diff options
Diffstat (limited to 'src/lib/libcrypto/bn/bn_mul.c')
-rw-r--r-- | src/lib/libcrypto/bn/bn_mul.c | 753 |
1 files changed, 650 insertions, 103 deletions
diff --git a/src/lib/libcrypto/bn/bn_mul.c b/src/lib/libcrypto/bn/bn_mul.c index d0c04e1d4b..38c47f3d1f 100644 --- a/src/lib/libcrypto/bn/bn_mul.c +++ b/src/lib/libcrypto/bn/bn_mul.c | |||
@@ -60,150 +60,697 @@ | |||
60 | #include "cryptlib.h" | 60 | #include "cryptlib.h" |
61 | #include "bn_lcl.h" | 61 | #include "bn_lcl.h" |
62 | 62 | ||
63 | /* r must be different to a and b */ | 63 | #ifdef BN_RECURSION |
64 | /* int BN_mmul(r, a, b) */ | 64 | /* r is 2*n2 words in size, |
65 | int BN_mul(r, a, b) | 65 | * a and b are both n2 words in size. |
66 | BIGNUM *r; | 66 | * n2 must be a power of 2. |
67 | BIGNUM *a; | 67 | * We multiply and return the result. |
68 | BIGNUM *b; | 68 | * t must be 2*n2 words in size |
69 | * We calulate | ||
70 | * a[0]*b[0] | ||
71 | * a[0]*b[0]+a[1]*b[1]+(a[0]-a[1])*(b[1]-b[0]) | ||
72 | * a[1]*b[1] | ||
73 | */ | ||
74 | void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2, | ||
75 | BN_ULONG *t) | ||
69 | { | 76 | { |
70 | int i; | 77 | int n=n2/2,c1,c2; |
71 | int max,al,bl; | 78 | unsigned int neg,zero; |
72 | BN_ULONG *ap,*bp,*rp; | 79 | BN_ULONG ln,lo,*p; |
73 | 80 | ||
74 | al=a->top; | 81 | #ifdef BN_COUNT |
75 | bl=b->top; | 82 | printf(" bn_mul_recursive %d * %d\n",n2,n2); |
76 | if ((al == 0) || (bl == 0)) | 83 | #endif |
84 | #ifdef BN_MUL_COMBA | ||
85 | /* if (n2 == 4) | ||
77 | { | 86 | { |
78 | r->top=0; | 87 | bn_mul_comba4(r,a,b); |
79 | return(1); | 88 | return; |
89 | } | ||
90 | else */ if (n2 == 8) | ||
91 | { | ||
92 | bn_mul_comba8(r,a,b); | ||
93 | return; | ||
94 | } | ||
95 | #endif | ||
96 | if (n2 < BN_MUL_RECURSIVE_SIZE_NORMAL) | ||
97 | { | ||
98 | /* This should not happen */ | ||
99 | bn_mul_normal(r,a,n2,b,n2); | ||
100 | return; | ||
101 | } | ||
102 | /* r=(a[0]-a[1])*(b[1]-b[0]) */ | ||
103 | c1=bn_cmp_words(a,&(a[n]),n); | ||
104 | c2=bn_cmp_words(&(b[n]),b,n); | ||
105 | zero=neg=0; | ||
106 | switch (c1*3+c2) | ||
107 | { | ||
108 | case -4: | ||
109 | bn_sub_words(t, &(a[n]),a, n); /* - */ | ||
110 | bn_sub_words(&(t[n]),b, &(b[n]),n); /* - */ | ||
111 | break; | ||
112 | case -3: | ||
113 | zero=1; | ||
114 | break; | ||
115 | case -2: | ||
116 | bn_sub_words(t, &(a[n]),a, n); /* - */ | ||
117 | bn_sub_words(&(t[n]),&(b[n]),b, n); /* + */ | ||
118 | neg=1; | ||
119 | break; | ||
120 | case -1: | ||
121 | case 0: | ||
122 | case 1: | ||
123 | zero=1; | ||
124 | break; | ||
125 | case 2: | ||
126 | bn_sub_words(t, a, &(a[n]),n); /* + */ | ||
127 | bn_sub_words(&(t[n]),b, &(b[n]),n); /* - */ | ||
128 | neg=1; | ||
129 | break; | ||
130 | case 3: | ||
131 | zero=1; | ||
132 | break; | ||
133 | case 4: | ||
134 | bn_sub_words(t, a, &(a[n]),n); | ||
135 | bn_sub_words(&(t[n]),&(b[n]),b, n); | ||
136 | break; | ||
80 | } | 137 | } |
81 | 138 | ||
82 | max=(al+bl); | 139 | #ifdef BN_MUL_COMBA |
83 | if (bn_wexpand(r,max) == NULL) return(0); | 140 | if (n == 4) |
84 | r->top=max; | 141 | { |
85 | r->neg=a->neg^b->neg; | 142 | if (!zero) |
86 | ap=a->d; | 143 | bn_mul_comba4(&(t[n2]),t,&(t[n])); |
87 | bp=b->d; | 144 | else |
88 | rp=r->d; | 145 | memset(&(t[n2]),0,8*sizeof(BN_ULONG)); |
146 | |||
147 | bn_mul_comba4(r,a,b); | ||
148 | bn_mul_comba4(&(r[n2]),&(a[n]),&(b[n])); | ||
149 | } | ||
150 | else if (n == 8) | ||
151 | { | ||
152 | if (!zero) | ||
153 | bn_mul_comba8(&(t[n2]),t,&(t[n])); | ||
154 | else | ||
155 | memset(&(t[n2]),0,16*sizeof(BN_ULONG)); | ||
156 | |||
157 | bn_mul_comba8(r,a,b); | ||
158 | bn_mul_comba8(&(r[n2]),&(a[n]),&(b[n])); | ||
159 | } | ||
160 | else | ||
161 | #endif | ||
162 | { | ||
163 | p= &(t[n2*2]); | ||
164 | if (!zero) | ||
165 | bn_mul_recursive(&(t[n2]),t,&(t[n]),n,p); | ||
166 | else | ||
167 | memset(&(t[n2]),0,n2*sizeof(BN_ULONG)); | ||
168 | bn_mul_recursive(r,a,b,n,p); | ||
169 | bn_mul_recursive(&(r[n2]),&(a[n]),&(b[n]),n,p); | ||
170 | } | ||
89 | 171 | ||
90 | rp[al]=bn_mul_words(rp,ap,al,*(bp++)); | 172 | /* t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign |
91 | rp++; | 173 | * r[10] holds (a[0]*b[0]) |
92 | for (i=1; i<bl; i++) | 174 | * r[32] holds (b[1]*b[1]) |
175 | */ | ||
176 | |||
177 | c1=(int)(bn_add_words(t,r,&(r[n2]),n2)); | ||
178 | |||
179 | if (neg) /* if t[32] is negative */ | ||
93 | { | 180 | { |
94 | rp[al]=bn_mul_add_words(rp,ap,al,*(bp++)); | 181 | c1-=(int)(bn_sub_words(&(t[n2]),t,&(t[n2]),n2)); |
95 | rp++; | 182 | } |
183 | else | ||
184 | { | ||
185 | /* Might have a carry */ | ||
186 | c1+=(int)(bn_add_words(&(t[n2]),&(t[n2]),t,n2)); | ||
96 | } | 187 | } |
97 | if (r->d[max-1] == 0) r->top--; | ||
98 | return(1); | ||
99 | } | ||
100 | 188 | ||
101 | #if 0 | 189 | /* t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1]) |
102 | #include "stack.h" | 190 | * r[10] holds (a[0]*b[0]) |
191 | * r[32] holds (b[1]*b[1]) | ||
192 | * c1 holds the carry bits | ||
193 | */ | ||
194 | c1+=(int)(bn_add_words(&(r[n]),&(r[n]),&(t[n2]),n2)); | ||
195 | if (c1) | ||
196 | { | ||
197 | p= &(r[n+n2]); | ||
198 | lo= *p; | ||
199 | ln=(lo+c1)&BN_MASK2; | ||
200 | *p=ln; | ||
103 | 201 | ||
104 | int limit=16; | 202 | /* The overflow will stop before we over write |
203 | * words we should not overwrite */ | ||
204 | if (ln < (BN_ULONG)c1) | ||
205 | { | ||
206 | do { | ||
207 | p++; | ||
208 | lo= *p; | ||
209 | ln=(lo+1)&BN_MASK2; | ||
210 | *p=ln; | ||
211 | } while (ln == 0); | ||
212 | } | ||
213 | } | ||
214 | } | ||
105 | 215 | ||
106 | typedef struct bn_pool_st | 216 | /* n+tn is the word length |
217 | * t needs to be n*4 is size, as does r */ | ||
218 | void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int tn, | ||
219 | int n, BN_ULONG *t) | ||
107 | { | 220 | { |
108 | int used; | 221 | int i,j,n2=n*2; |
109 | int tos; | 222 | unsigned int c1; |
110 | STACK *sk; | 223 | BN_ULONG ln,lo,*p; |
111 | } BN_POOL; | ||
112 | 224 | ||
113 | BIGNUM *BN_POOL_push(bp) | 225 | #ifdef BN_COUNT |
114 | BN_POOL *bp; | 226 | printf(" bn_mul_part_recursive %d * %d\n",tn+n,tn+n); |
115 | { | 227 | #endif |
116 | BIGNUM *ret; | 228 | if (n < 8) |
229 | { | ||
230 | i=tn+n; | ||
231 | bn_mul_normal(r,a,i,b,i); | ||
232 | return; | ||
233 | } | ||
234 | |||
235 | /* r=(a[0]-a[1])*(b[1]-b[0]) */ | ||
236 | bn_sub_words(t, a, &(a[n]),n); /* + */ | ||
237 | bn_sub_words(&(t[n]),b, &(b[n]),n); /* - */ | ||
117 | 238 | ||
118 | if (bp->used >= bp->tos) | 239 | /* if (n == 4) |
240 | { | ||
241 | bn_mul_comba4(&(t[n2]),t,&(t[n])); | ||
242 | bn_mul_comba4(r,a,b); | ||
243 | bn_mul_normal(&(r[n2]),&(a[n]),tn,&(b[n]),tn); | ||
244 | memset(&(r[n2+tn*2]),0,sizeof(BN_ULONG)*(n2-tn*2)); | ||
245 | } | ||
246 | else */ if (n == 8) | ||
119 | { | 247 | { |
120 | ret=BN_new(); | 248 | bn_mul_comba8(&(t[n2]),t,&(t[n])); |
121 | sk_push(bp->sk,(char *)ret); | 249 | bn_mul_comba8(r,a,b); |
122 | bp->tos++; | 250 | bn_mul_normal(&(r[n2]),&(a[n]),tn,&(b[n]),tn); |
123 | bp->used++; | 251 | memset(&(r[n2+tn*2]),0,sizeof(BN_ULONG)*(n2-tn*2)); |
124 | } | 252 | } |
125 | else | 253 | else |
126 | { | 254 | { |
127 | ret=(BIGNUM *)sk_value(bp->sk,bp->used); | 255 | p= &(t[n2*2]); |
128 | bp->used++; | 256 | bn_mul_recursive(&(t[n2]),t,&(t[n]),n,p); |
257 | bn_mul_recursive(r,a,b,n,p); | ||
258 | i=n/2; | ||
259 | /* If there is only a bottom half to the number, | ||
260 | * just do it */ | ||
261 | j=tn-i; | ||
262 | if (j == 0) | ||
263 | { | ||
264 | bn_mul_recursive(&(r[n2]),&(a[n]),&(b[n]),i,p); | ||
265 | memset(&(r[n2+i*2]),0,sizeof(BN_ULONG)*(n2-i*2)); | ||
266 | } | ||
267 | else if (j > 0) /* eg, n == 16, i == 8 and tn == 11 */ | ||
268 | { | ||
269 | bn_mul_part_recursive(&(r[n2]),&(a[n]),&(b[n]), | ||
270 | j,i,p); | ||
271 | memset(&(r[n2+tn*2]),0, | ||
272 | sizeof(BN_ULONG)*(n2-tn*2)); | ||
273 | } | ||
274 | else /* (j < 0) eg, n == 16, i == 8 and tn == 5 */ | ||
275 | { | ||
276 | memset(&(r[n2]),0,sizeof(BN_ULONG)*n2); | ||
277 | if (tn < BN_MUL_RECURSIVE_SIZE_NORMAL) | ||
278 | { | ||
279 | bn_mul_normal(&(r[n2]),&(a[n]),tn,&(b[n]),tn); | ||
280 | } | ||
281 | else | ||
282 | { | ||
283 | for (;;) | ||
284 | { | ||
285 | i/=2; | ||
286 | if (i < tn) | ||
287 | { | ||
288 | bn_mul_part_recursive(&(r[n2]), | ||
289 | &(a[n]),&(b[n]), | ||
290 | tn-i,i,p); | ||
291 | break; | ||
292 | } | ||
293 | else if (i == tn) | ||
294 | { | ||
295 | bn_mul_recursive(&(r[n2]), | ||
296 | &(a[n]),&(b[n]), | ||
297 | i,p); | ||
298 | break; | ||
299 | } | ||
300 | } | ||
301 | } | ||
302 | } | ||
303 | } | ||
304 | |||
305 | /* t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign | ||
306 | * r[10] holds (a[0]*b[0]) | ||
307 | * r[32] holds (b[1]*b[1]) | ||
308 | */ | ||
309 | |||
310 | c1=(int)(bn_add_words(t,r,&(r[n2]),n2)); | ||
311 | c1-=(int)(bn_sub_words(&(t[n2]),t,&(t[n2]),n2)); | ||
312 | |||
313 | /* t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1]) | ||
314 | * r[10] holds (a[0]*b[0]) | ||
315 | * r[32] holds (b[1]*b[1]) | ||
316 | * c1 holds the carry bits | ||
317 | */ | ||
318 | c1+=(int)(bn_add_words(&(r[n]),&(r[n]),&(t[n2]),n2)); | ||
319 | if (c1) | ||
320 | { | ||
321 | p= &(r[n+n2]); | ||
322 | lo= *p; | ||
323 | ln=(lo+c1)&BN_MASK2; | ||
324 | *p=ln; | ||
325 | |||
326 | /* The overflow will stop before we over write | ||
327 | * words we should not overwrite */ | ||
328 | if (ln < c1) | ||
329 | { | ||
330 | do { | ||
331 | p++; | ||
332 | lo= *p; | ||
333 | ln=(lo+1)&BN_MASK2; | ||
334 | *p=ln; | ||
335 | } while (ln == 0); | ||
336 | } | ||
129 | } | 337 | } |
130 | return(ret); | ||
131 | } | 338 | } |
132 | 339 | ||
133 | void BN_POOL_pop(bp,num) | 340 | /* a and b must be the same size, which is n2. |
134 | BN_POOL *bp; | 341 | * r needs to be n2 words and t needs to be n2*2 |
135 | int num; | 342 | */ |
343 | void bn_mul_low_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2, | ||
344 | BN_ULONG *t) | ||
136 | { | 345 | { |
137 | bp->used-=num; | 346 | int n=n2/2; |
347 | |||
348 | #ifdef BN_COUNT | ||
349 | printf(" bn_mul_low_recursive %d * %d\n",n2,n2); | ||
350 | #endif | ||
351 | |||
352 | bn_mul_recursive(r,a,b,n,&(t[0])); | ||
353 | if (n >= BN_MUL_LOW_RECURSIVE_SIZE_NORMAL) | ||
354 | { | ||
355 | bn_mul_low_recursive(&(t[0]),&(a[0]),&(b[n]),n,&(t[n2])); | ||
356 | bn_add_words(&(r[n]),&(r[n]),&(t[0]),n); | ||
357 | bn_mul_low_recursive(&(t[0]),&(a[n]),&(b[0]),n,&(t[n2])); | ||
358 | bn_add_words(&(r[n]),&(r[n]),&(t[0]),n); | ||
359 | } | ||
360 | else | ||
361 | { | ||
362 | bn_mul_low_normal(&(t[0]),&(a[0]),&(b[n]),n); | ||
363 | bn_mul_low_normal(&(t[n]),&(a[n]),&(b[0]),n); | ||
364 | bn_add_words(&(r[n]),&(r[n]),&(t[0]),n); | ||
365 | bn_add_words(&(r[n]),&(r[n]),&(t[n]),n); | ||
366 | } | ||
138 | } | 367 | } |
139 | 368 | ||
140 | int BN_mul(r,a,b) | 369 | /* a and b must be the same size, which is n2. |
141 | BIGNUM *r,*a,*b; | 370 | * r needs to be n2 words and t needs to be n2*2 |
371 | * l is the low words of the output. | ||
372 | * t needs to be n2*3 | ||
373 | */ | ||
374 | void bn_mul_high(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, BN_ULONG *l, int n2, | ||
375 | BN_ULONG *t) | ||
142 | { | 376 | { |
143 | static BN_POOL bp; | 377 | int i,n; |
144 | static init=1; | 378 | int c1,c2; |
379 | int neg,oneg,zero; | ||
380 | BN_ULONG ll,lc,*lp,*mp; | ||
381 | |||
382 | #ifdef BN_COUNT | ||
383 | printf(" bn_mul_high %d * %d\n",n2,n2); | ||
384 | #endif | ||
385 | n=n2/2; | ||
386 | |||
387 | /* Calculate (al-ah)*(bh-bl) */ | ||
388 | neg=zero=0; | ||
389 | c1=bn_cmp_words(&(a[0]),&(a[n]),n); | ||
390 | c2=bn_cmp_words(&(b[n]),&(b[0]),n); | ||
391 | switch (c1*3+c2) | ||
392 | { | ||
393 | case -4: | ||
394 | bn_sub_words(&(r[0]),&(a[n]),&(a[0]),n); | ||
395 | bn_sub_words(&(r[n]),&(b[0]),&(b[n]),n); | ||
396 | break; | ||
397 | case -3: | ||
398 | zero=1; | ||
399 | break; | ||
400 | case -2: | ||
401 | bn_sub_words(&(r[0]),&(a[n]),&(a[0]),n); | ||
402 | bn_sub_words(&(r[n]),&(b[n]),&(b[0]),n); | ||
403 | neg=1; | ||
404 | break; | ||
405 | case -1: | ||
406 | case 0: | ||
407 | case 1: | ||
408 | zero=1; | ||
409 | break; | ||
410 | case 2: | ||
411 | bn_sub_words(&(r[0]),&(a[0]),&(a[n]),n); | ||
412 | bn_sub_words(&(r[n]),&(b[0]),&(b[n]),n); | ||
413 | neg=1; | ||
414 | break; | ||
415 | case 3: | ||
416 | zero=1; | ||
417 | break; | ||
418 | case 4: | ||
419 | bn_sub_words(&(r[0]),&(a[0]),&(a[n]),n); | ||
420 | bn_sub_words(&(r[n]),&(b[n]),&(b[0]),n); | ||
421 | break; | ||
422 | } | ||
423 | |||
424 | oneg=neg; | ||
425 | /* t[10] = (a[0]-a[1])*(b[1]-b[0]) */ | ||
426 | /* r[10] = (a[1]*b[1]) */ | ||
427 | #ifdef BN_MUL_COMBA | ||
428 | if (n == 8) | ||
429 | { | ||
430 | bn_mul_comba8(&(t[0]),&(r[0]),&(r[n])); | ||
431 | bn_mul_comba8(r,&(a[n]),&(b[n])); | ||
432 | } | ||
433 | else | ||
434 | #endif | ||
435 | { | ||
436 | bn_mul_recursive(&(t[0]),&(r[0]),&(r[n]),n,&(t[n2])); | ||
437 | bn_mul_recursive(r,&(a[n]),&(b[n]),n,&(t[n2])); | ||
438 | } | ||
439 | |||
440 | /* s0 == low(al*bl) | ||
441 | * s1 == low(ah*bh)+low((al-ah)*(bh-bl))+low(al*bl)+high(al*bl) | ||
442 | * We know s0 and s1 so the only unknown is high(al*bl) | ||
443 | * high(al*bl) == s1 - low(ah*bh+s0+(al-ah)*(bh-bl)) | ||
444 | * high(al*bl) == s1 - (r[0]+l[0]+t[0]) | ||
445 | */ | ||
446 | if (l != NULL) | ||
447 | { | ||
448 | lp= &(t[n2+n]); | ||
449 | c1=(int)(bn_add_words(lp,&(r[0]),&(l[0]),n)); | ||
450 | } | ||
451 | else | ||
452 | { | ||
453 | c1=0; | ||
454 | lp= &(r[0]); | ||
455 | } | ||
456 | |||
457 | if (neg) | ||
458 | neg=(int)(bn_sub_words(&(t[n2]),lp,&(t[0]),n)); | ||
459 | else | ||
460 | { | ||
461 | bn_add_words(&(t[n2]),lp,&(t[0]),n); | ||
462 | neg=0; | ||
463 | } | ||
464 | |||
465 | if (l != NULL) | ||
466 | { | ||
467 | bn_sub_words(&(t[n2+n]),&(l[n]),&(t[n2]),n); | ||
468 | } | ||
469 | else | ||
470 | { | ||
471 | lp= &(t[n2+n]); | ||
472 | mp= &(t[n2]); | ||
473 | for (i=0; i<n; i++) | ||
474 | lp[i]=((~mp[i])+1)&BN_MASK2; | ||
475 | } | ||
476 | |||
477 | /* s[0] = low(al*bl) | ||
478 | * t[3] = high(al*bl) | ||
479 | * t[10] = (a[0]-a[1])*(b[1]-b[0]) neg is the sign | ||
480 | * r[10] = (a[1]*b[1]) | ||
481 | */ | ||
482 | /* R[10] = al*bl | ||
483 | * R[21] = al*bl + ah*bh + (a[0]-a[1])*(b[1]-b[0]) | ||
484 | * R[32] = ah*bh | ||
485 | */ | ||
486 | /* R[1]=t[3]+l[0]+r[0](+-)t[0] (have carry/borrow) | ||
487 | * R[2]=r[0]+t[3]+r[1](+-)t[1] (have carry/borrow) | ||
488 | * R[3]=r[1]+(carry/borrow) | ||
489 | */ | ||
490 | if (l != NULL) | ||
491 | { | ||
492 | lp= &(t[n2]); | ||
493 | c1= (int)(bn_add_words(lp,&(t[n2+n]),&(l[0]),n)); | ||
494 | } | ||
495 | else | ||
496 | { | ||
497 | lp= &(t[n2+n]); | ||
498 | c1=0; | ||
499 | } | ||
500 | c1+=(int)(bn_add_words(&(t[n2]),lp, &(r[0]),n)); | ||
501 | if (oneg) | ||
502 | c1-=(int)(bn_sub_words(&(t[n2]),&(t[n2]),&(t[0]),n)); | ||
503 | else | ||
504 | c1+=(int)(bn_add_words(&(t[n2]),&(t[n2]),&(t[0]),n)); | ||
145 | 505 | ||
146 | if (init) | 506 | c2 =(int)(bn_add_words(&(r[0]),&(r[0]),&(t[n2+n]),n)); |
507 | c2+=(int)(bn_add_words(&(r[0]),&(r[0]),&(r[n]),n)); | ||
508 | if (oneg) | ||
509 | c2-=(int)(bn_sub_words(&(r[0]),&(r[0]),&(t[n]),n)); | ||
510 | else | ||
511 | c2+=(int)(bn_add_words(&(r[0]),&(r[0]),&(t[n]),n)); | ||
512 | |||
513 | if (c1 != 0) /* Add starting at r[0], could be +ve or -ve */ | ||
147 | { | 514 | { |
148 | bp.used=0; | 515 | i=0; |
149 | bp.tos=0; | 516 | if (c1 > 0) |
150 | bp.sk=sk_new_null(); | 517 | { |
151 | init=0; | 518 | lc=c1; |
519 | do { | ||
520 | ll=(r[i]+lc)&BN_MASK2; | ||
521 | r[i++]=ll; | ||
522 | lc=(lc > ll); | ||
523 | } while (lc); | ||
524 | } | ||
525 | else | ||
526 | { | ||
527 | lc= -c1; | ||
528 | do { | ||
529 | ll=r[i]; | ||
530 | r[i++]=(ll-lc)&BN_MASK2; | ||
531 | lc=(lc > ll); | ||
532 | } while (lc); | ||
533 | } | ||
534 | } | ||
535 | if (c2 != 0) /* Add starting at r[1] */ | ||
536 | { | ||
537 | i=n; | ||
538 | if (c2 > 0) | ||
539 | { | ||
540 | lc=c2; | ||
541 | do { | ||
542 | ll=(r[i]+lc)&BN_MASK2; | ||
543 | r[i++]=ll; | ||
544 | lc=(lc > ll); | ||
545 | } while (lc); | ||
546 | } | ||
547 | else | ||
548 | { | ||
549 | lc= -c2; | ||
550 | do { | ||
551 | ll=r[i]; | ||
552 | r[i++]=(ll-lc)&BN_MASK2; | ||
553 | lc=(lc > ll); | ||
554 | } while (lc); | ||
555 | } | ||
152 | } | 556 | } |
153 | return(BN_mm(r,a,b,&bp)); | ||
154 | } | 557 | } |
558 | #endif | ||
155 | 559 | ||
156 | /* r must be different to a and b */ | 560 | int BN_mul(BIGNUM *r, BIGNUM *a, BIGNUM *b, BN_CTX *ctx) |
157 | int BN_mm(m, A, B, bp) | ||
158 | BIGNUM *m,*A,*B; | ||
159 | BN_POOL *bp; | ||
160 | { | 561 | { |
161 | int i,num; | 562 | int top,al,bl; |
162 | int an,bn; | 563 | BIGNUM *rr; |
163 | BIGNUM *a,*b,*c,*d,*ac,*bd; | 564 | #ifdef BN_RECURSION |
565 | BIGNUM *t; | ||
566 | int i,j,k; | ||
567 | #endif | ||
568 | |||
569 | #ifdef BN_COUNT | ||
570 | printf("BN_mul %d * %d\n",a->top,b->top); | ||
571 | #endif | ||
572 | |||
573 | bn_check_top(a); | ||
574 | bn_check_top(b); | ||
575 | bn_check_top(r); | ||
576 | |||
577 | al=a->top; | ||
578 | bl=b->top; | ||
579 | r->neg=a->neg^b->neg; | ||
580 | |||
581 | if ((al == 0) || (bl == 0)) | ||
582 | { | ||
583 | BN_zero(r); | ||
584 | return(1); | ||
585 | } | ||
586 | top=al+bl; | ||
164 | 587 | ||
165 | an=A->top; | 588 | if ((r == a) || (r == b)) |
166 | bn=B->top; | 589 | rr= &(ctx->bn[ctx->tos+1]); |
167 | if ((an <= limit) || (bn <= limit)) | 590 | else |
591 | rr=r; | ||
592 | |||
593 | #if defined(BN_MUL_COMBA) || defined(BN_RECURSION) | ||
594 | if (al == bl) | ||
168 | { | 595 | { |
169 | return(BN_mmul(m,A,B)); | 596 | # ifdef BN_MUL_COMBA |
597 | /* if (al == 4) | ||
598 | { | ||
599 | if (bn_wexpand(rr,8) == NULL) return(0); | ||
600 | rr->top=8; | ||
601 | bn_mul_comba4(rr->d,a->d,b->d); | ||
602 | goto end; | ||
603 | } | ||
604 | else */ if (al == 8) | ||
605 | { | ||
606 | if (bn_wexpand(rr,16) == NULL) return(0); | ||
607 | rr->top=16; | ||
608 | bn_mul_comba8(rr->d,a->d,b->d); | ||
609 | goto end; | ||
610 | } | ||
611 | else | ||
612 | # endif | ||
613 | #ifdef BN_RECURSION | ||
614 | if (al < BN_MULL_SIZE_NORMAL) | ||
615 | #endif | ||
616 | { | ||
617 | if (bn_wexpand(rr,top) == NULL) return(0); | ||
618 | rr->top=top; | ||
619 | bn_mul_normal(rr->d,a->d,al,b->d,bl); | ||
620 | goto end; | ||
621 | } | ||
622 | # ifdef BN_RECURSION | ||
623 | goto symetric; | ||
624 | # endif | ||
170 | } | 625 | } |
626 | #endif | ||
627 | #ifdef BN_RECURSION | ||
628 | else if ((al < BN_MULL_SIZE_NORMAL) || (bl < BN_MULL_SIZE_NORMAL)) | ||
629 | { | ||
630 | if (bn_wexpand(rr,top) == NULL) return(0); | ||
631 | rr->top=top; | ||
632 | bn_mul_normal(rr->d,a->d,al,b->d,bl); | ||
633 | goto end; | ||
634 | } | ||
635 | else | ||
636 | { | ||
637 | i=(al-bl); | ||
638 | if ((i == 1) && !BN_get_flags(b,BN_FLG_STATIC_DATA)) | ||
639 | { | ||
640 | bn_wexpand(b,al); | ||
641 | b->d[bl]=0; | ||
642 | bl++; | ||
643 | goto symetric; | ||
644 | } | ||
645 | else if ((i == -1) && !BN_get_flags(a,BN_FLG_STATIC_DATA)) | ||
646 | { | ||
647 | bn_wexpand(a,bl); | ||
648 | a->d[al]=0; | ||
649 | al++; | ||
650 | goto symetric; | ||
651 | } | ||
652 | } | ||
653 | #endif | ||
171 | 654 | ||
172 | a=BN_POOL_push(bp); | 655 | /* asymetric and >= 4 */ |
173 | b=BN_POOL_push(bp); | 656 | if (bn_wexpand(rr,top) == NULL) return(0); |
174 | c=BN_POOL_push(bp); | 657 | rr->top=top; |
175 | d=BN_POOL_push(bp); | 658 | bn_mul_normal(rr->d,a->d,al,b->d,bl); |
176 | ac=BN_POOL_push(bp); | ||
177 | bd=BN_POOL_push(bp); | ||
178 | 659 | ||
179 | num=(an <= bn)?an:bn; | 660 | #ifdef BN_RECURSION |
180 | num=1<<(BN_num_bits_word(num-1)-1); | 661 | if (0) |
662 | { | ||
663 | symetric: | ||
664 | /* symetric and > 4 */ | ||
665 | /* 16 or larger */ | ||
666 | j=BN_num_bits_word((BN_ULONG)al); | ||
667 | j=1<<(j-1); | ||
668 | k=j+j; | ||
669 | t= &(ctx->bn[ctx->tos]); | ||
670 | if (al == j) /* exact multiple */ | ||
671 | { | ||
672 | bn_wexpand(t,k*2); | ||
673 | bn_wexpand(rr,k*2); | ||
674 | bn_mul_recursive(rr->d,a->d,b->d,al,t->d); | ||
675 | } | ||
676 | else | ||
677 | { | ||
678 | bn_wexpand(a,k); | ||
679 | bn_wexpand(b,k); | ||
680 | bn_wexpand(t,k*4); | ||
681 | bn_wexpand(rr,k*4); | ||
682 | for (i=a->top; i<k; i++) | ||
683 | a->d[i]=0; | ||
684 | for (i=b->top; i<k; i++) | ||
685 | b->d[i]=0; | ||
686 | bn_mul_part_recursive(rr->d,a->d,b->d,al-j,j,t->d); | ||
687 | } | ||
688 | rr->top=top; | ||
689 | } | ||
690 | #endif | ||
691 | #if defined(BN_MUL_COMBA) || defined(BN_RECURSION) | ||
692 | end: | ||
693 | #endif | ||
694 | bn_fix_top(rr); | ||
695 | if (r != rr) BN_copy(r,rr); | ||
696 | return(1); | ||
697 | } | ||
181 | 698 | ||
182 | /* Are going to now chop things into 'num' word chunks. */ | 699 | void bn_mul_normal(BN_ULONG *r, BN_ULONG *a, int na, BN_ULONG *b, int nb) |
183 | num*=BN_BITS2; | 700 | { |
701 | BN_ULONG *rr; | ||
184 | 702 | ||
185 | BN_copy(a,A); | 703 | #ifdef BN_COUNT |
186 | BN_mask_bits(a,num); | 704 | printf(" bn_mul_normal %d * %d\n",na,nb); |
187 | BN_rshift(b,A,num); | 705 | #endif |
188 | 706 | ||
189 | BN_copy(c,B); | 707 | if (na < nb) |
190 | BN_mask_bits(c,num); | 708 | { |
191 | BN_rshift(d,B,num); | 709 | int itmp; |
710 | BN_ULONG *ltmp; | ||
192 | 711 | ||
193 | BN_sub(ac ,b,a); | 712 | itmp=na; na=nb; nb=itmp; |
194 | BN_sub(bd,c,d); | 713 | ltmp=a; a=b; b=ltmp; |
195 | BN_mm(m,ac,bd,bp); | ||
196 | BN_mm(ac,a,c,bp); | ||
197 | BN_mm(bd,b,d,bp); | ||
198 | 714 | ||
199 | BN_add(m,m,ac); | 715 | } |
200 | BN_add(m,m,bd); | 716 | rr= &(r[na]); |
201 | BN_lshift(m,m,num); | 717 | rr[0]=bn_mul_words(r,a,na,b[0]); |
202 | BN_lshift(bd,bd,num*2); | ||
203 | 718 | ||
204 | BN_add(m,m,ac); | 719 | for (;;) |
205 | BN_add(m,m,bd); | 720 | { |
206 | BN_POOL_pop(bp,6); | 721 | if (--nb <= 0) return; |
207 | return(1); | 722 | rr[1]=bn_mul_add_words(&(r[1]),a,na,b[1]); |
723 | if (--nb <= 0) return; | ||
724 | rr[2]=bn_mul_add_words(&(r[2]),a,na,b[2]); | ||
725 | if (--nb <= 0) return; | ||
726 | rr[3]=bn_mul_add_words(&(r[3]),a,na,b[3]); | ||
727 | if (--nb <= 0) return; | ||
728 | rr[4]=bn_mul_add_words(&(r[4]),a,na,b[4]); | ||
729 | rr+=4; | ||
730 | r+=4; | ||
731 | b+=4; | ||
732 | } | ||
208 | } | 733 | } |
734 | |||
735 | void bn_mul_low_normal(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n) | ||
736 | { | ||
737 | #ifdef BN_COUNT | ||
738 | printf(" bn_mul_low_normal %d * %d\n",n,n); | ||
209 | #endif | 739 | #endif |
740 | bn_mul_words(r,a,n,b[0]); | ||
741 | |||
742 | for (;;) | ||
743 | { | ||
744 | if (--n <= 0) return; | ||
745 | bn_mul_add_words(&(r[1]),a,n,b[1]); | ||
746 | if (--n <= 0) return; | ||
747 | bn_mul_add_words(&(r[2]),a,n,b[2]); | ||
748 | if (--n <= 0) return; | ||
749 | bn_mul_add_words(&(r[3]),a,n,b[3]); | ||
750 | if (--n <= 0) return; | ||
751 | bn_mul_add_words(&(r[4]),a,n,b[4]); | ||
752 | r+=4; | ||
753 | b+=4; | ||
754 | } | ||
755 | } | ||
756 | |||