summaryrefslogtreecommitdiff
path: root/src/lib/libcrypto/bn/bn_mul.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/lib/libcrypto/bn/bn_mul.c')
-rw-r--r--src/lib/libcrypto/bn/bn_mul.c539
1 files changed, 453 insertions, 86 deletions
diff --git a/src/lib/libcrypto/bn/bn_mul.c b/src/lib/libcrypto/bn/bn_mul.c
index 3ae3822bc2..b848c8cc60 100644
--- a/src/lib/libcrypto/bn/bn_mul.c
+++ b/src/lib/libcrypto/bn/bn_mul.c
@@ -56,10 +56,325 @@
56 * [including the GNU Public Licence.] 56 * [including the GNU Public Licence.]
57 */ 57 */
58 58
59#ifndef BN_DEBUG
60# undef NDEBUG /* avoid conflicting definitions */
61# define NDEBUG
62#endif
63
59#include <stdio.h> 64#include <stdio.h>
65#include <assert.h>
60#include "cryptlib.h" 66#include "cryptlib.h"
61#include "bn_lcl.h" 67#include "bn_lcl.h"
62 68
69#if defined(OPENSSL_NO_ASM) || !defined(OPENSSL_BN_ASM_PART_WORDS)
70/* Here follows specialised variants of bn_add_words() and
71 bn_sub_words(). They have the property performing operations on
72 arrays of different sizes. The sizes of those arrays is expressed through
73 cl, which is the common length ( basicall, min(len(a),len(b)) ), and dl,
74 which is the delta between the two lengths, calculated as len(a)-len(b).
75 All lengths are the number of BN_ULONGs... For the operations that require
76 a result array as parameter, it must have the length cl+abs(dl).
77 These functions should probably end up in bn_asm.c as soon as there are
78 assembler counterparts for the systems that use assembler files. */
79
80BN_ULONG bn_sub_part_words(BN_ULONG *r,
81 const BN_ULONG *a, const BN_ULONG *b,
82 int cl, int dl)
83 {
84 BN_ULONG c, t;
85
86 assert(cl >= 0);
87 c = bn_sub_words(r, a, b, cl);
88
89 if (dl == 0)
90 return c;
91
92 r += cl;
93 a += cl;
94 b += cl;
95
96 if (dl < 0)
97 {
98#ifdef BN_COUNT
99 fprintf(stderr, " bn_sub_part_words %d + %d (dl < 0, c = %d)\n", cl, dl, c);
100#endif
101 for (;;)
102 {
103 t = b[0];
104 r[0] = (0-t-c)&BN_MASK2;
105 if (t != 0) c=1;
106 if (++dl >= 0) break;
107
108 t = b[1];
109 r[1] = (0-t-c)&BN_MASK2;
110 if (t != 0) c=1;
111 if (++dl >= 0) break;
112
113 t = b[2];
114 r[2] = (0-t-c)&BN_MASK2;
115 if (t != 0) c=1;
116 if (++dl >= 0) break;
117
118 t = b[3];
119 r[3] = (0-t-c)&BN_MASK2;
120 if (t != 0) c=1;
121 if (++dl >= 0) break;
122
123 b += 4;
124 r += 4;
125 }
126 }
127 else
128 {
129 int save_dl = dl;
130#ifdef BN_COUNT
131 fprintf(stderr, " bn_sub_part_words %d + %d (dl > 0, c = %d)\n", cl, dl, c);
132#endif
133 while(c)
134 {
135 t = a[0];
136 r[0] = (t-c)&BN_MASK2;
137 if (t != 0) c=0;
138 if (--dl <= 0) break;
139
140 t = a[1];
141 r[1] = (t-c)&BN_MASK2;
142 if (t != 0) c=0;
143 if (--dl <= 0) break;
144
145 t = a[2];
146 r[2] = (t-c)&BN_MASK2;
147 if (t != 0) c=0;
148 if (--dl <= 0) break;
149
150 t = a[3];
151 r[3] = (t-c)&BN_MASK2;
152 if (t != 0) c=0;
153 if (--dl <= 0) break;
154
155 save_dl = dl;
156 a += 4;
157 r += 4;
158 }
159 if (dl > 0)
160 {
161#ifdef BN_COUNT
162 fprintf(stderr, " bn_sub_part_words %d + %d (dl > 0, c == 0)\n", cl, dl);
163#endif
164 if (save_dl > dl)
165 {
166 switch (save_dl - dl)
167 {
168 case 1:
169 r[1] = a[1];
170 if (--dl <= 0) break;
171 case 2:
172 r[2] = a[2];
173 if (--dl <= 0) break;
174 case 3:
175 r[3] = a[3];
176 if (--dl <= 0) break;
177 }
178 a += 4;
179 r += 4;
180 }
181 }
182 if (dl > 0)
183 {
184#ifdef BN_COUNT
185 fprintf(stderr, " bn_sub_part_words %d + %d (dl > 0, copy)\n", cl, dl);
186#endif
187 for(;;)
188 {
189 r[0] = a[0];
190 if (--dl <= 0) break;
191 r[1] = a[1];
192 if (--dl <= 0) break;
193 r[2] = a[2];
194 if (--dl <= 0) break;
195 r[3] = a[3];
196 if (--dl <= 0) break;
197
198 a += 4;
199 r += 4;
200 }
201 }
202 }
203 return c;
204 }
205#endif
206
207BN_ULONG bn_add_part_words(BN_ULONG *r,
208 const BN_ULONG *a, const BN_ULONG *b,
209 int cl, int dl)
210 {
211 BN_ULONG c, l, t;
212
213 assert(cl >= 0);
214 c = bn_add_words(r, a, b, cl);
215
216 if (dl == 0)
217 return c;
218
219 r += cl;
220 a += cl;
221 b += cl;
222
223 if (dl < 0)
224 {
225 int save_dl = dl;
226#ifdef BN_COUNT
227 fprintf(stderr, " bn_add_part_words %d + %d (dl < 0, c = %d)\n", cl, dl, c);
228#endif
229 while (c)
230 {
231 l=(c+b[0])&BN_MASK2;
232 c=(l < c);
233 r[0]=l;
234 if (++dl >= 0) break;
235
236 l=(c+b[1])&BN_MASK2;
237 c=(l < c);
238 r[1]=l;
239 if (++dl >= 0) break;
240
241 l=(c+b[2])&BN_MASK2;
242 c=(l < c);
243 r[2]=l;
244 if (++dl >= 0) break;
245
246 l=(c+b[3])&BN_MASK2;
247 c=(l < c);
248 r[3]=l;
249 if (++dl >= 0) break;
250
251 save_dl = dl;
252 b+=4;
253 r+=4;
254 }
255 if (dl < 0)
256 {
257#ifdef BN_COUNT
258 fprintf(stderr, " bn_add_part_words %d + %d (dl < 0, c == 0)\n", cl, dl);
259#endif
260 if (save_dl < dl)
261 {
262 switch (dl - save_dl)
263 {
264 case 1:
265 r[1] = b[1];
266 if (++dl >= 0) break;
267 case 2:
268 r[2] = b[2];
269 if (++dl >= 0) break;
270 case 3:
271 r[3] = b[3];
272 if (++dl >= 0) break;
273 }
274 b += 4;
275 r += 4;
276 }
277 }
278 if (dl < 0)
279 {
280#ifdef BN_COUNT
281 fprintf(stderr, " bn_add_part_words %d + %d (dl < 0, copy)\n", cl, dl);
282#endif
283 for(;;)
284 {
285 r[0] = b[0];
286 if (++dl >= 0) break;
287 r[1] = b[1];
288 if (++dl >= 0) break;
289 r[2] = b[2];
290 if (++dl >= 0) break;
291 r[3] = b[3];
292 if (++dl >= 0) break;
293
294 b += 4;
295 r += 4;
296 }
297 }
298 }
299 else
300 {
301 int save_dl = dl;
302#ifdef BN_COUNT
303 fprintf(stderr, " bn_add_part_words %d + %d (dl > 0)\n", cl, dl);
304#endif
305 while (c)
306 {
307 t=(a[0]+c)&BN_MASK2;
308 c=(t < c);
309 r[0]=t;
310 if (--dl <= 0) break;
311
312 t=(a[1]+c)&BN_MASK2;
313 c=(t < c);
314 r[1]=t;
315 if (--dl <= 0) break;
316
317 t=(a[2]+c)&BN_MASK2;
318 c=(t < c);
319 r[2]=t;
320 if (--dl <= 0) break;
321
322 t=(a[3]+c)&BN_MASK2;
323 c=(t < c);
324 r[3]=t;
325 if (--dl <= 0) break;
326
327 save_dl = dl;
328 a+=4;
329 r+=4;
330 }
331#ifdef BN_COUNT
332 fprintf(stderr, " bn_add_part_words %d + %d (dl > 0, c == 0)\n", cl, dl);
333#endif
334 if (dl > 0)
335 {
336 if (save_dl > dl)
337 {
338 switch (save_dl - dl)
339 {
340 case 1:
341 r[1] = a[1];
342 if (--dl <= 0) break;
343 case 2:
344 r[2] = a[2];
345 if (--dl <= 0) break;
346 case 3:
347 r[3] = a[3];
348 if (--dl <= 0) break;
349 }
350 a += 4;
351 r += 4;
352 }
353 }
354 if (dl > 0)
355 {
356#ifdef BN_COUNT
357 fprintf(stderr, " bn_add_part_words %d + %d (dl > 0, copy)\n", cl, dl);
358#endif
359 for(;;)
360 {
361 r[0] = a[0];
362 if (--dl <= 0) break;
363 r[1] = a[1];
364 if (--dl <= 0) break;
365 r[2] = a[2];
366 if (--dl <= 0) break;
367 r[3] = a[3];
368 if (--dl <= 0) break;
369
370 a += 4;
371 r += 4;
372 }
373 }
374 }
375 return c;
376 }
377
63#ifdef BN_RECURSION 378#ifdef BN_RECURSION
64/* Karatsuba recursive multiplication algorithm 379/* Karatsuba recursive multiplication algorithm
65 * (cf. Knuth, The Art of Computer Programming, Vol. 2) */ 380 * (cf. Knuth, The Art of Computer Programming, Vol. 2) */
@@ -74,15 +389,17 @@
74 * a[0]*b[0]+a[1]*b[1]+(a[0]-a[1])*(b[1]-b[0]) 389 * a[0]*b[0]+a[1]*b[1]+(a[0]-a[1])*(b[1]-b[0])
75 * a[1]*b[1] 390 * a[1]*b[1]
76 */ 391 */
392/* dnX may not be positive, but n2/2+dnX has to be */
77void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2, 393void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
78 BN_ULONG *t) 394 int dna, int dnb, BN_ULONG *t)
79 { 395 {
80 int n=n2/2,c1,c2; 396 int n=n2/2,c1,c2;
397 int tna=n+dna, tnb=n+dnb;
81 unsigned int neg,zero; 398 unsigned int neg,zero;
82 BN_ULONG ln,lo,*p; 399 BN_ULONG ln,lo,*p;
83 400
84# ifdef BN_COUNT 401# ifdef BN_COUNT
85 printf(" bn_mul_recursive %d * %d\n",n2,n2); 402 fprintf(stderr," bn_mul_recursive %d%+d * %d%+d\n",n2,dna,n2,dnb);
86# endif 403# endif
87# ifdef BN_MUL_COMBA 404# ifdef BN_MUL_COMBA
88# if 0 405# if 0
@@ -92,34 +409,40 @@ void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
92 return; 409 return;
93 } 410 }
94# endif 411# endif
95 if (n2 == 8) 412 /* Only call bn_mul_comba 8 if n2 == 8 and the
413 * two arrays are complete [steve]
414 */
415 if (n2 == 8 && dna == 0 && dnb == 0)
96 { 416 {
97 bn_mul_comba8(r,a,b); 417 bn_mul_comba8(r,a,b);
98 return; 418 return;
99 } 419 }
100# endif /* BN_MUL_COMBA */ 420# endif /* BN_MUL_COMBA */
421 /* Else do normal multiply */
101 if (n2 < BN_MUL_RECURSIVE_SIZE_NORMAL) 422 if (n2 < BN_MUL_RECURSIVE_SIZE_NORMAL)
102 { 423 {
103 /* This should not happen */ 424 bn_mul_normal(r,a,n2+dna,b,n2+dnb);
104 bn_mul_normal(r,a,n2,b,n2); 425 if ((dna + dnb) < 0)
426 memset(&r[2*n2 + dna + dnb], 0,
427 sizeof(BN_ULONG) * -(dna + dnb));
105 return; 428 return;
106 } 429 }
107 /* r=(a[0]-a[1])*(b[1]-b[0]) */ 430 /* r=(a[0]-a[1])*(b[1]-b[0]) */
108 c1=bn_cmp_words(a,&(a[n]),n); 431 c1=bn_cmp_part_words(a,&(a[n]),tna,n-tna);
109 c2=bn_cmp_words(&(b[n]),b,n); 432 c2=bn_cmp_part_words(&(b[n]),b,tnb,tnb-n);
110 zero=neg=0; 433 zero=neg=0;
111 switch (c1*3+c2) 434 switch (c1*3+c2)
112 { 435 {
113 case -4: 436 case -4:
114 bn_sub_words(t, &(a[n]),a, n); /* - */ 437 bn_sub_part_words(t, &(a[n]),a, tna,tna-n); /* - */
115 bn_sub_words(&(t[n]),b, &(b[n]),n); /* - */ 438 bn_sub_part_words(&(t[n]),b, &(b[n]),tnb,n-tnb); /* - */
116 break; 439 break;
117 case -3: 440 case -3:
118 zero=1; 441 zero=1;
119 break; 442 break;
120 case -2: 443 case -2:
121 bn_sub_words(t, &(a[n]),a, n); /* - */ 444 bn_sub_part_words(t, &(a[n]),a, tna,tna-n); /* - */
122 bn_sub_words(&(t[n]),&(b[n]),b, n); /* + */ 445 bn_sub_part_words(&(t[n]),&(b[n]),b, tnb,tnb-n); /* + */
123 neg=1; 446 neg=1;
124 break; 447 break;
125 case -1: 448 case -1:
@@ -128,21 +451,22 @@ void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
128 zero=1; 451 zero=1;
129 break; 452 break;
130 case 2: 453 case 2:
131 bn_sub_words(t, a, &(a[n]),n); /* + */ 454 bn_sub_part_words(t, a, &(a[n]),tna,n-tna); /* + */
132 bn_sub_words(&(t[n]),b, &(b[n]),n); /* - */ 455 bn_sub_part_words(&(t[n]),b, &(b[n]),tnb,n-tnb); /* - */
133 neg=1; 456 neg=1;
134 break; 457 break;
135 case 3: 458 case 3:
136 zero=1; 459 zero=1;
137 break; 460 break;
138 case 4: 461 case 4:
139 bn_sub_words(t, a, &(a[n]),n); 462 bn_sub_part_words(t, a, &(a[n]),tna,n-tna);
140 bn_sub_words(&(t[n]),&(b[n]),b, n); 463 bn_sub_part_words(&(t[n]),&(b[n]),b, tnb,tnb-n);
141 break; 464 break;
142 } 465 }
143 466
144# ifdef BN_MUL_COMBA 467# ifdef BN_MUL_COMBA
145 if (n == 4) 468 if (n == 4 && dna == 0 && dnb == 0) /* XXX: bn_mul_comba4 could take
469 extra args to do this well */
146 { 470 {
147 if (!zero) 471 if (!zero)
148 bn_mul_comba4(&(t[n2]),t,&(t[n])); 472 bn_mul_comba4(&(t[n2]),t,&(t[n]));
@@ -152,7 +476,9 @@ void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
152 bn_mul_comba4(r,a,b); 476 bn_mul_comba4(r,a,b);
153 bn_mul_comba4(&(r[n2]),&(a[n]),&(b[n])); 477 bn_mul_comba4(&(r[n2]),&(a[n]),&(b[n]));
154 } 478 }
155 else if (n == 8) 479 else if (n == 8 && dna == 0 && dnb == 0) /* XXX: bn_mul_comba8 could
480 take extra args to do this
481 well */
156 { 482 {
157 if (!zero) 483 if (!zero)
158 bn_mul_comba8(&(t[n2]),t,&(t[n])); 484 bn_mul_comba8(&(t[n2]),t,&(t[n]));
@@ -167,11 +493,11 @@ void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
167 { 493 {
168 p= &(t[n2*2]); 494 p= &(t[n2*2]);
169 if (!zero) 495 if (!zero)
170 bn_mul_recursive(&(t[n2]),t,&(t[n]),n,p); 496 bn_mul_recursive(&(t[n2]),t,&(t[n]),n,0,0,p);
171 else 497 else
172 memset(&(t[n2]),0,n2*sizeof(BN_ULONG)); 498 memset(&(t[n2]),0,n2*sizeof(BN_ULONG));
173 bn_mul_recursive(r,a,b,n,p); 499 bn_mul_recursive(r,a,b,n,0,0,p);
174 bn_mul_recursive(&(r[n2]),&(a[n]),&(b[n]),n,p); 500 bn_mul_recursive(&(r[n2]),&(a[n]),&(b[n]),n,dna,dnb,p);
175 } 501 }
176 502
177 /* t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign 503 /* t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign
@@ -220,39 +546,40 @@ void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
220 546
221/* n+tn is the word length 547/* n+tn is the word length
222 * t needs to be n*4 is size, as does r */ 548 * t needs to be n*4 is size, as does r */
223void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int tn, 549/* tnX may not be negative but less than n */
224 int n, BN_ULONG *t) 550void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n,
551 int tna, int tnb, BN_ULONG *t)
225 { 552 {
226 int i,j,n2=n*2; 553 int i,j,n2=n*2;
227 int c1,c2,neg,zero; 554 int c1,c2,neg,zero;
228 BN_ULONG ln,lo,*p; 555 BN_ULONG ln,lo,*p;
229 556
230# ifdef BN_COUNT 557# ifdef BN_COUNT
231 printf(" bn_mul_part_recursive %d * %d\n",tn+n,tn+n); 558 fprintf(stderr," bn_mul_part_recursive (%d%+d) * (%d%+d)\n",
559 n, tna, n, tnb);
232# endif 560# endif
233 if (n < 8) 561 if (n < 8)
234 { 562 {
235 i=tn+n; 563 bn_mul_normal(r,a,n+tna,b,n+tnb);
236 bn_mul_normal(r,a,i,b,i);
237 return; 564 return;
238 } 565 }
239 566
240 /* r=(a[0]-a[1])*(b[1]-b[0]) */ 567 /* r=(a[0]-a[1])*(b[1]-b[0]) */
241 c1=bn_cmp_words(a,&(a[n]),n); 568 c1=bn_cmp_part_words(a,&(a[n]),tna,n-tna);
242 c2=bn_cmp_words(&(b[n]),b,n); 569 c2=bn_cmp_part_words(&(b[n]),b,tnb,tnb-n);
243 zero=neg=0; 570 zero=neg=0;
244 switch (c1*3+c2) 571 switch (c1*3+c2)
245 { 572 {
246 case -4: 573 case -4:
247 bn_sub_words(t, &(a[n]),a, n); /* - */ 574 bn_sub_part_words(t, &(a[n]),a, tna,tna-n); /* - */
248 bn_sub_words(&(t[n]),b, &(b[n]),n); /* - */ 575 bn_sub_part_words(&(t[n]),b, &(b[n]),tnb,n-tnb); /* - */
249 break; 576 break;
250 case -3: 577 case -3:
251 zero=1; 578 zero=1;
252 /* break; */ 579 /* break; */
253 case -2: 580 case -2:
254 bn_sub_words(t, &(a[n]),a, n); /* - */ 581 bn_sub_part_words(t, &(a[n]),a, tna,tna-n); /* - */
255 bn_sub_words(&(t[n]),&(b[n]),b, n); /* + */ 582 bn_sub_part_words(&(t[n]),&(b[n]),b, tnb,tnb-n); /* + */
256 neg=1; 583 neg=1;
257 break; 584 break;
258 case -1: 585 case -1:
@@ -261,16 +588,16 @@ void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int tn,
261 zero=1; 588 zero=1;
262 /* break; */ 589 /* break; */
263 case 2: 590 case 2:
264 bn_sub_words(t, a, &(a[n]),n); /* + */ 591 bn_sub_part_words(t, a, &(a[n]),tna,n-tna); /* + */
265 bn_sub_words(&(t[n]),b, &(b[n]),n); /* - */ 592 bn_sub_part_words(&(t[n]),b, &(b[n]),tnb,n-tnb); /* - */
266 neg=1; 593 neg=1;
267 break; 594 break;
268 case 3: 595 case 3:
269 zero=1; 596 zero=1;
270 /* break; */ 597 /* break; */
271 case 4: 598 case 4:
272 bn_sub_words(t, a, &(a[n]),n); 599 bn_sub_part_words(t, a, &(a[n]),tna,n-tna);
273 bn_sub_words(&(t[n]),&(b[n]),b, n); 600 bn_sub_part_words(&(t[n]),&(b[n]),b, tnb,tnb-n);
274 break; 601 break;
275 } 602 }
276 /* The zero case isn't yet implemented here. The speedup 603 /* The zero case isn't yet implemented here. The speedup
@@ -289,54 +616,62 @@ void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int tn,
289 { 616 {
290 bn_mul_comba8(&(t[n2]),t,&(t[n])); 617 bn_mul_comba8(&(t[n2]),t,&(t[n]));
291 bn_mul_comba8(r,a,b); 618 bn_mul_comba8(r,a,b);
292 bn_mul_normal(&(r[n2]),&(a[n]),tn,&(b[n]),tn); 619 bn_mul_normal(&(r[n2]),&(a[n]),tna,&(b[n]),tnb);
293 memset(&(r[n2+tn*2]),0,sizeof(BN_ULONG)*(n2-tn*2)); 620 memset(&(r[n2+tna+tnb]),0,sizeof(BN_ULONG)*(n2-tna-tnb));
294 } 621 }
295 else 622 else
296 { 623 {
297 p= &(t[n2*2]); 624 p= &(t[n2*2]);
298 bn_mul_recursive(&(t[n2]),t,&(t[n]),n,p); 625 bn_mul_recursive(&(t[n2]),t,&(t[n]),n,0,0,p);
299 bn_mul_recursive(r,a,b,n,p); 626 bn_mul_recursive(r,a,b,n,0,0,p);
300 i=n/2; 627 i=n/2;
301 /* If there is only a bottom half to the number, 628 /* If there is only a bottom half to the number,
302 * just do it */ 629 * just do it */
303 j=tn-i; 630 if (tna > tnb)
631 j = tna - i;
632 else
633 j = tnb - i;
304 if (j == 0) 634 if (j == 0)
305 { 635 {
306 bn_mul_recursive(&(r[n2]),&(a[n]),&(b[n]),i,p); 636 bn_mul_recursive(&(r[n2]),&(a[n]),&(b[n]),
637 i,tna-i,tnb-i,p);
307 memset(&(r[n2+i*2]),0,sizeof(BN_ULONG)*(n2-i*2)); 638 memset(&(r[n2+i*2]),0,sizeof(BN_ULONG)*(n2-i*2));
308 } 639 }
309 else if (j > 0) /* eg, n == 16, i == 8 and tn == 11 */ 640 else if (j > 0) /* eg, n == 16, i == 8 and tn == 11 */
310 { 641 {
311 bn_mul_part_recursive(&(r[n2]),&(a[n]),&(b[n]), 642 bn_mul_part_recursive(&(r[n2]),&(a[n]),&(b[n]),
312 j,i,p); 643 i,tna-i,tnb-i,p);
313 memset(&(r[n2+tn*2]),0, 644 memset(&(r[n2+tna+tnb]),0,
314 sizeof(BN_ULONG)*(n2-tn*2)); 645 sizeof(BN_ULONG)*(n2-tna-tnb));
315 } 646 }
316 else /* (j < 0) eg, n == 16, i == 8 and tn == 5 */ 647 else /* (j < 0) eg, n == 16, i == 8 and tn == 5 */
317 { 648 {
318 memset(&(r[n2]),0,sizeof(BN_ULONG)*n2); 649 memset(&(r[n2]),0,sizeof(BN_ULONG)*n2);
319 if (tn < BN_MUL_RECURSIVE_SIZE_NORMAL) 650 if (tna < BN_MUL_RECURSIVE_SIZE_NORMAL
651 && tnb < BN_MUL_RECURSIVE_SIZE_NORMAL)
320 { 652 {
321 bn_mul_normal(&(r[n2]),&(a[n]),tn,&(b[n]),tn); 653 bn_mul_normal(&(r[n2]),&(a[n]),tna,&(b[n]),tnb);
322 } 654 }
323 else 655 else
324 { 656 {
325 for (;;) 657 for (;;)
326 { 658 {
327 i/=2; 659 i/=2;
328 if (i < tn) 660 /* these simplified conditions work
661 * exclusively because difference
662 * between tna and tnb is 1 or 0 */
663 if (i < tna || i < tnb)
329 { 664 {
330 bn_mul_part_recursive(&(r[n2]), 665 bn_mul_part_recursive(&(r[n2]),
331 &(a[n]),&(b[n]), 666 &(a[n]),&(b[n]),
332 tn-i,i,p); 667 i,tna-i,tnb-i,p);
333 break; 668 break;
334 } 669 }
335 else if (i == tn) 670 else if (i == tna || i == tnb)
336 { 671 {
337 bn_mul_recursive(&(r[n2]), 672 bn_mul_recursive(&(r[n2]),
338 &(a[n]),&(b[n]), 673 &(a[n]),&(b[n]),
339 i,p); 674 i,tna-i,tnb-i,p);
340 break; 675 break;
341 } 676 }
342 } 677 }
@@ -397,10 +732,10 @@ void bn_mul_low_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
397 int n=n2/2; 732 int n=n2/2;
398 733
399# ifdef BN_COUNT 734# ifdef BN_COUNT
400 printf(" bn_mul_low_recursive %d * %d\n",n2,n2); 735 fprintf(stderr," bn_mul_low_recursive %d * %d\n",n2,n2);
401# endif 736# endif
402 737
403 bn_mul_recursive(r,a,b,n,&(t[0])); 738 bn_mul_recursive(r,a,b,n,0,0,&(t[0]));
404 if (n >= BN_MUL_LOW_RECURSIVE_SIZE_NORMAL) 739 if (n >= BN_MUL_LOW_RECURSIVE_SIZE_NORMAL)
405 { 740 {
406 bn_mul_low_recursive(&(t[0]),&(a[0]),&(b[n]),n,&(t[n2])); 741 bn_mul_low_recursive(&(t[0]),&(a[0]),&(b[n]),n,&(t[n2]));
@@ -431,7 +766,7 @@ void bn_mul_high(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, BN_ULONG *l, int n2,
431 BN_ULONG ll,lc,*lp,*mp; 766 BN_ULONG ll,lc,*lp,*mp;
432 767
433# ifdef BN_COUNT 768# ifdef BN_COUNT
434 printf(" bn_mul_high %d * %d\n",n2,n2); 769 fprintf(stderr," bn_mul_high %d * %d\n",n2,n2);
435# endif 770# endif
436 n=n2/2; 771 n=n2/2;
437 772
@@ -484,8 +819,8 @@ void bn_mul_high(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, BN_ULONG *l, int n2,
484 else 819 else
485# endif 820# endif
486 { 821 {
487 bn_mul_recursive(&(t[0]),&(r[0]),&(r[n]),n,&(t[n2])); 822 bn_mul_recursive(&(t[0]),&(r[0]),&(r[n]),n,0,0,&(t[n2]));
488 bn_mul_recursive(r,&(a[n]),&(b[n]),n,&(t[n2])); 823 bn_mul_recursive(r,&(a[n]),&(b[n]),n,0,0,&(t[n2]));
489 } 824 }
490 825
491 /* s0 == low(al*bl) 826 /* s0 == low(al*bl)
@@ -610,19 +945,19 @@ void bn_mul_high(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, BN_ULONG *l, int n2,
610 945
611int BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) 946int BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
612 { 947 {
948 int ret=0;
613 int top,al,bl; 949 int top,al,bl;
614 BIGNUM *rr; 950 BIGNUM *rr;
615 int ret = 0;
616#if defined(BN_MUL_COMBA) || defined(BN_RECURSION) 951#if defined(BN_MUL_COMBA) || defined(BN_RECURSION)
617 int i; 952 int i;
618#endif 953#endif
619#ifdef BN_RECURSION 954#ifdef BN_RECURSION
620 BIGNUM *t; 955 BIGNUM *t=NULL;
621 int j,k; 956 int j=0,k;
622#endif 957#endif
623 958
624#ifdef BN_COUNT 959#ifdef BN_COUNT
625 printf("BN_mul %d * %d\n",a->top,b->top); 960 fprintf(stderr,"BN_mul %d * %d\n",a->top,b->top);
626#endif 961#endif
627 962
628 bn_check_top(a); 963 bn_check_top(a);
@@ -634,7 +969,7 @@ int BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
634 969
635 if ((al == 0) || (bl == 0)) 970 if ((al == 0) || (bl == 0))
636 { 971 {
637 if (!BN_zero(r)) goto err; 972 BN_zero(r);
638 return(1); 973 return(1);
639 } 974 }
640 top=al+bl; 975 top=al+bl;
@@ -675,21 +1010,55 @@ int BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
675#ifdef BN_RECURSION 1010#ifdef BN_RECURSION
676 if ((al >= BN_MULL_SIZE_NORMAL) && (bl >= BN_MULL_SIZE_NORMAL)) 1011 if ((al >= BN_MULL_SIZE_NORMAL) && (bl >= BN_MULL_SIZE_NORMAL))
677 { 1012 {
678 if (i == 1 && !BN_get_flags(b,BN_FLG_STATIC_DATA) && bl<b->dmax) 1013 if (i >= -1 && i <= 1)
679 { 1014 {
680#if 0 /* tribute to const-ification, bl<b->dmax above covers for this */ 1015 int sav_j =0;
681 if (bn_wexpand(b,al) == NULL) goto err; 1016 /* Find out the power of two lower or equal
682#endif 1017 to the longest of the two numbers */
683 b->d[bl]=0; 1018 if (i >= 0)
1019 {
1020 j = BN_num_bits_word((BN_ULONG)al);
1021 }
1022 if (i == -1)
1023 {
1024 j = BN_num_bits_word((BN_ULONG)bl);
1025 }
1026 sav_j = j;
1027 j = 1<<(j-1);
1028 assert(j <= al || j <= bl);
1029 k = j+j;
1030 t = BN_CTX_get(ctx);
1031 if (al > j || bl > j)
1032 {
1033 bn_wexpand(t,k*4);
1034 bn_wexpand(rr,k*4);
1035 bn_mul_part_recursive(rr->d,a->d,b->d,
1036 j,al-j,bl-j,t->d);
1037 }
1038 else /* al <= j || bl <= j */
1039 {
1040 bn_wexpand(t,k*2);
1041 bn_wexpand(rr,k*2);
1042 bn_mul_recursive(rr->d,a->d,b->d,
1043 j,al-j,bl-j,t->d);
1044 }
1045 rr->top=top;
1046 goto end;
1047 }
1048#if 0
1049 if (i == 1 && !BN_get_flags(b,BN_FLG_STATIC_DATA))
1050 {
1051 BIGNUM *tmp_bn = (BIGNUM *)b;
1052 if (bn_wexpand(tmp_bn,al) == NULL) goto err;
1053 tmp_bn->d[bl]=0;
684 bl++; 1054 bl++;
685 i--; 1055 i--;
686 } 1056 }
687 else if (i == -1 && !BN_get_flags(a,BN_FLG_STATIC_DATA) && al<a->dmax) 1057 else if (i == -1 && !BN_get_flags(a,BN_FLG_STATIC_DATA))
688 { 1058 {
689#if 0 /* tribute to const-ification, al<a->dmax above covers for this */ 1059 BIGNUM *tmp_bn = (BIGNUM *)a;
690 if (bn_wexpand(a,bl) == NULL) goto err; 1060 if (bn_wexpand(tmp_bn,bl) == NULL) goto err;
691#endif 1061 tmp_bn->d[al]=0;
692 a->d[al]=0;
693 al++; 1062 al++;
694 i++; 1063 i++;
695 } 1064 }
@@ -706,26 +1075,17 @@ int BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
706 if (bn_wexpand(t,k*2) == NULL) goto err; 1075 if (bn_wexpand(t,k*2) == NULL) goto err;
707 if (bn_wexpand(rr,k*2) == NULL) goto err; 1076 if (bn_wexpand(rr,k*2) == NULL) goto err;
708 bn_mul_recursive(rr->d,a->d,b->d,al,t->d); 1077 bn_mul_recursive(rr->d,a->d,b->d,al,t->d);
709 rr->top=top;
710 goto end;
711 } 1078 }
712#if 0 /* tribute to const-ification, rsa/dsa performance is not affected */
713 else 1079 else
714 { 1080 {
715 if (bn_wexpand(a,k) == NULL ) goto err; 1081 if (bn_wexpand(t,k*4) == NULL) goto err;
716 if (bn_wexpand(b,k) == NULL ) goto err; 1082 if (bn_wexpand(rr,k*4) == NULL) goto err;
717 if (bn_wexpand(t,k*4) == NULL ) goto err;
718 if (bn_wexpand(rr,k*4) == NULL ) goto err;
719 for (i=a->top; i<k; i++)
720 a->d[i]=0;
721 for (i=b->top; i<k; i++)
722 b->d[i]=0;
723 bn_mul_part_recursive(rr->d,a->d,b->d,al-j,j,t->d); 1083 bn_mul_part_recursive(rr->d,a->d,b->d,al-j,j,t->d);
724 } 1084 }
725 rr->top=top; 1085 rr->top=top;
726 goto end; 1086 goto end;
727#endif
728 } 1087 }
1088#endif
729 } 1089 }
730#endif /* BN_RECURSION */ 1090#endif /* BN_RECURSION */
731 if (bn_wexpand(rr,top) == NULL) goto err; 1091 if (bn_wexpand(rr,top) == NULL) goto err;
@@ -735,10 +1095,11 @@ int BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
735#if defined(BN_MUL_COMBA) || defined(BN_RECURSION) 1095#if defined(BN_MUL_COMBA) || defined(BN_RECURSION)
736end: 1096end:
737#endif 1097#endif
738 bn_fix_top(rr); 1098 bn_correct_top(rr);
739 if (r != rr) BN_copy(r,rr); 1099 if (r != rr) BN_copy(r,rr);
740 ret=1; 1100 ret=1;
741err: 1101err:
1102 bn_check_top(r);
742 BN_CTX_end(ctx); 1103 BN_CTX_end(ctx);
743 return(ret); 1104 return(ret);
744 } 1105 }
@@ -748,7 +1109,7 @@ void bn_mul_normal(BN_ULONG *r, BN_ULONG *a, int na, BN_ULONG *b, int nb)
748 BN_ULONG *rr; 1109 BN_ULONG *rr;
749 1110
750#ifdef BN_COUNT 1111#ifdef BN_COUNT
751 printf(" bn_mul_normal %d * %d\n",na,nb); 1112 fprintf(stderr," bn_mul_normal %d * %d\n",na,nb);
752#endif 1113#endif
753 1114
754 if (na < nb) 1115 if (na < nb)
@@ -761,7 +1122,13 @@ void bn_mul_normal(BN_ULONG *r, BN_ULONG *a, int na, BN_ULONG *b, int nb)
761 1122
762 } 1123 }
763 rr= &(r[na]); 1124 rr= &(r[na]);
764 rr[0]=bn_mul_words(r,a,na,b[0]); 1125 if (nb <= 0)
1126 {
1127 (void)bn_mul_words(r,a,na,0);
1128 return;
1129 }
1130 else
1131 rr[0]=bn_mul_words(r,a,na,b[0]);
765 1132
766 for (;;) 1133 for (;;)
767 { 1134 {
@@ -782,7 +1149,7 @@ void bn_mul_normal(BN_ULONG *r, BN_ULONG *a, int na, BN_ULONG *b, int nb)
782void bn_mul_low_normal(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n) 1149void bn_mul_low_normal(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n)
783 { 1150 {
784#ifdef BN_COUNT 1151#ifdef BN_COUNT
785 printf(" bn_mul_low_normal %d * %d\n",n,n); 1152 fprintf(stderr," bn_mul_low_normal %d * %d\n",n,n);
786#endif 1153#endif
787 bn_mul_words(r,a,n,b[0]); 1154 bn_mul_words(r,a,n,b[0]);
788 1155