summaryrefslogtreecommitdiff
path: root/src/lib/libcrypto/bn/bn_mul.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/lib/libcrypto/bn/bn_mul.c')
-rw-r--r--src/lib/libcrypto/bn/bn_mul.c529
1 files changed, 84 insertions, 445 deletions
diff --git a/src/lib/libcrypto/bn/bn_mul.c b/src/lib/libcrypto/bn/bn_mul.c
index b03458d002..cb93ac3356 100644
--- a/src/lib/libcrypto/bn/bn_mul.c
+++ b/src/lib/libcrypto/bn/bn_mul.c
@@ -56,325 +56,10 @@
56 * [including the GNU Public Licence.] 56 * [including the GNU Public Licence.]
57 */ 57 */
58 58
59#ifndef BN_DEBUG
60# undef NDEBUG /* avoid conflicting definitions */
61# define NDEBUG
62#endif
63
64#include <stdio.h> 59#include <stdio.h>
65#include <assert.h>
66#include "cryptlib.h" 60#include "cryptlib.h"
67#include "bn_lcl.h" 61#include "bn_lcl.h"
68 62
69#if defined(OPENSSL_NO_ASM) || !(defined(__i386) || defined(__i386__)) || defined(__DJGPP__) /* Assembler implementation exists only for x86 */
70/* Here follows specialised variants of bn_add_words() and
71 bn_sub_words(). They have the property performing operations on
72 arrays of different sizes. The sizes of those arrays is expressed through
73 cl, which is the common length ( basicall, min(len(a),len(b)) ), and dl,
74 which is the delta between the two lengths, calculated as len(a)-len(b).
75 All lengths are the number of BN_ULONGs... For the operations that require
76 a result array as parameter, it must have the length cl+abs(dl).
77 These functions should probably end up in bn_asm.c as soon as there are
78 assembler counterparts for the systems that use assembler files. */
79
80BN_ULONG bn_sub_part_words(BN_ULONG *r,
81 const BN_ULONG *a, const BN_ULONG *b,
82 int cl, int dl)
83 {
84 BN_ULONG c, t;
85
86 assert(cl >= 0);
87 c = bn_sub_words(r, a, b, cl);
88
89 if (dl == 0)
90 return c;
91
92 r += cl;
93 a += cl;
94 b += cl;
95
96 if (dl < 0)
97 {
98#ifdef BN_COUNT
99 fprintf(stderr, " bn_sub_part_words %d + %d (dl < 0, c = %d)\n", cl, dl, c);
100#endif
101 for (;;)
102 {
103 t = b[0];
104 r[0] = (0-t-c)&BN_MASK2;
105 if (t != 0) c=1;
106 if (++dl >= 0) break;
107
108 t = b[1];
109 r[1] = (0-t-c)&BN_MASK2;
110 if (t != 0) c=1;
111 if (++dl >= 0) break;
112
113 t = b[2];
114 r[2] = (0-t-c)&BN_MASK2;
115 if (t != 0) c=1;
116 if (++dl >= 0) break;
117
118 t = b[3];
119 r[3] = (0-t-c)&BN_MASK2;
120 if (t != 0) c=1;
121 if (++dl >= 0) break;
122
123 b += 4;
124 r += 4;
125 }
126 }
127 else
128 {
129 int save_dl = dl;
130#ifdef BN_COUNT
131 fprintf(stderr, " bn_sub_part_words %d + %d (dl > 0, c = %d)\n", cl, dl, c);
132#endif
133 while(c)
134 {
135 t = a[0];
136 r[0] = (t-c)&BN_MASK2;
137 if (t != 0) c=0;
138 if (--dl <= 0) break;
139
140 t = a[1];
141 r[1] = (t-c)&BN_MASK2;
142 if (t != 0) c=0;
143 if (--dl <= 0) break;
144
145 t = a[2];
146 r[2] = (t-c)&BN_MASK2;
147 if (t != 0) c=0;
148 if (--dl <= 0) break;
149
150 t = a[3];
151 r[3] = (t-c)&BN_MASK2;
152 if (t != 0) c=0;
153 if (--dl <= 0) break;
154
155 save_dl = dl;
156 a += 4;
157 r += 4;
158 }
159 if (dl > 0)
160 {
161#ifdef BN_COUNT
162 fprintf(stderr, " bn_sub_part_words %d + %d (dl > 0, c == 0)\n", cl, dl);
163#endif
164 if (save_dl > dl)
165 {
166 switch (save_dl - dl)
167 {
168 case 1:
169 r[1] = a[1];
170 if (--dl <= 0) break;
171 case 2:
172 r[2] = a[2];
173 if (--dl <= 0) break;
174 case 3:
175 r[3] = a[3];
176 if (--dl <= 0) break;
177 }
178 a += 4;
179 r += 4;
180 }
181 }
182 if (dl > 0)
183 {
184#ifdef BN_COUNT
185 fprintf(stderr, " bn_sub_part_words %d + %d (dl > 0, copy)\n", cl, dl);
186#endif
187 for(;;)
188 {
189 r[0] = a[0];
190 if (--dl <= 0) break;
191 r[1] = a[1];
192 if (--dl <= 0) break;
193 r[2] = a[2];
194 if (--dl <= 0) break;
195 r[3] = a[3];
196 if (--dl <= 0) break;
197
198 a += 4;
199 r += 4;
200 }
201 }
202 }
203 return c;
204 }
205#endif
206
207BN_ULONG bn_add_part_words(BN_ULONG *r,
208 const BN_ULONG *a, const BN_ULONG *b,
209 int cl, int dl)
210 {
211 BN_ULONG c, l, t;
212
213 assert(cl >= 0);
214 c = bn_add_words(r, a, b, cl);
215
216 if (dl == 0)
217 return c;
218
219 r += cl;
220 a += cl;
221 b += cl;
222
223 if (dl < 0)
224 {
225 int save_dl = dl;
226#ifdef BN_COUNT
227 fprintf(stderr, " bn_add_part_words %d + %d (dl < 0, c = %d)\n", cl, dl, c);
228#endif
229 while (c)
230 {
231 l=(c+b[0])&BN_MASK2;
232 c=(l < c);
233 r[0]=l;
234 if (++dl >= 0) break;
235
236 l=(c+b[1])&BN_MASK2;
237 c=(l < c);
238 r[1]=l;
239 if (++dl >= 0) break;
240
241 l=(c+b[2])&BN_MASK2;
242 c=(l < c);
243 r[2]=l;
244 if (++dl >= 0) break;
245
246 l=(c+b[3])&BN_MASK2;
247 c=(l < c);
248 r[3]=l;
249 if (++dl >= 0) break;
250
251 save_dl = dl;
252 b+=4;
253 r+=4;
254 }
255 if (dl < 0)
256 {
257#ifdef BN_COUNT
258 fprintf(stderr, " bn_add_part_words %d + %d (dl < 0, c == 0)\n", cl, dl);
259#endif
260 if (save_dl < dl)
261 {
262 switch (dl - save_dl)
263 {
264 case 1:
265 r[1] = b[1];
266 if (++dl >= 0) break;
267 case 2:
268 r[2] = b[2];
269 if (++dl >= 0) break;
270 case 3:
271 r[3] = b[3];
272 if (++dl >= 0) break;
273 }
274 b += 4;
275 r += 4;
276 }
277 }
278 if (dl < 0)
279 {
280#ifdef BN_COUNT
281 fprintf(stderr, " bn_add_part_words %d + %d (dl < 0, copy)\n", cl, dl);
282#endif
283 for(;;)
284 {
285 r[0] = b[0];
286 if (++dl >= 0) break;
287 r[1] = b[1];
288 if (++dl >= 0) break;
289 r[2] = b[2];
290 if (++dl >= 0) break;
291 r[3] = b[3];
292 if (++dl >= 0) break;
293
294 b += 4;
295 r += 4;
296 }
297 }
298 }
299 else
300 {
301 int save_dl = dl;
302#ifdef BN_COUNT
303 fprintf(stderr, " bn_add_part_words %d + %d (dl > 0)\n", cl, dl);
304#endif
305 while (c)
306 {
307 t=(a[0]+c)&BN_MASK2;
308 c=(t < c);
309 r[0]=t;
310 if (--dl <= 0) break;
311
312 t=(a[1]+c)&BN_MASK2;
313 c=(t < c);
314 r[1]=t;
315 if (--dl <= 0) break;
316
317 t=(a[2]+c)&BN_MASK2;
318 c=(t < c);
319 r[2]=t;
320 if (--dl <= 0) break;
321
322 t=(a[3]+c)&BN_MASK2;
323 c=(t < c);
324 r[3]=t;
325 if (--dl <= 0) break;
326
327 save_dl = dl;
328 a+=4;
329 r+=4;
330 }
331#ifdef BN_COUNT
332 fprintf(stderr, " bn_add_part_words %d + %d (dl > 0, c == 0)\n", cl, dl);
333#endif
334 if (dl > 0)
335 {
336 if (save_dl > dl)
337 {
338 switch (save_dl - dl)
339 {
340 case 1:
341 r[1] = a[1];
342 if (--dl <= 0) break;
343 case 2:
344 r[2] = a[2];
345 if (--dl <= 0) break;
346 case 3:
347 r[3] = a[3];
348 if (--dl <= 0) break;
349 }
350 a += 4;
351 r += 4;
352 }
353 }
354 if (dl > 0)
355 {
356#ifdef BN_COUNT
357 fprintf(stderr, " bn_add_part_words %d + %d (dl > 0, copy)\n", cl, dl);
358#endif
359 for(;;)
360 {
361 r[0] = a[0];
362 if (--dl <= 0) break;
363 r[1] = a[1];
364 if (--dl <= 0) break;
365 r[2] = a[2];
366 if (--dl <= 0) break;
367 r[3] = a[3];
368 if (--dl <= 0) break;
369
370 a += 4;
371 r += 4;
372 }
373 }
374 }
375 return c;
376 }
377
378#ifdef BN_RECURSION 63#ifdef BN_RECURSION
379/* Karatsuba recursive multiplication algorithm 64/* Karatsuba recursive multiplication algorithm
380 * (cf. Knuth, The Art of Computer Programming, Vol. 2) */ 65 * (cf. Knuth, The Art of Computer Programming, Vol. 2) */
@@ -390,15 +75,14 @@ BN_ULONG bn_add_part_words(BN_ULONG *r,
390 * a[1]*b[1] 75 * a[1]*b[1]
391 */ 76 */
392void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2, 77void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
393 int dna, int dnb, BN_ULONG *t) 78 BN_ULONG *t)
394 { 79 {
395 int n=n2/2,c1,c2; 80 int n=n2/2,c1,c2;
396 int tna=n+dna, tnb=n+dnb;
397 unsigned int neg,zero; 81 unsigned int neg,zero;
398 BN_ULONG ln,lo,*p; 82 BN_ULONG ln,lo,*p;
399 83
400# ifdef BN_COUNT 84# ifdef BN_COUNT
401 fprintf(stderr," bn_mul_recursive %d * %d\n",n2,n2); 85 printf(" bn_mul_recursive %d * %d\n",n2,n2);
402# endif 86# endif
403# ifdef BN_MUL_COMBA 87# ifdef BN_MUL_COMBA
404# if 0 88# if 0
@@ -408,40 +92,34 @@ void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
408 return; 92 return;
409 } 93 }
410# endif 94# endif
411 /* Only call bn_mul_comba 8 if n2 == 8 and the 95 if (n2 == 8)
412 * two arrays are complete [steve]
413 */
414 if (n2 == 8 && dna == 0 && dnb == 0)
415 { 96 {
416 bn_mul_comba8(r,a,b); 97 bn_mul_comba8(r,a,b);
417 return; 98 return;
418 } 99 }
419# endif /* BN_MUL_COMBA */ 100# endif /* BN_MUL_COMBA */
420 /* Else do normal multiply */
421 if (n2 < BN_MUL_RECURSIVE_SIZE_NORMAL) 101 if (n2 < BN_MUL_RECURSIVE_SIZE_NORMAL)
422 { 102 {
423 bn_mul_normal(r,a,n2+dna,b,n2+dnb); 103 /* This should not happen */
424 if ((dna + dnb) < 0) 104 bn_mul_normal(r,a,n2,b,n2);
425 memset(&r[2*n2 + dna + dnb], 0,
426 sizeof(BN_ULONG) * -(dna + dnb));
427 return; 105 return;
428 } 106 }
429 /* r=(a[0]-a[1])*(b[1]-b[0]) */ 107 /* r=(a[0]-a[1])*(b[1]-b[0]) */
430 c1=bn_cmp_part_words(a,&(a[n]),tna,n-tna); 108 c1=bn_cmp_words(a,&(a[n]),n);
431 c2=bn_cmp_part_words(&(b[n]),b,tnb,tnb-n); 109 c2=bn_cmp_words(&(b[n]),b,n);
432 zero=neg=0; 110 zero=neg=0;
433 switch (c1*3+c2) 111 switch (c1*3+c2)
434 { 112 {
435 case -4: 113 case -4:
436 bn_sub_part_words(t, &(a[n]),a, tna,tna-n); /* - */ 114 bn_sub_words(t, &(a[n]),a, n); /* - */
437 bn_sub_part_words(&(t[n]),b, &(b[n]),tnb,n-tnb); /* - */ 115 bn_sub_words(&(t[n]),b, &(b[n]),n); /* - */
438 break; 116 break;
439 case -3: 117 case -3:
440 zero=1; 118 zero=1;
441 break; 119 break;
442 case -2: 120 case -2:
443 bn_sub_part_words(t, &(a[n]),a, tna,tna-n); /* - */ 121 bn_sub_words(t, &(a[n]),a, n); /* - */
444 bn_sub_part_words(&(t[n]),&(b[n]),b, tnb,tnb-n); /* + */ 122 bn_sub_words(&(t[n]),&(b[n]),b, n); /* + */
445 neg=1; 123 neg=1;
446 break; 124 break;
447 case -1: 125 case -1:
@@ -450,22 +128,21 @@ void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
450 zero=1; 128 zero=1;
451 break; 129 break;
452 case 2: 130 case 2:
453 bn_sub_part_words(t, a, &(a[n]),tna,n-tna); /* + */ 131 bn_sub_words(t, a, &(a[n]),n); /* + */
454 bn_sub_part_words(&(t[n]),b, &(b[n]),tnb,n-tnb); /* - */ 132 bn_sub_words(&(t[n]),b, &(b[n]),n); /* - */
455 neg=1; 133 neg=1;
456 break; 134 break;
457 case 3: 135 case 3:
458 zero=1; 136 zero=1;
459 break; 137 break;
460 case 4: 138 case 4:
461 bn_sub_part_words(t, a, &(a[n]),tna,n-tna); 139 bn_sub_words(t, a, &(a[n]),n);
462 bn_sub_part_words(&(t[n]),&(b[n]),b, tnb,tnb-n); 140 bn_sub_words(&(t[n]),&(b[n]),b, n);
463 break; 141 break;
464 } 142 }
465 143
466# ifdef BN_MUL_COMBA 144# ifdef BN_MUL_COMBA
467 if (n == 4 && dna == 0 && dnb == 0) /* XXX: bn_mul_comba4 could take 145 if (n == 4)
468 extra args to do this well */
469 { 146 {
470 if (!zero) 147 if (!zero)
471 bn_mul_comba4(&(t[n2]),t,&(t[n])); 148 bn_mul_comba4(&(t[n2]),t,&(t[n]));
@@ -475,9 +152,7 @@ void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
475 bn_mul_comba4(r,a,b); 152 bn_mul_comba4(r,a,b);
476 bn_mul_comba4(&(r[n2]),&(a[n]),&(b[n])); 153 bn_mul_comba4(&(r[n2]),&(a[n]),&(b[n]));
477 } 154 }
478 else if (n == 8 && dna == 0 && dnb == 0) /* XXX: bn_mul_comba8 could 155 else if (n == 8)
479 take extra args to do this
480 well */
481 { 156 {
482 if (!zero) 157 if (!zero)
483 bn_mul_comba8(&(t[n2]),t,&(t[n])); 158 bn_mul_comba8(&(t[n2]),t,&(t[n]));
@@ -492,11 +167,11 @@ void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
492 { 167 {
493 p= &(t[n2*2]); 168 p= &(t[n2*2]);
494 if (!zero) 169 if (!zero)
495 bn_mul_recursive(&(t[n2]),t,&(t[n]),n,0,0,p); 170 bn_mul_recursive(&(t[n2]),t,&(t[n]),n,p);
496 else 171 else
497 memset(&(t[n2]),0,n2*sizeof(BN_ULONG)); 172 memset(&(t[n2]),0,n2*sizeof(BN_ULONG));
498 bn_mul_recursive(r,a,b,n,0,0,p); 173 bn_mul_recursive(r,a,b,n,p);
499 bn_mul_recursive(&(r[n2]),&(a[n]),&(b[n]),n,dna,dnb,p); 174 bn_mul_recursive(&(r[n2]),&(a[n]),&(b[n]),n,p);
500 } 175 }
501 176
502 /* t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign 177 /* t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign
@@ -545,39 +220,39 @@ void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
545 220
546/* n+tn is the word length 221/* n+tn is the word length
547 * t needs to be n*4 is size, as does r */ 222 * t needs to be n*4 is size, as does r */
548void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n, 223void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int tn,
549 int tna, int tnb, BN_ULONG *t) 224 int n, BN_ULONG *t)
550 { 225 {
551 int i,j,n2=n*2; 226 int i,j,n2=n*2;
552 unsigned int c1,c2,neg,zero; 227 unsigned int c1,c2,neg,zero;
553 BN_ULONG ln,lo,*p; 228 BN_ULONG ln,lo,*p;
554 229
555# ifdef BN_COUNT 230# ifdef BN_COUNT
556 fprintf(stderr," bn_mul_part_recursive (%d+%d) * (%d+%d)\n", 231 printf(" bn_mul_part_recursive %d * %d\n",tn+n,tn+n);
557 tna, n, tnb, n);
558# endif 232# endif
559 if (n < 8) 233 if (n < 8)
560 { 234 {
561 bn_mul_normal(r,a,n+tna,b,n+tnb); 235 i=tn+n;
236 bn_mul_normal(r,a,i,b,i);
562 return; 237 return;
563 } 238 }
564 239
565 /* r=(a[0]-a[1])*(b[1]-b[0]) */ 240 /* r=(a[0]-a[1])*(b[1]-b[0]) */
566 c1=bn_cmp_part_words(a,&(a[n]),tna,n-tna); 241 c1=bn_cmp_words(a,&(a[n]),n);
567 c2=bn_cmp_part_words(&(b[n]),b,tnb,tnb-n); 242 c2=bn_cmp_words(&(b[n]),b,n);
568 zero=neg=0; 243 zero=neg=0;
569 switch (c1*3+c2) 244 switch (c1*3+c2)
570 { 245 {
571 case -4: 246 case -4:
572 bn_sub_part_words(t, &(a[n]),a, tna,tna-n); /* - */ 247 bn_sub_words(t, &(a[n]),a, n); /* - */
573 bn_sub_part_words(&(t[n]),b, &(b[n]),tnb,n-tnb); /* - */ 248 bn_sub_words(&(t[n]),b, &(b[n]),n); /* - */
574 break; 249 break;
575 case -3: 250 case -3:
576 zero=1; 251 zero=1;
577 /* break; */ 252 /* break; */
578 case -2: 253 case -2:
579 bn_sub_part_words(t, &(a[n]),a, tna,tna-n); /* - */ 254 bn_sub_words(t, &(a[n]),a, n); /* - */
580 bn_sub_part_words(&(t[n]),&(b[n]),b, tnb,tnb-n); /* + */ 255 bn_sub_words(&(t[n]),&(b[n]),b, n); /* + */
581 neg=1; 256 neg=1;
582 break; 257 break;
583 case -1: 258 case -1:
@@ -586,16 +261,16 @@ void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n,
586 zero=1; 261 zero=1;
587 /* break; */ 262 /* break; */
588 case 2: 263 case 2:
589 bn_sub_part_words(t, a, &(a[n]),tna,n-tna); /* + */ 264 bn_sub_words(t, a, &(a[n]),n); /* + */
590 bn_sub_part_words(&(t[n]),b, &(b[n]),tnb,n-tnb); /* - */ 265 bn_sub_words(&(t[n]),b, &(b[n]),n); /* - */
591 neg=1; 266 neg=1;
592 break; 267 break;
593 case 3: 268 case 3:
594 zero=1; 269 zero=1;
595 /* break; */ 270 /* break; */
596 case 4: 271 case 4:
597 bn_sub_part_words(t, a, &(a[n]),tna,n-tna); 272 bn_sub_words(t, a, &(a[n]),n);
598 bn_sub_part_words(&(t[n]),&(b[n]),b, tnb,tnb-n); 273 bn_sub_words(&(t[n]),&(b[n]),b, n);
599 break; 274 break;
600 } 275 }
601 /* The zero case isn't yet implemented here. The speedup 276 /* The zero case isn't yet implemented here. The speedup
@@ -614,59 +289,54 @@ void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n,
614 { 289 {
615 bn_mul_comba8(&(t[n2]),t,&(t[n])); 290 bn_mul_comba8(&(t[n2]),t,&(t[n]));
616 bn_mul_comba8(r,a,b); 291 bn_mul_comba8(r,a,b);
617 bn_mul_normal(&(r[n2]),&(a[n]),tna,&(b[n]),tnb); 292 bn_mul_normal(&(r[n2]),&(a[n]),tn,&(b[n]),tn);
618 memset(&(r[n2+tna+tnb]),0,sizeof(BN_ULONG)*(n2-tna-tnb)); 293 memset(&(r[n2+tn*2]),0,sizeof(BN_ULONG)*(n2-tn*2));
619 } 294 }
620 else 295 else
621 { 296 {
622 p= &(t[n2*2]); 297 p= &(t[n2*2]);
623 bn_mul_recursive(&(t[n2]),t,&(t[n]),n,0,0,p); 298 bn_mul_recursive(&(t[n2]),t,&(t[n]),n,p);
624 bn_mul_recursive(r,a,b,n,0,0,p); 299 bn_mul_recursive(r,a,b,n,p);
625 i=n/2; 300 i=n/2;
626 /* If there is only a bottom half to the number, 301 /* If there is only a bottom half to the number,
627 * just do it */ 302 * just do it */
628 if (tna > tnb) 303 j=tn-i;
629 j = tna - i;
630 else
631 j = tnb - i;
632 if (j == 0) 304 if (j == 0)
633 { 305 {
634 bn_mul_recursive(&(r[n2]),&(a[n]),&(b[n]), 306 bn_mul_recursive(&(r[n2]),&(a[n]),&(b[n]),i,p);
635 i,tna-i,tnb-i,p);
636 memset(&(r[n2+i*2]),0,sizeof(BN_ULONG)*(n2-i*2)); 307 memset(&(r[n2+i*2]),0,sizeof(BN_ULONG)*(n2-i*2));
637 } 308 }
638 else if (j > 0) /* eg, n == 16, i == 8 and tn == 11 */ 309 else if (j > 0) /* eg, n == 16, i == 8 and tn == 11 */
639 { 310 {
640 bn_mul_part_recursive(&(r[n2]),&(a[n]),&(b[n]), 311 bn_mul_part_recursive(&(r[n2]),&(a[n]),&(b[n]),
641 i,tna-i,tnb-i,p); 312 j,i,p);
642 memset(&(r[n2+tna+tnb]),0, 313 memset(&(r[n2+tn*2]),0,
643 sizeof(BN_ULONG)*(n2-tna-tnb)); 314 sizeof(BN_ULONG)*(n2-tn*2));
644 } 315 }
645 else /* (j < 0) eg, n == 16, i == 8 and tn == 5 */ 316 else /* (j < 0) eg, n == 16, i == 8 and tn == 5 */
646 { 317 {
647 memset(&(r[n2]),0,sizeof(BN_ULONG)*n2); 318 memset(&(r[n2]),0,sizeof(BN_ULONG)*n2);
648 if (tna < BN_MUL_RECURSIVE_SIZE_NORMAL 319 if (tn < BN_MUL_RECURSIVE_SIZE_NORMAL)
649 && tnb < BN_MUL_RECURSIVE_SIZE_NORMAL)
650 { 320 {
651 bn_mul_normal(&(r[n2]),&(a[n]),tna,&(b[n]),tnb); 321 bn_mul_normal(&(r[n2]),&(a[n]),tn,&(b[n]),tn);
652 } 322 }
653 else 323 else
654 { 324 {
655 for (;;) 325 for (;;)
656 { 326 {
657 i/=2; 327 i/=2;
658 if (i < tna && i < tnb) 328 if (i < tn)
659 { 329 {
660 bn_mul_part_recursive(&(r[n2]), 330 bn_mul_part_recursive(&(r[n2]),
661 &(a[n]),&(b[n]), 331 &(a[n]),&(b[n]),
662 i,tna-i,tnb-i,p); 332 tn-i,i,p);
663 break; 333 break;
664 } 334 }
665 else if (i <= tna && i <= tnb) 335 else if (i == tn)
666 { 336 {
667 bn_mul_recursive(&(r[n2]), 337 bn_mul_recursive(&(r[n2]),
668 &(a[n]),&(b[n]), 338 &(a[n]),&(b[n]),
669 i,tna-i,tnb-i,p); 339 i,p);
670 break; 340 break;
671 } 341 }
672 } 342 }
@@ -727,10 +397,10 @@ void bn_mul_low_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
727 int n=n2/2; 397 int n=n2/2;
728 398
729# ifdef BN_COUNT 399# ifdef BN_COUNT
730 fprintf(stderr," bn_mul_low_recursive %d * %d\n",n2,n2); 400 printf(" bn_mul_low_recursive %d * %d\n",n2,n2);
731# endif 401# endif
732 402
733 bn_mul_recursive(r,a,b,n,0,0,&(t[0])); 403 bn_mul_recursive(r,a,b,n,&(t[0]));
734 if (n >= BN_MUL_LOW_RECURSIVE_SIZE_NORMAL) 404 if (n >= BN_MUL_LOW_RECURSIVE_SIZE_NORMAL)
735 { 405 {
736 bn_mul_low_recursive(&(t[0]),&(a[0]),&(b[n]),n,&(t[n2])); 406 bn_mul_low_recursive(&(t[0]),&(a[0]),&(b[n]),n,&(t[n2]));
@@ -761,7 +431,7 @@ void bn_mul_high(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, BN_ULONG *l, int n2,
761 BN_ULONG ll,lc,*lp,*mp; 431 BN_ULONG ll,lc,*lp,*mp;
762 432
763# ifdef BN_COUNT 433# ifdef BN_COUNT
764 fprintf(stderr," bn_mul_high %d * %d\n",n2,n2); 434 printf(" bn_mul_high %d * %d\n",n2,n2);
765# endif 435# endif
766 n=n2/2; 436 n=n2/2;
767 437
@@ -814,8 +484,8 @@ void bn_mul_high(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, BN_ULONG *l, int n2,
814 else 484 else
815# endif 485# endif
816 { 486 {
817 bn_mul_recursive(&(t[0]),&(r[0]),&(r[n]),n,0,0,&(t[n2])); 487 bn_mul_recursive(&(t[0]),&(r[0]),&(r[n]),n,&(t[n2]));
818 bn_mul_recursive(r,&(a[n]),&(b[n]),n,0,0,&(t[n2])); 488 bn_mul_recursive(r,&(a[n]),&(b[n]),n,&(t[n2]));
819 } 489 }
820 490
821 /* s0 == low(al*bl) 491 /* s0 == low(al*bl)
@@ -940,19 +610,19 @@ void bn_mul_high(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, BN_ULONG *l, int n2,
940 610
941int BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) 611int BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
942 { 612 {
943 int ret=0;
944 int top,al,bl; 613 int top,al,bl;
945 BIGNUM *rr; 614 BIGNUM *rr;
615 int ret = 0;
946#if defined(BN_MUL_COMBA) || defined(BN_RECURSION) 616#if defined(BN_MUL_COMBA) || defined(BN_RECURSION)
947 int i; 617 int i;
948#endif 618#endif
949#ifdef BN_RECURSION 619#ifdef BN_RECURSION
950 BIGNUM *t=NULL; 620 BIGNUM *t;
951 int j=0,k; 621 int j,k;
952#endif 622#endif
953 623
954#ifdef BN_COUNT 624#ifdef BN_COUNT
955 fprintf(stderr,"BN_mul %d * %d\n",a->top,b->top); 625 printf("BN_mul %d * %d\n",a->top,b->top);
956#endif 626#endif
957 627
958 bn_check_top(a); 628 bn_check_top(a);
@@ -1005,55 +675,21 @@ int BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
1005#ifdef BN_RECURSION 675#ifdef BN_RECURSION
1006 if ((al >= BN_MULL_SIZE_NORMAL) && (bl >= BN_MULL_SIZE_NORMAL)) 676 if ((al >= BN_MULL_SIZE_NORMAL) && (bl >= BN_MULL_SIZE_NORMAL))
1007 { 677 {
1008 if (i >= -1 && i <= 1) 678 if (i == 1 && !BN_get_flags(b,BN_FLG_STATIC_DATA) && bl<b->dmax)
1009 { 679 {
1010 int sav_j =0; 680#if 0 /* tribute to const-ification, bl<b->dmax above covers for this */
1011 /* Find out the power of two lower or equal 681 if (bn_wexpand(b,al) == NULL) goto err;
1012 to the longest of the two numbers */ 682#endif
1013 if (i >= 0) 683 b->d[bl]=0;
1014 {
1015 j = BN_num_bits_word((BN_ULONG)al);
1016 }
1017 if (i == -1)
1018 {
1019 j = BN_num_bits_word((BN_ULONG)bl);
1020 }
1021 sav_j = j;
1022 j = 1<<(j-1);
1023 assert(j <= al || j <= bl);
1024 k = j+j;
1025 t = BN_CTX_get(ctx);
1026 if (al > j || bl > j)
1027 {
1028 bn_wexpand(t,k*4);
1029 bn_wexpand(rr,k*4);
1030 bn_mul_part_recursive(rr->d,a->d,b->d,
1031 j,al-j,bl-j,t->d);
1032 }
1033 else /* al <= j || bl <= j */
1034 {
1035 bn_wexpand(t,k*2);
1036 bn_wexpand(rr,k*2);
1037 bn_mul_recursive(rr->d,a->d,b->d,
1038 j,al-j,bl-j,t->d);
1039 }
1040 rr->top=top;
1041 goto end;
1042 }
1043#if 0
1044 if (i == 1 && !BN_get_flags(b,BN_FLG_STATIC_DATA))
1045 {
1046 BIGNUM *tmp_bn = (BIGNUM *)b;
1047 if (bn_wexpand(tmp_bn,al) == NULL) goto err;
1048 tmp_bn->d[bl]=0;
1049 bl++; 684 bl++;
1050 i--; 685 i--;
1051 } 686 }
1052 else if (i == -1 && !BN_get_flags(a,BN_FLG_STATIC_DATA)) 687 else if (i == -1 && !BN_get_flags(a,BN_FLG_STATIC_DATA) && al<a->dmax)
1053 { 688 {
1054 BIGNUM *tmp_bn = (BIGNUM *)a; 689#if 0 /* tribute to const-ification, al<a->dmax above covers for this */
1055 if (bn_wexpand(tmp_bn,bl) == NULL) goto err; 690 if (bn_wexpand(a,bl) == NULL) goto err;
1056 tmp_bn->d[al]=0; 691#endif
692 a->d[al]=0;
1057 al++; 693 al++;
1058 i++; 694 i++;
1059 } 695 }
@@ -1070,17 +706,26 @@ int BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
1070 if (bn_wexpand(t,k*2) == NULL) goto err; 706 if (bn_wexpand(t,k*2) == NULL) goto err;
1071 if (bn_wexpand(rr,k*2) == NULL) goto err; 707 if (bn_wexpand(rr,k*2) == NULL) goto err;
1072 bn_mul_recursive(rr->d,a->d,b->d,al,t->d); 708 bn_mul_recursive(rr->d,a->d,b->d,al,t->d);
709 rr->top=top;
710 goto end;
1073 } 711 }
712#if 0 /* tribute to const-ification, rsa/dsa performance is not affected */
1074 else 713 else
1075 { 714 {
1076 if (bn_wexpand(t,k*4) == NULL) goto err; 715 if (bn_wexpand(a,k) == NULL ) goto err;
1077 if (bn_wexpand(rr,k*4) == NULL) goto err; 716 if (bn_wexpand(b,k) == NULL ) goto err;
717 if (bn_wexpand(t,k*4) == NULL ) goto err;
718 if (bn_wexpand(rr,k*4) == NULL ) goto err;
719 for (i=a->top; i<k; i++)
720 a->d[i]=0;
721 for (i=b->top; i<k; i++)
722 b->d[i]=0;
1078 bn_mul_part_recursive(rr->d,a->d,b->d,al-j,j,t->d); 723 bn_mul_part_recursive(rr->d,a->d,b->d,al-j,j,t->d);
1079 } 724 }
1080 rr->top=top; 725 rr->top=top;
1081 goto end; 726 goto end;
1082 }
1083#endif 727#endif
728 }
1084 } 729 }
1085#endif /* BN_RECURSION */ 730#endif /* BN_RECURSION */
1086 if (bn_wexpand(rr,top) == NULL) goto err; 731 if (bn_wexpand(rr,top) == NULL) goto err;
@@ -1103,7 +748,7 @@ void bn_mul_normal(BN_ULONG *r, BN_ULONG *a, int na, BN_ULONG *b, int nb)
1103 BN_ULONG *rr; 748 BN_ULONG *rr;
1104 749
1105#ifdef BN_COUNT 750#ifdef BN_COUNT
1106 fprintf(stderr," bn_mul_normal %d * %d\n",na,nb); 751 printf(" bn_mul_normal %d * %d\n",na,nb);
1107#endif 752#endif
1108 753
1109 if (na < nb) 754 if (na < nb)
@@ -1116,13 +761,7 @@ void bn_mul_normal(BN_ULONG *r, BN_ULONG *a, int na, BN_ULONG *b, int nb)
1116 761
1117 } 762 }
1118 rr= &(r[na]); 763 rr= &(r[na]);
1119 if (nb <= 0) 764 rr[0]=bn_mul_words(r,a,na,b[0]);
1120 {
1121 (void)bn_mul_words(r,a,na,0);
1122 return;
1123 }
1124 else
1125 rr[0]=bn_mul_words(r,a,na,b[0]);
1126 765
1127 for (;;) 766 for (;;)
1128 { 767 {
@@ -1143,7 +782,7 @@ void bn_mul_normal(BN_ULONG *r, BN_ULONG *a, int na, BN_ULONG *b, int nb)
1143void bn_mul_low_normal(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n) 782void bn_mul_low_normal(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n)
1144 { 783 {
1145#ifdef BN_COUNT 784#ifdef BN_COUNT
1146 fprintf(stderr," bn_mul_low_normal %d * %d\n",n,n); 785 printf(" bn_mul_low_normal %d * %d\n",n,n);
1147#endif 786#endif
1148 bn_mul_words(r,a,n,b[0]); 787 bn_mul_words(r,a,n,b[0]);
1149 788