diff options
Diffstat (limited to 'src/lib/libcrypto/bn/bn_prime.c')
| -rw-r--r-- | src/lib/libcrypto/bn/bn_prime.c | 459 |
1 files changed, 226 insertions, 233 deletions
diff --git a/src/lib/libcrypto/bn/bn_prime.c b/src/lib/libcrypto/bn/bn_prime.c index 0c85f70b59..918b9237c6 100644 --- a/src/lib/libcrypto/bn/bn_prime.c +++ b/src/lib/libcrypto/bn/bn_prime.c | |||
| @@ -55,53 +55,100 @@ | |||
| 55 | * copied and put under another distribution licence | 55 | * copied and put under another distribution licence |
| 56 | * [including the GNU Public Licence.] | 56 | * [including the GNU Public Licence.] |
| 57 | */ | 57 | */ |
| 58 | /* ==================================================================== | ||
| 59 | * Copyright (c) 1998-2001 The OpenSSL Project. All rights reserved. | ||
| 60 | * | ||
| 61 | * Redistribution and use in source and binary forms, with or without | ||
| 62 | * modification, are permitted provided that the following conditions | ||
| 63 | * are met: | ||
| 64 | * | ||
| 65 | * 1. Redistributions of source code must retain the above copyright | ||
| 66 | * notice, this list of conditions and the following disclaimer. | ||
| 67 | * | ||
| 68 | * 2. Redistributions in binary form must reproduce the above copyright | ||
| 69 | * notice, this list of conditions and the following disclaimer in | ||
| 70 | * the documentation and/or other materials provided with the | ||
| 71 | * distribution. | ||
| 72 | * | ||
| 73 | * 3. All advertising materials mentioning features or use of this | ||
| 74 | * software must display the following acknowledgment: | ||
| 75 | * "This product includes software developed by the OpenSSL Project | ||
| 76 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | ||
| 77 | * | ||
| 78 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
| 79 | * endorse or promote products derived from this software without | ||
| 80 | * prior written permission. For written permission, please contact | ||
| 81 | * openssl-core@openssl.org. | ||
| 82 | * | ||
| 83 | * 5. Products derived from this software may not be called "OpenSSL" | ||
| 84 | * nor may "OpenSSL" appear in their names without prior written | ||
| 85 | * permission of the OpenSSL Project. | ||
| 86 | * | ||
| 87 | * 6. Redistributions of any form whatsoever must retain the following | ||
| 88 | * acknowledgment: | ||
| 89 | * "This product includes software developed by the OpenSSL Project | ||
| 90 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" | ||
| 91 | * | ||
| 92 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
| 93 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
| 94 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
| 95 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
| 96 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
| 97 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
| 98 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
| 99 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
| 100 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
| 101 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
| 102 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
| 103 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
| 104 | * ==================================================================== | ||
| 105 | * | ||
| 106 | * This product includes cryptographic software written by Eric Young | ||
| 107 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
| 108 | * Hudson (tjh@cryptsoft.com). | ||
| 109 | * | ||
| 110 | */ | ||
| 58 | 111 | ||
| 59 | #include <stdio.h> | 112 | #include <stdio.h> |
| 60 | #include <time.h> | 113 | #include <time.h> |
| 61 | #include "cryptlib.h" | 114 | #include "cryptlib.h" |
| 62 | #include "bn_lcl.h" | 115 | #include "bn_lcl.h" |
| 63 | #include "rand.h" | 116 | #include <openssl/rand.h> |
| 64 | 117 | ||
| 65 | /* The quick seive algorithm approach to weeding out primes is | 118 | /* The quick sieve algorithm approach to weeding out primes is |
| 66 | * Philip Zimmermann's, as implemented in PGP. I have had a read of | 119 | * Philip Zimmermann's, as implemented in PGP. I have had a read of |
| 67 | * his comments and implemented my own version. | 120 | * his comments and implemented my own version. |
| 68 | */ | 121 | */ |
| 69 | #include "bn_prime.h" | 122 | #include "bn_prime.h" |
| 70 | 123 | ||
| 71 | #ifndef NOPROTO | 124 | static int witness(BIGNUM *w, const BIGNUM *a, const BIGNUM *a1, |
| 72 | static int witness(BIGNUM *a, BIGNUM *n, BN_CTX *ctx,BN_CTX *ctx2, | 125 | const BIGNUM *a1_odd, int k, BN_CTX *ctx, BN_MONT_CTX *mont); |
| 73 | BN_MONT_CTX *mont); | ||
| 74 | static int probable_prime(BIGNUM *rnd, int bits); | 126 | static int probable_prime(BIGNUM *rnd, int bits); |
| 75 | static int probable_prime_dh(BIGNUM *rnd, int bits, | 127 | static int probable_prime_dh(BIGNUM *rnd, int bits, |
| 76 | BIGNUM *add, BIGNUM *rem, BN_CTX *ctx); | 128 | const BIGNUM *add, const BIGNUM *rem, BN_CTX *ctx); |
| 77 | static int probable_prime_dh_strong(BIGNUM *rnd, int bits, | 129 | static int probable_prime_dh_safe(BIGNUM *rnd, int bits, |
| 78 | BIGNUM *add, BIGNUM *rem, BN_CTX *ctx); | 130 | const BIGNUM *add, const BIGNUM *rem, BN_CTX *ctx); |
| 79 | #else | 131 | |
| 80 | static int witness(); | 132 | BIGNUM *BN_generate_prime(BIGNUM *ret, int bits, int safe, |
| 81 | static int probable_prime(); | 133 | const BIGNUM *add, const BIGNUM *rem, |
| 82 | static int probable_prime_dh(); | 134 | void (*callback)(int,int,void *), void *cb_arg) |
| 83 | static int probable_prime_dh_strong(); | ||
| 84 | #endif | ||
| 85 | |||
| 86 | BIGNUM *BN_generate_prime(bits,strong,add,rem,callback,cb_arg) | ||
| 87 | int bits; | ||
| 88 | int strong; | ||
| 89 | BIGNUM *add; | ||
| 90 | BIGNUM *rem; | ||
| 91 | void (*callback)(P_I_I_P); | ||
| 92 | char *cb_arg; | ||
| 93 | { | 135 | { |
| 94 | BIGNUM *rnd=NULL; | 136 | BIGNUM *rnd=NULL; |
| 95 | BIGNUM *ret=NULL; | 137 | BIGNUM t; |
| 96 | BIGNUM *t=NULL; | 138 | int found=0; |
| 97 | int i,j,c1=0; | 139 | int i,j,c1=0; |
| 98 | BN_CTX *ctx; | 140 | BN_CTX *ctx; |
| 141 | int checks = BN_prime_checks_for_size(bits); | ||
| 99 | 142 | ||
| 100 | ctx=BN_CTX_new(); | 143 | ctx=BN_CTX_new(); |
| 101 | if (ctx == NULL) goto err; | 144 | if (ctx == NULL) goto err; |
| 102 | if ((rnd=BN_new()) == NULL) goto err; | 145 | if (ret == NULL) |
| 103 | if (strong) | 146 | { |
| 104 | if ((t=BN_new()) == NULL) goto err; | 147 | if ((rnd=BN_new()) == NULL) goto err; |
| 148 | } | ||
| 149 | else | ||
| 150 | rnd=ret; | ||
| 151 | BN_init(&t); | ||
| 105 | loop: | 152 | loop: |
| 106 | /* make a random number and set the top and bottom bits */ | 153 | /* make a random number and set the top and bottom bits */ |
| 107 | if (add == NULL) | 154 | if (add == NULL) |
| @@ -110,9 +157,9 @@ loop: | |||
| 110 | } | 157 | } |
| 111 | else | 158 | else |
| 112 | { | 159 | { |
| 113 | if (strong) | 160 | if (safe) |
| 114 | { | 161 | { |
| 115 | if (!probable_prime_dh_strong(rnd,bits,add,rem,ctx)) | 162 | if (!probable_prime_dh_safe(rnd,bits,add,rem,ctx)) |
| 116 | goto err; | 163 | goto err; |
| 117 | } | 164 | } |
| 118 | else | 165 | else |
| @@ -124,171 +171,188 @@ loop: | |||
| 124 | /* if (BN_mod_word(rnd,(BN_ULONG)3) == 1) goto loop; */ | 171 | /* if (BN_mod_word(rnd,(BN_ULONG)3) == 1) goto loop; */ |
| 125 | if (callback != NULL) callback(0,c1++,cb_arg); | 172 | if (callback != NULL) callback(0,c1++,cb_arg); |
| 126 | 173 | ||
| 127 | if (!strong) | 174 | if (!safe) |
| 128 | { | 175 | { |
| 129 | i=BN_is_prime(rnd,BN_prime_checks,callback,ctx,cb_arg); | 176 | i=BN_is_prime_fasttest(rnd,checks,callback,ctx,cb_arg,0); |
| 130 | if (i == -1) goto err; | 177 | if (i == -1) goto err; |
| 131 | if (i == 0) goto loop; | 178 | if (i == 0) goto loop; |
| 132 | } | 179 | } |
| 133 | else | 180 | else |
| 134 | { | 181 | { |
| 135 | /* for a strong prime generation, | 182 | /* for "safe prime" generation, |
| 136 | * check that (p-1)/2 is prime. | 183 | * check that (p-1)/2 is prime. |
| 137 | * Since a prime is odd, We just | 184 | * Since a prime is odd, We just |
| 138 | * need to divide by 2 */ | 185 | * need to divide by 2 */ |
| 139 | if (!BN_rshift1(t,rnd)) goto err; | 186 | if (!BN_rshift1(&t,rnd)) goto err; |
| 140 | 187 | ||
| 141 | for (i=0; i<BN_prime_checks; i++) | 188 | for (i=0; i<checks; i++) |
| 142 | { | 189 | { |
| 143 | j=BN_is_prime(rnd,1,callback,ctx,cb_arg); | 190 | j=BN_is_prime_fasttest(rnd,1,callback,ctx,cb_arg,0); |
| 144 | if (j == -1) goto err; | 191 | if (j == -1) goto err; |
| 145 | if (j == 0) goto loop; | 192 | if (j == 0) goto loop; |
| 146 | 193 | ||
| 147 | j=BN_is_prime(t,1,callback,ctx,cb_arg); | 194 | j=BN_is_prime_fasttest(&t,1,callback,ctx,cb_arg,0); |
| 148 | if (j == -1) goto err; | 195 | if (j == -1) goto err; |
| 149 | if (j == 0) goto loop; | 196 | if (j == 0) goto loop; |
| 150 | 197 | ||
| 151 | if (callback != NULL) callback(2,c1-1,cb_arg); | 198 | if (callback != NULL) callback(2,c1-1,cb_arg); |
| 152 | /* We have a strong prime test pass */ | 199 | /* We have a safe prime test pass */ |
| 153 | } | 200 | } |
| 154 | } | 201 | } |
| 155 | /* we have a prime :-) */ | 202 | /* we have a prime :-) */ |
| 156 | ret=rnd; | 203 | found = 1; |
| 157 | err: | 204 | err: |
| 158 | if ((ret == NULL) && (rnd != NULL)) BN_free(rnd); | 205 | if (!found && (ret == NULL) && (rnd != NULL)) BN_free(rnd); |
| 159 | if (t != NULL) BN_free(t); | 206 | BN_free(&t); |
| 160 | if (ctx != NULL) BN_CTX_free(ctx); | 207 | if (ctx != NULL) BN_CTX_free(ctx); |
| 161 | return(ret); | 208 | return(found ? rnd : NULL); |
| 162 | } | 209 | } |
| 163 | 210 | ||
| 164 | int BN_is_prime(a,checks,callback,ctx_passed,cb_arg) | 211 | int BN_is_prime(const BIGNUM *a, int checks, void (*callback)(int,int,void *), |
| 165 | BIGNUM *a; | 212 | BN_CTX *ctx_passed, void *cb_arg) |
| 166 | int checks; | ||
| 167 | void (*callback)(P_I_I_P); | ||
| 168 | BN_CTX *ctx_passed; | ||
| 169 | char *cb_arg; | ||
| 170 | { | 213 | { |
| 171 | int i,j,c2=0,ret= -1; | 214 | return BN_is_prime_fasttest(a, checks, callback, ctx_passed, cb_arg, 0); |
| 172 | BIGNUM *check; | 215 | } |
| 173 | BN_CTX *ctx=NULL,*ctx2=NULL; | ||
| 174 | BN_MONT_CTX *mont=NULL; | ||
| 175 | 216 | ||
| 217 | int BN_is_prime_fasttest(const BIGNUM *a, int checks, | ||
| 218 | void (*callback)(int,int,void *), | ||
| 219 | BN_CTX *ctx_passed, void *cb_arg, | ||
| 220 | int do_trial_division) | ||
| 221 | { | ||
| 222 | int i, j, ret = -1; | ||
| 223 | int k; | ||
| 224 | BN_CTX *ctx = NULL; | ||
| 225 | BIGNUM *A1, *A1_odd, *check; /* taken from ctx */ | ||
| 226 | BN_MONT_CTX *mont = NULL; | ||
| 227 | const BIGNUM *A = NULL; | ||
| 228 | |||
| 229 | if (BN_cmp(a, BN_value_one()) <= 0) | ||
| 230 | return 0; | ||
| 231 | |||
| 232 | if (checks == BN_prime_checks) | ||
| 233 | checks = BN_prime_checks_for_size(BN_num_bits(a)); | ||
| 234 | |||
| 235 | /* first look for small factors */ | ||
| 176 | if (!BN_is_odd(a)) | 236 | if (!BN_is_odd(a)) |
| 177 | return(0); | 237 | return 0; |
| 238 | if (do_trial_division) | ||
| 239 | { | ||
| 240 | for (i = 1; i < NUMPRIMES; i++) | ||
| 241 | if (BN_mod_word(a, primes[i]) == 0) | ||
| 242 | return 0; | ||
| 243 | if (callback != NULL) callback(1, -1, cb_arg); | ||
| 244 | } | ||
| 245 | |||
| 178 | if (ctx_passed != NULL) | 246 | if (ctx_passed != NULL) |
| 179 | ctx=ctx_passed; | 247 | ctx = ctx_passed; |
| 180 | else | 248 | else |
| 181 | if ((ctx=BN_CTX_new()) == NULL) goto err; | 249 | if ((ctx=BN_CTX_new()) == NULL) |
| 182 | 250 | goto err; | |
| 183 | if ((ctx2=BN_CTX_new()) == NULL) goto err; | 251 | BN_CTX_start(ctx); |
| 184 | if ((mont=BN_MONT_CTX_new()) == NULL) goto err; | ||
| 185 | |||
| 186 | check=ctx->bn[ctx->tos++]; | ||
| 187 | 252 | ||
| 188 | /* Setup the montgomery structure */ | 253 | /* A := abs(a) */ |
| 189 | if (!BN_MONT_CTX_set(mont,a,ctx2)) goto err; | 254 | if (a->neg) |
| 255 | { | ||
| 256 | BIGNUM *t; | ||
| 257 | if ((t = BN_CTX_get(ctx)) == NULL) goto err; | ||
| 258 | BN_copy(t, a); | ||
| 259 | t->neg = 0; | ||
| 260 | A = t; | ||
| 261 | } | ||
| 262 | else | ||
| 263 | A = a; | ||
| 264 | A1 = BN_CTX_get(ctx); | ||
| 265 | A1_odd = BN_CTX_get(ctx); | ||
| 266 | check = BN_CTX_get(ctx); | ||
| 267 | if (check == NULL) goto err; | ||
| 268 | |||
| 269 | /* compute A1 := A - 1 */ | ||
| 270 | if (!BN_copy(A1, A)) | ||
| 271 | goto err; | ||
| 272 | if (!BN_sub_word(A1, 1)) | ||
| 273 | goto err; | ||
| 274 | if (BN_is_zero(A1)) | ||
| 275 | { | ||
| 276 | ret = 0; | ||
| 277 | goto err; | ||
| 278 | } | ||
| 190 | 279 | ||
| 191 | for (i=0; i<checks; i++) | 280 | /* write A1 as A1_odd * 2^k */ |
| 281 | k = 1; | ||
| 282 | while (!BN_is_bit_set(A1, k)) | ||
| 283 | k++; | ||
| 284 | if (!BN_rshift(A1_odd, A1, k)) | ||
| 285 | goto err; | ||
| 286 | |||
| 287 | /* Montgomery setup for computations mod A */ | ||
| 288 | mont = BN_MONT_CTX_new(); | ||
| 289 | if (mont == NULL) | ||
| 290 | goto err; | ||
| 291 | if (!BN_MONT_CTX_set(mont, A, ctx)) | ||
| 292 | goto err; | ||
| 293 | |||
| 294 | for (i = 0; i < checks; i++) | ||
| 192 | { | 295 | { |
| 193 | if (!BN_rand(check,BN_num_bits(a)-1,0,0)) goto err; | 296 | if (!BN_pseudo_rand_range(check, A1)) |
| 194 | j=witness(check,a,ctx,ctx2,mont); | 297 | goto err; |
| 298 | if (!BN_add_word(check, 1)) | ||
| 299 | goto err; | ||
| 300 | /* now 1 <= check < A */ | ||
| 301 | |||
| 302 | j = witness(check, A, A1, A1_odd, k, ctx, mont); | ||
| 195 | if (j == -1) goto err; | 303 | if (j == -1) goto err; |
| 196 | if (j) | 304 | if (j) |
| 197 | { | 305 | { |
| 198 | ret=0; | 306 | ret=0; |
| 199 | goto err; | 307 | goto err; |
| 200 | } | 308 | } |
| 201 | if (callback != NULL) callback(1,c2++,cb_arg); | 309 | if (callback != NULL) callback(1,i,cb_arg); |
| 202 | } | 310 | } |
| 203 | ret=1; | 311 | ret=1; |
| 204 | err: | 312 | err: |
| 205 | ctx->tos--; | 313 | if (ctx != NULL) |
| 206 | if ((ctx_passed == NULL) && (ctx != NULL)) | 314 | { |
| 207 | BN_CTX_free(ctx); | 315 | BN_CTX_end(ctx); |
| 208 | if (ctx2 != NULL) | 316 | if (ctx_passed == NULL) |
| 209 | BN_CTX_free(ctx2); | 317 | BN_CTX_free(ctx); |
| 210 | if (mont != NULL) BN_MONT_CTX_free(mont); | 318 | } |
| 211 | 319 | if (mont != NULL) | |
| 320 | BN_MONT_CTX_free(mont); | ||
| 321 | |||
| 212 | return(ret); | 322 | return(ret); |
| 213 | } | 323 | } |
| 214 | 324 | ||
| 215 | #define RECP_MUL_MOD | 325 | static int witness(BIGNUM *w, const BIGNUM *a, const BIGNUM *a1, |
| 216 | 326 | const BIGNUM *a1_odd, int k, BN_CTX *ctx, BN_MONT_CTX *mont) | |
| 217 | static int witness(a,n,ctx,ctx2,mont) | ||
| 218 | BIGNUM *a; | ||
| 219 | BIGNUM *n; | ||
| 220 | BN_CTX *ctx,*ctx2; | ||
| 221 | BN_MONT_CTX *mont; | ||
| 222 | { | 327 | { |
| 223 | int k,i,ret= -1,good; | 328 | if (!BN_mod_exp_mont(w, w, a1_odd, a, ctx, mont)) /* w := w^a1_odd mod a */ |
| 224 | BIGNUM *d,*dd,*tmp,*d1,*d2,*n1; | 329 | return -1; |
| 225 | BIGNUM *mont_one,*mont_n1,*mont_a; | 330 | if (BN_is_one(w)) |
| 226 | 331 | return 0; /* probably prime */ | |
| 227 | d1=ctx->bn[ctx->tos]; | 332 | if (BN_cmp(w, a1) == 0) |
| 228 | d2=ctx->bn[ctx->tos+1]; | 333 | return 0; /* w == -1 (mod a), 'a' is probably prime */ |
| 229 | n1=ctx->bn[ctx->tos+2]; | 334 | while (--k) |
| 230 | ctx->tos+=3; | ||
| 231 | |||
| 232 | mont_one=ctx2->bn[ctx2->tos]; | ||
| 233 | mont_n1=ctx2->bn[ctx2->tos+1]; | ||
| 234 | mont_a=ctx2->bn[ctx2->tos+2]; | ||
| 235 | ctx2->tos+=3; | ||
| 236 | |||
| 237 | d=d1; | ||
| 238 | dd=d2; | ||
| 239 | if (!BN_one(d)) goto err; | ||
| 240 | if (!BN_sub(n1,n,d)) goto err; /* n1=n-1; */ | ||
| 241 | k=BN_num_bits(n1); | ||
| 242 | |||
| 243 | if (!BN_to_montgomery(mont_one,BN_value_one(),mont,ctx2)) goto err; | ||
| 244 | if (!BN_to_montgomery(mont_n1,n1,mont,ctx2)) goto err; | ||
| 245 | if (!BN_to_montgomery(mont_a,a,mont,ctx2)) goto err; | ||
| 246 | |||
| 247 | BN_copy(d,mont_one); | ||
| 248 | for (i=k-1; i>=0; i--) | ||
| 249 | { | 335 | { |
| 250 | if ( (BN_cmp(d,mont_one) != 0) && | 336 | if (!BN_mod_mul(w, w, w, a, ctx)) /* w := w^2 mod a */ |
| 251 | (BN_cmp(d,mont_n1) != 0)) | 337 | return -1; |
| 252 | good=1; | 338 | if (BN_is_one(w)) |
| 253 | else | 339 | return 1; /* 'a' is composite, otherwise a previous 'w' would |
| 254 | good=0; | 340 | * have been == -1 (mod 'a') */ |
| 255 | 341 | if (BN_cmp(w, a1) == 0) | |
| 256 | BN_mod_mul_montgomery(dd,d,d,mont,ctx2); | 342 | return 0; /* w == -1 (mod a), 'a' is probably prime */ |
| 257 | |||
| 258 | if (good && (BN_cmp(dd,mont_one) == 0)) | ||
| 259 | { | ||
| 260 | ret=1; | ||
| 261 | goto err; | ||
| 262 | } | ||
| 263 | if (BN_is_bit_set(n1,i)) | ||
| 264 | { | ||
| 265 | BN_mod_mul_montgomery(d,dd,mont_a,mont,ctx2); | ||
| 266 | } | ||
| 267 | else | ||
| 268 | { | ||
| 269 | tmp=d; | ||
| 270 | d=dd; | ||
| 271 | dd=tmp; | ||
| 272 | } | ||
| 273 | } | 343 | } |
| 274 | if (BN_cmp(d,mont_one) == 0) | 344 | /* If we get here, 'w' is the (a-1)/2-th power of the original 'w', |
| 275 | i=0; | 345 | * and it is neither -1 nor +1 -- so 'a' cannot be prime */ |
| 276 | else i=1; | 346 | return 1; |
| 277 | ret=i; | ||
| 278 | err: | ||
| 279 | ctx->tos-=3; | ||
| 280 | ctx2->tos-=3; | ||
| 281 | return(ret); | ||
| 282 | } | 347 | } |
| 283 | 348 | ||
| 284 | static int probable_prime(rnd, bits) | 349 | static int probable_prime(BIGNUM *rnd, int bits) |
| 285 | BIGNUM *rnd; | ||
| 286 | int bits; | ||
| 287 | { | 350 | { |
| 288 | int i; | 351 | int i; |
| 289 | MS_STATIC BN_ULONG mods[NUMPRIMES]; | 352 | BN_ULONG mods[NUMPRIMES]; |
| 290 | BN_ULONG delta; | 353 | BN_ULONG delta,d; |
| 291 | 354 | ||
| 355 | again: | ||
| 292 | if (!BN_rand(rnd,bits,1,1)) return(0); | 356 | if (!BN_rand(rnd,bits,1,1)) return(0); |
| 293 | /* we now have a random number 'rand' to test. */ | 357 | /* we now have a random number 'rand' to test. */ |
| 294 | for (i=1; i<NUMPRIMES; i++) | 358 | for (i=1; i<NUMPRIMES; i++) |
| @@ -300,9 +364,12 @@ int bits; | |||
| 300 | * that gcd(rnd-1,primes) == 1 (except for 2) */ | 364 | * that gcd(rnd-1,primes) == 1 (except for 2) */ |
| 301 | if (((mods[i]+delta)%primes[i]) <= 1) | 365 | if (((mods[i]+delta)%primes[i]) <= 1) |
| 302 | { | 366 | { |
| 367 | d=delta; | ||
| 303 | delta+=2; | 368 | delta+=2; |
| 304 | /* perhaps need to check for overflow of | 369 | /* perhaps need to check for overflow of |
| 305 | * delta (but delta can be upto 2^32) */ | 370 | * delta (but delta can be up to 2^32) |
| 371 | * 21-May-98 eay - added overflow check */ | ||
| 372 | if (delta < d) goto again; | ||
| 306 | goto loop; | 373 | goto loop; |
| 307 | } | 374 | } |
| 308 | } | 375 | } |
| @@ -310,17 +377,14 @@ int bits; | |||
| 310 | return(1); | 377 | return(1); |
| 311 | } | 378 | } |
| 312 | 379 | ||
| 313 | static int probable_prime_dh(rnd, bits, add, rem,ctx) | 380 | static int probable_prime_dh(BIGNUM *rnd, int bits, |
| 314 | BIGNUM *rnd; | 381 | const BIGNUM *add, const BIGNUM *rem, BN_CTX *ctx) |
| 315 | int bits; | ||
| 316 | BIGNUM *add; | ||
| 317 | BIGNUM *rem; | ||
| 318 | BN_CTX *ctx; | ||
| 319 | { | 382 | { |
| 320 | int i,ret=0; | 383 | int i,ret=0; |
| 321 | BIGNUM *t1; | 384 | BIGNUM *t1; |
| 322 | 385 | ||
| 323 | t1=ctx->bn[ctx->tos++]; | 386 | BN_CTX_start(ctx); |
| 387 | if ((t1 = BN_CTX_get(ctx)) == NULL) goto err; | ||
| 324 | 388 | ||
| 325 | if (!BN_rand(rnd,bits,0,1)) goto err; | 389 | if (!BN_rand(rnd,bits,0,1)) goto err; |
| 326 | 390 | ||
| @@ -338,7 +402,7 @@ BN_CTX *ctx; | |||
| 338 | loop: for (i=1; i<NUMPRIMES; i++) | 402 | loop: for (i=1; i<NUMPRIMES; i++) |
| 339 | { | 403 | { |
| 340 | /* check that rnd is a prime */ | 404 | /* check that rnd is a prime */ |
| 341 | if (BN_mod_word(rnd,(BN_LONG)primes[i]) <= 1) | 405 | if (BN_mod_word(rnd,(BN_ULONG)primes[i]) <= 1) |
| 342 | { | 406 | { |
| 343 | if (!BN_add(rnd,rnd,add)) goto err; | 407 | if (!BN_add(rnd,rnd,add)) goto err; |
| 344 | goto loop; | 408 | goto loop; |
| @@ -346,24 +410,22 @@ BN_CTX *ctx; | |||
| 346 | } | 410 | } |
| 347 | ret=1; | 411 | ret=1; |
| 348 | err: | 412 | err: |
| 349 | ctx->tos--; | 413 | BN_CTX_end(ctx); |
| 350 | return(ret); | 414 | return(ret); |
| 351 | } | 415 | } |
| 352 | 416 | ||
| 353 | static int probable_prime_dh_strong(p, bits, padd, rem,ctx) | 417 | static int probable_prime_dh_safe(BIGNUM *p, int bits, const BIGNUM *padd, |
| 354 | BIGNUM *p; | 418 | const BIGNUM *rem, BN_CTX *ctx) |
| 355 | int bits; | ||
| 356 | BIGNUM *padd; | ||
| 357 | BIGNUM *rem; | ||
| 358 | BN_CTX *ctx; | ||
| 359 | { | 419 | { |
| 360 | int i,ret=0; | 420 | int i,ret=0; |
| 361 | BIGNUM *t1,*qadd=NULL,*q=NULL; | 421 | BIGNUM *t1,*qadd,*q; |
| 362 | 422 | ||
| 363 | bits--; | 423 | bits--; |
| 364 | t1=ctx->bn[ctx->tos++]; | 424 | BN_CTX_start(ctx); |
| 365 | q=ctx->bn[ctx->tos++]; | 425 | t1 = BN_CTX_get(ctx); |
| 366 | qadd=ctx->bn[ctx->tos++]; | 426 | q = BN_CTX_get(ctx); |
| 427 | qadd = BN_CTX_get(ctx); | ||
| 428 | if (qadd == NULL) goto err; | ||
| 367 | 429 | ||
| 368 | if (!BN_rshift1(qadd,padd)) goto err; | 430 | if (!BN_rshift1(qadd,padd)) goto err; |
| 369 | 431 | ||
| @@ -389,8 +451,8 @@ BN_CTX *ctx; | |||
| 389 | /* check that p and q are prime */ | 451 | /* check that p and q are prime */ |
| 390 | /* check that for p and q | 452 | /* check that for p and q |
| 391 | * gcd(p-1,primes) == 1 (except for 2) */ | 453 | * gcd(p-1,primes) == 1 (except for 2) */ |
| 392 | if ( (BN_mod_word(p,(BN_LONG)primes[i]) == 0) || | 454 | if ( (BN_mod_word(p,(BN_ULONG)primes[i]) == 0) || |
| 393 | (BN_mod_word(q,(BN_LONG)primes[i]) == 0)) | 455 | (BN_mod_word(q,(BN_ULONG)primes[i]) == 0)) |
| 394 | { | 456 | { |
| 395 | if (!BN_add(p,p,padd)) goto err; | 457 | if (!BN_add(p,p,padd)) goto err; |
| 396 | if (!BN_add(q,q,qadd)) goto err; | 458 | if (!BN_add(q,q,qadd)) goto err; |
| @@ -399,75 +461,6 @@ BN_CTX *ctx; | |||
| 399 | } | 461 | } |
| 400 | ret=1; | 462 | ret=1; |
| 401 | err: | 463 | err: |
| 402 | ctx->tos-=3; | 464 | BN_CTX_end(ctx); |
| 403 | return(ret); | ||
| 404 | } | ||
| 405 | |||
| 406 | #if 0 | ||
| 407 | static int witness(a, n,ctx) | ||
| 408 | BIGNUM *a; | ||
| 409 | BIGNUM *n; | ||
| 410 | BN_CTX *ctx; | ||
| 411 | { | ||
| 412 | int k,i,nb,ret= -1; | ||
| 413 | BIGNUM *d,*dd,*tmp; | ||
| 414 | BIGNUM *d1,*d2,*x,*n1,*inv; | ||
| 415 | |||
| 416 | d1=ctx->bn[ctx->tos]; | ||
| 417 | d2=ctx->bn[ctx->tos+1]; | ||
| 418 | x=ctx->bn[ctx->tos+2]; | ||
| 419 | n1=ctx->bn[ctx->tos+3]; | ||
| 420 | inv=ctx->bn[ctx->tos+4]; | ||
| 421 | ctx->tos+=5; | ||
| 422 | |||
| 423 | d=d1; | ||
| 424 | dd=d2; | ||
| 425 | if (!BN_one(d)) goto err; | ||
| 426 | if (!BN_sub(n1,n,d)) goto err; /* n1=n-1; */ | ||
| 427 | k=BN_num_bits(n1); | ||
| 428 | |||
| 429 | /* i=BN_num_bits(n); */ | ||
| 430 | #ifdef RECP_MUL_MOD | ||
| 431 | nb=BN_reciprocal(inv,n,ctx); /**/ | ||
| 432 | if (nb == -1) goto err; | ||
| 433 | #endif | ||
| 434 | |||
| 435 | for (i=k-1; i>=0; i--) | ||
| 436 | { | ||
| 437 | if (BN_copy(x,d) == NULL) goto err; | ||
| 438 | #ifndef RECP_MUL_MOD | ||
| 439 | if (!BN_mod_mul(dd,d,d,n,ctx)) goto err; | ||
| 440 | #else | ||
| 441 | if (!BN_mod_mul_reciprocal(dd,d,d,n,inv,nb,ctx)) goto err; | ||
| 442 | #endif | ||
| 443 | if ( BN_is_one(dd) && | ||
| 444 | !BN_is_one(x) && | ||
| 445 | (BN_cmp(x,n1) != 0)) | ||
| 446 | { | ||
| 447 | ret=1; | ||
| 448 | goto err; | ||
| 449 | } | ||
| 450 | if (BN_is_bit_set(n1,i)) | ||
| 451 | { | ||
| 452 | #ifndef RECP_MUL_MOD | ||
| 453 | if (!BN_mod_mul(d,dd,a,n,ctx)) goto err; | ||
| 454 | #else | ||
| 455 | if (!BN_mod_mul_reciprocal(d,dd,a,n,inv,nb,ctx)) goto err; | ||
| 456 | #endif | ||
| 457 | } | ||
| 458 | else | ||
| 459 | { | ||
| 460 | tmp=d; | ||
| 461 | d=dd; | ||
| 462 | dd=tmp; | ||
| 463 | } | ||
| 464 | } | ||
| 465 | if (BN_is_one(d)) | ||
| 466 | i=0; | ||
| 467 | else i=1; | ||
| 468 | ret=i; | ||
| 469 | err: | ||
| 470 | ctx->tos-=5; | ||
| 471 | return(ret); | 465 | return(ret); |
| 472 | } | 466 | } |
| 473 | #endif | ||
