diff options
Diffstat (limited to 'src/lib/libcrypto/bn/bn_sqrt.c')
| -rw-r--r-- | src/lib/libcrypto/bn/bn_sqrt.c | 276 |
1 files changed, 142 insertions, 134 deletions
diff --git a/src/lib/libcrypto/bn/bn_sqrt.c b/src/lib/libcrypto/bn/bn_sqrt.c index 6beaf9e5e5..89bb067d88 100644 --- a/src/lib/libcrypto/bn/bn_sqrt.c +++ b/src/lib/libcrypto/bn/bn_sqrt.c | |||
| @@ -9,7 +9,7 @@ | |||
| 9 | * are met: | 9 | * are met: |
| 10 | * | 10 | * |
| 11 | * 1. Redistributions of source code must retain the above copyright | 11 | * 1. Redistributions of source code must retain the above copyright |
| 12 | * notice, this list of conditions and the following disclaimer. | 12 | * notice, this list of conditions and the following disclaimer. |
| 13 | * | 13 | * |
| 14 | * 2. Redistributions in binary form must reproduce the above copyright | 14 | * 2. Redistributions in binary form must reproduce the above copyright |
| 15 | * notice, this list of conditions and the following disclaimer in | 15 | * notice, this list of conditions and the following disclaimer in |
| @@ -59,57 +59,53 @@ | |||
| 59 | #include "bn_lcl.h" | 59 | #include "bn_lcl.h" |
| 60 | 60 | ||
| 61 | 61 | ||
| 62 | BIGNUM *BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) | 62 | BIGNUM * |
| 63 | BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) | ||
| 63 | /* Returns 'ret' such that | 64 | /* Returns 'ret' such that |
| 64 | * ret^2 == a (mod p), | 65 | * ret^2 == a (mod p), |
| 65 | * using the Tonelli/Shanks algorithm (cf. Henri Cohen, "A Course | 66 | * using the Tonelli/Shanks algorithm (cf. Henri Cohen, "A Course |
| 66 | * in Algebraic Computational Number Theory", algorithm 1.5.1). | 67 | * in Algebraic Computational Number Theory", algorithm 1.5.1). |
| 67 | * 'p' must be prime! | 68 | * 'p' must be prime! |
| 68 | */ | 69 | */ |
| 69 | { | 70 | { |
| 70 | BIGNUM *ret = in; | 71 | BIGNUM *ret = in; |
| 71 | int err = 1; | 72 | int err = 1; |
| 72 | int r; | 73 | int r; |
| 73 | BIGNUM *A, *b, *q, *t, *x, *y; | 74 | BIGNUM *A, *b, *q, *t, *x, *y; |
| 74 | int e, i, j; | 75 | int e, i, j; |
| 75 | 76 | ||
| 76 | if (!BN_is_odd(p) || BN_abs_is_word(p, 1)) | 77 | if (!BN_is_odd(p) || BN_abs_is_word(p, 1)) { |
| 77 | { | 78 | if (BN_abs_is_word(p, 2)) { |
| 78 | if (BN_abs_is_word(p, 2)) | ||
| 79 | { | ||
| 80 | if (ret == NULL) | 79 | if (ret == NULL) |
| 81 | ret = BN_new(); | 80 | ret = BN_new(); |
| 82 | if (ret == NULL) | 81 | if (ret == NULL) |
| 83 | goto end; | 82 | goto end; |
| 84 | if (!BN_set_word(ret, BN_is_bit_set(a, 0))) | 83 | if (!BN_set_word(ret, BN_is_bit_set(a, 0))) { |
| 85 | { | ||
| 86 | if (ret != in) | 84 | if (ret != in) |
| 87 | BN_free(ret); | 85 | BN_free(ret); |
| 88 | return NULL; | 86 | return NULL; |
| 89 | } | 87 | } |
| 90 | bn_check_top(ret); | 88 | bn_check_top(ret); |
| 91 | return ret; | 89 | return ret; |
| 92 | } | 90 | } |
| 93 | 91 | ||
| 94 | BNerr(BN_F_BN_MOD_SQRT, BN_R_P_IS_NOT_PRIME); | 92 | BNerr(BN_F_BN_MOD_SQRT, BN_R_P_IS_NOT_PRIME); |
| 95 | return(NULL); | 93 | return (NULL); |
| 96 | } | 94 | } |
| 97 | 95 | ||
| 98 | if (BN_is_zero(a) || BN_is_one(a)) | 96 | if (BN_is_zero(a) || BN_is_one(a)) { |
| 99 | { | ||
| 100 | if (ret == NULL) | 97 | if (ret == NULL) |
| 101 | ret = BN_new(); | 98 | ret = BN_new(); |
| 102 | if (ret == NULL) | 99 | if (ret == NULL) |
| 103 | goto end; | 100 | goto end; |
| 104 | if (!BN_set_word(ret, BN_is_one(a))) | 101 | if (!BN_set_word(ret, BN_is_one(a))) { |
| 105 | { | ||
| 106 | if (ret != in) | 102 | if (ret != in) |
| 107 | BN_free(ret); | 103 | BN_free(ret); |
| 108 | return NULL; | 104 | return NULL; |
| 109 | } | 105 | } |
| 110 | bn_check_top(ret); | 106 | bn_check_top(ret); |
| 111 | return ret; | 107 | return ret; |
| 112 | } | 108 | } |
| 113 | 109 | ||
| 114 | BN_CTX_start(ctx); | 110 | BN_CTX_start(ctx); |
| 115 | A = BN_CTX_get(ctx); | 111 | A = BN_CTX_get(ctx); |
| @@ -118,14 +114,17 @@ BIGNUM *BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) | |||
| 118 | t = BN_CTX_get(ctx); | 114 | t = BN_CTX_get(ctx); |
| 119 | x = BN_CTX_get(ctx); | 115 | x = BN_CTX_get(ctx); |
| 120 | y = BN_CTX_get(ctx); | 116 | y = BN_CTX_get(ctx); |
| 121 | if (y == NULL) goto end; | 117 | if (y == NULL) |
| 122 | 118 | goto end; | |
| 119 | |||
| 123 | if (ret == NULL) | 120 | if (ret == NULL) |
| 124 | ret = BN_new(); | 121 | ret = BN_new(); |
| 125 | if (ret == NULL) goto end; | 122 | if (ret == NULL) |
| 123 | goto end; | ||
| 126 | 124 | ||
| 127 | /* A = a mod p */ | 125 | /* A = a mod p */ |
| 128 | if (!BN_nnmod(A, a, p, ctx)) goto end; | 126 | if (!BN_nnmod(A, a, p, ctx)) |
| 127 | goto end; | ||
| 129 | 128 | ||
| 130 | /* now write |p| - 1 as 2^e*q where q is odd */ | 129 | /* now write |p| - 1 as 2^e*q where q is odd */ |
| 131 | e = 1; | 130 | e = 1; |
| @@ -133,8 +132,7 @@ BIGNUM *BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) | |||
| 133 | e++; | 132 | e++; |
| 134 | /* we'll set q later (if needed) */ | 133 | /* we'll set q later (if needed) */ |
| 135 | 134 | ||
| 136 | if (e == 1) | 135 | if (e == 1) { |
| 137 | { | ||
| 138 | /* The easy case: (|p|-1)/2 is odd, so 2 has an inverse | 136 | /* The easy case: (|p|-1)/2 is odd, so 2 has an inverse |
| 139 | * modulo (|p|-1)/2, and square roots can be computed | 137 | * modulo (|p|-1)/2, and square roots can be computed |
| 140 | * directly by modular exponentiation. | 138 | * directly by modular exponentiation. |
| @@ -142,16 +140,18 @@ BIGNUM *BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) | |||
| 142 | * 2 * (|p|+1)/4 == 1 (mod (|p|-1)/2), | 140 | * 2 * (|p|+1)/4 == 1 (mod (|p|-1)/2), |
| 143 | * so we can use exponent (|p|+1)/4, i.e. (|p|-3)/4 + 1. | 141 | * so we can use exponent (|p|+1)/4, i.e. (|p|-3)/4 + 1. |
| 144 | */ | 142 | */ |
| 145 | if (!BN_rshift(q, p, 2)) goto end; | 143 | if (!BN_rshift(q, p, 2)) |
| 144 | goto end; | ||
| 146 | q->neg = 0; | 145 | q->neg = 0; |
| 147 | if (!BN_add_word(q, 1)) goto end; | 146 | if (!BN_add_word(q, 1)) |
| 148 | if (!BN_mod_exp(ret, A, q, p, ctx)) goto end; | 147 | goto end; |
| 148 | if (!BN_mod_exp(ret, A, q, p, ctx)) | ||
| 149 | goto end; | ||
| 149 | err = 0; | 150 | err = 0; |
| 150 | goto vrfy; | 151 | goto vrfy; |
| 151 | } | 152 | } |
| 152 | 153 | ||
| 153 | if (e == 2) | 154 | if (e == 2) { |
| 154 | { | ||
| 155 | /* |p| == 5 (mod 8) | 155 | /* |p| == 5 (mod 8) |
| 156 | * | 156 | * |
| 157 | * In this case 2 is always a non-square since | 157 | * In this case 2 is always a non-square since |
| @@ -173,74 +173,81 @@ BIGNUM *BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) | |||
| 173 | * = a*(-i)*i | 173 | * = a*(-i)*i |
| 174 | * = a. | 174 | * = a. |
| 175 | * | 175 | * |
| 176 | * (This is due to A.O.L. Atkin, | 176 | * (This is due to A.O.L. Atkin, |
| 177 | * <URL: http://listserv.nodak.edu/scripts/wa.exe?A2=ind9211&L=nmbrthry&O=T&P=562>, | 177 | * <URL: http://listserv.nodak.edu/scripts/wa.exe?A2=ind9211&L=nmbrthry&O=T&P=562>, |
| 178 | * November 1992.) | 178 | * November 1992.) |
| 179 | */ | 179 | */ |
| 180 | 180 | ||
| 181 | /* t := 2*a */ | 181 | /* t := 2*a */ |
| 182 | if (!BN_mod_lshift1_quick(t, A, p)) goto end; | 182 | if (!BN_mod_lshift1_quick(t, A, p)) |
| 183 | goto end; | ||
| 183 | 184 | ||
| 184 | /* b := (2*a)^((|p|-5)/8) */ | 185 | /* b := (2*a)^((|p|-5)/8) */ |
| 185 | if (!BN_rshift(q, p, 3)) goto end; | 186 | if (!BN_rshift(q, p, 3)) |
| 187 | goto end; | ||
| 186 | q->neg = 0; | 188 | q->neg = 0; |
| 187 | if (!BN_mod_exp(b, t, q, p, ctx)) goto end; | 189 | if (!BN_mod_exp(b, t, q, p, ctx)) |
| 190 | goto end; | ||
| 188 | 191 | ||
| 189 | /* y := b^2 */ | 192 | /* y := b^2 */ |
| 190 | if (!BN_mod_sqr(y, b, p, ctx)) goto end; | 193 | if (!BN_mod_sqr(y, b, p, ctx)) |
| 194 | goto end; | ||
| 191 | 195 | ||
| 192 | /* t := (2*a)*b^2 - 1*/ | 196 | /* t := (2*a)*b^2 - 1*/ |
| 193 | if (!BN_mod_mul(t, t, y, p, ctx)) goto end; | 197 | if (!BN_mod_mul(t, t, y, p, ctx)) |
| 194 | if (!BN_sub_word(t, 1)) goto end; | 198 | goto end; |
| 199 | if (!BN_sub_word(t, 1)) | ||
| 200 | goto end; | ||
| 195 | 201 | ||
| 196 | /* x = a*b*t */ | 202 | /* x = a*b*t */ |
| 197 | if (!BN_mod_mul(x, A, b, p, ctx)) goto end; | 203 | if (!BN_mod_mul(x, A, b, p, ctx)) |
| 198 | if (!BN_mod_mul(x, x, t, p, ctx)) goto end; | 204 | goto end; |
| 205 | if (!BN_mod_mul(x, x, t, p, ctx)) | ||
| 206 | goto end; | ||
| 199 | 207 | ||
| 200 | if (!BN_copy(ret, x)) goto end; | 208 | if (!BN_copy(ret, x)) |
| 209 | goto end; | ||
| 201 | err = 0; | 210 | err = 0; |
| 202 | goto vrfy; | 211 | goto vrfy; |
| 203 | } | 212 | } |
| 204 | 213 | ||
| 205 | /* e > 2, so we really have to use the Tonelli/Shanks algorithm. | 214 | /* e > 2, so we really have to use the Tonelli/Shanks algorithm. |
| 206 | * First, find some y that is not a square. */ | 215 | * First, find some y that is not a square. */ |
| 207 | if (!BN_copy(q, p)) goto end; /* use 'q' as temp */ | 216 | if (!BN_copy(q, p)) goto end; /* use 'q' as temp */ |
| 208 | q->neg = 0; | 217 | q->neg = 0; |
| 209 | i = 2; | 218 | i = 2; |
| 210 | do | 219 | do { |
| 211 | { | ||
| 212 | /* For efficiency, try small numbers first; | 220 | /* For efficiency, try small numbers first; |
| 213 | * if this fails, try random numbers. | 221 | * if this fails, try random numbers. |
| 214 | */ | 222 | */ |
| 215 | if (i < 22) | 223 | if (i < 22) { |
| 216 | { | 224 | if (!BN_set_word(y, i)) |
| 217 | if (!BN_set_word(y, i)) goto end; | 225 | goto end; |
| 226 | } else { | ||
| 227 | if (!BN_pseudo_rand(y, BN_num_bits(p), 0, 0)) | ||
| 228 | goto end; | ||
| 229 | if (BN_ucmp(y, p) >= 0) { | ||
| 230 | if (!(p->neg ? BN_add : BN_sub)(y, y, p)) | ||
| 231 | goto end; | ||
| 218 | } | 232 | } |
| 219 | else | ||
| 220 | { | ||
| 221 | if (!BN_pseudo_rand(y, BN_num_bits(p), 0, 0)) goto end; | ||
| 222 | if (BN_ucmp(y, p) >= 0) | ||
| 223 | { | ||
| 224 | if (!(p->neg ? BN_add : BN_sub)(y, y, p)) goto end; | ||
| 225 | } | ||
| 226 | /* now 0 <= y < |p| */ | 233 | /* now 0 <= y < |p| */ |
| 227 | if (BN_is_zero(y)) | 234 | if (BN_is_zero(y)) |
| 228 | if (!BN_set_word(y, i)) goto end; | 235 | if (!BN_set_word(y, i)) |
| 229 | } | 236 | goto end; |
| 230 | 237 | } | |
| 238 | |||
| 231 | r = BN_kronecker(y, q, ctx); /* here 'q' is |p| */ | 239 | r = BN_kronecker(y, q, ctx); /* here 'q' is |p| */ |
| 232 | if (r < -1) goto end; | 240 | if (r < -1) |
| 233 | if (r == 0) | 241 | goto end; |
| 234 | { | 242 | if (r == 0) { |
| 235 | /* m divides p */ | 243 | /* m divides p */ |
| 236 | BNerr(BN_F_BN_MOD_SQRT, BN_R_P_IS_NOT_PRIME); | 244 | BNerr(BN_F_BN_MOD_SQRT, BN_R_P_IS_NOT_PRIME); |
| 237 | goto end; | 245 | goto end; |
| 238 | } | ||
| 239 | } | 246 | } |
| 247 | } | ||
| 240 | while (r == 1 && ++i < 82); | 248 | while (r == 1 && ++i < 82); |
| 241 | 249 | ||
| 242 | if (r != -1) | 250 | if (r != -1) { |
| 243 | { | ||
| 244 | /* Many rounds and still no non-square -- this is more likely | 251 | /* Many rounds and still no non-square -- this is more likely |
| 245 | * a bug than just bad luck. | 252 | * a bug than just bad luck. |
| 246 | * Even if p is not prime, we should have found some y | 253 | * Even if p is not prime, we should have found some y |
| @@ -248,19 +255,20 @@ BIGNUM *BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) | |||
| 248 | */ | 255 | */ |
| 249 | BNerr(BN_F_BN_MOD_SQRT, BN_R_TOO_MANY_ITERATIONS); | 256 | BNerr(BN_F_BN_MOD_SQRT, BN_R_TOO_MANY_ITERATIONS); |
| 250 | goto end; | 257 | goto end; |
| 251 | } | 258 | } |
| 252 | 259 | ||
| 253 | /* Here's our actual 'q': */ | 260 | /* Here's our actual 'q': */ |
| 254 | if (!BN_rshift(q, q, e)) goto end; | 261 | if (!BN_rshift(q, q, e)) |
| 262 | goto end; | ||
| 255 | 263 | ||
| 256 | /* Now that we have some non-square, we can find an element | 264 | /* Now that we have some non-square, we can find an element |
| 257 | * of order 2^e by computing its q'th power. */ | 265 | * of order 2^e by computing its q'th power. */ |
| 258 | if (!BN_mod_exp(y, y, q, p, ctx)) goto end; | 266 | if (!BN_mod_exp(y, y, q, p, ctx)) |
| 259 | if (BN_is_one(y)) | 267 | goto end; |
| 260 | { | 268 | if (BN_is_one(y)) { |
| 261 | BNerr(BN_F_BN_MOD_SQRT, BN_R_P_IS_NOT_PRIME); | 269 | BNerr(BN_F_BN_MOD_SQRT, BN_R_P_IS_NOT_PRIME); |
| 262 | goto end; | 270 | goto end; |
| 263 | } | 271 | } |
| 264 | 272 | ||
| 265 | /* Now we know that (if p is indeed prime) there is an integer | 273 | /* Now we know that (if p is indeed prime) there is an integer |
| 266 | * k, 0 <= k < 2^e, such that | 274 | * k, 0 <= k < 2^e, such that |
| @@ -279,45 +287,45 @@ BIGNUM *BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) | |||
| 279 | * | 287 | * |
| 280 | * so it is the square root that we are looking for. | 288 | * so it is the square root that we are looking for. |
| 281 | */ | 289 | */ |
| 282 | 290 | ||
| 283 | /* t := (q-1)/2 (note that q is odd) */ | 291 | /* t := (q-1)/2 (note that q is odd) */ |
| 284 | if (!BN_rshift1(t, q)) goto end; | 292 | if (!BN_rshift1(t, q)) |
| 285 | 293 | goto end; | |
| 294 | |||
| 286 | /* x := a^((q-1)/2) */ | 295 | /* x := a^((q-1)/2) */ |
| 287 | if (BN_is_zero(t)) /* special case: p = 2^e + 1 */ | 296 | if (BN_is_zero(t)) /* special case: p = 2^e + 1 */ |
| 288 | { | 297 | { |
| 289 | if (!BN_nnmod(t, A, p, ctx)) goto end; | 298 | if (!BN_nnmod(t, A, p, ctx)) |
| 290 | if (BN_is_zero(t)) | 299 | goto end; |
| 291 | { | 300 | if (BN_is_zero(t)) { |
| 292 | /* special case: a == 0 (mod p) */ | 301 | /* special case: a == 0 (mod p) */ |
| 293 | BN_zero(ret); | 302 | BN_zero(ret); |
| 294 | err = 0; | 303 | err = 0; |
| 295 | goto end; | 304 | goto end; |
| 296 | } | 305 | } else if (!BN_one(x)) |
| 297 | else | 306 | goto end; |
| 298 | if (!BN_one(x)) goto end; | 307 | } else { |
| 299 | } | 308 | if (!BN_mod_exp(x, A, t, p, ctx)) |
| 300 | else | 309 | goto end; |
| 301 | { | 310 | if (BN_is_zero(x)) { |
| 302 | if (!BN_mod_exp(x, A, t, p, ctx)) goto end; | ||
| 303 | if (BN_is_zero(x)) | ||
| 304 | { | ||
| 305 | /* special case: a == 0 (mod p) */ | 311 | /* special case: a == 0 (mod p) */ |
| 306 | BN_zero(ret); | 312 | BN_zero(ret); |
| 307 | err = 0; | 313 | err = 0; |
| 308 | goto end; | 314 | goto end; |
| 309 | } | ||
| 310 | } | 315 | } |
| 316 | } | ||
| 311 | 317 | ||
| 312 | /* b := a*x^2 (= a^q) */ | 318 | /* b := a*x^2 (= a^q) */ |
| 313 | if (!BN_mod_sqr(b, x, p, ctx)) goto end; | 319 | if (!BN_mod_sqr(b, x, p, ctx)) |
| 314 | if (!BN_mod_mul(b, b, A, p, ctx)) goto end; | 320 | goto end; |
| 315 | 321 | if (!BN_mod_mul(b, b, A, p, ctx)) | |
| 322 | goto end; | ||
| 323 | |||
| 316 | /* x := a*x (= a^((q+1)/2)) */ | 324 | /* x := a*x (= a^((q+1)/2)) */ |
| 317 | if (!BN_mod_mul(x, x, A, p, ctx)) goto end; | 325 | if (!BN_mod_mul(x, x, A, p, ctx)) |
| 326 | goto end; | ||
| 318 | 327 | ||
| 319 | while (1) | 328 | while (1) { |
| 320 | { | ||
| 321 | /* Now b is a^q * y^k for some even k (0 <= k < 2^E | 329 | /* Now b is a^q * y^k for some even k (0 <= k < 2^E |
| 322 | * where E refers to the original value of e, which we | 330 | * where E refers to the original value of e, which we |
| 323 | * don't keep in a variable), and x is a^((q+1)/2) * y^(k/2). | 331 | * don't keep in a variable), and x is a^((q+1)/2) * y^(k/2). |
| @@ -327,67 +335,67 @@ BIGNUM *BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) | |||
| 327 | * b^2^(e-1) = 1. | 335 | * b^2^(e-1) = 1. |
| 328 | */ | 336 | */ |
| 329 | 337 | ||
| 330 | if (BN_is_one(b)) | 338 | if (BN_is_one(b)) { |
| 331 | { | 339 | if (!BN_copy(ret, x)) |
| 332 | if (!BN_copy(ret, x)) goto end; | 340 | goto end; |
| 333 | err = 0; | 341 | err = 0; |
| 334 | goto vrfy; | 342 | goto vrfy; |
| 335 | } | 343 | } |
| 336 | 344 | ||
| 337 | 345 | ||
| 338 | /* find smallest i such that b^(2^i) = 1 */ | 346 | /* find smallest i such that b^(2^i) = 1 */ |
| 339 | i = 1; | 347 | i = 1; |
| 340 | if (!BN_mod_sqr(t, b, p, ctx)) goto end; | 348 | if (!BN_mod_sqr(t, b, p, ctx)) |
| 341 | while (!BN_is_one(t)) | 349 | goto end; |
| 342 | { | 350 | while (!BN_is_one(t)) { |
| 343 | i++; | 351 | i++; |
| 344 | if (i == e) | 352 | if (i == e) { |
| 345 | { | ||
| 346 | BNerr(BN_F_BN_MOD_SQRT, BN_R_NOT_A_SQUARE); | 353 | BNerr(BN_F_BN_MOD_SQRT, BN_R_NOT_A_SQUARE); |
| 347 | goto end; | 354 | goto end; |
| 348 | } | ||
| 349 | if (!BN_mod_mul(t, t, t, p, ctx)) goto end; | ||
| 350 | } | 355 | } |
| 351 | 356 | if (!BN_mod_mul(t, t, t, p, ctx)) | |
| 357 | goto end; | ||
| 358 | } | ||
| 359 | |||
| 352 | 360 | ||
| 353 | /* t := y^2^(e - i - 1) */ | 361 | /* t := y^2^(e - i - 1) */ |
| 354 | if (!BN_copy(t, y)) goto end; | 362 | if (!BN_copy(t, y)) |
| 355 | for (j = e - i - 1; j > 0; j--) | 363 | goto end; |
| 356 | { | 364 | for (j = e - i - 1; j > 0; j--) { |
| 357 | if (!BN_mod_sqr(t, t, p, ctx)) goto end; | 365 | if (!BN_mod_sqr(t, t, p, ctx)) |
| 358 | } | 366 | goto end; |
| 359 | if (!BN_mod_mul(y, t, t, p, ctx)) goto end; | ||
| 360 | if (!BN_mod_mul(x, x, t, p, ctx)) goto end; | ||
| 361 | if (!BN_mod_mul(b, b, y, p, ctx)) goto end; | ||
| 362 | e = i; | ||
| 363 | } | 367 | } |
| 368 | if (!BN_mod_mul(y, t, t, p, ctx)) | ||
| 369 | goto end; | ||
| 370 | if (!BN_mod_mul(x, x, t, p, ctx)) | ||
| 371 | goto end; | ||
| 372 | if (!BN_mod_mul(b, b, y, p, ctx)) | ||
| 373 | goto end; | ||
| 374 | e = i; | ||
| 375 | } | ||
| 364 | 376 | ||
| 365 | vrfy: | 377 | vrfy: |
| 366 | if (!err) | 378 | if (!err) { |
| 367 | { | ||
| 368 | /* verify the result -- the input might have been not a square | 379 | /* verify the result -- the input might have been not a square |
| 369 | * (test added in 0.9.8) */ | 380 | * (test added in 0.9.8) */ |
| 370 | 381 | ||
| 371 | if (!BN_mod_sqr(x, ret, p, ctx)) | 382 | if (!BN_mod_sqr(x, ret, p, ctx)) |
| 372 | err = 1; | 383 | err = 1; |
| 373 | 384 | ||
| 374 | if (!err && 0 != BN_cmp(x, A)) | 385 | if (!err && 0 != BN_cmp(x, A)) { |
| 375 | { | ||
| 376 | BNerr(BN_F_BN_MOD_SQRT, BN_R_NOT_A_SQUARE); | 386 | BNerr(BN_F_BN_MOD_SQRT, BN_R_NOT_A_SQUARE); |
| 377 | err = 1; | 387 | err = 1; |
| 378 | } | ||
| 379 | } | 388 | } |
| 389 | } | ||
| 380 | 390 | ||
| 381 | end: | 391 | end: |
| 382 | if (err) | 392 | if (err) { |
| 383 | { | 393 | if (ret != NULL && ret != in) { |
| 384 | if (ret != NULL && ret != in) | ||
| 385 | { | ||
| 386 | BN_clear_free(ret); | 394 | BN_clear_free(ret); |
| 387 | } | ||
| 388 | ret = NULL; | ||
| 389 | } | 395 | } |
| 396 | ret = NULL; | ||
| 397 | } | ||
| 390 | BN_CTX_end(ctx); | 398 | BN_CTX_end(ctx); |
| 391 | bn_check_top(ret); | 399 | bn_check_top(ret); |
| 392 | return ret; | 400 | return ret; |
| 393 | } | 401 | } |
