diff options
Diffstat (limited to 'src/lib/libcrypto/bn/bn_mul.c')
| -rw-r--r-- | src/lib/libcrypto/bn/bn_mul.c | 802 |
1 files changed, 802 insertions, 0 deletions
diff --git a/src/lib/libcrypto/bn/bn_mul.c b/src/lib/libcrypto/bn/bn_mul.c new file mode 100644 index 0000000000..3ae3822bc2 --- /dev/null +++ b/src/lib/libcrypto/bn/bn_mul.c | |||
| @@ -0,0 +1,802 @@ | |||
| 1 | /* crypto/bn/bn_mul.c */ | ||
| 2 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) | ||
| 3 | * All rights reserved. | ||
| 4 | * | ||
| 5 | * This package is an SSL implementation written | ||
| 6 | * by Eric Young (eay@cryptsoft.com). | ||
| 7 | * The implementation was written so as to conform with Netscapes SSL. | ||
| 8 | * | ||
| 9 | * This library is free for commercial and non-commercial use as long as | ||
| 10 | * the following conditions are aheared to. The following conditions | ||
| 11 | * apply to all code found in this distribution, be it the RC4, RSA, | ||
| 12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation | ||
| 13 | * included with this distribution is covered by the same copyright terms | ||
| 14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | ||
| 15 | * | ||
| 16 | * Copyright remains Eric Young's, and as such any Copyright notices in | ||
| 17 | * the code are not to be removed. | ||
| 18 | * If this package is used in a product, Eric Young should be given attribution | ||
| 19 | * as the author of the parts of the library used. | ||
| 20 | * This can be in the form of a textual message at program startup or | ||
| 21 | * in documentation (online or textual) provided with the package. | ||
| 22 | * | ||
| 23 | * Redistribution and use in source and binary forms, with or without | ||
| 24 | * modification, are permitted provided that the following conditions | ||
| 25 | * are met: | ||
| 26 | * 1. Redistributions of source code must retain the copyright | ||
| 27 | * notice, this list of conditions and the following disclaimer. | ||
| 28 | * 2. Redistributions in binary form must reproduce the above copyright | ||
| 29 | * notice, this list of conditions and the following disclaimer in the | ||
| 30 | * documentation and/or other materials provided with the distribution. | ||
| 31 | * 3. All advertising materials mentioning features or use of this software | ||
| 32 | * must display the following acknowledgement: | ||
| 33 | * "This product includes cryptographic software written by | ||
| 34 | * Eric Young (eay@cryptsoft.com)" | ||
| 35 | * The word 'cryptographic' can be left out if the rouines from the library | ||
| 36 | * being used are not cryptographic related :-). | ||
| 37 | * 4. If you include any Windows specific code (or a derivative thereof) from | ||
| 38 | * the apps directory (application code) you must include an acknowledgement: | ||
| 39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | ||
| 40 | * | ||
| 41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | ||
| 42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
| 43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | ||
| 44 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | ||
| 45 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | ||
| 46 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | ||
| 47 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
| 48 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | ||
| 49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | ||
| 50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | ||
| 51 | * SUCH DAMAGE. | ||
| 52 | * | ||
| 53 | * The licence and distribution terms for any publically available version or | ||
| 54 | * derivative of this code cannot be changed. i.e. this code cannot simply be | ||
| 55 | * copied and put under another distribution licence | ||
| 56 | * [including the GNU Public Licence.] | ||
| 57 | */ | ||
| 58 | |||
| 59 | #include <stdio.h> | ||
| 60 | #include "cryptlib.h" | ||
| 61 | #include "bn_lcl.h" | ||
| 62 | |||
| 63 | #ifdef BN_RECURSION | ||
| 64 | /* Karatsuba recursive multiplication algorithm | ||
| 65 | * (cf. Knuth, The Art of Computer Programming, Vol. 2) */ | ||
| 66 | |||
| 67 | /* r is 2*n2 words in size, | ||
| 68 | * a and b are both n2 words in size. | ||
| 69 | * n2 must be a power of 2. | ||
| 70 | * We multiply and return the result. | ||
| 71 | * t must be 2*n2 words in size | ||
| 72 | * We calculate | ||
| 73 | * a[0]*b[0] | ||
| 74 | * a[0]*b[0]+a[1]*b[1]+(a[0]-a[1])*(b[1]-b[0]) | ||
| 75 | * a[1]*b[1] | ||
| 76 | */ | ||
| 77 | void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2, | ||
| 78 | BN_ULONG *t) | ||
| 79 | { | ||
| 80 | int n=n2/2,c1,c2; | ||
| 81 | unsigned int neg,zero; | ||
| 82 | BN_ULONG ln,lo,*p; | ||
| 83 | |||
| 84 | # ifdef BN_COUNT | ||
| 85 | printf(" bn_mul_recursive %d * %d\n",n2,n2); | ||
| 86 | # endif | ||
| 87 | # ifdef BN_MUL_COMBA | ||
| 88 | # if 0 | ||
| 89 | if (n2 == 4) | ||
| 90 | { | ||
| 91 | bn_mul_comba4(r,a,b); | ||
| 92 | return; | ||
| 93 | } | ||
| 94 | # endif | ||
| 95 | if (n2 == 8) | ||
| 96 | { | ||
| 97 | bn_mul_comba8(r,a,b); | ||
| 98 | return; | ||
| 99 | } | ||
| 100 | # endif /* BN_MUL_COMBA */ | ||
| 101 | if (n2 < BN_MUL_RECURSIVE_SIZE_NORMAL) | ||
| 102 | { | ||
| 103 | /* This should not happen */ | ||
| 104 | bn_mul_normal(r,a,n2,b,n2); | ||
| 105 | return; | ||
| 106 | } | ||
| 107 | /* r=(a[0]-a[1])*(b[1]-b[0]) */ | ||
| 108 | c1=bn_cmp_words(a,&(a[n]),n); | ||
| 109 | c2=bn_cmp_words(&(b[n]),b,n); | ||
| 110 | zero=neg=0; | ||
| 111 | switch (c1*3+c2) | ||
| 112 | { | ||
| 113 | case -4: | ||
| 114 | bn_sub_words(t, &(a[n]),a, n); /* - */ | ||
| 115 | bn_sub_words(&(t[n]),b, &(b[n]),n); /* - */ | ||
| 116 | break; | ||
| 117 | case -3: | ||
| 118 | zero=1; | ||
| 119 | break; | ||
| 120 | case -2: | ||
| 121 | bn_sub_words(t, &(a[n]),a, n); /* - */ | ||
| 122 | bn_sub_words(&(t[n]),&(b[n]),b, n); /* + */ | ||
| 123 | neg=1; | ||
| 124 | break; | ||
| 125 | case -1: | ||
| 126 | case 0: | ||
| 127 | case 1: | ||
| 128 | zero=1; | ||
| 129 | break; | ||
| 130 | case 2: | ||
| 131 | bn_sub_words(t, a, &(a[n]),n); /* + */ | ||
| 132 | bn_sub_words(&(t[n]),b, &(b[n]),n); /* - */ | ||
| 133 | neg=1; | ||
| 134 | break; | ||
| 135 | case 3: | ||
| 136 | zero=1; | ||
| 137 | break; | ||
| 138 | case 4: | ||
| 139 | bn_sub_words(t, a, &(a[n]),n); | ||
| 140 | bn_sub_words(&(t[n]),&(b[n]),b, n); | ||
| 141 | break; | ||
| 142 | } | ||
| 143 | |||
| 144 | # ifdef BN_MUL_COMBA | ||
| 145 | if (n == 4) | ||
| 146 | { | ||
| 147 | if (!zero) | ||
| 148 | bn_mul_comba4(&(t[n2]),t,&(t[n])); | ||
| 149 | else | ||
| 150 | memset(&(t[n2]),0,8*sizeof(BN_ULONG)); | ||
| 151 | |||
| 152 | bn_mul_comba4(r,a,b); | ||
| 153 | bn_mul_comba4(&(r[n2]),&(a[n]),&(b[n])); | ||
| 154 | } | ||
| 155 | else if (n == 8) | ||
| 156 | { | ||
| 157 | if (!zero) | ||
| 158 | bn_mul_comba8(&(t[n2]),t,&(t[n])); | ||
| 159 | else | ||
| 160 | memset(&(t[n2]),0,16*sizeof(BN_ULONG)); | ||
| 161 | |||
| 162 | bn_mul_comba8(r,a,b); | ||
| 163 | bn_mul_comba8(&(r[n2]),&(a[n]),&(b[n])); | ||
| 164 | } | ||
| 165 | else | ||
| 166 | # endif /* BN_MUL_COMBA */ | ||
| 167 | { | ||
| 168 | p= &(t[n2*2]); | ||
| 169 | if (!zero) | ||
| 170 | bn_mul_recursive(&(t[n2]),t,&(t[n]),n,p); | ||
| 171 | else | ||
| 172 | memset(&(t[n2]),0,n2*sizeof(BN_ULONG)); | ||
| 173 | bn_mul_recursive(r,a,b,n,p); | ||
| 174 | bn_mul_recursive(&(r[n2]),&(a[n]),&(b[n]),n,p); | ||
| 175 | } | ||
| 176 | |||
| 177 | /* t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign | ||
| 178 | * r[10] holds (a[0]*b[0]) | ||
| 179 | * r[32] holds (b[1]*b[1]) | ||
| 180 | */ | ||
| 181 | |||
| 182 | c1=(int)(bn_add_words(t,r,&(r[n2]),n2)); | ||
| 183 | |||
| 184 | if (neg) /* if t[32] is negative */ | ||
| 185 | { | ||
| 186 | c1-=(int)(bn_sub_words(&(t[n2]),t,&(t[n2]),n2)); | ||
| 187 | } | ||
| 188 | else | ||
| 189 | { | ||
| 190 | /* Might have a carry */ | ||
| 191 | c1+=(int)(bn_add_words(&(t[n2]),&(t[n2]),t,n2)); | ||
| 192 | } | ||
| 193 | |||
| 194 | /* t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1]) | ||
| 195 | * r[10] holds (a[0]*b[0]) | ||
| 196 | * r[32] holds (b[1]*b[1]) | ||
| 197 | * c1 holds the carry bits | ||
| 198 | */ | ||
| 199 | c1+=(int)(bn_add_words(&(r[n]),&(r[n]),&(t[n2]),n2)); | ||
| 200 | if (c1) | ||
| 201 | { | ||
| 202 | p= &(r[n+n2]); | ||
| 203 | lo= *p; | ||
| 204 | ln=(lo+c1)&BN_MASK2; | ||
| 205 | *p=ln; | ||
| 206 | |||
| 207 | /* The overflow will stop before we over write | ||
| 208 | * words we should not overwrite */ | ||
| 209 | if (ln < (BN_ULONG)c1) | ||
| 210 | { | ||
| 211 | do { | ||
| 212 | p++; | ||
| 213 | lo= *p; | ||
| 214 | ln=(lo+1)&BN_MASK2; | ||
| 215 | *p=ln; | ||
| 216 | } while (ln == 0); | ||
| 217 | } | ||
| 218 | } | ||
| 219 | } | ||
| 220 | |||
| 221 | /* n+tn is the word length | ||
| 222 | * t needs to be n*4 is size, as does r */ | ||
| 223 | void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int tn, | ||
| 224 | int n, BN_ULONG *t) | ||
| 225 | { | ||
| 226 | int i,j,n2=n*2; | ||
| 227 | int c1,c2,neg,zero; | ||
| 228 | BN_ULONG ln,lo,*p; | ||
| 229 | |||
| 230 | # ifdef BN_COUNT | ||
| 231 | printf(" bn_mul_part_recursive %d * %d\n",tn+n,tn+n); | ||
| 232 | # endif | ||
| 233 | if (n < 8) | ||
| 234 | { | ||
| 235 | i=tn+n; | ||
| 236 | bn_mul_normal(r,a,i,b,i); | ||
| 237 | return; | ||
| 238 | } | ||
| 239 | |||
| 240 | /* r=(a[0]-a[1])*(b[1]-b[0]) */ | ||
| 241 | c1=bn_cmp_words(a,&(a[n]),n); | ||
| 242 | c2=bn_cmp_words(&(b[n]),b,n); | ||
| 243 | zero=neg=0; | ||
| 244 | switch (c1*3+c2) | ||
| 245 | { | ||
| 246 | case -4: | ||
| 247 | bn_sub_words(t, &(a[n]),a, n); /* - */ | ||
| 248 | bn_sub_words(&(t[n]),b, &(b[n]),n); /* - */ | ||
| 249 | break; | ||
| 250 | case -3: | ||
| 251 | zero=1; | ||
| 252 | /* break; */ | ||
| 253 | case -2: | ||
| 254 | bn_sub_words(t, &(a[n]),a, n); /* - */ | ||
| 255 | bn_sub_words(&(t[n]),&(b[n]),b, n); /* + */ | ||
| 256 | neg=1; | ||
| 257 | break; | ||
| 258 | case -1: | ||
| 259 | case 0: | ||
| 260 | case 1: | ||
| 261 | zero=1; | ||
| 262 | /* break; */ | ||
| 263 | case 2: | ||
| 264 | bn_sub_words(t, a, &(a[n]),n); /* + */ | ||
| 265 | bn_sub_words(&(t[n]),b, &(b[n]),n); /* - */ | ||
| 266 | neg=1; | ||
| 267 | break; | ||
| 268 | case 3: | ||
| 269 | zero=1; | ||
| 270 | /* break; */ | ||
| 271 | case 4: | ||
| 272 | bn_sub_words(t, a, &(a[n]),n); | ||
| 273 | bn_sub_words(&(t[n]),&(b[n]),b, n); | ||
| 274 | break; | ||
| 275 | } | ||
| 276 | /* The zero case isn't yet implemented here. The speedup | ||
| 277 | would probably be negligible. */ | ||
| 278 | # if 0 | ||
| 279 | if (n == 4) | ||
| 280 | { | ||
| 281 | bn_mul_comba4(&(t[n2]),t,&(t[n])); | ||
| 282 | bn_mul_comba4(r,a,b); | ||
| 283 | bn_mul_normal(&(r[n2]),&(a[n]),tn,&(b[n]),tn); | ||
| 284 | memset(&(r[n2+tn*2]),0,sizeof(BN_ULONG)*(n2-tn*2)); | ||
| 285 | } | ||
| 286 | else | ||
| 287 | # endif | ||
| 288 | if (n == 8) | ||
| 289 | { | ||
| 290 | bn_mul_comba8(&(t[n2]),t,&(t[n])); | ||
| 291 | bn_mul_comba8(r,a,b); | ||
| 292 | bn_mul_normal(&(r[n2]),&(a[n]),tn,&(b[n]),tn); | ||
| 293 | memset(&(r[n2+tn*2]),0,sizeof(BN_ULONG)*(n2-tn*2)); | ||
| 294 | } | ||
| 295 | else | ||
| 296 | { | ||
| 297 | p= &(t[n2*2]); | ||
| 298 | bn_mul_recursive(&(t[n2]),t,&(t[n]),n,p); | ||
| 299 | bn_mul_recursive(r,a,b,n,p); | ||
| 300 | i=n/2; | ||
| 301 | /* If there is only a bottom half to the number, | ||
| 302 | * just do it */ | ||
| 303 | j=tn-i; | ||
| 304 | if (j == 0) | ||
| 305 | { | ||
| 306 | bn_mul_recursive(&(r[n2]),&(a[n]),&(b[n]),i,p); | ||
| 307 | memset(&(r[n2+i*2]),0,sizeof(BN_ULONG)*(n2-i*2)); | ||
| 308 | } | ||
| 309 | else if (j > 0) /* eg, n == 16, i == 8 and tn == 11 */ | ||
| 310 | { | ||
| 311 | bn_mul_part_recursive(&(r[n2]),&(a[n]),&(b[n]), | ||
| 312 | j,i,p); | ||
| 313 | memset(&(r[n2+tn*2]),0, | ||
| 314 | sizeof(BN_ULONG)*(n2-tn*2)); | ||
| 315 | } | ||
| 316 | else /* (j < 0) eg, n == 16, i == 8 and tn == 5 */ | ||
| 317 | { | ||
| 318 | memset(&(r[n2]),0,sizeof(BN_ULONG)*n2); | ||
| 319 | if (tn < BN_MUL_RECURSIVE_SIZE_NORMAL) | ||
| 320 | { | ||
| 321 | bn_mul_normal(&(r[n2]),&(a[n]),tn,&(b[n]),tn); | ||
| 322 | } | ||
| 323 | else | ||
| 324 | { | ||
| 325 | for (;;) | ||
| 326 | { | ||
| 327 | i/=2; | ||
| 328 | if (i < tn) | ||
| 329 | { | ||
| 330 | bn_mul_part_recursive(&(r[n2]), | ||
| 331 | &(a[n]),&(b[n]), | ||
| 332 | tn-i,i,p); | ||
| 333 | break; | ||
| 334 | } | ||
| 335 | else if (i == tn) | ||
| 336 | { | ||
| 337 | bn_mul_recursive(&(r[n2]), | ||
| 338 | &(a[n]),&(b[n]), | ||
| 339 | i,p); | ||
| 340 | break; | ||
| 341 | } | ||
| 342 | } | ||
| 343 | } | ||
| 344 | } | ||
| 345 | } | ||
| 346 | |||
| 347 | /* t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign | ||
| 348 | * r[10] holds (a[0]*b[0]) | ||
| 349 | * r[32] holds (b[1]*b[1]) | ||
| 350 | */ | ||
| 351 | |||
| 352 | c1=(int)(bn_add_words(t,r,&(r[n2]),n2)); | ||
| 353 | |||
| 354 | if (neg) /* if t[32] is negative */ | ||
| 355 | { | ||
| 356 | c1-=(int)(bn_sub_words(&(t[n2]),t,&(t[n2]),n2)); | ||
| 357 | } | ||
| 358 | else | ||
| 359 | { | ||
| 360 | /* Might have a carry */ | ||
| 361 | c1+=(int)(bn_add_words(&(t[n2]),&(t[n2]),t,n2)); | ||
| 362 | } | ||
| 363 | |||
| 364 | /* t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1]) | ||
| 365 | * r[10] holds (a[0]*b[0]) | ||
| 366 | * r[32] holds (b[1]*b[1]) | ||
| 367 | * c1 holds the carry bits | ||
| 368 | */ | ||
| 369 | c1+=(int)(bn_add_words(&(r[n]),&(r[n]),&(t[n2]),n2)); | ||
| 370 | if (c1) | ||
| 371 | { | ||
| 372 | p= &(r[n+n2]); | ||
| 373 | lo= *p; | ||
| 374 | ln=(lo+c1)&BN_MASK2; | ||
| 375 | *p=ln; | ||
| 376 | |||
| 377 | /* The overflow will stop before we over write | ||
| 378 | * words we should not overwrite */ | ||
| 379 | if (ln < (BN_ULONG)c1) | ||
| 380 | { | ||
| 381 | do { | ||
| 382 | p++; | ||
| 383 | lo= *p; | ||
| 384 | ln=(lo+1)&BN_MASK2; | ||
| 385 | *p=ln; | ||
| 386 | } while (ln == 0); | ||
| 387 | } | ||
| 388 | } | ||
| 389 | } | ||
| 390 | |||
| 391 | /* a and b must be the same size, which is n2. | ||
| 392 | * r needs to be n2 words and t needs to be n2*2 | ||
| 393 | */ | ||
| 394 | void bn_mul_low_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2, | ||
| 395 | BN_ULONG *t) | ||
| 396 | { | ||
| 397 | int n=n2/2; | ||
| 398 | |||
| 399 | # ifdef BN_COUNT | ||
| 400 | printf(" bn_mul_low_recursive %d * %d\n",n2,n2); | ||
| 401 | # endif | ||
| 402 | |||
| 403 | bn_mul_recursive(r,a,b,n,&(t[0])); | ||
| 404 | if (n >= BN_MUL_LOW_RECURSIVE_SIZE_NORMAL) | ||
| 405 | { | ||
| 406 | bn_mul_low_recursive(&(t[0]),&(a[0]),&(b[n]),n,&(t[n2])); | ||
| 407 | bn_add_words(&(r[n]),&(r[n]),&(t[0]),n); | ||
| 408 | bn_mul_low_recursive(&(t[0]),&(a[n]),&(b[0]),n,&(t[n2])); | ||
| 409 | bn_add_words(&(r[n]),&(r[n]),&(t[0]),n); | ||
| 410 | } | ||
| 411 | else | ||
| 412 | { | ||
| 413 | bn_mul_low_normal(&(t[0]),&(a[0]),&(b[n]),n); | ||
| 414 | bn_mul_low_normal(&(t[n]),&(a[n]),&(b[0]),n); | ||
| 415 | bn_add_words(&(r[n]),&(r[n]),&(t[0]),n); | ||
| 416 | bn_add_words(&(r[n]),&(r[n]),&(t[n]),n); | ||
| 417 | } | ||
| 418 | } | ||
| 419 | |||
| 420 | /* a and b must be the same size, which is n2. | ||
| 421 | * r needs to be n2 words and t needs to be n2*2 | ||
| 422 | * l is the low words of the output. | ||
| 423 | * t needs to be n2*3 | ||
| 424 | */ | ||
| 425 | void bn_mul_high(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, BN_ULONG *l, int n2, | ||
| 426 | BN_ULONG *t) | ||
| 427 | { | ||
| 428 | int i,n; | ||
| 429 | int c1,c2; | ||
| 430 | int neg,oneg,zero; | ||
| 431 | BN_ULONG ll,lc,*lp,*mp; | ||
| 432 | |||
| 433 | # ifdef BN_COUNT | ||
| 434 | printf(" bn_mul_high %d * %d\n",n2,n2); | ||
| 435 | # endif | ||
| 436 | n=n2/2; | ||
| 437 | |||
| 438 | /* Calculate (al-ah)*(bh-bl) */ | ||
| 439 | neg=zero=0; | ||
| 440 | c1=bn_cmp_words(&(a[0]),&(a[n]),n); | ||
| 441 | c2=bn_cmp_words(&(b[n]),&(b[0]),n); | ||
| 442 | switch (c1*3+c2) | ||
| 443 | { | ||
| 444 | case -4: | ||
| 445 | bn_sub_words(&(r[0]),&(a[n]),&(a[0]),n); | ||
| 446 | bn_sub_words(&(r[n]),&(b[0]),&(b[n]),n); | ||
| 447 | break; | ||
| 448 | case -3: | ||
| 449 | zero=1; | ||
| 450 | break; | ||
| 451 | case -2: | ||
| 452 | bn_sub_words(&(r[0]),&(a[n]),&(a[0]),n); | ||
| 453 | bn_sub_words(&(r[n]),&(b[n]),&(b[0]),n); | ||
| 454 | neg=1; | ||
| 455 | break; | ||
| 456 | case -1: | ||
| 457 | case 0: | ||
| 458 | case 1: | ||
| 459 | zero=1; | ||
| 460 | break; | ||
| 461 | case 2: | ||
| 462 | bn_sub_words(&(r[0]),&(a[0]),&(a[n]),n); | ||
| 463 | bn_sub_words(&(r[n]),&(b[0]),&(b[n]),n); | ||
| 464 | neg=1; | ||
| 465 | break; | ||
| 466 | case 3: | ||
| 467 | zero=1; | ||
| 468 | break; | ||
| 469 | case 4: | ||
| 470 | bn_sub_words(&(r[0]),&(a[0]),&(a[n]),n); | ||
| 471 | bn_sub_words(&(r[n]),&(b[n]),&(b[0]),n); | ||
| 472 | break; | ||
| 473 | } | ||
| 474 | |||
| 475 | oneg=neg; | ||
| 476 | /* t[10] = (a[0]-a[1])*(b[1]-b[0]) */ | ||
| 477 | /* r[10] = (a[1]*b[1]) */ | ||
| 478 | # ifdef BN_MUL_COMBA | ||
| 479 | if (n == 8) | ||
| 480 | { | ||
| 481 | bn_mul_comba8(&(t[0]),&(r[0]),&(r[n])); | ||
| 482 | bn_mul_comba8(r,&(a[n]),&(b[n])); | ||
| 483 | } | ||
| 484 | else | ||
| 485 | # endif | ||
| 486 | { | ||
| 487 | bn_mul_recursive(&(t[0]),&(r[0]),&(r[n]),n,&(t[n2])); | ||
| 488 | bn_mul_recursive(r,&(a[n]),&(b[n]),n,&(t[n2])); | ||
| 489 | } | ||
| 490 | |||
| 491 | /* s0 == low(al*bl) | ||
| 492 | * s1 == low(ah*bh)+low((al-ah)*(bh-bl))+low(al*bl)+high(al*bl) | ||
| 493 | * We know s0 and s1 so the only unknown is high(al*bl) | ||
| 494 | * high(al*bl) == s1 - low(ah*bh+s0+(al-ah)*(bh-bl)) | ||
| 495 | * high(al*bl) == s1 - (r[0]+l[0]+t[0]) | ||
| 496 | */ | ||
| 497 | if (l != NULL) | ||
| 498 | { | ||
| 499 | lp= &(t[n2+n]); | ||
| 500 | c1=(int)(bn_add_words(lp,&(r[0]),&(l[0]),n)); | ||
| 501 | } | ||
| 502 | else | ||
| 503 | { | ||
| 504 | c1=0; | ||
| 505 | lp= &(r[0]); | ||
| 506 | } | ||
| 507 | |||
| 508 | if (neg) | ||
| 509 | neg=(int)(bn_sub_words(&(t[n2]),lp,&(t[0]),n)); | ||
| 510 | else | ||
| 511 | { | ||
| 512 | bn_add_words(&(t[n2]),lp,&(t[0]),n); | ||
| 513 | neg=0; | ||
| 514 | } | ||
| 515 | |||
| 516 | if (l != NULL) | ||
| 517 | { | ||
| 518 | bn_sub_words(&(t[n2+n]),&(l[n]),&(t[n2]),n); | ||
| 519 | } | ||
| 520 | else | ||
| 521 | { | ||
| 522 | lp= &(t[n2+n]); | ||
| 523 | mp= &(t[n2]); | ||
| 524 | for (i=0; i<n; i++) | ||
| 525 | lp[i]=((~mp[i])+1)&BN_MASK2; | ||
| 526 | } | ||
| 527 | |||
| 528 | /* s[0] = low(al*bl) | ||
| 529 | * t[3] = high(al*bl) | ||
| 530 | * t[10] = (a[0]-a[1])*(b[1]-b[0]) neg is the sign | ||
| 531 | * r[10] = (a[1]*b[1]) | ||
| 532 | */ | ||
| 533 | /* R[10] = al*bl | ||
| 534 | * R[21] = al*bl + ah*bh + (a[0]-a[1])*(b[1]-b[0]) | ||
| 535 | * R[32] = ah*bh | ||
| 536 | */ | ||
| 537 | /* R[1]=t[3]+l[0]+r[0](+-)t[0] (have carry/borrow) | ||
| 538 | * R[2]=r[0]+t[3]+r[1](+-)t[1] (have carry/borrow) | ||
| 539 | * R[3]=r[1]+(carry/borrow) | ||
| 540 | */ | ||
| 541 | if (l != NULL) | ||
| 542 | { | ||
| 543 | lp= &(t[n2]); | ||
| 544 | c1= (int)(bn_add_words(lp,&(t[n2+n]),&(l[0]),n)); | ||
| 545 | } | ||
| 546 | else | ||
| 547 | { | ||
| 548 | lp= &(t[n2+n]); | ||
| 549 | c1=0; | ||
| 550 | } | ||
| 551 | c1+=(int)(bn_add_words(&(t[n2]),lp, &(r[0]),n)); | ||
| 552 | if (oneg) | ||
| 553 | c1-=(int)(bn_sub_words(&(t[n2]),&(t[n2]),&(t[0]),n)); | ||
| 554 | else | ||
| 555 | c1+=(int)(bn_add_words(&(t[n2]),&(t[n2]),&(t[0]),n)); | ||
| 556 | |||
| 557 | c2 =(int)(bn_add_words(&(r[0]),&(r[0]),&(t[n2+n]),n)); | ||
| 558 | c2+=(int)(bn_add_words(&(r[0]),&(r[0]),&(r[n]),n)); | ||
| 559 | if (oneg) | ||
| 560 | c2-=(int)(bn_sub_words(&(r[0]),&(r[0]),&(t[n]),n)); | ||
| 561 | else | ||
| 562 | c2+=(int)(bn_add_words(&(r[0]),&(r[0]),&(t[n]),n)); | ||
| 563 | |||
| 564 | if (c1 != 0) /* Add starting at r[0], could be +ve or -ve */ | ||
| 565 | { | ||
| 566 | i=0; | ||
| 567 | if (c1 > 0) | ||
| 568 | { | ||
| 569 | lc=c1; | ||
| 570 | do { | ||
| 571 | ll=(r[i]+lc)&BN_MASK2; | ||
| 572 | r[i++]=ll; | ||
| 573 | lc=(lc > ll); | ||
| 574 | } while (lc); | ||
| 575 | } | ||
| 576 | else | ||
| 577 | { | ||
| 578 | lc= -c1; | ||
| 579 | do { | ||
| 580 | ll=r[i]; | ||
| 581 | r[i++]=(ll-lc)&BN_MASK2; | ||
| 582 | lc=(lc > ll); | ||
| 583 | } while (lc); | ||
| 584 | } | ||
| 585 | } | ||
| 586 | if (c2 != 0) /* Add starting at r[1] */ | ||
| 587 | { | ||
| 588 | i=n; | ||
| 589 | if (c2 > 0) | ||
| 590 | { | ||
| 591 | lc=c2; | ||
| 592 | do { | ||
| 593 | ll=(r[i]+lc)&BN_MASK2; | ||
| 594 | r[i++]=ll; | ||
| 595 | lc=(lc > ll); | ||
| 596 | } while (lc); | ||
| 597 | } | ||
| 598 | else | ||
| 599 | { | ||
| 600 | lc= -c2; | ||
| 601 | do { | ||
| 602 | ll=r[i]; | ||
| 603 | r[i++]=(ll-lc)&BN_MASK2; | ||
| 604 | lc=(lc > ll); | ||
| 605 | } while (lc); | ||
| 606 | } | ||
| 607 | } | ||
| 608 | } | ||
| 609 | #endif /* BN_RECURSION */ | ||
| 610 | |||
| 611 | int BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) | ||
| 612 | { | ||
| 613 | int top,al,bl; | ||
| 614 | BIGNUM *rr; | ||
| 615 | int ret = 0; | ||
| 616 | #if defined(BN_MUL_COMBA) || defined(BN_RECURSION) | ||
| 617 | int i; | ||
| 618 | #endif | ||
| 619 | #ifdef BN_RECURSION | ||
| 620 | BIGNUM *t; | ||
| 621 | int j,k; | ||
| 622 | #endif | ||
| 623 | |||
| 624 | #ifdef BN_COUNT | ||
| 625 | printf("BN_mul %d * %d\n",a->top,b->top); | ||
| 626 | #endif | ||
| 627 | |||
| 628 | bn_check_top(a); | ||
| 629 | bn_check_top(b); | ||
| 630 | bn_check_top(r); | ||
| 631 | |||
| 632 | al=a->top; | ||
| 633 | bl=b->top; | ||
| 634 | |||
| 635 | if ((al == 0) || (bl == 0)) | ||
| 636 | { | ||
| 637 | if (!BN_zero(r)) goto err; | ||
| 638 | return(1); | ||
| 639 | } | ||
| 640 | top=al+bl; | ||
| 641 | |||
| 642 | BN_CTX_start(ctx); | ||
| 643 | if ((r == a) || (r == b)) | ||
| 644 | { | ||
| 645 | if ((rr = BN_CTX_get(ctx)) == NULL) goto err; | ||
| 646 | } | ||
| 647 | else | ||
| 648 | rr = r; | ||
| 649 | rr->neg=a->neg^b->neg; | ||
| 650 | |||
| 651 | #if defined(BN_MUL_COMBA) || defined(BN_RECURSION) | ||
| 652 | i = al-bl; | ||
| 653 | #endif | ||
| 654 | #ifdef BN_MUL_COMBA | ||
| 655 | if (i == 0) | ||
| 656 | { | ||
| 657 | # if 0 | ||
| 658 | if (al == 4) | ||
| 659 | { | ||
| 660 | if (bn_wexpand(rr,8) == NULL) goto err; | ||
| 661 | rr->top=8; | ||
| 662 | bn_mul_comba4(rr->d,a->d,b->d); | ||
| 663 | goto end; | ||
| 664 | } | ||
| 665 | # endif | ||
| 666 | if (al == 8) | ||
| 667 | { | ||
| 668 | if (bn_wexpand(rr,16) == NULL) goto err; | ||
| 669 | rr->top=16; | ||
| 670 | bn_mul_comba8(rr->d,a->d,b->d); | ||
| 671 | goto end; | ||
| 672 | } | ||
| 673 | } | ||
| 674 | #endif /* BN_MUL_COMBA */ | ||
| 675 | #ifdef BN_RECURSION | ||
| 676 | if ((al >= BN_MULL_SIZE_NORMAL) && (bl >= BN_MULL_SIZE_NORMAL)) | ||
| 677 | { | ||
| 678 | if (i == 1 && !BN_get_flags(b,BN_FLG_STATIC_DATA) && bl<b->dmax) | ||
| 679 | { | ||
| 680 | #if 0 /* tribute to const-ification, bl<b->dmax above covers for this */ | ||
| 681 | if (bn_wexpand(b,al) == NULL) goto err; | ||
| 682 | #endif | ||
| 683 | b->d[bl]=0; | ||
| 684 | bl++; | ||
| 685 | i--; | ||
| 686 | } | ||
| 687 | else if (i == -1 && !BN_get_flags(a,BN_FLG_STATIC_DATA) && al<a->dmax) | ||
| 688 | { | ||
| 689 | #if 0 /* tribute to const-ification, al<a->dmax above covers for this */ | ||
| 690 | if (bn_wexpand(a,bl) == NULL) goto err; | ||
| 691 | #endif | ||
| 692 | a->d[al]=0; | ||
| 693 | al++; | ||
| 694 | i++; | ||
| 695 | } | ||
| 696 | if (i == 0) | ||
| 697 | { | ||
| 698 | /* symmetric and > 4 */ | ||
| 699 | /* 16 or larger */ | ||
| 700 | j=BN_num_bits_word((BN_ULONG)al); | ||
| 701 | j=1<<(j-1); | ||
| 702 | k=j+j; | ||
| 703 | t = BN_CTX_get(ctx); | ||
| 704 | if (al == j) /* exact multiple */ | ||
| 705 | { | ||
| 706 | if (bn_wexpand(t,k*2) == NULL) goto err; | ||
| 707 | if (bn_wexpand(rr,k*2) == NULL) goto err; | ||
| 708 | bn_mul_recursive(rr->d,a->d,b->d,al,t->d); | ||
| 709 | rr->top=top; | ||
| 710 | goto end; | ||
| 711 | } | ||
| 712 | #if 0 /* tribute to const-ification, rsa/dsa performance is not affected */ | ||
| 713 | else | ||
| 714 | { | ||
| 715 | if (bn_wexpand(a,k) == NULL ) goto err; | ||
| 716 | if (bn_wexpand(b,k) == NULL ) goto err; | ||
| 717 | if (bn_wexpand(t,k*4) == NULL ) goto err; | ||
| 718 | if (bn_wexpand(rr,k*4) == NULL ) goto err; | ||
| 719 | for (i=a->top; i<k; i++) | ||
| 720 | a->d[i]=0; | ||
| 721 | for (i=b->top; i<k; i++) | ||
| 722 | b->d[i]=0; | ||
| 723 | bn_mul_part_recursive(rr->d,a->d,b->d,al-j,j,t->d); | ||
| 724 | } | ||
| 725 | rr->top=top; | ||
| 726 | goto end; | ||
| 727 | #endif | ||
| 728 | } | ||
| 729 | } | ||
| 730 | #endif /* BN_RECURSION */ | ||
| 731 | if (bn_wexpand(rr,top) == NULL) goto err; | ||
| 732 | rr->top=top; | ||
| 733 | bn_mul_normal(rr->d,a->d,al,b->d,bl); | ||
| 734 | |||
| 735 | #if defined(BN_MUL_COMBA) || defined(BN_RECURSION) | ||
| 736 | end: | ||
| 737 | #endif | ||
| 738 | bn_fix_top(rr); | ||
| 739 | if (r != rr) BN_copy(r,rr); | ||
| 740 | ret=1; | ||
| 741 | err: | ||
| 742 | BN_CTX_end(ctx); | ||
| 743 | return(ret); | ||
| 744 | } | ||
| 745 | |||
| 746 | void bn_mul_normal(BN_ULONG *r, BN_ULONG *a, int na, BN_ULONG *b, int nb) | ||
| 747 | { | ||
| 748 | BN_ULONG *rr; | ||
| 749 | |||
| 750 | #ifdef BN_COUNT | ||
| 751 | printf(" bn_mul_normal %d * %d\n",na,nb); | ||
| 752 | #endif | ||
| 753 | |||
| 754 | if (na < nb) | ||
| 755 | { | ||
| 756 | int itmp; | ||
| 757 | BN_ULONG *ltmp; | ||
| 758 | |||
| 759 | itmp=na; na=nb; nb=itmp; | ||
| 760 | ltmp=a; a=b; b=ltmp; | ||
| 761 | |||
| 762 | } | ||
| 763 | rr= &(r[na]); | ||
| 764 | rr[0]=bn_mul_words(r,a,na,b[0]); | ||
| 765 | |||
| 766 | for (;;) | ||
| 767 | { | ||
| 768 | if (--nb <= 0) return; | ||
| 769 | rr[1]=bn_mul_add_words(&(r[1]),a,na,b[1]); | ||
| 770 | if (--nb <= 0) return; | ||
| 771 | rr[2]=bn_mul_add_words(&(r[2]),a,na,b[2]); | ||
| 772 | if (--nb <= 0) return; | ||
| 773 | rr[3]=bn_mul_add_words(&(r[3]),a,na,b[3]); | ||
| 774 | if (--nb <= 0) return; | ||
| 775 | rr[4]=bn_mul_add_words(&(r[4]),a,na,b[4]); | ||
| 776 | rr+=4; | ||
| 777 | r+=4; | ||
| 778 | b+=4; | ||
| 779 | } | ||
| 780 | } | ||
| 781 | |||
| 782 | void bn_mul_low_normal(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n) | ||
| 783 | { | ||
| 784 | #ifdef BN_COUNT | ||
| 785 | printf(" bn_mul_low_normal %d * %d\n",n,n); | ||
| 786 | #endif | ||
| 787 | bn_mul_words(r,a,n,b[0]); | ||
| 788 | |||
| 789 | for (;;) | ||
| 790 | { | ||
| 791 | if (--n <= 0) return; | ||
| 792 | bn_mul_add_words(&(r[1]),a,n,b[1]); | ||
| 793 | if (--n <= 0) return; | ||
| 794 | bn_mul_add_words(&(r[2]),a,n,b[2]); | ||
| 795 | if (--n <= 0) return; | ||
| 796 | bn_mul_add_words(&(r[3]),a,n,b[3]); | ||
| 797 | if (--n <= 0) return; | ||
| 798 | bn_mul_add_words(&(r[4]),a,n,b[4]); | ||
| 799 | r+=4; | ||
| 800 | b+=4; | ||
| 801 | } | ||
| 802 | } | ||
