sub(&t[n], n, &b[n], tnb, b, n); /* + */ | ||
| 503 | neg = 1; | ||
| 504 | break; | ||
| 505 | case -1: | ||
| 506 | case 0: | ||
| 507 | case 1: | ||
| 508 | /* break; */ | ||
| 509 | case 2: | ||
| 510 | bn_sub(t, n, a, n, &a[n], tna); /* + */ | ||
| 511 | bn_sub(&t[n], n, b, n, &b[n], tnb); /* - */ | ||
| 512 | neg = 1; | ||
| 513 | break; | ||
| 514 | case 3: | ||
| 515 | /* break; */ | ||
| 516 | case 4: | ||
| 517 | bn_sub(t, n, a, n, &a[n], tna); | ||
| 518 | bn_sub(&t[n], n, &b[n], tnb, b, n); | ||
| 519 | break; | ||
| 520 | } | ||
| 521 | /* The zero case isn't yet implemented here. The speedup | ||
| 522 | would probably be negligible. */ | ||
| 523 | # if 0 | ||
| 524 | if (n == 4) { | ||
| 525 | bn_mul_comba4(&(t[n2]), t, &(t[n])); | ||
| 526 | bn_mul_comba4(r, a, b); | ||
| 527 | bn_mul_normal(&(r[n2]), &(a[n]), tn, &(b[n]), tn); | ||
| 528 | memset(&(r[n2 + tn * 2]), 0, sizeof(BN_ULONG) * (n2 - tn * 2)); | ||
| 529 | } else | ||
| 530 | # endif | ||
| 531 | if (n == 8) { | ||
| 532 | bn_mul_comba8(&(t[n2]), t, &(t[n])); | ||
| 533 | bn_mul_comba8(r, a, b); | ||
| 534 | bn_mul_normal(&(r[n2]), &(a[n]), tna, &(b[n]), tnb); | ||
| 535 | memset(&(r[n2 + tna + tnb]), 0, | ||
| 536 | sizeof(BN_ULONG) * (n2 - tna - tnb)); | ||
| 537 | } else { | ||
| 538 | p = &(t[n2*2]); | ||
| 539 | bn_mul_recursive(&(t[n2]), t, &(t[n]), n, 0, 0, p); | ||
| 540 | bn_mul_recursive(r, a, b, n, 0, 0, p); | ||
| 541 | i = n / 2; | ||
| 542 | /* If there is only a bottom half to the number, | ||
| 543 | * just do it */ | ||
| 544 | if (tna > tnb) | ||
| 545 | j = tna - i; | ||
| 546 | else | ||
| 547 | j = tnb - i; | ||
| 548 | if (j == 0) { | ||
| 549 | bn_mul_recursive(&(r[n2]), &(a[n]), &(b[n]), | ||
| 550 | i, tna - i, tnb - i, p); | ||
| 551 | memset(&(r[n2 + i * 2]), 0, | ||
| 552 | sizeof(BN_ULONG) * (n2 - i * 2)); | ||
| 553 | } | ||
| 554 | else if (j > 0) /* eg, n == 16, i == 8 and tn == 11 */ | ||
| 555 | { | ||
| 556 | bn_mul_part_recursive(&(r[n2]), &(a[n]), &(b[n]), | ||
| 557 | i, tna - i, tnb - i, p); | ||
| 558 | memset(&(r[n2 + tna + tnb]), 0, | ||
| 559 | sizeof(BN_ULONG) * (n2 - tna - tnb)); | ||
| 560 | } | ||
| 561 | else /* (j < 0) eg, n == 16, i == 8 and tn == 5 */ | ||
| 562 | { | ||
| 563 | memset(&(r[n2]), 0, sizeof(BN_ULONG) * n2); | ||
| 564 | if (tna < BN_MUL_RECURSIVE_SIZE_NORMAL && | ||
| 565 | tnb < BN_MUL_RECURSIVE_SIZE_NORMAL) { | ||
| 566 | bn_mul_normal(&(r[n2]), &(a[n]), tna, | ||
| 567 | &(b[n]), tnb); | ||
| 568 | } else { | ||
| 569 | for (;;) { | ||
| 570 | i /= 2; | ||
| 571 | /* these simplified conditions work | ||
| 572 | * exclusively because difference | ||
| 573 | * between tna and tnb is 1 or 0 */ | ||
| 574 | if (i < tna || i < tnb) { | ||
| 575 | bn_mul_part_recursive(&(r[n2]), | ||
| 576 | &(a[n]), &(b[n]), i, | ||
| 577 | tna - i, tnb - i, p); | ||
| 578 | break; | ||
| 579 | } else if (i == tna || i == tnb) { | ||
| 580 | bn_mul_recursive(&(r[n2]), | ||
| 581 | &(a[n]), &(b[n]), i, | ||
| 582 | tna - i, tnb - i, p); | ||
| 583 | break; | ||
| 584 | } | ||
| 585 | } | ||
| 586 | } | ||
| 587 | } | ||
| 588 | } | ||
| 589 | |||
| 590 | /* t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign | ||
| 591 | * r[10] holds (a[0]*b[0]) | ||
| 592 | * r[32] holds (b[1]*b[1]) | ||
| 593 | */ | ||
| 594 | |||
| 595 | c1 = (int)(bn_add_words(t, r,&(r[n2]), n2)); | ||
| 596 | |||
| 597 | if (neg) /* if t[32] is negative */ | ||
| 598 | { | ||
| 599 | c1 -= (int)(bn_sub_words(&(t[n2]), t,&(t[n2]), n2)); | ||
| 600 | } else { | ||
| 601 | /* Might have a carry */ | ||
| 602 | c1 += (int)(bn_add_words(&(t[n2]), &(t[n2]), t, n2)); | ||
| 603 | } | ||
| 604 | |||
| 605 | /* t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1]) | ||
| 606 | * r[10] holds (a[0]*b[0]) | ||
| 607 | * r[32] holds (b[1]*b[1]) | ||
| 608 | * c1 holds the carry bits | ||
| 609 | */ | ||
| 610 | c1 += (int)(bn_add_words(&(r[n]), &(r[n]), &(t[n2]), n2)); | ||
| 611 | if (c1) { | ||
| 612 | p = &(r[n + n2]); | ||
| 613 | lo= *p; | ||
| 614 | ln = (lo + c1)&BN_MASK2; | ||
| 615 | *p = ln; | ||
| 616 | |||
| 617 | /* The overflow will stop before we over write | ||
| 618 | * words we should not overwrite */ | ||
| 619 | if (ln < (BN_ULONG)c1) { | ||
| 620 | do { | ||
| 621 | p++; | ||
| 622 | lo= *p; | ||
| 623 | ln = (lo + 1) & BN_MASK2; | ||
| 624 | *p = ln; | ||
| 625 | } while (ln == 0); | ||
| 626 | } | ||
| 627 | } | ||
| 628 | } | ||
| 629 | #endif /* BN_RECURSION */ | ||
| 630 | 316 | ||
| 631 | #ifndef HAVE_BN_MUL | 317 | #ifndef HAVE_BN_MUL |
| 632 | #ifndef BN_RECURSION | ||
| 633 | int | 318 | int |
| 634 | bn_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, int rn, BN_CTX *ctx) | 319 | bn_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, int rn, BN_CTX *ctx) |
| 635 | { | 320 | { |
| @@ -638,112 +323,6 @@ bn_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, int rn, BN_CTX *ctx) | |||
| 638 | return 1; | 323 | return 1; |
| 639 | } | 324 | } |
| 640 | 325 | ||
| 641 | #else /* BN_RECURSION */ | ||
| 642 | int | ||
| 643 | bn_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, int rn, BN_CTX *ctx) | ||
| 644 | { | ||
| 645 | BIGNUM *t = NULL; | ||
| 646 | int al, bl, i, k; | ||
| 647 | int j = 0; | ||
| 648 | int ret = 0; | ||
| 649 | |||
| 650 | BN_CTX_start(ctx); | ||
| 651 | |||
| 652 | al = a->top; | ||
| 653 | bl = b->top; | ||
| 654 | |||
| 655 | i = al - bl; | ||
| 656 | |||
| 657 | if ((al >= BN_MULL_SIZE_NORMAL) && (bl >= BN_MULL_SIZE_NORMAL)) { | ||
| 658 | if (i >= -1 && i <= 1) { | ||
| 659 | /* Find out the power of two lower or equal | ||
| 660 | to the longest of the two numbers */ | ||
| 661 | if (i >= 0) { | ||
| 662 | j = BN_num_bits_word((BN_ULONG)al); | ||
| 663 | } | ||
| 664 | if (i == -1) { | ||
| 665 | j = BN_num_bits_word((BN_ULONG)bl); | ||
| 666 | } | ||
| 667 | j = 1 << (j - 1); | ||
| 668 | assert(j <= al || j <= bl); | ||
| 669 | k = j + j; | ||
| 670 | if ((t = BN_CTX_get(ctx)) == NULL) | ||
| 671 | goto err; | ||
| 672 | if (al > j || bl > j) { | ||
| 673 | if (!bn_wexpand(t, k * 4)) | ||
| 674 | goto err; | ||
| 675 | if (!bn_wexpand(r, k * 4)) | ||
| 676 | goto err; | ||
| 677 | bn_mul_part_recursive(r->d, a->d, b->d, | ||
| 678 | j, al - j, bl - j, t->d); | ||
| 679 | } | ||
| 680 | else /* al <= j || bl <= j */ | ||
| 681 | { | ||
| 682 | if (!bn_wexpand(t, k * 2)) | ||
| 683 | goto err; | ||
| 684 | if (!bn_wexpand(r, k * 2)) | ||
| 685 | goto err; | ||
| 686 | bn_mul_recursive(r->d, a->d, b->d, | ||
| 687 | j, al - j, bl - j, t->d); | ||
| 688 | } | ||
| 689 | r->top = rn; | ||
| 690 | goto end; | ||
| 691 | } | ||
| 692 | #if 0 | ||
| 693 | if (i == 1 && !BN_get_flags(b, BN_FLG_STATIC_DATA)) { | ||
| 694 | BIGNUM *tmp_bn = (BIGNUM *)b; | ||
| 695 | if (!bn_wexpand(tmp_bn, al)) | ||
| 696 | goto err; | ||
| 697 | tmp_bn->d[bl] = 0; | ||
| 698 | bl++; | ||
| 699 | i--; | ||
| 700 | } else if (i == -1 && !BN_get_flags(a, BN_FLG_STATIC_DATA)) { | ||
| 701 | BIGNUM *tmp_bn = (BIGNUM *)a; | ||
| 702 | if (!bn_wexpand(tmp_bn, bl)) | ||
| 703 | goto err; | ||
| 704 | tmp_bn->d[al] = 0; | ||
| 705 | al++; | ||
| 706 | i++; | ||
| 707 | } | ||
| 708 | if (i == 0) { | ||
| 709 | /* symmetric and > 4 */ | ||
| 710 | /* 16 or larger */ | ||
| 711 | j = BN_num_bits_word((BN_ULONG)al); | ||
| 712 | j = 1 << (j - 1); | ||
| 713 | k = j + j; | ||
| 714 | if ((t = BN_CTX_get(ctx)) == NULL) | ||
| 715 | goto err; | ||
| 716 | if (al == j) /* exact multiple */ | ||
| 717 | { | ||
| 718 | if (!bn_wexpand(t, k * 2)) | ||
| 719 | goto err; | ||
| 720 | if (!bn_wexpand(r, k * 2)) | ||
| 721 | goto err; | ||
| 722 | bn_mul_recursive(r->d, a->d, b->d, al, t->d); | ||
| 723 | } else { | ||
| 724 | if (!bn_wexpand(t, k * 4)) | ||
| 725 | goto err; | ||
| 726 | if (!bn_wexpand(r, k * 4)) | ||
| 727 | goto err; | ||
| 728 | bn_mul_part_recursive(r->d, a->d, b->d, | ||
| 729 | al - j, j, t->d); | ||
| 730 | } | ||
| 731 | r->top = top; | ||
| 732 | goto end; | ||
| 733 | } | ||
| 734 | #endif | ||
| 735 | } | ||
| 736 | |||
| 737 | bn_mul_normal(r->d, a->d, al, b->d, bl); | ||
| 738 | |||
| 739 | end: | ||
| 740 | ret = 1; | ||
| 741 | err: | ||
| 742 | BN_CTX_end(ctx); | ||
| 743 | |||
| 744 | return ret; | ||
| 745 | } | ||
| 746 | #endif /* BN_RECURSION */ | ||
| 747 | #endif /* HAVE_BN_MUL */ | 326 | #endif /* HAVE_BN_MUL */ |
| 748 | 327 | ||
| 749 | int | 328 | int |
