diff options
Diffstat (limited to 'src/lib/libcrypto/bn/s2n_bignum.h')
| -rw-r--r-- | src/lib/libcrypto/bn/s2n_bignum.h | 856 |
1 files changed, 0 insertions, 856 deletions
diff --git a/src/lib/libcrypto/bn/s2n_bignum.h b/src/lib/libcrypto/bn/s2n_bignum.h deleted file mode 100644 index ce6e8cdc94..0000000000 --- a/src/lib/libcrypto/bn/s2n_bignum.h +++ /dev/null | |||
| @@ -1,856 +0,0 @@ | |||
| 1 | // Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. | ||
| 2 | // | ||
| 3 | // Permission to use, copy, modify, and/or distribute this software for any | ||
| 4 | // purpose with or without fee is hereby granted, provided that the above | ||
| 5 | // copyright notice and this permission notice appear in all copies. | ||
| 6 | // | ||
| 7 | // THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES | ||
| 8 | // WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF | ||
| 9 | // MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR | ||
| 10 | // ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES | ||
| 11 | // WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN | ||
| 12 | // ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF | ||
| 13 | // OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. | ||
| 14 | |||
| 15 | // ---------------------------------------------------------------------------- | ||
| 16 | // C prototypes for s2n-bignum functions, so you can use them in C programs via | ||
| 17 | // | ||
| 18 | // #include "s2n-bignum.h" | ||
| 19 | // | ||
| 20 | // The functions are listed in alphabetical order with a brief description | ||
| 21 | // in comments for each one. For more detailed documentation see the comment | ||
| 22 | // banner at the top of the corresponding assembly (.S) file, and | ||
| 23 | // for the last word in what properties it satisfies see the spec in the | ||
| 24 | // formal proof (the .ml file in the architecture-specific directory). | ||
| 25 | // | ||
| 26 | // For some functions there are additional variants with names ending in | ||
| 27 | // "_alt". These have the same core mathematical functionality as their | ||
| 28 | // non-"alt" versions, but can be better suited to some microarchitectures: | ||
| 29 | // | ||
| 30 | // - On x86, the "_alt" forms avoid BMI and ADX instruction set | ||
| 31 | // extensions, so will run on any x86_64 machine, even older ones | ||
| 32 | // | ||
| 33 | // - On ARM, the "_alt" forms target machines with higher multiplier | ||
| 34 | // throughput, generally offering higher performance there. | ||
| 35 | // ---------------------------------------------------------------------------- | ||
| 36 | |||
| 37 | // Add, z := x + y | ||
| 38 | // Inputs x[m], y[n]; outputs function return (carry-out) and z[p] | ||
| 39 | extern uint64_t bignum_add (uint64_t p, uint64_t *z, uint64_t m, uint64_t *x, uint64_t n, uint64_t *y); | ||
| 40 | |||
| 41 | // Add modulo p_25519, z := (x + y) mod p_25519, assuming x and y reduced | ||
| 42 | // Inputs x[4], y[4]; output z[4] | ||
| 43 | extern void bignum_add_p25519 (uint64_t z[static 4], uint64_t x[static 4], uint64_t y[static 4]); | ||
| 44 | |||
| 45 | // Add modulo p_256, z := (x + y) mod p_256, assuming x and y reduced | ||
| 46 | // Inputs x[4], y[4]; output z[4] | ||
| 47 | extern void bignum_add_p256 (uint64_t z[static 4], uint64_t x[static 4], uint64_t y[static 4]); | ||
| 48 | |||
| 49 | // Add modulo p_256k1, z := (x + y) mod p_256k1, assuming x and y reduced | ||
| 50 | // Inputs x[4], y[4]; output z[4] | ||
| 51 | extern void bignum_add_p256k1 (uint64_t z[static 4], uint64_t x[static 4], uint64_t y[static 4]); | ||
| 52 | |||
| 53 | // Add modulo p_384, z := (x + y) mod p_384, assuming x and y reduced | ||
| 54 | // Inputs x[6], y[6]; output z[6] | ||
| 55 | extern void bignum_add_p384 (uint64_t z[static 6], uint64_t x[static 6], uint64_t y[static 6]); | ||
| 56 | |||
| 57 | // Add modulo p_521, z := (x + y) mod p_521, assuming x and y reduced | ||
| 58 | // Inputs x[9], y[9]; output z[9] | ||
| 59 | extern void bignum_add_p521 (uint64_t z[static 9], uint64_t x[static 9], uint64_t y[static 9]); | ||
| 60 | |||
| 61 | // Compute "amontification" constant z :== 2^{128k} (congruent mod m) | ||
| 62 | // Input m[k]; output z[k]; temporary buffer t[>=k] | ||
| 63 | extern void bignum_amontifier (uint64_t k, uint64_t *z, uint64_t *m, uint64_t *t); | ||
| 64 | |||
| 65 | // Almost-Montgomery multiply, z :== (x * y / 2^{64k}) (congruent mod m) | ||
| 66 | // Inputs x[k], y[k], m[k]; output z[k] | ||
| 67 | extern void bignum_amontmul (uint64_t k, uint64_t *z, uint64_t *x, uint64_t *y, uint64_t *m); | ||
| 68 | |||
| 69 | // Almost-Montgomery reduce, z :== (x' / 2^{64p}) (congruent mod m) | ||
| 70 | // Inputs x[n], m[k], p; output z[k] | ||
| 71 | extern void bignum_amontredc (uint64_t k, uint64_t *z, uint64_t n, uint64_t *x, uint64_t *m, uint64_t p); | ||
| 72 | |||
| 73 | // Almost-Montgomery square, z :== (x^2 / 2^{64k}) (congruent mod m) | ||
| 74 | // Inputs x[k], m[k]; output z[k] | ||
| 75 | extern void bignum_amontsqr (uint64_t k, uint64_t *z, uint64_t *x, uint64_t *m); | ||
| 76 | |||
| 77 | // Convert 4-digit (256-bit) bignum to/from big-endian form | ||
| 78 | // Input x[4]; output z[4] | ||
| 79 | extern void bignum_bigendian_4 (uint64_t z[static 4], uint64_t x[static 4]); | ||
| 80 | |||
| 81 | // Convert 6-digit (384-bit) bignum to/from big-endian form | ||
| 82 | // Input x[6]; output z[6] | ||
| 83 | extern void bignum_bigendian_6 (uint64_t z[static 6], uint64_t x[static 6]); | ||
| 84 | |||
| 85 | // Select bitfield starting at bit n with length l <= 64 | ||
| 86 | // Inputs x[k], n, l; output function return | ||
| 87 | extern uint64_t bignum_bitfield (uint64_t k, uint64_t *x, uint64_t n, uint64_t l); | ||
| 88 | |||
| 89 | // Return size of bignum in bits | ||
| 90 | // Input x[k]; output function return | ||
| 91 | extern uint64_t bignum_bitsize (uint64_t k, uint64_t *x); | ||
| 92 | |||
| 93 | // Divide by a single (nonzero) word, z := x / m and return x mod m | ||
| 94 | // Inputs x[n], m; outputs function return (remainder) and z[k] | ||
| 95 | extern uint64_t bignum_cdiv (uint64_t k, uint64_t *z, uint64_t n, uint64_t *x, uint64_t m); | ||
| 96 | |||
| 97 | // Divide by a single word, z := x / m when known to be exact | ||
| 98 | // Inputs x[n], m; output z[k] | ||
| 99 | extern void bignum_cdiv_exact (uint64_t k, uint64_t *z, uint64_t n, uint64_t *x, uint64_t m); | ||
| 100 | |||
| 101 | // Count leading zero digits (64-bit words) | ||
| 102 | // Input x[k]; output function return | ||
| 103 | extern uint64_t bignum_cld (uint64_t k, uint64_t *x); | ||
| 104 | |||
| 105 | // Count leading zero bits | ||
| 106 | // Input x[k]; output function return | ||
| 107 | extern uint64_t bignum_clz (uint64_t k, uint64_t *x); | ||
| 108 | |||
| 109 | // Multiply-add with single-word multiplier, z := z + c * y | ||
| 110 | // Inputs c, y[n]; outputs function return (carry-out) and z[k] | ||
| 111 | extern uint64_t bignum_cmadd (uint64_t k, uint64_t *z, uint64_t c, uint64_t n, uint64_t *y); | ||
| 112 | |||
| 113 | // Negated multiply-add with single-word multiplier, z := z - c * y | ||
| 114 | // Inputs c, y[n]; outputs function return (negative carry-out) and z[k] | ||
| 115 | extern uint64_t bignum_cmnegadd (uint64_t k, uint64_t *z, uint64_t c, uint64_t n, uint64_t *y); | ||
| 116 | |||
| 117 | // Find modulus of bignum w.r.t. single nonzero word m, returning x mod m | ||
| 118 | // Input x[k], m; output function return | ||
| 119 | extern uint64_t bignum_cmod (uint64_t k, uint64_t *x, uint64_t m); | ||
| 120 | |||
| 121 | // Multiply by a single word, z := c * y | ||
| 122 | // Inputs c, y[n]; outputs function return (carry-out) and z[k] | ||
| 123 | extern uint64_t bignum_cmul (uint64_t k, uint64_t *z, uint64_t c, uint64_t n, uint64_t *y); | ||
| 124 | |||
| 125 | // Multiply by a single word modulo p_25519, z := (c * x) mod p_25519, assuming x reduced | ||
| 126 | // Inputs c, x[4]; output z[4] | ||
| 127 | extern void bignum_cmul_p25519 (uint64_t z[static 4], uint64_t c, uint64_t x[static 4]); | ||
| 128 | extern void bignum_cmul_p25519_alt (uint64_t z[static 4], uint64_t c, uint64_t x[static 4]); | ||
| 129 | |||
| 130 | // Multiply by a single word modulo p_256, z := (c * x) mod p_256, assuming x reduced | ||
| 131 | // Inputs c, x[4]; output z[4] | ||
| 132 | extern void bignum_cmul_p256 (uint64_t z[static 4], uint64_t c, uint64_t x[static 4]); | ||
| 133 | extern void bignum_cmul_p256_alt (uint64_t z[static 4], uint64_t c, uint64_t x[static 4]); | ||
| 134 | |||
| 135 | // Multiply by a single word modulo p_256k1, z := (c * x) mod p_256k1, assuming x reduced | ||
| 136 | // Inputs c, x[4]; output z[4] | ||
| 137 | extern void bignum_cmul_p256k1 (uint64_t z[static 4], uint64_t c, uint64_t x[static 4]); | ||
| 138 | extern void bignum_cmul_p256k1_alt (uint64_t z[static 4], uint64_t c, uint64_t x[static 4]); | ||
| 139 | |||
| 140 | // Multiply by a single word modulo p_384, z := (c * x) mod p_384, assuming x reduced | ||
| 141 | // Inputs c, x[6]; output z[6] | ||
| 142 | extern void bignum_cmul_p384 (uint64_t z[static 6], uint64_t c, uint64_t x[static 6]); | ||
| 143 | extern void bignum_cmul_p384_alt (uint64_t z[static 6], uint64_t c, uint64_t x[static 6]); | ||
| 144 | |||
| 145 | // Multiply by a single word modulo p_521, z := (c * x) mod p_521, assuming x reduced | ||
| 146 | // Inputs c, x[9]; output z[9] | ||
| 147 | extern void bignum_cmul_p521 (uint64_t z[static 9], uint64_t c, uint64_t x[static 9]); | ||
| 148 | extern void bignum_cmul_p521_alt (uint64_t z[static 9], uint64_t c, uint64_t x[static 9]); | ||
| 149 | |||
| 150 | // Test bignums for coprimality, gcd(x,y) = 1 | ||
| 151 | // Inputs x[m], y[n]; output function return; temporary buffer t[>=2*max(m,n)] | ||
| 152 | extern uint64_t bignum_coprime (uint64_t m, uint64_t *x, uint64_t n, uint64_t *y, uint64_t *t); | ||
| 153 | |||
| 154 | // Copy bignum with zero-extension or truncation, z := x | ||
| 155 | // Input x[n]; output z[k] | ||
| 156 | extern void bignum_copy (uint64_t k, uint64_t *z, uint64_t n, uint64_t *x); | ||
| 157 | |||
| 158 | // Count trailing zero digits (64-bit words) | ||
| 159 | // Input x[k]; output function return | ||
| 160 | extern uint64_t bignum_ctd (uint64_t k, uint64_t *x); | ||
| 161 | |||
| 162 | // Count trailing zero bits | ||
| 163 | // Input x[k]; output function return | ||
| 164 | extern uint64_t bignum_ctz (uint64_t k, uint64_t *x); | ||
| 165 | |||
| 166 | // Convert from almost-Montgomery form, z := (x / 2^256) mod p_256 | ||
| 167 | // Input x[4]; output z[4] | ||
| 168 | extern void bignum_deamont_p256 (uint64_t z[static 4], uint64_t x[static 4]); | ||
| 169 | extern void bignum_deamont_p256_alt (uint64_t z[static 4], uint64_t x[static 4]); | ||
| 170 | |||
| 171 | // Convert from almost-Montgomery form, z := (x / 2^256) mod p_256k1 | ||
| 172 | // Input x[4]; output z[4] | ||
| 173 | extern void bignum_deamont_p256k1 (uint64_t z[static 4], uint64_t x[static 4]); | ||
| 174 | |||
| 175 | // Convert from almost-Montgomery form, z := (x / 2^384) mod p_384 | ||
| 176 | // Input x[6]; output z[6] | ||
| 177 | extern void bignum_deamont_p384 (uint64_t z[static 6], uint64_t x[static 6]); | ||
| 178 | extern void bignum_deamont_p384_alt (uint64_t z[static 6], uint64_t x[static 6]); | ||
| 179 | |||
| 180 | // Convert from almost-Montgomery form z := (x / 2^576) mod p_521 | ||
| 181 | // Input x[9]; output z[9] | ||
| 182 | extern void bignum_deamont_p521 (uint64_t z[static 9], uint64_t x[static 9]); | ||
| 183 | |||
| 184 | // Convert from (almost-)Montgomery form z := (x / 2^{64k}) mod m | ||
| 185 | // Inputs x[k], m[k]; output z[k] | ||
| 186 | extern void bignum_demont (uint64_t k, uint64_t *z, uint64_t *x, uint64_t *m); | ||
| 187 | |||
| 188 | // Convert from Montgomery form z := (x / 2^256) mod p_256, assuming x reduced | ||
| 189 | // Input x[4]; output z[4] | ||
| 190 | extern void bignum_demont_p256 (uint64_t z[static 4], uint64_t x[static 4]); | ||
| 191 | extern void bignum_demont_p256_alt (uint64_t z[static 4], uint64_t x[static 4]); | ||
| 192 | |||
| 193 | // Convert from Montgomery form z := (x / 2^256) mod p_256k1, assuming x reduced | ||
| 194 | // Input x[4]; output z[4] | ||
| 195 | extern void bignum_demont_p256k1 (uint64_t z[static 4], uint64_t x[static 4]); | ||
| 196 | |||
| 197 | // Convert from Montgomery form z := (x / 2^384) mod p_384, assuming x reduced | ||
| 198 | // Input x[6]; output z[6] | ||
| 199 | extern void bignum_demont_p384 (uint64_t z[static 6], uint64_t x[static 6]); | ||
| 200 | extern void bignum_demont_p384_alt (uint64_t z[static 6], uint64_t x[static 6]); | ||
| 201 | |||
| 202 | // Convert from Montgomery form z := (x / 2^576) mod p_521, assuming x reduced | ||
| 203 | // Input x[9]; output z[9] | ||
| 204 | extern void bignum_demont_p521 (uint64_t z[static 9], uint64_t x[static 9]); | ||
| 205 | |||
| 206 | // Select digit x[n] | ||
| 207 | // Inputs x[k], n; output function return | ||
| 208 | extern uint64_t bignum_digit (uint64_t k, uint64_t *x, uint64_t n); | ||
| 209 | |||
| 210 | // Return size of bignum in digits (64-bit word) | ||
| 211 | // Input x[k]; output function return | ||
| 212 | extern uint64_t bignum_digitsize (uint64_t k, uint64_t *x); | ||
| 213 | |||
| 214 | // Divide bignum by 10: z' := z div 10, returning remainder z mod 10 | ||
| 215 | // Inputs z[k]; outputs function return (remainder) and z[k] | ||
| 216 | extern uint64_t bignum_divmod10 (uint64_t k, uint64_t *z); | ||
| 217 | |||
| 218 | // Double modulo p_25519, z := (2 * x) mod p_25519, assuming x reduced | ||
| 219 | // Input x[4]; output z[4] | ||
| 220 | extern void bignum_double_p25519 (uint64_t z[static 4], uint64_t x[static 4]); | ||
| 221 | |||
| 222 | // Double modulo p_256, z := (2 * x) mod p_256, assuming x reduced | ||
| 223 | // Input x[4]; output z[4] | ||
| 224 | extern void bignum_double_p256 (uint64_t z[static 4], uint64_t x[static 4]); | ||
| 225 | |||
| 226 | // Double modulo p_256k1, z := (2 * x) mod p_256k1, assuming x reduced | ||
| 227 | // Input x[4]; output z[4] | ||
| 228 | extern void bignum_double_p256k1 (uint64_t z[static 4], uint64_t x[static 4]); | ||
| 229 | |||
| 230 | // Double modulo p_384, z := (2 * x) mod p_384, assuming x reduced | ||
| 231 | // Input x[6]; output z[6] | ||
| 232 | extern void bignum_double_p384 (uint64_t z[static 6], uint64_t x[static 6]); | ||
| 233 | |||
| 234 | // Double modulo p_521, z := (2 * x) mod p_521, assuming x reduced | ||
| 235 | // Input x[9]; output z[9] | ||
| 236 | extern void bignum_double_p521 (uint64_t z[static 9], uint64_t x[static 9]); | ||
| 237 | |||
| 238 | // Extended Montgomery reduce, returning results in input-output buffer | ||
| 239 | // Inputs z[2*k], m[k], w; outputs function return (extra result bit) and z[2*k] | ||
| 240 | extern uint64_t bignum_emontredc (uint64_t k, uint64_t *z, uint64_t *m, uint64_t w); | ||
| 241 | |||
| 242 | // Extended Montgomery reduce in 8-digit blocks, results in input-output buffer | ||
| 243 | // Inputs z[2*k], m[k], w; outputs function return (extra result bit) and z[2*k] | ||
| 244 | extern uint64_t bignum_emontredc_8n (uint64_t k, uint64_t *z, uint64_t *m, uint64_t w); | ||
| 245 | |||
| 246 | // Test bignums for equality, x = y | ||
| 247 | // Inputs x[m], y[n]; output function return | ||
| 248 | extern uint64_t bignum_eq (uint64_t m, uint64_t *x, uint64_t n, uint64_t *y); | ||
| 249 | |||
| 250 | // Test bignum for even-ness | ||
| 251 | // Input x[k]; output function return | ||
| 252 | extern uint64_t bignum_even (uint64_t k, uint64_t *x); | ||
| 253 | |||
| 254 | // Convert 4-digit (256-bit) bignum from big-endian bytes | ||
| 255 | // Input x[32] (bytes); output z[4] | ||
| 256 | extern void bignum_frombebytes_4 (uint64_t z[static 4], uint8_t x[static 32]); | ||
| 257 | |||
| 258 | // Convert 6-digit (384-bit) bignum from big-endian bytes | ||
| 259 | // Input x[48] (bytes); output z[6] | ||
| 260 | extern void bignum_frombebytes_6 (uint64_t z[static 6], uint8_t x[static 48]); | ||
| 261 | |||
| 262 | // Convert 4-digit (256-bit) bignum from little-endian bytes | ||
| 263 | // Input x[32] (bytes); output z[4] | ||
| 264 | extern void bignum_fromlebytes_4 (uint64_t z[static 4], uint8_t x[static 32]); | ||
| 265 | |||
| 266 | // Convert 6-digit (384-bit) bignum from little-endian bytes | ||
| 267 | // Input x[48] (bytes); output z[6] | ||
| 268 | extern void bignum_fromlebytes_6 (uint64_t z[static 6], uint8_t x[static 48]); | ||
| 269 | |||
| 270 | // Convert little-endian bytes to 9-digit 528-bit bignum | ||
| 271 | // Input x[66] (bytes); output z[9] | ||
| 272 | extern void bignum_fromlebytes_p521 (uint64_t z[static 9],uint8_t x[static 66]); | ||
| 273 | |||
| 274 | // Compare bignums, x >= y | ||
| 275 | // Inputs x[m], y[n]; output function return | ||
| 276 | extern uint64_t bignum_ge (uint64_t m, uint64_t *x, uint64_t n, uint64_t *y); | ||
| 277 | |||
| 278 | // Compare bignums, x > y | ||
| 279 | // Inputs x[m], y[n]; output function return | ||
| 280 | extern uint64_t bignum_gt (uint64_t m, uint64_t *x, uint64_t n, uint64_t *y); | ||
| 281 | |||
| 282 | // Halve modulo p_256, z := (x / 2) mod p_256, assuming x reduced | ||
| 283 | // Input x[4]; output z[4] | ||
| 284 | extern void bignum_half_p256 (uint64_t z[static 4], uint64_t x[static 4]); | ||
| 285 | |||
| 286 | // Halve modulo p_256k1, z := (x / 2) mod p_256k1, assuming x reduced | ||
| 287 | // Input x[4]; output z[4] | ||
| 288 | extern void bignum_half_p256k1 (uint64_t z[static 4], uint64_t x[static 4]); | ||
| 289 | |||
| 290 | // Halve modulo p_384, z := (x / 2) mod p_384, assuming x reduced | ||
| 291 | // Input x[6]; output z[6] | ||
| 292 | extern void bignum_half_p384 (uint64_t z[static 6], uint64_t x[static 6]); | ||
| 293 | |||
| 294 | // Halve modulo p_521, z := (x / 2) mod p_521, assuming x reduced | ||
| 295 | // Input x[9]; output z[9] | ||
| 296 | extern void bignum_half_p521 (uint64_t z[static 9], uint64_t x[static 9]); | ||
| 297 | |||
| 298 | // Test bignum for zero-ness, x = 0 | ||
| 299 | // Input x[k]; output function return | ||
| 300 | extern uint64_t bignum_iszero (uint64_t k, uint64_t *x); | ||
| 301 | |||
| 302 | // Multiply z := x * y | ||
| 303 | // Inputs x[16], y[16]; output z[32]; temporary buffer t[>=32] | ||
| 304 | extern void bignum_kmul_16_32 (uint64_t z[static 32], uint64_t x[static 16], uint64_t y[static 16], uint64_t t[static 32]); | ||
| 305 | |||
| 306 | // Multiply z := x * y | ||
| 307 | // Inputs x[32], y[32]; output z[64]; temporary buffer t[>=96] | ||
| 308 | extern void bignum_kmul_32_64 (uint64_t z[static 64], uint64_t x[static 32], uint64_t y[static 32], uint64_t t[static 96]); | ||
| 309 | |||
| 310 | // Square, z := x^2 | ||
| 311 | // Input x[16]; output z[32]; temporary buffer t[>=24] | ||
| 312 | extern void bignum_ksqr_16_32 (uint64_t z[static 32], uint64_t x[static 16], uint64_t t[static 24]); | ||
| 313 | |||
| 314 | // Square, z := x^2 | ||
| 315 | // Input x[32]; output z[64]; temporary buffer t[>=72] | ||
| 316 | extern void bignum_ksqr_32_64 (uint64_t z[static 64], uint64_t x[static 32], uint64_t t[static 72]); | ||
| 317 | |||
| 318 | // Compare bignums, x <= y | ||
| 319 | // Inputs x[m], y[n]; output function return | ||
| 320 | extern uint64_t bignum_le (uint64_t m, uint64_t *x, uint64_t n, uint64_t *y); | ||
| 321 | |||
| 322 | // Convert 4-digit (256-bit) bignum to/from little-endian form | ||
| 323 | // Input x[4]; output z[4] | ||
| 324 | extern void bignum_littleendian_4 (uint64_t z[static 4], uint64_t x[static 4]); | ||
| 325 | |||
| 326 | // Convert 6-digit (384-bit) bignum to/from little-endian form | ||
| 327 | // Input x[6]; output z[6] | ||
| 328 | extern void bignum_littleendian_6 (uint64_t z[static 6], uint64_t x[static 6]); | ||
| 329 | |||
| 330 | // Compare bignums, x < y | ||
| 331 | // Inputs x[m], y[n]; output function return | ||
| 332 | extern uint64_t bignum_lt (uint64_t m, uint64_t *x, uint64_t n, uint64_t *y); | ||
| 333 | |||
| 334 | // Multiply-add, z := z + x * y | ||
| 335 | // Inputs x[m], y[n]; outputs function return (carry-out) and z[k] | ||
| 336 | extern uint64_t bignum_madd (uint64_t k, uint64_t *z, uint64_t m, uint64_t *x, uint64_t n, uint64_t *y); | ||
| 337 | |||
| 338 | // Reduce modulo group order, z := x mod n_256 | ||
| 339 | // Input x[k]; output z[4] | ||
| 340 | extern void bignum_mod_n256 (uint64_t z[static 4], uint64_t k, uint64_t *x); | ||
| 341 | extern void bignum_mod_n256_alt (uint64_t z[static 4], uint64_t k, uint64_t *x); | ||
| 342 | |||
| 343 | // Reduce modulo group order, z := x mod n_256 | ||
| 344 | // Input x[4]; output z[4] | ||
| 345 | extern void bignum_mod_n256_4 (uint64_t z[static 4], uint64_t x[static 4]); | ||
| 346 | |||
| 347 | // Reduce modulo group order, z := x mod n_256k1 | ||
| 348 | // Input x[4]; output z[4] | ||
| 349 | extern void bignum_mod_n256k1_4 (uint64_t z[static 4], uint64_t x[static 4]); | ||
| 350 | |||
| 351 | // Reduce modulo group order, z := x mod n_384 | ||
| 352 | // Input x[k]; output z[6] | ||
| 353 | extern void bignum_mod_n384 (uint64_t z[static 6], uint64_t k, uint64_t *x); | ||
| 354 | extern void bignum_mod_n384_alt (uint64_t z[static 6], uint64_t k, uint64_t *x); | ||
| 355 | |||
| 356 | // Reduce modulo group order, z := x mod n_384 | ||
| 357 | // Input x[6]; output z[6] | ||
| 358 | extern void bignum_mod_n384_6 (uint64_t z[static 6], uint64_t x[static 6]); | ||
| 359 | |||
| 360 | // Reduce modulo group order, z := x mod n_521 | ||
| 361 | // Input x[9]; output z[9] | ||
| 362 | extern void bignum_mod_n521_9 (uint64_t z[static 9], uint64_t x[static 9]); | ||
| 363 | extern void bignum_mod_n521_9_alt (uint64_t z[static 9], uint64_t x[static 9]); | ||
| 364 | |||
| 365 | // Reduce modulo field characteristic, z := x mod p_25519 | ||
| 366 | // Input x[4]; output z[4] | ||
| 367 | extern void bignum_mod_p25519_4 (uint64_t z[static 4], uint64_t x[static 4]); | ||
| 368 | |||
| 369 | // Reduce modulo field characteristic, z := x mod p_256 | ||
| 370 | // Input x[k]; output z[4] | ||
| 371 | extern void bignum_mod_p256 (uint64_t z[static 4], uint64_t k, uint64_t *x); | ||
| 372 | extern void bignum_mod_p256_alt (uint64_t z[static 4], uint64_t k, uint64_t *x); | ||
| 373 | |||
| 374 | // Reduce modulo field characteristic, z := x mod p_256 | ||
| 375 | // Input x[4]; output z[4] | ||
| 376 | extern void bignum_mod_p256_4 (uint64_t z[static 4], uint64_t x[static 4]); | ||
| 377 | |||
| 378 | // Reduce modulo field characteristic, z := x mod p_256k1 | ||
| 379 | // Input x[4]; output z[4] | ||
| 380 | extern void bignum_mod_p256k1_4 (uint64_t z[static 4], uint64_t x[static 4]); | ||
| 381 | |||
| 382 | // Reduce modulo field characteristic, z := x mod p_384 | ||
| 383 | // Input x[k]; output z[6] | ||
| 384 | extern void bignum_mod_p384 (uint64_t z[static 6], uint64_t k, uint64_t *x); | ||
| 385 | extern void bignum_mod_p384_alt (uint64_t z[static 6], uint64_t k, uint64_t *x); | ||
| 386 | |||
| 387 | // Reduce modulo field characteristic, z := x mod p_384 | ||
| 388 | // Input x[6]; output z[6] | ||
| 389 | extern void bignum_mod_p384_6 (uint64_t z[static 6], uint64_t x[static 6]); | ||
| 390 | |||
| 391 | // Reduce modulo field characteristic, z := x mod p_521 | ||
| 392 | // Input x[9]; output z[9] | ||
| 393 | extern void bignum_mod_p521_9 (uint64_t z[static 9], uint64_t x[static 9]); | ||
| 394 | |||
| 395 | // Add modulo m, z := (x + y) mod m, assuming x and y reduced | ||
| 396 | // Inputs x[k], y[k], m[k]; output z[k] | ||
| 397 | extern void bignum_modadd (uint64_t k, uint64_t *z, uint64_t *x, uint64_t *y, uint64_t *m); | ||
| 398 | |||
| 399 | // Double modulo m, z := (2 * x) mod m, assuming x reduced | ||
| 400 | // Inputs x[k], m[k]; output z[k] | ||
| 401 | extern void bignum_moddouble (uint64_t k, uint64_t *z, uint64_t *x, uint64_t *m); | ||
| 402 | |||
| 403 | // Compute "modification" constant z := 2^{64k} mod m | ||
| 404 | // Input m[k]; output z[k]; temporary buffer t[>=k] | ||
| 405 | extern void bignum_modifier (uint64_t k, uint64_t *z, uint64_t *m, uint64_t *t); | ||
| 406 | |||
| 407 | // Invert modulo m, z = (1/a) mod b, assuming b is an odd number > 1, a coprime to b | ||
| 408 | // Inputs a[k], b[k]; output z[k]; temporary buffer t[>=3*k] | ||
| 409 | extern void bignum_modinv (uint64_t k, uint64_t *z, uint64_t *a, uint64_t *b, uint64_t *t); | ||
| 410 | |||
| 411 | // Optionally negate modulo m, z := (-x) mod m (if p nonzero) or z := x (if p zero), assuming x reduced | ||
| 412 | // Inputs p, x[k], m[k]; output z[k] | ||
| 413 | extern void bignum_modoptneg (uint64_t k, uint64_t *z, uint64_t p, uint64_t *x, uint64_t *m); | ||
| 414 | |||
| 415 | // Subtract modulo m, z := (x - y) mod m, assuming x and y reduced | ||
| 416 | // Inputs x[k], y[k], m[k]; output z[k] | ||
| 417 | extern void bignum_modsub (uint64_t k, uint64_t *z, uint64_t *x, uint64_t *y, uint64_t *m); | ||
| 418 | |||
| 419 | // Compute "montification" constant z := 2^{128k} mod m | ||
| 420 | // Input m[k]; output z[k]; temporary buffer t[>=k] | ||
| 421 | extern void bignum_montifier (uint64_t k, uint64_t *z, uint64_t *m, uint64_t *t); | ||
| 422 | |||
| 423 | // Montgomery multiply, z := (x * y / 2^{64k}) mod m | ||
| 424 | // Inputs x[k], y[k], m[k]; output z[k] | ||
| 425 | extern void bignum_montmul (uint64_t k, uint64_t *z, uint64_t *x, uint64_t *y, uint64_t *m); | ||
| 426 | |||
| 427 | // Montgomery multiply, z := (x * y / 2^256) mod p_256 | ||
| 428 | // Inputs x[4], y[4]; output z[4] | ||
| 429 | extern void bignum_montmul_p256 (uint64_t z[static 4], uint64_t x[static 4], uint64_t y[static 4]); | ||
| 430 | extern void bignum_montmul_p256_alt (uint64_t z[static 4], uint64_t x[static 4], uint64_t y[static 4]); | ||
| 431 | |||
| 432 | // Montgomery multiply, z := (x * y / 2^256) mod p_256k1 | ||
| 433 | // Inputs x[4], y[4]; output z[4] | ||
| 434 | extern void bignum_montmul_p256k1 (uint64_t z[static 4], uint64_t x[static 4], uint64_t y[static 4]); | ||
| 435 | extern void bignum_montmul_p256k1_alt (uint64_t z[static 4], uint64_t x[static 4], uint64_t y[static 4]); | ||
| 436 | |||
| 437 | // Montgomery multiply, z := (x * y / 2^384) mod p_384 | ||
| 438 | // Inputs x[6], y[6]; output z[6] | ||
| 439 | extern void bignum_montmul_p384 (uint64_t z[static 6], uint64_t x[static 6], uint64_t y[static 6]); | ||
| 440 | extern void bignum_montmul_p384_alt (uint64_t z[static 6], uint64_t x[static 6], uint64_t y[static 6]); | ||
| 441 | |||
| 442 | // Montgomery multiply, z := (x * y / 2^576) mod p_521 | ||
| 443 | // Inputs x[9], y[9]; output z[9] | ||
| 444 | extern void bignum_montmul_p521 (uint64_t z[static 9], uint64_t x[static 9], uint64_t y[static 9]); | ||
| 445 | extern void bignum_montmul_p521_alt (uint64_t z[static 9], uint64_t x[static 9], uint64_t y[static 9]); | ||
| 446 | |||
| 447 | // Montgomery reduce, z := (x' / 2^{64p}) MOD m | ||
| 448 | // Inputs x[n], m[k], p; output z[k] | ||
| 449 | extern void bignum_montredc (uint64_t k, uint64_t *z, uint64_t n, uint64_t *x, uint64_t *m, uint64_t p); | ||
| 450 | |||
| 451 | // Montgomery square, z := (x^2 / 2^{64k}) mod m | ||
| 452 | // Inputs x[k], m[k]; output z[k] | ||
| 453 | extern void bignum_montsqr (uint64_t k, uint64_t *z, uint64_t *x, uint64_t *m); | ||
| 454 | |||
| 455 | // Montgomery square, z := (x^2 / 2^256) mod p_256 | ||
| 456 | // Input x[4]; output z[4] | ||
| 457 | extern void bignum_montsqr_p256 (uint64_t z[static 4], uint64_t x[static 4]); | ||
| 458 | extern void bignum_montsqr_p256_alt (uint64_t z[static 4], uint64_t x[static 4]); | ||
| 459 | |||
| 460 | // Montgomery square, z := (x^2 / 2^256) mod p_256k1 | ||
| 461 | // Input x[4]; output z[4] | ||
| 462 | extern void bignum_montsqr_p256k1 (uint64_t z[static 4], uint64_t x[static 4]); | ||
| 463 | extern void bignum_montsqr_p256k1_alt (uint64_t z[static 4], uint64_t x[static 4]); | ||
| 464 | |||
| 465 | // Montgomery square, z := (x^2 / 2^384) mod p_384 | ||
| 466 | // Input x[6]; output z[6] | ||
| 467 | extern void bignum_montsqr_p384 (uint64_t z[static 6], uint64_t x[static 6]); | ||
| 468 | extern void bignum_montsqr_p384_alt (uint64_t z[static 6], uint64_t x[static 6]); | ||
| 469 | |||
| 470 | // Montgomery square, z := (x^2 / 2^576) mod p_521 | ||
| 471 | // Input x[9]; output z[9] | ||
| 472 | extern void bignum_montsqr_p521 (uint64_t z[static 9], uint64_t x[static 9]); | ||
| 473 | extern void bignum_montsqr_p521_alt (uint64_t z[static 9], uint64_t x[static 9]); | ||
| 474 | |||
| 475 | // Multiply z := x * y | ||
| 476 | // Inputs x[m], y[n]; output z[k] | ||
| 477 | extern void bignum_mul (uint64_t k, uint64_t *z, uint64_t m, uint64_t *x, uint64_t n, uint64_t *y); | ||
| 478 | |||
| 479 | // Multiply z := x * y | ||
| 480 | // Inputs x[4], y[4]; output z[8] | ||
| 481 | extern void bignum_mul_4_8 (uint64_t z[static 8], uint64_t x[static 4], uint64_t y[static 4]); | ||
| 482 | extern void bignum_mul_4_8_alt (uint64_t z[static 8], uint64_t x[static 4], uint64_t y[static 4]); | ||
| 483 | |||
| 484 | // Multiply z := x * y | ||
| 485 | // Inputs x[6], y[6]; output z[12] | ||
| 486 | extern void bignum_mul_6_12 (uint64_t z[static 12], uint64_t x[static 6], uint64_t y[static 6]); | ||
| 487 | extern void bignum_mul_6_12_alt (uint64_t z[static 12], uint64_t x[static 6], uint64_t y[static 6]); | ||
| 488 | |||
| 489 | // Multiply z := x * y | ||
| 490 | // Inputs x[8], y[8]; output z[16] | ||
| 491 | extern void bignum_mul_8_16 (uint64_t z[static 16], uint64_t x[static 8], uint64_t y[static 8]); | ||
| 492 | extern void bignum_mul_8_16_alt (uint64_t z[static 16], uint64_t x[static 8], uint64_t y[static 8]); | ||
| 493 | |||
| 494 | // Multiply modulo p_25519, z := (x * y) mod p_25519 | ||
| 495 | // Inputs x[4], y[4]; output z[4] | ||
| 496 | extern void bignum_mul_p25519 (uint64_t z[static 4], uint64_t x[static 4], uint64_t y[static 4]); | ||
| 497 | extern void bignum_mul_p25519_alt (uint64_t z[static 4], uint64_t x[static 4], uint64_t y[static 4]); | ||
| 498 | |||
| 499 | // Multiply modulo p_256k1, z := (x * y) mod p_256k1 | ||
| 500 | // Inputs x[4], y[4]; output z[4] | ||
| 501 | extern void bignum_mul_p256k1 (uint64_t z[static 4], uint64_t x[static 4], uint64_t y[static 4]); | ||
| 502 | extern void bignum_mul_p256k1_alt (uint64_t z[static 4], uint64_t x[static 4], uint64_t y[static 4]); | ||
| 503 | |||
| 504 | // Multiply modulo p_521, z := (x * y) mod p_521, assuming x and y reduced | ||
| 505 | // Inputs x[9], y[9]; output z[9] | ||
| 506 | extern void bignum_mul_p521 (uint64_t z[static 9], uint64_t x[static 9], uint64_t y[static 9]); | ||
| 507 | extern void bignum_mul_p521_alt (uint64_t z[static 9], uint64_t x[static 9], uint64_t y[static 9]); | ||
| 508 | |||
| 509 | // Multiply bignum by 10 and add word: z := 10 * z + d | ||
| 510 | // Inputs z[k], d; outputs function return (carry) and z[k] | ||
| 511 | extern uint64_t bignum_muladd10 (uint64_t k, uint64_t *z, uint64_t d); | ||
| 512 | |||
| 513 | // Multiplex/select z := x (if p nonzero) or z := y (if p zero) | ||
| 514 | // Inputs p, x[k], y[k]; output z[k] | ||
| 515 | extern void bignum_mux (uint64_t p, uint64_t k, uint64_t *z, uint64_t *x, uint64_t *y); | ||
| 516 | |||
| 517 | // 256-bit multiplex/select z := x (if p nonzero) or z := y (if p zero) | ||
| 518 | // Inputs p, x[4], y[4]; output z[4] | ||
| 519 | extern void bignum_mux_4 (uint64_t p, uint64_t z[static 4],uint64_t x[static 4], uint64_t y[static 4]); | ||
| 520 | |||
| 521 | // 384-bit multiplex/select z := x (if p nonzero) or z := y (if p zero) | ||
| 522 | // Inputs p, x[6], y[6]; output z[6] | ||
| 523 | extern void bignum_mux_6 (uint64_t p, uint64_t z[static 6],uint64_t x[static 6], uint64_t y[static 6]); | ||
| 524 | |||
| 525 | // Select element from 16-element table, z := xs[k*i] | ||
| 526 | // Inputs xs[16*k], i; output z[k] | ||
| 527 | extern void bignum_mux16 (uint64_t k, uint64_t *z, uint64_t *xs, uint64_t i); | ||
| 528 | |||
| 529 | // Negate modulo p_25519, z := (-x) mod p_25519, assuming x reduced | ||
| 530 | // Input x[4]; output z[4] | ||
| 531 | extern void bignum_neg_p25519 (uint64_t z[static 4], uint64_t x[static 4]); | ||
| 532 | |||
| 533 | // Negate modulo p_256, z := (-x) mod p_256, assuming x reduced | ||
| 534 | // Input x[4]; output z[4] | ||
| 535 | extern void bignum_neg_p256 (uint64_t z[static 4], uint64_t x[static 4]); | ||
| 536 | |||
| 537 | // Negate modulo p_256k1, z := (-x) mod p_256k1, assuming x reduced | ||
| 538 | // Input x[4]; output z[4] | ||
| 539 | extern void bignum_neg_p256k1 (uint64_t z[static 4], uint64_t x[static 4]); | ||
| 540 | |||
| 541 | // Negate modulo p_384, z := (-x) mod p_384, assuming x reduced | ||
| 542 | // Input x[6]; output z[6] | ||
| 543 | extern void bignum_neg_p384 (uint64_t z[static 6], uint64_t x[static 6]); | ||
| 544 | |||
| 545 | // Negate modulo p_521, z := (-x) mod p_521, assuming x reduced | ||
| 546 | // Input x[9]; output z[9] | ||
| 547 | extern void bignum_neg_p521 (uint64_t z[static 9], uint64_t x[static 9]); | ||
| 548 | |||
| 549 | // Negated modular inverse, z := (-1/x) mod 2^{64k} | ||
| 550 | // Input x[k]; output z[k] | ||
| 551 | extern void bignum_negmodinv (uint64_t k, uint64_t *z, uint64_t *x); | ||
| 552 | |||
| 553 | // Test bignum for nonzero-ness x =/= 0 | ||
| 554 | // Input x[k]; output function return | ||
| 555 | extern uint64_t bignum_nonzero (uint64_t k, uint64_t *x); | ||
| 556 | |||
| 557 | // Test 256-bit bignum for nonzero-ness x =/= 0 | ||
| 558 | // Input x[4]; output function return | ||
| 559 | extern uint64_t bignum_nonzero_4(uint64_t x[static 4]); | ||
| 560 | |||
| 561 | // Test 384-bit bignum for nonzero-ness x =/= 0 | ||
| 562 | // Input x[6]; output function return | ||
| 563 | extern uint64_t bignum_nonzero_6(uint64_t x[static 6]); | ||
| 564 | |||
| 565 | // Normalize bignum in-place by shifting left till top bit is 1 | ||
| 566 | // Input z[k]; outputs function return (bits shifted left) and z[k] | ||
| 567 | extern uint64_t bignum_normalize (uint64_t k, uint64_t *z); | ||
| 568 | |||
| 569 | // Test bignum for odd-ness | ||
| 570 | // Input x[k]; output function return | ||
| 571 | extern uint64_t bignum_odd (uint64_t k, uint64_t *x); | ||
| 572 | |||
| 573 | // Convert single digit to bignum, z := n | ||
| 574 | // Input n; output z[k] | ||
| 575 | extern void bignum_of_word (uint64_t k, uint64_t *z, uint64_t n); | ||
| 576 | |||
| 577 | // Optionally add, z := x + y (if p nonzero) or z := x (if p zero) | ||
| 578 | // Inputs x[k], p, y[k]; outputs function return (carry-out) and z[k] | ||
| 579 | extern uint64_t bignum_optadd (uint64_t k, uint64_t *z, uint64_t *x, uint64_t p, uint64_t *y); | ||
| 580 | |||
| 581 | // Optionally negate, z := -x (if p nonzero) or z := x (if p zero) | ||
| 582 | // Inputs p, x[k]; outputs function return (nonzero input) and z[k] | ||
| 583 | extern uint64_t bignum_optneg (uint64_t k, uint64_t *z, uint64_t p, uint64_t *x); | ||
| 584 | |||
| 585 | // Optionally negate modulo p_25519, z := (-x) mod p_25519 (if p nonzero) or z := x (if p zero), assuming x reduced | ||
| 586 | // Inputs p, x[4]; output z[4] | ||
| 587 | extern void bignum_optneg_p25519 (uint64_t z[static 4], uint64_t p, uint64_t x[static 4]); | ||
| 588 | |||
| 589 | // Optionally negate modulo p_256, z := (-x) mod p_256 (if p nonzero) or z := x (if p zero), assuming x reduced | ||
| 590 | // Inputs p, x[4]; output z[4] | ||
| 591 | extern void bignum_optneg_p256 (uint64_t z[static 4], uint64_t p, uint64_t x[static 4]); | ||
| 592 | |||
| 593 | // Optionally negate modulo p_256k1, z := (-x) mod p_256k1 (if p nonzero) or z := x (if p zero), assuming x reduced | ||
| 594 | // Inputs p, x[4]; output z[4] | ||
| 595 | extern void bignum_optneg_p256k1 (uint64_t z[static 4], uint64_t p, uint64_t x[static 4]); | ||
| 596 | |||
| 597 | // Optionally negate modulo p_384, z := (-x) mod p_384 (if p nonzero) or z := x (if p zero), assuming x reduced | ||
| 598 | // Inputs p, x[6]; output z[6] | ||
| 599 | extern void bignum_optneg_p384 (uint64_t z[static 6], uint64_t p, uint64_t x[static 6]); | ||
| 600 | |||
| 601 | // Optionally negate modulo p_521, z := (-x) mod p_521 (if p nonzero) or z := x (if p zero), assuming x reduced | ||
| 602 | // Inputs p, x[9]; output z[9] | ||
| 603 | extern void bignum_optneg_p521 (uint64_t z[static 9], uint64_t p, uint64_t x[static 9]); | ||
| 604 | |||
| 605 | // Optionally subtract, z := x - y (if p nonzero) or z := x (if p zero) | ||
| 606 | // Inputs x[k], p, y[k]; outputs function return (carry-out) and z[k] | ||
| 607 | extern uint64_t bignum_optsub (uint64_t k, uint64_t *z, uint64_t *x, uint64_t p, uint64_t *y); | ||
| 608 | |||
| 609 | // Optionally subtract or add, z := x + sgn(p) * y interpreting p as signed | ||
| 610 | // Inputs x[k], p, y[k]; outputs function return (carry-out) and z[k] | ||
| 611 | extern uint64_t bignum_optsubadd (uint64_t k, uint64_t *z, uint64_t *x, uint64_t p, uint64_t *y); | ||
| 612 | |||
| 613 | // Return bignum of power of 2, z := 2^n | ||
| 614 | // Input n; output z[k] | ||
| 615 | extern void bignum_pow2 (uint64_t k, uint64_t *z, uint64_t n); | ||
| 616 | |||
| 617 | // Shift bignum left by c < 64 bits z := x * 2^c | ||
| 618 | // Inputs x[n], c; outputs function return (carry-out) and z[k] | ||
| 619 | extern uint64_t bignum_shl_small (uint64_t k, uint64_t *z, uint64_t n, uint64_t *x, uint64_t c); | ||
| 620 | |||
| 621 | // Shift bignum right by c < 64 bits z := floor(x / 2^c) | ||
| 622 | // Inputs x[n], c; outputs function return (bits shifted out) and z[k] | ||
| 623 | extern uint64_t bignum_shr_small (uint64_t k, uint64_t *z, uint64_t n, uint64_t *x, uint64_t c); | ||
| 624 | |||
| 625 | // Square, z := x^2 | ||
| 626 | // Input x[n]; output z[k] | ||
| 627 | extern void bignum_sqr (uint64_t k, uint64_t *z, uint64_t n, uint64_t *x); | ||
| 628 | |||
| 629 | // Square, z := x^2 | ||
| 630 | // Input x[4]; output z[8] | ||
| 631 | extern void bignum_sqr_4_8 (uint64_t z[static 8], uint64_t x[static 4]); | ||
| 632 | extern void bignum_sqr_4_8_alt (uint64_t z[static 8], uint64_t x[static 4]); | ||
| 633 | |||
| 634 | // Square, z := x^2 | ||
| 635 | // Input x[6]; output z[12] | ||
| 636 | extern void bignum_sqr_6_12 (uint64_t z[static 12], uint64_t x[static 6]); | ||
| 637 | extern void bignum_sqr_6_12_alt (uint64_t z[static 12], uint64_t x[static 6]); | ||
| 638 | |||
| 639 | // Square, z := x^2 | ||
| 640 | // Input x[8]; output z[16] | ||
| 641 | extern void bignum_sqr_8_16 (uint64_t z[static 16], uint64_t x[static 8]); | ||
| 642 | extern void bignum_sqr_8_16_alt (uint64_t z[static 16], uint64_t x[static 8]); | ||
| 643 | |||
| 644 | // Square modulo p_25519, z := (x^2) mod p_25519 | ||
| 645 | // Input x[4]; output z[4] | ||
| 646 | extern void bignum_sqr_p25519 (uint64_t z[static 4], uint64_t x[static 4]); | ||
| 647 | extern void bignum_sqr_p25519_alt (uint64_t z[static 4], uint64_t x[static 4]); | ||
| 648 | |||
| 649 | // Square modulo p_256k1, z := (x^2) mod p_256k1 | ||
| 650 | // Input x[4]; output z[4] | ||
| 651 | extern void bignum_sqr_p256k1 (uint64_t z[static 4], uint64_t x[static 4]); | ||
| 652 | extern void bignum_sqr_p256k1_alt (uint64_t z[static 4], uint64_t x[static 4]); | ||
| 653 | |||
| 654 | // Square modulo p_521, z := (x^2) mod p_521, assuming x reduced | ||
| 655 | // Input x[9]; output z[9] | ||
| 656 | extern void bignum_sqr_p521 (uint64_t z[static 9], uint64_t x[static 9]); | ||
| 657 | extern void bignum_sqr_p521_alt (uint64_t z[static 9], uint64_t x[static 9]); | ||
| 658 | |||
| 659 | // Subtract, z := x - y | ||
| 660 | // Inputs x[m], y[n]; outputs function return (carry-out) and z[p] | ||
| 661 | extern uint64_t bignum_sub (uint64_t p, uint64_t *z, uint64_t m, uint64_t *x, uint64_t n, uint64_t *y); | ||
| 662 | |||
| 663 | // Subtract modulo p_25519, z := (x - y) mod p_25519, assuming x and y reduced | ||
| 664 | // Inputs x[4], y[4]; output z[4] | ||
| 665 | extern void bignum_sub_p25519 (uint64_t z[static 4], uint64_t x[static 4], uint64_t y[static 4]); | ||
| 666 | |||
| 667 | // Subtract modulo p_256, z := (x - y) mod p_256, assuming x and y reduced | ||
| 668 | // Inputs x[4], y[4]; output z[4] | ||
| 669 | extern void bignum_sub_p256 (uint64_t z[static 4], uint64_t x[static 4], uint64_t y[static 4]); | ||
| 670 | |||
| 671 | // Subtract modulo p_256k1, z := (x - y) mod p_256k1, assuming x and y reduced | ||
| 672 | // Inputs x[4], y[4]; output z[4] | ||
| 673 | extern void bignum_sub_p256k1 (uint64_t z[static 4], uint64_t x[static 4], uint64_t y[static 4]); | ||
| 674 | |||
| 675 | // Subtract modulo p_384, z := (x - y) mod p_384, assuming x and y reduced | ||
| 676 | // Inputs x[6], y[6]; output z[6] | ||
| 677 | extern void bignum_sub_p384 (uint64_t z[static 6], uint64_t x[static 6], uint64_t y[static 6]); | ||
| 678 | |||
| 679 | // Subtract modulo p_521, z := (x - y) mod p_521, assuming x and y reduced | ||
| 680 | // Inputs x[9], y[9]; output z[9] | ||
| 681 | extern void bignum_sub_p521 (uint64_t z[static 9], uint64_t x[static 9], uint64_t y[static 9]); | ||
| 682 | |||
| 683 | // Convert 4-digit (256-bit) bignum to big-endian bytes | ||
| 684 | // Input x[4]; output z[32] (bytes) | ||
| 685 | extern void bignum_tobebytes_4 (uint8_t z[static 32], uint64_t x[static 4]); | ||
| 686 | |||
| 687 | // Convert 6-digit (384-bit) bignum to big-endian bytes | ||
| 688 | // Input x[6]; output z[48] (bytes) | ||
| 689 | extern void bignum_tobebytes_6 (uint8_t z[static 48], uint64_t x[static 6]); | ||
| 690 | |||
| 691 | // Convert 4-digit (256-bit) bignum to little-endian bytes | ||
| 692 | // Input x[4]; output z[32] (bytes) | ||
| 693 | extern void bignum_tolebytes_4 (uint8_t z[static 32], uint64_t x[static 4]); | ||
| 694 | |||
| 695 | // Convert 6-digit (384-bit) bignum to little-endian bytes | ||
| 696 | // Input x[6]; output z[48] (bytes) | ||
| 697 | extern void bignum_tolebytes_6 (uint8_t z[static 48], uint64_t x[static 6]); | ||
| 698 | |||
| 699 | // Convert 9-digit 528-bit bignum to little-endian bytes | ||
| 700 | // Input x[6]; output z[66] (bytes) | ||
| 701 | extern void bignum_tolebytes_p521 (uint8_t z[static 66], uint64_t x[static 9]); | ||
| 702 | |||
| 703 | // Convert to Montgomery form z := (2^256 * x) mod p_256 | ||
| 704 | // Input x[4]; output z[4] | ||
| 705 | extern void bignum_tomont_p256 (uint64_t z[static 4], uint64_t x[static 4]); | ||
| 706 | extern void bignum_tomont_p256_alt (uint64_t z[static 4], uint64_t x[static 4]); | ||
| 707 | |||
| 708 | // Convert to Montgomery form z := (2^256 * x) mod p_256k1 | ||
| 709 | // Input x[4]; output z[4] | ||
| 710 | extern void bignum_tomont_p256k1 (uint64_t z[static 4], uint64_t x[static 4]); | ||
| 711 | extern void bignum_tomont_p256k1_alt (uint64_t z[static 4], uint64_t x[static 4]); | ||
| 712 | |||
| 713 | // Convert to Montgomery form z := (2^384 * x) mod p_384 | ||
| 714 | // Input x[6]; output z[6] | ||
| 715 | extern void bignum_tomont_p384 (uint64_t z[static 6], uint64_t x[static 6]); | ||
| 716 | extern void bignum_tomont_p384_alt (uint64_t z[static 6], uint64_t x[static 6]); | ||
| 717 | |||
| 718 | // Convert to Montgomery form z := (2^576 * x) mod p_521 | ||
| 719 | // Input x[9]; output z[9] | ||
| 720 | extern void bignum_tomont_p521 (uint64_t z[static 9], uint64_t x[static 9]); | ||
| 721 | |||
| 722 | // Triple modulo p_256, z := (3 * x) mod p_256 | ||
| 723 | // Input x[4]; output z[4] | ||
| 724 | extern void bignum_triple_p256 (uint64_t z[static 4], uint64_t x[static 4]); | ||
| 725 | extern void bignum_triple_p256_alt (uint64_t z[static 4], uint64_t x[static 4]); | ||
| 726 | |||
| 727 | // Triple modulo p_256k1, z := (3 * x) mod p_256k1 | ||
| 728 | // Input x[4]; output z[4] | ||
| 729 | extern void bignum_triple_p256k1 (uint64_t z[static 4], uint64_t x[static 4]); | ||
| 730 | extern void bignum_triple_p256k1_alt (uint64_t z[static 4], uint64_t x[static 4]); | ||
| 731 | |||
| 732 | // Triple modulo p_384, z := (3 * x) mod p_384 | ||
| 733 | // Input x[6]; output z[6] | ||
| 734 | extern void bignum_triple_p384 (uint64_t z[static 6], uint64_t x[static 6]); | ||
| 735 | extern void bignum_triple_p384_alt (uint64_t z[static 6], uint64_t x[static 6]); | ||
| 736 | |||
| 737 | // Triple modulo p_521, z := (3 * x) mod p_521, assuming x reduced | ||
| 738 | // Input x[9]; output z[9] | ||
| 739 | extern void bignum_triple_p521 (uint64_t z[static 9], uint64_t x[static 9]); | ||
| 740 | extern void bignum_triple_p521_alt (uint64_t z[static 9], uint64_t x[static 9]); | ||
| 741 | |||
| 742 | // Montgomery ladder step for curve25519 | ||
| 743 | // Inputs point[8], pp[16], b; output rr[16] | ||
| 744 | extern void curve25519_ladderstep(uint64_t rr[16],uint64_t point[8],uint64_t pp[16],uint64_t b); | ||
| 745 | extern void curve25519_ladderstep_alt(uint64_t rr[16],uint64_t point[8],uint64_t pp[16],uint64_t b); | ||
| 746 | |||
| 747 | // Projective scalar multiplication, x coordinate only, for curve25519 | ||
| 748 | // Inputs scalar[4], point[4]; output res[8] | ||
| 749 | extern void curve25519_pxscalarmul(uint64_t res[static 8],uint64_t scalar[static 4],uint64_t point[static 4]); | ||
| 750 | extern void curve25519_pxscalarmul_alt(uint64_t res[static 8],uint64_t scalar[static 4],uint64_t point[static 4]); | ||
| 751 | |||
| 752 | // x25519 function for curve25519 | ||
| 753 | // Inputs scalar[4], point[4]; output res[4] | ||
| 754 | extern void curve25519_x25519(uint64_t res[static 4],uint64_t scalar[static 4],uint64_t point[static 4]); | ||
| 755 | extern void curve25519_x25519_alt(uint64_t res[static 4],uint64_t scalar[static 4],uint64_t point[static 4]); | ||
| 756 | |||
| 757 | // x25519 function for curve25519 on base element 9 | ||
| 758 | // Input scalar[4]; output res[4] | ||
| 759 | extern void curve25519_x25519base(uint64_t res[static 4],uint64_t scalar[static 4]); | ||
| 760 | extern void curve25519_x25519base_alt(uint64_t res[static 4],uint64_t scalar[static 4]); | ||
| 761 | |||
| 762 | // Extended projective addition for edwards25519 | ||
| 763 | // Inputs p1[16], p2[16]; output p3[16] | ||
| 764 | extern void edwards25519_epadd(uint64_t p3[static 16],uint64_t p1[static 16],uint64_t p2[static 16]); | ||
| 765 | extern void edwards25519_epadd_alt(uint64_t p3[static 16],uint64_t p1[static 16],uint64_t p2[static 16]); | ||
| 766 | |||
| 767 | // Extended projective doubling for edwards25519 | ||
| 768 | // Inputs p1[12]; output p3[16] | ||
| 769 | extern void edwards25519_epdouble(uint64_t p3[static 16],uint64_t p1[static 12]); | ||
| 770 | extern void edwards25519_epdouble_alt(uint64_t p3[static 16],uint64_t p1[static 12]); | ||
| 771 | |||
| 772 | // Projective doubling for edwards25519 | ||
| 773 | // Inputs p1[12]; output p3[12] | ||
| 774 | extern void edwards25519_pdouble(uint64_t p3[static 12],uint64_t p1[static 12]); | ||
| 775 | extern void edwards25519_pdouble_alt(uint64_t p3[static 12],uint64_t p1[static 12]); | ||
| 776 | |||
| 777 | // Extended projective + precomputed mixed addition for edwards25519 | ||
| 778 | // Inputs p1[16], p2[12]; output p3[16] | ||
| 779 | extern void edwards25519_pepadd(uint64_t p3[static 16],uint64_t p1[static 16],uint64_t p2[static 12]); | ||
| 780 | extern void edwards25519_pepadd_alt(uint64_t p3[static 16],uint64_t p1[static 16],uint64_t p2[static 12]); | ||
| 781 | |||
| 782 | // Point addition on NIST curve P-256 in Montgomery-Jacobian coordinates | ||
| 783 | // Inputs p1[12], p2[12]; output p3[12] | ||
| 784 | extern void p256_montjadd(uint64_t p3[static 12],uint64_t p1[static 12],uint64_t p2[static 12]); | ||
| 785 | |||
| 786 | // Point doubling on NIST curve P-256 in Montgomery-Jacobian coordinates | ||
| 787 | // Inputs p1[12]; output p3[12] | ||
| 788 | extern void p256_montjdouble(uint64_t p3[static 12],uint64_t p1[static 12]); | ||
| 789 | |||
| 790 | // Point mixed addition on NIST curve P-256 in Montgomery-Jacobian coordinates | ||
| 791 | // Inputs p1[12], p2[8]; output p3[12] | ||
| 792 | extern void p256_montjmixadd(uint64_t p3[static 12],uint64_t p1[static 12],uint64_t p2[static 8]); | ||
| 793 | |||
| 794 | // Point addition on NIST curve P-384 in Montgomery-Jacobian coordinates | ||
| 795 | // Inputs p1[18], p2[18]; output p3[18] | ||
| 796 | extern void p384_montjadd(uint64_t p3[static 18],uint64_t p1[static 18],uint64_t p2[static 18]); | ||
| 797 | |||
| 798 | // Point doubling on NIST curve P-384 in Montgomery-Jacobian coordinates | ||
| 799 | // Inputs p1[18]; output p3[18] | ||
| 800 | extern void p384_montjdouble(uint64_t p3[static 18],uint64_t p1[static 18]); | ||
| 801 | |||
| 802 | // Point mixed addition on NIST curve P-384 in Montgomery-Jacobian coordinates | ||
| 803 | // Inputs p1[18], p2[12]; output p3[18] | ||
| 804 | extern void p384_montjmixadd(uint64_t p3[static 18],uint64_t p1[static 18],uint64_t p2[static 12]); | ||
| 805 | |||
| 806 | // Point addition on NIST curve P-521 in Jacobian coordinates | ||
| 807 | // Inputs p1[27], p2[27]; output p3[27] | ||
| 808 | extern void p521_jadd(uint64_t p3[static 27],uint64_t p1[static 27],uint64_t p2[static 27]); | ||
| 809 | |||
| 810 | // Point doubling on NIST curve P-521 in Jacobian coordinates | ||
| 811 | // Input p1[27]; output p3[27] | ||
| 812 | extern void p521_jdouble(uint64_t p3[static 27],uint64_t p1[static 27]); | ||
| 813 | |||
| 814 | // Point mixed addition on NIST curve P-521 in Jacobian coordinates | ||
| 815 | // Inputs p1[27], p2[18]; output p3[27] | ||
| 816 | extern void p521_jmixadd(uint64_t p3[static 27],uint64_t p1[static 27],uint64_t p2[static 18]); | ||
| 817 | |||
| 818 | // Point addition on SECG curve secp256k1 in Jacobian coordinates | ||
| 819 | // Inputs p1[12], p2[12]; output p3[12] | ||
| 820 | extern void secp256k1_jadd(uint64_t p3[static 12],uint64_t p1[static 12],uint64_t p2[static 12]); | ||
| 821 | |||
| 822 | // Point doubling on SECG curve secp256k1 in Jacobian coordinates | ||
| 823 | // Input p1[12]; output p3[12] | ||
| 824 | extern void secp256k1_jdouble(uint64_t p3[static 12],uint64_t p1[static 12]); | ||
| 825 | |||
| 826 | // Point mixed addition on SECG curve secp256k1 in Jacobian coordinates | ||
| 827 | // Inputs p1[12], p2[8]; output p3[12] | ||
| 828 | extern void secp256k1_jmixadd(uint64_t p3[static 12],uint64_t p1[static 12],uint64_t p2[static 8]); | ||
| 829 | |||
| 830 | // Reverse the bytes in a single word | ||
| 831 | // Input a; output function return | ||
| 832 | extern uint64_t word_bytereverse (uint64_t a); | ||
| 833 | |||
| 834 | // Count leading zero bits in a single word | ||
| 835 | // Input a; output function return | ||
| 836 | extern uint64_t word_clz (uint64_t a); | ||
| 837 | |||
| 838 | // Count trailing zero bits in a single word | ||
| 839 | // Input a; output function return | ||
| 840 | extern uint64_t word_ctz (uint64_t a); | ||
| 841 | |||
| 842 | // Return maximum of two unsigned 64-bit words | ||
| 843 | // Inputs a, b; output function return | ||
| 844 | extern uint64_t word_max (uint64_t a, uint64_t b); | ||
| 845 | |||
| 846 | // Return minimum of two unsigned 64-bit words | ||
| 847 | // Inputs a, b; output function return | ||
| 848 | extern uint64_t word_min (uint64_t a, uint64_t b); | ||
| 849 | |||
| 850 | // Single-word negated modular inverse (-1/a) mod 2^64 | ||
| 851 | // Input a; output function return | ||
| 852 | extern uint64_t word_negmodinv (uint64_t a); | ||
| 853 | |||
| 854 | // Single-word reciprocal, 2^64 + ret = ceil(2^128/a) - 1 if MSB of "a" is set | ||
| 855 | // Input a; output function return | ||
| 856 | extern uint64_t word_recip (uint64_t a); | ||
