diff options
Diffstat (limited to '')
-rw-r--r-- | src/lib/libcrypto/bn/bn_sqrt.c | 409 |
1 files changed, 0 insertions, 409 deletions
diff --git a/src/lib/libcrypto/bn/bn_sqrt.c b/src/lib/libcrypto/bn/bn_sqrt.c deleted file mode 100644 index 3d9f017f59..0000000000 --- a/src/lib/libcrypto/bn/bn_sqrt.c +++ /dev/null | |||
@@ -1,409 +0,0 @@ | |||
1 | /* $OpenBSD: bn_sqrt.c,v 1.16 2023/03/27 10:25:02 tb Exp $ */ | ||
2 | /* Written by Lenka Fibikova <fibikova@exp-math.uni-essen.de> | ||
3 | * and Bodo Moeller for the OpenSSL project. */ | ||
4 | /* ==================================================================== | ||
5 | * Copyright (c) 1998-2000 The OpenSSL Project. All rights reserved. | ||
6 | * | ||
7 | * Redistribution and use in source and binary forms, with or without | ||
8 | * modification, are permitted provided that the following conditions | ||
9 | * are met: | ||
10 | * | ||
11 | * 1. Redistributions of source code must retain the above copyright | ||
12 | * notice, this list of conditions and the following disclaimer. | ||
13 | * | ||
14 | * 2. Redistributions in binary form must reproduce the above copyright | ||
15 | * notice, this list of conditions and the following disclaimer in | ||
16 | * the documentation and/or other materials provided with the | ||
17 | * distribution. | ||
18 | * | ||
19 | * 3. All advertising materials mentioning features or use of this | ||
20 | * software must display the following acknowledgment: | ||
21 | * "This product includes software developed by the OpenSSL Project | ||
22 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | ||
23 | * | ||
24 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
25 | * endorse or promote products derived from this software without | ||
26 | * prior written permission. For written permission, please contact | ||
27 | * openssl-core@openssl.org. | ||
28 | * | ||
29 | * 5. Products derived from this software may not be called "OpenSSL" | ||
30 | * nor may "OpenSSL" appear in their names without prior written | ||
31 | * permission of the OpenSSL Project. | ||
32 | * | ||
33 | * 6. Redistributions of any form whatsoever must retain the following | ||
34 | * acknowledgment: | ||
35 | * "This product includes software developed by the OpenSSL Project | ||
36 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" | ||
37 | * | ||
38 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
39 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
40 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
41 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
42 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
43 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
44 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
45 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
46 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
47 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
48 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
49 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
50 | * ==================================================================== | ||
51 | * | ||
52 | * This product includes cryptographic software written by Eric Young | ||
53 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
54 | * Hudson (tjh@cryptsoft.com). | ||
55 | * | ||
56 | */ | ||
57 | |||
58 | #include <openssl/err.h> | ||
59 | |||
60 | #include "bn_local.h" | ||
61 | |||
62 | /* | ||
63 | * Returns 'ret' such that ret^2 == a (mod p), if it exists, using the | ||
64 | * Tonelli-Shanks algorithm following Henri Cohen, "A Course in Computational | ||
65 | * Algebraic Number Theory", algorithm 1.5.1, Springer, Berlin, 1996. | ||
66 | * | ||
67 | * Note: 'p' must be prime! | ||
68 | */ | ||
69 | |||
70 | BIGNUM * | ||
71 | BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) | ||
72 | { | ||
73 | BIGNUM *ret = in; | ||
74 | int err = 1; | ||
75 | int r; | ||
76 | BIGNUM *A, *b, *q, *t, *x, *y; | ||
77 | int e, i, j; | ||
78 | |||
79 | if (!BN_is_odd(p) || BN_abs_is_word(p, 1)) { | ||
80 | if (BN_abs_is_word(p, 2)) { | ||
81 | if (ret == NULL) | ||
82 | ret = BN_new(); | ||
83 | if (ret == NULL) | ||
84 | goto end; | ||
85 | if (!BN_set_word(ret, BN_is_bit_set(a, 0))) { | ||
86 | if (ret != in) | ||
87 | BN_free(ret); | ||
88 | return NULL; | ||
89 | } | ||
90 | return ret; | ||
91 | } | ||
92 | |||
93 | BNerror(BN_R_P_IS_NOT_PRIME); | ||
94 | return (NULL); | ||
95 | } | ||
96 | |||
97 | if (BN_is_zero(a) || BN_is_one(a)) { | ||
98 | if (ret == NULL) | ||
99 | ret = BN_new(); | ||
100 | if (ret == NULL) | ||
101 | goto end; | ||
102 | if (!BN_set_word(ret, BN_is_one(a))) { | ||
103 | if (ret != in) | ||
104 | BN_free(ret); | ||
105 | return NULL; | ||
106 | } | ||
107 | return ret; | ||
108 | } | ||
109 | |||
110 | BN_CTX_start(ctx); | ||
111 | if ((A = BN_CTX_get(ctx)) == NULL) | ||
112 | goto end; | ||
113 | if ((b = BN_CTX_get(ctx)) == NULL) | ||
114 | goto end; | ||
115 | if ((q = BN_CTX_get(ctx)) == NULL) | ||
116 | goto end; | ||
117 | if ((t = BN_CTX_get(ctx)) == NULL) | ||
118 | goto end; | ||
119 | if ((x = BN_CTX_get(ctx)) == NULL) | ||
120 | goto end; | ||
121 | if ((y = BN_CTX_get(ctx)) == NULL) | ||
122 | goto end; | ||
123 | |||
124 | if (ret == NULL) | ||
125 | ret = BN_new(); | ||
126 | if (ret == NULL) | ||
127 | goto end; | ||
128 | |||
129 | /* A = a mod p */ | ||
130 | if (!BN_nnmod(A, a, p, ctx)) | ||
131 | goto end; | ||
132 | |||
133 | /* now write |p| - 1 as 2^e*q where q is odd */ | ||
134 | e = 1; | ||
135 | while (!BN_is_bit_set(p, e)) | ||
136 | e++; | ||
137 | /* we'll set q later (if needed) */ | ||
138 | |||
139 | if (e == 1) { | ||
140 | /* The easy case: (|p|-1)/2 is odd, so 2 has an inverse | ||
141 | * modulo (|p|-1)/2, and square roots can be computed | ||
142 | * directly by modular exponentiation. | ||
143 | * We have | ||
144 | * 2 * (|p|+1)/4 == 1 (mod (|p|-1)/2), | ||
145 | * so we can use exponent (|p|+1)/4, i.e. (|p|-3)/4 + 1. | ||
146 | */ | ||
147 | if (!BN_rshift(q, p, 2)) | ||
148 | goto end; | ||
149 | q->neg = 0; | ||
150 | if (!BN_add_word(q, 1)) | ||
151 | goto end; | ||
152 | if (!BN_mod_exp_ct(ret, A, q, p, ctx)) | ||
153 | goto end; | ||
154 | err = 0; | ||
155 | goto vrfy; | ||
156 | } | ||
157 | |||
158 | if (e == 2) { | ||
159 | /* |p| == 5 (mod 8) | ||
160 | * | ||
161 | * In this case 2 is always a non-square since | ||
162 | * Legendre(2,p) = (-1)^((p^2-1)/8) for any odd prime. | ||
163 | * So if a really is a square, then 2*a is a non-square. | ||
164 | * Thus for | ||
165 | * b := (2*a)^((|p|-5)/8), | ||
166 | * i := (2*a)*b^2 | ||
167 | * we have | ||
168 | * i^2 = (2*a)^((1 + (|p|-5)/4)*2) | ||
169 | * = (2*a)^((p-1)/2) | ||
170 | * = -1; | ||
171 | * so if we set | ||
172 | * x := a*b*(i-1), | ||
173 | * then | ||
174 | * x^2 = a^2 * b^2 * (i^2 - 2*i + 1) | ||
175 | * = a^2 * b^2 * (-2*i) | ||
176 | * = a*(-i)*(2*a*b^2) | ||
177 | * = a*(-i)*i | ||
178 | * = a. | ||
179 | * | ||
180 | * (This is due to A.O.L. Atkin, | ||
181 | * <URL: http://listserv.nodak.edu/scripts/wa.exe?A2=ind9211&L=nmbrthry&O=T&P=562>, | ||
182 | * November 1992.) | ||
183 | */ | ||
184 | |||
185 | /* t := 2*a */ | ||
186 | if (!BN_mod_lshift1_quick(t, A, p)) | ||
187 | goto end; | ||
188 | |||
189 | /* b := (2*a)^((|p|-5)/8) */ | ||
190 | if (!BN_rshift(q, p, 3)) | ||
191 | goto end; | ||
192 | q->neg = 0; | ||
193 | if (!BN_mod_exp_ct(b, t, q, p, ctx)) | ||
194 | goto end; | ||
195 | |||
196 | /* y := b^2 */ | ||
197 | if (!BN_mod_sqr(y, b, p, ctx)) | ||
198 | goto end; | ||
199 | |||
200 | /* t := (2*a)*b^2 - 1*/ | ||
201 | if (!BN_mod_mul(t, t, y, p, ctx)) | ||
202 | goto end; | ||
203 | if (!BN_sub_word(t, 1)) | ||
204 | goto end; | ||
205 | |||
206 | /* x = a*b*t */ | ||
207 | if (!BN_mod_mul(x, A, b, p, ctx)) | ||
208 | goto end; | ||
209 | if (!BN_mod_mul(x, x, t, p, ctx)) | ||
210 | goto end; | ||
211 | |||
212 | if (!bn_copy(ret, x)) | ||
213 | goto end; | ||
214 | err = 0; | ||
215 | goto vrfy; | ||
216 | } | ||
217 | |||
218 | /* e > 2, so we really have to use the Tonelli/Shanks algorithm. | ||
219 | * First, find some y that is not a square. */ | ||
220 | if (!bn_copy(q, p)) /* use 'q' as temp */ | ||
221 | goto end; | ||
222 | q->neg = 0; | ||
223 | i = 2; | ||
224 | do { | ||
225 | /* For efficiency, try small numbers first; | ||
226 | * if this fails, try random numbers. | ||
227 | */ | ||
228 | if (i < 22) { | ||
229 | if (!BN_set_word(y, i)) | ||
230 | goto end; | ||
231 | } else { | ||
232 | if (!BN_pseudo_rand(y, BN_num_bits(p), 0, 0)) | ||
233 | goto end; | ||
234 | if (BN_ucmp(y, p) >= 0) { | ||
235 | if (p->neg) { | ||
236 | if (!BN_add(y, y, p)) | ||
237 | goto end; | ||
238 | } else { | ||
239 | if (!BN_sub(y, y, p)) | ||
240 | goto end; | ||
241 | } | ||
242 | } | ||
243 | /* now 0 <= y < |p| */ | ||
244 | if (BN_is_zero(y)) | ||
245 | if (!BN_set_word(y, i)) | ||
246 | goto end; | ||
247 | } | ||
248 | |||
249 | r = BN_kronecker(y, q, ctx); /* here 'q' is |p| */ | ||
250 | if (r < -1) | ||
251 | goto end; | ||
252 | if (r == 0) { | ||
253 | /* m divides p */ | ||
254 | BNerror(BN_R_P_IS_NOT_PRIME); | ||
255 | goto end; | ||
256 | } | ||
257 | } while (r == 1 && ++i < 82); | ||
258 | |||
259 | if (r != -1) { | ||
260 | /* Many rounds and still no non-square -- this is more likely | ||
261 | * a bug than just bad luck. | ||
262 | * Even if p is not prime, we should have found some y | ||
263 | * such that r == -1. | ||
264 | */ | ||
265 | BNerror(BN_R_TOO_MANY_ITERATIONS); | ||
266 | goto end; | ||
267 | } | ||
268 | |||
269 | /* Here's our actual 'q': */ | ||
270 | if (!BN_rshift(q, q, e)) | ||
271 | goto end; | ||
272 | |||
273 | /* Now that we have some non-square, we can find an element | ||
274 | * of order 2^e by computing its q'th power. */ | ||
275 | if (!BN_mod_exp_ct(y, y, q, p, ctx)) | ||
276 | goto end; | ||
277 | if (BN_is_one(y)) { | ||
278 | BNerror(BN_R_P_IS_NOT_PRIME); | ||
279 | goto end; | ||
280 | } | ||
281 | |||
282 | /* Now we know that (if p is indeed prime) there is an integer | ||
283 | * k, 0 <= k < 2^e, such that | ||
284 | * | ||
285 | * a^q * y^k == 1 (mod p). | ||
286 | * | ||
287 | * As a^q is a square and y is not, k must be even. | ||
288 | * q+1 is even, too, so there is an element | ||
289 | * | ||
290 | * X := a^((q+1)/2) * y^(k/2), | ||
291 | * | ||
292 | * and it satisfies | ||
293 | * | ||
294 | * X^2 = a^q * a * y^k | ||
295 | * = a, | ||
296 | * | ||
297 | * so it is the square root that we are looking for. | ||
298 | */ | ||
299 | |||
300 | /* t := (q-1)/2 (note that q is odd) */ | ||
301 | if (!BN_rshift1(t, q)) | ||
302 | goto end; | ||
303 | |||
304 | /* x := a^((q-1)/2) */ | ||
305 | if (BN_is_zero(t)) { /* special case: p = 2^e + 1 */ | ||
306 | if (!BN_nnmod(t, A, p, ctx)) | ||
307 | goto end; | ||
308 | if (BN_is_zero(t)) { | ||
309 | /* special case: a == 0 (mod p) */ | ||
310 | BN_zero(ret); | ||
311 | err = 0; | ||
312 | goto end; | ||
313 | } else if (!BN_one(x)) | ||
314 | goto end; | ||
315 | } else { | ||
316 | if (!BN_mod_exp_ct(x, A, t, p, ctx)) | ||
317 | goto end; | ||
318 | if (BN_is_zero(x)) { | ||
319 | /* special case: a == 0 (mod p) */ | ||
320 | BN_zero(ret); | ||
321 | err = 0; | ||
322 | goto end; | ||
323 | } | ||
324 | } | ||
325 | |||
326 | /* b := a*x^2 (= a^q) */ | ||
327 | if (!BN_mod_sqr(b, x, p, ctx)) | ||
328 | goto end; | ||
329 | if (!BN_mod_mul(b, b, A, p, ctx)) | ||
330 | goto end; | ||
331 | |||
332 | /* x := a*x (= a^((q+1)/2)) */ | ||
333 | if (!BN_mod_mul(x, x, A, p, ctx)) | ||
334 | goto end; | ||
335 | |||
336 | while (1) { | ||
337 | /* Now b is a^q * y^k for some even k (0 <= k < 2^E | ||
338 | * where E refers to the original value of e, which we | ||
339 | * don't keep in a variable), and x is a^((q+1)/2) * y^(k/2). | ||
340 | * | ||
341 | * We have a*b = x^2, | ||
342 | * y^2^(e-1) = -1, | ||
343 | * b^2^(e-1) = 1. | ||
344 | */ | ||
345 | |||
346 | if (BN_is_one(b)) { | ||
347 | if (!bn_copy(ret, x)) | ||
348 | goto end; | ||
349 | err = 0; | ||
350 | goto vrfy; | ||
351 | } | ||
352 | |||
353 | /* Find the smallest i with 0 < i < e such that b^(2^i) = 1. */ | ||
354 | for (i = 1; i < e; i++) { | ||
355 | if (i == 1) { | ||
356 | if (!BN_mod_sqr(t, b, p, ctx)) | ||
357 | goto end; | ||
358 | } else { | ||
359 | if (!BN_mod_sqr(t, t, p, ctx)) | ||
360 | goto end; | ||
361 | } | ||
362 | if (BN_is_one(t)) | ||
363 | break; | ||
364 | } | ||
365 | if (i >= e) { | ||
366 | BNerror(BN_R_NOT_A_SQUARE); | ||
367 | goto end; | ||
368 | } | ||
369 | |||
370 | /* t := y^2^(e - i - 1) */ | ||
371 | if (!bn_copy(t, y)) | ||
372 | goto end; | ||
373 | for (j = e - i - 1; j > 0; j--) { | ||
374 | if (!BN_mod_sqr(t, t, p, ctx)) | ||
375 | goto end; | ||
376 | } | ||
377 | if (!BN_mod_mul(y, t, t, p, ctx)) | ||
378 | goto end; | ||
379 | if (!BN_mod_mul(x, x, t, p, ctx)) | ||
380 | goto end; | ||
381 | if (!BN_mod_mul(b, b, y, p, ctx)) | ||
382 | goto end; | ||
383 | e = i; | ||
384 | } | ||
385 | |||
386 | vrfy: | ||
387 | if (!err) { | ||
388 | /* verify the result -- the input might have been not a square | ||
389 | * (test added in 0.9.8) */ | ||
390 | |||
391 | if (!BN_mod_sqr(x, ret, p, ctx)) | ||
392 | err = 1; | ||
393 | |||
394 | if (!err && 0 != BN_cmp(x, A)) { | ||
395 | BNerror(BN_R_NOT_A_SQUARE); | ||
396 | err = 1; | ||
397 | } | ||
398 | } | ||
399 | |||
400 | end: | ||
401 | if (err) { | ||
402 | if (ret != NULL && ret != in) { | ||
403 | BN_free(ret); | ||
404 | } | ||
405 | ret = NULL; | ||
406 | } | ||
407 | BN_CTX_end(ctx); | ||
408 | return ret; | ||
409 | } | ||