diff options
Diffstat (limited to 'src/lib/libcrypto/bn/bn_mul.c')
| -rw-r--r-- | src/lib/libcrypto/bn/bn_mul.c | 1163 |
1 files changed, 1163 insertions, 0 deletions
diff --git a/src/lib/libcrypto/bn/bn_mul.c b/src/lib/libcrypto/bn/bn_mul.c new file mode 100644 index 0000000000..fd598b8b3d --- /dev/null +++ b/src/lib/libcrypto/bn/bn_mul.c | |||
| @@ -0,0 +1,1163 @@ | |||
| 1 | /* crypto/bn/bn_mul.c */ | ||
| 2 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) | ||
| 3 | * All rights reserved. | ||
| 4 | * | ||
| 5 | * This package is an SSL implementation written | ||
| 6 | * by Eric Young (eay@cryptsoft.com). | ||
| 7 | * The implementation was written so as to conform with Netscapes SSL. | ||
| 8 | * | ||
| 9 | * This library is free for commercial and non-commercial use as long as | ||
| 10 | * the following conditions are aheared to. The following conditions | ||
| 11 | * apply to all code found in this distribution, be it the RC4, RSA, | ||
| 12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation | ||
| 13 | * included with this distribution is covered by the same copyright terms | ||
| 14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | ||
| 15 | * | ||
| 16 | * Copyright remains Eric Young's, and as such any Copyright notices in | ||
| 17 | * the code are not to be removed. | ||
| 18 | * If this package is used in a product, Eric Young should be given attribution | ||
| 19 | * as the author of the parts of the library used. | ||
| 20 | * This can be in the form of a textual message at program startup or | ||
| 21 | * in documentation (online or textual) provided with the package. | ||
| 22 | * | ||
| 23 | * Redistribution and use in source and binary forms, with or without | ||
| 24 | * modification, are permitted provided that the following conditions | ||
| 25 | * are met: | ||
| 26 | * 1. Redistributions of source code must retain the copyright | ||
| 27 | * notice, this list of conditions and the following disclaimer. | ||
| 28 | * 2. Redistributions in binary form must reproduce the above copyright | ||
| 29 | * notice, this list of conditions and the following disclaimer in the | ||
| 30 | * documentation and/or other materials provided with the distribution. | ||
| 31 | * 3. All advertising materials mentioning features or use of this software | ||
| 32 | * must display the following acknowledgement: | ||
| 33 | * "This product includes cryptographic software written by | ||
| 34 | * Eric Young (eay@cryptsoft.com)" | ||
| 35 | * The word 'cryptographic' can be left out if the rouines from the library | ||
| 36 | * being used are not cryptographic related :-). | ||
| 37 | * 4. If you include any Windows specific code (or a derivative thereof) from | ||
| 38 | * the apps directory (application code) you must include an acknowledgement: | ||
| 39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | ||
| 40 | * | ||
| 41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | ||
| 42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
| 43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | ||
| 44 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | ||
| 45 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | ||
| 46 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | ||
| 47 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
| 48 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | ||
| 49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | ||
| 50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | ||
| 51 | * SUCH DAMAGE. | ||
| 52 | * | ||
| 53 | * The licence and distribution terms for any publically available version or | ||
| 54 | * derivative of this code cannot be changed. i.e. this code cannot simply be | ||
| 55 | * copied and put under another distribution licence | ||
| 56 | * [including the GNU Public Licence.] | ||
| 57 | */ | ||
| 58 | |||
| 59 | #ifndef BN_DEBUG | ||
| 60 | # undef NDEBUG /* avoid conflicting definitions */ | ||
| 61 | # define NDEBUG | ||
| 62 | #endif | ||
| 63 | |||
| 64 | #include <stdio.h> | ||
| 65 | #include <assert.h> | ||
| 66 | #include "cryptlib.h" | ||
| 67 | #include "bn_lcl.h" | ||
| 68 | |||
| 69 | #if defined(OPENSSL_NO_ASM) || !(defined(__i386) || defined(__i386__))/* Assembler implementation exists only for x86 */ | ||
| 70 | /* Here follows specialised variants of bn_add_words() and | ||
| 71 | bn_sub_words(). They have the property performing operations on | ||
| 72 | arrays of different sizes. The sizes of those arrays is expressed through | ||
| 73 | cl, which is the common length ( basicall, min(len(a),len(b)) ), and dl, | ||
| 74 | which is the delta between the two lengths, calculated as len(a)-len(b). | ||
| 75 | All lengths are the number of BN_ULONGs... For the operations that require | ||
| 76 | a result array as parameter, it must have the length cl+abs(dl). | ||
| 77 | These functions should probably end up in bn_asm.c as soon as there are | ||
| 78 | assembler counterparts for the systems that use assembler files. */ | ||
| 79 | |||
| 80 | BN_ULONG bn_sub_part_words(BN_ULONG *r, | ||
| 81 | const BN_ULONG *a, const BN_ULONG *b, | ||
| 82 | int cl, int dl) | ||
| 83 | { | ||
| 84 | BN_ULONG c, t; | ||
| 85 | |||
| 86 | assert(cl >= 0); | ||
| 87 | c = bn_sub_words(r, a, b, cl); | ||
| 88 | |||
| 89 | if (dl == 0) | ||
| 90 | return c; | ||
| 91 | |||
| 92 | r += cl; | ||
| 93 | a += cl; | ||
| 94 | b += cl; | ||
| 95 | |||
| 96 | if (dl < 0) | ||
| 97 | { | ||
| 98 | #ifdef BN_COUNT | ||
| 99 | fprintf(stderr, " bn_sub_part_words %d + %d (dl < 0, c = %d)\n", cl, dl, c); | ||
| 100 | #endif | ||
| 101 | for (;;) | ||
| 102 | { | ||
| 103 | t = b[0]; | ||
| 104 | r[0] = (0-t-c)&BN_MASK2; | ||
| 105 | if (t != 0) c=1; | ||
| 106 | if (++dl >= 0) break; | ||
| 107 | |||
| 108 | t = b[1]; | ||
| 109 | r[1] = (0-t-c)&BN_MASK2; | ||
| 110 | if (t != 0) c=1; | ||
| 111 | if (++dl >= 0) break; | ||
| 112 | |||
| 113 | t = b[2]; | ||
| 114 | r[2] = (0-t-c)&BN_MASK2; | ||
| 115 | if (t != 0) c=1; | ||
| 116 | if (++dl >= 0) break; | ||
| 117 | |||
| 118 | t = b[3]; | ||
| 119 | r[3] = (0-t-c)&BN_MASK2; | ||
| 120 | if (t != 0) c=1; | ||
| 121 | if (++dl >= 0) break; | ||
| 122 | |||
| 123 | b += 4; | ||
| 124 | r += 4; | ||
| 125 | } | ||
| 126 | } | ||
| 127 | else | ||
| 128 | { | ||
| 129 | int save_dl = dl; | ||
| 130 | #ifdef BN_COUNT | ||
| 131 | fprintf(stderr, " bn_sub_part_words %d + %d (dl > 0, c = %d)\n", cl, dl, c); | ||
| 132 | #endif | ||
| 133 | while(c) | ||
| 134 | { | ||
| 135 | t = a[0]; | ||
| 136 | r[0] = (t-c)&BN_MASK2; | ||
| 137 | if (t != 0) c=0; | ||
| 138 | if (--dl <= 0) break; | ||
| 139 | |||
| 140 | t = a[1]; | ||
| 141 | r[1] = (t-c)&BN_MASK2; | ||
| 142 | if (t != 0) c=0; | ||
| 143 | if (--dl <= 0) break; | ||
| 144 | |||
| 145 | t = a[2]; | ||
| 146 | r[2] = (t-c)&BN_MASK2; | ||
| 147 | if (t != 0) c=0; | ||
| 148 | if (--dl <= 0) break; | ||
| 149 | |||
| 150 | t = a[3]; | ||
| 151 | r[3] = (t-c)&BN_MASK2; | ||
| 152 | if (t != 0) c=0; | ||
| 153 | if (--dl <= 0) break; | ||
| 154 | |||
| 155 | save_dl = dl; | ||
| 156 | a += 4; | ||
| 157 | r += 4; | ||
| 158 | } | ||
| 159 | if (dl > 0) | ||
| 160 | { | ||
| 161 | #ifdef BN_COUNT | ||
| 162 | fprintf(stderr, " bn_sub_part_words %d + %d (dl > 0, c == 0)\n", cl, dl); | ||
| 163 | #endif | ||
| 164 | if (save_dl > dl) | ||
| 165 | { | ||
| 166 | switch (save_dl - dl) | ||
| 167 | { | ||
| 168 | case 1: | ||
| 169 | r[1] = a[1]; | ||
| 170 | if (--dl <= 0) break; | ||
| 171 | case 2: | ||
| 172 | r[2] = a[2]; | ||
| 173 | if (--dl <= 0) break; | ||
| 174 | case 3: | ||
| 175 | r[3] = a[3]; | ||
| 176 | if (--dl <= 0) break; | ||
| 177 | } | ||
| 178 | a += 4; | ||
| 179 | r += 4; | ||
| 180 | } | ||
| 181 | } | ||
| 182 | if (dl > 0) | ||
| 183 | { | ||
| 184 | #ifdef BN_COUNT | ||
| 185 | fprintf(stderr, " bn_sub_part_words %d + %d (dl > 0, copy)\n", cl, dl); | ||
| 186 | #endif | ||
| 187 | for(;;) | ||
| 188 | { | ||
| 189 | r[0] = a[0]; | ||
| 190 | if (--dl <= 0) break; | ||
| 191 | r[1] = a[1]; | ||
| 192 | if (--dl <= 0) break; | ||
| 193 | r[2] = a[2]; | ||
| 194 | if (--dl <= 0) break; | ||
| 195 | r[3] = a[3]; | ||
| 196 | if (--dl <= 0) break; | ||
| 197 | |||
| 198 | a += 4; | ||
| 199 | r += 4; | ||
| 200 | } | ||
| 201 | } | ||
| 202 | } | ||
| 203 | return c; | ||
| 204 | } | ||
| 205 | #endif | ||
| 206 | |||
| 207 | BN_ULONG bn_add_part_words(BN_ULONG *r, | ||
| 208 | const BN_ULONG *a, const BN_ULONG *b, | ||
| 209 | int cl, int dl) | ||
| 210 | { | ||
| 211 | BN_ULONG c, l, t; | ||
| 212 | |||
| 213 | assert(cl >= 0); | ||
| 214 | c = bn_add_words(r, a, b, cl); | ||
| 215 | |||
| 216 | if (dl == 0) | ||
| 217 | return c; | ||
| 218 | |||
| 219 | r += cl; | ||
| 220 | a += cl; | ||
| 221 | b += cl; | ||
| 222 | |||
| 223 | if (dl < 0) | ||
| 224 | { | ||
| 225 | int save_dl = dl; | ||
| 226 | #ifdef BN_COUNT | ||
| 227 | fprintf(stderr, " bn_add_part_words %d + %d (dl < 0, c = %d)\n", cl, dl, c); | ||
| 228 | #endif | ||
| 229 | while (c) | ||
| 230 | { | ||
| 231 | l=(c+b[0])&BN_MASK2; | ||
| 232 | c=(l < c); | ||
| 233 | r[0]=l; | ||
| 234 | if (++dl >= 0) break; | ||
| 235 | |||
| 236 | l=(c+b[1])&BN_MASK2; | ||
| 237 | c=(l < c); | ||
| 238 | r[1]=l; | ||
| 239 | if (++dl >= 0) break; | ||
| 240 | |||
| 241 | l=(c+b[2])&BN_MASK2; | ||
| 242 | c=(l < c); | ||
| 243 | r[2]=l; | ||
| 244 | if (++dl >= 0) break; | ||
| 245 | |||
| 246 | l=(c+b[3])&BN_MASK2; | ||
| 247 | c=(l < c); | ||
| 248 | r[3]=l; | ||
| 249 | if (++dl >= 0) break; | ||
| 250 | |||
| 251 | save_dl = dl; | ||
| 252 | b+=4; | ||
| 253 | r+=4; | ||
| 254 | } | ||
| 255 | if (dl < 0) | ||
| 256 | { | ||
| 257 | #ifdef BN_COUNT | ||
| 258 | fprintf(stderr, " bn_add_part_words %d + %d (dl < 0, c == 0)\n", cl, dl); | ||
| 259 | #endif | ||
| 260 | if (save_dl < dl) | ||
| 261 | { | ||
| 262 | switch (dl - save_dl) | ||
| 263 | { | ||
| 264 | case 1: | ||
| 265 | r[1] = b[1]; | ||
| 266 | if (++dl >= 0) break; | ||
| 267 | case 2: | ||
| 268 | r[2] = b[2]; | ||
| 269 | if (++dl >= 0) break; | ||
| 270 | case 3: | ||
| 271 | r[3] = b[3]; | ||
| 272 | if (++dl >= 0) break; | ||
| 273 | } | ||
| 274 | b += 4; | ||
| 275 | r += 4; | ||
| 276 | } | ||
| 277 | } | ||
| 278 | if (dl < 0) | ||
| 279 | { | ||
| 280 | #ifdef BN_COUNT | ||
| 281 | fprintf(stderr, " bn_add_part_words %d + %d (dl < 0, copy)\n", cl, dl); | ||
| 282 | #endif | ||
| 283 | for(;;) | ||
| 284 | { | ||
| 285 | r[0] = b[0]; | ||
| 286 | if (++dl >= 0) break; | ||
| 287 | r[1] = b[1]; | ||
| 288 | if (++dl >= 0) break; | ||
| 289 | r[2] = b[2]; | ||
| 290 | if (++dl >= 0) break; | ||
| 291 | r[3] = b[3]; | ||
| 292 | if (++dl >= 0) break; | ||
| 293 | |||
| 294 | b += 4; | ||
| 295 | r += 4; | ||
| 296 | } | ||
| 297 | } | ||
| 298 | } | ||
| 299 | else | ||
| 300 | { | ||
| 301 | int save_dl = dl; | ||
| 302 | #ifdef BN_COUNT | ||
| 303 | fprintf(stderr, " bn_add_part_words %d + %d (dl > 0)\n", cl, dl); | ||
| 304 | #endif | ||
| 305 | while (c) | ||
| 306 | { | ||
| 307 | t=(a[0]+c)&BN_MASK2; | ||
| 308 | c=(t < c); | ||
| 309 | r[0]=t; | ||
| 310 | if (--dl <= 0) break; | ||
| 311 | |||
| 312 | t=(a[1]+c)&BN_MASK2; | ||
| 313 | c=(t < c); | ||
| 314 | r[1]=t; | ||
| 315 | if (--dl <= 0) break; | ||
| 316 | |||
| 317 | t=(a[2]+c)&BN_MASK2; | ||
| 318 | c=(t < c); | ||
| 319 | r[2]=t; | ||
| 320 | if (--dl <= 0) break; | ||
| 321 | |||
| 322 | t=(a[3]+c)&BN_MASK2; | ||
| 323 | c=(t < c); | ||
| 324 | r[3]=t; | ||
| 325 | if (--dl <= 0) break; | ||
| 326 | |||
| 327 | save_dl = dl; | ||
| 328 | a+=4; | ||
| 329 | r+=4; | ||
| 330 | } | ||
| 331 | #ifdef BN_COUNT | ||
| 332 | fprintf(stderr, " bn_add_part_words %d + %d (dl > 0, c == 0)\n", cl, dl); | ||
| 333 | #endif | ||
| 334 | if (dl > 0) | ||
| 335 | { | ||
| 336 | if (save_dl > dl) | ||
| 337 | { | ||
| 338 | switch (save_dl - dl) | ||
| 339 | { | ||
| 340 | case 1: | ||
| 341 | r[1] = a[1]; | ||
| 342 | if (--dl <= 0) break; | ||
| 343 | case 2: | ||
| 344 | r[2] = a[2]; | ||
| 345 | if (--dl <= 0) break; | ||
| 346 | case 3: | ||
| 347 | r[3] = a[3]; | ||
| 348 | if (--dl <= 0) break; | ||
| 349 | } | ||
| 350 | a += 4; | ||
| 351 | r += 4; | ||
| 352 | } | ||
| 353 | } | ||
| 354 | if (dl > 0) | ||
| 355 | { | ||
| 356 | #ifdef BN_COUNT | ||
| 357 | fprintf(stderr, " bn_add_part_words %d + %d (dl > 0, copy)\n", cl, dl); | ||
| 358 | #endif | ||
| 359 | for(;;) | ||
| 360 | { | ||
| 361 | r[0] = a[0]; | ||
| 362 | if (--dl <= 0) break; | ||
| 363 | r[1] = a[1]; | ||
| 364 | if (--dl <= 0) break; | ||
| 365 | r[2] = a[2]; | ||
| 366 | if (--dl <= 0) break; | ||
| 367 | r[3] = a[3]; | ||
| 368 | if (--dl <= 0) break; | ||
| 369 | |||
| 370 | a += 4; | ||
| 371 | r += 4; | ||
| 372 | } | ||
| 373 | } | ||
| 374 | } | ||
| 375 | return c; | ||
| 376 | } | ||
| 377 | |||
| 378 | #ifdef BN_RECURSION | ||
| 379 | /* Karatsuba recursive multiplication algorithm | ||
| 380 | * (cf. Knuth, The Art of Computer Programming, Vol. 2) */ | ||
| 381 | |||
| 382 | /* r is 2*n2 words in size, | ||
| 383 | * a and b are both n2 words in size. | ||
| 384 | * n2 must be a power of 2. | ||
| 385 | * We multiply and return the result. | ||
| 386 | * t must be 2*n2 words in size | ||
| 387 | * We calculate | ||
| 388 | * a[0]*b[0] | ||
| 389 | * a[0]*b[0]+a[1]*b[1]+(a[0]-a[1])*(b[1]-b[0]) | ||
| 390 | * a[1]*b[1] | ||
| 391 | */ | ||
| 392 | void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2, | ||
| 393 | int dna, int dnb, BN_ULONG *t) | ||
| 394 | { | ||
| 395 | int n=n2/2,c1,c2; | ||
| 396 | int tna=n+dna, tnb=n+dnb; | ||
| 397 | unsigned int neg,zero; | ||
| 398 | BN_ULONG ln,lo,*p; | ||
| 399 | |||
| 400 | # ifdef BN_COUNT | ||
| 401 | fprintf(stderr," bn_mul_recursive %d * %d\n",n2,n2); | ||
| 402 | # endif | ||
| 403 | # ifdef BN_MUL_COMBA | ||
| 404 | # if 0 | ||
| 405 | if (n2 == 4) | ||
| 406 | { | ||
| 407 | bn_mul_comba4(r,a,b); | ||
| 408 | return; | ||
| 409 | } | ||
| 410 | # endif | ||
| 411 | /* Only call bn_mul_comba 8 if n2 == 8 and the | ||
| 412 | * two arrays are complete [steve] | ||
| 413 | */ | ||
| 414 | if (n2 == 8 && dna == 0 && dnb == 0) | ||
| 415 | { | ||
| 416 | bn_mul_comba8(r,a,b); | ||
| 417 | return; | ||
| 418 | } | ||
| 419 | # endif /* BN_MUL_COMBA */ | ||
| 420 | /* Else do normal multiply */ | ||
| 421 | if (n2 < BN_MUL_RECURSIVE_SIZE_NORMAL) | ||
| 422 | { | ||
| 423 | bn_mul_normal(r,a,n2+dna,b,n2+dnb); | ||
| 424 | if ((dna + dnb) < 0) | ||
| 425 | memset(&r[2*n2 + dna + dnb], 0, | ||
| 426 | sizeof(BN_ULONG) * -(dna + dnb)); | ||
| 427 | return; | ||
| 428 | } | ||
| 429 | /* r=(a[0]-a[1])*(b[1]-b[0]) */ | ||
| 430 | c1=bn_cmp_part_words(a,&(a[n]),tna,n-tna); | ||
| 431 | c2=bn_cmp_part_words(&(b[n]),b,tnb,tnb-n); | ||
| 432 | zero=neg=0; | ||
| 433 | switch (c1*3+c2) | ||
| 434 | { | ||
| 435 | case -4: | ||
| 436 | bn_sub_part_words(t, &(a[n]),a, tna,tna-n); /* - */ | ||
| 437 | bn_sub_part_words(&(t[n]),b, &(b[n]),tnb,n-tnb); /* - */ | ||
| 438 | break; | ||
| 439 | case -3: | ||
| 440 | zero=1; | ||
| 441 | break; | ||
| 442 | case -2: | ||
| 443 | bn_sub_part_words(t, &(a[n]),a, tna,tna-n); /* - */ | ||
| 444 | bn_sub_part_words(&(t[n]),&(b[n]),b, tnb,tnb-n); /* + */ | ||
| 445 | neg=1; | ||
| 446 | break; | ||
| 447 | case -1: | ||
| 448 | case 0: | ||
| 449 | case 1: | ||
| 450 | zero=1; | ||
| 451 | break; | ||
| 452 | case 2: | ||
| 453 | bn_sub_part_words(t, a, &(a[n]),tna,n-tna); /* + */ | ||
| 454 | bn_sub_part_words(&(t[n]),b, &(b[n]),tnb,n-tnb); /* - */ | ||
| 455 | neg=1; | ||
| 456 | break; | ||
| 457 | case 3: | ||
| 458 | zero=1; | ||
| 459 | break; | ||
| 460 | case 4: | ||
| 461 | bn_sub_part_words(t, a, &(a[n]),tna,n-tna); | ||
| 462 | bn_sub_part_words(&(t[n]),&(b[n]),b, tnb,tnb-n); | ||
| 463 | break; | ||
| 464 | } | ||
| 465 | |||
| 466 | # ifdef BN_MUL_COMBA | ||
| 467 | if (n == 4 && dna == 0 && dnb == 0) /* XXX: bn_mul_comba4 could take | ||
| 468 | extra args to do this well */ | ||
| 469 | { | ||
| 470 | if (!zero) | ||
| 471 | bn_mul_comba4(&(t[n2]),t,&(t[n])); | ||
| 472 | else | ||
| 473 | memset(&(t[n2]),0,8*sizeof(BN_ULONG)); | ||
| 474 | |||
| 475 | bn_mul_comba4(r,a,b); | ||
| 476 | bn_mul_comba4(&(r[n2]),&(a[n]),&(b[n])); | ||
| 477 | } | ||
| 478 | else if (n == 8 && dna == 0 && dnb == 0) /* XXX: bn_mul_comba8 could | ||
| 479 | take extra args to do this | ||
| 480 | well */ | ||
| 481 | { | ||
| 482 | if (!zero) | ||
| 483 | bn_mul_comba8(&(t[n2]),t,&(t[n])); | ||
| 484 | else | ||
| 485 | memset(&(t[n2]),0,16*sizeof(BN_ULONG)); | ||
| 486 | |||
| 487 | bn_mul_comba8(r,a,b); | ||
| 488 | bn_mul_comba8(&(r[n2]),&(a[n]),&(b[n])); | ||
| 489 | } | ||
| 490 | else | ||
| 491 | # endif /* BN_MUL_COMBA */ | ||
| 492 | { | ||
| 493 | p= &(t[n2*2]); | ||
| 494 | if (!zero) | ||
| 495 | bn_mul_recursive(&(t[n2]),t,&(t[n]),n,0,0,p); | ||
| 496 | else | ||
| 497 | memset(&(t[n2]),0,n2*sizeof(BN_ULONG)); | ||
| 498 | bn_mul_recursive(r,a,b,n,0,0,p); | ||
| 499 | bn_mul_recursive(&(r[n2]),&(a[n]),&(b[n]),n,dna,dnb,p); | ||
| 500 | } | ||
| 501 | |||
| 502 | /* t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign | ||
| 503 | * r[10] holds (a[0]*b[0]) | ||
| 504 | * r[32] holds (b[1]*b[1]) | ||
| 505 | */ | ||
| 506 | |||
| 507 | c1=(int)(bn_add_words(t,r,&(r[n2]),n2)); | ||
| 508 | |||
| 509 | if (neg) /* if t[32] is negative */ | ||
| 510 | { | ||
| 511 | c1-=(int)(bn_sub_words(&(t[n2]),t,&(t[n2]),n2)); | ||
| 512 | } | ||
| 513 | else | ||
| 514 | { | ||
| 515 | /* Might have a carry */ | ||
| 516 | c1+=(int)(bn_add_words(&(t[n2]),&(t[n2]),t,n2)); | ||
| 517 | } | ||
| 518 | |||
| 519 | /* t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1]) | ||
| 520 | * r[10] holds (a[0]*b[0]) | ||
| 521 | * r[32] holds (b[1]*b[1]) | ||
| 522 | * c1 holds the carry bits | ||
| 523 | */ | ||
| 524 | c1+=(int)(bn_add_words(&(r[n]),&(r[n]),&(t[n2]),n2)); | ||
| 525 | if (c1) | ||
| 526 | { | ||
| 527 | p= &(r[n+n2]); | ||
| 528 | lo= *p; | ||
| 529 | ln=(lo+c1)&BN_MASK2; | ||
| 530 | *p=ln; | ||
| 531 | |||
| 532 | /* The overflow will stop before we over write | ||
| 533 | * words we should not overwrite */ | ||
| 534 | if (ln < (BN_ULONG)c1) | ||
| 535 | { | ||
| 536 | do { | ||
| 537 | p++; | ||
| 538 | lo= *p; | ||
| 539 | ln=(lo+1)&BN_MASK2; | ||
| 540 | *p=ln; | ||
| 541 | } while (ln == 0); | ||
| 542 | } | ||
| 543 | } | ||
| 544 | } | ||
| 545 | |||
| 546 | /* n+tn is the word length | ||
| 547 | * t needs to be n*4 is size, as does r */ | ||
| 548 | void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n, | ||
| 549 | int tna, int tnb, BN_ULONG *t) | ||
| 550 | { | ||
| 551 | int i,j,n2=n*2; | ||
| 552 | unsigned int c1,c2,neg,zero; | ||
| 553 | BN_ULONG ln,lo,*p; | ||
| 554 | |||
| 555 | # ifdef BN_COUNT | ||
| 556 | fprintf(stderr," bn_mul_part_recursive (%d+%d) * (%d+%d)\n", | ||
| 557 | tna, n, tnb, n); | ||
| 558 | # endif | ||
| 559 | if (n < 8) | ||
| 560 | { | ||
| 561 | bn_mul_normal(r,a,n+tna,b,n+tnb); | ||
| 562 | return; | ||
| 563 | } | ||
| 564 | |||
| 565 | /* r=(a[0]-a[1])*(b[1]-b[0]) */ | ||
| 566 | c1=bn_cmp_part_words(a,&(a[n]),tna,n-tna); | ||
| 567 | c2=bn_cmp_part_words(&(b[n]),b,tnb,tnb-n); | ||
| 568 | zero=neg=0; | ||
| 569 | switch (c1*3+c2) | ||
| 570 | { | ||
| 571 | case -4: | ||
| 572 | bn_sub_part_words(t, &(a[n]),a, tna,tna-n); /* - */ | ||
| 573 | bn_sub_part_words(&(t[n]),b, &(b[n]),tnb,n-tnb); /* - */ | ||
| 574 | break; | ||
| 575 | case -3: | ||
| 576 | zero=1; | ||
| 577 | /* break; */ | ||
| 578 | case -2: | ||
| 579 | bn_sub_part_words(t, &(a[n]),a, tna,tna-n); /* - */ | ||
| 580 | bn_sub_part_words(&(t[n]),&(b[n]),b, tnb,tnb-n); /* + */ | ||
| 581 | neg=1; | ||
| 582 | break; | ||
| 583 | case -1: | ||
| 584 | case 0: | ||
| 585 | case 1: | ||
| 586 | zero=1; | ||
| 587 | /* break; */ | ||
| 588 | case 2: | ||
| 589 | bn_sub_part_words(t, a, &(a[n]),tna,n-tna); /* + */ | ||
| 590 | bn_sub_part_words(&(t[n]),b, &(b[n]),tnb,n-tnb); /* - */ | ||
| 591 | neg=1; | ||
| 592 | break; | ||
| 593 | case 3: | ||
| 594 | zero=1; | ||
| 595 | /* break; */ | ||
| 596 | case 4: | ||
| 597 | bn_sub_part_words(t, a, &(a[n]),tna,n-tna); | ||
| 598 | bn_sub_part_words(&(t[n]),&(b[n]),b, tnb,tnb-n); | ||
| 599 | break; | ||
| 600 | } | ||
| 601 | /* The zero case isn't yet implemented here. The speedup | ||
| 602 | would probably be negligible. */ | ||
| 603 | # if 0 | ||
| 604 | if (n == 4) | ||
| 605 | { | ||
| 606 | bn_mul_comba4(&(t[n2]),t,&(t[n])); | ||
| 607 | bn_mul_comba4(r,a,b); | ||
| 608 | bn_mul_normal(&(r[n2]),&(a[n]),tn,&(b[n]),tn); | ||
| 609 | memset(&(r[n2+tn*2]),0,sizeof(BN_ULONG)*(n2-tn*2)); | ||
| 610 | } | ||
| 611 | else | ||
| 612 | # endif | ||
| 613 | if (n == 8) | ||
| 614 | { | ||
| 615 | bn_mul_comba8(&(t[n2]),t,&(t[n])); | ||
| 616 | bn_mul_comba8(r,a,b); | ||
| 617 | bn_mul_normal(&(r[n2]),&(a[n]),tna,&(b[n]),tnb); | ||
| 618 | memset(&(r[n2+tna+tnb]),0,sizeof(BN_ULONG)*(n2-tna-tnb)); | ||
| 619 | } | ||
| 620 | else | ||
| 621 | { | ||
| 622 | p= &(t[n2*2]); | ||
| 623 | bn_mul_recursive(&(t[n2]),t,&(t[n]),n,0,0,p); | ||
| 624 | bn_mul_recursive(r,a,b,n,0,0,p); | ||
| 625 | i=n/2; | ||
| 626 | /* If there is only a bottom half to the number, | ||
| 627 | * just do it */ | ||
| 628 | if (tna > tnb) | ||
| 629 | j = tna - i; | ||
| 630 | else | ||
| 631 | j = tnb - i; | ||
| 632 | if (j == 0) | ||
| 633 | { | ||
| 634 | bn_mul_recursive(&(r[n2]),&(a[n]),&(b[n]), | ||
| 635 | i,tna-i,tnb-i,p); | ||
| 636 | memset(&(r[n2+i*2]),0,sizeof(BN_ULONG)*(n2-i*2)); | ||
| 637 | } | ||
| 638 | else if (j > 0) /* eg, n == 16, i == 8 and tn == 11 */ | ||
| 639 | { | ||
| 640 | bn_mul_part_recursive(&(r[n2]),&(a[n]),&(b[n]), | ||
| 641 | i,tna-i,tnb-i,p); | ||
| 642 | memset(&(r[n2+tna+tnb]),0, | ||
| 643 | sizeof(BN_ULONG)*(n2-tna-tnb)); | ||
| 644 | } | ||
| 645 | else /* (j < 0) eg, n == 16, i == 8 and tn == 5 */ | ||
| 646 | { | ||
| 647 | memset(&(r[n2]),0,sizeof(BN_ULONG)*n2); | ||
| 648 | if (tna < BN_MUL_RECURSIVE_SIZE_NORMAL | ||
| 649 | && tnb < BN_MUL_RECURSIVE_SIZE_NORMAL) | ||
| 650 | { | ||
| 651 | bn_mul_normal(&(r[n2]),&(a[n]),tna,&(b[n]),tnb); | ||
| 652 | } | ||
| 653 | else | ||
| 654 | { | ||
| 655 | for (;;) | ||
| 656 | { | ||
| 657 | i/=2; | ||
| 658 | if (i < tna && i < tnb) | ||
| 659 | { | ||
| 660 | bn_mul_part_recursive(&(r[n2]), | ||
| 661 | &(a[n]),&(b[n]), | ||
| 662 | i,tna-i,tnb-i,p); | ||
| 663 | break; | ||
| 664 | } | ||
| 665 | else if (i <= tna && i <= tnb) | ||
| 666 | { | ||
| 667 | bn_mul_recursive(&(r[n2]), | ||
| 668 | &(a[n]),&(b[n]), | ||
| 669 | i,tna-i,tnb-i,p); | ||
| 670 | break; | ||
| 671 | } | ||
| 672 | } | ||
| 673 | } | ||
| 674 | } | ||
| 675 | } | ||
| 676 | |||
| 677 | /* t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign | ||
| 678 | * r[10] holds (a[0]*b[0]) | ||
| 679 | * r[32] holds (b[1]*b[1]) | ||
| 680 | */ | ||
| 681 | |||
| 682 | c1=(int)(bn_add_words(t,r,&(r[n2]),n2)); | ||
| 683 | |||
| 684 | if (neg) /* if t[32] is negative */ | ||
| 685 | { | ||
| 686 | c1-=(int)(bn_sub_words(&(t[n2]),t,&(t[n2]),n2)); | ||
| 687 | } | ||
| 688 | else | ||
| 689 | { | ||
| 690 | /* Might have a carry */ | ||
| 691 | c1+=(int)(bn_add_words(&(t[n2]),&(t[n2]),t,n2)); | ||
| 692 | } | ||
| 693 | |||
| 694 | /* t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1]) | ||
| 695 | * r[10] holds (a[0]*b[0]) | ||
| 696 | * r[32] holds (b[1]*b[1]) | ||
| 697 | * c1 holds the carry bits | ||
| 698 | */ | ||
| 699 | c1+=(int)(bn_add_words(&(r[n]),&(r[n]),&(t[n2]),n2)); | ||
| 700 | if (c1) | ||
| 701 | { | ||
| 702 | p= &(r[n+n2]); | ||
| 703 | lo= *p; | ||
| 704 | ln=(lo+c1)&BN_MASK2; | ||
| 705 | *p=ln; | ||
| 706 | |||
| 707 | /* The overflow will stop before we over write | ||
| 708 | * words we should not overwrite */ | ||
| 709 | if (ln < c1) | ||
| 710 | { | ||
| 711 | do { | ||
| 712 | p++; | ||
| 713 | lo= *p; | ||
| 714 | ln=(lo+1)&BN_MASK2; | ||
| 715 | *p=ln; | ||
| 716 | } while (ln == 0); | ||
| 717 | } | ||
| 718 | } | ||
| 719 | } | ||
| 720 | |||
| 721 | /* a and b must be the same size, which is n2. | ||
| 722 | * r needs to be n2 words and t needs to be n2*2 | ||
| 723 | */ | ||
| 724 | void bn_mul_low_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2, | ||
| 725 | BN_ULONG *t) | ||
| 726 | { | ||
| 727 | int n=n2/2; | ||
| 728 | |||
| 729 | # ifdef BN_COUNT | ||
| 730 | fprintf(stderr," bn_mul_low_recursive %d * %d\n",n2,n2); | ||
| 731 | # endif | ||
| 732 | |||
| 733 | bn_mul_recursive(r,a,b,n,0,0,&(t[0])); | ||
| 734 | if (n >= BN_MUL_LOW_RECURSIVE_SIZE_NORMAL) | ||
| 735 | { | ||
| 736 | bn_mul_low_recursive(&(t[0]),&(a[0]),&(b[n]),n,&(t[n2])); | ||
| 737 | bn_add_words(&(r[n]),&(r[n]),&(t[0]),n); | ||
| 738 | bn_mul_low_recursive(&(t[0]),&(a[n]),&(b[0]),n,&(t[n2])); | ||
| 739 | bn_add_words(&(r[n]),&(r[n]),&(t[0]),n); | ||
| 740 | } | ||
| 741 | else | ||
| 742 | { | ||
| 743 | bn_mul_low_normal(&(t[0]),&(a[0]),&(b[n]),n); | ||
| 744 | bn_mul_low_normal(&(t[n]),&(a[n]),&(b[0]),n); | ||
| 745 | bn_add_words(&(r[n]),&(r[n]),&(t[0]),n); | ||
| 746 | bn_add_words(&(r[n]),&(r[n]),&(t[n]),n); | ||
| 747 | } | ||
| 748 | } | ||
| 749 | |||
| 750 | /* a and b must be the same size, which is n2. | ||
| 751 | * r needs to be n2 words and t needs to be n2*2 | ||
| 752 | * l is the low words of the output. | ||
| 753 | * t needs to be n2*3 | ||
| 754 | */ | ||
| 755 | void bn_mul_high(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, BN_ULONG *l, int n2, | ||
| 756 | BN_ULONG *t) | ||
| 757 | { | ||
| 758 | int i,n; | ||
| 759 | int c1,c2; | ||
| 760 | int neg,oneg,zero; | ||
| 761 | BN_ULONG ll,lc,*lp,*mp; | ||
| 762 | |||
| 763 | # ifdef BN_COUNT | ||
| 764 | fprintf(stderr," bn_mul_high %d * %d\n",n2,n2); | ||
| 765 | # endif | ||
| 766 | n=n2/2; | ||
| 767 | |||
| 768 | /* Calculate (al-ah)*(bh-bl) */ | ||
| 769 | neg=zero=0; | ||
| 770 | c1=bn_cmp_words(&(a[0]),&(a[n]),n); | ||
| 771 | c2=bn_cmp_words(&(b[n]),&(b[0]),n); | ||
| 772 | switch (c1*3+c2) | ||
| 773 | { | ||
| 774 | case -4: | ||
| 775 | bn_sub_words(&(r[0]),&(a[n]),&(a[0]),n); | ||
| 776 | bn_sub_words(&(r[n]),&(b[0]),&(b[n]),n); | ||
| 777 | break; | ||
| 778 | case -3: | ||
| 779 | zero=1; | ||
| 780 | break; | ||
| 781 | case -2: | ||
| 782 | bn_sub_words(&(r[0]),&(a[n]),&(a[0]),n); | ||
| 783 | bn_sub_words(&(r[n]),&(b[n]),&(b[0]),n); | ||
| 784 | neg=1; | ||
| 785 | break; | ||
| 786 | case -1: | ||
| 787 | case 0: | ||
| 788 | case 1: | ||
| 789 | zero=1; | ||
| 790 | break; | ||
| 791 | case 2: | ||
| 792 | bn_sub_words(&(r[0]),&(a[0]),&(a[n]),n); | ||
| 793 | bn_sub_words(&(r[n]),&(b[0]),&(b[n]),n); | ||
| 794 | neg=1; | ||
| 795 | break; | ||
| 796 | case 3: | ||
| 797 | zero=1; | ||
| 798 | break; | ||
| 799 | case 4: | ||
| 800 | bn_sub_words(&(r[0]),&(a[0]),&(a[n]),n); | ||
| 801 | bn_sub_words(&(r[n]),&(b[n]),&(b[0]),n); | ||
| 802 | break; | ||
| 803 | } | ||
| 804 | |||
| 805 | oneg=neg; | ||
| 806 | /* t[10] = (a[0]-a[1])*(b[1]-b[0]) */ | ||
| 807 | /* r[10] = (a[1]*b[1]) */ | ||
| 808 | # ifdef BN_MUL_COMBA | ||
| 809 | if (n == 8) | ||
| 810 | { | ||
| 811 | bn_mul_comba8(&(t[0]),&(r[0]),&(r[n])); | ||
| 812 | bn_mul_comba8(r,&(a[n]),&(b[n])); | ||
| 813 | } | ||
| 814 | else | ||
| 815 | # endif | ||
| 816 | { | ||
| 817 | bn_mul_recursive(&(t[0]),&(r[0]),&(r[n]),n,0,0,&(t[n2])); | ||
| 818 | bn_mul_recursive(r,&(a[n]),&(b[n]),n,0,0,&(t[n2])); | ||
| 819 | } | ||
| 820 | |||
| 821 | /* s0 == low(al*bl) | ||
| 822 | * s1 == low(ah*bh)+low((al-ah)*(bh-bl))+low(al*bl)+high(al*bl) | ||
| 823 | * We know s0 and s1 so the only unknown is high(al*bl) | ||
| 824 | * high(al*bl) == s1 - low(ah*bh+s0+(al-ah)*(bh-bl)) | ||
| 825 | * high(al*bl) == s1 - (r[0]+l[0]+t[0]) | ||
| 826 | */ | ||
| 827 | if (l != NULL) | ||
| 828 | { | ||
| 829 | lp= &(t[n2+n]); | ||
| 830 | c1=(int)(bn_add_words(lp,&(r[0]),&(l[0]),n)); | ||
| 831 | } | ||
| 832 | else | ||
| 833 | { | ||
| 834 | c1=0; | ||
| 835 | lp= &(r[0]); | ||
| 836 | } | ||
| 837 | |||
| 838 | if (neg) | ||
| 839 | neg=(int)(bn_sub_words(&(t[n2]),lp,&(t[0]),n)); | ||
| 840 | else | ||
| 841 | { | ||
| 842 | bn_add_words(&(t[n2]),lp,&(t[0]),n); | ||
| 843 | neg=0; | ||
| 844 | } | ||
| 845 | |||
| 846 | if (l != NULL) | ||
| 847 | { | ||
| 848 | bn_sub_words(&(t[n2+n]),&(l[n]),&(t[n2]),n); | ||
| 849 | } | ||
| 850 | else | ||
| 851 | { | ||
| 852 | lp= &(t[n2+n]); | ||
| 853 | mp= &(t[n2]); | ||
| 854 | for (i=0; i<n; i++) | ||
| 855 | lp[i]=((~mp[i])+1)&BN_MASK2; | ||
| 856 | } | ||
| 857 | |||
| 858 | /* s[0] = low(al*bl) | ||
| 859 | * t[3] = high(al*bl) | ||
| 860 | * t[10] = (a[0]-a[1])*(b[1]-b[0]) neg is the sign | ||
| 861 | * r[10] = (a[1]*b[1]) | ||
| 862 | */ | ||
| 863 | /* R[10] = al*bl | ||
| 864 | * R[21] = al*bl + ah*bh + (a[0]-a[1])*(b[1]-b[0]) | ||
| 865 | * R[32] = ah*bh | ||
| 866 | */ | ||
| 867 | /* R[1]=t[3]+l[0]+r[0](+-)t[0] (have carry/borrow) | ||
| 868 | * R[2]=r[0]+t[3]+r[1](+-)t[1] (have carry/borrow) | ||
| 869 | * R[3]=r[1]+(carry/borrow) | ||
| 870 | */ | ||
| 871 | if (l != NULL) | ||
| 872 | { | ||
| 873 | lp= &(t[n2]); | ||
| 874 | c1= (int)(bn_add_words(lp,&(t[n2+n]),&(l[0]),n)); | ||
| 875 | } | ||
| 876 | else | ||
| 877 | { | ||
| 878 | lp= &(t[n2+n]); | ||
| 879 | c1=0; | ||
| 880 | } | ||
| 881 | c1+=(int)(bn_add_words(&(t[n2]),lp, &(r[0]),n)); | ||
| 882 | if (oneg) | ||
| 883 | c1-=(int)(bn_sub_words(&(t[n2]),&(t[n2]),&(t[0]),n)); | ||
| 884 | else | ||
| 885 | c1+=(int)(bn_add_words(&(t[n2]),&(t[n2]),&(t[0]),n)); | ||
| 886 | |||
| 887 | c2 =(int)(bn_add_words(&(r[0]),&(r[0]),&(t[n2+n]),n)); | ||
| 888 | c2+=(int)(bn_add_words(&(r[0]),&(r[0]),&(r[n]),n)); | ||
| 889 | if (oneg) | ||
| 890 | c2-=(int)(bn_sub_words(&(r[0]),&(r[0]),&(t[n]),n)); | ||
| 891 | else | ||
| 892 | c2+=(int)(bn_add_words(&(r[0]),&(r[0]),&(t[n]),n)); | ||
| 893 | |||
| 894 | if (c1 != 0) /* Add starting at r[0], could be +ve or -ve */ | ||
| 895 | { | ||
| 896 | i=0; | ||
| 897 | if (c1 > 0) | ||
| 898 | { | ||
| 899 | lc=c1; | ||
| 900 | do { | ||
| 901 | ll=(r[i]+lc)&BN_MASK2; | ||
| 902 | r[i++]=ll; | ||
| 903 | lc=(lc > ll); | ||
| 904 | } while (lc); | ||
| 905 | } | ||
| 906 | else | ||
| 907 | { | ||
| 908 | lc= -c1; | ||
| 909 | do { | ||
| 910 | ll=r[i]; | ||
| 911 | r[i++]=(ll-lc)&BN_MASK2; | ||
| 912 | lc=(lc > ll); | ||
| 913 | } while (lc); | ||
| 914 | } | ||
| 915 | } | ||
| 916 | if (c2 != 0) /* Add starting at r[1] */ | ||
| 917 | { | ||
| 918 | i=n; | ||
| 919 | if (c2 > 0) | ||
| 920 | { | ||
| 921 | lc=c2; | ||
| 922 | do { | ||
| 923 | ll=(r[i]+lc)&BN_MASK2; | ||
| 924 | r[i++]=ll; | ||
| 925 | lc=(lc > ll); | ||
| 926 | } while (lc); | ||
| 927 | } | ||
| 928 | else | ||
| 929 | { | ||
| 930 | lc= -c2; | ||
| 931 | do { | ||
| 932 | ll=r[i]; | ||
| 933 | r[i++]=(ll-lc)&BN_MASK2; | ||
| 934 | lc=(lc > ll); | ||
| 935 | } while (lc); | ||
| 936 | } | ||
| 937 | } | ||
| 938 | } | ||
| 939 | #endif /* BN_RECURSION */ | ||
| 940 | |||
| 941 | int BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) | ||
| 942 | { | ||
| 943 | int ret=0; | ||
| 944 | int top,al,bl; | ||
| 945 | BIGNUM *rr; | ||
| 946 | #if defined(BN_MUL_COMBA) || defined(BN_RECURSION) | ||
| 947 | int i; | ||
| 948 | #endif | ||
| 949 | #ifdef BN_RECURSION | ||
| 950 | BIGNUM *t=NULL; | ||
| 951 | int j=0,k; | ||
| 952 | #endif | ||
| 953 | |||
| 954 | #ifdef BN_COUNT | ||
| 955 | fprintf(stderr,"BN_mul %d * %d\n",a->top,b->top); | ||
| 956 | #endif | ||
| 957 | |||
| 958 | bn_check_top(a); | ||
| 959 | bn_check_top(b); | ||
| 960 | bn_check_top(r); | ||
| 961 | |||
| 962 | al=a->top; | ||
| 963 | bl=b->top; | ||
| 964 | |||
| 965 | if ((al == 0) || (bl == 0)) | ||
| 966 | { | ||
| 967 | if (!BN_zero(r)) goto err; | ||
| 968 | return(1); | ||
| 969 | } | ||
| 970 | top=al+bl; | ||
| 971 | |||
| 972 | BN_CTX_start(ctx); | ||
| 973 | if ((r == a) || (r == b)) | ||
| 974 | { | ||
| 975 | if ((rr = BN_CTX_get(ctx)) == NULL) goto err; | ||
| 976 | } | ||
| 977 | else | ||
| 978 | rr = r; | ||
| 979 | rr->neg=a->neg^b->neg; | ||
| 980 | |||
| 981 | #if defined(BN_MUL_COMBA) || defined(BN_RECURSION) | ||
| 982 | i = al-bl; | ||
| 983 | #endif | ||
| 984 | #ifdef BN_MUL_COMBA | ||
| 985 | if (i == 0) | ||
| 986 | { | ||
| 987 | # if 0 | ||
| 988 | if (al == 4) | ||
| 989 | { | ||
| 990 | if (bn_wexpand(rr,8) == NULL) goto err; | ||
| 991 | rr->top=8; | ||
| 992 | bn_mul_comba4(rr->d,a->d,b->d); | ||
| 993 | goto end; | ||
| 994 | } | ||
| 995 | # endif | ||
| 996 | if (al == 8) | ||
| 997 | { | ||
| 998 | if (bn_wexpand(rr,16) == NULL) goto err; | ||
| 999 | rr->top=16; | ||
| 1000 | bn_mul_comba8(rr->d,a->d,b->d); | ||
| 1001 | goto end; | ||
| 1002 | } | ||
| 1003 | } | ||
| 1004 | #endif /* BN_MUL_COMBA */ | ||
| 1005 | #ifdef BN_RECURSION | ||
| 1006 | if ((al >= BN_MULL_SIZE_NORMAL) && (bl >= BN_MULL_SIZE_NORMAL)) | ||
| 1007 | { | ||
| 1008 | if (i >= -1 && i <= 1) | ||
| 1009 | { | ||
| 1010 | int sav_j =0; | ||
| 1011 | /* Find out the power of two lower or equal | ||
| 1012 | to the longest of the two numbers */ | ||
| 1013 | if (i >= 0) | ||
| 1014 | { | ||
| 1015 | j = BN_num_bits_word((BN_ULONG)al); | ||
| 1016 | } | ||
| 1017 | if (i == -1) | ||
| 1018 | { | ||
| 1019 | j = BN_num_bits_word((BN_ULONG)bl); | ||
| 1020 | } | ||
| 1021 | sav_j = j; | ||
| 1022 | j = 1<<(j-1); | ||
| 1023 | assert(j <= al || j <= bl); | ||
| 1024 | k = j+j; | ||
| 1025 | t = BN_CTX_get(ctx); | ||
| 1026 | if (al > j || bl > j) | ||
| 1027 | { | ||
| 1028 | bn_wexpand(t,k*4); | ||
| 1029 | bn_wexpand(rr,k*4); | ||
| 1030 | bn_mul_part_recursive(rr->d,a->d,b->d, | ||
| 1031 | j,al-j,bl-j,t->d); | ||
| 1032 | } | ||
| 1033 | else /* al <= j || bl <= j */ | ||
| 1034 | { | ||
| 1035 | bn_wexpand(t,k*2); | ||
| 1036 | bn_wexpand(rr,k*2); | ||
| 1037 | bn_mul_recursive(rr->d,a->d,b->d, | ||
| 1038 | j,al-j,bl-j,t->d); | ||
| 1039 | } | ||
| 1040 | rr->top=top; | ||
| 1041 | goto end; | ||
| 1042 | } | ||
| 1043 | #if 0 | ||
| 1044 | if (i == 1 && !BN_get_flags(b,BN_FLG_STATIC_DATA)) | ||
| 1045 | { | ||
| 1046 | BIGNUM *tmp_bn = (BIGNUM *)b; | ||
| 1047 | if (bn_wexpand(tmp_bn,al) == NULL) goto err; | ||
| 1048 | tmp_bn->d[bl]=0; | ||
| 1049 | bl++; | ||
| 1050 | i--; | ||
| 1051 | } | ||
| 1052 | else if (i == -1 && !BN_get_flags(a,BN_FLG_STATIC_DATA)) | ||
| 1053 | { | ||
| 1054 | BIGNUM *tmp_bn = (BIGNUM *)a; | ||
| 1055 | if (bn_wexpand(tmp_bn,bl) == NULL) goto err; | ||
| 1056 | tmp_bn->d[al]=0; | ||
| 1057 | al++; | ||
| 1058 | i++; | ||
| 1059 | } | ||
| 1060 | if (i == 0) | ||
| 1061 | { | ||
| 1062 | /* symmetric and > 4 */ | ||
| 1063 | /* 16 or larger */ | ||
| 1064 | j=BN_num_bits_word((BN_ULONG)al); | ||
| 1065 | j=1<<(j-1); | ||
| 1066 | k=j+j; | ||
| 1067 | t = BN_CTX_get(ctx); | ||
| 1068 | if (al == j) /* exact multiple */ | ||
| 1069 | { | ||
| 1070 | if (bn_wexpand(t,k*2) == NULL) goto err; | ||
| 1071 | if (bn_wexpand(rr,k*2) == NULL) goto err; | ||
| 1072 | bn_mul_recursive(rr->d,a->d,b->d,al,t->d); | ||
| 1073 | } | ||
| 1074 | else | ||
| 1075 | { | ||
| 1076 | if (bn_wexpand(t,k*4) == NULL) goto err; | ||
| 1077 | if (bn_wexpand(rr,k*4) == NULL) goto err; | ||
| 1078 | bn_mul_part_recursive(rr->d,a->d,b->d,al-j,j,t->d); | ||
| 1079 | } | ||
| 1080 | rr->top=top; | ||
| 1081 | goto end; | ||
| 1082 | } | ||
| 1083 | #endif | ||
| 1084 | } | ||
| 1085 | #endif /* BN_RECURSION */ | ||
| 1086 | if (bn_wexpand(rr,top) == NULL) goto err; | ||
| 1087 | rr->top=top; | ||
| 1088 | bn_mul_normal(rr->d,a->d,al,b->d,bl); | ||
| 1089 | |||
| 1090 | #if defined(BN_MUL_COMBA) || defined(BN_RECURSION) | ||
| 1091 | end: | ||
| 1092 | #endif | ||
| 1093 | bn_fix_top(rr); | ||
| 1094 | if (r != rr) BN_copy(r,rr); | ||
| 1095 | ret=1; | ||
| 1096 | err: | ||
| 1097 | BN_CTX_end(ctx); | ||
| 1098 | return(ret); | ||
| 1099 | } | ||
| 1100 | |||
| 1101 | void bn_mul_normal(BN_ULONG *r, BN_ULONG *a, int na, BN_ULONG *b, int nb) | ||
| 1102 | { | ||
| 1103 | BN_ULONG *rr; | ||
| 1104 | |||
| 1105 | #ifdef BN_COUNT | ||
| 1106 | fprintf(stderr," bn_mul_normal %d * %d\n",na,nb); | ||
| 1107 | #endif | ||
| 1108 | |||
| 1109 | if (na < nb) | ||
| 1110 | { | ||
| 1111 | int itmp; | ||
| 1112 | BN_ULONG *ltmp; | ||
| 1113 | |||
| 1114 | itmp=na; na=nb; nb=itmp; | ||
| 1115 | ltmp=a; a=b; b=ltmp; | ||
| 1116 | |||
| 1117 | } | ||
| 1118 | rr= &(r[na]); | ||
| 1119 | if (nb <= 0) | ||
| 1120 | { | ||
| 1121 | (void)bn_mul_words(r,a,na,0); | ||
| 1122 | return; | ||
| 1123 | } | ||
| 1124 | else | ||
| 1125 | rr[0]=bn_mul_words(r,a,na,b[0]); | ||
| 1126 | |||
| 1127 | for (;;) | ||
| 1128 | { | ||
| 1129 | if (--nb <= 0) return; | ||
| 1130 | rr[1]=bn_mul_add_words(&(r[1]),a,na,b[1]); | ||
| 1131 | if (--nb <= 0) return; | ||
| 1132 | rr[2]=bn_mul_add_words(&(r[2]),a,na,b[2]); | ||
| 1133 | if (--nb <= 0) return; | ||
| 1134 | rr[3]=bn_mul_add_words(&(r[3]),a,na,b[3]); | ||
| 1135 | if (--nb <= 0) return; | ||
| 1136 | rr[4]=bn_mul_add_words(&(r[4]),a,na,b[4]); | ||
| 1137 | rr+=4; | ||
| 1138 | r+=4; | ||
| 1139 | b+=4; | ||
| 1140 | } | ||
| 1141 | } | ||
| 1142 | |||
| 1143 | void bn_mul_low_normal(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n) | ||
| 1144 | { | ||
| 1145 | #ifdef BN_COUNT | ||
| 1146 | fprintf(stderr," bn_mul_low_normal %d * %d\n",n,n); | ||
| 1147 | #endif | ||
| 1148 | bn_mul_words(r,a,n,b[0]); | ||
| 1149 | |||
| 1150 | for (;;) | ||
| 1151 | { | ||
| 1152 | if (--n <= 0) return; | ||
| 1153 | bn_mul_add_words(&(r[1]),a,n,b[1]); | ||
| 1154 | if (--n <= 0) return; | ||
| 1155 | bn_mul_add_words(&(r[2]),a,n,b[2]); | ||
| 1156 | if (--n <= 0) return; | ||
| 1157 | bn_mul_add_words(&(r[3]),a,n,b[3]); | ||
| 1158 | if (--n <= 0) return; | ||
| 1159 | bn_mul_add_words(&(r[4]),a,n,b[4]); | ||
| 1160 | r+=4; | ||
| 1161 | b+=4; | ||
| 1162 | } | ||
| 1163 | } | ||
