diff options
Diffstat (limited to 'src/lib/libcrypto/bn')
-rw-r--r-- | src/lib/libcrypto/bn/asm/x86_64-gcc.c | 4 | ||||
-rwxr-xr-x | src/lib/libcrypto/bn/asm/x86_64-mont.pl | 214 | ||||
-rw-r--r-- | src/lib/libcrypto/bn/bn_const.c | 402 | ||||
-rw-r--r-- | src/lib/libcrypto/bn/bn_depr.c | 112 | ||||
-rw-r--r-- | src/lib/libcrypto/bn/bn_gf2m.c | 1091 | ||||
-rw-r--r-- | src/lib/libcrypto/bn/bn_nist.c | 692 |
6 files changed, 2515 insertions, 0 deletions
diff --git a/src/lib/libcrypto/bn/asm/x86_64-gcc.c b/src/lib/libcrypto/bn/asm/x86_64-gcc.c index 7378344251..f13f52dd85 100644 --- a/src/lib/libcrypto/bn/asm/x86_64-gcc.c +++ b/src/lib/libcrypto/bn/asm/x86_64-gcc.c | |||
@@ -1,3 +1,6 @@ | |||
1 | #ifdef __SUNPRO_C | ||
2 | # include "../bn_asm.c" /* kind of dirty hack for Sun Studio */ | ||
3 | #else | ||
1 | /* | 4 | /* |
2 | * x86_64 BIGNUM accelerator version 0.1, December 2002. | 5 | * x86_64 BIGNUM accelerator version 0.1, December 2002. |
3 | * | 6 | * |
@@ -591,3 +594,4 @@ void bn_sqr_comba4(BN_ULONG *r, BN_ULONG *a) | |||
591 | r[6]=c1; | 594 | r[6]=c1; |
592 | r[7]=c2; | 595 | r[7]=c2; |
593 | } | 596 | } |
597 | #endif | ||
diff --git a/src/lib/libcrypto/bn/asm/x86_64-mont.pl b/src/lib/libcrypto/bn/asm/x86_64-mont.pl new file mode 100755 index 0000000000..c43b69592a --- /dev/null +++ b/src/lib/libcrypto/bn/asm/x86_64-mont.pl | |||
@@ -0,0 +1,214 @@ | |||
1 | #!/usr/bin/env perl | ||
2 | |||
3 | # ==================================================================== | ||
4 | # Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL | ||
5 | # project. The module is, however, dual licensed under OpenSSL and | ||
6 | # CRYPTOGAMS licenses depending on where you obtain it. For further | ||
7 | # details see http://www.openssl.org/~appro/cryptogams/. | ||
8 | # ==================================================================== | ||
9 | |||
10 | # October 2005. | ||
11 | # | ||
12 | # Montgomery multiplication routine for x86_64. While it gives modest | ||
13 | # 9% improvement of rsa4096 sign on Opteron, rsa512 sign runs more | ||
14 | # than twice, >2x, as fast. Most common rsa1024 sign is improved by | ||
15 | # respectful 50%. It remains to be seen if loop unrolling and | ||
16 | # dedicated squaring routine can provide further improvement... | ||
17 | |||
18 | $output=shift; | ||
19 | |||
20 | $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; | ||
21 | ( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or | ||
22 | ( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or | ||
23 | die "can't locate x86_64-xlate.pl"; | ||
24 | |||
25 | open STDOUT,"| $^X $xlate $output"; | ||
26 | |||
27 | # int bn_mul_mont( | ||
28 | $rp="%rdi"; # BN_ULONG *rp, | ||
29 | $ap="%rsi"; # const BN_ULONG *ap, | ||
30 | $bp="%rdx"; # const BN_ULONG *bp, | ||
31 | $np="%rcx"; # const BN_ULONG *np, | ||
32 | $n0="%r8"; # const BN_ULONG *n0, | ||
33 | $num="%r9"; # int num); | ||
34 | $lo0="%r10"; | ||
35 | $hi0="%r11"; | ||
36 | $bp="%r12"; # reassign $bp | ||
37 | $hi1="%r13"; | ||
38 | $i="%r14"; | ||
39 | $j="%r15"; | ||
40 | $m0="%rbx"; | ||
41 | $m1="%rbp"; | ||
42 | |||
43 | $code=<<___; | ||
44 | .text | ||
45 | |||
46 | .globl bn_mul_mont | ||
47 | .type bn_mul_mont,\@function,6 | ||
48 | .align 16 | ||
49 | bn_mul_mont: | ||
50 | push %rbx | ||
51 | push %rbp | ||
52 | push %r12 | ||
53 | push %r13 | ||
54 | push %r14 | ||
55 | push %r15 | ||
56 | |||
57 | mov ${num}d,${num}d | ||
58 | lea 2($num),%rax | ||
59 | mov %rsp,%rbp | ||
60 | neg %rax | ||
61 | lea (%rsp,%rax,8),%rsp # tp=alloca(8*(num+2)) | ||
62 | and \$-1024,%rsp # minimize TLB usage | ||
63 | |||
64 | mov %rbp,8(%rsp,$num,8) # tp[num+1]=%rsp | ||
65 | mov %rdx,$bp # $bp reassigned, remember? | ||
66 | |||
67 | mov ($n0),$n0 # pull n0[0] value | ||
68 | |||
69 | xor $i,$i # i=0 | ||
70 | xor $j,$j # j=0 | ||
71 | |||
72 | mov ($bp),$m0 # m0=bp[0] | ||
73 | mov ($ap),%rax | ||
74 | mulq $m0 # ap[0]*bp[0] | ||
75 | mov %rax,$lo0 | ||
76 | mov %rdx,$hi0 | ||
77 | |||
78 | imulq $n0,%rax # "tp[0]"*n0 | ||
79 | mov %rax,$m1 | ||
80 | |||
81 | mulq ($np) # np[0]*m1 | ||
82 | add $lo0,%rax # discarded | ||
83 | adc \$0,%rdx | ||
84 | mov %rdx,$hi1 | ||
85 | |||
86 | lea 1($j),$j # j++ | ||
87 | .L1st: | ||
88 | mov ($ap,$j,8),%rax | ||
89 | mulq $m0 # ap[j]*bp[0] | ||
90 | add $hi0,%rax | ||
91 | adc \$0,%rdx | ||
92 | mov %rax,$lo0 | ||
93 | mov ($np,$j,8),%rax | ||
94 | mov %rdx,$hi0 | ||
95 | |||
96 | mulq $m1 # np[j]*m1 | ||
97 | add $hi1,%rax | ||
98 | lea 1($j),$j # j++ | ||
99 | adc \$0,%rdx | ||
100 | add $lo0,%rax # np[j]*m1+ap[j]*bp[0] | ||
101 | adc \$0,%rdx | ||
102 | mov %rax,-16(%rsp,$j,8) # tp[j-1] | ||
103 | cmp $num,$j | ||
104 | mov %rdx,$hi1 | ||
105 | jl .L1st | ||
106 | |||
107 | xor %rdx,%rdx | ||
108 | add $hi0,$hi1 | ||
109 | adc \$0,%rdx | ||
110 | mov $hi1,-8(%rsp,$num,8) | ||
111 | mov %rdx,(%rsp,$num,8) # store upmost overflow bit | ||
112 | |||
113 | lea 1($i),$i # i++ | ||
114 | .align 4 | ||
115 | .Louter: | ||
116 | xor $j,$j # j=0 | ||
117 | |||
118 | mov ($bp,$i,8),$m0 # m0=bp[i] | ||
119 | mov ($ap),%rax # ap[0] | ||
120 | mulq $m0 # ap[0]*bp[i] | ||
121 | add (%rsp),%rax # ap[0]*bp[i]+tp[0] | ||
122 | adc \$0,%rdx | ||
123 | mov %rax,$lo0 | ||
124 | mov %rdx,$hi0 | ||
125 | |||
126 | imulq $n0,%rax # tp[0]*n0 | ||
127 | mov %rax,$m1 | ||
128 | |||
129 | mulq ($np,$j,8) # np[0]*m1 | ||
130 | add $lo0,%rax # discarded | ||
131 | mov 8(%rsp),$lo0 # tp[1] | ||
132 | adc \$0,%rdx | ||
133 | mov %rdx,$hi1 | ||
134 | |||
135 | lea 1($j),$j # j++ | ||
136 | .align 4 | ||
137 | .Linner: | ||
138 | mov ($ap,$j,8),%rax | ||
139 | mulq $m0 # ap[j]*bp[i] | ||
140 | add $hi0,%rax | ||
141 | adc \$0,%rdx | ||
142 | add %rax,$lo0 # ap[j]*bp[i]+tp[j] | ||
143 | mov ($np,$j,8),%rax | ||
144 | adc \$0,%rdx | ||
145 | mov %rdx,$hi0 | ||
146 | |||
147 | mulq $m1 # np[j]*m1 | ||
148 | add $hi1,%rax | ||
149 | lea 1($j),$j # j++ | ||
150 | adc \$0,%rdx | ||
151 | add $lo0,%rax # np[j]*m1+ap[j]*bp[i]+tp[j] | ||
152 | adc \$0,%rdx | ||
153 | mov (%rsp,$j,8),$lo0 | ||
154 | cmp $num,$j | ||
155 | mov %rax,-16(%rsp,$j,8) # tp[j-1] | ||
156 | mov %rdx,$hi1 | ||
157 | jl .Linner | ||
158 | |||
159 | xor %rdx,%rdx | ||
160 | add $hi0,$hi1 | ||
161 | adc \$0,%rdx | ||
162 | add $lo0,$hi1 # pull upmost overflow bit | ||
163 | adc \$0,%rdx | ||
164 | mov $hi1,-8(%rsp,$num,8) | ||
165 | mov %rdx,(%rsp,$num,8) # store upmost overflow bit | ||
166 | |||
167 | lea 1($i),$i # i++ | ||
168 | cmp $num,$i | ||
169 | jl .Louter | ||
170 | |||
171 | lea (%rsp),$ap # borrow ap for tp | ||
172 | lea -1($num),$j # j=num-1 | ||
173 | |||
174 | mov ($ap),%rax # tp[0] | ||
175 | xor $i,$i # i=0 and clear CF! | ||
176 | jmp .Lsub | ||
177 | .align 16 | ||
178 | .Lsub: sbb ($np,$i,8),%rax | ||
179 | mov %rax,($rp,$i,8) # rp[i]=tp[i]-np[i] | ||
180 | dec $j # doesn't affect CF! | ||
181 | mov 8($ap,$i,8),%rax # tp[i+1] | ||
182 | lea 1($i),$i # i++ | ||
183 | jge .Lsub | ||
184 | |||
185 | sbb \$0,%rax # handle upmost overflow bit | ||
186 | and %rax,$ap | ||
187 | not %rax | ||
188 | mov $rp,$np | ||
189 | and %rax,$np | ||
190 | lea -1($num),$j | ||
191 | or $np,$ap # ap=borrow?tp:rp | ||
192 | .align 16 | ||
193 | .Lcopy: # copy or in-place refresh | ||
194 | mov ($ap,$j,8),%rax | ||
195 | mov %rax,($rp,$j,8) # rp[i]=tp[i] | ||
196 | mov $i,(%rsp,$j,8) # zap temporary vector | ||
197 | dec $j | ||
198 | jge .Lcopy | ||
199 | |||
200 | mov 8(%rsp,$num,8),%rsp # restore %rsp | ||
201 | mov \$1,%rax | ||
202 | pop %r15 | ||
203 | pop %r14 | ||
204 | pop %r13 | ||
205 | pop %r12 | ||
206 | pop %rbp | ||
207 | pop %rbx | ||
208 | ret | ||
209 | .size bn_mul_mont,.-bn_mul_mont | ||
210 | .asciz "Montgomery Multiplication for x86_64, CRYPTOGAMS by <appro\@openssl.org>" | ||
211 | ___ | ||
212 | |||
213 | print $code; | ||
214 | close STDOUT; | ||
diff --git a/src/lib/libcrypto/bn/bn_const.c b/src/lib/libcrypto/bn/bn_const.c new file mode 100644 index 0000000000..eb60a25b3c --- /dev/null +++ b/src/lib/libcrypto/bn/bn_const.c | |||
@@ -0,0 +1,402 @@ | |||
1 | /* crypto/bn/knownprimes.c */ | ||
2 | /* Insert boilerplate */ | ||
3 | |||
4 | #include "bn.h" | ||
5 | |||
6 | /* "First Oakley Default Group" from RFC2409, section 6.1. | ||
7 | * | ||
8 | * The prime is: 2^768 - 2 ^704 - 1 + 2^64 * { [2^638 pi] + 149686 } | ||
9 | * | ||
10 | * RFC2409 specifies a generator of 2. | ||
11 | * RFC2412 specifies a generator of of 22. | ||
12 | */ | ||
13 | |||
14 | BIGNUM *get_rfc2409_prime_768(BIGNUM *bn) | ||
15 | { | ||
16 | static const unsigned char RFC2409_PRIME_768[]={ | ||
17 | 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xC9,0x0F,0xDA,0xA2, | ||
18 | 0x21,0x68,0xC2,0x34,0xC4,0xC6,0x62,0x8B,0x80,0xDC,0x1C,0xD1, | ||
19 | 0x29,0x02,0x4E,0x08,0x8A,0x67,0xCC,0x74,0x02,0x0B,0xBE,0xA6, | ||
20 | 0x3B,0x13,0x9B,0x22,0x51,0x4A,0x08,0x79,0x8E,0x34,0x04,0xDD, | ||
21 | 0xEF,0x95,0x19,0xB3,0xCD,0x3A,0x43,0x1B,0x30,0x2B,0x0A,0x6D, | ||
22 | 0xF2,0x5F,0x14,0x37,0x4F,0xE1,0x35,0x6D,0x6D,0x51,0xC2,0x45, | ||
23 | 0xE4,0x85,0xB5,0x76,0x62,0x5E,0x7E,0xC6,0xF4,0x4C,0x42,0xE9, | ||
24 | 0xA6,0x3A,0x36,0x20,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, | ||
25 | }; | ||
26 | return BN_bin2bn(RFC2409_PRIME_768,sizeof(RFC2409_PRIME_768),bn); | ||
27 | } | ||
28 | |||
29 | /* "Second Oakley Default Group" from RFC2409, section 6.2. | ||
30 | * | ||
31 | * The prime is: 2^1024 - 2^960 - 1 + 2^64 * { [2^894 pi] + 129093 }. | ||
32 | * | ||
33 | * RFC2409 specifies a generator of 2. | ||
34 | * RFC2412 specifies a generator of 22. | ||
35 | */ | ||
36 | |||
37 | BIGNUM *get_rfc2409_prime_1024(BIGNUM *bn) | ||
38 | { | ||
39 | static const unsigned char RFC2409_PRIME_1024[]={ | ||
40 | 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xC9,0x0F,0xDA,0xA2, | ||
41 | 0x21,0x68,0xC2,0x34,0xC4,0xC6,0x62,0x8B,0x80,0xDC,0x1C,0xD1, | ||
42 | 0x29,0x02,0x4E,0x08,0x8A,0x67,0xCC,0x74,0x02,0x0B,0xBE,0xA6, | ||
43 | 0x3B,0x13,0x9B,0x22,0x51,0x4A,0x08,0x79,0x8E,0x34,0x04,0xDD, | ||
44 | 0xEF,0x95,0x19,0xB3,0xCD,0x3A,0x43,0x1B,0x30,0x2B,0x0A,0x6D, | ||
45 | 0xF2,0x5F,0x14,0x37,0x4F,0xE1,0x35,0x6D,0x6D,0x51,0xC2,0x45, | ||
46 | 0xE4,0x85,0xB5,0x76,0x62,0x5E,0x7E,0xC6,0xF4,0x4C,0x42,0xE9, | ||
47 | 0xA6,0x37,0xED,0x6B,0x0B,0xFF,0x5C,0xB6,0xF4,0x06,0xB7,0xED, | ||
48 | 0xEE,0x38,0x6B,0xFB,0x5A,0x89,0x9F,0xA5,0xAE,0x9F,0x24,0x11, | ||
49 | 0x7C,0x4B,0x1F,0xE6,0x49,0x28,0x66,0x51,0xEC,0xE6,0x53,0x81, | ||
50 | 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, | ||
51 | }; | ||
52 | return BN_bin2bn(RFC2409_PRIME_1024,sizeof(RFC2409_PRIME_1024),bn); | ||
53 | } | ||
54 | |||
55 | /* "1536-bit MODP Group" from RFC3526, Section 2. | ||
56 | * | ||
57 | * The prime is: 2^1536 - 2^1472 - 1 + 2^64 * { [2^1406 pi] + 741804 } | ||
58 | * | ||
59 | * RFC3526 specifies a generator of 2. | ||
60 | * RFC2312 specifies a generator of 22. | ||
61 | */ | ||
62 | |||
63 | BIGNUM *get_rfc3526_prime_1536(BIGNUM *bn) | ||
64 | { | ||
65 | static const unsigned char RFC3526_PRIME_1536[]={ | ||
66 | 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xC9,0x0F,0xDA,0xA2, | ||
67 | 0x21,0x68,0xC2,0x34,0xC4,0xC6,0x62,0x8B,0x80,0xDC,0x1C,0xD1, | ||
68 | 0x29,0x02,0x4E,0x08,0x8A,0x67,0xCC,0x74,0x02,0x0B,0xBE,0xA6, | ||
69 | 0x3B,0x13,0x9B,0x22,0x51,0x4A,0x08,0x79,0x8E,0x34,0x04,0xDD, | ||
70 | 0xEF,0x95,0x19,0xB3,0xCD,0x3A,0x43,0x1B,0x30,0x2B,0x0A,0x6D, | ||
71 | 0xF2,0x5F,0x14,0x37,0x4F,0xE1,0x35,0x6D,0x6D,0x51,0xC2,0x45, | ||
72 | 0xE4,0x85,0xB5,0x76,0x62,0x5E,0x7E,0xC6,0xF4,0x4C,0x42,0xE9, | ||
73 | 0xA6,0x37,0xED,0x6B,0x0B,0xFF,0x5C,0xB6,0xF4,0x06,0xB7,0xED, | ||
74 | 0xEE,0x38,0x6B,0xFB,0x5A,0x89,0x9F,0xA5,0xAE,0x9F,0x24,0x11, | ||
75 | 0x7C,0x4B,0x1F,0xE6,0x49,0x28,0x66,0x51,0xEC,0xE4,0x5B,0x3D, | ||
76 | 0xC2,0x00,0x7C,0xB8,0xA1,0x63,0xBF,0x05,0x98,0xDA,0x48,0x36, | ||
77 | 0x1C,0x55,0xD3,0x9A,0x69,0x16,0x3F,0xA8,0xFD,0x24,0xCF,0x5F, | ||
78 | 0x83,0x65,0x5D,0x23,0xDC,0xA3,0xAD,0x96,0x1C,0x62,0xF3,0x56, | ||
79 | 0x20,0x85,0x52,0xBB,0x9E,0xD5,0x29,0x07,0x70,0x96,0x96,0x6D, | ||
80 | 0x67,0x0C,0x35,0x4E,0x4A,0xBC,0x98,0x04,0xF1,0x74,0x6C,0x08, | ||
81 | 0xCA,0x23,0x73,0x27,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, | ||
82 | }; | ||
83 | return BN_bin2bn(RFC3526_PRIME_1536,sizeof(RFC3526_PRIME_1536),bn); | ||
84 | } | ||
85 | |||
86 | /* "2048-bit MODP Group" from RFC3526, Section 3. | ||
87 | * | ||
88 | * The prime is: 2^2048 - 2^1984 - 1 + 2^64 * { [2^1918 pi] + 124476 } | ||
89 | * | ||
90 | * RFC3526 specifies a generator of 2. | ||
91 | */ | ||
92 | |||
93 | BIGNUM *get_rfc3526_prime_2048(BIGNUM *bn) | ||
94 | { | ||
95 | static const unsigned char RFC3526_PRIME_2048[]={ | ||
96 | 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xC9,0x0F,0xDA,0xA2, | ||
97 | 0x21,0x68,0xC2,0x34,0xC4,0xC6,0x62,0x8B,0x80,0xDC,0x1C,0xD1, | ||
98 | 0x29,0x02,0x4E,0x08,0x8A,0x67,0xCC,0x74,0x02,0x0B,0xBE,0xA6, | ||
99 | 0x3B,0x13,0x9B,0x22,0x51,0x4A,0x08,0x79,0x8E,0x34,0x04,0xDD, | ||
100 | 0xEF,0x95,0x19,0xB3,0xCD,0x3A,0x43,0x1B,0x30,0x2B,0x0A,0x6D, | ||
101 | 0xF2,0x5F,0x14,0x37,0x4F,0xE1,0x35,0x6D,0x6D,0x51,0xC2,0x45, | ||
102 | 0xE4,0x85,0xB5,0x76,0x62,0x5E,0x7E,0xC6,0xF4,0x4C,0x42,0xE9, | ||
103 | 0xA6,0x37,0xED,0x6B,0x0B,0xFF,0x5C,0xB6,0xF4,0x06,0xB7,0xED, | ||
104 | 0xEE,0x38,0x6B,0xFB,0x5A,0x89,0x9F,0xA5,0xAE,0x9F,0x24,0x11, | ||
105 | 0x7C,0x4B,0x1F,0xE6,0x49,0x28,0x66,0x51,0xEC,0xE4,0x5B,0x3D, | ||
106 | 0xC2,0x00,0x7C,0xB8,0xA1,0x63,0xBF,0x05,0x98,0xDA,0x48,0x36, | ||
107 | 0x1C,0x55,0xD3,0x9A,0x69,0x16,0x3F,0xA8,0xFD,0x24,0xCF,0x5F, | ||
108 | 0x83,0x65,0x5D,0x23,0xDC,0xA3,0xAD,0x96,0x1C,0x62,0xF3,0x56, | ||
109 | 0x20,0x85,0x52,0xBB,0x9E,0xD5,0x29,0x07,0x70,0x96,0x96,0x6D, | ||
110 | 0x67,0x0C,0x35,0x4E,0x4A,0xBC,0x98,0x04,0xF1,0x74,0x6C,0x08, | ||
111 | 0xCA,0x18,0x21,0x7C,0x32,0x90,0x5E,0x46,0x2E,0x36,0xCE,0x3B, | ||
112 | 0xE3,0x9E,0x77,0x2C,0x18,0x0E,0x86,0x03,0x9B,0x27,0x83,0xA2, | ||
113 | 0xEC,0x07,0xA2,0x8F,0xB5,0xC5,0x5D,0xF0,0x6F,0x4C,0x52,0xC9, | ||
114 | 0xDE,0x2B,0xCB,0xF6,0x95,0x58,0x17,0x18,0x39,0x95,0x49,0x7C, | ||
115 | 0xEA,0x95,0x6A,0xE5,0x15,0xD2,0x26,0x18,0x98,0xFA,0x05,0x10, | ||
116 | 0x15,0x72,0x8E,0x5A,0x8A,0xAC,0xAA,0x68,0xFF,0xFF,0xFF,0xFF, | ||
117 | 0xFF,0xFF,0xFF,0xFF, | ||
118 | }; | ||
119 | return BN_bin2bn(RFC3526_PRIME_2048,sizeof(RFC3526_PRIME_2048),bn); | ||
120 | } | ||
121 | |||
122 | /* "3072-bit MODP Group" from RFC3526, Section 4. | ||
123 | * | ||
124 | * The prime is: 2^3072 - 2^3008 - 1 + 2^64 * { [2^2942 pi] + 1690314 } | ||
125 | * | ||
126 | * RFC3526 specifies a generator of 2. | ||
127 | */ | ||
128 | |||
129 | BIGNUM *get_rfc3526_prime_3072(BIGNUM *bn) | ||
130 | { | ||
131 | static const unsigned char RFC3526_PRIME_3072[]={ | ||
132 | 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xC9,0x0F,0xDA,0xA2, | ||
133 | 0x21,0x68,0xC2,0x34,0xC4,0xC6,0x62,0x8B,0x80,0xDC,0x1C,0xD1, | ||
134 | 0x29,0x02,0x4E,0x08,0x8A,0x67,0xCC,0x74,0x02,0x0B,0xBE,0xA6, | ||
135 | 0x3B,0x13,0x9B,0x22,0x51,0x4A,0x08,0x79,0x8E,0x34,0x04,0xDD, | ||
136 | 0xEF,0x95,0x19,0xB3,0xCD,0x3A,0x43,0x1B,0x30,0x2B,0x0A,0x6D, | ||
137 | 0xF2,0x5F,0x14,0x37,0x4F,0xE1,0x35,0x6D,0x6D,0x51,0xC2,0x45, | ||
138 | 0xE4,0x85,0xB5,0x76,0x62,0x5E,0x7E,0xC6,0xF4,0x4C,0x42,0xE9, | ||
139 | 0xA6,0x37,0xED,0x6B,0x0B,0xFF,0x5C,0xB6,0xF4,0x06,0xB7,0xED, | ||
140 | 0xEE,0x38,0x6B,0xFB,0x5A,0x89,0x9F,0xA5,0xAE,0x9F,0x24,0x11, | ||
141 | 0x7C,0x4B,0x1F,0xE6,0x49,0x28,0x66,0x51,0xEC,0xE4,0x5B,0x3D, | ||
142 | 0xC2,0x00,0x7C,0xB8,0xA1,0x63,0xBF,0x05,0x98,0xDA,0x48,0x36, | ||
143 | 0x1C,0x55,0xD3,0x9A,0x69,0x16,0x3F,0xA8,0xFD,0x24,0xCF,0x5F, | ||
144 | 0x83,0x65,0x5D,0x23,0xDC,0xA3,0xAD,0x96,0x1C,0x62,0xF3,0x56, | ||
145 | 0x20,0x85,0x52,0xBB,0x9E,0xD5,0x29,0x07,0x70,0x96,0x96,0x6D, | ||
146 | 0x67,0x0C,0x35,0x4E,0x4A,0xBC,0x98,0x04,0xF1,0x74,0x6C,0x08, | ||
147 | 0xCA,0x18,0x21,0x7C,0x32,0x90,0x5E,0x46,0x2E,0x36,0xCE,0x3B, | ||
148 | 0xE3,0x9E,0x77,0x2C,0x18,0x0E,0x86,0x03,0x9B,0x27,0x83,0xA2, | ||
149 | 0xEC,0x07,0xA2,0x8F,0xB5,0xC5,0x5D,0xF0,0x6F,0x4C,0x52,0xC9, | ||
150 | 0xDE,0x2B,0xCB,0xF6,0x95,0x58,0x17,0x18,0x39,0x95,0x49,0x7C, | ||
151 | 0xEA,0x95,0x6A,0xE5,0x15,0xD2,0x26,0x18,0x98,0xFA,0x05,0x10, | ||
152 | 0x15,0x72,0x8E,0x5A,0x8A,0xAA,0xC4,0x2D,0xAD,0x33,0x17,0x0D, | ||
153 | 0x04,0x50,0x7A,0x33,0xA8,0x55,0x21,0xAB,0xDF,0x1C,0xBA,0x64, | ||
154 | 0xEC,0xFB,0x85,0x04,0x58,0xDB,0xEF,0x0A,0x8A,0xEA,0x71,0x57, | ||
155 | 0x5D,0x06,0x0C,0x7D,0xB3,0x97,0x0F,0x85,0xA6,0xE1,0xE4,0xC7, | ||
156 | 0xAB,0xF5,0xAE,0x8C,0xDB,0x09,0x33,0xD7,0x1E,0x8C,0x94,0xE0, | ||
157 | 0x4A,0x25,0x61,0x9D,0xCE,0xE3,0xD2,0x26,0x1A,0xD2,0xEE,0x6B, | ||
158 | 0xF1,0x2F,0xFA,0x06,0xD9,0x8A,0x08,0x64,0xD8,0x76,0x02,0x73, | ||
159 | 0x3E,0xC8,0x6A,0x64,0x52,0x1F,0x2B,0x18,0x17,0x7B,0x20,0x0C, | ||
160 | 0xBB,0xE1,0x17,0x57,0x7A,0x61,0x5D,0x6C,0x77,0x09,0x88,0xC0, | ||
161 | 0xBA,0xD9,0x46,0xE2,0x08,0xE2,0x4F,0xA0,0x74,0xE5,0xAB,0x31, | ||
162 | 0x43,0xDB,0x5B,0xFC,0xE0,0xFD,0x10,0x8E,0x4B,0x82,0xD1,0x20, | ||
163 | 0xA9,0x3A,0xD2,0xCA,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, | ||
164 | }; | ||
165 | return BN_bin2bn(RFC3526_PRIME_3072,sizeof(RFC3526_PRIME_3072),bn); | ||
166 | } | ||
167 | |||
168 | /* "4096-bit MODP Group" from RFC3526, Section 5. | ||
169 | * | ||
170 | * The prime is: 2^4096 - 2^4032 - 1 + 2^64 * { [2^3966 pi] + 240904 } | ||
171 | * | ||
172 | * RFC3526 specifies a generator of 2. | ||
173 | */ | ||
174 | |||
175 | BIGNUM *get_rfc3526_prime_4096(BIGNUM *bn) | ||
176 | { | ||
177 | static const unsigned char RFC3526_PRIME_4096[]={ | ||
178 | 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xC9,0x0F,0xDA,0xA2, | ||
179 | 0x21,0x68,0xC2,0x34,0xC4,0xC6,0x62,0x8B,0x80,0xDC,0x1C,0xD1, | ||
180 | 0x29,0x02,0x4E,0x08,0x8A,0x67,0xCC,0x74,0x02,0x0B,0xBE,0xA6, | ||
181 | 0x3B,0x13,0x9B,0x22,0x51,0x4A,0x08,0x79,0x8E,0x34,0x04,0xDD, | ||
182 | 0xEF,0x95,0x19,0xB3,0xCD,0x3A,0x43,0x1B,0x30,0x2B,0x0A,0x6D, | ||
183 | 0xF2,0x5F,0x14,0x37,0x4F,0xE1,0x35,0x6D,0x6D,0x51,0xC2,0x45, | ||
184 | 0xE4,0x85,0xB5,0x76,0x62,0x5E,0x7E,0xC6,0xF4,0x4C,0x42,0xE9, | ||
185 | 0xA6,0x37,0xED,0x6B,0x0B,0xFF,0x5C,0xB6,0xF4,0x06,0xB7,0xED, | ||
186 | 0xEE,0x38,0x6B,0xFB,0x5A,0x89,0x9F,0xA5,0xAE,0x9F,0x24,0x11, | ||
187 | 0x7C,0x4B,0x1F,0xE6,0x49,0x28,0x66,0x51,0xEC,0xE4,0x5B,0x3D, | ||
188 | 0xC2,0x00,0x7C,0xB8,0xA1,0x63,0xBF,0x05,0x98,0xDA,0x48,0x36, | ||
189 | 0x1C,0x55,0xD3,0x9A,0x69,0x16,0x3F,0xA8,0xFD,0x24,0xCF,0x5F, | ||
190 | 0x83,0x65,0x5D,0x23,0xDC,0xA3,0xAD,0x96,0x1C,0x62,0xF3,0x56, | ||
191 | 0x20,0x85,0x52,0xBB,0x9E,0xD5,0x29,0x07,0x70,0x96,0x96,0x6D, | ||
192 | 0x67,0x0C,0x35,0x4E,0x4A,0xBC,0x98,0x04,0xF1,0x74,0x6C,0x08, | ||
193 | 0xCA,0x18,0x21,0x7C,0x32,0x90,0x5E,0x46,0x2E,0x36,0xCE,0x3B, | ||
194 | 0xE3,0x9E,0x77,0x2C,0x18,0x0E,0x86,0x03,0x9B,0x27,0x83,0xA2, | ||
195 | 0xEC,0x07,0xA2,0x8F,0xB5,0xC5,0x5D,0xF0,0x6F,0x4C,0x52,0xC9, | ||
196 | 0xDE,0x2B,0xCB,0xF6,0x95,0x58,0x17,0x18,0x39,0x95,0x49,0x7C, | ||
197 | 0xEA,0x95,0x6A,0xE5,0x15,0xD2,0x26,0x18,0x98,0xFA,0x05,0x10, | ||
198 | 0x15,0x72,0x8E,0x5A,0x8A,0xAA,0xC4,0x2D,0xAD,0x33,0x17,0x0D, | ||
199 | 0x04,0x50,0x7A,0x33,0xA8,0x55,0x21,0xAB,0xDF,0x1C,0xBA,0x64, | ||
200 | 0xEC,0xFB,0x85,0x04,0x58,0xDB,0xEF,0x0A,0x8A,0xEA,0x71,0x57, | ||
201 | 0x5D,0x06,0x0C,0x7D,0xB3,0x97,0x0F,0x85,0xA6,0xE1,0xE4,0xC7, | ||
202 | 0xAB,0xF5,0xAE,0x8C,0xDB,0x09,0x33,0xD7,0x1E,0x8C,0x94,0xE0, | ||
203 | 0x4A,0x25,0x61,0x9D,0xCE,0xE3,0xD2,0x26,0x1A,0xD2,0xEE,0x6B, | ||
204 | 0xF1,0x2F,0xFA,0x06,0xD9,0x8A,0x08,0x64,0xD8,0x76,0x02,0x73, | ||
205 | 0x3E,0xC8,0x6A,0x64,0x52,0x1F,0x2B,0x18,0x17,0x7B,0x20,0x0C, | ||
206 | 0xBB,0xE1,0x17,0x57,0x7A,0x61,0x5D,0x6C,0x77,0x09,0x88,0xC0, | ||
207 | 0xBA,0xD9,0x46,0xE2,0x08,0xE2,0x4F,0xA0,0x74,0xE5,0xAB,0x31, | ||
208 | 0x43,0xDB,0x5B,0xFC,0xE0,0xFD,0x10,0x8E,0x4B,0x82,0xD1,0x20, | ||
209 | 0xA9,0x21,0x08,0x01,0x1A,0x72,0x3C,0x12,0xA7,0x87,0xE6,0xD7, | ||
210 | 0x88,0x71,0x9A,0x10,0xBD,0xBA,0x5B,0x26,0x99,0xC3,0x27,0x18, | ||
211 | 0x6A,0xF4,0xE2,0x3C,0x1A,0x94,0x68,0x34,0xB6,0x15,0x0B,0xDA, | ||
212 | 0x25,0x83,0xE9,0xCA,0x2A,0xD4,0x4C,0xE8,0xDB,0xBB,0xC2,0xDB, | ||
213 | 0x04,0xDE,0x8E,0xF9,0x2E,0x8E,0xFC,0x14,0x1F,0xBE,0xCA,0xA6, | ||
214 | 0x28,0x7C,0x59,0x47,0x4E,0x6B,0xC0,0x5D,0x99,0xB2,0x96,0x4F, | ||
215 | 0xA0,0x90,0xC3,0xA2,0x23,0x3B,0xA1,0x86,0x51,0x5B,0xE7,0xED, | ||
216 | 0x1F,0x61,0x29,0x70,0xCE,0xE2,0xD7,0xAF,0xB8,0x1B,0xDD,0x76, | ||
217 | 0x21,0x70,0x48,0x1C,0xD0,0x06,0x91,0x27,0xD5,0xB0,0x5A,0xA9, | ||
218 | 0x93,0xB4,0xEA,0x98,0x8D,0x8F,0xDD,0xC1,0x86,0xFF,0xB7,0xDC, | ||
219 | 0x90,0xA6,0xC0,0x8F,0x4D,0xF4,0x35,0xC9,0x34,0x06,0x31,0x99, | ||
220 | 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, | ||
221 | }; | ||
222 | return BN_bin2bn(RFC3526_PRIME_4096,sizeof(RFC3526_PRIME_4096),bn); | ||
223 | } | ||
224 | |||
225 | /* "6144-bit MODP Group" from RFC3526, Section 6. | ||
226 | * | ||
227 | * The prime is: 2^6144 - 2^6080 - 1 + 2^64 * { [2^6014 pi] + 929484 } | ||
228 | * | ||
229 | * RFC3526 specifies a generator of 2. | ||
230 | */ | ||
231 | |||
232 | BIGNUM *get_rfc3526_prime_6144(BIGNUM *bn) | ||
233 | { | ||
234 | static const unsigned char RFC3526_PRIME_6144[]={ | ||
235 | 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xC9,0x0F,0xDA,0xA2, | ||
236 | 0x21,0x68,0xC2,0x34,0xC4,0xC6,0x62,0x8B,0x80,0xDC,0x1C,0xD1, | ||
237 | 0x29,0x02,0x4E,0x08,0x8A,0x67,0xCC,0x74,0x02,0x0B,0xBE,0xA6, | ||
238 | 0x3B,0x13,0x9B,0x22,0x51,0x4A,0x08,0x79,0x8E,0x34,0x04,0xDD, | ||
239 | 0xEF,0x95,0x19,0xB3,0xCD,0x3A,0x43,0x1B,0x30,0x2B,0x0A,0x6D, | ||
240 | 0xF2,0x5F,0x14,0x37,0x4F,0xE1,0x35,0x6D,0x6D,0x51,0xC2,0x45, | ||
241 | 0xE4,0x85,0xB5,0x76,0x62,0x5E,0x7E,0xC6,0xF4,0x4C,0x42,0xE9, | ||
242 | 0xA6,0x37,0xED,0x6B,0x0B,0xFF,0x5C,0xB6,0xF4,0x06,0xB7,0xED, | ||
243 | 0xEE,0x38,0x6B,0xFB,0x5A,0x89,0x9F,0xA5,0xAE,0x9F,0x24,0x11, | ||
244 | 0x7C,0x4B,0x1F,0xE6,0x49,0x28,0x66,0x51,0xEC,0xE4,0x5B,0x3D, | ||
245 | 0xC2,0x00,0x7C,0xB8,0xA1,0x63,0xBF,0x05,0x98,0xDA,0x48,0x36, | ||
246 | 0x1C,0x55,0xD3,0x9A,0x69,0x16,0x3F,0xA8,0xFD,0x24,0xCF,0x5F, | ||
247 | 0x83,0x65,0x5D,0x23,0xDC,0xA3,0xAD,0x96,0x1C,0x62,0xF3,0x56, | ||
248 | 0x20,0x85,0x52,0xBB,0x9E,0xD5,0x29,0x07,0x70,0x96,0x96,0x6D, | ||
249 | 0x67,0x0C,0x35,0x4E,0x4A,0xBC,0x98,0x04,0xF1,0x74,0x6C,0x08, | ||
250 | 0xCA,0x18,0x21,0x7C,0x32,0x90,0x5E,0x46,0x2E,0x36,0xCE,0x3B, | ||
251 | 0xE3,0x9E,0x77,0x2C,0x18,0x0E,0x86,0x03,0x9B,0x27,0x83,0xA2, | ||
252 | 0xEC,0x07,0xA2,0x8F,0xB5,0xC5,0x5D,0xF0,0x6F,0x4C,0x52,0xC9, | ||
253 | 0xDE,0x2B,0xCB,0xF6,0x95,0x58,0x17,0x18,0x39,0x95,0x49,0x7C, | ||
254 | 0xEA,0x95,0x6A,0xE5,0x15,0xD2,0x26,0x18,0x98,0xFA,0x05,0x10, | ||
255 | 0x15,0x72,0x8E,0x5A,0x8A,0xAA,0xC4,0x2D,0xAD,0x33,0x17,0x0D, | ||
256 | 0x04,0x50,0x7A,0x33,0xA8,0x55,0x21,0xAB,0xDF,0x1C,0xBA,0x64, | ||
257 | 0xEC,0xFB,0x85,0x04,0x58,0xDB,0xEF,0x0A,0x8A,0xEA,0x71,0x57, | ||
258 | 0x5D,0x06,0x0C,0x7D,0xB3,0x97,0x0F,0x85,0xA6,0xE1,0xE4,0xC7, | ||
259 | 0xAB,0xF5,0xAE,0x8C,0xDB,0x09,0x33,0xD7,0x1E,0x8C,0x94,0xE0, | ||
260 | 0x4A,0x25,0x61,0x9D,0xCE,0xE3,0xD2,0x26,0x1A,0xD2,0xEE,0x6B, | ||
261 | 0xF1,0x2F,0xFA,0x06,0xD9,0x8A,0x08,0x64,0xD8,0x76,0x02,0x73, | ||
262 | 0x3E,0xC8,0x6A,0x64,0x52,0x1F,0x2B,0x18,0x17,0x7B,0x20,0x0C, | ||
263 | 0xBB,0xE1,0x17,0x57,0x7A,0x61,0x5D,0x6C,0x77,0x09,0x88,0xC0, | ||
264 | 0xBA,0xD9,0x46,0xE2,0x08,0xE2,0x4F,0xA0,0x74,0xE5,0xAB,0x31, | ||
265 | 0x43,0xDB,0x5B,0xFC,0xE0,0xFD,0x10,0x8E,0x4B,0x82,0xD1,0x20, | ||
266 | 0xA9,0x21,0x08,0x01,0x1A,0x72,0x3C,0x12,0xA7,0x87,0xE6,0xD7, | ||
267 | 0x88,0x71,0x9A,0x10,0xBD,0xBA,0x5B,0x26,0x99,0xC3,0x27,0x18, | ||
268 | 0x6A,0xF4,0xE2,0x3C,0x1A,0x94,0x68,0x34,0xB6,0x15,0x0B,0xDA, | ||
269 | 0x25,0x83,0xE9,0xCA,0x2A,0xD4,0x4C,0xE8,0xDB,0xBB,0xC2,0xDB, | ||
270 | 0x04,0xDE,0x8E,0xF9,0x2E,0x8E,0xFC,0x14,0x1F,0xBE,0xCA,0xA6, | ||
271 | 0x28,0x7C,0x59,0x47,0x4E,0x6B,0xC0,0x5D,0x99,0xB2,0x96,0x4F, | ||
272 | 0xA0,0x90,0xC3,0xA2,0x23,0x3B,0xA1,0x86,0x51,0x5B,0xE7,0xED, | ||
273 | 0x1F,0x61,0x29,0x70,0xCE,0xE2,0xD7,0xAF,0xB8,0x1B,0xDD,0x76, | ||
274 | 0x21,0x70,0x48,0x1C,0xD0,0x06,0x91,0x27,0xD5,0xB0,0x5A,0xA9, | ||
275 | 0x93,0xB4,0xEA,0x98,0x8D,0x8F,0xDD,0xC1,0x86,0xFF,0xB7,0xDC, | ||
276 | 0x90,0xA6,0xC0,0x8F,0x4D,0xF4,0x35,0xC9,0x34,0x02,0x84,0x92, | ||
277 | 0x36,0xC3,0xFA,0xB4,0xD2,0x7C,0x70,0x26,0xC1,0xD4,0xDC,0xB2, | ||
278 | 0x60,0x26,0x46,0xDE,0xC9,0x75,0x1E,0x76,0x3D,0xBA,0x37,0xBD, | ||
279 | 0xF8,0xFF,0x94,0x06,0xAD,0x9E,0x53,0x0E,0xE5,0xDB,0x38,0x2F, | ||
280 | 0x41,0x30,0x01,0xAE,0xB0,0x6A,0x53,0xED,0x90,0x27,0xD8,0x31, | ||
281 | 0x17,0x97,0x27,0xB0,0x86,0x5A,0x89,0x18,0xDA,0x3E,0xDB,0xEB, | ||
282 | 0xCF,0x9B,0x14,0xED,0x44,0xCE,0x6C,0xBA,0xCE,0xD4,0xBB,0x1B, | ||
283 | 0xDB,0x7F,0x14,0x47,0xE6,0xCC,0x25,0x4B,0x33,0x20,0x51,0x51, | ||
284 | 0x2B,0xD7,0xAF,0x42,0x6F,0xB8,0xF4,0x01,0x37,0x8C,0xD2,0xBF, | ||
285 | 0x59,0x83,0xCA,0x01,0xC6,0x4B,0x92,0xEC,0xF0,0x32,0xEA,0x15, | ||
286 | 0xD1,0x72,0x1D,0x03,0xF4,0x82,0xD7,0xCE,0x6E,0x74,0xFE,0xF6, | ||
287 | 0xD5,0x5E,0x70,0x2F,0x46,0x98,0x0C,0x82,0xB5,0xA8,0x40,0x31, | ||
288 | 0x90,0x0B,0x1C,0x9E,0x59,0xE7,0xC9,0x7F,0xBE,0xC7,0xE8,0xF3, | ||
289 | 0x23,0xA9,0x7A,0x7E,0x36,0xCC,0x88,0xBE,0x0F,0x1D,0x45,0xB7, | ||
290 | 0xFF,0x58,0x5A,0xC5,0x4B,0xD4,0x07,0xB2,0x2B,0x41,0x54,0xAA, | ||
291 | 0xCC,0x8F,0x6D,0x7E,0xBF,0x48,0xE1,0xD8,0x14,0xCC,0x5E,0xD2, | ||
292 | 0x0F,0x80,0x37,0xE0,0xA7,0x97,0x15,0xEE,0xF2,0x9B,0xE3,0x28, | ||
293 | 0x06,0xA1,0xD5,0x8B,0xB7,0xC5,0xDA,0x76,0xF5,0x50,0xAA,0x3D, | ||
294 | 0x8A,0x1F,0xBF,0xF0,0xEB,0x19,0xCC,0xB1,0xA3,0x13,0xD5,0x5C, | ||
295 | 0xDA,0x56,0xC9,0xEC,0x2E,0xF2,0x96,0x32,0x38,0x7F,0xE8,0xD7, | ||
296 | 0x6E,0x3C,0x04,0x68,0x04,0x3E,0x8F,0x66,0x3F,0x48,0x60,0xEE, | ||
297 | 0x12,0xBF,0x2D,0x5B,0x0B,0x74,0x74,0xD6,0xE6,0x94,0xF9,0x1E, | ||
298 | 0x6D,0xCC,0x40,0x24,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, | ||
299 | }; | ||
300 | return BN_bin2bn(RFC3526_PRIME_6144,sizeof(RFC3526_PRIME_6144),bn); | ||
301 | } | ||
302 | |||
303 | /* "8192-bit MODP Group" from RFC3526, Section 7. | ||
304 | * | ||
305 | * The prime is: 2^8192 - 2^8128 - 1 + 2^64 * { [2^8062 pi] + 4743158 } | ||
306 | * | ||
307 | * RFC3526 specifies a generator of 2. | ||
308 | */ | ||
309 | |||
310 | BIGNUM *get_rfc3526_prime_8192(BIGNUM *bn) | ||
311 | { | ||
312 | static const unsigned char RFC3526_PRIME_8192[]={ | ||
313 | 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xC9,0x0F,0xDA,0xA2, | ||
314 | 0x21,0x68,0xC2,0x34,0xC4,0xC6,0x62,0x8B,0x80,0xDC,0x1C,0xD1, | ||
315 | 0x29,0x02,0x4E,0x08,0x8A,0x67,0xCC,0x74,0x02,0x0B,0xBE,0xA6, | ||
316 | 0x3B,0x13,0x9B,0x22,0x51,0x4A,0x08,0x79,0x8E,0x34,0x04,0xDD, | ||
317 | 0xEF,0x95,0x19,0xB3,0xCD,0x3A,0x43,0x1B,0x30,0x2B,0x0A,0x6D, | ||
318 | 0xF2,0x5F,0x14,0x37,0x4F,0xE1,0x35,0x6D,0x6D,0x51,0xC2,0x45, | ||
319 | 0xE4,0x85,0xB5,0x76,0x62,0x5E,0x7E,0xC6,0xF4,0x4C,0x42,0xE9, | ||
320 | 0xA6,0x37,0xED,0x6B,0x0B,0xFF,0x5C,0xB6,0xF4,0x06,0xB7,0xED, | ||
321 | 0xEE,0x38,0x6B,0xFB,0x5A,0x89,0x9F,0xA5,0xAE,0x9F,0x24,0x11, | ||
322 | 0x7C,0x4B,0x1F,0xE6,0x49,0x28,0x66,0x51,0xEC,0xE4,0x5B,0x3D, | ||
323 | 0xC2,0x00,0x7C,0xB8,0xA1,0x63,0xBF,0x05,0x98,0xDA,0x48,0x36, | ||
324 | 0x1C,0x55,0xD3,0x9A,0x69,0x16,0x3F,0xA8,0xFD,0x24,0xCF,0x5F, | ||
325 | 0x83,0x65,0x5D,0x23,0xDC,0xA3,0xAD,0x96,0x1C,0x62,0xF3,0x56, | ||
326 | 0x20,0x85,0x52,0xBB,0x9E,0xD5,0x29,0x07,0x70,0x96,0x96,0x6D, | ||
327 | 0x67,0x0C,0x35,0x4E,0x4A,0xBC,0x98,0x04,0xF1,0x74,0x6C,0x08, | ||
328 | 0xCA,0x18,0x21,0x7C,0x32,0x90,0x5E,0x46,0x2E,0x36,0xCE,0x3B, | ||
329 | 0xE3,0x9E,0x77,0x2C,0x18,0x0E,0x86,0x03,0x9B,0x27,0x83,0xA2, | ||
330 | 0xEC,0x07,0xA2,0x8F,0xB5,0xC5,0x5D,0xF0,0x6F,0x4C,0x52,0xC9, | ||
331 | 0xDE,0x2B,0xCB,0xF6,0x95,0x58,0x17,0x18,0x39,0x95,0x49,0x7C, | ||
332 | 0xEA,0x95,0x6A,0xE5,0x15,0xD2,0x26,0x18,0x98,0xFA,0x05,0x10, | ||
333 | 0x15,0x72,0x8E,0x5A,0x8A,0xAA,0xC4,0x2D,0xAD,0x33,0x17,0x0D, | ||
334 | 0x04,0x50,0x7A,0x33,0xA8,0x55,0x21,0xAB,0xDF,0x1C,0xBA,0x64, | ||
335 | 0xEC,0xFB,0x85,0x04,0x58,0xDB,0xEF,0x0A,0x8A,0xEA,0x71,0x57, | ||
336 | 0x5D,0x06,0x0C,0x7D,0xB3,0x97,0x0F,0x85,0xA6,0xE1,0xE4,0xC7, | ||
337 | 0xAB,0xF5,0xAE,0x8C,0xDB,0x09,0x33,0xD7,0x1E,0x8C,0x94,0xE0, | ||
338 | 0x4A,0x25,0x61,0x9D,0xCE,0xE3,0xD2,0x26,0x1A,0xD2,0xEE,0x6B, | ||
339 | 0xF1,0x2F,0xFA,0x06,0xD9,0x8A,0x08,0x64,0xD8,0x76,0x02,0x73, | ||
340 | 0x3E,0xC8,0x6A,0x64,0x52,0x1F,0x2B,0x18,0x17,0x7B,0x20,0x0C, | ||
341 | 0xBB,0xE1,0x17,0x57,0x7A,0x61,0x5D,0x6C,0x77,0x09,0x88,0xC0, | ||
342 | 0xBA,0xD9,0x46,0xE2,0x08,0xE2,0x4F,0xA0,0x74,0xE5,0xAB,0x31, | ||
343 | 0x43,0xDB,0x5B,0xFC,0xE0,0xFD,0x10,0x8E,0x4B,0x82,0xD1,0x20, | ||
344 | 0xA9,0x21,0x08,0x01,0x1A,0x72,0x3C,0x12,0xA7,0x87,0xE6,0xD7, | ||
345 | 0x88,0x71,0x9A,0x10,0xBD,0xBA,0x5B,0x26,0x99,0xC3,0x27,0x18, | ||
346 | 0x6A,0xF4,0xE2,0x3C,0x1A,0x94,0x68,0x34,0xB6,0x15,0x0B,0xDA, | ||
347 | 0x25,0x83,0xE9,0xCA,0x2A,0xD4,0x4C,0xE8,0xDB,0xBB,0xC2,0xDB, | ||
348 | 0x04,0xDE,0x8E,0xF9,0x2E,0x8E,0xFC,0x14,0x1F,0xBE,0xCA,0xA6, | ||
349 | 0x28,0x7C,0x59,0x47,0x4E,0x6B,0xC0,0x5D,0x99,0xB2,0x96,0x4F, | ||
350 | 0xA0,0x90,0xC3,0xA2,0x23,0x3B,0xA1,0x86,0x51,0x5B,0xE7,0xED, | ||
351 | 0x1F,0x61,0x29,0x70,0xCE,0xE2,0xD7,0xAF,0xB8,0x1B,0xDD,0x76, | ||
352 | 0x21,0x70,0x48,0x1C,0xD0,0x06,0x91,0x27,0xD5,0xB0,0x5A,0xA9, | ||
353 | 0x93,0xB4,0xEA,0x98,0x8D,0x8F,0xDD,0xC1,0x86,0xFF,0xB7,0xDC, | ||
354 | 0x90,0xA6,0xC0,0x8F,0x4D,0xF4,0x35,0xC9,0x34,0x02,0x84,0x92, | ||
355 | 0x36,0xC3,0xFA,0xB4,0xD2,0x7C,0x70,0x26,0xC1,0xD4,0xDC,0xB2, | ||
356 | 0x60,0x26,0x46,0xDE,0xC9,0x75,0x1E,0x76,0x3D,0xBA,0x37,0xBD, | ||
357 | 0xF8,0xFF,0x94,0x06,0xAD,0x9E,0x53,0x0E,0xE5,0xDB,0x38,0x2F, | ||
358 | 0x41,0x30,0x01,0xAE,0xB0,0x6A,0x53,0xED,0x90,0x27,0xD8,0x31, | ||
359 | 0x17,0x97,0x27,0xB0,0x86,0x5A,0x89,0x18,0xDA,0x3E,0xDB,0xEB, | ||
360 | 0xCF,0x9B,0x14,0xED,0x44,0xCE,0x6C,0xBA,0xCE,0xD4,0xBB,0x1B, | ||
361 | 0xDB,0x7F,0x14,0x47,0xE6,0xCC,0x25,0x4B,0x33,0x20,0x51,0x51, | ||
362 | 0x2B,0xD7,0xAF,0x42,0x6F,0xB8,0xF4,0x01,0x37,0x8C,0xD2,0xBF, | ||
363 | 0x59,0x83,0xCA,0x01,0xC6,0x4B,0x92,0xEC,0xF0,0x32,0xEA,0x15, | ||
364 | 0xD1,0x72,0x1D,0x03,0xF4,0x82,0xD7,0xCE,0x6E,0x74,0xFE,0xF6, | ||
365 | 0xD5,0x5E,0x70,0x2F,0x46,0x98,0x0C,0x82,0xB5,0xA8,0x40,0x31, | ||
366 | 0x90,0x0B,0x1C,0x9E,0x59,0xE7,0xC9,0x7F,0xBE,0xC7,0xE8,0xF3, | ||
367 | 0x23,0xA9,0x7A,0x7E,0x36,0xCC,0x88,0xBE,0x0F,0x1D,0x45,0xB7, | ||
368 | 0xFF,0x58,0x5A,0xC5,0x4B,0xD4,0x07,0xB2,0x2B,0x41,0x54,0xAA, | ||
369 | 0xCC,0x8F,0x6D,0x7E,0xBF,0x48,0xE1,0xD8,0x14,0xCC,0x5E,0xD2, | ||
370 | 0x0F,0x80,0x37,0xE0,0xA7,0x97,0x15,0xEE,0xF2,0x9B,0xE3,0x28, | ||
371 | 0x06,0xA1,0xD5,0x8B,0xB7,0xC5,0xDA,0x76,0xF5,0x50,0xAA,0x3D, | ||
372 | 0x8A,0x1F,0xBF,0xF0,0xEB,0x19,0xCC,0xB1,0xA3,0x13,0xD5,0x5C, | ||
373 | 0xDA,0x56,0xC9,0xEC,0x2E,0xF2,0x96,0x32,0x38,0x7F,0xE8,0xD7, | ||
374 | 0x6E,0x3C,0x04,0x68,0x04,0x3E,0x8F,0x66,0x3F,0x48,0x60,0xEE, | ||
375 | 0x12,0xBF,0x2D,0x5B,0x0B,0x74,0x74,0xD6,0xE6,0x94,0xF9,0x1E, | ||
376 | 0x6D,0xBE,0x11,0x59,0x74,0xA3,0x92,0x6F,0x12,0xFE,0xE5,0xE4, | ||
377 | 0x38,0x77,0x7C,0xB6,0xA9,0x32,0xDF,0x8C,0xD8,0xBE,0xC4,0xD0, | ||
378 | 0x73,0xB9,0x31,0xBA,0x3B,0xC8,0x32,0xB6,0x8D,0x9D,0xD3,0x00, | ||
379 | 0x74,0x1F,0xA7,0xBF,0x8A,0xFC,0x47,0xED,0x25,0x76,0xF6,0x93, | ||
380 | 0x6B,0xA4,0x24,0x66,0x3A,0xAB,0x63,0x9C,0x5A,0xE4,0xF5,0x68, | ||
381 | 0x34,0x23,0xB4,0x74,0x2B,0xF1,0xC9,0x78,0x23,0x8F,0x16,0xCB, | ||
382 | 0xE3,0x9D,0x65,0x2D,0xE3,0xFD,0xB8,0xBE,0xFC,0x84,0x8A,0xD9, | ||
383 | 0x22,0x22,0x2E,0x04,0xA4,0x03,0x7C,0x07,0x13,0xEB,0x57,0xA8, | ||
384 | 0x1A,0x23,0xF0,0xC7,0x34,0x73,0xFC,0x64,0x6C,0xEA,0x30,0x6B, | ||
385 | 0x4B,0xCB,0xC8,0x86,0x2F,0x83,0x85,0xDD,0xFA,0x9D,0x4B,0x7F, | ||
386 | 0xA2,0xC0,0x87,0xE8,0x79,0x68,0x33,0x03,0xED,0x5B,0xDD,0x3A, | ||
387 | 0x06,0x2B,0x3C,0xF5,0xB3,0xA2,0x78,0xA6,0x6D,0x2A,0x13,0xF8, | ||
388 | 0x3F,0x44,0xF8,0x2D,0xDF,0x31,0x0E,0xE0,0x74,0xAB,0x6A,0x36, | ||
389 | 0x45,0x97,0xE8,0x99,0xA0,0x25,0x5D,0xC1,0x64,0xF3,0x1C,0xC5, | ||
390 | 0x08,0x46,0x85,0x1D,0xF9,0xAB,0x48,0x19,0x5D,0xED,0x7E,0xA1, | ||
391 | 0xB1,0xD5,0x10,0xBD,0x7E,0xE7,0x4D,0x73,0xFA,0xF3,0x6B,0xC3, | ||
392 | 0x1E,0xCF,0xA2,0x68,0x35,0x90,0x46,0xF4,0xEB,0x87,0x9F,0x92, | ||
393 | 0x40,0x09,0x43,0x8B,0x48,0x1C,0x6C,0xD7,0x88,0x9A,0x00,0x2E, | ||
394 | 0xD5,0xEE,0x38,0x2B,0xC9,0x19,0x0D,0xA6,0xFC,0x02,0x6E,0x47, | ||
395 | 0x95,0x58,0xE4,0x47,0x56,0x77,0xE9,0xAA,0x9E,0x30,0x50,0xE2, | ||
396 | 0x76,0x56,0x94,0xDF,0xC8,0x1F,0x56,0xE8,0x80,0xB9,0x6E,0x71, | ||
397 | 0x60,0xC9,0x80,0xDD,0x98,0xED,0xD3,0xDF,0xFF,0xFF,0xFF,0xFF, | ||
398 | 0xFF,0xFF,0xFF,0xFF, | ||
399 | }; | ||
400 | return BN_bin2bn(RFC3526_PRIME_8192,sizeof(RFC3526_PRIME_8192),bn); | ||
401 | } | ||
402 | |||
diff --git a/src/lib/libcrypto/bn/bn_depr.c b/src/lib/libcrypto/bn/bn_depr.c new file mode 100644 index 0000000000..27535e4fca --- /dev/null +++ b/src/lib/libcrypto/bn/bn_depr.c | |||
@@ -0,0 +1,112 @@ | |||
1 | /* crypto/bn/bn_depr.c */ | ||
2 | /* ==================================================================== | ||
3 | * Copyright (c) 1998-2002 The OpenSSL Project. All rights reserved. | ||
4 | * | ||
5 | * Redistribution and use in source and binary forms, with or without | ||
6 | * modification, are permitted provided that the following conditions | ||
7 | * are met: | ||
8 | * | ||
9 | * 1. Redistributions of source code must retain the above copyright | ||
10 | * notice, this list of conditions and the following disclaimer. | ||
11 | * | ||
12 | * 2. Redistributions in binary form must reproduce the above copyright | ||
13 | * notice, this list of conditions and the following disclaimer in | ||
14 | * the documentation and/or other materials provided with the | ||
15 | * distribution. | ||
16 | * | ||
17 | * 3. All advertising materials mentioning features or use of this | ||
18 | * software must display the following acknowledgment: | ||
19 | * "This product includes software developed by the OpenSSL Project | ||
20 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | ||
21 | * | ||
22 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
23 | * endorse or promote products derived from this software without | ||
24 | * prior written permission. For written permission, please contact | ||
25 | * openssl-core@openssl.org. | ||
26 | * | ||
27 | * 5. Products derived from this software may not be called "OpenSSL" | ||
28 | * nor may "OpenSSL" appear in their names without prior written | ||
29 | * permission of the OpenSSL Project. | ||
30 | * | ||
31 | * 6. Redistributions of any form whatsoever must retain the following | ||
32 | * acknowledgment: | ||
33 | * "This product includes software developed by the OpenSSL Project | ||
34 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" | ||
35 | * | ||
36 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
37 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
38 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
39 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
40 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
41 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
42 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
43 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
44 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
45 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
46 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
47 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
48 | * ==================================================================== | ||
49 | * | ||
50 | * This product includes cryptographic software written by Eric Young | ||
51 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
52 | * Hudson (tjh@cryptsoft.com). | ||
53 | * | ||
54 | */ | ||
55 | |||
56 | /* Support for deprecated functions goes here - static linkage will only slurp | ||
57 | * this code if applications are using them directly. */ | ||
58 | |||
59 | #include <stdio.h> | ||
60 | #include <time.h> | ||
61 | #include "cryptlib.h" | ||
62 | #include "bn_lcl.h" | ||
63 | #include <openssl/rand.h> | ||
64 | |||
65 | static void *dummy=&dummy; | ||
66 | |||
67 | #ifndef OPENSSL_NO_DEPRECATED | ||
68 | BIGNUM *BN_generate_prime(BIGNUM *ret, int bits, int safe, | ||
69 | const BIGNUM *add, const BIGNUM *rem, | ||
70 | void (*callback)(int,int,void *), void *cb_arg) | ||
71 | { | ||
72 | BN_GENCB cb; | ||
73 | BIGNUM *rnd=NULL; | ||
74 | int found = 0; | ||
75 | |||
76 | BN_GENCB_set_old(&cb, callback, cb_arg); | ||
77 | |||
78 | if (ret == NULL) | ||
79 | { | ||
80 | if ((rnd=BN_new()) == NULL) goto err; | ||
81 | } | ||
82 | else | ||
83 | rnd=ret; | ||
84 | if(!BN_generate_prime_ex(rnd, bits, safe, add, rem, &cb)) | ||
85 | goto err; | ||
86 | |||
87 | /* we have a prime :-) */ | ||
88 | found = 1; | ||
89 | err: | ||
90 | if (!found && (ret == NULL) && (rnd != NULL)) BN_free(rnd); | ||
91 | return(found ? rnd : NULL); | ||
92 | } | ||
93 | |||
94 | int BN_is_prime(const BIGNUM *a, int checks, void (*callback)(int,int,void *), | ||
95 | BN_CTX *ctx_passed, void *cb_arg) | ||
96 | { | ||
97 | BN_GENCB cb; | ||
98 | BN_GENCB_set_old(&cb, callback, cb_arg); | ||
99 | return BN_is_prime_ex(a, checks, ctx_passed, &cb); | ||
100 | } | ||
101 | |||
102 | int BN_is_prime_fasttest(const BIGNUM *a, int checks, | ||
103 | void (*callback)(int,int,void *), | ||
104 | BN_CTX *ctx_passed, void *cb_arg, | ||
105 | int do_trial_division) | ||
106 | { | ||
107 | BN_GENCB cb; | ||
108 | BN_GENCB_set_old(&cb, callback, cb_arg); | ||
109 | return BN_is_prime_fasttest_ex(a, checks, ctx_passed, | ||
110 | do_trial_division, &cb); | ||
111 | } | ||
112 | #endif | ||
diff --git a/src/lib/libcrypto/bn/bn_gf2m.c b/src/lib/libcrypto/bn/bn_gf2m.c new file mode 100644 index 0000000000..6a793857e1 --- /dev/null +++ b/src/lib/libcrypto/bn/bn_gf2m.c | |||
@@ -0,0 +1,1091 @@ | |||
1 | /* crypto/bn/bn_gf2m.c */ | ||
2 | /* ==================================================================== | ||
3 | * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. | ||
4 | * | ||
5 | * The Elliptic Curve Public-Key Crypto Library (ECC Code) included | ||
6 | * herein is developed by SUN MICROSYSTEMS, INC., and is contributed | ||
7 | * to the OpenSSL project. | ||
8 | * | ||
9 | * The ECC Code is licensed pursuant to the OpenSSL open source | ||
10 | * license provided below. | ||
11 | * | ||
12 | * In addition, Sun covenants to all licensees who provide a reciprocal | ||
13 | * covenant with respect to their own patents if any, not to sue under | ||
14 | * current and future patent claims necessarily infringed by the making, | ||
15 | * using, practicing, selling, offering for sale and/or otherwise | ||
16 | * disposing of the ECC Code as delivered hereunder (or portions thereof), | ||
17 | * provided that such covenant shall not apply: | ||
18 | * 1) for code that a licensee deletes from the ECC Code; | ||
19 | * 2) separates from the ECC Code; or | ||
20 | * 3) for infringements caused by: | ||
21 | * i) the modification of the ECC Code or | ||
22 | * ii) the combination of the ECC Code with other software or | ||
23 | * devices where such combination causes the infringement. | ||
24 | * | ||
25 | * The software is originally written by Sheueling Chang Shantz and | ||
26 | * Douglas Stebila of Sun Microsystems Laboratories. | ||
27 | * | ||
28 | */ | ||
29 | |||
30 | /* NOTE: This file is licensed pursuant to the OpenSSL license below | ||
31 | * and may be modified; but after modifications, the above covenant | ||
32 | * may no longer apply! In such cases, the corresponding paragraph | ||
33 | * ["In addition, Sun covenants ... causes the infringement."] and | ||
34 | * this note can be edited out; but please keep the Sun copyright | ||
35 | * notice and attribution. */ | ||
36 | |||
37 | /* ==================================================================== | ||
38 | * Copyright (c) 1998-2002 The OpenSSL Project. All rights reserved. | ||
39 | * | ||
40 | * Redistribution and use in source and binary forms, with or without | ||
41 | * modification, are permitted provided that the following conditions | ||
42 | * are met: | ||
43 | * | ||
44 | * 1. Redistributions of source code must retain the above copyright | ||
45 | * notice, this list of conditions and the following disclaimer. | ||
46 | * | ||
47 | * 2. Redistributions in binary form must reproduce the above copyright | ||
48 | * notice, this list of conditions and the following disclaimer in | ||
49 | * the documentation and/or other materials provided with the | ||
50 | * distribution. | ||
51 | * | ||
52 | * 3. All advertising materials mentioning features or use of this | ||
53 | * software must display the following acknowledgment: | ||
54 | * "This product includes software developed by the OpenSSL Project | ||
55 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | ||
56 | * | ||
57 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
58 | * endorse or promote products derived from this software without | ||
59 | * prior written permission. For written permission, please contact | ||
60 | * openssl-core@openssl.org. | ||
61 | * | ||
62 | * 5. Products derived from this software may not be called "OpenSSL" | ||
63 | * nor may "OpenSSL" appear in their names without prior written | ||
64 | * permission of the OpenSSL Project. | ||
65 | * | ||
66 | * 6. Redistributions of any form whatsoever must retain the following | ||
67 | * acknowledgment: | ||
68 | * "This product includes software developed by the OpenSSL Project | ||
69 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" | ||
70 | * | ||
71 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
72 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
73 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
74 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
75 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
76 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
77 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
78 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
79 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
80 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
81 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
82 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
83 | * ==================================================================== | ||
84 | * | ||
85 | * This product includes cryptographic software written by Eric Young | ||
86 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
87 | * Hudson (tjh@cryptsoft.com). | ||
88 | * | ||
89 | */ | ||
90 | |||
91 | #include <assert.h> | ||
92 | #include <limits.h> | ||
93 | #include <stdio.h> | ||
94 | #include "cryptlib.h" | ||
95 | #include "bn_lcl.h" | ||
96 | |||
97 | /* Maximum number of iterations before BN_GF2m_mod_solve_quad_arr should fail. */ | ||
98 | #define MAX_ITERATIONS 50 | ||
99 | |||
100 | static const BN_ULONG SQR_tb[16] = | ||
101 | { 0, 1, 4, 5, 16, 17, 20, 21, | ||
102 | 64, 65, 68, 69, 80, 81, 84, 85 }; | ||
103 | /* Platform-specific macros to accelerate squaring. */ | ||
104 | #if defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG) | ||
105 | #define SQR1(w) \ | ||
106 | SQR_tb[(w) >> 60 & 0xF] << 56 | SQR_tb[(w) >> 56 & 0xF] << 48 | \ | ||
107 | SQR_tb[(w) >> 52 & 0xF] << 40 | SQR_tb[(w) >> 48 & 0xF] << 32 | \ | ||
108 | SQR_tb[(w) >> 44 & 0xF] << 24 | SQR_tb[(w) >> 40 & 0xF] << 16 | \ | ||
109 | SQR_tb[(w) >> 36 & 0xF] << 8 | SQR_tb[(w) >> 32 & 0xF] | ||
110 | #define SQR0(w) \ | ||
111 | SQR_tb[(w) >> 28 & 0xF] << 56 | SQR_tb[(w) >> 24 & 0xF] << 48 | \ | ||
112 | SQR_tb[(w) >> 20 & 0xF] << 40 | SQR_tb[(w) >> 16 & 0xF] << 32 | \ | ||
113 | SQR_tb[(w) >> 12 & 0xF] << 24 | SQR_tb[(w) >> 8 & 0xF] << 16 | \ | ||
114 | SQR_tb[(w) >> 4 & 0xF] << 8 | SQR_tb[(w) & 0xF] | ||
115 | #endif | ||
116 | #ifdef THIRTY_TWO_BIT | ||
117 | #define SQR1(w) \ | ||
118 | SQR_tb[(w) >> 28 & 0xF] << 24 | SQR_tb[(w) >> 24 & 0xF] << 16 | \ | ||
119 | SQR_tb[(w) >> 20 & 0xF] << 8 | SQR_tb[(w) >> 16 & 0xF] | ||
120 | #define SQR0(w) \ | ||
121 | SQR_tb[(w) >> 12 & 0xF] << 24 | SQR_tb[(w) >> 8 & 0xF] << 16 | \ | ||
122 | SQR_tb[(w) >> 4 & 0xF] << 8 | SQR_tb[(w) & 0xF] | ||
123 | #endif | ||
124 | #ifdef SIXTEEN_BIT | ||
125 | #define SQR1(w) \ | ||
126 | SQR_tb[(w) >> 12 & 0xF] << 8 | SQR_tb[(w) >> 8 & 0xF] | ||
127 | #define SQR0(w) \ | ||
128 | SQR_tb[(w) >> 4 & 0xF] << 8 | SQR_tb[(w) & 0xF] | ||
129 | #endif | ||
130 | #ifdef EIGHT_BIT | ||
131 | #define SQR1(w) \ | ||
132 | SQR_tb[(w) >> 4 & 0xF] | ||
133 | #define SQR0(w) \ | ||
134 | SQR_tb[(w) & 15] | ||
135 | #endif | ||
136 | |||
137 | /* Product of two polynomials a, b each with degree < BN_BITS2 - 1, | ||
138 | * result is a polynomial r with degree < 2 * BN_BITS - 1 | ||
139 | * The caller MUST ensure that the variables have the right amount | ||
140 | * of space allocated. | ||
141 | */ | ||
142 | #ifdef EIGHT_BIT | ||
143 | static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, const BN_ULONG b) | ||
144 | { | ||
145 | register BN_ULONG h, l, s; | ||
146 | BN_ULONG tab[4], top1b = a >> 7; | ||
147 | register BN_ULONG a1, a2; | ||
148 | |||
149 | a1 = a & (0x7F); a2 = a1 << 1; | ||
150 | |||
151 | tab[0] = 0; tab[1] = a1; tab[2] = a2; tab[3] = a1^a2; | ||
152 | |||
153 | s = tab[b & 0x3]; l = s; | ||
154 | s = tab[b >> 2 & 0x3]; l ^= s << 2; h = s >> 6; | ||
155 | s = tab[b >> 4 & 0x3]; l ^= s << 4; h ^= s >> 4; | ||
156 | s = tab[b >> 6 ]; l ^= s << 6; h ^= s >> 2; | ||
157 | |||
158 | /* compensate for the top bit of a */ | ||
159 | |||
160 | if (top1b & 01) { l ^= b << 7; h ^= b >> 1; } | ||
161 | |||
162 | *r1 = h; *r0 = l; | ||
163 | } | ||
164 | #endif | ||
165 | #ifdef SIXTEEN_BIT | ||
166 | static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, const BN_ULONG b) | ||
167 | { | ||
168 | register BN_ULONG h, l, s; | ||
169 | BN_ULONG tab[4], top1b = a >> 15; | ||
170 | register BN_ULONG a1, a2; | ||
171 | |||
172 | a1 = a & (0x7FFF); a2 = a1 << 1; | ||
173 | |||
174 | tab[0] = 0; tab[1] = a1; tab[2] = a2; tab[3] = a1^a2; | ||
175 | |||
176 | s = tab[b & 0x3]; l = s; | ||
177 | s = tab[b >> 2 & 0x3]; l ^= s << 2; h = s >> 14; | ||
178 | s = tab[b >> 4 & 0x3]; l ^= s << 4; h ^= s >> 12; | ||
179 | s = tab[b >> 6 & 0x3]; l ^= s << 6; h ^= s >> 10; | ||
180 | s = tab[b >> 8 & 0x3]; l ^= s << 8; h ^= s >> 8; | ||
181 | s = tab[b >>10 & 0x3]; l ^= s << 10; h ^= s >> 6; | ||
182 | s = tab[b >>12 & 0x3]; l ^= s << 12; h ^= s >> 4; | ||
183 | s = tab[b >>14 ]; l ^= s << 14; h ^= s >> 2; | ||
184 | |||
185 | /* compensate for the top bit of a */ | ||
186 | |||
187 | if (top1b & 01) { l ^= b << 15; h ^= b >> 1; } | ||
188 | |||
189 | *r1 = h; *r0 = l; | ||
190 | } | ||
191 | #endif | ||
192 | #ifdef THIRTY_TWO_BIT | ||
193 | static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, const BN_ULONG b) | ||
194 | { | ||
195 | register BN_ULONG h, l, s; | ||
196 | BN_ULONG tab[8], top2b = a >> 30; | ||
197 | register BN_ULONG a1, a2, a4; | ||
198 | |||
199 | a1 = a & (0x3FFFFFFF); a2 = a1 << 1; a4 = a2 << 1; | ||
200 | |||
201 | tab[0] = 0; tab[1] = a1; tab[2] = a2; tab[3] = a1^a2; | ||
202 | tab[4] = a4; tab[5] = a1^a4; tab[6] = a2^a4; tab[7] = a1^a2^a4; | ||
203 | |||
204 | s = tab[b & 0x7]; l = s; | ||
205 | s = tab[b >> 3 & 0x7]; l ^= s << 3; h = s >> 29; | ||
206 | s = tab[b >> 6 & 0x7]; l ^= s << 6; h ^= s >> 26; | ||
207 | s = tab[b >> 9 & 0x7]; l ^= s << 9; h ^= s >> 23; | ||
208 | s = tab[b >> 12 & 0x7]; l ^= s << 12; h ^= s >> 20; | ||
209 | s = tab[b >> 15 & 0x7]; l ^= s << 15; h ^= s >> 17; | ||
210 | s = tab[b >> 18 & 0x7]; l ^= s << 18; h ^= s >> 14; | ||
211 | s = tab[b >> 21 & 0x7]; l ^= s << 21; h ^= s >> 11; | ||
212 | s = tab[b >> 24 & 0x7]; l ^= s << 24; h ^= s >> 8; | ||
213 | s = tab[b >> 27 & 0x7]; l ^= s << 27; h ^= s >> 5; | ||
214 | s = tab[b >> 30 ]; l ^= s << 30; h ^= s >> 2; | ||
215 | |||
216 | /* compensate for the top two bits of a */ | ||
217 | |||
218 | if (top2b & 01) { l ^= b << 30; h ^= b >> 2; } | ||
219 | if (top2b & 02) { l ^= b << 31; h ^= b >> 1; } | ||
220 | |||
221 | *r1 = h; *r0 = l; | ||
222 | } | ||
223 | #endif | ||
224 | #if defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG) | ||
225 | static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, const BN_ULONG b) | ||
226 | { | ||
227 | register BN_ULONG h, l, s; | ||
228 | BN_ULONG tab[16], top3b = a >> 61; | ||
229 | register BN_ULONG a1, a2, a4, a8; | ||
230 | |||
231 | a1 = a & (0x1FFFFFFFFFFFFFFFULL); a2 = a1 << 1; a4 = a2 << 1; a8 = a4 << 1; | ||
232 | |||
233 | tab[ 0] = 0; tab[ 1] = a1; tab[ 2] = a2; tab[ 3] = a1^a2; | ||
234 | tab[ 4] = a4; tab[ 5] = a1^a4; tab[ 6] = a2^a4; tab[ 7] = a1^a2^a4; | ||
235 | tab[ 8] = a8; tab[ 9] = a1^a8; tab[10] = a2^a8; tab[11] = a1^a2^a8; | ||
236 | tab[12] = a4^a8; tab[13] = a1^a4^a8; tab[14] = a2^a4^a8; tab[15] = a1^a2^a4^a8; | ||
237 | |||
238 | s = tab[b & 0xF]; l = s; | ||
239 | s = tab[b >> 4 & 0xF]; l ^= s << 4; h = s >> 60; | ||
240 | s = tab[b >> 8 & 0xF]; l ^= s << 8; h ^= s >> 56; | ||
241 | s = tab[b >> 12 & 0xF]; l ^= s << 12; h ^= s >> 52; | ||
242 | s = tab[b >> 16 & 0xF]; l ^= s << 16; h ^= s >> 48; | ||
243 | s = tab[b >> 20 & 0xF]; l ^= s << 20; h ^= s >> 44; | ||
244 | s = tab[b >> 24 & 0xF]; l ^= s << 24; h ^= s >> 40; | ||
245 | s = tab[b >> 28 & 0xF]; l ^= s << 28; h ^= s >> 36; | ||
246 | s = tab[b >> 32 & 0xF]; l ^= s << 32; h ^= s >> 32; | ||
247 | s = tab[b >> 36 & 0xF]; l ^= s << 36; h ^= s >> 28; | ||
248 | s = tab[b >> 40 & 0xF]; l ^= s << 40; h ^= s >> 24; | ||
249 | s = tab[b >> 44 & 0xF]; l ^= s << 44; h ^= s >> 20; | ||
250 | s = tab[b >> 48 & 0xF]; l ^= s << 48; h ^= s >> 16; | ||
251 | s = tab[b >> 52 & 0xF]; l ^= s << 52; h ^= s >> 12; | ||
252 | s = tab[b >> 56 & 0xF]; l ^= s << 56; h ^= s >> 8; | ||
253 | s = tab[b >> 60 ]; l ^= s << 60; h ^= s >> 4; | ||
254 | |||
255 | /* compensate for the top three bits of a */ | ||
256 | |||
257 | if (top3b & 01) { l ^= b << 61; h ^= b >> 3; } | ||
258 | if (top3b & 02) { l ^= b << 62; h ^= b >> 2; } | ||
259 | if (top3b & 04) { l ^= b << 63; h ^= b >> 1; } | ||
260 | |||
261 | *r1 = h; *r0 = l; | ||
262 | } | ||
263 | #endif | ||
264 | |||
265 | /* Product of two polynomials a, b each with degree < 2 * BN_BITS2 - 1, | ||
266 | * result is a polynomial r with degree < 4 * BN_BITS2 - 1 | ||
267 | * The caller MUST ensure that the variables have the right amount | ||
268 | * of space allocated. | ||
269 | */ | ||
270 | static void bn_GF2m_mul_2x2(BN_ULONG *r, const BN_ULONG a1, const BN_ULONG a0, const BN_ULONG b1, const BN_ULONG b0) | ||
271 | { | ||
272 | BN_ULONG m1, m0; | ||
273 | /* r[3] = h1, r[2] = h0; r[1] = l1; r[0] = l0 */ | ||
274 | bn_GF2m_mul_1x1(r+3, r+2, a1, b1); | ||
275 | bn_GF2m_mul_1x1(r+1, r, a0, b0); | ||
276 | bn_GF2m_mul_1x1(&m1, &m0, a0 ^ a1, b0 ^ b1); | ||
277 | /* Correction on m1 ^= l1 ^ h1; m0 ^= l0 ^ h0; */ | ||
278 | r[2] ^= m1 ^ r[1] ^ r[3]; /* h0 ^= m1 ^ l1 ^ h1; */ | ||
279 | r[1] = r[3] ^ r[2] ^ r[0] ^ m1 ^ m0; /* l1 ^= l0 ^ h0 ^ m0; */ | ||
280 | } | ||
281 | |||
282 | |||
283 | /* Add polynomials a and b and store result in r; r could be a or b, a and b | ||
284 | * could be equal; r is the bitwise XOR of a and b. | ||
285 | */ | ||
286 | int BN_GF2m_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b) | ||
287 | { | ||
288 | int i; | ||
289 | const BIGNUM *at, *bt; | ||
290 | |||
291 | bn_check_top(a); | ||
292 | bn_check_top(b); | ||
293 | |||
294 | if (a->top < b->top) { at = b; bt = a; } | ||
295 | else { at = a; bt = b; } | ||
296 | |||
297 | bn_wexpand(r, at->top); | ||
298 | |||
299 | for (i = 0; i < bt->top; i++) | ||
300 | { | ||
301 | r->d[i] = at->d[i] ^ bt->d[i]; | ||
302 | } | ||
303 | for (; i < at->top; i++) | ||
304 | { | ||
305 | r->d[i] = at->d[i]; | ||
306 | } | ||
307 | |||
308 | r->top = at->top; | ||
309 | bn_correct_top(r); | ||
310 | |||
311 | return 1; | ||
312 | } | ||
313 | |||
314 | |||
315 | /* Some functions allow for representation of the irreducible polynomials | ||
316 | * as an int[], say p. The irreducible f(t) is then of the form: | ||
317 | * t^p[0] + t^p[1] + ... + t^p[k] | ||
318 | * where m = p[0] > p[1] > ... > p[k] = 0. | ||
319 | */ | ||
320 | |||
321 | |||
322 | /* Performs modular reduction of a and store result in r. r could be a. */ | ||
323 | int BN_GF2m_mod_arr(BIGNUM *r, const BIGNUM *a, const unsigned int p[]) | ||
324 | { | ||
325 | int j, k; | ||
326 | int n, dN, d0, d1; | ||
327 | BN_ULONG zz, *z; | ||
328 | |||
329 | bn_check_top(a); | ||
330 | |||
331 | if (!p[0]) | ||
332 | { | ||
333 | /* reduction mod 1 => return 0 */ | ||
334 | BN_zero(r); | ||
335 | return 1; | ||
336 | } | ||
337 | |||
338 | /* Since the algorithm does reduction in the r value, if a != r, copy | ||
339 | * the contents of a into r so we can do reduction in r. | ||
340 | */ | ||
341 | if (a != r) | ||
342 | { | ||
343 | if (!bn_wexpand(r, a->top)) return 0; | ||
344 | for (j = 0; j < a->top; j++) | ||
345 | { | ||
346 | r->d[j] = a->d[j]; | ||
347 | } | ||
348 | r->top = a->top; | ||
349 | } | ||
350 | z = r->d; | ||
351 | |||
352 | /* start reduction */ | ||
353 | dN = p[0] / BN_BITS2; | ||
354 | for (j = r->top - 1; j > dN;) | ||
355 | { | ||
356 | zz = z[j]; | ||
357 | if (z[j] == 0) { j--; continue; } | ||
358 | z[j] = 0; | ||
359 | |||
360 | for (k = 1; p[k] != 0; k++) | ||
361 | { | ||
362 | /* reducing component t^p[k] */ | ||
363 | n = p[0] - p[k]; | ||
364 | d0 = n % BN_BITS2; d1 = BN_BITS2 - d0; | ||
365 | n /= BN_BITS2; | ||
366 | z[j-n] ^= (zz>>d0); | ||
367 | if (d0) z[j-n-1] ^= (zz<<d1); | ||
368 | } | ||
369 | |||
370 | /* reducing component t^0 */ | ||
371 | n = dN; | ||
372 | d0 = p[0] % BN_BITS2; | ||
373 | d1 = BN_BITS2 - d0; | ||
374 | z[j-n] ^= (zz >> d0); | ||
375 | if (d0) z[j-n-1] ^= (zz << d1); | ||
376 | } | ||
377 | |||
378 | /* final round of reduction */ | ||
379 | while (j == dN) | ||
380 | { | ||
381 | |||
382 | d0 = p[0] % BN_BITS2; | ||
383 | zz = z[dN] >> d0; | ||
384 | if (zz == 0) break; | ||
385 | d1 = BN_BITS2 - d0; | ||
386 | |||
387 | if (d0) z[dN] = (z[dN] << d1) >> d1; /* clear up the top d1 bits */ | ||
388 | z[0] ^= zz; /* reduction t^0 component */ | ||
389 | |||
390 | for (k = 1; p[k] != 0; k++) | ||
391 | { | ||
392 | BN_ULONG tmp_ulong; | ||
393 | |||
394 | /* reducing component t^p[k]*/ | ||
395 | n = p[k] / BN_BITS2; | ||
396 | d0 = p[k] % BN_BITS2; | ||
397 | d1 = BN_BITS2 - d0; | ||
398 | z[n] ^= (zz << d0); | ||
399 | tmp_ulong = zz >> d1; | ||
400 | if (d0 && tmp_ulong) | ||
401 | z[n+1] ^= tmp_ulong; | ||
402 | } | ||
403 | |||
404 | |||
405 | } | ||
406 | |||
407 | bn_correct_top(r); | ||
408 | return 1; | ||
409 | } | ||
410 | |||
411 | /* Performs modular reduction of a by p and store result in r. r could be a. | ||
412 | * | ||
413 | * This function calls down to the BN_GF2m_mod_arr implementation; this wrapper | ||
414 | * function is only provided for convenience; for best performance, use the | ||
415 | * BN_GF2m_mod_arr function. | ||
416 | */ | ||
417 | int BN_GF2m_mod(BIGNUM *r, const BIGNUM *a, const BIGNUM *p) | ||
418 | { | ||
419 | int ret = 0; | ||
420 | const int max = BN_num_bits(p); | ||
421 | unsigned int *arr=NULL; | ||
422 | bn_check_top(a); | ||
423 | bn_check_top(p); | ||
424 | if ((arr = (unsigned int *)OPENSSL_malloc(sizeof(unsigned int) * max)) == NULL) goto err; | ||
425 | ret = BN_GF2m_poly2arr(p, arr, max); | ||
426 | if (!ret || ret > max) | ||
427 | { | ||
428 | BNerr(BN_F_BN_GF2M_MOD,BN_R_INVALID_LENGTH); | ||
429 | goto err; | ||
430 | } | ||
431 | ret = BN_GF2m_mod_arr(r, a, arr); | ||
432 | bn_check_top(r); | ||
433 | err: | ||
434 | if (arr) OPENSSL_free(arr); | ||
435 | return ret; | ||
436 | } | ||
437 | |||
438 | |||
439 | /* Compute the product of two polynomials a and b, reduce modulo p, and store | ||
440 | * the result in r. r could be a or b; a could be b. | ||
441 | */ | ||
442 | int BN_GF2m_mod_mul_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const unsigned int p[], BN_CTX *ctx) | ||
443 | { | ||
444 | int zlen, i, j, k, ret = 0; | ||
445 | BIGNUM *s; | ||
446 | BN_ULONG x1, x0, y1, y0, zz[4]; | ||
447 | |||
448 | bn_check_top(a); | ||
449 | bn_check_top(b); | ||
450 | |||
451 | if (a == b) | ||
452 | { | ||
453 | return BN_GF2m_mod_sqr_arr(r, a, p, ctx); | ||
454 | } | ||
455 | |||
456 | BN_CTX_start(ctx); | ||
457 | if ((s = BN_CTX_get(ctx)) == NULL) goto err; | ||
458 | |||
459 | zlen = a->top + b->top + 4; | ||
460 | if (!bn_wexpand(s, zlen)) goto err; | ||
461 | s->top = zlen; | ||
462 | |||
463 | for (i = 0; i < zlen; i++) s->d[i] = 0; | ||
464 | |||
465 | for (j = 0; j < b->top; j += 2) | ||
466 | { | ||
467 | y0 = b->d[j]; | ||
468 | y1 = ((j+1) == b->top) ? 0 : b->d[j+1]; | ||
469 | for (i = 0; i < a->top; i += 2) | ||
470 | { | ||
471 | x0 = a->d[i]; | ||
472 | x1 = ((i+1) == a->top) ? 0 : a->d[i+1]; | ||
473 | bn_GF2m_mul_2x2(zz, x1, x0, y1, y0); | ||
474 | for (k = 0; k < 4; k++) s->d[i+j+k] ^= zz[k]; | ||
475 | } | ||
476 | } | ||
477 | |||
478 | bn_correct_top(s); | ||
479 | if (BN_GF2m_mod_arr(r, s, p)) | ||
480 | ret = 1; | ||
481 | bn_check_top(r); | ||
482 | |||
483 | err: | ||
484 | BN_CTX_end(ctx); | ||
485 | return ret; | ||
486 | } | ||
487 | |||
488 | /* Compute the product of two polynomials a and b, reduce modulo p, and store | ||
489 | * the result in r. r could be a or b; a could equal b. | ||
490 | * | ||
491 | * This function calls down to the BN_GF2m_mod_mul_arr implementation; this wrapper | ||
492 | * function is only provided for convenience; for best performance, use the | ||
493 | * BN_GF2m_mod_mul_arr function. | ||
494 | */ | ||
495 | int BN_GF2m_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *p, BN_CTX *ctx) | ||
496 | { | ||
497 | int ret = 0; | ||
498 | const int max = BN_num_bits(p); | ||
499 | unsigned int *arr=NULL; | ||
500 | bn_check_top(a); | ||
501 | bn_check_top(b); | ||
502 | bn_check_top(p); | ||
503 | if ((arr = (unsigned int *)OPENSSL_malloc(sizeof(unsigned int) * max)) == NULL) goto err; | ||
504 | ret = BN_GF2m_poly2arr(p, arr, max); | ||
505 | if (!ret || ret > max) | ||
506 | { | ||
507 | BNerr(BN_F_BN_GF2M_MOD_MUL,BN_R_INVALID_LENGTH); | ||
508 | goto err; | ||
509 | } | ||
510 | ret = BN_GF2m_mod_mul_arr(r, a, b, arr, ctx); | ||
511 | bn_check_top(r); | ||
512 | err: | ||
513 | if (arr) OPENSSL_free(arr); | ||
514 | return ret; | ||
515 | } | ||
516 | |||
517 | |||
518 | /* Square a, reduce the result mod p, and store it in a. r could be a. */ | ||
519 | int BN_GF2m_mod_sqr_arr(BIGNUM *r, const BIGNUM *a, const unsigned int p[], BN_CTX *ctx) | ||
520 | { | ||
521 | int i, ret = 0; | ||
522 | BIGNUM *s; | ||
523 | |||
524 | bn_check_top(a); | ||
525 | BN_CTX_start(ctx); | ||
526 | if ((s = BN_CTX_get(ctx)) == NULL) return 0; | ||
527 | if (!bn_wexpand(s, 2 * a->top)) goto err; | ||
528 | |||
529 | for (i = a->top - 1; i >= 0; i--) | ||
530 | { | ||
531 | s->d[2*i+1] = SQR1(a->d[i]); | ||
532 | s->d[2*i ] = SQR0(a->d[i]); | ||
533 | } | ||
534 | |||
535 | s->top = 2 * a->top; | ||
536 | bn_correct_top(s); | ||
537 | if (!BN_GF2m_mod_arr(r, s, p)) goto err; | ||
538 | bn_check_top(r); | ||
539 | ret = 1; | ||
540 | err: | ||
541 | BN_CTX_end(ctx); | ||
542 | return ret; | ||
543 | } | ||
544 | |||
545 | /* Square a, reduce the result mod p, and store it in a. r could be a. | ||
546 | * | ||
547 | * This function calls down to the BN_GF2m_mod_sqr_arr implementation; this wrapper | ||
548 | * function is only provided for convenience; for best performance, use the | ||
549 | * BN_GF2m_mod_sqr_arr function. | ||
550 | */ | ||
551 | int BN_GF2m_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) | ||
552 | { | ||
553 | int ret = 0; | ||
554 | const int max = BN_num_bits(p); | ||
555 | unsigned int *arr=NULL; | ||
556 | |||
557 | bn_check_top(a); | ||
558 | bn_check_top(p); | ||
559 | if ((arr = (unsigned int *)OPENSSL_malloc(sizeof(unsigned int) * max)) == NULL) goto err; | ||
560 | ret = BN_GF2m_poly2arr(p, arr, max); | ||
561 | if (!ret || ret > max) | ||
562 | { | ||
563 | BNerr(BN_F_BN_GF2M_MOD_SQR,BN_R_INVALID_LENGTH); | ||
564 | goto err; | ||
565 | } | ||
566 | ret = BN_GF2m_mod_sqr_arr(r, a, arr, ctx); | ||
567 | bn_check_top(r); | ||
568 | err: | ||
569 | if (arr) OPENSSL_free(arr); | ||
570 | return ret; | ||
571 | } | ||
572 | |||
573 | |||
574 | /* Invert a, reduce modulo p, and store the result in r. r could be a. | ||
575 | * Uses Modified Almost Inverse Algorithm (Algorithm 10) from | ||
576 | * Hankerson, D., Hernandez, J.L., and Menezes, A. "Software Implementation | ||
577 | * of Elliptic Curve Cryptography Over Binary Fields". | ||
578 | */ | ||
579 | int BN_GF2m_mod_inv(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) | ||
580 | { | ||
581 | BIGNUM *b, *c, *u, *v, *tmp; | ||
582 | int ret = 0; | ||
583 | |||
584 | bn_check_top(a); | ||
585 | bn_check_top(p); | ||
586 | |||
587 | BN_CTX_start(ctx); | ||
588 | |||
589 | b = BN_CTX_get(ctx); | ||
590 | c = BN_CTX_get(ctx); | ||
591 | u = BN_CTX_get(ctx); | ||
592 | v = BN_CTX_get(ctx); | ||
593 | if (v == NULL) goto err; | ||
594 | |||
595 | if (!BN_one(b)) goto err; | ||
596 | if (!BN_GF2m_mod(u, a, p)) goto err; | ||
597 | if (!BN_copy(v, p)) goto err; | ||
598 | |||
599 | if (BN_is_zero(u)) goto err; | ||
600 | |||
601 | while (1) | ||
602 | { | ||
603 | while (!BN_is_odd(u)) | ||
604 | { | ||
605 | if (!BN_rshift1(u, u)) goto err; | ||
606 | if (BN_is_odd(b)) | ||
607 | { | ||
608 | if (!BN_GF2m_add(b, b, p)) goto err; | ||
609 | } | ||
610 | if (!BN_rshift1(b, b)) goto err; | ||
611 | } | ||
612 | |||
613 | if (BN_abs_is_word(u, 1)) break; | ||
614 | |||
615 | if (BN_num_bits(u) < BN_num_bits(v)) | ||
616 | { | ||
617 | tmp = u; u = v; v = tmp; | ||
618 | tmp = b; b = c; c = tmp; | ||
619 | } | ||
620 | |||
621 | if (!BN_GF2m_add(u, u, v)) goto err; | ||
622 | if (!BN_GF2m_add(b, b, c)) goto err; | ||
623 | } | ||
624 | |||
625 | |||
626 | if (!BN_copy(r, b)) goto err; | ||
627 | bn_check_top(r); | ||
628 | ret = 1; | ||
629 | |||
630 | err: | ||
631 | BN_CTX_end(ctx); | ||
632 | return ret; | ||
633 | } | ||
634 | |||
635 | /* Invert xx, reduce modulo p, and store the result in r. r could be xx. | ||
636 | * | ||
637 | * This function calls down to the BN_GF2m_mod_inv implementation; this wrapper | ||
638 | * function is only provided for convenience; for best performance, use the | ||
639 | * BN_GF2m_mod_inv function. | ||
640 | */ | ||
641 | int BN_GF2m_mod_inv_arr(BIGNUM *r, const BIGNUM *xx, const unsigned int p[], BN_CTX *ctx) | ||
642 | { | ||
643 | BIGNUM *field; | ||
644 | int ret = 0; | ||
645 | |||
646 | bn_check_top(xx); | ||
647 | BN_CTX_start(ctx); | ||
648 | if ((field = BN_CTX_get(ctx)) == NULL) goto err; | ||
649 | if (!BN_GF2m_arr2poly(p, field)) goto err; | ||
650 | |||
651 | ret = BN_GF2m_mod_inv(r, xx, field, ctx); | ||
652 | bn_check_top(r); | ||
653 | |||
654 | err: | ||
655 | BN_CTX_end(ctx); | ||
656 | return ret; | ||
657 | } | ||
658 | |||
659 | |||
660 | #ifndef OPENSSL_SUN_GF2M_DIV | ||
661 | /* Divide y by x, reduce modulo p, and store the result in r. r could be x | ||
662 | * or y, x could equal y. | ||
663 | */ | ||
664 | int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x, const BIGNUM *p, BN_CTX *ctx) | ||
665 | { | ||
666 | BIGNUM *xinv = NULL; | ||
667 | int ret = 0; | ||
668 | |||
669 | bn_check_top(y); | ||
670 | bn_check_top(x); | ||
671 | bn_check_top(p); | ||
672 | |||
673 | BN_CTX_start(ctx); | ||
674 | xinv = BN_CTX_get(ctx); | ||
675 | if (xinv == NULL) goto err; | ||
676 | |||
677 | if (!BN_GF2m_mod_inv(xinv, x, p, ctx)) goto err; | ||
678 | if (!BN_GF2m_mod_mul(r, y, xinv, p, ctx)) goto err; | ||
679 | bn_check_top(r); | ||
680 | ret = 1; | ||
681 | |||
682 | err: | ||
683 | BN_CTX_end(ctx); | ||
684 | return ret; | ||
685 | } | ||
686 | #else | ||
687 | /* Divide y by x, reduce modulo p, and store the result in r. r could be x | ||
688 | * or y, x could equal y. | ||
689 | * Uses algorithm Modular_Division_GF(2^m) from | ||
690 | * Chang-Shantz, S. "From Euclid's GCD to Montgomery Multiplication to | ||
691 | * the Great Divide". | ||
692 | */ | ||
693 | int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x, const BIGNUM *p, BN_CTX *ctx) | ||
694 | { | ||
695 | BIGNUM *a, *b, *u, *v; | ||
696 | int ret = 0; | ||
697 | |||
698 | bn_check_top(y); | ||
699 | bn_check_top(x); | ||
700 | bn_check_top(p); | ||
701 | |||
702 | BN_CTX_start(ctx); | ||
703 | |||
704 | a = BN_CTX_get(ctx); | ||
705 | b = BN_CTX_get(ctx); | ||
706 | u = BN_CTX_get(ctx); | ||
707 | v = BN_CTX_get(ctx); | ||
708 | if (v == NULL) goto err; | ||
709 | |||
710 | /* reduce x and y mod p */ | ||
711 | if (!BN_GF2m_mod(u, y, p)) goto err; | ||
712 | if (!BN_GF2m_mod(a, x, p)) goto err; | ||
713 | if (!BN_copy(b, p)) goto err; | ||
714 | |||
715 | while (!BN_is_odd(a)) | ||
716 | { | ||
717 | if (!BN_rshift1(a, a)) goto err; | ||
718 | if (BN_is_odd(u)) if (!BN_GF2m_add(u, u, p)) goto err; | ||
719 | if (!BN_rshift1(u, u)) goto err; | ||
720 | } | ||
721 | |||
722 | do | ||
723 | { | ||
724 | if (BN_GF2m_cmp(b, a) > 0) | ||
725 | { | ||
726 | if (!BN_GF2m_add(b, b, a)) goto err; | ||
727 | if (!BN_GF2m_add(v, v, u)) goto err; | ||
728 | do | ||
729 | { | ||
730 | if (!BN_rshift1(b, b)) goto err; | ||
731 | if (BN_is_odd(v)) if (!BN_GF2m_add(v, v, p)) goto err; | ||
732 | if (!BN_rshift1(v, v)) goto err; | ||
733 | } while (!BN_is_odd(b)); | ||
734 | } | ||
735 | else if (BN_abs_is_word(a, 1)) | ||
736 | break; | ||
737 | else | ||
738 | { | ||
739 | if (!BN_GF2m_add(a, a, b)) goto err; | ||
740 | if (!BN_GF2m_add(u, u, v)) goto err; | ||
741 | do | ||
742 | { | ||
743 | if (!BN_rshift1(a, a)) goto err; | ||
744 | if (BN_is_odd(u)) if (!BN_GF2m_add(u, u, p)) goto err; | ||
745 | if (!BN_rshift1(u, u)) goto err; | ||
746 | } while (!BN_is_odd(a)); | ||
747 | } | ||
748 | } while (1); | ||
749 | |||
750 | if (!BN_copy(r, u)) goto err; | ||
751 | bn_check_top(r); | ||
752 | ret = 1; | ||
753 | |||
754 | err: | ||
755 | BN_CTX_end(ctx); | ||
756 | return ret; | ||
757 | } | ||
758 | #endif | ||
759 | |||
760 | /* Divide yy by xx, reduce modulo p, and store the result in r. r could be xx | ||
761 | * or yy, xx could equal yy. | ||
762 | * | ||
763 | * This function calls down to the BN_GF2m_mod_div implementation; this wrapper | ||
764 | * function is only provided for convenience; for best performance, use the | ||
765 | * BN_GF2m_mod_div function. | ||
766 | */ | ||
767 | int BN_GF2m_mod_div_arr(BIGNUM *r, const BIGNUM *yy, const BIGNUM *xx, const unsigned int p[], BN_CTX *ctx) | ||
768 | { | ||
769 | BIGNUM *field; | ||
770 | int ret = 0; | ||
771 | |||
772 | bn_check_top(yy); | ||
773 | bn_check_top(xx); | ||
774 | |||
775 | BN_CTX_start(ctx); | ||
776 | if ((field = BN_CTX_get(ctx)) == NULL) goto err; | ||
777 | if (!BN_GF2m_arr2poly(p, field)) goto err; | ||
778 | |||
779 | ret = BN_GF2m_mod_div(r, yy, xx, field, ctx); | ||
780 | bn_check_top(r); | ||
781 | |||
782 | err: | ||
783 | BN_CTX_end(ctx); | ||
784 | return ret; | ||
785 | } | ||
786 | |||
787 | |||
788 | /* Compute the bth power of a, reduce modulo p, and store | ||
789 | * the result in r. r could be a. | ||
790 | * Uses simple square-and-multiply algorithm A.5.1 from IEEE P1363. | ||
791 | */ | ||
792 | int BN_GF2m_mod_exp_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const unsigned int p[], BN_CTX *ctx) | ||
793 | { | ||
794 | int ret = 0, i, n; | ||
795 | BIGNUM *u; | ||
796 | |||
797 | bn_check_top(a); | ||
798 | bn_check_top(b); | ||
799 | |||
800 | if (BN_is_zero(b)) | ||
801 | return(BN_one(r)); | ||
802 | |||
803 | if (BN_abs_is_word(b, 1)) | ||
804 | return (BN_copy(r, a) != NULL); | ||
805 | |||
806 | BN_CTX_start(ctx); | ||
807 | if ((u = BN_CTX_get(ctx)) == NULL) goto err; | ||
808 | |||
809 | if (!BN_GF2m_mod_arr(u, a, p)) goto err; | ||
810 | |||
811 | n = BN_num_bits(b) - 1; | ||
812 | for (i = n - 1; i >= 0; i--) | ||
813 | { | ||
814 | if (!BN_GF2m_mod_sqr_arr(u, u, p, ctx)) goto err; | ||
815 | if (BN_is_bit_set(b, i)) | ||
816 | { | ||
817 | if (!BN_GF2m_mod_mul_arr(u, u, a, p, ctx)) goto err; | ||
818 | } | ||
819 | } | ||
820 | if (!BN_copy(r, u)) goto err; | ||
821 | bn_check_top(r); | ||
822 | ret = 1; | ||
823 | err: | ||
824 | BN_CTX_end(ctx); | ||
825 | return ret; | ||
826 | } | ||
827 | |||
828 | /* Compute the bth power of a, reduce modulo p, and store | ||
829 | * the result in r. r could be a. | ||
830 | * | ||
831 | * This function calls down to the BN_GF2m_mod_exp_arr implementation; this wrapper | ||
832 | * function is only provided for convenience; for best performance, use the | ||
833 | * BN_GF2m_mod_exp_arr function. | ||
834 | */ | ||
835 | int BN_GF2m_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *p, BN_CTX *ctx) | ||
836 | { | ||
837 | int ret = 0; | ||
838 | const int max = BN_num_bits(p); | ||
839 | unsigned int *arr=NULL; | ||
840 | bn_check_top(a); | ||
841 | bn_check_top(b); | ||
842 | bn_check_top(p); | ||
843 | if ((arr = (unsigned int *)OPENSSL_malloc(sizeof(unsigned int) * max)) == NULL) goto err; | ||
844 | ret = BN_GF2m_poly2arr(p, arr, max); | ||
845 | if (!ret || ret > max) | ||
846 | { | ||
847 | BNerr(BN_F_BN_GF2M_MOD_EXP,BN_R_INVALID_LENGTH); | ||
848 | goto err; | ||
849 | } | ||
850 | ret = BN_GF2m_mod_exp_arr(r, a, b, arr, ctx); | ||
851 | bn_check_top(r); | ||
852 | err: | ||
853 | if (arr) OPENSSL_free(arr); | ||
854 | return ret; | ||
855 | } | ||
856 | |||
857 | /* Compute the square root of a, reduce modulo p, and store | ||
858 | * the result in r. r could be a. | ||
859 | * Uses exponentiation as in algorithm A.4.1 from IEEE P1363. | ||
860 | */ | ||
861 | int BN_GF2m_mod_sqrt_arr(BIGNUM *r, const BIGNUM *a, const unsigned int p[], BN_CTX *ctx) | ||
862 | { | ||
863 | int ret = 0; | ||
864 | BIGNUM *u; | ||
865 | |||
866 | bn_check_top(a); | ||
867 | |||
868 | if (!p[0]) | ||
869 | { | ||
870 | /* reduction mod 1 => return 0 */ | ||
871 | BN_zero(r); | ||
872 | return 1; | ||
873 | } | ||
874 | |||
875 | BN_CTX_start(ctx); | ||
876 | if ((u = BN_CTX_get(ctx)) == NULL) goto err; | ||
877 | |||
878 | if (!BN_set_bit(u, p[0] - 1)) goto err; | ||
879 | ret = BN_GF2m_mod_exp_arr(r, a, u, p, ctx); | ||
880 | bn_check_top(r); | ||
881 | |||
882 | err: | ||
883 | BN_CTX_end(ctx); | ||
884 | return ret; | ||
885 | } | ||
886 | |||
887 | /* Compute the square root of a, reduce modulo p, and store | ||
888 | * the result in r. r could be a. | ||
889 | * | ||
890 | * This function calls down to the BN_GF2m_mod_sqrt_arr implementation; this wrapper | ||
891 | * function is only provided for convenience; for best performance, use the | ||
892 | * BN_GF2m_mod_sqrt_arr function. | ||
893 | */ | ||
894 | int BN_GF2m_mod_sqrt(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) | ||
895 | { | ||
896 | int ret = 0; | ||
897 | const int max = BN_num_bits(p); | ||
898 | unsigned int *arr=NULL; | ||
899 | bn_check_top(a); | ||
900 | bn_check_top(p); | ||
901 | if ((arr = (unsigned int *)OPENSSL_malloc(sizeof(unsigned int) * max)) == NULL) goto err; | ||
902 | ret = BN_GF2m_poly2arr(p, arr, max); | ||
903 | if (!ret || ret > max) | ||
904 | { | ||
905 | BNerr(BN_F_BN_GF2M_MOD_SQRT,BN_R_INVALID_LENGTH); | ||
906 | goto err; | ||
907 | } | ||
908 | ret = BN_GF2m_mod_sqrt_arr(r, a, arr, ctx); | ||
909 | bn_check_top(r); | ||
910 | err: | ||
911 | if (arr) OPENSSL_free(arr); | ||
912 | return ret; | ||
913 | } | ||
914 | |||
915 | /* Find r such that r^2 + r = a mod p. r could be a. If no r exists returns 0. | ||
916 | * Uses algorithms A.4.7 and A.4.6 from IEEE P1363. | ||
917 | */ | ||
918 | int BN_GF2m_mod_solve_quad_arr(BIGNUM *r, const BIGNUM *a_, const unsigned int p[], BN_CTX *ctx) | ||
919 | { | ||
920 | int ret = 0, count = 0; | ||
921 | unsigned int j; | ||
922 | BIGNUM *a, *z, *rho, *w, *w2, *tmp; | ||
923 | |||
924 | bn_check_top(a_); | ||
925 | |||
926 | if (!p[0]) | ||
927 | { | ||
928 | /* reduction mod 1 => return 0 */ | ||
929 | BN_zero(r); | ||
930 | return 1; | ||
931 | } | ||
932 | |||
933 | BN_CTX_start(ctx); | ||
934 | a = BN_CTX_get(ctx); | ||
935 | z = BN_CTX_get(ctx); | ||
936 | w = BN_CTX_get(ctx); | ||
937 | if (w == NULL) goto err; | ||
938 | |||
939 | if (!BN_GF2m_mod_arr(a, a_, p)) goto err; | ||
940 | |||
941 | if (BN_is_zero(a)) | ||
942 | { | ||
943 | BN_zero(r); | ||
944 | ret = 1; | ||
945 | goto err; | ||
946 | } | ||
947 | |||
948 | if (p[0] & 0x1) /* m is odd */ | ||
949 | { | ||
950 | /* compute half-trace of a */ | ||
951 | if (!BN_copy(z, a)) goto err; | ||
952 | for (j = 1; j <= (p[0] - 1) / 2; j++) | ||
953 | { | ||
954 | if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) goto err; | ||
955 | if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) goto err; | ||
956 | if (!BN_GF2m_add(z, z, a)) goto err; | ||
957 | } | ||
958 | |||
959 | } | ||
960 | else /* m is even */ | ||
961 | { | ||
962 | rho = BN_CTX_get(ctx); | ||
963 | w2 = BN_CTX_get(ctx); | ||
964 | tmp = BN_CTX_get(ctx); | ||
965 | if (tmp == NULL) goto err; | ||
966 | do | ||
967 | { | ||
968 | if (!BN_rand(rho, p[0], 0, 0)) goto err; | ||
969 | if (!BN_GF2m_mod_arr(rho, rho, p)) goto err; | ||
970 | BN_zero(z); | ||
971 | if (!BN_copy(w, rho)) goto err; | ||
972 | for (j = 1; j <= p[0] - 1; j++) | ||
973 | { | ||
974 | if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) goto err; | ||
975 | if (!BN_GF2m_mod_sqr_arr(w2, w, p, ctx)) goto err; | ||
976 | if (!BN_GF2m_mod_mul_arr(tmp, w2, a, p, ctx)) goto err; | ||
977 | if (!BN_GF2m_add(z, z, tmp)) goto err; | ||
978 | if (!BN_GF2m_add(w, w2, rho)) goto err; | ||
979 | } | ||
980 | count++; | ||
981 | } while (BN_is_zero(w) && (count < MAX_ITERATIONS)); | ||
982 | if (BN_is_zero(w)) | ||
983 | { | ||
984 | BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD_ARR,BN_R_TOO_MANY_ITERATIONS); | ||
985 | goto err; | ||
986 | } | ||
987 | } | ||
988 | |||
989 | if (!BN_GF2m_mod_sqr_arr(w, z, p, ctx)) goto err; | ||
990 | if (!BN_GF2m_add(w, z, w)) goto err; | ||
991 | if (BN_GF2m_cmp(w, a)) | ||
992 | { | ||
993 | BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD_ARR, BN_R_NO_SOLUTION); | ||
994 | goto err; | ||
995 | } | ||
996 | |||
997 | if (!BN_copy(r, z)) goto err; | ||
998 | bn_check_top(r); | ||
999 | |||
1000 | ret = 1; | ||
1001 | |||
1002 | err: | ||
1003 | BN_CTX_end(ctx); | ||
1004 | return ret; | ||
1005 | } | ||
1006 | |||
1007 | /* Find r such that r^2 + r = a mod p. r could be a. If no r exists returns 0. | ||
1008 | * | ||
1009 | * This function calls down to the BN_GF2m_mod_solve_quad_arr implementation; this wrapper | ||
1010 | * function is only provided for convenience; for best performance, use the | ||
1011 | * BN_GF2m_mod_solve_quad_arr function. | ||
1012 | */ | ||
1013 | int BN_GF2m_mod_solve_quad(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) | ||
1014 | { | ||
1015 | int ret = 0; | ||
1016 | const int max = BN_num_bits(p); | ||
1017 | unsigned int *arr=NULL; | ||
1018 | bn_check_top(a); | ||
1019 | bn_check_top(p); | ||
1020 | if ((arr = (unsigned int *)OPENSSL_malloc(sizeof(unsigned int) * | ||
1021 | max)) == NULL) goto err; | ||
1022 | ret = BN_GF2m_poly2arr(p, arr, max); | ||
1023 | if (!ret || ret > max) | ||
1024 | { | ||
1025 | BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD,BN_R_INVALID_LENGTH); | ||
1026 | goto err; | ||
1027 | } | ||
1028 | ret = BN_GF2m_mod_solve_quad_arr(r, a, arr, ctx); | ||
1029 | bn_check_top(r); | ||
1030 | err: | ||
1031 | if (arr) OPENSSL_free(arr); | ||
1032 | return ret; | ||
1033 | } | ||
1034 | |||
1035 | /* Convert the bit-string representation of a polynomial | ||
1036 | * ( \sum_{i=0}^n a_i * x^i , where a_0 is *not* zero) into an array | ||
1037 | * of integers corresponding to the bits with non-zero coefficient. | ||
1038 | * Up to max elements of the array will be filled. Return value is total | ||
1039 | * number of coefficients that would be extracted if array was large enough. | ||
1040 | */ | ||
1041 | int BN_GF2m_poly2arr(const BIGNUM *a, unsigned int p[], int max) | ||
1042 | { | ||
1043 | int i, j, k = 0; | ||
1044 | BN_ULONG mask; | ||
1045 | |||
1046 | if (BN_is_zero(a) || !BN_is_bit_set(a, 0)) | ||
1047 | /* a_0 == 0 => return error (the unsigned int array | ||
1048 | * must be terminated by 0) | ||
1049 | */ | ||
1050 | return 0; | ||
1051 | |||
1052 | for (i = a->top - 1; i >= 0; i--) | ||
1053 | { | ||
1054 | if (!a->d[i]) | ||
1055 | /* skip word if a->d[i] == 0 */ | ||
1056 | continue; | ||
1057 | mask = BN_TBIT; | ||
1058 | for (j = BN_BITS2 - 1; j >= 0; j--) | ||
1059 | { | ||
1060 | if (a->d[i] & mask) | ||
1061 | { | ||
1062 | if (k < max) p[k] = BN_BITS2 * i + j; | ||
1063 | k++; | ||
1064 | } | ||
1065 | mask >>= 1; | ||
1066 | } | ||
1067 | } | ||
1068 | |||
1069 | return k; | ||
1070 | } | ||
1071 | |||
1072 | /* Convert the coefficient array representation of a polynomial to a | ||
1073 | * bit-string. The array must be terminated by 0. | ||
1074 | */ | ||
1075 | int BN_GF2m_arr2poly(const unsigned int p[], BIGNUM *a) | ||
1076 | { | ||
1077 | int i; | ||
1078 | |||
1079 | bn_check_top(a); | ||
1080 | BN_zero(a); | ||
1081 | for (i = 0; p[i] != 0; i++) | ||
1082 | { | ||
1083 | if (BN_set_bit(a, p[i]) == 0) | ||
1084 | return 0; | ||
1085 | } | ||
1086 | BN_set_bit(a, 0); | ||
1087 | bn_check_top(a); | ||
1088 | |||
1089 | return 1; | ||
1090 | } | ||
1091 | |||
diff --git a/src/lib/libcrypto/bn/bn_nist.c b/src/lib/libcrypto/bn/bn_nist.c new file mode 100644 index 0000000000..e14232fdbb --- /dev/null +++ b/src/lib/libcrypto/bn/bn_nist.c | |||
@@ -0,0 +1,692 @@ | |||
1 | /* crypto/bn/bn_nist.c */ | ||
2 | /* | ||
3 | * Written by Nils Larsch for the OpenSSL project | ||
4 | */ | ||
5 | /* ==================================================================== | ||
6 | * Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved. | ||
7 | * | ||
8 | * Redistribution and use in source and binary forms, with or without | ||
9 | * modification, are permitted provided that the following conditions | ||
10 | * are met: | ||
11 | * | ||
12 | * 1. Redistributions of source code must retain the above copyright | ||
13 | * notice, this list of conditions and the following disclaimer. | ||
14 | * | ||
15 | * 2. Redistributions in binary form must reproduce the above copyright | ||
16 | * notice, this list of conditions and the following disclaimer in | ||
17 | * the documentation and/or other materials provided with the | ||
18 | * distribution. | ||
19 | * | ||
20 | * 3. All advertising materials mentioning features or use of this | ||
21 | * software must display the following acknowledgment: | ||
22 | * "This product includes software developed by the OpenSSL Project | ||
23 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | ||
24 | * | ||
25 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
26 | * endorse or promote products derived from this software without | ||
27 | * prior written permission. For written permission, please contact | ||
28 | * openssl-core@openssl.org. | ||
29 | * | ||
30 | * 5. Products derived from this software may not be called "OpenSSL" | ||
31 | * nor may "OpenSSL" appear in their names without prior written | ||
32 | * permission of the OpenSSL Project. | ||
33 | * | ||
34 | * 6. Redistributions of any form whatsoever must retain the following | ||
35 | * acknowledgment: | ||
36 | * "This product includes software developed by the OpenSSL Project | ||
37 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" | ||
38 | * | ||
39 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
40 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
41 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
42 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
43 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
44 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
45 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
46 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
47 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
48 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
49 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
50 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
51 | * ==================================================================== | ||
52 | * | ||
53 | * This product includes cryptographic software written by Eric Young | ||
54 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
55 | * Hudson (tjh@cryptsoft.com). | ||
56 | * | ||
57 | */ | ||
58 | |||
59 | #include "bn_lcl.h" | ||
60 | #include "cryptlib.h" | ||
61 | |||
62 | #define BN_NIST_192_TOP (192+BN_BITS2-1)/BN_BITS2 | ||
63 | #define BN_NIST_224_TOP (224+BN_BITS2-1)/BN_BITS2 | ||
64 | #define BN_NIST_256_TOP (256+BN_BITS2-1)/BN_BITS2 | ||
65 | #define BN_NIST_384_TOP (384+BN_BITS2-1)/BN_BITS2 | ||
66 | #define BN_NIST_521_TOP (521+BN_BITS2-1)/BN_BITS2 | ||
67 | |||
68 | #if BN_BITS2 == 64 | ||
69 | static const BN_ULONG _nist_p_192[] = | ||
70 | {0xFFFFFFFFFFFFFFFFULL,0xFFFFFFFFFFFFFFFEULL, | ||
71 | 0xFFFFFFFFFFFFFFFFULL}; | ||
72 | static const BN_ULONG _nist_p_224[] = | ||
73 | {0x0000000000000001ULL,0xFFFFFFFF00000000ULL, | ||
74 | 0xFFFFFFFFFFFFFFFFULL,0x00000000FFFFFFFFULL}; | ||
75 | static const BN_ULONG _nist_p_256[] = | ||
76 | {0xFFFFFFFFFFFFFFFFULL,0x00000000FFFFFFFFULL, | ||
77 | 0x0000000000000000ULL,0xFFFFFFFF00000001ULL}; | ||
78 | static const BN_ULONG _nist_p_384[] = | ||
79 | {0x00000000FFFFFFFFULL,0xFFFFFFFF00000000ULL, | ||
80 | 0xFFFFFFFFFFFFFFFEULL,0xFFFFFFFFFFFFFFFFULL, | ||
81 | 0xFFFFFFFFFFFFFFFFULL,0xFFFFFFFFFFFFFFFFULL}; | ||
82 | static const BN_ULONG _nist_p_521[] = | ||
83 | {0xFFFFFFFFFFFFFFFFULL,0xFFFFFFFFFFFFFFFFULL, | ||
84 | 0xFFFFFFFFFFFFFFFFULL,0xFFFFFFFFFFFFFFFFULL, | ||
85 | 0xFFFFFFFFFFFFFFFFULL,0xFFFFFFFFFFFFFFFFULL, | ||
86 | 0xFFFFFFFFFFFFFFFFULL,0xFFFFFFFFFFFFFFFFULL, | ||
87 | 0x00000000000001FFULL}; | ||
88 | #elif BN_BITS2 == 32 | ||
89 | static const BN_ULONG _nist_p_192[] = {0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFE, | ||
90 | 0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF}; | ||
91 | static const BN_ULONG _nist_p_224[] = {0x00000001,0x00000000,0x00000000, | ||
92 | 0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF}; | ||
93 | static const BN_ULONG _nist_p_256[] = {0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF, | ||
94 | 0x00000000,0x00000000,0x00000000,0x00000001,0xFFFFFFFF}; | ||
95 | static const BN_ULONG _nist_p_384[] = {0xFFFFFFFF,0x00000000,0x00000000, | ||
96 | 0xFFFFFFFF,0xFFFFFFFE,0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF, | ||
97 | 0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF}; | ||
98 | static const BN_ULONG _nist_p_521[] = {0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF, | ||
99 | 0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF, | ||
100 | 0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF, | ||
101 | 0xFFFFFFFF,0x000001FF}; | ||
102 | #endif | ||
103 | |||
104 | const BIGNUM *BN_get0_nist_prime_192(void) | ||
105 | { | ||
106 | static BIGNUM const_nist_192 = { (BN_ULONG *)_nist_p_192, | ||
107 | BN_NIST_192_TOP, BN_NIST_192_TOP, 0, BN_FLG_STATIC_DATA }; | ||
108 | return &const_nist_192; | ||
109 | } | ||
110 | |||
111 | const BIGNUM *BN_get0_nist_prime_224(void) | ||
112 | { | ||
113 | static BIGNUM const_nist_224 = { (BN_ULONG *)_nist_p_224, | ||
114 | BN_NIST_224_TOP, BN_NIST_224_TOP, 0, BN_FLG_STATIC_DATA }; | ||
115 | return &const_nist_224; | ||
116 | } | ||
117 | |||
118 | const BIGNUM *BN_get0_nist_prime_256(void) | ||
119 | { | ||
120 | static BIGNUM const_nist_256 = { (BN_ULONG *)_nist_p_256, | ||
121 | BN_NIST_256_TOP, BN_NIST_256_TOP, 0, BN_FLG_STATIC_DATA }; | ||
122 | return &const_nist_256; | ||
123 | } | ||
124 | |||
125 | const BIGNUM *BN_get0_nist_prime_384(void) | ||
126 | { | ||
127 | static BIGNUM const_nist_384 = { (BN_ULONG *)_nist_p_384, | ||
128 | BN_NIST_384_TOP, BN_NIST_384_TOP, 0, BN_FLG_STATIC_DATA }; | ||
129 | return &const_nist_384; | ||
130 | } | ||
131 | |||
132 | const BIGNUM *BN_get0_nist_prime_521(void) | ||
133 | { | ||
134 | static BIGNUM const_nist_521 = { (BN_ULONG *)_nist_p_521, | ||
135 | BN_NIST_521_TOP, BN_NIST_521_TOP, 0, BN_FLG_STATIC_DATA }; | ||
136 | return &const_nist_521; | ||
137 | } | ||
138 | |||
139 | #define BN_NIST_ADD_ONE(a) while (!(*(a)=(*(a)+1)&BN_MASK2)) ++(a); | ||
140 | |||
141 | static void nist_cp_bn_0(BN_ULONG *buf, BN_ULONG *a, int top, int max) | ||
142 | { | ||
143 | int i; | ||
144 | BN_ULONG *_tmp1 = (buf), *_tmp2 = (a); | ||
145 | for (i = (top); i != 0; i--) | ||
146 | *_tmp1++ = *_tmp2++; | ||
147 | for (i = (max) - (top); i != 0; i--) | ||
148 | *_tmp1++ = (BN_ULONG) 0; | ||
149 | } | ||
150 | |||
151 | static void nist_cp_bn(BN_ULONG *buf, BN_ULONG *a, int top) | ||
152 | { | ||
153 | int i; | ||
154 | BN_ULONG *_tmp1 = (buf), *_tmp2 = (a); | ||
155 | for (i = (top); i != 0; i--) | ||
156 | *_tmp1++ = *_tmp2++; | ||
157 | } | ||
158 | |||
159 | #if BN_BITS2 == 64 | ||
160 | #define bn_cp_64(to, n, from, m) (to)[n] = (m>=0)?((from)[m]):0; | ||
161 | #define bn_64_set_0(to, n) (to)[n] = (BN_ULONG)0; | ||
162 | /* TBD */ | ||
163 | #define bn_cp_32(to, n, from, m) (to)[n] = (m>=0)?((from)[m]):0; | ||
164 | #define bn_32_set_0(to, n) (to)[n] = (BN_ULONG)0; | ||
165 | #else | ||
166 | #define bn_cp_64(to, n, from, m) \ | ||
167 | { \ | ||
168 | bn_cp_32(to, (n)*2, from, (m)*2); \ | ||
169 | bn_cp_32(to, (n)*2+1, from, (m)*2+1); \ | ||
170 | } | ||
171 | #define bn_64_set_0(to, n) \ | ||
172 | { \ | ||
173 | bn_32_set_0(to, (n)*2); \ | ||
174 | bn_32_set_0(to, (n)*2+1); \ | ||
175 | } | ||
176 | #if BN_BITS2 == 32 | ||
177 | #define bn_cp_32(to, n, from, m) (to)[n] = (m>=0)?((from)[m]):0; | ||
178 | #define bn_32_set_0(to, n) (to)[n] = (BN_ULONG)0; | ||
179 | #endif | ||
180 | #endif /* BN_BITS2 != 64 */ | ||
181 | |||
182 | |||
183 | #define nist_set_192(to, from, a1, a2, a3) \ | ||
184 | { \ | ||
185 | if (a3 != 0) bn_cp_64(to, 0, from, (a3) - 3) else bn_64_set_0(to, 0)\ | ||
186 | bn_cp_64(to, 1, from, (a2) - 3) \ | ||
187 | if (a1 != 0) bn_cp_64(to, 2, from, (a1) - 3) else bn_64_set_0(to, 2)\ | ||
188 | } | ||
189 | |||
190 | int BN_nist_mod_192(BIGNUM *r, const BIGNUM *a, const BIGNUM *field, | ||
191 | BN_CTX *ctx) | ||
192 | { | ||
193 | int top = a->top, i; | ||
194 | int carry; | ||
195 | register BN_ULONG *r_d, *a_d = a->d; | ||
196 | BN_ULONG t_d[BN_NIST_192_TOP], | ||
197 | buf[BN_NIST_192_TOP], | ||
198 | c_d[BN_NIST_192_TOP], | ||
199 | *res; | ||
200 | size_t mask; | ||
201 | |||
202 | i = BN_ucmp(field, a); | ||
203 | if (i == 0) | ||
204 | { | ||
205 | BN_zero(r); | ||
206 | return 1; | ||
207 | } | ||
208 | else if (i > 0) | ||
209 | return (r == a) ? 1 : (BN_copy(r ,a) != NULL); | ||
210 | |||
211 | if (top == BN_NIST_192_TOP) | ||
212 | return BN_usub(r, a, field); | ||
213 | |||
214 | if (r != a) | ||
215 | { | ||
216 | if (!bn_wexpand(r, BN_NIST_192_TOP)) | ||
217 | return 0; | ||
218 | r_d = r->d; | ||
219 | nist_cp_bn(r_d, a_d, BN_NIST_192_TOP); | ||
220 | } | ||
221 | else | ||
222 | r_d = a_d; | ||
223 | |||
224 | nist_cp_bn_0(buf, a_d + BN_NIST_192_TOP, top - BN_NIST_192_TOP, BN_NIST_192_TOP); | ||
225 | |||
226 | nist_set_192(t_d, buf, 0, 3, 3); | ||
227 | carry = bn_add_words(r_d, r_d, t_d, BN_NIST_192_TOP); | ||
228 | mask = 0-(size_t)bn_sub_words(c_d,r_d,_nist_p_192,BN_NIST_192_TOP); | ||
229 | mask = ~mask | (0-(size_t)carry); | ||
230 | res = (BN_ULONG *)(((size_t)c_d&mask) | ((size_t)r_d&~mask)); | ||
231 | |||
232 | nist_set_192(t_d, buf, 4, 4, 0); | ||
233 | carry = bn_add_words(r_d, res, t_d, BN_NIST_192_TOP); | ||
234 | mask = 0-(size_t)bn_sub_words(c_d,r_d,_nist_p_192,BN_NIST_192_TOP); | ||
235 | mask = ~mask | (0-(size_t)carry); | ||
236 | res = (BN_ULONG *)(((size_t)c_d&mask) | ((size_t)r_d&~mask)); | ||
237 | |||
238 | nist_set_192(t_d, buf, 5, 5, 5) | ||
239 | carry = bn_add_words(r_d, res, t_d, BN_NIST_192_TOP); | ||
240 | mask = 0-(size_t)bn_sub_words(c_d,r_d,_nist_p_192,BN_NIST_192_TOP); | ||
241 | mask = ~mask | (0-(size_t)carry); | ||
242 | res = (BN_ULONG *)(((size_t)c_d&mask) | ((size_t)r_d&~mask)); | ||
243 | |||
244 | nist_cp_bn(r_d, res, BN_NIST_192_TOP); | ||
245 | r->top = BN_NIST_192_TOP; | ||
246 | bn_correct_top(r); | ||
247 | |||
248 | return 1; | ||
249 | } | ||
250 | |||
251 | #define nist_set_224(to, from, a1, a2, a3, a4, a5, a6, a7) \ | ||
252 | { \ | ||
253 | if (a7 != 0) bn_cp_32(to, 0, from, (a7) - 7) else bn_32_set_0(to, 0)\ | ||
254 | if (a6 != 0) bn_cp_32(to, 1, from, (a6) - 7) else bn_32_set_0(to, 1)\ | ||
255 | if (a5 != 0) bn_cp_32(to, 2, from, (a5) - 7) else bn_32_set_0(to, 2)\ | ||
256 | if (a4 != 0) bn_cp_32(to, 3, from, (a4) - 7) else bn_32_set_0(to, 3)\ | ||
257 | if (a3 != 0) bn_cp_32(to, 4, from, (a3) - 7) else bn_32_set_0(to, 4)\ | ||
258 | if (a2 != 0) bn_cp_32(to, 5, from, (a2) - 7) else bn_32_set_0(to, 5)\ | ||
259 | if (a1 != 0) bn_cp_32(to, 6, from, (a1) - 7) else bn_32_set_0(to, 6)\ | ||
260 | } | ||
261 | |||
262 | int BN_nist_mod_224(BIGNUM *r, const BIGNUM *a, const BIGNUM *field, | ||
263 | BN_CTX *ctx) | ||
264 | { | ||
265 | #if BN_BITS2 == 32 | ||
266 | int top = a->top, i; | ||
267 | int carry; | ||
268 | BN_ULONG *r_d, *a_d = a->d; | ||
269 | BN_ULONG t_d[BN_NIST_224_TOP], | ||
270 | buf[BN_NIST_224_TOP], | ||
271 | c_d[BN_NIST_224_TOP], | ||
272 | *res; | ||
273 | size_t mask; | ||
274 | |||
275 | i = BN_ucmp(field, a); | ||
276 | if (i == 0) | ||
277 | { | ||
278 | BN_zero(r); | ||
279 | return 1; | ||
280 | } | ||
281 | else if (i > 0) | ||
282 | return (r == a)? 1 : (BN_copy(r ,a) != NULL); | ||
283 | |||
284 | if (top == BN_NIST_224_TOP) | ||
285 | return BN_usub(r, a, field); | ||
286 | |||
287 | if (r != a) | ||
288 | { | ||
289 | if (!bn_wexpand(r, BN_NIST_224_TOP)) | ||
290 | return 0; | ||
291 | r_d = r->d; | ||
292 | nist_cp_bn(r_d, a_d, BN_NIST_224_TOP); | ||
293 | } | ||
294 | else | ||
295 | r_d = a_d; | ||
296 | |||
297 | nist_cp_bn_0(buf, a_d + BN_NIST_224_TOP, top - BN_NIST_224_TOP, BN_NIST_224_TOP); | ||
298 | |||
299 | nist_set_224(t_d, buf, 10, 9, 8, 7, 0, 0, 0); | ||
300 | carry = bn_add_words(r_d, r_d, t_d, BN_NIST_224_TOP); | ||
301 | mask = 0-(size_t)bn_sub_words(c_d,r_d,_nist_p_224,BN_NIST_224_TOP); | ||
302 | mask = ~mask | (0-(size_t)carry); | ||
303 | res = (BN_ULONG *)(((size_t)c_d&mask) | ((size_t)r_d&~mask)); | ||
304 | |||
305 | nist_set_224(t_d, buf, 0, 13, 12, 11, 0, 0, 0); | ||
306 | carry = bn_add_words(r_d, res, t_d, BN_NIST_224_TOP); | ||
307 | mask = 0-(size_t)bn_sub_words(c_d,r_d,_nist_p_224,BN_NIST_224_TOP); | ||
308 | mask = ~mask | (0-(size_t)carry); | ||
309 | res = (BN_ULONG *)(((size_t)c_d&mask) | ((size_t)r_d&~mask)); | ||
310 | |||
311 | nist_set_224(t_d, buf, 13, 12, 11, 10, 9, 8, 7); | ||
312 | #if BRANCH_FREE | ||
313 | carry = bn_sub_words(r_d, res, t_d, BN_NIST_224_TOP); | ||
314 | bn_add_words(c_d,r_d,_nist_p_224,BN_NIST_224_TOP); | ||
315 | mask = 0-(size_t)carry; | ||
316 | res = (BN_ULONG *)(((size_t)c_d&mask) | ((size_t)r_d&~mask)); | ||
317 | #else | ||
318 | if (bn_sub_words(r_d, res, t_d, BN_NIST_224_TOP)) | ||
319 | bn_add_words(r_d,r_d,_nist_p_224,BN_NIST_224_TOP); | ||
320 | #endif | ||
321 | nist_set_224(t_d, buf, 0, 0, 0, 0, 13, 12, 11); | ||
322 | #if BRANCH_FREE | ||
323 | carry = bn_sub_words(r_d, res, t_d, BN_NIST_224_TOP); | ||
324 | bn_add_words(c_d,r_d,_nist_p_224,BN_NIST_224_TOP); | ||
325 | mask = 0-(size_t)carry; | ||
326 | res = (BN_ULONG *)(((size_t)c_d&mask) | ((size_t)r_d&~mask)); | ||
327 | |||
328 | nist_cp_bn(r_d, res, BN_NIST_224_TOP); | ||
329 | #else | ||
330 | if (bn_sub_words(r_d, r_d, t_d, BN_NIST_224_TOP)) | ||
331 | bn_add_words(r_d,r_d,_nist_p_224,BN_NIST_224_TOP); | ||
332 | #endif | ||
333 | r->top = BN_NIST_224_TOP; | ||
334 | bn_correct_top(r); | ||
335 | |||
336 | return 1; | ||
337 | #else /* BN_BITS!=32 */ | ||
338 | return 0; | ||
339 | #endif | ||
340 | } | ||
341 | |||
342 | #define nist_set_256(to, from, a1, a2, a3, a4, a5, a6, a7, a8) \ | ||
343 | { \ | ||
344 | if (a8 != 0) bn_cp_32(to, 0, from, (a8) - 8) else bn_32_set_0(to, 0)\ | ||
345 | if (a7 != 0) bn_cp_32(to, 1, from, (a7) - 8) else bn_32_set_0(to, 1)\ | ||
346 | if (a6 != 0) bn_cp_32(to, 2, from, (a6) - 8) else bn_32_set_0(to, 2)\ | ||
347 | if (a5 != 0) bn_cp_32(to, 3, from, (a5) - 8) else bn_32_set_0(to, 3)\ | ||
348 | if (a4 != 0) bn_cp_32(to, 4, from, (a4) - 8) else bn_32_set_0(to, 4)\ | ||
349 | if (a3 != 0) bn_cp_32(to, 5, from, (a3) - 8) else bn_32_set_0(to, 5)\ | ||
350 | if (a2 != 0) bn_cp_32(to, 6, from, (a2) - 8) else bn_32_set_0(to, 6)\ | ||
351 | if (a1 != 0) bn_cp_32(to, 7, from, (a1) - 8) else bn_32_set_0(to, 7)\ | ||
352 | } | ||
353 | |||
354 | int BN_nist_mod_256(BIGNUM *r, const BIGNUM *a, const BIGNUM *field, | ||
355 | BN_CTX *ctx) | ||
356 | { | ||
357 | #if BN_BITS2 == 32 | ||
358 | int i, top = a->top; | ||
359 | int carry = 0; | ||
360 | register BN_ULONG *a_d = a->d, *r_d; | ||
361 | BN_ULONG t_d[BN_NIST_256_TOP], | ||
362 | buf[BN_NIST_256_TOP], | ||
363 | c_d[BN_NIST_256_TOP], | ||
364 | *res; | ||
365 | size_t mask; | ||
366 | |||
367 | i = BN_ucmp(field, a); | ||
368 | if (i == 0) | ||
369 | { | ||
370 | BN_zero(r); | ||
371 | return 1; | ||
372 | } | ||
373 | else if (i > 0) | ||
374 | return (r == a)? 1 : (BN_copy(r ,a) != NULL); | ||
375 | |||
376 | if (top == BN_NIST_256_TOP) | ||
377 | return BN_usub(r, a, field); | ||
378 | |||
379 | if (r != a) | ||
380 | { | ||
381 | if (!bn_wexpand(r, BN_NIST_256_TOP)) | ||
382 | return 0; | ||
383 | r_d = r->d; | ||
384 | nist_cp_bn(r_d, a_d, BN_NIST_256_TOP); | ||
385 | } | ||
386 | else | ||
387 | r_d = a_d; | ||
388 | |||
389 | nist_cp_bn_0(buf, a_d + BN_NIST_256_TOP, top - BN_NIST_256_TOP, BN_NIST_256_TOP); | ||
390 | |||
391 | /*S1*/ | ||
392 | nist_set_256(t_d, buf, 15, 14, 13, 12, 11, 0, 0, 0); | ||
393 | /*S2*/ | ||
394 | nist_set_256(c_d,buf, 0, 15, 14, 13, 12, 0, 0, 0); | ||
395 | carry = bn_add_words(t_d, t_d, c_d, BN_NIST_256_TOP); | ||
396 | mask = 0-(size_t)bn_sub_words(c_d,t_d,_nist_p_256,BN_NIST_256_TOP); | ||
397 | mask = ~mask | (0-(size_t)carry); | ||
398 | res = (BN_ULONG *)(((size_t)c_d&mask) | ((size_t)t_d&~mask)); | ||
399 | |||
400 | carry = bn_add_words(t_d, res, res, BN_NIST_256_TOP); | ||
401 | mask = 0-(size_t)bn_sub_words(c_d,t_d,_nist_p_256,BN_NIST_256_TOP); | ||
402 | mask = ~mask | (0-(size_t)carry); | ||
403 | res = (BN_ULONG *)(((size_t)c_d&mask) | ((size_t)t_d&~mask)); | ||
404 | |||
405 | carry = bn_add_words(r_d, r_d, res, BN_NIST_256_TOP); | ||
406 | mask = 0-(size_t)bn_sub_words(c_d,r_d,_nist_p_256,BN_NIST_256_TOP); | ||
407 | mask = ~mask | (0-(size_t)carry); | ||
408 | res = (BN_ULONG *)(((size_t)c_d&mask) | ((size_t)r_d&~mask)); | ||
409 | |||
410 | /*S3*/ | ||
411 | nist_set_256(t_d, buf, 15, 14, 0, 0, 0, 10, 9, 8); | ||
412 | carry = bn_add_words(r_d, res, t_d, BN_NIST_256_TOP); | ||
413 | mask = 0-(size_t)bn_sub_words(c_d,r_d,_nist_p_256,BN_NIST_256_TOP); | ||
414 | mask = ~mask | (0-(size_t)carry); | ||
415 | res = (BN_ULONG *)(((size_t)c_d&mask) | ((size_t)r_d&~mask)); | ||
416 | |||
417 | /*S4*/ | ||
418 | nist_set_256(t_d, buf, 8, 13, 15, 14, 13, 11, 10, 9); | ||
419 | carry = bn_add_words(r_d, res, t_d, BN_NIST_256_TOP); | ||
420 | mask = 0-(size_t)bn_sub_words(c_d,r_d,_nist_p_256,BN_NIST_256_TOP); | ||
421 | mask = ~mask | (0-(size_t)carry); | ||
422 | res = (BN_ULONG *)(((size_t)c_d&mask) | ((size_t)r_d&~mask)); | ||
423 | |||
424 | /*D1*/ | ||
425 | nist_set_256(t_d, buf, 10, 8, 0, 0, 0, 13, 12, 11); | ||
426 | #if BRANCH_FREE | ||
427 | carry = bn_sub_words(r_d, res, t_d, BN_NIST_256_TOP); | ||
428 | bn_add_words(c_d,r_d,_nist_p_256,BN_NIST_256_TOP); | ||
429 | mask = 0-(size_t)carry; | ||
430 | res = (BN_ULONG *)(((size_t)c_d&mask) | ((size_t)r_d&~mask)); | ||
431 | #else | ||
432 | if (bn_sub_words(r_d, res, t_d, BN_NIST_256_TOP)) | ||
433 | bn_add_words(r_d,r_d,_nist_p_256,BN_NIST_256_TOP); | ||
434 | #endif | ||
435 | /*D2*/ | ||
436 | nist_set_256(t_d, buf, 11, 9, 0, 0, 15, 14, 13, 12); | ||
437 | #if BRANCH_FREE | ||
438 | carry = bn_sub_words(r_d, res, t_d, BN_NIST_256_TOP); | ||
439 | bn_add_words(c_d,r_d,_nist_p_256,BN_NIST_256_TOP); | ||
440 | mask = 0-(size_t)carry; | ||
441 | res = (BN_ULONG *)(((size_t)c_d&mask) | ((size_t)r_d&~mask)); | ||
442 | #else | ||
443 | if (bn_sub_words(r_d, r_d, t_d, BN_NIST_256_TOP)) | ||
444 | bn_add_words(r_d,r_d,_nist_p_256,BN_NIST_256_TOP); | ||
445 | #endif | ||
446 | /*D3*/ | ||
447 | nist_set_256(t_d, buf, 12, 0, 10, 9, 8, 15, 14, 13); | ||
448 | #if BRANCH_FREE | ||
449 | carry = bn_sub_words(r_d, res, t_d, BN_NIST_256_TOP); | ||
450 | bn_add_words(c_d,r_d,_nist_p_256,BN_NIST_256_TOP); | ||
451 | mask = 0-(size_t)carry; | ||
452 | res = (BN_ULONG *)(((size_t)c_d&mask) | ((size_t)r_d&~mask)); | ||
453 | #else | ||
454 | if (bn_sub_words(r_d, r_d, t_d, BN_NIST_256_TOP)) | ||
455 | bn_add_words(r_d,r_d,_nist_p_256,BN_NIST_256_TOP); | ||
456 | #endif | ||
457 | /*D4*/ | ||
458 | nist_set_256(t_d, buf, 13, 0, 11, 10, 9, 0, 15, 14); | ||
459 | #if BRANCH_FREE | ||
460 | carry = bn_sub_words(r_d, res, t_d, BN_NIST_256_TOP); | ||
461 | bn_add_words(c_d,r_d,_nist_p_256,BN_NIST_256_TOP); | ||
462 | mask = 0-(size_t)carry; | ||
463 | res = (BN_ULONG *)(((size_t)c_d&mask) | ((size_t)r_d&~mask)); | ||
464 | |||
465 | nist_cp_bn(r_d, res, BN_NIST_384_TOP); | ||
466 | #else | ||
467 | if (bn_sub_words(r_d, r_d, t_d, BN_NIST_256_TOP)) | ||
468 | bn_add_words(r_d,r_d,_nist_p_256,BN_NIST_256_TOP); | ||
469 | #endif | ||
470 | r->top = BN_NIST_256_TOP; | ||
471 | bn_correct_top(r); | ||
472 | |||
473 | return 1; | ||
474 | #else /* BN_BITS!=32 */ | ||
475 | return 0; | ||
476 | #endif | ||
477 | } | ||
478 | |||
479 | #define nist_set_384(to,from,a1,a2,a3,a4,a5,a6,a7,a8,a9,a10,a11,a12) \ | ||
480 | { \ | ||
481 | if (a12 != 0) bn_cp_32(to, 0, from, (a12) - 12) else bn_32_set_0(to, 0)\ | ||
482 | if (a11 != 0) bn_cp_32(to, 1, from, (a11) - 12) else bn_32_set_0(to, 1)\ | ||
483 | if (a10 != 0) bn_cp_32(to, 2, from, (a10) - 12) else bn_32_set_0(to, 2)\ | ||
484 | if (a9 != 0) bn_cp_32(to, 3, from, (a9) - 12) else bn_32_set_0(to, 3)\ | ||
485 | if (a8 != 0) bn_cp_32(to, 4, from, (a8) - 12) else bn_32_set_0(to, 4)\ | ||
486 | if (a7 != 0) bn_cp_32(to, 5, from, (a7) - 12) else bn_32_set_0(to, 5)\ | ||
487 | if (a6 != 0) bn_cp_32(to, 6, from, (a6) - 12) else bn_32_set_0(to, 6)\ | ||
488 | if (a5 != 0) bn_cp_32(to, 7, from, (a5) - 12) else bn_32_set_0(to, 7)\ | ||
489 | if (a4 != 0) bn_cp_32(to, 8, from, (a4) - 12) else bn_32_set_0(to, 8)\ | ||
490 | if (a3 != 0) bn_cp_32(to, 9, from, (a3) - 12) else bn_32_set_0(to, 9)\ | ||
491 | if (a2 != 0) bn_cp_32(to, 10, from, (a2) - 12) else bn_32_set_0(to, 10)\ | ||
492 | if (a1 != 0) bn_cp_32(to, 11, from, (a1) - 12) else bn_32_set_0(to, 11)\ | ||
493 | } | ||
494 | |||
495 | int BN_nist_mod_384(BIGNUM *r, const BIGNUM *a, const BIGNUM *field, | ||
496 | BN_CTX *ctx) | ||
497 | { | ||
498 | #if BN_BITS2 == 32 | ||
499 | int i, top = a->top; | ||
500 | int carry = 0; | ||
501 | register BN_ULONG *r_d, *a_d = a->d; | ||
502 | BN_ULONG t_d[BN_NIST_384_TOP], | ||
503 | buf[BN_NIST_384_TOP], | ||
504 | c_d[BN_NIST_384_TOP], | ||
505 | *res; | ||
506 | size_t mask; | ||
507 | |||
508 | i = BN_ucmp(field, a); | ||
509 | if (i == 0) | ||
510 | { | ||
511 | BN_zero(r); | ||
512 | return 1; | ||
513 | } | ||
514 | else if (i > 0) | ||
515 | return (r == a)? 1 : (BN_copy(r ,a) != NULL); | ||
516 | |||
517 | if (top == BN_NIST_384_TOP) | ||
518 | return BN_usub(r, a, field); | ||
519 | |||
520 | if (r != a) | ||
521 | { | ||
522 | if (!bn_wexpand(r, BN_NIST_384_TOP)) | ||
523 | return 0; | ||
524 | r_d = r->d; | ||
525 | nist_cp_bn(r_d, a_d, BN_NIST_384_TOP); | ||
526 | } | ||
527 | else | ||
528 | r_d = a_d; | ||
529 | |||
530 | nist_cp_bn_0(buf, a_d + BN_NIST_384_TOP, top - BN_NIST_384_TOP, BN_NIST_384_TOP); | ||
531 | |||
532 | /*S1*/ | ||
533 | nist_set_256(t_d, buf, 0, 0, 0, 0, 0, 23-4, 22-4, 21-4); | ||
534 | /* left shift */ | ||
535 | { | ||
536 | register BN_ULONG *ap,t,c; | ||
537 | ap = t_d; | ||
538 | c=0; | ||
539 | for (i = 3; i != 0; --i) | ||
540 | { | ||
541 | t= *ap; | ||
542 | *(ap++)=((t<<1)|c)&BN_MASK2; | ||
543 | c=(t & BN_TBIT)?1:0; | ||
544 | } | ||
545 | *ap=c; | ||
546 | } | ||
547 | carry = bn_add_words(r_d+(128/BN_BITS2), r_d+(128/BN_BITS2), | ||
548 | t_d, BN_NIST_256_TOP); | ||
549 | /* | ||
550 | * we need if (result>=modulus) subtract(result,modulus); | ||
551 | * in n-bit space this can be expressed as | ||
552 | * if (carry || result>=modulus) subtract(result,modulus); | ||
553 | * the catch is that comparison implies subtraction and | ||
554 | * therefore one can write tmp=subtract(result,modulus); | ||
555 | * and then if(carry || !borrow) result=tmp; this's what | ||
556 | * happens below, but without explicit if:-) a. | ||
557 | */ | ||
558 | mask = 0-(size_t)bn_sub_words(c_d,r_d,_nist_p_384,BN_NIST_384_TOP); | ||
559 | mask = ~mask | (0-(size_t)carry); | ||
560 | res = (BN_ULONG *)(((size_t)c_d&mask) | ((size_t)r_d&~mask)); | ||
561 | |||
562 | /*S2 */ | ||
563 | carry = bn_add_words(r_d, res, buf, BN_NIST_384_TOP); | ||
564 | mask = 0-(size_t)bn_sub_words(c_d,r_d,_nist_p_384,BN_NIST_384_TOP); | ||
565 | mask = ~mask | (0-(size_t)carry); | ||
566 | res = (BN_ULONG *)(((size_t)c_d&mask) | ((size_t)r_d&~mask)); | ||
567 | |||
568 | /*S3*/ | ||
569 | nist_set_384(t_d,buf,20,19,18,17,16,15,14,13,12,23,22,21); | ||
570 | carry = bn_add_words(r_d, res, t_d, BN_NIST_384_TOP); | ||
571 | mask = 0-(size_t)bn_sub_words(c_d,r_d,_nist_p_384,BN_NIST_384_TOP); | ||
572 | mask = ~mask | (0-(size_t)carry); | ||
573 | res = (BN_ULONG *)(((size_t)c_d&mask) | ((size_t)r_d&~mask)); | ||
574 | |||
575 | /*S4*/ | ||
576 | nist_set_384(t_d,buf,19,18,17,16,15,14,13,12,20,0,23,0); | ||
577 | carry = bn_add_words(r_d, res, t_d, BN_NIST_384_TOP); | ||
578 | mask = 0-(size_t)bn_sub_words(c_d,r_d,_nist_p_384,BN_NIST_384_TOP); | ||
579 | mask = ~mask | (0-(size_t)carry); | ||
580 | res = (BN_ULONG *)(((size_t)c_d&mask) | ((size_t)r_d&~mask)); | ||
581 | |||
582 | /*S5*/ | ||
583 | nist_set_384(t_d, buf,0,0,0,0,23,22,21,20,0,0,0,0); | ||
584 | carry = bn_add_words(r_d, res, t_d, BN_NIST_384_TOP); | ||
585 | mask = 0-(size_t)bn_sub_words(c_d,r_d,_nist_p_384,BN_NIST_384_TOP); | ||
586 | mask = ~mask | (0-(size_t)carry); | ||
587 | res = (BN_ULONG *)(((size_t)c_d&mask) | ((size_t)r_d&~mask)); | ||
588 | |||
589 | /*S6*/ | ||
590 | nist_set_384(t_d,buf,0,0,0,0,0,0,23,22,21,0,0,20); | ||
591 | carry = bn_add_words(r_d, res, t_d, BN_NIST_384_TOP); | ||
592 | mask = 0-(size_t)bn_sub_words(c_d,r_d,_nist_p_384,BN_NIST_384_TOP); | ||
593 | mask = ~mask | (0-(size_t)carry); | ||
594 | res = (BN_ULONG *)(((size_t)c_d&mask) | ((size_t)r_d&~mask)); | ||
595 | |||
596 | /*D1*/ | ||
597 | nist_set_384(t_d,buf,22,21,20,19,18,17,16,15,14,13,12,23); | ||
598 | #if BRANCH_FREE | ||
599 | carry = bn_sub_words(r_d, res, t_d, BN_NIST_384_TOP); | ||
600 | bn_add_words(c_d,r_d,_nist_p_384,BN_NIST_384_TOP); | ||
601 | mask = 0-(size_t)carry; | ||
602 | res = (BN_ULONG *)(((size_t)c_d&mask) | ((size_t)r_d&~mask)); | ||
603 | #else | ||
604 | if (bn_sub_words(r_d, res, t_d, BN_NIST_384_TOP)) | ||
605 | bn_add_words(r_d,r_d,_nist_p_384,BN_NIST_384_TOP); | ||
606 | #endif | ||
607 | /*D2*/ | ||
608 | nist_set_384(t_d,buf,0,0,0,0,0,0,0,23,22,21,20,0); | ||
609 | #if BRANCH_FREE | ||
610 | carry = bn_sub_words(r_d, res, t_d, BN_NIST_384_TOP); | ||
611 | bn_add_words(c_d,r_d,_nist_p_384,BN_NIST_384_TOP); | ||
612 | mask = 0-(size_t)carry; | ||
613 | res = (BN_ULONG *)(((size_t)c_d&mask) | ((size_t)r_d&~mask)); | ||
614 | #else | ||
615 | if (bn_sub_words(r_d, r_d, t_d, BN_NIST_384_TOP)) | ||
616 | bn_add_words(r_d,r_d,_nist_p_384,BN_NIST_384_TOP); | ||
617 | #endif | ||
618 | /*D3*/ | ||
619 | nist_set_384(t_d,buf,0,0,0,0,0,0,0,23,23,0,0,0); | ||
620 | #if BRANCH_FREE | ||
621 | carry = bn_sub_words(r_d, res, t_d, BN_NIST_384_TOP); | ||
622 | bn_add_words(c_d,r_d,_nist_p_384,BN_NIST_384_TOP); | ||
623 | mask = 0-(size_t)carry; | ||
624 | res = (BN_ULONG *)(((size_t)c_d&mask) | ((size_t)r_d&~mask)); | ||
625 | |||
626 | nist_cp_bn(r_d, res, BN_NIST_384_TOP); | ||
627 | #else | ||
628 | if (bn_sub_words(r_d, r_d, t_d, BN_NIST_384_TOP)) | ||
629 | bn_add_words(r_d,r_d,_nist_p_384,BN_NIST_384_TOP); | ||
630 | #endif | ||
631 | r->top = BN_NIST_384_TOP; | ||
632 | bn_correct_top(r); | ||
633 | |||
634 | return 1; | ||
635 | #else /* BN_BITS!=32 */ | ||
636 | return 0; | ||
637 | #endif | ||
638 | } | ||
639 | |||
640 | int BN_nist_mod_521(BIGNUM *r, const BIGNUM *a, const BIGNUM *field, | ||
641 | BN_CTX *ctx) | ||
642 | { | ||
643 | #if BN_BITS2 == 64 | ||
644 | #define BN_NIST_521_TOP_MASK (BN_ULONG)0x1FF | ||
645 | #elif BN_BITS2 == 32 | ||
646 | #define BN_NIST_521_TOP_MASK (BN_ULONG)0x1FF | ||
647 | #endif | ||
648 | int top, ret = 0; | ||
649 | BN_ULONG *r_d; | ||
650 | BIGNUM *tmp; | ||
651 | |||
652 | /* check whether a reduction is necessary */ | ||
653 | top = a->top; | ||
654 | if (top < BN_NIST_521_TOP || ( top == BN_NIST_521_TOP && | ||
655 | (!(a->d[BN_NIST_521_TOP-1] & ~(BN_NIST_521_TOP_MASK))))) | ||
656 | return (r == a)? 1 : (BN_copy(r ,a) != NULL); | ||
657 | |||
658 | BN_CTX_start(ctx); | ||
659 | tmp = BN_CTX_get(ctx); | ||
660 | if (!tmp) | ||
661 | goto err; | ||
662 | |||
663 | if (!bn_wexpand(tmp, BN_NIST_521_TOP)) | ||
664 | goto err; | ||
665 | nist_cp_bn(tmp->d, a->d, BN_NIST_521_TOP); | ||
666 | |||
667 | tmp->top = BN_NIST_521_TOP; | ||
668 | tmp->d[BN_NIST_521_TOP-1] &= BN_NIST_521_TOP_MASK; | ||
669 | bn_correct_top(tmp); | ||
670 | |||
671 | if (!BN_rshift(r, a, 521)) | ||
672 | goto err; | ||
673 | |||
674 | if (!BN_uadd(r, tmp, r)) | ||
675 | goto err; | ||
676 | top = r->top; | ||
677 | r_d = r->d; | ||
678 | if (top == BN_NIST_521_TOP && | ||
679 | (r_d[BN_NIST_521_TOP-1] & ~(BN_NIST_521_TOP_MASK))) | ||
680 | { | ||
681 | BN_NIST_ADD_ONE(r_d) | ||
682 | r->d[BN_NIST_521_TOP-1] &= BN_NIST_521_TOP_MASK; | ||
683 | } | ||
684 | bn_correct_top(r); | ||
685 | |||
686 | ret = 1; | ||
687 | err: | ||
688 | BN_CTX_end(ctx); | ||
689 | |||
690 | bn_check_top(r); | ||
691 | return ret; | ||
692 | } | ||