summaryrefslogtreecommitdiff
path: root/src/lib/libcrypto/bn
diff options
context:
space:
mode:
Diffstat (limited to 'src/lib/libcrypto/bn')
-rw-r--r--src/lib/libcrypto/bn/asm/x86_64-gcc.c4
-rwxr-xr-xsrc/lib/libcrypto/bn/asm/x86_64-mont.pl214
-rw-r--r--src/lib/libcrypto/bn/bn_const.c402
-rw-r--r--src/lib/libcrypto/bn/bn_depr.c112
-rw-r--r--src/lib/libcrypto/bn/bn_gf2m.c1091
-rw-r--r--src/lib/libcrypto/bn/bn_nist.c692
6 files changed, 2515 insertions, 0 deletions
diff --git a/src/lib/libcrypto/bn/asm/x86_64-gcc.c b/src/lib/libcrypto/bn/asm/x86_64-gcc.c
index 7378344251..f13f52dd85 100644
--- a/src/lib/libcrypto/bn/asm/x86_64-gcc.c
+++ b/src/lib/libcrypto/bn/asm/x86_64-gcc.c
@@ -1,3 +1,6 @@
1#ifdef __SUNPRO_C
2# include "../bn_asm.c" /* kind of dirty hack for Sun Studio */
3#else
1/* 4/*
2 * x86_64 BIGNUM accelerator version 0.1, December 2002. 5 * x86_64 BIGNUM accelerator version 0.1, December 2002.
3 * 6 *
@@ -591,3 +594,4 @@ void bn_sqr_comba4(BN_ULONG *r, BN_ULONG *a)
591 r[6]=c1; 594 r[6]=c1;
592 r[7]=c2; 595 r[7]=c2;
593 } 596 }
597#endif
diff --git a/src/lib/libcrypto/bn/asm/x86_64-mont.pl b/src/lib/libcrypto/bn/asm/x86_64-mont.pl
new file mode 100755
index 0000000000..c43b69592a
--- /dev/null
+++ b/src/lib/libcrypto/bn/asm/x86_64-mont.pl
@@ -0,0 +1,214 @@
1#!/usr/bin/env perl
2
3# ====================================================================
4# Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL
5# project. The module is, however, dual licensed under OpenSSL and
6# CRYPTOGAMS licenses depending on where you obtain it. For further
7# details see http://www.openssl.org/~appro/cryptogams/.
8# ====================================================================
9
10# October 2005.
11#
12# Montgomery multiplication routine for x86_64. While it gives modest
13# 9% improvement of rsa4096 sign on Opteron, rsa512 sign runs more
14# than twice, >2x, as fast. Most common rsa1024 sign is improved by
15# respectful 50%. It remains to be seen if loop unrolling and
16# dedicated squaring routine can provide further improvement...
17
18$output=shift;
19
20$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
21( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or
22( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or
23die "can't locate x86_64-xlate.pl";
24
25open STDOUT,"| $^X $xlate $output";
26
27# int bn_mul_mont(
28$rp="%rdi"; # BN_ULONG *rp,
29$ap="%rsi"; # const BN_ULONG *ap,
30$bp="%rdx"; # const BN_ULONG *bp,
31$np="%rcx"; # const BN_ULONG *np,
32$n0="%r8"; # const BN_ULONG *n0,
33$num="%r9"; # int num);
34$lo0="%r10";
35$hi0="%r11";
36$bp="%r12"; # reassign $bp
37$hi1="%r13";
38$i="%r14";
39$j="%r15";
40$m0="%rbx";
41$m1="%rbp";
42
43$code=<<___;
44.text
45
46.globl bn_mul_mont
47.type bn_mul_mont,\@function,6
48.align 16
49bn_mul_mont:
50 push %rbx
51 push %rbp
52 push %r12
53 push %r13
54 push %r14
55 push %r15
56
57 mov ${num}d,${num}d
58 lea 2($num),%rax
59 mov %rsp,%rbp
60 neg %rax
61 lea (%rsp,%rax,8),%rsp # tp=alloca(8*(num+2))
62 and \$-1024,%rsp # minimize TLB usage
63
64 mov %rbp,8(%rsp,$num,8) # tp[num+1]=%rsp
65 mov %rdx,$bp # $bp reassigned, remember?
66
67 mov ($n0),$n0 # pull n0[0] value
68
69 xor $i,$i # i=0
70 xor $j,$j # j=0
71
72 mov ($bp),$m0 # m0=bp[0]
73 mov ($ap),%rax
74 mulq $m0 # ap[0]*bp[0]
75 mov %rax,$lo0
76 mov %rdx,$hi0
77
78 imulq $n0,%rax # "tp[0]"*n0
79 mov %rax,$m1
80
81 mulq ($np) # np[0]*m1
82 add $lo0,%rax # discarded
83 adc \$0,%rdx
84 mov %rdx,$hi1
85
86 lea 1($j),$j # j++
87.L1st:
88 mov ($ap,$j,8),%rax
89 mulq $m0 # ap[j]*bp[0]
90 add $hi0,%rax
91 adc \$0,%rdx
92 mov %rax,$lo0
93 mov ($np,$j,8),%rax
94 mov %rdx,$hi0
95
96 mulq $m1 # np[j]*m1
97 add $hi1,%rax
98 lea 1($j),$j # j++
99 adc \$0,%rdx
100 add $lo0,%rax # np[j]*m1+ap[j]*bp[0]
101 adc \$0,%rdx
102 mov %rax,-16(%rsp,$j,8) # tp[j-1]
103 cmp $num,$j
104 mov %rdx,$hi1
105 jl .L1st
106
107 xor %rdx,%rdx
108 add $hi0,$hi1
109 adc \$0,%rdx
110 mov $hi1,-8(%rsp,$num,8)
111 mov %rdx,(%rsp,$num,8) # store upmost overflow bit
112
113 lea 1($i),$i # i++
114.align 4
115.Louter:
116 xor $j,$j # j=0
117
118 mov ($bp,$i,8),$m0 # m0=bp[i]
119 mov ($ap),%rax # ap[0]
120 mulq $m0 # ap[0]*bp[i]
121 add (%rsp),%rax # ap[0]*bp[i]+tp[0]
122 adc \$0,%rdx
123 mov %rax,$lo0
124 mov %rdx,$hi0
125
126 imulq $n0,%rax # tp[0]*n0
127 mov %rax,$m1
128
129 mulq ($np,$j,8) # np[0]*m1
130 add $lo0,%rax # discarded
131 mov 8(%rsp),$lo0 # tp[1]
132 adc \$0,%rdx
133 mov %rdx,$hi1
134
135 lea 1($j),$j # j++
136.align 4
137.Linner:
138 mov ($ap,$j,8),%rax
139 mulq $m0 # ap[j]*bp[i]
140 add $hi0,%rax
141 adc \$0,%rdx
142 add %rax,$lo0 # ap[j]*bp[i]+tp[j]
143 mov ($np,$j,8),%rax
144 adc \$0,%rdx
145 mov %rdx,$hi0
146
147 mulq $m1 # np[j]*m1
148 add $hi1,%rax
149 lea 1($j),$j # j++
150 adc \$0,%rdx
151 add $lo0,%rax # np[j]*m1+ap[j]*bp[i]+tp[j]
152 adc \$0,%rdx
153 mov (%rsp,$j,8),$lo0
154 cmp $num,$j
155 mov %rax,-16(%rsp,$j,8) # tp[j-1]
156 mov %rdx,$hi1
157 jl .Linner
158
159 xor %rdx,%rdx
160 add $hi0,$hi1
161 adc \$0,%rdx
162 add $lo0,$hi1 # pull upmost overflow bit
163 adc \$0,%rdx
164 mov $hi1,-8(%rsp,$num,8)
165 mov %rdx,(%rsp,$num,8) # store upmost overflow bit
166
167 lea 1($i),$i # i++
168 cmp $num,$i
169 jl .Louter
170
171 lea (%rsp),$ap # borrow ap for tp
172 lea -1($num),$j # j=num-1
173
174 mov ($ap),%rax # tp[0]
175 xor $i,$i # i=0 and clear CF!
176 jmp .Lsub
177.align 16
178.Lsub: sbb ($np,$i,8),%rax
179 mov %rax,($rp,$i,8) # rp[i]=tp[i]-np[i]
180 dec $j # doesn't affect CF!
181 mov 8($ap,$i,8),%rax # tp[i+1]
182 lea 1($i),$i # i++
183 jge .Lsub
184
185 sbb \$0,%rax # handle upmost overflow bit
186 and %rax,$ap
187 not %rax
188 mov $rp,$np
189 and %rax,$np
190 lea -1($num),$j
191 or $np,$ap # ap=borrow?tp:rp
192.align 16
193.Lcopy: # copy or in-place refresh
194 mov ($ap,$j,8),%rax
195 mov %rax,($rp,$j,8) # rp[i]=tp[i]
196 mov $i,(%rsp,$j,8) # zap temporary vector
197 dec $j
198 jge .Lcopy
199
200 mov 8(%rsp,$num,8),%rsp # restore %rsp
201 mov \$1,%rax
202 pop %r15
203 pop %r14
204 pop %r13
205 pop %r12
206 pop %rbp
207 pop %rbx
208 ret
209.size bn_mul_mont,.-bn_mul_mont
210.asciz "Montgomery Multiplication for x86_64, CRYPTOGAMS by <appro\@openssl.org>"
211___
212
213print $code;
214close STDOUT;
diff --git a/src/lib/libcrypto/bn/bn_const.c b/src/lib/libcrypto/bn/bn_const.c
new file mode 100644
index 0000000000..eb60a25b3c
--- /dev/null
+++ b/src/lib/libcrypto/bn/bn_const.c
@@ -0,0 +1,402 @@
1/* crypto/bn/knownprimes.c */
2/* Insert boilerplate */
3
4#include "bn.h"
5
6/* "First Oakley Default Group" from RFC2409, section 6.1.
7 *
8 * The prime is: 2^768 - 2 ^704 - 1 + 2^64 * { [2^638 pi] + 149686 }
9 *
10 * RFC2409 specifies a generator of 2.
11 * RFC2412 specifies a generator of of 22.
12 */
13
14BIGNUM *get_rfc2409_prime_768(BIGNUM *bn)
15 {
16 static const unsigned char RFC2409_PRIME_768[]={
17 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xC9,0x0F,0xDA,0xA2,
18 0x21,0x68,0xC2,0x34,0xC4,0xC6,0x62,0x8B,0x80,0xDC,0x1C,0xD1,
19 0x29,0x02,0x4E,0x08,0x8A,0x67,0xCC,0x74,0x02,0x0B,0xBE,0xA6,
20 0x3B,0x13,0x9B,0x22,0x51,0x4A,0x08,0x79,0x8E,0x34,0x04,0xDD,
21 0xEF,0x95,0x19,0xB3,0xCD,0x3A,0x43,0x1B,0x30,0x2B,0x0A,0x6D,
22 0xF2,0x5F,0x14,0x37,0x4F,0xE1,0x35,0x6D,0x6D,0x51,0xC2,0x45,
23 0xE4,0x85,0xB5,0x76,0x62,0x5E,0x7E,0xC6,0xF4,0x4C,0x42,0xE9,
24 0xA6,0x3A,0x36,0x20,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
25 };
26 return BN_bin2bn(RFC2409_PRIME_768,sizeof(RFC2409_PRIME_768),bn);
27 }
28
29/* "Second Oakley Default Group" from RFC2409, section 6.2.
30 *
31 * The prime is: 2^1024 - 2^960 - 1 + 2^64 * { [2^894 pi] + 129093 }.
32 *
33 * RFC2409 specifies a generator of 2.
34 * RFC2412 specifies a generator of 22.
35 */
36
37BIGNUM *get_rfc2409_prime_1024(BIGNUM *bn)
38 {
39 static const unsigned char RFC2409_PRIME_1024[]={
40 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xC9,0x0F,0xDA,0xA2,
41 0x21,0x68,0xC2,0x34,0xC4,0xC6,0x62,0x8B,0x80,0xDC,0x1C,0xD1,
42 0x29,0x02,0x4E,0x08,0x8A,0x67,0xCC,0x74,0x02,0x0B,0xBE,0xA6,
43 0x3B,0x13,0x9B,0x22,0x51,0x4A,0x08,0x79,0x8E,0x34,0x04,0xDD,
44 0xEF,0x95,0x19,0xB3,0xCD,0x3A,0x43,0x1B,0x30,0x2B,0x0A,0x6D,
45 0xF2,0x5F,0x14,0x37,0x4F,0xE1,0x35,0x6D,0x6D,0x51,0xC2,0x45,
46 0xE4,0x85,0xB5,0x76,0x62,0x5E,0x7E,0xC6,0xF4,0x4C,0x42,0xE9,
47 0xA6,0x37,0xED,0x6B,0x0B,0xFF,0x5C,0xB6,0xF4,0x06,0xB7,0xED,
48 0xEE,0x38,0x6B,0xFB,0x5A,0x89,0x9F,0xA5,0xAE,0x9F,0x24,0x11,
49 0x7C,0x4B,0x1F,0xE6,0x49,0x28,0x66,0x51,0xEC,0xE6,0x53,0x81,
50 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
51 };
52 return BN_bin2bn(RFC2409_PRIME_1024,sizeof(RFC2409_PRIME_1024),bn);
53 }
54
55/* "1536-bit MODP Group" from RFC3526, Section 2.
56 *
57 * The prime is: 2^1536 - 2^1472 - 1 + 2^64 * { [2^1406 pi] + 741804 }
58 *
59 * RFC3526 specifies a generator of 2.
60 * RFC2312 specifies a generator of 22.
61 */
62
63BIGNUM *get_rfc3526_prime_1536(BIGNUM *bn)
64 {
65 static const unsigned char RFC3526_PRIME_1536[]={
66 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xC9,0x0F,0xDA,0xA2,
67 0x21,0x68,0xC2,0x34,0xC4,0xC6,0x62,0x8B,0x80,0xDC,0x1C,0xD1,
68 0x29,0x02,0x4E,0x08,0x8A,0x67,0xCC,0x74,0x02,0x0B,0xBE,0xA6,
69 0x3B,0x13,0x9B,0x22,0x51,0x4A,0x08,0x79,0x8E,0x34,0x04,0xDD,
70 0xEF,0x95,0x19,0xB3,0xCD,0x3A,0x43,0x1B,0x30,0x2B,0x0A,0x6D,
71 0xF2,0x5F,0x14,0x37,0x4F,0xE1,0x35,0x6D,0x6D,0x51,0xC2,0x45,
72 0xE4,0x85,0xB5,0x76,0x62,0x5E,0x7E,0xC6,0xF4,0x4C,0x42,0xE9,
73 0xA6,0x37,0xED,0x6B,0x0B,0xFF,0x5C,0xB6,0xF4,0x06,0xB7,0xED,
74 0xEE,0x38,0x6B,0xFB,0x5A,0x89,0x9F,0xA5,0xAE,0x9F,0x24,0x11,
75 0x7C,0x4B,0x1F,0xE6,0x49,0x28,0x66,0x51,0xEC,0xE4,0x5B,0x3D,
76 0xC2,0x00,0x7C,0xB8,0xA1,0x63,0xBF,0x05,0x98,0xDA,0x48,0x36,
77 0x1C,0x55,0xD3,0x9A,0x69,0x16,0x3F,0xA8,0xFD,0x24,0xCF,0x5F,
78 0x83,0x65,0x5D,0x23,0xDC,0xA3,0xAD,0x96,0x1C,0x62,0xF3,0x56,
79 0x20,0x85,0x52,0xBB,0x9E,0xD5,0x29,0x07,0x70,0x96,0x96,0x6D,
80 0x67,0x0C,0x35,0x4E,0x4A,0xBC,0x98,0x04,0xF1,0x74,0x6C,0x08,
81 0xCA,0x23,0x73,0x27,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
82 };
83 return BN_bin2bn(RFC3526_PRIME_1536,sizeof(RFC3526_PRIME_1536),bn);
84 }
85
86/* "2048-bit MODP Group" from RFC3526, Section 3.
87 *
88 * The prime is: 2^2048 - 2^1984 - 1 + 2^64 * { [2^1918 pi] + 124476 }
89 *
90 * RFC3526 specifies a generator of 2.
91 */
92
93BIGNUM *get_rfc3526_prime_2048(BIGNUM *bn)
94 {
95 static const unsigned char RFC3526_PRIME_2048[]={
96 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xC9,0x0F,0xDA,0xA2,
97 0x21,0x68,0xC2,0x34,0xC4,0xC6,0x62,0x8B,0x80,0xDC,0x1C,0xD1,
98 0x29,0x02,0x4E,0x08,0x8A,0x67,0xCC,0x74,0x02,0x0B,0xBE,0xA6,
99 0x3B,0x13,0x9B,0x22,0x51,0x4A,0x08,0x79,0x8E,0x34,0x04,0xDD,
100 0xEF,0x95,0x19,0xB3,0xCD,0x3A,0x43,0x1B,0x30,0x2B,0x0A,0x6D,
101 0xF2,0x5F,0x14,0x37,0x4F,0xE1,0x35,0x6D,0x6D,0x51,0xC2,0x45,
102 0xE4,0x85,0xB5,0x76,0x62,0x5E,0x7E,0xC6,0xF4,0x4C,0x42,0xE9,
103 0xA6,0x37,0xED,0x6B,0x0B,0xFF,0x5C,0xB6,0xF4,0x06,0xB7,0xED,
104 0xEE,0x38,0x6B,0xFB,0x5A,0x89,0x9F,0xA5,0xAE,0x9F,0x24,0x11,
105 0x7C,0x4B,0x1F,0xE6,0x49,0x28,0x66,0x51,0xEC,0xE4,0x5B,0x3D,
106 0xC2,0x00,0x7C,0xB8,0xA1,0x63,0xBF,0x05,0x98,0xDA,0x48,0x36,
107 0x1C,0x55,0xD3,0x9A,0x69,0x16,0x3F,0xA8,0xFD,0x24,0xCF,0x5F,
108 0x83,0x65,0x5D,0x23,0xDC,0xA3,0xAD,0x96,0x1C,0x62,0xF3,0x56,
109 0x20,0x85,0x52,0xBB,0x9E,0xD5,0x29,0x07,0x70,0x96,0x96,0x6D,
110 0x67,0x0C,0x35,0x4E,0x4A,0xBC,0x98,0x04,0xF1,0x74,0x6C,0x08,
111 0xCA,0x18,0x21,0x7C,0x32,0x90,0x5E,0x46,0x2E,0x36,0xCE,0x3B,
112 0xE3,0x9E,0x77,0x2C,0x18,0x0E,0x86,0x03,0x9B,0x27,0x83,0xA2,
113 0xEC,0x07,0xA2,0x8F,0xB5,0xC5,0x5D,0xF0,0x6F,0x4C,0x52,0xC9,
114 0xDE,0x2B,0xCB,0xF6,0x95,0x58,0x17,0x18,0x39,0x95,0x49,0x7C,
115 0xEA,0x95,0x6A,0xE5,0x15,0xD2,0x26,0x18,0x98,0xFA,0x05,0x10,
116 0x15,0x72,0x8E,0x5A,0x8A,0xAC,0xAA,0x68,0xFF,0xFF,0xFF,0xFF,
117 0xFF,0xFF,0xFF,0xFF,
118 };
119 return BN_bin2bn(RFC3526_PRIME_2048,sizeof(RFC3526_PRIME_2048),bn);
120 }
121
122/* "3072-bit MODP Group" from RFC3526, Section 4.
123 *
124 * The prime is: 2^3072 - 2^3008 - 1 + 2^64 * { [2^2942 pi] + 1690314 }
125 *
126 * RFC3526 specifies a generator of 2.
127 */
128
129BIGNUM *get_rfc3526_prime_3072(BIGNUM *bn)
130 {
131 static const unsigned char RFC3526_PRIME_3072[]={
132 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xC9,0x0F,0xDA,0xA2,
133 0x21,0x68,0xC2,0x34,0xC4,0xC6,0x62,0x8B,0x80,0xDC,0x1C,0xD1,
134 0x29,0x02,0x4E,0x08,0x8A,0x67,0xCC,0x74,0x02,0x0B,0xBE,0xA6,
135 0x3B,0x13,0x9B,0x22,0x51,0x4A,0x08,0x79,0x8E,0x34,0x04,0xDD,
136 0xEF,0x95,0x19,0xB3,0xCD,0x3A,0x43,0x1B,0x30,0x2B,0x0A,0x6D,
137 0xF2,0x5F,0x14,0x37,0x4F,0xE1,0x35,0x6D,0x6D,0x51,0xC2,0x45,
138 0xE4,0x85,0xB5,0x76,0x62,0x5E,0x7E,0xC6,0xF4,0x4C,0x42,0xE9,
139 0xA6,0x37,0xED,0x6B,0x0B,0xFF,0x5C,0xB6,0xF4,0x06,0xB7,0xED,
140 0xEE,0x38,0x6B,0xFB,0x5A,0x89,0x9F,0xA5,0xAE,0x9F,0x24,0x11,
141 0x7C,0x4B,0x1F,0xE6,0x49,0x28,0x66,0x51,0xEC,0xE4,0x5B,0x3D,
142 0xC2,0x00,0x7C,0xB8,0xA1,0x63,0xBF,0x05,0x98,0xDA,0x48,0x36,
143 0x1C,0x55,0xD3,0x9A,0x69,0x16,0x3F,0xA8,0xFD,0x24,0xCF,0x5F,
144 0x83,0x65,0x5D,0x23,0xDC,0xA3,0xAD,0x96,0x1C,0x62,0xF3,0x56,
145 0x20,0x85,0x52,0xBB,0x9E,0xD5,0x29,0x07,0x70,0x96,0x96,0x6D,
146 0x67,0x0C,0x35,0x4E,0x4A,0xBC,0x98,0x04,0xF1,0x74,0x6C,0x08,
147 0xCA,0x18,0x21,0x7C,0x32,0x90,0x5E,0x46,0x2E,0x36,0xCE,0x3B,
148 0xE3,0x9E,0x77,0x2C,0x18,0x0E,0x86,0x03,0x9B,0x27,0x83,0xA2,
149 0xEC,0x07,0xA2,0x8F,0xB5,0xC5,0x5D,0xF0,0x6F,0x4C,0x52,0xC9,
150 0xDE,0x2B,0xCB,0xF6,0x95,0x58,0x17,0x18,0x39,0x95,0x49,0x7C,
151 0xEA,0x95,0x6A,0xE5,0x15,0xD2,0x26,0x18,0x98,0xFA,0x05,0x10,
152 0x15,0x72,0x8E,0x5A,0x8A,0xAA,0xC4,0x2D,0xAD,0x33,0x17,0x0D,
153 0x04,0x50,0x7A,0x33,0xA8,0x55,0x21,0xAB,0xDF,0x1C,0xBA,0x64,
154 0xEC,0xFB,0x85,0x04,0x58,0xDB,0xEF,0x0A,0x8A,0xEA,0x71,0x57,
155 0x5D,0x06,0x0C,0x7D,0xB3,0x97,0x0F,0x85,0xA6,0xE1,0xE4,0xC7,
156 0xAB,0xF5,0xAE,0x8C,0xDB,0x09,0x33,0xD7,0x1E,0x8C,0x94,0xE0,
157 0x4A,0x25,0x61,0x9D,0xCE,0xE3,0xD2,0x26,0x1A,0xD2,0xEE,0x6B,
158 0xF1,0x2F,0xFA,0x06,0xD9,0x8A,0x08,0x64,0xD8,0x76,0x02,0x73,
159 0x3E,0xC8,0x6A,0x64,0x52,0x1F,0x2B,0x18,0x17,0x7B,0x20,0x0C,
160 0xBB,0xE1,0x17,0x57,0x7A,0x61,0x5D,0x6C,0x77,0x09,0x88,0xC0,
161 0xBA,0xD9,0x46,0xE2,0x08,0xE2,0x4F,0xA0,0x74,0xE5,0xAB,0x31,
162 0x43,0xDB,0x5B,0xFC,0xE0,0xFD,0x10,0x8E,0x4B,0x82,0xD1,0x20,
163 0xA9,0x3A,0xD2,0xCA,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
164 };
165 return BN_bin2bn(RFC3526_PRIME_3072,sizeof(RFC3526_PRIME_3072),bn);
166 }
167
168/* "4096-bit MODP Group" from RFC3526, Section 5.
169 *
170 * The prime is: 2^4096 - 2^4032 - 1 + 2^64 * { [2^3966 pi] + 240904 }
171 *
172 * RFC3526 specifies a generator of 2.
173 */
174
175BIGNUM *get_rfc3526_prime_4096(BIGNUM *bn)
176 {
177 static const unsigned char RFC3526_PRIME_4096[]={
178 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xC9,0x0F,0xDA,0xA2,
179 0x21,0x68,0xC2,0x34,0xC4,0xC6,0x62,0x8B,0x80,0xDC,0x1C,0xD1,
180 0x29,0x02,0x4E,0x08,0x8A,0x67,0xCC,0x74,0x02,0x0B,0xBE,0xA6,
181 0x3B,0x13,0x9B,0x22,0x51,0x4A,0x08,0x79,0x8E,0x34,0x04,0xDD,
182 0xEF,0x95,0x19,0xB3,0xCD,0x3A,0x43,0x1B,0x30,0x2B,0x0A,0x6D,
183 0xF2,0x5F,0x14,0x37,0x4F,0xE1,0x35,0x6D,0x6D,0x51,0xC2,0x45,
184 0xE4,0x85,0xB5,0x76,0x62,0x5E,0x7E,0xC6,0xF4,0x4C,0x42,0xE9,
185 0xA6,0x37,0xED,0x6B,0x0B,0xFF,0x5C,0xB6,0xF4,0x06,0xB7,0xED,
186 0xEE,0x38,0x6B,0xFB,0x5A,0x89,0x9F,0xA5,0xAE,0x9F,0x24,0x11,
187 0x7C,0x4B,0x1F,0xE6,0x49,0x28,0x66,0x51,0xEC,0xE4,0x5B,0x3D,
188 0xC2,0x00,0x7C,0xB8,0xA1,0x63,0xBF,0x05,0x98,0xDA,0x48,0x36,
189 0x1C,0x55,0xD3,0x9A,0x69,0x16,0x3F,0xA8,0xFD,0x24,0xCF,0x5F,
190 0x83,0x65,0x5D,0x23,0xDC,0xA3,0xAD,0x96,0x1C,0x62,0xF3,0x56,
191 0x20,0x85,0x52,0xBB,0x9E,0xD5,0x29,0x07,0x70,0x96,0x96,0x6D,
192 0x67,0x0C,0x35,0x4E,0x4A,0xBC,0x98,0x04,0xF1,0x74,0x6C,0x08,
193 0xCA,0x18,0x21,0x7C,0x32,0x90,0x5E,0x46,0x2E,0x36,0xCE,0x3B,
194 0xE3,0x9E,0x77,0x2C,0x18,0x0E,0x86,0x03,0x9B,0x27,0x83,0xA2,
195 0xEC,0x07,0xA2,0x8F,0xB5,0xC5,0x5D,0xF0,0x6F,0x4C,0x52,0xC9,
196 0xDE,0x2B,0xCB,0xF6,0x95,0x58,0x17,0x18,0x39,0x95,0x49,0x7C,
197 0xEA,0x95,0x6A,0xE5,0x15,0xD2,0x26,0x18,0x98,0xFA,0x05,0x10,
198 0x15,0x72,0x8E,0x5A,0x8A,0xAA,0xC4,0x2D,0xAD,0x33,0x17,0x0D,
199 0x04,0x50,0x7A,0x33,0xA8,0x55,0x21,0xAB,0xDF,0x1C,0xBA,0x64,
200 0xEC,0xFB,0x85,0x04,0x58,0xDB,0xEF,0x0A,0x8A,0xEA,0x71,0x57,
201 0x5D,0x06,0x0C,0x7D,0xB3,0x97,0x0F,0x85,0xA6,0xE1,0xE4,0xC7,
202 0xAB,0xF5,0xAE,0x8C,0xDB,0x09,0x33,0xD7,0x1E,0x8C,0x94,0xE0,
203 0x4A,0x25,0x61,0x9D,0xCE,0xE3,0xD2,0x26,0x1A,0xD2,0xEE,0x6B,
204 0xF1,0x2F,0xFA,0x06,0xD9,0x8A,0x08,0x64,0xD8,0x76,0x02,0x73,
205 0x3E,0xC8,0x6A,0x64,0x52,0x1F,0x2B,0x18,0x17,0x7B,0x20,0x0C,
206 0xBB,0xE1,0x17,0x57,0x7A,0x61,0x5D,0x6C,0x77,0x09,0x88,0xC0,
207 0xBA,0xD9,0x46,0xE2,0x08,0xE2,0x4F,0xA0,0x74,0xE5,0xAB,0x31,
208 0x43,0xDB,0x5B,0xFC,0xE0,0xFD,0x10,0x8E,0x4B,0x82,0xD1,0x20,
209 0xA9,0x21,0x08,0x01,0x1A,0x72,0x3C,0x12,0xA7,0x87,0xE6,0xD7,
210 0x88,0x71,0x9A,0x10,0xBD,0xBA,0x5B,0x26,0x99,0xC3,0x27,0x18,
211 0x6A,0xF4,0xE2,0x3C,0x1A,0x94,0x68,0x34,0xB6,0x15,0x0B,0xDA,
212 0x25,0x83,0xE9,0xCA,0x2A,0xD4,0x4C,0xE8,0xDB,0xBB,0xC2,0xDB,
213 0x04,0xDE,0x8E,0xF9,0x2E,0x8E,0xFC,0x14,0x1F,0xBE,0xCA,0xA6,
214 0x28,0x7C,0x59,0x47,0x4E,0x6B,0xC0,0x5D,0x99,0xB2,0x96,0x4F,
215 0xA0,0x90,0xC3,0xA2,0x23,0x3B,0xA1,0x86,0x51,0x5B,0xE7,0xED,
216 0x1F,0x61,0x29,0x70,0xCE,0xE2,0xD7,0xAF,0xB8,0x1B,0xDD,0x76,
217 0x21,0x70,0x48,0x1C,0xD0,0x06,0x91,0x27,0xD5,0xB0,0x5A,0xA9,
218 0x93,0xB4,0xEA,0x98,0x8D,0x8F,0xDD,0xC1,0x86,0xFF,0xB7,0xDC,
219 0x90,0xA6,0xC0,0x8F,0x4D,0xF4,0x35,0xC9,0x34,0x06,0x31,0x99,
220 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
221 };
222 return BN_bin2bn(RFC3526_PRIME_4096,sizeof(RFC3526_PRIME_4096),bn);
223 }
224
225/* "6144-bit MODP Group" from RFC3526, Section 6.
226 *
227 * The prime is: 2^6144 - 2^6080 - 1 + 2^64 * { [2^6014 pi] + 929484 }
228 *
229 * RFC3526 specifies a generator of 2.
230 */
231
232BIGNUM *get_rfc3526_prime_6144(BIGNUM *bn)
233 {
234 static const unsigned char RFC3526_PRIME_6144[]={
235 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xC9,0x0F,0xDA,0xA2,
236 0x21,0x68,0xC2,0x34,0xC4,0xC6,0x62,0x8B,0x80,0xDC,0x1C,0xD1,
237 0x29,0x02,0x4E,0x08,0x8A,0x67,0xCC,0x74,0x02,0x0B,0xBE,0xA6,
238 0x3B,0x13,0x9B,0x22,0x51,0x4A,0x08,0x79,0x8E,0x34,0x04,0xDD,
239 0xEF,0x95,0x19,0xB3,0xCD,0x3A,0x43,0x1B,0x30,0x2B,0x0A,0x6D,
240 0xF2,0x5F,0x14,0x37,0x4F,0xE1,0x35,0x6D,0x6D,0x51,0xC2,0x45,
241 0xE4,0x85,0xB5,0x76,0x62,0x5E,0x7E,0xC6,0xF4,0x4C,0x42,0xE9,
242 0xA6,0x37,0xED,0x6B,0x0B,0xFF,0x5C,0xB6,0xF4,0x06,0xB7,0xED,
243 0xEE,0x38,0x6B,0xFB,0x5A,0x89,0x9F,0xA5,0xAE,0x9F,0x24,0x11,
244 0x7C,0x4B,0x1F,0xE6,0x49,0x28,0x66,0x51,0xEC,0xE4,0x5B,0x3D,
245 0xC2,0x00,0x7C,0xB8,0xA1,0x63,0xBF,0x05,0x98,0xDA,0x48,0x36,
246 0x1C,0x55,0xD3,0x9A,0x69,0x16,0x3F,0xA8,0xFD,0x24,0xCF,0x5F,
247 0x83,0x65,0x5D,0x23,0xDC,0xA3,0xAD,0x96,0x1C,0x62,0xF3,0x56,
248 0x20,0x85,0x52,0xBB,0x9E,0xD5,0x29,0x07,0x70,0x96,0x96,0x6D,
249 0x67,0x0C,0x35,0x4E,0x4A,0xBC,0x98,0x04,0xF1,0x74,0x6C,0x08,
250 0xCA,0x18,0x21,0x7C,0x32,0x90,0x5E,0x46,0x2E,0x36,0xCE,0x3B,
251 0xE3,0x9E,0x77,0x2C,0x18,0x0E,0x86,0x03,0x9B,0x27,0x83,0xA2,
252 0xEC,0x07,0xA2,0x8F,0xB5,0xC5,0x5D,0xF0,0x6F,0x4C,0x52,0xC9,
253 0xDE,0x2B,0xCB,0xF6,0x95,0x58,0x17,0x18,0x39,0x95,0x49,0x7C,
254 0xEA,0x95,0x6A,0xE5,0x15,0xD2,0x26,0x18,0x98,0xFA,0x05,0x10,
255 0x15,0x72,0x8E,0x5A,0x8A,0xAA,0xC4,0x2D,0xAD,0x33,0x17,0x0D,
256 0x04,0x50,0x7A,0x33,0xA8,0x55,0x21,0xAB,0xDF,0x1C,0xBA,0x64,
257 0xEC,0xFB,0x85,0x04,0x58,0xDB,0xEF,0x0A,0x8A,0xEA,0x71,0x57,
258 0x5D,0x06,0x0C,0x7D,0xB3,0x97,0x0F,0x85,0xA6,0xE1,0xE4,0xC7,
259 0xAB,0xF5,0xAE,0x8C,0xDB,0x09,0x33,0xD7,0x1E,0x8C,0x94,0xE0,
260 0x4A,0x25,0x61,0x9D,0xCE,0xE3,0xD2,0x26,0x1A,0xD2,0xEE,0x6B,
261 0xF1,0x2F,0xFA,0x06,0xD9,0x8A,0x08,0x64,0xD8,0x76,0x02,0x73,
262 0x3E,0xC8,0x6A,0x64,0x52,0x1F,0x2B,0x18,0x17,0x7B,0x20,0x0C,
263 0xBB,0xE1,0x17,0x57,0x7A,0x61,0x5D,0x6C,0x77,0x09,0x88,0xC0,
264 0xBA,0xD9,0x46,0xE2,0x08,0xE2,0x4F,0xA0,0x74,0xE5,0xAB,0x31,
265 0x43,0xDB,0x5B,0xFC,0xE0,0xFD,0x10,0x8E,0x4B,0x82,0xD1,0x20,
266 0xA9,0x21,0x08,0x01,0x1A,0x72,0x3C,0x12,0xA7,0x87,0xE6,0xD7,
267 0x88,0x71,0x9A,0x10,0xBD,0xBA,0x5B,0x26,0x99,0xC3,0x27,0x18,
268 0x6A,0xF4,0xE2,0x3C,0x1A,0x94,0x68,0x34,0xB6,0x15,0x0B,0xDA,
269 0x25,0x83,0xE9,0xCA,0x2A,0xD4,0x4C,0xE8,0xDB,0xBB,0xC2,0xDB,
270 0x04,0xDE,0x8E,0xF9,0x2E,0x8E,0xFC,0x14,0x1F,0xBE,0xCA,0xA6,
271 0x28,0x7C,0x59,0x47,0x4E,0x6B,0xC0,0x5D,0x99,0xB2,0x96,0x4F,
272 0xA0,0x90,0xC3,0xA2,0x23,0x3B,0xA1,0x86,0x51,0x5B,0xE7,0xED,
273 0x1F,0x61,0x29,0x70,0xCE,0xE2,0xD7,0xAF,0xB8,0x1B,0xDD,0x76,
274 0x21,0x70,0x48,0x1C,0xD0,0x06,0x91,0x27,0xD5,0xB0,0x5A,0xA9,
275 0x93,0xB4,0xEA,0x98,0x8D,0x8F,0xDD,0xC1,0x86,0xFF,0xB7,0xDC,
276 0x90,0xA6,0xC0,0x8F,0x4D,0xF4,0x35,0xC9,0x34,0x02,0x84,0x92,
277 0x36,0xC3,0xFA,0xB4,0xD2,0x7C,0x70,0x26,0xC1,0xD4,0xDC,0xB2,
278 0x60,0x26,0x46,0xDE,0xC9,0x75,0x1E,0x76,0x3D,0xBA,0x37,0xBD,
279 0xF8,0xFF,0x94,0x06,0xAD,0x9E,0x53,0x0E,0xE5,0xDB,0x38,0x2F,
280 0x41,0x30,0x01,0xAE,0xB0,0x6A,0x53,0xED,0x90,0x27,0xD8,0x31,
281 0x17,0x97,0x27,0xB0,0x86,0x5A,0x89,0x18,0xDA,0x3E,0xDB,0xEB,
282 0xCF,0x9B,0x14,0xED,0x44,0xCE,0x6C,0xBA,0xCE,0xD4,0xBB,0x1B,
283 0xDB,0x7F,0x14,0x47,0xE6,0xCC,0x25,0x4B,0x33,0x20,0x51,0x51,
284 0x2B,0xD7,0xAF,0x42,0x6F,0xB8,0xF4,0x01,0x37,0x8C,0xD2,0xBF,
285 0x59,0x83,0xCA,0x01,0xC6,0x4B,0x92,0xEC,0xF0,0x32,0xEA,0x15,
286 0xD1,0x72,0x1D,0x03,0xF4,0x82,0xD7,0xCE,0x6E,0x74,0xFE,0xF6,
287 0xD5,0x5E,0x70,0x2F,0x46,0x98,0x0C,0x82,0xB5,0xA8,0x40,0x31,
288 0x90,0x0B,0x1C,0x9E,0x59,0xE7,0xC9,0x7F,0xBE,0xC7,0xE8,0xF3,
289 0x23,0xA9,0x7A,0x7E,0x36,0xCC,0x88,0xBE,0x0F,0x1D,0x45,0xB7,
290 0xFF,0x58,0x5A,0xC5,0x4B,0xD4,0x07,0xB2,0x2B,0x41,0x54,0xAA,
291 0xCC,0x8F,0x6D,0x7E,0xBF,0x48,0xE1,0xD8,0x14,0xCC,0x5E,0xD2,
292 0x0F,0x80,0x37,0xE0,0xA7,0x97,0x15,0xEE,0xF2,0x9B,0xE3,0x28,
293 0x06,0xA1,0xD5,0x8B,0xB7,0xC5,0xDA,0x76,0xF5,0x50,0xAA,0x3D,
294 0x8A,0x1F,0xBF,0xF0,0xEB,0x19,0xCC,0xB1,0xA3,0x13,0xD5,0x5C,
295 0xDA,0x56,0xC9,0xEC,0x2E,0xF2,0x96,0x32,0x38,0x7F,0xE8,0xD7,
296 0x6E,0x3C,0x04,0x68,0x04,0x3E,0x8F,0x66,0x3F,0x48,0x60,0xEE,
297 0x12,0xBF,0x2D,0x5B,0x0B,0x74,0x74,0xD6,0xE6,0x94,0xF9,0x1E,
298 0x6D,0xCC,0x40,0x24,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
299 };
300 return BN_bin2bn(RFC3526_PRIME_6144,sizeof(RFC3526_PRIME_6144),bn);
301 }
302
303/* "8192-bit MODP Group" from RFC3526, Section 7.
304 *
305 * The prime is: 2^8192 - 2^8128 - 1 + 2^64 * { [2^8062 pi] + 4743158 }
306 *
307 * RFC3526 specifies a generator of 2.
308 */
309
310BIGNUM *get_rfc3526_prime_8192(BIGNUM *bn)
311 {
312 static const unsigned char RFC3526_PRIME_8192[]={
313 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xC9,0x0F,0xDA,0xA2,
314 0x21,0x68,0xC2,0x34,0xC4,0xC6,0x62,0x8B,0x80,0xDC,0x1C,0xD1,
315 0x29,0x02,0x4E,0x08,0x8A,0x67,0xCC,0x74,0x02,0x0B,0xBE,0xA6,
316 0x3B,0x13,0x9B,0x22,0x51,0x4A,0x08,0x79,0x8E,0x34,0x04,0xDD,
317 0xEF,0x95,0x19,0xB3,0xCD,0x3A,0x43,0x1B,0x30,0x2B,0x0A,0x6D,
318 0xF2,0x5F,0x14,0x37,0x4F,0xE1,0x35,0x6D,0x6D,0x51,0xC2,0x45,
319 0xE4,0x85,0xB5,0x76,0x62,0x5E,0x7E,0xC6,0xF4,0x4C,0x42,0xE9,
320 0xA6,0x37,0xED,0x6B,0x0B,0xFF,0x5C,0xB6,0xF4,0x06,0xB7,0xED,
321 0xEE,0x38,0x6B,0xFB,0x5A,0x89,0x9F,0xA5,0xAE,0x9F,0x24,0x11,
322 0x7C,0x4B,0x1F,0xE6,0x49,0x28,0x66,0x51,0xEC,0xE4,0x5B,0x3D,
323 0xC2,0x00,0x7C,0xB8,0xA1,0x63,0xBF,0x05,0x98,0xDA,0x48,0x36,
324 0x1C,0x55,0xD3,0x9A,0x69,0x16,0x3F,0xA8,0xFD,0x24,0xCF,0x5F,
325 0x83,0x65,0x5D,0x23,0xDC,0xA3,0xAD,0x96,0x1C,0x62,0xF3,0x56,
326 0x20,0x85,0x52,0xBB,0x9E,0xD5,0x29,0x07,0x70,0x96,0x96,0x6D,
327 0x67,0x0C,0x35,0x4E,0x4A,0xBC,0x98,0x04,0xF1,0x74,0x6C,0x08,
328 0xCA,0x18,0x21,0x7C,0x32,0x90,0x5E,0x46,0x2E,0x36,0xCE,0x3B,
329 0xE3,0x9E,0x77,0x2C,0x18,0x0E,0x86,0x03,0x9B,0x27,0x83,0xA2,
330 0xEC,0x07,0xA2,0x8F,0xB5,0xC5,0x5D,0xF0,0x6F,0x4C,0x52,0xC9,
331 0xDE,0x2B,0xCB,0xF6,0x95,0x58,0x17,0x18,0x39,0x95,0x49,0x7C,
332 0xEA,0x95,0x6A,0xE5,0x15,0xD2,0x26,0x18,0x98,0xFA,0x05,0x10,
333 0x15,0x72,0x8E,0x5A,0x8A,0xAA,0xC4,0x2D,0xAD,0x33,0x17,0x0D,
334 0x04,0x50,0x7A,0x33,0xA8,0x55,0x21,0xAB,0xDF,0x1C,0xBA,0x64,
335 0xEC,0xFB,0x85,0x04,0x58,0xDB,0xEF,0x0A,0x8A,0xEA,0x71,0x57,
336 0x5D,0x06,0x0C,0x7D,0xB3,0x97,0x0F,0x85,0xA6,0xE1,0xE4,0xC7,
337 0xAB,0xF5,0xAE,0x8C,0xDB,0x09,0x33,0xD7,0x1E,0x8C,0x94,0xE0,
338 0x4A,0x25,0x61,0x9D,0xCE,0xE3,0xD2,0x26,0x1A,0xD2,0xEE,0x6B,
339 0xF1,0x2F,0xFA,0x06,0xD9,0x8A,0x08,0x64,0xD8,0x76,0x02,0x73,
340 0x3E,0xC8,0x6A,0x64,0x52,0x1F,0x2B,0x18,0x17,0x7B,0x20,0x0C,
341 0xBB,0xE1,0x17,0x57,0x7A,0x61,0x5D,0x6C,0x77,0x09,0x88,0xC0,
342 0xBA,0xD9,0x46,0xE2,0x08,0xE2,0x4F,0xA0,0x74,0xE5,0xAB,0x31,
343 0x43,0xDB,0x5B,0xFC,0xE0,0xFD,0x10,0x8E,0x4B,0x82,0xD1,0x20,
344 0xA9,0x21,0x08,0x01,0x1A,0x72,0x3C,0x12,0xA7,0x87,0xE6,0xD7,
345 0x88,0x71,0x9A,0x10,0xBD,0xBA,0x5B,0x26,0x99,0xC3,0x27,0x18,
346 0x6A,0xF4,0xE2,0x3C,0x1A,0x94,0x68,0x34,0xB6,0x15,0x0B,0xDA,
347 0x25,0x83,0xE9,0xCA,0x2A,0xD4,0x4C,0xE8,0xDB,0xBB,0xC2,0xDB,
348 0x04,0xDE,0x8E,0xF9,0x2E,0x8E,0xFC,0x14,0x1F,0xBE,0xCA,0xA6,
349 0x28,0x7C,0x59,0x47,0x4E,0x6B,0xC0,0x5D,0x99,0xB2,0x96,0x4F,
350 0xA0,0x90,0xC3,0xA2,0x23,0x3B,0xA1,0x86,0x51,0x5B,0xE7,0xED,
351 0x1F,0x61,0x29,0x70,0xCE,0xE2,0xD7,0xAF,0xB8,0x1B,0xDD,0x76,
352 0x21,0x70,0x48,0x1C,0xD0,0x06,0x91,0x27,0xD5,0xB0,0x5A,0xA9,
353 0x93,0xB4,0xEA,0x98,0x8D,0x8F,0xDD,0xC1,0x86,0xFF,0xB7,0xDC,
354 0x90,0xA6,0xC0,0x8F,0x4D,0xF4,0x35,0xC9,0x34,0x02,0x84,0x92,
355 0x36,0xC3,0xFA,0xB4,0xD2,0x7C,0x70,0x26,0xC1,0xD4,0xDC,0xB2,
356 0x60,0x26,0x46,0xDE,0xC9,0x75,0x1E,0x76,0x3D,0xBA,0x37,0xBD,
357 0xF8,0xFF,0x94,0x06,0xAD,0x9E,0x53,0x0E,0xE5,0xDB,0x38,0x2F,
358 0x41,0x30,0x01,0xAE,0xB0,0x6A,0x53,0xED,0x90,0x27,0xD8,0x31,
359 0x17,0x97,0x27,0xB0,0x86,0x5A,0x89,0x18,0xDA,0x3E,0xDB,0xEB,
360 0xCF,0x9B,0x14,0xED,0x44,0xCE,0x6C,0xBA,0xCE,0xD4,0xBB,0x1B,
361 0xDB,0x7F,0x14,0x47,0xE6,0xCC,0x25,0x4B,0x33,0x20,0x51,0x51,
362 0x2B,0xD7,0xAF,0x42,0x6F,0xB8,0xF4,0x01,0x37,0x8C,0xD2,0xBF,
363 0x59,0x83,0xCA,0x01,0xC6,0x4B,0x92,0xEC,0xF0,0x32,0xEA,0x15,
364 0xD1,0x72,0x1D,0x03,0xF4,0x82,0xD7,0xCE,0x6E,0x74,0xFE,0xF6,
365 0xD5,0x5E,0x70,0x2F,0x46,0x98,0x0C,0x82,0xB5,0xA8,0x40,0x31,
366 0x90,0x0B,0x1C,0x9E,0x59,0xE7,0xC9,0x7F,0xBE,0xC7,0xE8,0xF3,
367 0x23,0xA9,0x7A,0x7E,0x36,0xCC,0x88,0xBE,0x0F,0x1D,0x45,0xB7,
368 0xFF,0x58,0x5A,0xC5,0x4B,0xD4,0x07,0xB2,0x2B,0x41,0x54,0xAA,
369 0xCC,0x8F,0x6D,0x7E,0xBF,0x48,0xE1,0xD8,0x14,0xCC,0x5E,0xD2,
370 0x0F,0x80,0x37,0xE0,0xA7,0x97,0x15,0xEE,0xF2,0x9B,0xE3,0x28,
371 0x06,0xA1,0xD5,0x8B,0xB7,0xC5,0xDA,0x76,0xF5,0x50,0xAA,0x3D,
372 0x8A,0x1F,0xBF,0xF0,0xEB,0x19,0xCC,0xB1,0xA3,0x13,0xD5,0x5C,
373 0xDA,0x56,0xC9,0xEC,0x2E,0xF2,0x96,0x32,0x38,0x7F,0xE8,0xD7,
374 0x6E,0x3C,0x04,0x68,0x04,0x3E,0x8F,0x66,0x3F,0x48,0x60,0xEE,
375 0x12,0xBF,0x2D,0x5B,0x0B,0x74,0x74,0xD6,0xE6,0x94,0xF9,0x1E,
376 0x6D,0xBE,0x11,0x59,0x74,0xA3,0x92,0x6F,0x12,0xFE,0xE5,0xE4,
377 0x38,0x77,0x7C,0xB6,0xA9,0x32,0xDF,0x8C,0xD8,0xBE,0xC4,0xD0,
378 0x73,0xB9,0x31,0xBA,0x3B,0xC8,0x32,0xB6,0x8D,0x9D,0xD3,0x00,
379 0x74,0x1F,0xA7,0xBF,0x8A,0xFC,0x47,0xED,0x25,0x76,0xF6,0x93,
380 0x6B,0xA4,0x24,0x66,0x3A,0xAB,0x63,0x9C,0x5A,0xE4,0xF5,0x68,
381 0x34,0x23,0xB4,0x74,0x2B,0xF1,0xC9,0x78,0x23,0x8F,0x16,0xCB,
382 0xE3,0x9D,0x65,0x2D,0xE3,0xFD,0xB8,0xBE,0xFC,0x84,0x8A,0xD9,
383 0x22,0x22,0x2E,0x04,0xA4,0x03,0x7C,0x07,0x13,0xEB,0x57,0xA8,
384 0x1A,0x23,0xF0,0xC7,0x34,0x73,0xFC,0x64,0x6C,0xEA,0x30,0x6B,
385 0x4B,0xCB,0xC8,0x86,0x2F,0x83,0x85,0xDD,0xFA,0x9D,0x4B,0x7F,
386 0xA2,0xC0,0x87,0xE8,0x79,0x68,0x33,0x03,0xED,0x5B,0xDD,0x3A,
387 0x06,0x2B,0x3C,0xF5,0xB3,0xA2,0x78,0xA6,0x6D,0x2A,0x13,0xF8,
388 0x3F,0x44,0xF8,0x2D,0xDF,0x31,0x0E,0xE0,0x74,0xAB,0x6A,0x36,
389 0x45,0x97,0xE8,0x99,0xA0,0x25,0x5D,0xC1,0x64,0xF3,0x1C,0xC5,
390 0x08,0x46,0x85,0x1D,0xF9,0xAB,0x48,0x19,0x5D,0xED,0x7E,0xA1,
391 0xB1,0xD5,0x10,0xBD,0x7E,0xE7,0x4D,0x73,0xFA,0xF3,0x6B,0xC3,
392 0x1E,0xCF,0xA2,0x68,0x35,0x90,0x46,0xF4,0xEB,0x87,0x9F,0x92,
393 0x40,0x09,0x43,0x8B,0x48,0x1C,0x6C,0xD7,0x88,0x9A,0x00,0x2E,
394 0xD5,0xEE,0x38,0x2B,0xC9,0x19,0x0D,0xA6,0xFC,0x02,0x6E,0x47,
395 0x95,0x58,0xE4,0x47,0x56,0x77,0xE9,0xAA,0x9E,0x30,0x50,0xE2,
396 0x76,0x56,0x94,0xDF,0xC8,0x1F,0x56,0xE8,0x80,0xB9,0x6E,0x71,
397 0x60,0xC9,0x80,0xDD,0x98,0xED,0xD3,0xDF,0xFF,0xFF,0xFF,0xFF,
398 0xFF,0xFF,0xFF,0xFF,
399 };
400 return BN_bin2bn(RFC3526_PRIME_8192,sizeof(RFC3526_PRIME_8192),bn);
401 }
402
diff --git a/src/lib/libcrypto/bn/bn_depr.c b/src/lib/libcrypto/bn/bn_depr.c
new file mode 100644
index 0000000000..27535e4fca
--- /dev/null
+++ b/src/lib/libcrypto/bn/bn_depr.c
@@ -0,0 +1,112 @@
1/* crypto/bn/bn_depr.c */
2/* ====================================================================
3 * Copyright (c) 1998-2002 The OpenSSL Project. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in
14 * the documentation and/or other materials provided with the
15 * distribution.
16 *
17 * 3. All advertising materials mentioning features or use of this
18 * software must display the following acknowledgment:
19 * "This product includes software developed by the OpenSSL Project
20 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
21 *
22 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
23 * endorse or promote products derived from this software without
24 * prior written permission. For written permission, please contact
25 * openssl-core@openssl.org.
26 *
27 * 5. Products derived from this software may not be called "OpenSSL"
28 * nor may "OpenSSL" appear in their names without prior written
29 * permission of the OpenSSL Project.
30 *
31 * 6. Redistributions of any form whatsoever must retain the following
32 * acknowledgment:
33 * "This product includes software developed by the OpenSSL Project
34 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
35 *
36 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
37 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
39 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
40 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
42 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
43 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
45 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
46 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
47 * OF THE POSSIBILITY OF SUCH DAMAGE.
48 * ====================================================================
49 *
50 * This product includes cryptographic software written by Eric Young
51 * (eay@cryptsoft.com). This product includes software written by Tim
52 * Hudson (tjh@cryptsoft.com).
53 *
54 */
55
56/* Support for deprecated functions goes here - static linkage will only slurp
57 * this code if applications are using them directly. */
58
59#include <stdio.h>
60#include <time.h>
61#include "cryptlib.h"
62#include "bn_lcl.h"
63#include <openssl/rand.h>
64
65static void *dummy=&dummy;
66
67#ifndef OPENSSL_NO_DEPRECATED
68BIGNUM *BN_generate_prime(BIGNUM *ret, int bits, int safe,
69 const BIGNUM *add, const BIGNUM *rem,
70 void (*callback)(int,int,void *), void *cb_arg)
71 {
72 BN_GENCB cb;
73 BIGNUM *rnd=NULL;
74 int found = 0;
75
76 BN_GENCB_set_old(&cb, callback, cb_arg);
77
78 if (ret == NULL)
79 {
80 if ((rnd=BN_new()) == NULL) goto err;
81 }
82 else
83 rnd=ret;
84 if(!BN_generate_prime_ex(rnd, bits, safe, add, rem, &cb))
85 goto err;
86
87 /* we have a prime :-) */
88 found = 1;
89err:
90 if (!found && (ret == NULL) && (rnd != NULL)) BN_free(rnd);
91 return(found ? rnd : NULL);
92 }
93
94int BN_is_prime(const BIGNUM *a, int checks, void (*callback)(int,int,void *),
95 BN_CTX *ctx_passed, void *cb_arg)
96 {
97 BN_GENCB cb;
98 BN_GENCB_set_old(&cb, callback, cb_arg);
99 return BN_is_prime_ex(a, checks, ctx_passed, &cb);
100 }
101
102int BN_is_prime_fasttest(const BIGNUM *a, int checks,
103 void (*callback)(int,int,void *),
104 BN_CTX *ctx_passed, void *cb_arg,
105 int do_trial_division)
106 {
107 BN_GENCB cb;
108 BN_GENCB_set_old(&cb, callback, cb_arg);
109 return BN_is_prime_fasttest_ex(a, checks, ctx_passed,
110 do_trial_division, &cb);
111 }
112#endif
diff --git a/src/lib/libcrypto/bn/bn_gf2m.c b/src/lib/libcrypto/bn/bn_gf2m.c
new file mode 100644
index 0000000000..6a793857e1
--- /dev/null
+++ b/src/lib/libcrypto/bn/bn_gf2m.c
@@ -0,0 +1,1091 @@
1/* crypto/bn/bn_gf2m.c */
2/* ====================================================================
3 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
4 *
5 * The Elliptic Curve Public-Key Crypto Library (ECC Code) included
6 * herein is developed by SUN MICROSYSTEMS, INC., and is contributed
7 * to the OpenSSL project.
8 *
9 * The ECC Code is licensed pursuant to the OpenSSL open source
10 * license provided below.
11 *
12 * In addition, Sun covenants to all licensees who provide a reciprocal
13 * covenant with respect to their own patents if any, not to sue under
14 * current and future patent claims necessarily infringed by the making,
15 * using, practicing, selling, offering for sale and/or otherwise
16 * disposing of the ECC Code as delivered hereunder (or portions thereof),
17 * provided that such covenant shall not apply:
18 * 1) for code that a licensee deletes from the ECC Code;
19 * 2) separates from the ECC Code; or
20 * 3) for infringements caused by:
21 * i) the modification of the ECC Code or
22 * ii) the combination of the ECC Code with other software or
23 * devices where such combination causes the infringement.
24 *
25 * The software is originally written by Sheueling Chang Shantz and
26 * Douglas Stebila of Sun Microsystems Laboratories.
27 *
28 */
29
30/* NOTE: This file is licensed pursuant to the OpenSSL license below
31 * and may be modified; but after modifications, the above covenant
32 * may no longer apply! In such cases, the corresponding paragraph
33 * ["In addition, Sun covenants ... causes the infringement."] and
34 * this note can be edited out; but please keep the Sun copyright
35 * notice and attribution. */
36
37/* ====================================================================
38 * Copyright (c) 1998-2002 The OpenSSL Project. All rights reserved.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 *
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 *
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in
49 * the documentation and/or other materials provided with the
50 * distribution.
51 *
52 * 3. All advertising materials mentioning features or use of this
53 * software must display the following acknowledgment:
54 * "This product includes software developed by the OpenSSL Project
55 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
56 *
57 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
58 * endorse or promote products derived from this software without
59 * prior written permission. For written permission, please contact
60 * openssl-core@openssl.org.
61 *
62 * 5. Products derived from this software may not be called "OpenSSL"
63 * nor may "OpenSSL" appear in their names without prior written
64 * permission of the OpenSSL Project.
65 *
66 * 6. Redistributions of any form whatsoever must retain the following
67 * acknowledgment:
68 * "This product includes software developed by the OpenSSL Project
69 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
70 *
71 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
72 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
73 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
74 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
75 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
76 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
77 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
78 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
79 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
80 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
81 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
82 * OF THE POSSIBILITY OF SUCH DAMAGE.
83 * ====================================================================
84 *
85 * This product includes cryptographic software written by Eric Young
86 * (eay@cryptsoft.com). This product includes software written by Tim
87 * Hudson (tjh@cryptsoft.com).
88 *
89 */
90
91#include <assert.h>
92#include <limits.h>
93#include <stdio.h>
94#include "cryptlib.h"
95#include "bn_lcl.h"
96
97/* Maximum number of iterations before BN_GF2m_mod_solve_quad_arr should fail. */
98#define MAX_ITERATIONS 50
99
100static const BN_ULONG SQR_tb[16] =
101 { 0, 1, 4, 5, 16, 17, 20, 21,
102 64, 65, 68, 69, 80, 81, 84, 85 };
103/* Platform-specific macros to accelerate squaring. */
104#if defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG)
105#define SQR1(w) \
106 SQR_tb[(w) >> 60 & 0xF] << 56 | SQR_tb[(w) >> 56 & 0xF] << 48 | \
107 SQR_tb[(w) >> 52 & 0xF] << 40 | SQR_tb[(w) >> 48 & 0xF] << 32 | \
108 SQR_tb[(w) >> 44 & 0xF] << 24 | SQR_tb[(w) >> 40 & 0xF] << 16 | \
109 SQR_tb[(w) >> 36 & 0xF] << 8 | SQR_tb[(w) >> 32 & 0xF]
110#define SQR0(w) \
111 SQR_tb[(w) >> 28 & 0xF] << 56 | SQR_tb[(w) >> 24 & 0xF] << 48 | \
112 SQR_tb[(w) >> 20 & 0xF] << 40 | SQR_tb[(w) >> 16 & 0xF] << 32 | \
113 SQR_tb[(w) >> 12 & 0xF] << 24 | SQR_tb[(w) >> 8 & 0xF] << 16 | \
114 SQR_tb[(w) >> 4 & 0xF] << 8 | SQR_tb[(w) & 0xF]
115#endif
116#ifdef THIRTY_TWO_BIT
117#define SQR1(w) \
118 SQR_tb[(w) >> 28 & 0xF] << 24 | SQR_tb[(w) >> 24 & 0xF] << 16 | \
119 SQR_tb[(w) >> 20 & 0xF] << 8 | SQR_tb[(w) >> 16 & 0xF]
120#define SQR0(w) \
121 SQR_tb[(w) >> 12 & 0xF] << 24 | SQR_tb[(w) >> 8 & 0xF] << 16 | \
122 SQR_tb[(w) >> 4 & 0xF] << 8 | SQR_tb[(w) & 0xF]
123#endif
124#ifdef SIXTEEN_BIT
125#define SQR1(w) \
126 SQR_tb[(w) >> 12 & 0xF] << 8 | SQR_tb[(w) >> 8 & 0xF]
127#define SQR0(w) \
128 SQR_tb[(w) >> 4 & 0xF] << 8 | SQR_tb[(w) & 0xF]
129#endif
130#ifdef EIGHT_BIT
131#define SQR1(w) \
132 SQR_tb[(w) >> 4 & 0xF]
133#define SQR0(w) \
134 SQR_tb[(w) & 15]
135#endif
136
137/* Product of two polynomials a, b each with degree < BN_BITS2 - 1,
138 * result is a polynomial r with degree < 2 * BN_BITS - 1
139 * The caller MUST ensure that the variables have the right amount
140 * of space allocated.
141 */
142#ifdef EIGHT_BIT
143static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, const BN_ULONG b)
144 {
145 register BN_ULONG h, l, s;
146 BN_ULONG tab[4], top1b = a >> 7;
147 register BN_ULONG a1, a2;
148
149 a1 = a & (0x7F); a2 = a1 << 1;
150
151 tab[0] = 0; tab[1] = a1; tab[2] = a2; tab[3] = a1^a2;
152
153 s = tab[b & 0x3]; l = s;
154 s = tab[b >> 2 & 0x3]; l ^= s << 2; h = s >> 6;
155 s = tab[b >> 4 & 0x3]; l ^= s << 4; h ^= s >> 4;
156 s = tab[b >> 6 ]; l ^= s << 6; h ^= s >> 2;
157
158 /* compensate for the top bit of a */
159
160 if (top1b & 01) { l ^= b << 7; h ^= b >> 1; }
161
162 *r1 = h; *r0 = l;
163 }
164#endif
165#ifdef SIXTEEN_BIT
166static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, const BN_ULONG b)
167 {
168 register BN_ULONG h, l, s;
169 BN_ULONG tab[4], top1b = a >> 15;
170 register BN_ULONG a1, a2;
171
172 a1 = a & (0x7FFF); a2 = a1 << 1;
173
174 tab[0] = 0; tab[1] = a1; tab[2] = a2; tab[3] = a1^a2;
175
176 s = tab[b & 0x3]; l = s;
177 s = tab[b >> 2 & 0x3]; l ^= s << 2; h = s >> 14;
178 s = tab[b >> 4 & 0x3]; l ^= s << 4; h ^= s >> 12;
179 s = tab[b >> 6 & 0x3]; l ^= s << 6; h ^= s >> 10;
180 s = tab[b >> 8 & 0x3]; l ^= s << 8; h ^= s >> 8;
181 s = tab[b >>10 & 0x3]; l ^= s << 10; h ^= s >> 6;
182 s = tab[b >>12 & 0x3]; l ^= s << 12; h ^= s >> 4;
183 s = tab[b >>14 ]; l ^= s << 14; h ^= s >> 2;
184
185 /* compensate for the top bit of a */
186
187 if (top1b & 01) { l ^= b << 15; h ^= b >> 1; }
188
189 *r1 = h; *r0 = l;
190 }
191#endif
192#ifdef THIRTY_TWO_BIT
193static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, const BN_ULONG b)
194 {
195 register BN_ULONG h, l, s;
196 BN_ULONG tab[8], top2b = a >> 30;
197 register BN_ULONG a1, a2, a4;
198
199 a1 = a & (0x3FFFFFFF); a2 = a1 << 1; a4 = a2 << 1;
200
201 tab[0] = 0; tab[1] = a1; tab[2] = a2; tab[3] = a1^a2;
202 tab[4] = a4; tab[5] = a1^a4; tab[6] = a2^a4; tab[7] = a1^a2^a4;
203
204 s = tab[b & 0x7]; l = s;
205 s = tab[b >> 3 & 0x7]; l ^= s << 3; h = s >> 29;
206 s = tab[b >> 6 & 0x7]; l ^= s << 6; h ^= s >> 26;
207 s = tab[b >> 9 & 0x7]; l ^= s << 9; h ^= s >> 23;
208 s = tab[b >> 12 & 0x7]; l ^= s << 12; h ^= s >> 20;
209 s = tab[b >> 15 & 0x7]; l ^= s << 15; h ^= s >> 17;
210 s = tab[b >> 18 & 0x7]; l ^= s << 18; h ^= s >> 14;
211 s = tab[b >> 21 & 0x7]; l ^= s << 21; h ^= s >> 11;
212 s = tab[b >> 24 & 0x7]; l ^= s << 24; h ^= s >> 8;
213 s = tab[b >> 27 & 0x7]; l ^= s << 27; h ^= s >> 5;
214 s = tab[b >> 30 ]; l ^= s << 30; h ^= s >> 2;
215
216 /* compensate for the top two bits of a */
217
218 if (top2b & 01) { l ^= b << 30; h ^= b >> 2; }
219 if (top2b & 02) { l ^= b << 31; h ^= b >> 1; }
220
221 *r1 = h; *r0 = l;
222 }
223#endif
224#if defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG)
225static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, const BN_ULONG b)
226 {
227 register BN_ULONG h, l, s;
228 BN_ULONG tab[16], top3b = a >> 61;
229 register BN_ULONG a1, a2, a4, a8;
230
231 a1 = a & (0x1FFFFFFFFFFFFFFFULL); a2 = a1 << 1; a4 = a2 << 1; a8 = a4 << 1;
232
233 tab[ 0] = 0; tab[ 1] = a1; tab[ 2] = a2; tab[ 3] = a1^a2;
234 tab[ 4] = a4; tab[ 5] = a1^a4; tab[ 6] = a2^a4; tab[ 7] = a1^a2^a4;
235 tab[ 8] = a8; tab[ 9] = a1^a8; tab[10] = a2^a8; tab[11] = a1^a2^a8;
236 tab[12] = a4^a8; tab[13] = a1^a4^a8; tab[14] = a2^a4^a8; tab[15] = a1^a2^a4^a8;
237
238 s = tab[b & 0xF]; l = s;
239 s = tab[b >> 4 & 0xF]; l ^= s << 4; h = s >> 60;
240 s = tab[b >> 8 & 0xF]; l ^= s << 8; h ^= s >> 56;
241 s = tab[b >> 12 & 0xF]; l ^= s << 12; h ^= s >> 52;
242 s = tab[b >> 16 & 0xF]; l ^= s << 16; h ^= s >> 48;
243 s = tab[b >> 20 & 0xF]; l ^= s << 20; h ^= s >> 44;
244 s = tab[b >> 24 & 0xF]; l ^= s << 24; h ^= s >> 40;
245 s = tab[b >> 28 & 0xF]; l ^= s << 28; h ^= s >> 36;
246 s = tab[b >> 32 & 0xF]; l ^= s << 32; h ^= s >> 32;
247 s = tab[b >> 36 & 0xF]; l ^= s << 36; h ^= s >> 28;
248 s = tab[b >> 40 & 0xF]; l ^= s << 40; h ^= s >> 24;
249 s = tab[b >> 44 & 0xF]; l ^= s << 44; h ^= s >> 20;
250 s = tab[b >> 48 & 0xF]; l ^= s << 48; h ^= s >> 16;
251 s = tab[b >> 52 & 0xF]; l ^= s << 52; h ^= s >> 12;
252 s = tab[b >> 56 & 0xF]; l ^= s << 56; h ^= s >> 8;
253 s = tab[b >> 60 ]; l ^= s << 60; h ^= s >> 4;
254
255 /* compensate for the top three bits of a */
256
257 if (top3b & 01) { l ^= b << 61; h ^= b >> 3; }
258 if (top3b & 02) { l ^= b << 62; h ^= b >> 2; }
259 if (top3b & 04) { l ^= b << 63; h ^= b >> 1; }
260
261 *r1 = h; *r0 = l;
262 }
263#endif
264
265/* Product of two polynomials a, b each with degree < 2 * BN_BITS2 - 1,
266 * result is a polynomial r with degree < 4 * BN_BITS2 - 1
267 * The caller MUST ensure that the variables have the right amount
268 * of space allocated.
269 */
270static void bn_GF2m_mul_2x2(BN_ULONG *r, const BN_ULONG a1, const BN_ULONG a0, const BN_ULONG b1, const BN_ULONG b0)
271 {
272 BN_ULONG m1, m0;
273 /* r[3] = h1, r[2] = h0; r[1] = l1; r[0] = l0 */
274 bn_GF2m_mul_1x1(r+3, r+2, a1, b1);
275 bn_GF2m_mul_1x1(r+1, r, a0, b0);
276 bn_GF2m_mul_1x1(&m1, &m0, a0 ^ a1, b0 ^ b1);
277 /* Correction on m1 ^= l1 ^ h1; m0 ^= l0 ^ h0; */
278 r[2] ^= m1 ^ r[1] ^ r[3]; /* h0 ^= m1 ^ l1 ^ h1; */
279 r[1] = r[3] ^ r[2] ^ r[0] ^ m1 ^ m0; /* l1 ^= l0 ^ h0 ^ m0; */
280 }
281
282
283/* Add polynomials a and b and store result in r; r could be a or b, a and b
284 * could be equal; r is the bitwise XOR of a and b.
285 */
286int BN_GF2m_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b)
287 {
288 int i;
289 const BIGNUM *at, *bt;
290
291 bn_check_top(a);
292 bn_check_top(b);
293
294 if (a->top < b->top) { at = b; bt = a; }
295 else { at = a; bt = b; }
296
297 bn_wexpand(r, at->top);
298
299 for (i = 0; i < bt->top; i++)
300 {
301 r->d[i] = at->d[i] ^ bt->d[i];
302 }
303 for (; i < at->top; i++)
304 {
305 r->d[i] = at->d[i];
306 }
307
308 r->top = at->top;
309 bn_correct_top(r);
310
311 return 1;
312 }
313
314
315/* Some functions allow for representation of the irreducible polynomials
316 * as an int[], say p. The irreducible f(t) is then of the form:
317 * t^p[0] + t^p[1] + ... + t^p[k]
318 * where m = p[0] > p[1] > ... > p[k] = 0.
319 */
320
321
322/* Performs modular reduction of a and store result in r. r could be a. */
323int BN_GF2m_mod_arr(BIGNUM *r, const BIGNUM *a, const unsigned int p[])
324 {
325 int j, k;
326 int n, dN, d0, d1;
327 BN_ULONG zz, *z;
328
329 bn_check_top(a);
330
331 if (!p[0])
332 {
333 /* reduction mod 1 => return 0 */
334 BN_zero(r);
335 return 1;
336 }
337
338 /* Since the algorithm does reduction in the r value, if a != r, copy
339 * the contents of a into r so we can do reduction in r.
340 */
341 if (a != r)
342 {
343 if (!bn_wexpand(r, a->top)) return 0;
344 for (j = 0; j < a->top; j++)
345 {
346 r->d[j] = a->d[j];
347 }
348 r->top = a->top;
349 }
350 z = r->d;
351
352 /* start reduction */
353 dN = p[0] / BN_BITS2;
354 for (j = r->top - 1; j > dN;)
355 {
356 zz = z[j];
357 if (z[j] == 0) { j--; continue; }
358 z[j] = 0;
359
360 for (k = 1; p[k] != 0; k++)
361 {
362 /* reducing component t^p[k] */
363 n = p[0] - p[k];
364 d0 = n % BN_BITS2; d1 = BN_BITS2 - d0;
365 n /= BN_BITS2;
366 z[j-n] ^= (zz>>d0);
367 if (d0) z[j-n-1] ^= (zz<<d1);
368 }
369
370 /* reducing component t^0 */
371 n = dN;
372 d0 = p[0] % BN_BITS2;
373 d1 = BN_BITS2 - d0;
374 z[j-n] ^= (zz >> d0);
375 if (d0) z[j-n-1] ^= (zz << d1);
376 }
377
378 /* final round of reduction */
379 while (j == dN)
380 {
381
382 d0 = p[0] % BN_BITS2;
383 zz = z[dN] >> d0;
384 if (zz == 0) break;
385 d1 = BN_BITS2 - d0;
386
387 if (d0) z[dN] = (z[dN] << d1) >> d1; /* clear up the top d1 bits */
388 z[0] ^= zz; /* reduction t^0 component */
389
390 for (k = 1; p[k] != 0; k++)
391 {
392 BN_ULONG tmp_ulong;
393
394 /* reducing component t^p[k]*/
395 n = p[k] / BN_BITS2;
396 d0 = p[k] % BN_BITS2;
397 d1 = BN_BITS2 - d0;
398 z[n] ^= (zz << d0);
399 tmp_ulong = zz >> d1;
400 if (d0 && tmp_ulong)
401 z[n+1] ^= tmp_ulong;
402 }
403
404
405 }
406
407 bn_correct_top(r);
408 return 1;
409 }
410
411/* Performs modular reduction of a by p and store result in r. r could be a.
412 *
413 * This function calls down to the BN_GF2m_mod_arr implementation; this wrapper
414 * function is only provided for convenience; for best performance, use the
415 * BN_GF2m_mod_arr function.
416 */
417int BN_GF2m_mod(BIGNUM *r, const BIGNUM *a, const BIGNUM *p)
418 {
419 int ret = 0;
420 const int max = BN_num_bits(p);
421 unsigned int *arr=NULL;
422 bn_check_top(a);
423 bn_check_top(p);
424 if ((arr = (unsigned int *)OPENSSL_malloc(sizeof(unsigned int) * max)) == NULL) goto err;
425 ret = BN_GF2m_poly2arr(p, arr, max);
426 if (!ret || ret > max)
427 {
428 BNerr(BN_F_BN_GF2M_MOD,BN_R_INVALID_LENGTH);
429 goto err;
430 }
431 ret = BN_GF2m_mod_arr(r, a, arr);
432 bn_check_top(r);
433err:
434 if (arr) OPENSSL_free(arr);
435 return ret;
436 }
437
438
439/* Compute the product of two polynomials a and b, reduce modulo p, and store
440 * the result in r. r could be a or b; a could be b.
441 */
442int BN_GF2m_mod_mul_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const unsigned int p[], BN_CTX *ctx)
443 {
444 int zlen, i, j, k, ret = 0;
445 BIGNUM *s;
446 BN_ULONG x1, x0, y1, y0, zz[4];
447
448 bn_check_top(a);
449 bn_check_top(b);
450
451 if (a == b)
452 {
453 return BN_GF2m_mod_sqr_arr(r, a, p, ctx);
454 }
455
456 BN_CTX_start(ctx);
457 if ((s = BN_CTX_get(ctx)) == NULL) goto err;
458
459 zlen = a->top + b->top + 4;
460 if (!bn_wexpand(s, zlen)) goto err;
461 s->top = zlen;
462
463 for (i = 0; i < zlen; i++) s->d[i] = 0;
464
465 for (j = 0; j < b->top; j += 2)
466 {
467 y0 = b->d[j];
468 y1 = ((j+1) == b->top) ? 0 : b->d[j+1];
469 for (i = 0; i < a->top; i += 2)
470 {
471 x0 = a->d[i];
472 x1 = ((i+1) == a->top) ? 0 : a->d[i+1];
473 bn_GF2m_mul_2x2(zz, x1, x0, y1, y0);
474 for (k = 0; k < 4; k++) s->d[i+j+k] ^= zz[k];
475 }
476 }
477
478 bn_correct_top(s);
479 if (BN_GF2m_mod_arr(r, s, p))
480 ret = 1;
481 bn_check_top(r);
482
483err:
484 BN_CTX_end(ctx);
485 return ret;
486 }
487
488/* Compute the product of two polynomials a and b, reduce modulo p, and store
489 * the result in r. r could be a or b; a could equal b.
490 *
491 * This function calls down to the BN_GF2m_mod_mul_arr implementation; this wrapper
492 * function is only provided for convenience; for best performance, use the
493 * BN_GF2m_mod_mul_arr function.
494 */
495int BN_GF2m_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *p, BN_CTX *ctx)
496 {
497 int ret = 0;
498 const int max = BN_num_bits(p);
499 unsigned int *arr=NULL;
500 bn_check_top(a);
501 bn_check_top(b);
502 bn_check_top(p);
503 if ((arr = (unsigned int *)OPENSSL_malloc(sizeof(unsigned int) * max)) == NULL) goto err;
504 ret = BN_GF2m_poly2arr(p, arr, max);
505 if (!ret || ret > max)
506 {
507 BNerr(BN_F_BN_GF2M_MOD_MUL,BN_R_INVALID_LENGTH);
508 goto err;
509 }
510 ret = BN_GF2m_mod_mul_arr(r, a, b, arr, ctx);
511 bn_check_top(r);
512err:
513 if (arr) OPENSSL_free(arr);
514 return ret;
515 }
516
517
518/* Square a, reduce the result mod p, and store it in a. r could be a. */
519int BN_GF2m_mod_sqr_arr(BIGNUM *r, const BIGNUM *a, const unsigned int p[], BN_CTX *ctx)
520 {
521 int i, ret = 0;
522 BIGNUM *s;
523
524 bn_check_top(a);
525 BN_CTX_start(ctx);
526 if ((s = BN_CTX_get(ctx)) == NULL) return 0;
527 if (!bn_wexpand(s, 2 * a->top)) goto err;
528
529 for (i = a->top - 1; i >= 0; i--)
530 {
531 s->d[2*i+1] = SQR1(a->d[i]);
532 s->d[2*i ] = SQR0(a->d[i]);
533 }
534
535 s->top = 2 * a->top;
536 bn_correct_top(s);
537 if (!BN_GF2m_mod_arr(r, s, p)) goto err;
538 bn_check_top(r);
539 ret = 1;
540err:
541 BN_CTX_end(ctx);
542 return ret;
543 }
544
545/* Square a, reduce the result mod p, and store it in a. r could be a.
546 *
547 * This function calls down to the BN_GF2m_mod_sqr_arr implementation; this wrapper
548 * function is only provided for convenience; for best performance, use the
549 * BN_GF2m_mod_sqr_arr function.
550 */
551int BN_GF2m_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
552 {
553 int ret = 0;
554 const int max = BN_num_bits(p);
555 unsigned int *arr=NULL;
556
557 bn_check_top(a);
558 bn_check_top(p);
559 if ((arr = (unsigned int *)OPENSSL_malloc(sizeof(unsigned int) * max)) == NULL) goto err;
560 ret = BN_GF2m_poly2arr(p, arr, max);
561 if (!ret || ret > max)
562 {
563 BNerr(BN_F_BN_GF2M_MOD_SQR,BN_R_INVALID_LENGTH);
564 goto err;
565 }
566 ret = BN_GF2m_mod_sqr_arr(r, a, arr, ctx);
567 bn_check_top(r);
568err:
569 if (arr) OPENSSL_free(arr);
570 return ret;
571 }
572
573
574/* Invert a, reduce modulo p, and store the result in r. r could be a.
575 * Uses Modified Almost Inverse Algorithm (Algorithm 10) from
576 * Hankerson, D., Hernandez, J.L., and Menezes, A. "Software Implementation
577 * of Elliptic Curve Cryptography Over Binary Fields".
578 */
579int BN_GF2m_mod_inv(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
580 {
581 BIGNUM *b, *c, *u, *v, *tmp;
582 int ret = 0;
583
584 bn_check_top(a);
585 bn_check_top(p);
586
587 BN_CTX_start(ctx);
588
589 b = BN_CTX_get(ctx);
590 c = BN_CTX_get(ctx);
591 u = BN_CTX_get(ctx);
592 v = BN_CTX_get(ctx);
593 if (v == NULL) goto err;
594
595 if (!BN_one(b)) goto err;
596 if (!BN_GF2m_mod(u, a, p)) goto err;
597 if (!BN_copy(v, p)) goto err;
598
599 if (BN_is_zero(u)) goto err;
600
601 while (1)
602 {
603 while (!BN_is_odd(u))
604 {
605 if (!BN_rshift1(u, u)) goto err;
606 if (BN_is_odd(b))
607 {
608 if (!BN_GF2m_add(b, b, p)) goto err;
609 }
610 if (!BN_rshift1(b, b)) goto err;
611 }
612
613 if (BN_abs_is_word(u, 1)) break;
614
615 if (BN_num_bits(u) < BN_num_bits(v))
616 {
617 tmp = u; u = v; v = tmp;
618 tmp = b; b = c; c = tmp;
619 }
620
621 if (!BN_GF2m_add(u, u, v)) goto err;
622 if (!BN_GF2m_add(b, b, c)) goto err;
623 }
624
625
626 if (!BN_copy(r, b)) goto err;
627 bn_check_top(r);
628 ret = 1;
629
630err:
631 BN_CTX_end(ctx);
632 return ret;
633 }
634
635/* Invert xx, reduce modulo p, and store the result in r. r could be xx.
636 *
637 * This function calls down to the BN_GF2m_mod_inv implementation; this wrapper
638 * function is only provided for convenience; for best performance, use the
639 * BN_GF2m_mod_inv function.
640 */
641int BN_GF2m_mod_inv_arr(BIGNUM *r, const BIGNUM *xx, const unsigned int p[], BN_CTX *ctx)
642 {
643 BIGNUM *field;
644 int ret = 0;
645
646 bn_check_top(xx);
647 BN_CTX_start(ctx);
648 if ((field = BN_CTX_get(ctx)) == NULL) goto err;
649 if (!BN_GF2m_arr2poly(p, field)) goto err;
650
651 ret = BN_GF2m_mod_inv(r, xx, field, ctx);
652 bn_check_top(r);
653
654err:
655 BN_CTX_end(ctx);
656 return ret;
657 }
658
659
660#ifndef OPENSSL_SUN_GF2M_DIV
661/* Divide y by x, reduce modulo p, and store the result in r. r could be x
662 * or y, x could equal y.
663 */
664int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x, const BIGNUM *p, BN_CTX *ctx)
665 {
666 BIGNUM *xinv = NULL;
667 int ret = 0;
668
669 bn_check_top(y);
670 bn_check_top(x);
671 bn_check_top(p);
672
673 BN_CTX_start(ctx);
674 xinv = BN_CTX_get(ctx);
675 if (xinv == NULL) goto err;
676
677 if (!BN_GF2m_mod_inv(xinv, x, p, ctx)) goto err;
678 if (!BN_GF2m_mod_mul(r, y, xinv, p, ctx)) goto err;
679 bn_check_top(r);
680 ret = 1;
681
682err:
683 BN_CTX_end(ctx);
684 return ret;
685 }
686#else
687/* Divide y by x, reduce modulo p, and store the result in r. r could be x
688 * or y, x could equal y.
689 * Uses algorithm Modular_Division_GF(2^m) from
690 * Chang-Shantz, S. "From Euclid's GCD to Montgomery Multiplication to
691 * the Great Divide".
692 */
693int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x, const BIGNUM *p, BN_CTX *ctx)
694 {
695 BIGNUM *a, *b, *u, *v;
696 int ret = 0;
697
698 bn_check_top(y);
699 bn_check_top(x);
700 bn_check_top(p);
701
702 BN_CTX_start(ctx);
703
704 a = BN_CTX_get(ctx);
705 b = BN_CTX_get(ctx);
706 u = BN_CTX_get(ctx);
707 v = BN_CTX_get(ctx);
708 if (v == NULL) goto err;
709
710 /* reduce x and y mod p */
711 if (!BN_GF2m_mod(u, y, p)) goto err;
712 if (!BN_GF2m_mod(a, x, p)) goto err;
713 if (!BN_copy(b, p)) goto err;
714
715 while (!BN_is_odd(a))
716 {
717 if (!BN_rshift1(a, a)) goto err;
718 if (BN_is_odd(u)) if (!BN_GF2m_add(u, u, p)) goto err;
719 if (!BN_rshift1(u, u)) goto err;
720 }
721
722 do
723 {
724 if (BN_GF2m_cmp(b, a) > 0)
725 {
726 if (!BN_GF2m_add(b, b, a)) goto err;
727 if (!BN_GF2m_add(v, v, u)) goto err;
728 do
729 {
730 if (!BN_rshift1(b, b)) goto err;
731 if (BN_is_odd(v)) if (!BN_GF2m_add(v, v, p)) goto err;
732 if (!BN_rshift1(v, v)) goto err;
733 } while (!BN_is_odd(b));
734 }
735 else if (BN_abs_is_word(a, 1))
736 break;
737 else
738 {
739 if (!BN_GF2m_add(a, a, b)) goto err;
740 if (!BN_GF2m_add(u, u, v)) goto err;
741 do
742 {
743 if (!BN_rshift1(a, a)) goto err;
744 if (BN_is_odd(u)) if (!BN_GF2m_add(u, u, p)) goto err;
745 if (!BN_rshift1(u, u)) goto err;
746 } while (!BN_is_odd(a));
747 }
748 } while (1);
749
750 if (!BN_copy(r, u)) goto err;
751 bn_check_top(r);
752 ret = 1;
753
754err:
755 BN_CTX_end(ctx);
756 return ret;
757 }
758#endif
759
760/* Divide yy by xx, reduce modulo p, and store the result in r. r could be xx
761 * or yy, xx could equal yy.
762 *
763 * This function calls down to the BN_GF2m_mod_div implementation; this wrapper
764 * function is only provided for convenience; for best performance, use the
765 * BN_GF2m_mod_div function.
766 */
767int BN_GF2m_mod_div_arr(BIGNUM *r, const BIGNUM *yy, const BIGNUM *xx, const unsigned int p[], BN_CTX *ctx)
768 {
769 BIGNUM *field;
770 int ret = 0;
771
772 bn_check_top(yy);
773 bn_check_top(xx);
774
775 BN_CTX_start(ctx);
776 if ((field = BN_CTX_get(ctx)) == NULL) goto err;
777 if (!BN_GF2m_arr2poly(p, field)) goto err;
778
779 ret = BN_GF2m_mod_div(r, yy, xx, field, ctx);
780 bn_check_top(r);
781
782err:
783 BN_CTX_end(ctx);
784 return ret;
785 }
786
787
788/* Compute the bth power of a, reduce modulo p, and store
789 * the result in r. r could be a.
790 * Uses simple square-and-multiply algorithm A.5.1 from IEEE P1363.
791 */
792int BN_GF2m_mod_exp_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const unsigned int p[], BN_CTX *ctx)
793 {
794 int ret = 0, i, n;
795 BIGNUM *u;
796
797 bn_check_top(a);
798 bn_check_top(b);
799
800 if (BN_is_zero(b))
801 return(BN_one(r));
802
803 if (BN_abs_is_word(b, 1))
804 return (BN_copy(r, a) != NULL);
805
806 BN_CTX_start(ctx);
807 if ((u = BN_CTX_get(ctx)) == NULL) goto err;
808
809 if (!BN_GF2m_mod_arr(u, a, p)) goto err;
810
811 n = BN_num_bits(b) - 1;
812 for (i = n - 1; i >= 0; i--)
813 {
814 if (!BN_GF2m_mod_sqr_arr(u, u, p, ctx)) goto err;
815 if (BN_is_bit_set(b, i))
816 {
817 if (!BN_GF2m_mod_mul_arr(u, u, a, p, ctx)) goto err;
818 }
819 }
820 if (!BN_copy(r, u)) goto err;
821 bn_check_top(r);
822 ret = 1;
823err:
824 BN_CTX_end(ctx);
825 return ret;
826 }
827
828/* Compute the bth power of a, reduce modulo p, and store
829 * the result in r. r could be a.
830 *
831 * This function calls down to the BN_GF2m_mod_exp_arr implementation; this wrapper
832 * function is only provided for convenience; for best performance, use the
833 * BN_GF2m_mod_exp_arr function.
834 */
835int BN_GF2m_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *p, BN_CTX *ctx)
836 {
837 int ret = 0;
838 const int max = BN_num_bits(p);
839 unsigned int *arr=NULL;
840 bn_check_top(a);
841 bn_check_top(b);
842 bn_check_top(p);
843 if ((arr = (unsigned int *)OPENSSL_malloc(sizeof(unsigned int) * max)) == NULL) goto err;
844 ret = BN_GF2m_poly2arr(p, arr, max);
845 if (!ret || ret > max)
846 {
847 BNerr(BN_F_BN_GF2M_MOD_EXP,BN_R_INVALID_LENGTH);
848 goto err;
849 }
850 ret = BN_GF2m_mod_exp_arr(r, a, b, arr, ctx);
851 bn_check_top(r);
852err:
853 if (arr) OPENSSL_free(arr);
854 return ret;
855 }
856
857/* Compute the square root of a, reduce modulo p, and store
858 * the result in r. r could be a.
859 * Uses exponentiation as in algorithm A.4.1 from IEEE P1363.
860 */
861int BN_GF2m_mod_sqrt_arr(BIGNUM *r, const BIGNUM *a, const unsigned int p[], BN_CTX *ctx)
862 {
863 int ret = 0;
864 BIGNUM *u;
865
866 bn_check_top(a);
867
868 if (!p[0])
869 {
870 /* reduction mod 1 => return 0 */
871 BN_zero(r);
872 return 1;
873 }
874
875 BN_CTX_start(ctx);
876 if ((u = BN_CTX_get(ctx)) == NULL) goto err;
877
878 if (!BN_set_bit(u, p[0] - 1)) goto err;
879 ret = BN_GF2m_mod_exp_arr(r, a, u, p, ctx);
880 bn_check_top(r);
881
882err:
883 BN_CTX_end(ctx);
884 return ret;
885 }
886
887/* Compute the square root of a, reduce modulo p, and store
888 * the result in r. r could be a.
889 *
890 * This function calls down to the BN_GF2m_mod_sqrt_arr implementation; this wrapper
891 * function is only provided for convenience; for best performance, use the
892 * BN_GF2m_mod_sqrt_arr function.
893 */
894int BN_GF2m_mod_sqrt(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
895 {
896 int ret = 0;
897 const int max = BN_num_bits(p);
898 unsigned int *arr=NULL;
899 bn_check_top(a);
900 bn_check_top(p);
901 if ((arr = (unsigned int *)OPENSSL_malloc(sizeof(unsigned int) * max)) == NULL) goto err;
902 ret = BN_GF2m_poly2arr(p, arr, max);
903 if (!ret || ret > max)
904 {
905 BNerr(BN_F_BN_GF2M_MOD_SQRT,BN_R_INVALID_LENGTH);
906 goto err;
907 }
908 ret = BN_GF2m_mod_sqrt_arr(r, a, arr, ctx);
909 bn_check_top(r);
910err:
911 if (arr) OPENSSL_free(arr);
912 return ret;
913 }
914
915/* Find r such that r^2 + r = a mod p. r could be a. If no r exists returns 0.
916 * Uses algorithms A.4.7 and A.4.6 from IEEE P1363.
917 */
918int BN_GF2m_mod_solve_quad_arr(BIGNUM *r, const BIGNUM *a_, const unsigned int p[], BN_CTX *ctx)
919 {
920 int ret = 0, count = 0;
921 unsigned int j;
922 BIGNUM *a, *z, *rho, *w, *w2, *tmp;
923
924 bn_check_top(a_);
925
926 if (!p[0])
927 {
928 /* reduction mod 1 => return 0 */
929 BN_zero(r);
930 return 1;
931 }
932
933 BN_CTX_start(ctx);
934 a = BN_CTX_get(ctx);
935 z = BN_CTX_get(ctx);
936 w = BN_CTX_get(ctx);
937 if (w == NULL) goto err;
938
939 if (!BN_GF2m_mod_arr(a, a_, p)) goto err;
940
941 if (BN_is_zero(a))
942 {
943 BN_zero(r);
944 ret = 1;
945 goto err;
946 }
947
948 if (p[0] & 0x1) /* m is odd */
949 {
950 /* compute half-trace of a */
951 if (!BN_copy(z, a)) goto err;
952 for (j = 1; j <= (p[0] - 1) / 2; j++)
953 {
954 if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) goto err;
955 if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) goto err;
956 if (!BN_GF2m_add(z, z, a)) goto err;
957 }
958
959 }
960 else /* m is even */
961 {
962 rho = BN_CTX_get(ctx);
963 w2 = BN_CTX_get(ctx);
964 tmp = BN_CTX_get(ctx);
965 if (tmp == NULL) goto err;
966 do
967 {
968 if (!BN_rand(rho, p[0], 0, 0)) goto err;
969 if (!BN_GF2m_mod_arr(rho, rho, p)) goto err;
970 BN_zero(z);
971 if (!BN_copy(w, rho)) goto err;
972 for (j = 1; j <= p[0] - 1; j++)
973 {
974 if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) goto err;
975 if (!BN_GF2m_mod_sqr_arr(w2, w, p, ctx)) goto err;
976 if (!BN_GF2m_mod_mul_arr(tmp, w2, a, p, ctx)) goto err;
977 if (!BN_GF2m_add(z, z, tmp)) goto err;
978 if (!BN_GF2m_add(w, w2, rho)) goto err;
979 }
980 count++;
981 } while (BN_is_zero(w) && (count < MAX_ITERATIONS));
982 if (BN_is_zero(w))
983 {
984 BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD_ARR,BN_R_TOO_MANY_ITERATIONS);
985 goto err;
986 }
987 }
988
989 if (!BN_GF2m_mod_sqr_arr(w, z, p, ctx)) goto err;
990 if (!BN_GF2m_add(w, z, w)) goto err;
991 if (BN_GF2m_cmp(w, a))
992 {
993 BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD_ARR, BN_R_NO_SOLUTION);
994 goto err;
995 }
996
997 if (!BN_copy(r, z)) goto err;
998 bn_check_top(r);
999
1000 ret = 1;
1001
1002err:
1003 BN_CTX_end(ctx);
1004 return ret;
1005 }
1006
1007/* Find r such that r^2 + r = a mod p. r could be a. If no r exists returns 0.
1008 *
1009 * This function calls down to the BN_GF2m_mod_solve_quad_arr implementation; this wrapper
1010 * function is only provided for convenience; for best performance, use the
1011 * BN_GF2m_mod_solve_quad_arr function.
1012 */
1013int BN_GF2m_mod_solve_quad(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
1014 {
1015 int ret = 0;
1016 const int max = BN_num_bits(p);
1017 unsigned int *arr=NULL;
1018 bn_check_top(a);
1019 bn_check_top(p);
1020 if ((arr = (unsigned int *)OPENSSL_malloc(sizeof(unsigned int) *
1021 max)) == NULL) goto err;
1022 ret = BN_GF2m_poly2arr(p, arr, max);
1023 if (!ret || ret > max)
1024 {
1025 BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD,BN_R_INVALID_LENGTH);
1026 goto err;
1027 }
1028 ret = BN_GF2m_mod_solve_quad_arr(r, a, arr, ctx);
1029 bn_check_top(r);
1030err:
1031 if (arr) OPENSSL_free(arr);
1032 return ret;
1033 }
1034
1035/* Convert the bit-string representation of a polynomial
1036 * ( \sum_{i=0}^n a_i * x^i , where a_0 is *not* zero) into an array
1037 * of integers corresponding to the bits with non-zero coefficient.
1038 * Up to max elements of the array will be filled. Return value is total
1039 * number of coefficients that would be extracted if array was large enough.
1040 */
1041int BN_GF2m_poly2arr(const BIGNUM *a, unsigned int p[], int max)
1042 {
1043 int i, j, k = 0;
1044 BN_ULONG mask;
1045
1046 if (BN_is_zero(a) || !BN_is_bit_set(a, 0))
1047 /* a_0 == 0 => return error (the unsigned int array
1048 * must be terminated by 0)
1049 */
1050 return 0;
1051
1052 for (i = a->top - 1; i >= 0; i--)
1053 {
1054 if (!a->d[i])
1055 /* skip word if a->d[i] == 0 */
1056 continue;
1057 mask = BN_TBIT;
1058 for (j = BN_BITS2 - 1; j >= 0; j--)
1059 {
1060 if (a->d[i] & mask)
1061 {
1062 if (k < max) p[k] = BN_BITS2 * i + j;
1063 k++;
1064 }
1065 mask >>= 1;
1066 }
1067 }
1068
1069 return k;
1070 }
1071
1072/* Convert the coefficient array representation of a polynomial to a
1073 * bit-string. The array must be terminated by 0.
1074 */
1075int BN_GF2m_arr2poly(const unsigned int p[], BIGNUM *a)
1076 {
1077 int i;
1078
1079 bn_check_top(a);
1080 BN_zero(a);
1081 for (i = 0; p[i] != 0; i++)
1082 {
1083 if (BN_set_bit(a, p[i]) == 0)
1084 return 0;
1085 }
1086 BN_set_bit(a, 0);
1087 bn_check_top(a);
1088
1089 return 1;
1090 }
1091
diff --git a/src/lib/libcrypto/bn/bn_nist.c b/src/lib/libcrypto/bn/bn_nist.c
new file mode 100644
index 0000000000..e14232fdbb
--- /dev/null
+++ b/src/lib/libcrypto/bn/bn_nist.c
@@ -0,0 +1,692 @@
1/* crypto/bn/bn_nist.c */
2/*
3 * Written by Nils Larsch for the OpenSSL project
4 */
5/* ====================================================================
6 * Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * openssl-core@openssl.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ====================================================================
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */
58
59#include "bn_lcl.h"
60#include "cryptlib.h"
61
62#define BN_NIST_192_TOP (192+BN_BITS2-1)/BN_BITS2
63#define BN_NIST_224_TOP (224+BN_BITS2-1)/BN_BITS2
64#define BN_NIST_256_TOP (256+BN_BITS2-1)/BN_BITS2
65#define BN_NIST_384_TOP (384+BN_BITS2-1)/BN_BITS2
66#define BN_NIST_521_TOP (521+BN_BITS2-1)/BN_BITS2
67
68#if BN_BITS2 == 64
69static const BN_ULONG _nist_p_192[] =
70 {0xFFFFFFFFFFFFFFFFULL,0xFFFFFFFFFFFFFFFEULL,
71 0xFFFFFFFFFFFFFFFFULL};
72static const BN_ULONG _nist_p_224[] =
73 {0x0000000000000001ULL,0xFFFFFFFF00000000ULL,
74 0xFFFFFFFFFFFFFFFFULL,0x00000000FFFFFFFFULL};
75static const BN_ULONG _nist_p_256[] =
76 {0xFFFFFFFFFFFFFFFFULL,0x00000000FFFFFFFFULL,
77 0x0000000000000000ULL,0xFFFFFFFF00000001ULL};
78static const BN_ULONG _nist_p_384[] =
79 {0x00000000FFFFFFFFULL,0xFFFFFFFF00000000ULL,
80 0xFFFFFFFFFFFFFFFEULL,0xFFFFFFFFFFFFFFFFULL,
81 0xFFFFFFFFFFFFFFFFULL,0xFFFFFFFFFFFFFFFFULL};
82static const BN_ULONG _nist_p_521[] =
83 {0xFFFFFFFFFFFFFFFFULL,0xFFFFFFFFFFFFFFFFULL,
84 0xFFFFFFFFFFFFFFFFULL,0xFFFFFFFFFFFFFFFFULL,
85 0xFFFFFFFFFFFFFFFFULL,0xFFFFFFFFFFFFFFFFULL,
86 0xFFFFFFFFFFFFFFFFULL,0xFFFFFFFFFFFFFFFFULL,
87 0x00000000000001FFULL};
88#elif BN_BITS2 == 32
89static const BN_ULONG _nist_p_192[] = {0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFE,
90 0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF};
91static const BN_ULONG _nist_p_224[] = {0x00000001,0x00000000,0x00000000,
92 0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF};
93static const BN_ULONG _nist_p_256[] = {0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF,
94 0x00000000,0x00000000,0x00000000,0x00000001,0xFFFFFFFF};
95static const BN_ULONG _nist_p_384[] = {0xFFFFFFFF,0x00000000,0x00000000,
96 0xFFFFFFFF,0xFFFFFFFE,0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF,
97 0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF};
98static const BN_ULONG _nist_p_521[] = {0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF,
99 0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF,
100 0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF,
101 0xFFFFFFFF,0x000001FF};
102#endif
103
104const BIGNUM *BN_get0_nist_prime_192(void)
105 {
106 static BIGNUM const_nist_192 = { (BN_ULONG *)_nist_p_192,
107 BN_NIST_192_TOP, BN_NIST_192_TOP, 0, BN_FLG_STATIC_DATA };
108 return &const_nist_192;
109 }
110
111const BIGNUM *BN_get0_nist_prime_224(void)
112 {
113 static BIGNUM const_nist_224 = { (BN_ULONG *)_nist_p_224,
114 BN_NIST_224_TOP, BN_NIST_224_TOP, 0, BN_FLG_STATIC_DATA };
115 return &const_nist_224;
116 }
117
118const BIGNUM *BN_get0_nist_prime_256(void)
119 {
120 static BIGNUM const_nist_256 = { (BN_ULONG *)_nist_p_256,
121 BN_NIST_256_TOP, BN_NIST_256_TOP, 0, BN_FLG_STATIC_DATA };
122 return &const_nist_256;
123 }
124
125const BIGNUM *BN_get0_nist_prime_384(void)
126 {
127 static BIGNUM const_nist_384 = { (BN_ULONG *)_nist_p_384,
128 BN_NIST_384_TOP, BN_NIST_384_TOP, 0, BN_FLG_STATIC_DATA };
129 return &const_nist_384;
130 }
131
132const BIGNUM *BN_get0_nist_prime_521(void)
133 {
134 static BIGNUM const_nist_521 = { (BN_ULONG *)_nist_p_521,
135 BN_NIST_521_TOP, BN_NIST_521_TOP, 0, BN_FLG_STATIC_DATA };
136 return &const_nist_521;
137 }
138
139#define BN_NIST_ADD_ONE(a) while (!(*(a)=(*(a)+1)&BN_MASK2)) ++(a);
140
141static void nist_cp_bn_0(BN_ULONG *buf, BN_ULONG *a, int top, int max)
142 {
143 int i;
144 BN_ULONG *_tmp1 = (buf), *_tmp2 = (a);
145 for (i = (top); i != 0; i--)
146 *_tmp1++ = *_tmp2++;
147 for (i = (max) - (top); i != 0; i--)
148 *_tmp1++ = (BN_ULONG) 0;
149 }
150
151static void nist_cp_bn(BN_ULONG *buf, BN_ULONG *a, int top)
152 {
153 int i;
154 BN_ULONG *_tmp1 = (buf), *_tmp2 = (a);
155 for (i = (top); i != 0; i--)
156 *_tmp1++ = *_tmp2++;
157 }
158
159#if BN_BITS2 == 64
160#define bn_cp_64(to, n, from, m) (to)[n] = (m>=0)?((from)[m]):0;
161#define bn_64_set_0(to, n) (to)[n] = (BN_ULONG)0;
162/* TBD */
163#define bn_cp_32(to, n, from, m) (to)[n] = (m>=0)?((from)[m]):0;
164#define bn_32_set_0(to, n) (to)[n] = (BN_ULONG)0;
165#else
166#define bn_cp_64(to, n, from, m) \
167 { \
168 bn_cp_32(to, (n)*2, from, (m)*2); \
169 bn_cp_32(to, (n)*2+1, from, (m)*2+1); \
170 }
171#define bn_64_set_0(to, n) \
172 { \
173 bn_32_set_0(to, (n)*2); \
174 bn_32_set_0(to, (n)*2+1); \
175 }
176#if BN_BITS2 == 32
177#define bn_cp_32(to, n, from, m) (to)[n] = (m>=0)?((from)[m]):0;
178#define bn_32_set_0(to, n) (to)[n] = (BN_ULONG)0;
179#endif
180#endif /* BN_BITS2 != 64 */
181
182
183#define nist_set_192(to, from, a1, a2, a3) \
184 { \
185 if (a3 != 0) bn_cp_64(to, 0, from, (a3) - 3) else bn_64_set_0(to, 0)\
186 bn_cp_64(to, 1, from, (a2) - 3) \
187 if (a1 != 0) bn_cp_64(to, 2, from, (a1) - 3) else bn_64_set_0(to, 2)\
188 }
189
190int BN_nist_mod_192(BIGNUM *r, const BIGNUM *a, const BIGNUM *field,
191 BN_CTX *ctx)
192 {
193 int top = a->top, i;
194 int carry;
195 register BN_ULONG *r_d, *a_d = a->d;
196 BN_ULONG t_d[BN_NIST_192_TOP],
197 buf[BN_NIST_192_TOP],
198 c_d[BN_NIST_192_TOP],
199 *res;
200 size_t mask;
201
202 i = BN_ucmp(field, a);
203 if (i == 0)
204 {
205 BN_zero(r);
206 return 1;
207 }
208 else if (i > 0)
209 return (r == a) ? 1 : (BN_copy(r ,a) != NULL);
210
211 if (top == BN_NIST_192_TOP)
212 return BN_usub(r, a, field);
213
214 if (r != a)
215 {
216 if (!bn_wexpand(r, BN_NIST_192_TOP))
217 return 0;
218 r_d = r->d;
219 nist_cp_bn(r_d, a_d, BN_NIST_192_TOP);
220 }
221 else
222 r_d = a_d;
223
224 nist_cp_bn_0(buf, a_d + BN_NIST_192_TOP, top - BN_NIST_192_TOP, BN_NIST_192_TOP);
225
226 nist_set_192(t_d, buf, 0, 3, 3);
227 carry = bn_add_words(r_d, r_d, t_d, BN_NIST_192_TOP);
228 mask = 0-(size_t)bn_sub_words(c_d,r_d,_nist_p_192,BN_NIST_192_TOP);
229 mask = ~mask | (0-(size_t)carry);
230 res = (BN_ULONG *)(((size_t)c_d&mask) | ((size_t)r_d&~mask));
231
232 nist_set_192(t_d, buf, 4, 4, 0);
233 carry = bn_add_words(r_d, res, t_d, BN_NIST_192_TOP);
234 mask = 0-(size_t)bn_sub_words(c_d,r_d,_nist_p_192,BN_NIST_192_TOP);
235 mask = ~mask | (0-(size_t)carry);
236 res = (BN_ULONG *)(((size_t)c_d&mask) | ((size_t)r_d&~mask));
237
238 nist_set_192(t_d, buf, 5, 5, 5)
239 carry = bn_add_words(r_d, res, t_d, BN_NIST_192_TOP);
240 mask = 0-(size_t)bn_sub_words(c_d,r_d,_nist_p_192,BN_NIST_192_TOP);
241 mask = ~mask | (0-(size_t)carry);
242 res = (BN_ULONG *)(((size_t)c_d&mask) | ((size_t)r_d&~mask));
243
244 nist_cp_bn(r_d, res, BN_NIST_192_TOP);
245 r->top = BN_NIST_192_TOP;
246 bn_correct_top(r);
247
248 return 1;
249 }
250
251#define nist_set_224(to, from, a1, a2, a3, a4, a5, a6, a7) \
252 { \
253 if (a7 != 0) bn_cp_32(to, 0, from, (a7) - 7) else bn_32_set_0(to, 0)\
254 if (a6 != 0) bn_cp_32(to, 1, from, (a6) - 7) else bn_32_set_0(to, 1)\
255 if (a5 != 0) bn_cp_32(to, 2, from, (a5) - 7) else bn_32_set_0(to, 2)\
256 if (a4 != 0) bn_cp_32(to, 3, from, (a4) - 7) else bn_32_set_0(to, 3)\
257 if (a3 != 0) bn_cp_32(to, 4, from, (a3) - 7) else bn_32_set_0(to, 4)\
258 if (a2 != 0) bn_cp_32(to, 5, from, (a2) - 7) else bn_32_set_0(to, 5)\
259 if (a1 != 0) bn_cp_32(to, 6, from, (a1) - 7) else bn_32_set_0(to, 6)\
260 }
261
262int BN_nist_mod_224(BIGNUM *r, const BIGNUM *a, const BIGNUM *field,
263 BN_CTX *ctx)
264 {
265#if BN_BITS2 == 32
266 int top = a->top, i;
267 int carry;
268 BN_ULONG *r_d, *a_d = a->d;
269 BN_ULONG t_d[BN_NIST_224_TOP],
270 buf[BN_NIST_224_TOP],
271 c_d[BN_NIST_224_TOP],
272 *res;
273 size_t mask;
274
275 i = BN_ucmp(field, a);
276 if (i == 0)
277 {
278 BN_zero(r);
279 return 1;
280 }
281 else if (i > 0)
282 return (r == a)? 1 : (BN_copy(r ,a) != NULL);
283
284 if (top == BN_NIST_224_TOP)
285 return BN_usub(r, a, field);
286
287 if (r != a)
288 {
289 if (!bn_wexpand(r, BN_NIST_224_TOP))
290 return 0;
291 r_d = r->d;
292 nist_cp_bn(r_d, a_d, BN_NIST_224_TOP);
293 }
294 else
295 r_d = a_d;
296
297 nist_cp_bn_0(buf, a_d + BN_NIST_224_TOP, top - BN_NIST_224_TOP, BN_NIST_224_TOP);
298
299 nist_set_224(t_d, buf, 10, 9, 8, 7, 0, 0, 0);
300 carry = bn_add_words(r_d, r_d, t_d, BN_NIST_224_TOP);
301 mask = 0-(size_t)bn_sub_words(c_d,r_d,_nist_p_224,BN_NIST_224_TOP);
302 mask = ~mask | (0-(size_t)carry);
303 res = (BN_ULONG *)(((size_t)c_d&mask) | ((size_t)r_d&~mask));
304
305 nist_set_224(t_d, buf, 0, 13, 12, 11, 0, 0, 0);
306 carry = bn_add_words(r_d, res, t_d, BN_NIST_224_TOP);
307 mask = 0-(size_t)bn_sub_words(c_d,r_d,_nist_p_224,BN_NIST_224_TOP);
308 mask = ~mask | (0-(size_t)carry);
309 res = (BN_ULONG *)(((size_t)c_d&mask) | ((size_t)r_d&~mask));
310
311 nist_set_224(t_d, buf, 13, 12, 11, 10, 9, 8, 7);
312#if BRANCH_FREE
313 carry = bn_sub_words(r_d, res, t_d, BN_NIST_224_TOP);
314 bn_add_words(c_d,r_d,_nist_p_224,BN_NIST_224_TOP);
315 mask = 0-(size_t)carry;
316 res = (BN_ULONG *)(((size_t)c_d&mask) | ((size_t)r_d&~mask));
317#else
318 if (bn_sub_words(r_d, res, t_d, BN_NIST_224_TOP))
319 bn_add_words(r_d,r_d,_nist_p_224,BN_NIST_224_TOP);
320#endif
321 nist_set_224(t_d, buf, 0, 0, 0, 0, 13, 12, 11);
322#if BRANCH_FREE
323 carry = bn_sub_words(r_d, res, t_d, BN_NIST_224_TOP);
324 bn_add_words(c_d,r_d,_nist_p_224,BN_NIST_224_TOP);
325 mask = 0-(size_t)carry;
326 res = (BN_ULONG *)(((size_t)c_d&mask) | ((size_t)r_d&~mask));
327
328 nist_cp_bn(r_d, res, BN_NIST_224_TOP);
329#else
330 if (bn_sub_words(r_d, r_d, t_d, BN_NIST_224_TOP))
331 bn_add_words(r_d,r_d,_nist_p_224,BN_NIST_224_TOP);
332#endif
333 r->top = BN_NIST_224_TOP;
334 bn_correct_top(r);
335
336 return 1;
337#else /* BN_BITS!=32 */
338 return 0;
339#endif
340 }
341
342#define nist_set_256(to, from, a1, a2, a3, a4, a5, a6, a7, a8) \
343 { \
344 if (a8 != 0) bn_cp_32(to, 0, from, (a8) - 8) else bn_32_set_0(to, 0)\
345 if (a7 != 0) bn_cp_32(to, 1, from, (a7) - 8) else bn_32_set_0(to, 1)\
346 if (a6 != 0) bn_cp_32(to, 2, from, (a6) - 8) else bn_32_set_0(to, 2)\
347 if (a5 != 0) bn_cp_32(to, 3, from, (a5) - 8) else bn_32_set_0(to, 3)\
348 if (a4 != 0) bn_cp_32(to, 4, from, (a4) - 8) else bn_32_set_0(to, 4)\
349 if (a3 != 0) bn_cp_32(to, 5, from, (a3) - 8) else bn_32_set_0(to, 5)\
350 if (a2 != 0) bn_cp_32(to, 6, from, (a2) - 8) else bn_32_set_0(to, 6)\
351 if (a1 != 0) bn_cp_32(to, 7, from, (a1) - 8) else bn_32_set_0(to, 7)\
352 }
353
354int BN_nist_mod_256(BIGNUM *r, const BIGNUM *a, const BIGNUM *field,
355 BN_CTX *ctx)
356 {
357#if BN_BITS2 == 32
358 int i, top = a->top;
359 int carry = 0;
360 register BN_ULONG *a_d = a->d, *r_d;
361 BN_ULONG t_d[BN_NIST_256_TOP],
362 buf[BN_NIST_256_TOP],
363 c_d[BN_NIST_256_TOP],
364 *res;
365 size_t mask;
366
367 i = BN_ucmp(field, a);
368 if (i == 0)
369 {
370 BN_zero(r);
371 return 1;
372 }
373 else if (i > 0)
374 return (r == a)? 1 : (BN_copy(r ,a) != NULL);
375
376 if (top == BN_NIST_256_TOP)
377 return BN_usub(r, a, field);
378
379 if (r != a)
380 {
381 if (!bn_wexpand(r, BN_NIST_256_TOP))
382 return 0;
383 r_d = r->d;
384 nist_cp_bn(r_d, a_d, BN_NIST_256_TOP);
385 }
386 else
387 r_d = a_d;
388
389 nist_cp_bn_0(buf, a_d + BN_NIST_256_TOP, top - BN_NIST_256_TOP, BN_NIST_256_TOP);
390
391 /*S1*/
392 nist_set_256(t_d, buf, 15, 14, 13, 12, 11, 0, 0, 0);
393 /*S2*/
394 nist_set_256(c_d,buf, 0, 15, 14, 13, 12, 0, 0, 0);
395 carry = bn_add_words(t_d, t_d, c_d, BN_NIST_256_TOP);
396 mask = 0-(size_t)bn_sub_words(c_d,t_d,_nist_p_256,BN_NIST_256_TOP);
397 mask = ~mask | (0-(size_t)carry);
398 res = (BN_ULONG *)(((size_t)c_d&mask) | ((size_t)t_d&~mask));
399
400 carry = bn_add_words(t_d, res, res, BN_NIST_256_TOP);
401 mask = 0-(size_t)bn_sub_words(c_d,t_d,_nist_p_256,BN_NIST_256_TOP);
402 mask = ~mask | (0-(size_t)carry);
403 res = (BN_ULONG *)(((size_t)c_d&mask) | ((size_t)t_d&~mask));
404
405 carry = bn_add_words(r_d, r_d, res, BN_NIST_256_TOP);
406 mask = 0-(size_t)bn_sub_words(c_d,r_d,_nist_p_256,BN_NIST_256_TOP);
407 mask = ~mask | (0-(size_t)carry);
408 res = (BN_ULONG *)(((size_t)c_d&mask) | ((size_t)r_d&~mask));
409
410 /*S3*/
411 nist_set_256(t_d, buf, 15, 14, 0, 0, 0, 10, 9, 8);
412 carry = bn_add_words(r_d, res, t_d, BN_NIST_256_TOP);
413 mask = 0-(size_t)bn_sub_words(c_d,r_d,_nist_p_256,BN_NIST_256_TOP);
414 mask = ~mask | (0-(size_t)carry);
415 res = (BN_ULONG *)(((size_t)c_d&mask) | ((size_t)r_d&~mask));
416
417 /*S4*/
418 nist_set_256(t_d, buf, 8, 13, 15, 14, 13, 11, 10, 9);
419 carry = bn_add_words(r_d, res, t_d, BN_NIST_256_TOP);
420 mask = 0-(size_t)bn_sub_words(c_d,r_d,_nist_p_256,BN_NIST_256_TOP);
421 mask = ~mask | (0-(size_t)carry);
422 res = (BN_ULONG *)(((size_t)c_d&mask) | ((size_t)r_d&~mask));
423
424 /*D1*/
425 nist_set_256(t_d, buf, 10, 8, 0, 0, 0, 13, 12, 11);
426#if BRANCH_FREE
427 carry = bn_sub_words(r_d, res, t_d, BN_NIST_256_TOP);
428 bn_add_words(c_d,r_d,_nist_p_256,BN_NIST_256_TOP);
429 mask = 0-(size_t)carry;
430 res = (BN_ULONG *)(((size_t)c_d&mask) | ((size_t)r_d&~mask));
431#else
432 if (bn_sub_words(r_d, res, t_d, BN_NIST_256_TOP))
433 bn_add_words(r_d,r_d,_nist_p_256,BN_NIST_256_TOP);
434#endif
435 /*D2*/
436 nist_set_256(t_d, buf, 11, 9, 0, 0, 15, 14, 13, 12);
437#if BRANCH_FREE
438 carry = bn_sub_words(r_d, res, t_d, BN_NIST_256_TOP);
439 bn_add_words(c_d,r_d,_nist_p_256,BN_NIST_256_TOP);
440 mask = 0-(size_t)carry;
441 res = (BN_ULONG *)(((size_t)c_d&mask) | ((size_t)r_d&~mask));
442#else
443 if (bn_sub_words(r_d, r_d, t_d, BN_NIST_256_TOP))
444 bn_add_words(r_d,r_d,_nist_p_256,BN_NIST_256_TOP);
445#endif
446 /*D3*/
447 nist_set_256(t_d, buf, 12, 0, 10, 9, 8, 15, 14, 13);
448#if BRANCH_FREE
449 carry = bn_sub_words(r_d, res, t_d, BN_NIST_256_TOP);
450 bn_add_words(c_d,r_d,_nist_p_256,BN_NIST_256_TOP);
451 mask = 0-(size_t)carry;
452 res = (BN_ULONG *)(((size_t)c_d&mask) | ((size_t)r_d&~mask));
453#else
454 if (bn_sub_words(r_d, r_d, t_d, BN_NIST_256_TOP))
455 bn_add_words(r_d,r_d,_nist_p_256,BN_NIST_256_TOP);
456#endif
457 /*D4*/
458 nist_set_256(t_d, buf, 13, 0, 11, 10, 9, 0, 15, 14);
459#if BRANCH_FREE
460 carry = bn_sub_words(r_d, res, t_d, BN_NIST_256_TOP);
461 bn_add_words(c_d,r_d,_nist_p_256,BN_NIST_256_TOP);
462 mask = 0-(size_t)carry;
463 res = (BN_ULONG *)(((size_t)c_d&mask) | ((size_t)r_d&~mask));
464
465 nist_cp_bn(r_d, res, BN_NIST_384_TOP);
466#else
467 if (bn_sub_words(r_d, r_d, t_d, BN_NIST_256_TOP))
468 bn_add_words(r_d,r_d,_nist_p_256,BN_NIST_256_TOP);
469#endif
470 r->top = BN_NIST_256_TOP;
471 bn_correct_top(r);
472
473 return 1;
474#else /* BN_BITS!=32 */
475 return 0;
476#endif
477 }
478
479#define nist_set_384(to,from,a1,a2,a3,a4,a5,a6,a7,a8,a9,a10,a11,a12) \
480 { \
481 if (a12 != 0) bn_cp_32(to, 0, from, (a12) - 12) else bn_32_set_0(to, 0)\
482 if (a11 != 0) bn_cp_32(to, 1, from, (a11) - 12) else bn_32_set_0(to, 1)\
483 if (a10 != 0) bn_cp_32(to, 2, from, (a10) - 12) else bn_32_set_0(to, 2)\
484 if (a9 != 0) bn_cp_32(to, 3, from, (a9) - 12) else bn_32_set_0(to, 3)\
485 if (a8 != 0) bn_cp_32(to, 4, from, (a8) - 12) else bn_32_set_0(to, 4)\
486 if (a7 != 0) bn_cp_32(to, 5, from, (a7) - 12) else bn_32_set_0(to, 5)\
487 if (a6 != 0) bn_cp_32(to, 6, from, (a6) - 12) else bn_32_set_0(to, 6)\
488 if (a5 != 0) bn_cp_32(to, 7, from, (a5) - 12) else bn_32_set_0(to, 7)\
489 if (a4 != 0) bn_cp_32(to, 8, from, (a4) - 12) else bn_32_set_0(to, 8)\
490 if (a3 != 0) bn_cp_32(to, 9, from, (a3) - 12) else bn_32_set_0(to, 9)\
491 if (a2 != 0) bn_cp_32(to, 10, from, (a2) - 12) else bn_32_set_0(to, 10)\
492 if (a1 != 0) bn_cp_32(to, 11, from, (a1) - 12) else bn_32_set_0(to, 11)\
493 }
494
495int BN_nist_mod_384(BIGNUM *r, const BIGNUM *a, const BIGNUM *field,
496 BN_CTX *ctx)
497 {
498#if BN_BITS2 == 32
499 int i, top = a->top;
500 int carry = 0;
501 register BN_ULONG *r_d, *a_d = a->d;
502 BN_ULONG t_d[BN_NIST_384_TOP],
503 buf[BN_NIST_384_TOP],
504 c_d[BN_NIST_384_TOP],
505 *res;
506 size_t mask;
507
508 i = BN_ucmp(field, a);
509 if (i == 0)
510 {
511 BN_zero(r);
512 return 1;
513 }
514 else if (i > 0)
515 return (r == a)? 1 : (BN_copy(r ,a) != NULL);
516
517 if (top == BN_NIST_384_TOP)
518 return BN_usub(r, a, field);
519
520 if (r != a)
521 {
522 if (!bn_wexpand(r, BN_NIST_384_TOP))
523 return 0;
524 r_d = r->d;
525 nist_cp_bn(r_d, a_d, BN_NIST_384_TOP);
526 }
527 else
528 r_d = a_d;
529
530 nist_cp_bn_0(buf, a_d + BN_NIST_384_TOP, top - BN_NIST_384_TOP, BN_NIST_384_TOP);
531
532 /*S1*/
533 nist_set_256(t_d, buf, 0, 0, 0, 0, 0, 23-4, 22-4, 21-4);
534 /* left shift */
535 {
536 register BN_ULONG *ap,t,c;
537 ap = t_d;
538 c=0;
539 for (i = 3; i != 0; --i)
540 {
541 t= *ap;
542 *(ap++)=((t<<1)|c)&BN_MASK2;
543 c=(t & BN_TBIT)?1:0;
544 }
545 *ap=c;
546 }
547 carry = bn_add_words(r_d+(128/BN_BITS2), r_d+(128/BN_BITS2),
548 t_d, BN_NIST_256_TOP);
549 /*
550 * we need if (result>=modulus) subtract(result,modulus);
551 * in n-bit space this can be expressed as
552 * if (carry || result>=modulus) subtract(result,modulus);
553 * the catch is that comparison implies subtraction and
554 * therefore one can write tmp=subtract(result,modulus);
555 * and then if(carry || !borrow) result=tmp; this's what
556 * happens below, but without explicit if:-) a.
557 */
558 mask = 0-(size_t)bn_sub_words(c_d,r_d,_nist_p_384,BN_NIST_384_TOP);
559 mask = ~mask | (0-(size_t)carry);
560 res = (BN_ULONG *)(((size_t)c_d&mask) | ((size_t)r_d&~mask));
561
562 /*S2 */
563 carry = bn_add_words(r_d, res, buf, BN_NIST_384_TOP);
564 mask = 0-(size_t)bn_sub_words(c_d,r_d,_nist_p_384,BN_NIST_384_TOP);
565 mask = ~mask | (0-(size_t)carry);
566 res = (BN_ULONG *)(((size_t)c_d&mask) | ((size_t)r_d&~mask));
567
568 /*S3*/
569 nist_set_384(t_d,buf,20,19,18,17,16,15,14,13,12,23,22,21);
570 carry = bn_add_words(r_d, res, t_d, BN_NIST_384_TOP);
571 mask = 0-(size_t)bn_sub_words(c_d,r_d,_nist_p_384,BN_NIST_384_TOP);
572 mask = ~mask | (0-(size_t)carry);
573 res = (BN_ULONG *)(((size_t)c_d&mask) | ((size_t)r_d&~mask));
574
575 /*S4*/
576 nist_set_384(t_d,buf,19,18,17,16,15,14,13,12,20,0,23,0);
577 carry = bn_add_words(r_d, res, t_d, BN_NIST_384_TOP);
578 mask = 0-(size_t)bn_sub_words(c_d,r_d,_nist_p_384,BN_NIST_384_TOP);
579 mask = ~mask | (0-(size_t)carry);
580 res = (BN_ULONG *)(((size_t)c_d&mask) | ((size_t)r_d&~mask));
581
582 /*S5*/
583 nist_set_384(t_d, buf,0,0,0,0,23,22,21,20,0,0,0,0);
584 carry = bn_add_words(r_d, res, t_d, BN_NIST_384_TOP);
585 mask = 0-(size_t)bn_sub_words(c_d,r_d,_nist_p_384,BN_NIST_384_TOP);
586 mask = ~mask | (0-(size_t)carry);
587 res = (BN_ULONG *)(((size_t)c_d&mask) | ((size_t)r_d&~mask));
588
589 /*S6*/
590 nist_set_384(t_d,buf,0,0,0,0,0,0,23,22,21,0,0,20);
591 carry = bn_add_words(r_d, res, t_d, BN_NIST_384_TOP);
592 mask = 0-(size_t)bn_sub_words(c_d,r_d,_nist_p_384,BN_NIST_384_TOP);
593 mask = ~mask | (0-(size_t)carry);
594 res = (BN_ULONG *)(((size_t)c_d&mask) | ((size_t)r_d&~mask));
595
596 /*D1*/
597 nist_set_384(t_d,buf,22,21,20,19,18,17,16,15,14,13,12,23);
598#if BRANCH_FREE
599 carry = bn_sub_words(r_d, res, t_d, BN_NIST_384_TOP);
600 bn_add_words(c_d,r_d,_nist_p_384,BN_NIST_384_TOP);
601 mask = 0-(size_t)carry;
602 res = (BN_ULONG *)(((size_t)c_d&mask) | ((size_t)r_d&~mask));
603#else
604 if (bn_sub_words(r_d, res, t_d, BN_NIST_384_TOP))
605 bn_add_words(r_d,r_d,_nist_p_384,BN_NIST_384_TOP);
606#endif
607 /*D2*/
608 nist_set_384(t_d,buf,0,0,0,0,0,0,0,23,22,21,20,0);
609#if BRANCH_FREE
610 carry = bn_sub_words(r_d, res, t_d, BN_NIST_384_TOP);
611 bn_add_words(c_d,r_d,_nist_p_384,BN_NIST_384_TOP);
612 mask = 0-(size_t)carry;
613 res = (BN_ULONG *)(((size_t)c_d&mask) | ((size_t)r_d&~mask));
614#else
615 if (bn_sub_words(r_d, r_d, t_d, BN_NIST_384_TOP))
616 bn_add_words(r_d,r_d,_nist_p_384,BN_NIST_384_TOP);
617#endif
618 /*D3*/
619 nist_set_384(t_d,buf,0,0,0,0,0,0,0,23,23,0,0,0);
620#if BRANCH_FREE
621 carry = bn_sub_words(r_d, res, t_d, BN_NIST_384_TOP);
622 bn_add_words(c_d,r_d,_nist_p_384,BN_NIST_384_TOP);
623 mask = 0-(size_t)carry;
624 res = (BN_ULONG *)(((size_t)c_d&mask) | ((size_t)r_d&~mask));
625
626 nist_cp_bn(r_d, res, BN_NIST_384_TOP);
627#else
628 if (bn_sub_words(r_d, r_d, t_d, BN_NIST_384_TOP))
629 bn_add_words(r_d,r_d,_nist_p_384,BN_NIST_384_TOP);
630#endif
631 r->top = BN_NIST_384_TOP;
632 bn_correct_top(r);
633
634 return 1;
635#else /* BN_BITS!=32 */
636 return 0;
637#endif
638 }
639
640int BN_nist_mod_521(BIGNUM *r, const BIGNUM *a, const BIGNUM *field,
641 BN_CTX *ctx)
642 {
643#if BN_BITS2 == 64
644#define BN_NIST_521_TOP_MASK (BN_ULONG)0x1FF
645#elif BN_BITS2 == 32
646#define BN_NIST_521_TOP_MASK (BN_ULONG)0x1FF
647#endif
648 int top, ret = 0;
649 BN_ULONG *r_d;
650 BIGNUM *tmp;
651
652 /* check whether a reduction is necessary */
653 top = a->top;
654 if (top < BN_NIST_521_TOP || ( top == BN_NIST_521_TOP &&
655 (!(a->d[BN_NIST_521_TOP-1] & ~(BN_NIST_521_TOP_MASK)))))
656 return (r == a)? 1 : (BN_copy(r ,a) != NULL);
657
658 BN_CTX_start(ctx);
659 tmp = BN_CTX_get(ctx);
660 if (!tmp)
661 goto err;
662
663 if (!bn_wexpand(tmp, BN_NIST_521_TOP))
664 goto err;
665 nist_cp_bn(tmp->d, a->d, BN_NIST_521_TOP);
666
667 tmp->top = BN_NIST_521_TOP;
668 tmp->d[BN_NIST_521_TOP-1] &= BN_NIST_521_TOP_MASK;
669 bn_correct_top(tmp);
670
671 if (!BN_rshift(r, a, 521))
672 goto err;
673
674 if (!BN_uadd(r, tmp, r))
675 goto err;
676 top = r->top;
677 r_d = r->d;
678 if (top == BN_NIST_521_TOP &&
679 (r_d[BN_NIST_521_TOP-1] & ~(BN_NIST_521_TOP_MASK)))
680 {
681 BN_NIST_ADD_ONE(r_d)
682 r->d[BN_NIST_521_TOP-1] &= BN_NIST_521_TOP_MASK;
683 }
684 bn_correct_top(r);
685
686 ret = 1;
687err:
688 BN_CTX_end(ctx);
689
690 bn_check_top(r);
691 return ret;
692 }