diff options
Diffstat (limited to 'src/lib/libcrypto/bn')
| -rw-r--r-- | src/lib/libcrypto/bn/asm/x86_64-gcc.c | 4 | ||||
| -rwxr-xr-x | src/lib/libcrypto/bn/asm/x86_64-mont.pl | 214 | ||||
| -rw-r--r-- | src/lib/libcrypto/bn/bn_const.c | 402 | ||||
| -rw-r--r-- | src/lib/libcrypto/bn/bn_depr.c | 112 | ||||
| -rw-r--r-- | src/lib/libcrypto/bn/bn_gf2m.c | 1091 | ||||
| -rw-r--r-- | src/lib/libcrypto/bn/bn_nist.c | 692 |
6 files changed, 2515 insertions, 0 deletions
diff --git a/src/lib/libcrypto/bn/asm/x86_64-gcc.c b/src/lib/libcrypto/bn/asm/x86_64-gcc.c index 7378344251..f13f52dd85 100644 --- a/src/lib/libcrypto/bn/asm/x86_64-gcc.c +++ b/src/lib/libcrypto/bn/asm/x86_64-gcc.c | |||
| @@ -1,3 +1,6 @@ | |||
| 1 | #ifdef __SUNPRO_C | ||
| 2 | # include "../bn_asm.c" /* kind of dirty hack for Sun Studio */ | ||
| 3 | #else | ||
| 1 | /* | 4 | /* |
| 2 | * x86_64 BIGNUM accelerator version 0.1, December 2002. | 5 | * x86_64 BIGNUM accelerator version 0.1, December 2002. |
| 3 | * | 6 | * |
| @@ -591,3 +594,4 @@ void bn_sqr_comba4(BN_ULONG *r, BN_ULONG *a) | |||
| 591 | r[6]=c1; | 594 | r[6]=c1; |
| 592 | r[7]=c2; | 595 | r[7]=c2; |
| 593 | } | 596 | } |
| 597 | #endif | ||
diff --git a/src/lib/libcrypto/bn/asm/x86_64-mont.pl b/src/lib/libcrypto/bn/asm/x86_64-mont.pl new file mode 100755 index 0000000000..c43b69592a --- /dev/null +++ b/src/lib/libcrypto/bn/asm/x86_64-mont.pl | |||
| @@ -0,0 +1,214 @@ | |||
| 1 | #!/usr/bin/env perl | ||
| 2 | |||
| 3 | # ==================================================================== | ||
| 4 | # Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL | ||
| 5 | # project. The module is, however, dual licensed under OpenSSL and | ||
| 6 | # CRYPTOGAMS licenses depending on where you obtain it. For further | ||
| 7 | # details see http://www.openssl.org/~appro/cryptogams/. | ||
| 8 | # ==================================================================== | ||
| 9 | |||
| 10 | # October 2005. | ||
| 11 | # | ||
| 12 | # Montgomery multiplication routine for x86_64. While it gives modest | ||
| 13 | # 9% improvement of rsa4096 sign on Opteron, rsa512 sign runs more | ||
| 14 | # than twice, >2x, as fast. Most common rsa1024 sign is improved by | ||
| 15 | # respectful 50%. It remains to be seen if loop unrolling and | ||
| 16 | # dedicated squaring routine can provide further improvement... | ||
| 17 | |||
| 18 | $output=shift; | ||
| 19 | |||
| 20 | $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; | ||
| 21 | ( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or | ||
| 22 | ( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or | ||
| 23 | die "can't locate x86_64-xlate.pl"; | ||
| 24 | |||
| 25 | open STDOUT,"| $^X $xlate $output"; | ||
| 26 | |||
| 27 | # int bn_mul_mont( | ||
| 28 | $rp="%rdi"; # BN_ULONG *rp, | ||
| 29 | $ap="%rsi"; # const BN_ULONG *ap, | ||
| 30 | $bp="%rdx"; # const BN_ULONG *bp, | ||
| 31 | $np="%rcx"; # const BN_ULONG *np, | ||
| 32 | $n0="%r8"; # const BN_ULONG *n0, | ||
| 33 | $num="%r9"; # int num); | ||
| 34 | $lo0="%r10"; | ||
| 35 | $hi0="%r11"; | ||
| 36 | $bp="%r12"; # reassign $bp | ||
| 37 | $hi1="%r13"; | ||
| 38 | $i="%r14"; | ||
| 39 | $j="%r15"; | ||
| 40 | $m0="%rbx"; | ||
| 41 | $m1="%rbp"; | ||
| 42 | |||
| 43 | $code=<<___; | ||
| 44 | .text | ||
| 45 | |||
| 46 | .globl bn_mul_mont | ||
| 47 | .type bn_mul_mont,\@function,6 | ||
| 48 | .align 16 | ||
| 49 | bn_mul_mont: | ||
| 50 | push %rbx | ||
| 51 | push %rbp | ||
| 52 | push %r12 | ||
| 53 | push %r13 | ||
| 54 | push %r14 | ||
| 55 | push %r15 | ||
| 56 | |||
| 57 | mov ${num}d,${num}d | ||
| 58 | lea 2($num),%rax | ||
| 59 | mov %rsp,%rbp | ||
| 60 | neg %rax | ||
| 61 | lea (%rsp,%rax,8),%rsp # tp=alloca(8*(num+2)) | ||
| 62 | and \$-1024,%rsp # minimize TLB usage | ||
| 63 | |||
| 64 | mov %rbp,8(%rsp,$num,8) # tp[num+1]=%rsp | ||
| 65 | mov %rdx,$bp # $bp reassigned, remember? | ||
| 66 | |||
| 67 | mov ($n0),$n0 # pull n0[0] value | ||
| 68 | |||
| 69 | xor $i,$i # i=0 | ||
| 70 | xor $j,$j # j=0 | ||
| 71 | |||
| 72 | mov ($bp),$m0 # m0=bp[0] | ||
| 73 | mov ($ap),%rax | ||
| 74 | mulq $m0 # ap[0]*bp[0] | ||
| 75 | mov %rax,$lo0 | ||
| 76 | mov %rdx,$hi0 | ||
| 77 | |||
| 78 | imulq $n0,%rax # "tp[0]"*n0 | ||
| 79 | mov %rax,$m1 | ||
| 80 | |||
| 81 | mulq ($np) # np[0]*m1 | ||
| 82 | add $lo0,%rax # discarded | ||
| 83 | adc \$0,%rdx | ||
| 84 | mov %rdx,$hi1 | ||
| 85 | |||
| 86 | lea 1($j),$j # j++ | ||
| 87 | .L1st: | ||
| 88 | mov ($ap,$j,8),%rax | ||
| 89 | mulq $m0 # ap[j]*bp[0] | ||
| 90 | add $hi0,%rax | ||
| 91 | adc \$0,%rdx | ||
| 92 | mov %rax,$lo0 | ||
| 93 | mov ($np,$j,8),%rax | ||
| 94 | mov %rdx,$hi0 | ||
| 95 | |||
| 96 | mulq $m1 # np[j]*m1 | ||
| 97 | add $hi1,%rax | ||
| 98 | lea 1($j),$j # j++ | ||
| 99 | adc \$0,%rdx | ||
| 100 | add $lo0,%rax # np[j]*m1+ap[j]*bp[0] | ||
| 101 | adc \$0,%rdx | ||
| 102 | mov %rax,-16(%rsp,$j,8) # tp[j-1] | ||
| 103 | cmp $num,$j | ||
| 104 | mov %rdx,$hi1 | ||
| 105 | jl .L1st | ||
| 106 | |||
| 107 | xor %rdx,%rdx | ||
| 108 | add $hi0,$hi1 | ||
| 109 | adc \$0,%rdx | ||
| 110 | mov $hi1,-8(%rsp,$num,8) | ||
| 111 | mov %rdx,(%rsp,$num,8) # store upmost overflow bit | ||
| 112 | |||
| 113 | lea 1($i),$i # i++ | ||
| 114 | .align 4 | ||
| 115 | .Louter: | ||
| 116 | xor $j,$j # j=0 | ||
| 117 | |||
| 118 | mov ($bp,$i,8),$m0 # m0=bp[i] | ||
| 119 | mov ($ap),%rax # ap[0] | ||
| 120 | mulq $m0 # ap[0]*bp[i] | ||
| 121 | add (%rsp),%rax # ap[0]*bp[i]+tp[0] | ||
| 122 | adc \$0,%rdx | ||
| 123 | mov %rax,$lo0 | ||
| 124 | mov %rdx,$hi0 | ||
| 125 | |||
| 126 | imulq $n0,%rax # tp[0]*n0 | ||
| 127 | mov %rax,$m1 | ||
| 128 | |||
| 129 | mulq ($np,$j,8) # np[0]*m1 | ||
| 130 | add $lo0,%rax # discarded | ||
| 131 | mov 8(%rsp),$lo0 # tp[1] | ||
| 132 | adc \$0,%rdx | ||
| 133 | mov %rdx,$hi1 | ||
| 134 | |||
| 135 | lea 1($j),$j # j++ | ||
| 136 | .align 4 | ||
| 137 | .Linner: | ||
| 138 | mov ($ap,$j,8),%rax | ||
| 139 | mulq $m0 # ap[j]*bp[i] | ||
| 140 | add $hi0,%rax | ||
| 141 | adc \$0,%rdx | ||
| 142 | add %rax,$lo0 # ap[j]*bp[i]+tp[j] | ||
| 143 | mov ($np,$j,8),%rax | ||
| 144 | adc \$0,%rdx | ||
| 145 | mov %rdx,$hi0 | ||
| 146 | |||
| 147 | mulq $m1 # np[j]*m1 | ||
| 148 | add $hi1,%rax | ||
| 149 | lea 1($j),$j # j++ | ||
| 150 | adc \$0,%rdx | ||
| 151 | add $lo0,%rax # np[j]*m1+ap[j]*bp[i]+tp[j] | ||
| 152 | adc \$0,%rdx | ||
| 153 | mov (%rsp,$j,8),$lo0 | ||
| 154 | cmp $num,$j | ||
| 155 | mov %rax,-16(%rsp,$j,8) # tp[j-1] | ||
| 156 | mov %rdx,$hi1 | ||
| 157 | jl .Linner | ||
| 158 | |||
| 159 | xor %rdx,%rdx | ||
| 160 | add $hi0,$hi1 | ||
| 161 | adc \$0,%rdx | ||
| 162 | add $lo0,$hi1 # pull upmost overflow bit | ||
| 163 | adc \$0,%rdx | ||
| 164 | mov $hi1,-8(%rsp,$num,8) | ||
| 165 | mov %rdx,(%rsp,$num,8) # store upmost overflow bit | ||
| 166 | |||
| 167 | lea 1($i),$i # i++ | ||
| 168 | cmp $num,$i | ||
| 169 | jl .Louter | ||
| 170 | |||
| 171 | lea (%rsp),$ap # borrow ap for tp | ||
| 172 | lea -1($num),$j # j=num-1 | ||
| 173 | |||
| 174 | mov ($ap),%rax # tp[0] | ||
| 175 | xor $i,$i # i=0 and clear CF! | ||
| 176 | jmp .Lsub | ||
| 177 | .align 16 | ||
| 178 | .Lsub: sbb ($np,$i,8),%rax | ||
| 179 | mov %rax,($rp,$i,8) # rp[i]=tp[i]-np[i] | ||
| 180 | dec $j # doesn't affect CF! | ||
| 181 | mov 8($ap,$i,8),%rax # tp[i+1] | ||
| 182 | lea 1($i),$i # i++ | ||
| 183 | jge .Lsub | ||
| 184 | |||
| 185 | sbb \$0,%rax # handle upmost overflow bit | ||
| 186 | and %rax,$ap | ||
| 187 | not %rax | ||
| 188 | mov $rp,$np | ||
| 189 | and %rax,$np | ||
| 190 | lea -1($num),$j | ||
| 191 | or $np,$ap # ap=borrow?tp:rp | ||
| 192 | .align 16 | ||
| 193 | .Lcopy: # copy or in-place refresh | ||
| 194 | mov ($ap,$j,8),%rax | ||
| 195 | mov %rax,($rp,$j,8) # rp[i]=tp[i] | ||
| 196 | mov $i,(%rsp,$j,8) # zap temporary vector | ||
| 197 | dec $j | ||
| 198 | jge .Lcopy | ||
| 199 | |||
| 200 | mov 8(%rsp,$num,8),%rsp # restore %rsp | ||
| 201 | mov \$1,%rax | ||
| 202 | pop %r15 | ||
| 203 | pop %r14 | ||
| 204 | pop %r13 | ||
| 205 | pop %r12 | ||
| 206 | pop %rbp | ||
| 207 | pop %rbx | ||
| 208 | ret | ||
| 209 | .size bn_mul_mont,.-bn_mul_mont | ||
| 210 | .asciz "Montgomery Multiplication for x86_64, CRYPTOGAMS by <appro\@openssl.org>" | ||
| 211 | ___ | ||
| 212 | |||
| 213 | print $code; | ||
| 214 | close STDOUT; | ||
diff --git a/src/lib/libcrypto/bn/bn_const.c b/src/lib/libcrypto/bn/bn_const.c new file mode 100644 index 0000000000..eb60a25b3c --- /dev/null +++ b/src/lib/libcrypto/bn/bn_const.c | |||
| @@ -0,0 +1,402 @@ | |||
| 1 | /* crypto/bn/knownprimes.c */ | ||
| 2 | /* Insert boilerplate */ | ||
| 3 | |||
| 4 | #include "bn.h" | ||
| 5 | |||
| 6 | /* "First Oakley Default Group" from RFC2409, section 6.1. | ||
| 7 | * | ||
| 8 | * The prime is: 2^768 - 2 ^704 - 1 + 2^64 * { [2^638 pi] + 149686 } | ||
| 9 | * | ||
| 10 | * RFC2409 specifies a generator of 2. | ||
| 11 | * RFC2412 specifies a generator of of 22. | ||
| 12 | */ | ||
| 13 | |||
| 14 | BIGNUM *get_rfc2409_prime_768(BIGNUM *bn) | ||
| 15 | { | ||
| 16 | static const unsigned char RFC2409_PRIME_768[]={ | ||
| 17 | 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xC9,0x0F,0xDA,0xA2, | ||
| 18 | 0x21,0x68,0xC2,0x34,0xC4,0xC6,0x62,0x8B,0x80,0xDC,0x1C,0xD1, | ||
| 19 | 0x29,0x02,0x4E,0x08,0x8A,0x67,0xCC,0x74,0x02,0x0B,0xBE,0xA6, | ||
| 20 | 0x3B,0x13,0x9B,0x22,0x51,0x4A,0x08,0x79,0x8E,0x34,0x04,0xDD, | ||
| 21 | 0xEF,0x95,0x19,0xB3,0xCD,0x3A,0x43,0x1B,0x30,0x2B,0x0A,0x6D, | ||
| 22 | 0xF2,0x5F,0x14,0x37,0x4F,0xE1,0x35,0x6D,0x6D,0x51,0xC2,0x45, | ||
| 23 | 0xE4,0x85,0xB5,0x76,0x62,0x5E,0x7E,0xC6,0xF4,0x4C,0x42,0xE9, | ||
| 24 | 0xA6,0x3A,0x36,0x20,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, | ||
| 25 | }; | ||
| 26 | return BN_bin2bn(RFC2409_PRIME_768,sizeof(RFC2409_PRIME_768),bn); | ||
| 27 | } | ||
| 28 | |||
| 29 | /* "Second Oakley Default Group" from RFC2409, section 6.2. | ||
| 30 | * | ||
| 31 | * The prime is: 2^1024 - 2^960 - 1 + 2^64 * { [2^894 pi] + 129093 }. | ||
| 32 | * | ||
| 33 | * RFC2409 specifies a generator of 2. | ||
| 34 | * RFC2412 specifies a generator of 22. | ||
| 35 | */ | ||
| 36 | |||
| 37 | BIGNUM *get_rfc2409_prime_1024(BIGNUM *bn) | ||
| 38 | { | ||
| 39 | static const unsigned char RFC2409_PRIME_1024[]={ | ||
| 40 | 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xC9,0x0F,0xDA,0xA2, | ||
| 41 | 0x21,0x68,0xC2,0x34,0xC4,0xC6,0x62,0x8B,0x80,0xDC,0x1C,0xD1, | ||
| 42 | 0x29,0x02,0x4E,0x08,0x8A,0x67,0xCC,0x74,0x02,0x0B,0xBE,0xA6, | ||
| 43 | 0x3B,0x13,0x9B,0x22,0x51,0x4A,0x08,0x79,0x8E,0x34,0x04,0xDD, | ||
| 44 | 0xEF,0x95,0x19,0xB3,0xCD,0x3A,0x43,0x1B,0x30,0x2B,0x0A,0x6D, | ||
| 45 | 0xF2,0x5F,0x14,0x37,0x4F,0xE1,0x35,0x6D,0x6D,0x51,0xC2,0x45, | ||
| 46 | 0xE4,0x85,0xB5,0x76,0x62,0x5E,0x7E,0xC6,0xF4,0x4C,0x42,0xE9, | ||
| 47 | 0xA6,0x37,0xED,0x6B,0x0B,0xFF,0x5C,0xB6,0xF4,0x06,0xB7,0xED, | ||
| 48 | 0xEE,0x38,0x6B,0xFB,0x5A,0x89,0x9F,0xA5,0xAE,0x9F,0x24,0x11, | ||
| 49 | 0x7C,0x4B,0x1F,0xE6,0x49,0x28,0x66,0x51,0xEC,0xE6,0x53,0x81, | ||
| 50 | 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, | ||
| 51 | }; | ||
| 52 | return BN_bin2bn(RFC2409_PRIME_1024,sizeof(RFC2409_PRIME_1024),bn); | ||
| 53 | } | ||
| 54 | |||
| 55 | /* "1536-bit MODP Group" from RFC3526, Section 2. | ||
| 56 | * | ||
| 57 | * The prime is: 2^1536 - 2^1472 - 1 + 2^64 * { [2^1406 pi] + 741804 } | ||
| 58 | * | ||
| 59 | * RFC3526 specifies a generator of 2. | ||
| 60 | * RFC2312 specifies a generator of 22. | ||
| 61 | */ | ||
| 62 | |||
| 63 | BIGNUM *get_rfc3526_prime_1536(BIGNUM *bn) | ||
| 64 | { | ||
| 65 | static const unsigned char RFC3526_PRIME_1536[]={ | ||
| 66 | 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xC9,0x0F,0xDA,0xA2, | ||
| 67 | 0x21,0x68,0xC2,0x34,0xC4,0xC6,0x62,0x8B,0x80,0xDC,0x1C,0xD1, | ||
| 68 | 0x29,0x02,0x4E,0x08,0x8A,0x67,0xCC,0x74,0x02,0x0B,0xBE,0xA6, | ||
| 69 | 0x3B,0x13,0x9B,0x22,0x51,0x4A,0x08,0x79,0x8E,0x34,0x04,0xDD, | ||
| 70 | 0xEF,0x95,0x19,0xB3,0xCD,0x3A,0x43,0x1B,0x30,0x2B,0x0A,0x6D, | ||
| 71 | 0xF2,0x5F,0x14,0x37,0x4F,0xE1,0x35,0x6D,0x6D,0x51,0xC2,0x45, | ||
| 72 | 0xE4,0x85,0xB5,0x76,0x62,0x5E,0x7E,0xC6,0xF4,0x4C,0x42,0xE9, | ||
| 73 | 0xA6,0x37,0xED,0x6B,0x0B,0xFF,0x5C,0xB6,0xF4,0x06,0xB7,0xED, | ||
| 74 | 0xEE,0x38,0x6B,0xFB,0x5A,0x89,0x9F,0xA5,0xAE,0x9F,0x24,0x11, | ||
| 75 | 0x7C,0x4B,0x1F,0xE6,0x49,0x28,0x66,0x51,0xEC,0xE4,0x5B,0x3D, | ||
| 76 | 0xC2,0x00,0x7C,0xB8,0xA1,0x63,0xBF,0x05,0x98,0xDA,0x48,0x36, | ||
| 77 | 0x1C,0x55,0xD3,0x9A,0x69,0x16,0x3F,0xA8,0xFD,0x24,0xCF,0x5F, | ||
| 78 | 0x83,0x65,0x5D,0x23,0xDC,0xA3,0xAD,0x96,0x1C,0x62,0xF3,0x56, | ||
| 79 | 0x20,0x85,0x52,0xBB,0x9E,0xD5,0x29,0x07,0x70,0x96,0x96,0x6D, | ||
| 80 | 0x67,0x0C,0x35,0x4E,0x4A,0xBC,0x98,0x04,0xF1,0x74,0x6C,0x08, | ||
| 81 | 0xCA,0x23,0x73,0x27,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, | ||
| 82 | }; | ||
| 83 | return BN_bin2bn(RFC3526_PRIME_1536,sizeof(RFC3526_PRIME_1536),bn); | ||
| 84 | } | ||
| 85 | |||
| 86 | /* "2048-bit MODP Group" from RFC3526, Section 3. | ||
| 87 | * | ||
| 88 | * The prime is: 2^2048 - 2^1984 - 1 + 2^64 * { [2^1918 pi] + 124476 } | ||
| 89 | * | ||
| 90 | * RFC3526 specifies a generator of 2. | ||
| 91 | */ | ||
| 92 | |||
| 93 | BIGNUM *get_rfc3526_prime_2048(BIGNUM *bn) | ||
| 94 | { | ||
| 95 | static const unsigned char RFC3526_PRIME_2048[]={ | ||
| 96 | 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xC9,0x0F,0xDA,0xA2, | ||
| 97 | 0x21,0x68,0xC2,0x34,0xC4,0xC6,0x62,0x8B,0x80,0xDC,0x1C,0xD1, | ||
| 98 | 0x29,0x02,0x4E,0x08,0x8A,0x67,0xCC,0x74,0x02,0x0B,0xBE,0xA6, | ||
| 99 | 0x3B,0x13,0x9B,0x22,0x51,0x4A,0x08,0x79,0x8E,0x34,0x04,0xDD, | ||
| 100 | 0xEF,0x95,0x19,0xB3,0xCD,0x3A,0x43,0x1B,0x30,0x2B,0x0A,0x6D, | ||
| 101 | 0xF2,0x5F,0x14,0x37,0x4F,0xE1,0x35,0x6D,0x6D,0x51,0xC2,0x45, | ||
| 102 | 0xE4,0x85,0xB5,0x76,0x62,0x5E,0x7E,0xC6,0xF4,0x4C,0x42,0xE9, | ||
| 103 | 0xA6,0x37,0xED,0x6B,0x0B,0xFF,0x5C,0xB6,0xF4,0x06,0xB7,0xED, | ||
| 104 | 0xEE,0x38,0x6B,0xFB,0x5A,0x89,0x9F,0xA5,0xAE,0x9F,0x24,0x11, | ||
| 105 | 0x7C,0x4B,0x1F,0xE6,0x49,0x28,0x66,0x51,0xEC,0xE4,0x5B,0x3D, | ||
| 106 | 0xC2,0x00,0x7C,0xB8,0xA1,0x63,0xBF,0x05,0x98,0xDA,0x48,0x36, | ||
| 107 | 0x1C,0x55,0xD3,0x9A,0x69,0x16,0x3F,0xA8,0xFD,0x24,0xCF,0x5F, | ||
| 108 | 0x83,0x65,0x5D,0x23,0xDC,0xA3,0xAD,0x96,0x1C,0x62,0xF3,0x56, | ||
| 109 | 0x20,0x85,0x52,0xBB,0x9E,0xD5,0x29,0x07,0x70,0x96,0x96,0x6D, | ||
| 110 | 0x67,0x0C,0x35,0x4E,0x4A,0xBC,0x98,0x04,0xF1,0x74,0x6C,0x08, | ||
| 111 | 0xCA,0x18,0x21,0x7C,0x32,0x90,0x5E,0x46,0x2E,0x36,0xCE,0x3B, | ||
| 112 | 0xE3,0x9E,0x77,0x2C,0x18,0x0E,0x86,0x03,0x9B,0x27,0x83,0xA2, | ||
| 113 | 0xEC,0x07,0xA2,0x8F,0xB5,0xC5,0x5D,0xF0,0x6F,0x4C,0x52,0xC9, | ||
| 114 | 0xDE,0x2B,0xCB,0xF6,0x95,0x58,0x17,0x18,0x39,0x95,0x49,0x7C, | ||
| 115 | 0xEA,0x95,0x6A,0xE5,0x15,0xD2,0x26,0x18,0x98,0xFA,0x05,0x10, | ||
| 116 | 0x15,0x72,0x8E,0x5A,0x8A,0xAC,0xAA,0x68,0xFF,0xFF,0xFF,0xFF, | ||
| 117 | 0xFF,0xFF,0xFF,0xFF, | ||
| 118 | }; | ||
| 119 | return BN_bin2bn(RFC3526_PRIME_2048,sizeof(RFC3526_PRIME_2048),bn); | ||
| 120 | } | ||
| 121 | |||
| 122 | /* "3072-bit MODP Group" from RFC3526, Section 4. | ||
| 123 | * | ||
| 124 | * The prime is: 2^3072 - 2^3008 - 1 + 2^64 * { [2^2942 pi] + 1690314 } | ||
| 125 | * | ||
| 126 | * RFC3526 specifies a generator of 2. | ||
| 127 | */ | ||
| 128 | |||
| 129 | BIGNUM *get_rfc3526_prime_3072(BIGNUM *bn) | ||
| 130 | { | ||
| 131 | static const unsigned char RFC3526_PRIME_3072[]={ | ||
| 132 | 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xC9,0x0F,0xDA,0xA2, | ||
| 133 | 0x21,0x68,0xC2,0x34,0xC4,0xC6,0x62,0x8B,0x80,0xDC,0x1C,0xD1, | ||
| 134 | 0x29,0x02,0x4E,0x08,0x8A,0x67,0xCC,0x74,0x02,0x0B,0xBE,0xA6, | ||
| 135 | 0x3B,0x13,0x9B,0x22,0x51,0x4A,0x08,0x79,0x8E,0x34,0x04,0xDD, | ||
| 136 | 0xEF,0x95,0x19,0xB3,0xCD,0x3A,0x43,0x1B,0x30,0x2B,0x0A,0x6D, | ||
| 137 | 0xF2,0x5F,0x14,0x37,0x4F,0xE1,0x35,0x6D,0x6D,0x51,0xC2,0x45, | ||
| 138 | 0xE4,0x85,0xB5,0x76,0x62,0x5E,0x7E,0xC6,0xF4,0x4C,0x42,0xE9, | ||
| 139 | 0xA6,0x37,0xED,0x6B,0x0B,0xFF,0x5C,0xB6,0xF4,0x06,0xB7,0xED, | ||
| 140 | 0xEE,0x38,0x6B,0xFB,0x5A,0x89,0x9F,0xA5,0xAE,0x9F,0x24,0x11, | ||
| 141 | 0x7C,0x4B,0x1F,0xE6,0x49,0x28,0x66,0x51,0xEC,0xE4,0x5B,0x3D, | ||
| 142 | 0xC2,0x00,0x7C,0xB8,0xA1,0x63,0xBF,0x05,0x98,0xDA,0x48,0x36, | ||
| 143 | 0x1C,0x55,0xD3,0x9A,0x69,0x16,0x3F,0xA8,0xFD,0x24,0xCF,0x5F, | ||
| 144 | 0x83,0x65,0x5D,0x23,0xDC,0xA3,0xAD,0x96,0x1C,0x62,0xF3,0x56, | ||
| 145 | 0x20,0x85,0x52,0xBB,0x9E,0xD5,0x29,0x07,0x70,0x96,0x96,0x6D, | ||
| 146 | 0x67,0x0C,0x35,0x4E,0x4A,0xBC,0x98,0x04,0xF1,0x74,0x6C,0x08, | ||
| 147 | 0xCA,0x18,0x21,0x7C,0x32,0x90,0x5E,0x46,0x2E,0x36,0xCE,0x3B, | ||
| 148 | 0xE3,0x9E,0x77,0x2C,0x18,0x0E,0x86,0x03,0x9B,0x27,0x83,0xA2, | ||
| 149 | 0xEC,0x07,0xA2,0x8F,0xB5,0xC5,0x5D,0xF0,0x6F,0x4C,0x52,0xC9, | ||
| 150 | 0xDE,0x2B,0xCB,0xF6,0x95,0x58,0x17,0x18,0x39,0x95,0x49,0x7C, | ||
| 151 | 0xEA,0x95,0x6A,0xE5,0x15,0xD2,0x26,0x18,0x98,0xFA,0x05,0x10, | ||
| 152 | 0x15,0x72,0x8E,0x5A,0x8A,0xAA,0xC4,0x2D,0xAD,0x33,0x17,0x0D, | ||
| 153 | 0x04,0x50,0x7A,0x33,0xA8,0x55,0x21,0xAB,0xDF,0x1C,0xBA,0x64, | ||
| 154 | 0xEC,0xFB,0x85,0x04,0x58,0xDB,0xEF,0x0A,0x8A,0xEA,0x71,0x57, | ||
| 155 | 0x5D,0x06,0x0C,0x7D,0xB3,0x97,0x0F,0x85,0xA6,0xE1,0xE4,0xC7, | ||
| 156 | 0xAB,0xF5,0xAE,0x8C,0xDB,0x09,0x33,0xD7,0x1E,0x8C,0x94,0xE0, | ||
| 157 | 0x4A,0x25,0x61,0x9D,0xCE,0xE3,0xD2,0x26,0x1A,0xD2,0xEE,0x6B, | ||
| 158 | 0xF1,0x2F,0xFA,0x06,0xD9,0x8A,0x08,0x64,0xD8,0x76,0x02,0x73, | ||
| 159 | 0x3E,0xC8,0x6A,0x64,0x52,0x1F,0x2B,0x18,0x17,0x7B,0x20,0x0C, | ||
| 160 | 0xBB,0xE1,0x17,0x57,0x7A,0x61,0x5D,0x6C,0x77,0x09,0x88,0xC0, | ||
| 161 | 0xBA,0xD9,0x46,0xE2,0x08,0xE2,0x4F,0xA0,0x74,0xE5,0xAB,0x31, | ||
| 162 | 0x43,0xDB,0x5B,0xFC,0xE0,0xFD,0x10,0x8E,0x4B,0x82,0xD1,0x20, | ||
| 163 | 0xA9,0x3A,0xD2,0xCA,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, | ||
| 164 | }; | ||
| 165 | return BN_bin2bn(RFC3526_PRIME_3072,sizeof(RFC3526_PRIME_3072),bn); | ||
| 166 | } | ||
| 167 | |||
| 168 | /* "4096-bit MODP Group" from RFC3526, Section 5. | ||
| 169 | * | ||
| 170 | * The prime is: 2^4096 - 2^4032 - 1 + 2^64 * { [2^3966 pi] + 240904 } | ||
| 171 | * | ||
| 172 | * RFC3526 specifies a generator of 2. | ||
| 173 | */ | ||
| 174 | |||
| 175 | BIGNUM *get_rfc3526_prime_4096(BIGNUM *bn) | ||
| 176 | { | ||
| 177 | static const unsigned char RFC3526_PRIME_4096[]={ | ||
| 178 | 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xC9,0x0F,0xDA,0xA2, | ||
| 179 | 0x21,0x68,0xC2,0x34,0xC4,0xC6,0x62,0x8B,0x80,0xDC,0x1C,0xD1, | ||
| 180 | 0x29,0x02,0x4E,0x08,0x8A,0x67,0xCC,0x74,0x02,0x0B,0xBE,0xA6, | ||
| 181 | 0x3B,0x13,0x9B,0x22,0x51,0x4A,0x08,0x79,0x8E,0x34,0x04,0xDD, | ||
| 182 | 0xEF,0x95,0x19,0xB3,0xCD,0x3A,0x43,0x1B,0x30,0x2B,0x0A,0x6D, | ||
| 183 | 0xF2,0x5F,0x14,0x37,0x4F,0xE1,0x35,0x6D,0x6D,0x51,0xC2,0x45, | ||
| 184 | 0xE4,0x85,0xB5,0x76,0x62,0x5E,0x7E,0xC6,0xF4,0x4C,0x42,0xE9, | ||
| 185 | 0xA6,0x37,0xED,0x6B,0x0B,0xFF,0x5C,0xB6,0xF4,0x06,0xB7,0xED, | ||
| 186 | 0xEE,0x38,0x6B,0xFB,0x5A,0x89,0x9F,0xA5,0xAE,0x9F,0x24,0x11, | ||
| 187 | 0x7C,0x4B,0x1F,0xE6,0x49,0x28,0x66,0x51,0xEC,0xE4,0x5B,0x3D, | ||
| 188 | 0xC2,0x00,0x7C,0xB8,0xA1,0x63,0xBF,0x05,0x98,0xDA,0x48,0x36, | ||
| 189 | 0x1C,0x55,0xD3,0x9A,0x69,0x16,0x3F,0xA8,0xFD,0x24,0xCF,0x5F, | ||
| 190 | 0x83,0x65,0x5D,0x23,0xDC,0xA3,0xAD,0x96,0x1C,0x62,0xF3,0x56, | ||
| 191 | 0x20,0x85,0x52,0xBB,0x9E,0xD5,0x29,0x07,0x70,0x96,0x96,0x6D, | ||
| 192 | 0x67,0x0C,0x35,0x4E,0x4A,0xBC,0x98,0x04,0xF1,0x74,0x6C,0x08, | ||
| 193 | 0xCA,0x18,0x21,0x7C,0x32,0x90,0x5E,0x46,0x2E,0x36,0xCE,0x3B, | ||
| 194 | 0xE3,0x9E,0x77,0x2C,0x18,0x0E,0x86,0x03,0x9B,0x27,0x83,0xA2, | ||
| 195 | 0xEC,0x07,0xA2,0x8F,0xB5,0xC5,0x5D,0xF0,0x6F,0x4C,0x52,0xC9, | ||
| 196 | 0xDE,0x2B,0xCB,0xF6,0x95,0x58,0x17,0x18,0x39,0x95,0x49,0x7C, | ||
| 197 | 0xEA,0x95,0x6A,0xE5,0x15,0xD2,0x26,0x18,0x98,0xFA,0x05,0x10, | ||
| 198 | 0x15,0x72,0x8E,0x5A,0x8A,0xAA,0xC4,0x2D,0xAD,0x33,0x17,0x0D, | ||
| 199 | 0x04,0x50,0x7A,0x33,0xA8,0x55,0x21,0xAB,0xDF,0x1C,0xBA,0x64, | ||
| 200 | 0xEC,0xFB,0x85,0x04,0x58,0xDB,0xEF,0x0A,0x8A,0xEA,0x71,0x57, | ||
| 201 | 0x5D,0x06,0x0C,0x7D,0xB3,0x97,0x0F,0x85,0xA6,0xE1,0xE4,0xC7, | ||
| 202 | 0xAB,0xF5,0xAE,0x8C,0xDB,0x09,0x33,0xD7,0x1E,0x8C,0x94,0xE0, | ||
| 203 | 0x4A,0x25,0x61,0x9D,0xCE,0xE3,0xD2,0x26,0x1A,0xD2,0xEE,0x6B, | ||
| 204 | 0xF1,0x2F,0xFA,0x06,0xD9,0x8A,0x08,0x64,0xD8,0x76,0x02,0x73, | ||
| 205 | 0x3E,0xC8,0x6A,0x64,0x52,0x1F,0x2B,0x18,0x17,0x7B,0x20,0x0C, | ||
| 206 | 0xBB,0xE1,0x17,0x57,0x7A,0x61,0x5D,0x6C,0x77,0x09,0x88,0xC0, | ||
| 207 | 0xBA,0xD9,0x46,0xE2,0x08,0xE2,0x4F,0xA0,0x74,0xE5,0xAB,0x31, | ||
| 208 | 0x43,0xDB,0x5B,0xFC,0xE0,0xFD,0x10,0x8E,0x4B,0x82,0xD1,0x20, | ||
| 209 | 0xA9,0x21,0x08,0x01,0x1A,0x72,0x3C,0x12,0xA7,0x87,0xE6,0xD7, | ||
| 210 | 0x88,0x71,0x9A,0x10,0xBD,0xBA,0x5B,0x26,0x99,0xC3,0x27,0x18, | ||
| 211 | 0x6A,0xF4,0xE2,0x3C,0x1A,0x94,0x68,0x34,0xB6,0x15,0x0B,0xDA, | ||
| 212 | 0x25,0x83,0xE9,0xCA,0x2A,0xD4,0x4C,0xE8,0xDB,0xBB,0xC2,0xDB, | ||
| 213 | 0x04,0xDE,0x8E,0xF9,0x2E,0x8E,0xFC,0x14,0x1F,0xBE,0xCA,0xA6, | ||
| 214 | 0x28,0x7C,0x59,0x47,0x4E,0x6B,0xC0,0x5D,0x99,0xB2,0x96,0x4F, | ||
| 215 | 0xA0,0x90,0xC3,0xA2,0x23,0x3B,0xA1,0x86,0x51,0x5B,0xE7,0xED, | ||
| 216 | 0x1F,0x61,0x29,0x70,0xCE,0xE2,0xD7,0xAF,0xB8,0x1B,0xDD,0x76, | ||
| 217 | 0x21,0x70,0x48,0x1C,0xD0,0x06,0x91,0x27,0xD5,0xB0,0x5A,0xA9, | ||
| 218 | 0x93,0xB4,0xEA,0x98,0x8D,0x8F,0xDD,0xC1,0x86,0xFF,0xB7,0xDC, | ||
| 219 | 0x90,0xA6,0xC0,0x8F,0x4D,0xF4,0x35,0xC9,0x34,0x06,0x31,0x99, | ||
| 220 | 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, | ||
| 221 | }; | ||
| 222 | return BN_bin2bn(RFC3526_PRIME_4096,sizeof(RFC3526_PRIME_4096),bn); | ||
| 223 | } | ||
| 224 | |||
| 225 | /* "6144-bit MODP Group" from RFC3526, Section 6. | ||
| 226 | * | ||
| 227 | * The prime is: 2^6144 - 2^6080 - 1 + 2^64 * { [2^6014 pi] + 929484 } | ||
| 228 | * | ||
| 229 | * RFC3526 specifies a generator of 2. | ||
| 230 | */ | ||
| 231 | |||
| 232 | BIGNUM *get_rfc3526_prime_6144(BIGNUM *bn) | ||
| 233 | { | ||
| 234 | static const unsigned char RFC3526_PRIME_6144[]={ | ||
| 235 | 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xC9,0x0F,0xDA,0xA2, | ||
| 236 | 0x21,0x68,0xC2,0x34,0xC4,0xC6,0x62,0x8B,0x80,0xDC,0x1C,0xD1, | ||
| 237 | 0x29,0x02,0x4E,0x08,0x8A,0x67,0xCC,0x74,0x02,0x0B,0xBE,0xA6, | ||
| 238 | 0x3B,0x13,0x9B,0x22,0x51,0x4A,0x08,0x79,0x8E,0x34,0x04,0xDD, | ||
| 239 | 0xEF,0x95,0x19,0xB3,0xCD,0x3A,0x43,0x1B,0x30,0x2B,0x0A,0x6D, | ||
| 240 | 0xF2,0x5F,0x14,0x37,0x4F,0xE1,0x35,0x6D,0x6D,0x51,0xC2,0x45, | ||
| 241 | 0xE4,0x85,0xB5,0x76,0x62,0x5E,0x7E,0xC6,0xF4,0x4C,0x42,0xE9, | ||
| 242 | 0xA6,0x37,0xED,0x6B,0x0B,0xFF,0x5C,0xB6,0xF4,0x06,0xB7,0xED, | ||
| 243 | 0xEE,0x38,0x6B,0xFB,0x5A,0x89,0x9F,0xA5,0xAE,0x9F,0x24,0x11, | ||
| 244 | 0x7C,0x4B,0x1F,0xE6,0x49,0x28,0x66,0x51,0xEC,0xE4,0x5B,0x3D, | ||
| 245 | 0xC2,0x00,0x7C,0xB8,0xA1,0x63,0xBF,0x05,0x98,0xDA,0x48,0x36, | ||
| 246 | 0x1C,0x55,0xD3,0x9A,0x69,0x16,0x3F,0xA8,0xFD,0x24,0xCF,0x5F, | ||
| 247 | 0x83,0x65,0x5D,0x23,0xDC,0xA3,0xAD,0x96,0x1C,0x62,0xF3,0x56, | ||
| 248 | 0x20,0x85,0x52,0xBB,0x9E,0xD5,0x29,0x07,0x70,0x96,0x96,0x6D, | ||
| 249 | 0x67,0x0C,0x35,0x4E,0x4A,0xBC,0x98,0x04,0xF1,0x74,0x6C,0x08, | ||
| 250 | 0xCA,0x18,0x21,0x7C,0x32,0x90,0x5E,0x46,0x2E,0x36,0xCE,0x3B, | ||
| 251 | 0xE3,0x9E,0x77,0x2C,0x18,0x0E,0x86,0x03,0x9B,0x27,0x83,0xA2, | ||
| 252 | 0xEC,0x07,0xA2,0x8F,0xB5,0xC5,0x5D,0xF0,0x6F,0x4C,0x52,0xC9, | ||
| 253 | 0xDE,0x2B,0xCB,0xF6,0x95,0x58,0x17,0x18,0x39,0x95,0x49,0x7C, | ||
| 254 | 0xEA,0x95,0x6A,0xE5,0x15,0xD2,0x26,0x18,0x98,0xFA,0x05,0x10, | ||
| 255 | 0x15,0x72,0x8E,0x5A,0x8A,0xAA,0xC4,0x2D,0xAD,0x33,0x17,0x0D, | ||
| 256 | 0x04,0x50,0x7A,0x33,0xA8,0x55,0x21,0xAB,0xDF,0x1C,0xBA,0x64, | ||
| 257 | 0xEC,0xFB,0x85,0x04,0x58,0xDB,0xEF,0x0A,0x8A,0xEA,0x71,0x57, | ||
| 258 | 0x5D,0x06,0x0C,0x7D,0xB3,0x97,0x0F,0x85,0xA6,0xE1,0xE4,0xC7, | ||
| 259 | 0xAB,0xF5,0xAE,0x8C,0xDB,0x09,0x33,0xD7,0x1E,0x8C,0x94,0xE0, | ||
| 260 | 0x4A,0x25,0x61,0x9D,0xCE,0xE3,0xD2,0x26,0x1A,0xD2,0xEE,0x6B, | ||
| 261 | 0xF1,0x2F,0xFA,0x06,0xD9,0x8A,0x08,0x64,0xD8,0x76,0x02,0x73, | ||
| 262 | 0x3E,0xC8,0x6A,0x64,0x52,0x1F,0x2B,0x18,0x17,0x7B,0x20,0x0C, | ||
| 263 | 0xBB,0xE1,0x17,0x57,0x7A,0x61,0x5D,0x6C,0x77,0x09,0x88,0xC0, | ||
| 264 | 0xBA,0xD9,0x46,0xE2,0x08,0xE2,0x4F,0xA0,0x74,0xE5,0xAB,0x31, | ||
| 265 | 0x43,0xDB,0x5B,0xFC,0xE0,0xFD,0x10,0x8E,0x4B,0x82,0xD1,0x20, | ||
| 266 | 0xA9,0x21,0x08,0x01,0x1A,0x72,0x3C,0x12,0xA7,0x87,0xE6,0xD7, | ||
| 267 | 0x88,0x71,0x9A,0x10,0xBD,0xBA,0x5B,0x26,0x99,0xC3,0x27,0x18, | ||
| 268 | 0x6A,0xF4,0xE2,0x3C,0x1A,0x94,0x68,0x34,0xB6,0x15,0x0B,0xDA, | ||
| 269 | 0x25,0x83,0xE9,0xCA,0x2A,0xD4,0x4C,0xE8,0xDB,0xBB,0xC2,0xDB, | ||
| 270 | 0x04,0xDE,0x8E,0xF9,0x2E,0x8E,0xFC,0x14,0x1F,0xBE,0xCA,0xA6, | ||
| 271 | 0x28,0x7C,0x59,0x47,0x4E,0x6B,0xC0,0x5D,0x99,0xB2,0x96,0x4F, | ||
| 272 | 0xA0,0x90,0xC3,0xA2,0x23,0x3B,0xA1,0x86,0x51,0x5B,0xE7,0xED, | ||
| 273 | 0x1F,0x61,0x29,0x70,0xCE,0xE2,0xD7,0xAF,0xB8,0x1B,0xDD,0x76, | ||
| 274 | 0x21,0x70,0x48,0x1C,0xD0,0x06,0x91,0x27,0xD5,0xB0,0x5A,0xA9, | ||
| 275 | 0x93,0xB4,0xEA,0x98,0x8D,0x8F,0xDD,0xC1,0x86,0xFF,0xB7,0xDC, | ||
| 276 | 0x90,0xA6,0xC0,0x8F,0x4D,0xF4,0x35,0xC9,0x34,0x02,0x84,0x92, | ||
| 277 | 0x36,0xC3,0xFA,0xB4,0xD2,0x7C,0x70,0x26,0xC1,0xD4,0xDC,0xB2, | ||
| 278 | 0x60,0x26,0x46,0xDE,0xC9,0x75,0x1E,0x76,0x3D,0xBA,0x37,0xBD, | ||
| 279 | 0xF8,0xFF,0x94,0x06,0xAD,0x9E,0x53,0x0E,0xE5,0xDB,0x38,0x2F, | ||
| 280 | 0x41,0x30,0x01,0xAE,0xB0,0x6A,0x53,0xED,0x90,0x27,0xD8,0x31, | ||
| 281 | 0x17,0x97,0x27,0xB0,0x86,0x5A,0x89,0x18,0xDA,0x3E,0xDB,0xEB, | ||
| 282 | 0xCF,0x9B,0x14,0xED,0x44,0xCE,0x6C,0xBA,0xCE,0xD4,0xBB,0x1B, | ||
| 283 | 0xDB,0x7F,0x14,0x47,0xE6,0xCC,0x25,0x4B,0x33,0x20,0x51,0x51, | ||
| 284 | 0x2B,0xD7,0xAF,0x42,0x6F,0xB8,0xF4,0x01,0x37,0x8C,0xD2,0xBF, | ||
| 285 | 0x59,0x83,0xCA,0x01,0xC6,0x4B,0x92,0xEC,0xF0,0x32,0xEA,0x15, | ||
| 286 | 0xD1,0x72,0x1D,0x03,0xF4,0x82,0xD7,0xCE,0x6E,0x74,0xFE,0xF6, | ||
| 287 | 0xD5,0x5E,0x70,0x2F,0x46,0x98,0x0C,0x82,0xB5,0xA8,0x40,0x31, | ||
| 288 | 0x90,0x0B,0x1C,0x9E,0x59,0xE7,0xC9,0x7F,0xBE,0xC7,0xE8,0xF3, | ||
| 289 | 0x23,0xA9,0x7A,0x7E,0x36,0xCC,0x88,0xBE,0x0F,0x1D,0x45,0xB7, | ||
| 290 | 0xFF,0x58,0x5A,0xC5,0x4B,0xD4,0x07,0xB2,0x2B,0x41,0x54,0xAA, | ||
| 291 | 0xCC,0x8F,0x6D,0x7E,0xBF,0x48,0xE1,0xD8,0x14,0xCC,0x5E,0xD2, | ||
| 292 | 0x0F,0x80,0x37,0xE0,0xA7,0x97,0x15,0xEE,0xF2,0x9B,0xE3,0x28, | ||
| 293 | 0x06,0xA1,0xD5,0x8B,0xB7,0xC5,0xDA,0x76,0xF5,0x50,0xAA,0x3D, | ||
| 294 | 0x8A,0x1F,0xBF,0xF0,0xEB,0x19,0xCC,0xB1,0xA3,0x13,0xD5,0x5C, | ||
| 295 | 0xDA,0x56,0xC9,0xEC,0x2E,0xF2,0x96,0x32,0x38,0x7F,0xE8,0xD7, | ||
| 296 | 0x6E,0x3C,0x04,0x68,0x04,0x3E,0x8F,0x66,0x3F,0x48,0x60,0xEE, | ||
| 297 | 0x12,0xBF,0x2D,0x5B,0x0B,0x74,0x74,0xD6,0xE6,0x94,0xF9,0x1E, | ||
| 298 | 0x6D,0xCC,0x40,0x24,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, | ||
| 299 | }; | ||
| 300 | return BN_bin2bn(RFC3526_PRIME_6144,sizeof(RFC3526_PRIME_6144),bn); | ||
| 301 | } | ||
| 302 | |||
| 303 | /* "8192-bit MODP Group" from RFC3526, Section 7. | ||
| 304 | * | ||
| 305 | * The prime is: 2^8192 - 2^8128 - 1 + 2^64 * { [2^8062 pi] + 4743158 } | ||
| 306 | * | ||
| 307 | * RFC3526 specifies a generator of 2. | ||
| 308 | */ | ||
| 309 | |||
| 310 | BIGNUM *get_rfc3526_prime_8192(BIGNUM *bn) | ||
| 311 | { | ||
| 312 | static const unsigned char RFC3526_PRIME_8192[]={ | ||
| 313 | 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xC9,0x0F,0xDA,0xA2, | ||
| 314 | 0x21,0x68,0xC2,0x34,0xC4,0xC6,0x62,0x8B,0x80,0xDC,0x1C,0xD1, | ||
| 315 | 0x29,0x02,0x4E,0x08,0x8A,0x67,0xCC,0x74,0x02,0x0B,0xBE,0xA6, | ||
| 316 | 0x3B,0x13,0x9B,0x22,0x51,0x4A,0x08,0x79,0x8E,0x34,0x04,0xDD, | ||
| 317 | 0xEF,0x95,0x19,0xB3,0xCD,0x3A,0x43,0x1B,0x30,0x2B,0x0A,0x6D, | ||
| 318 | 0xF2,0x5F,0x14,0x37,0x4F,0xE1,0x35,0x6D,0x6D,0x51,0xC2,0x45, | ||
| 319 | 0xE4,0x85,0xB5,0x76,0x62,0x5E,0x7E,0xC6,0xF4,0x4C,0x42,0xE9, | ||
| 320 | 0xA6,0x37,0xED,0x6B,0x0B,0xFF,0x5C,0xB6,0xF4,0x06,0xB7,0xED, | ||
| 321 | 0xEE,0x38,0x6B,0xFB,0x5A,0x89,0x9F,0xA5,0xAE,0x9F,0x24,0x11, | ||
| 322 | 0x7C,0x4B,0x1F,0xE6,0x49,0x28,0x66,0x51,0xEC,0xE4,0x5B,0x3D, | ||
| 323 | 0xC2,0x00,0x7C,0xB8,0xA1,0x63,0xBF,0x05,0x98,0xDA,0x48,0x36, | ||
| 324 | 0x1C,0x55,0xD3,0x9A,0x69,0x16,0x3F,0xA8,0xFD,0x24,0xCF,0x5F, | ||
| 325 | 0x83,0x65,0x5D,0x23,0xDC,0xA3,0xAD,0x96,0x1C,0x62,0xF3,0x56, | ||
| 326 | 0x20,0x85,0x52,0xBB,0x9E,0xD5,0x29,0x07,0x70,0x96,0x96,0x6D, | ||
| 327 | 0x67,0x0C,0x35,0x4E,0x4A,0xBC,0x98,0x04,0xF1,0x74,0x6C,0x08, | ||
| 328 | 0xCA,0x18,0x21,0x7C,0x32,0x90,0x5E,0x46,0x2E,0x36,0xCE,0x3B, | ||
| 329 | 0xE3,0x9E,0x77,0x2C,0x18,0x0E,0x86,0x03,0x9B,0x27,0x83,0xA2, | ||
| 330 | 0xEC,0x07,0xA2,0x8F,0xB5,0xC5,0x5D,0xF0,0x6F,0x4C,0x52,0xC9, | ||
| 331 | 0xDE,0x2B,0xCB,0xF6,0x95,0x58,0x17,0x18,0x39,0x95,0x49,0x7C, | ||
| 332 | 0xEA,0x95,0x6A,0xE5,0x15,0xD2,0x26,0x18,0x98,0xFA,0x05,0x10, | ||
| 333 | 0x15,0x72,0x8E,0x5A,0x8A,0xAA,0xC4,0x2D,0xAD,0x33,0x17,0x0D, | ||
| 334 | 0x04,0x50,0x7A,0x33,0xA8,0x55,0x21,0xAB,0xDF,0x1C,0xBA,0x64, | ||
| 335 | 0xEC,0xFB,0x85,0x04,0x58,0xDB,0xEF,0x0A,0x8A,0xEA,0x71,0x57, | ||
| 336 | 0x5D,0x06,0x0C,0x7D,0xB3,0x97,0x0F,0x85,0xA6,0xE1,0xE4,0xC7, | ||
| 337 | 0xAB,0xF5,0xAE,0x8C,0xDB,0x09,0x33,0xD7,0x1E,0x8C,0x94,0xE0, | ||
| 338 | 0x4A,0x25,0x61,0x9D,0xCE,0xE3,0xD2,0x26,0x1A,0xD2,0xEE,0x6B, | ||
| 339 | 0xF1,0x2F,0xFA,0x06,0xD9,0x8A,0x08,0x64,0xD8,0x76,0x02,0x73, | ||
| 340 | 0x3E,0xC8,0x6A,0x64,0x52,0x1F,0x2B,0x18,0x17,0x7B,0x20,0x0C, | ||
| 341 | 0xBB,0xE1,0x17,0x57,0x7A,0x61,0x5D,0x6C,0x77,0x09,0x88,0xC0, | ||
| 342 | 0xBA,0xD9,0x46,0xE2,0x08,0xE2,0x4F,0xA0,0x74,0xE5,0xAB,0x31, | ||
| 343 | 0x43,0xDB,0x5B,0xFC,0xE0,0xFD,0x10,0x8E,0x4B,0x82,0xD1,0x20, | ||
| 344 | 0xA9,0x21,0x08,0x01,0x1A,0x72,0x3C,0x12,0xA7,0x87,0xE6,0xD7, | ||
| 345 | 0x88,0x71,0x9A,0x10,0xBD,0xBA,0x5B,0x26,0x99,0xC3,0x27,0x18, | ||
| 346 | 0x6A,0xF4,0xE2,0x3C,0x1A,0x94,0x68,0x34,0xB6,0x15,0x0B,0xDA, | ||
| 347 | 0x25,0x83,0xE9,0xCA,0x2A,0xD4,0x4C,0xE8,0xDB,0xBB,0xC2,0xDB, | ||
| 348 | 0x04,0xDE,0x8E,0xF9,0x2E,0x8E,0xFC,0x14,0x1F,0xBE,0xCA,0xA6, | ||
| 349 | 0x28,0x7C,0x59,0x47,0x4E,0x6B,0xC0,0x5D,0x99,0xB2,0x96,0x4F, | ||
| 350 | 0xA0,0x90,0xC3,0xA2,0x23,0x3B,0xA1,0x86,0x51,0x5B,0xE7,0xED, | ||
| 351 | 0x1F,0x61,0x29,0x70,0xCE,0xE2,0xD7,0xAF,0xB8,0x1B,0xDD,0x76, | ||
| 352 | 0x21,0x70,0x48,0x1C,0xD0,0x06,0x91,0x27,0xD5,0xB0,0x5A,0xA9, | ||
| 353 | 0x93,0xB4,0xEA,0x98,0x8D,0x8F,0xDD,0xC1,0x86,0xFF,0xB7,0xDC, | ||
| 354 | 0x90,0xA6,0xC0,0x8F,0x4D,0xF4,0x35,0xC9,0x34,0x02,0x84,0x92, | ||
| 355 | 0x36,0xC3,0xFA,0xB4,0xD2,0x7C,0x70,0x26,0xC1,0xD4,0xDC,0xB2, | ||
| 356 | 0x60,0x26,0x46,0xDE,0xC9,0x75,0x1E,0x76,0x3D,0xBA,0x37,0xBD, | ||
| 357 | 0xF8,0xFF,0x94,0x06,0xAD,0x9E,0x53,0x0E,0xE5,0xDB,0x38,0x2F, | ||
| 358 | 0x41,0x30,0x01,0xAE,0xB0,0x6A,0x53,0xED,0x90,0x27,0xD8,0x31, | ||
| 359 | 0x17,0x97,0x27,0xB0,0x86,0x5A,0x89,0x18,0xDA,0x3E,0xDB,0xEB, | ||
| 360 | 0xCF,0x9B,0x14,0xED,0x44,0xCE,0x6C,0xBA,0xCE,0xD4,0xBB,0x1B, | ||
| 361 | 0xDB,0x7F,0x14,0x47,0xE6,0xCC,0x25,0x4B,0x33,0x20,0x51,0x51, | ||
| 362 | 0x2B,0xD7,0xAF,0x42,0x6F,0xB8,0xF4,0x01,0x37,0x8C,0xD2,0xBF, | ||
| 363 | 0x59,0x83,0xCA,0x01,0xC6,0x4B,0x92,0xEC,0xF0,0x32,0xEA,0x15, | ||
| 364 | 0xD1,0x72,0x1D,0x03,0xF4,0x82,0xD7,0xCE,0x6E,0x74,0xFE,0xF6, | ||
| 365 | 0xD5,0x5E,0x70,0x2F,0x46,0x98,0x0C,0x82,0xB5,0xA8,0x40,0x31, | ||
| 366 | 0x90,0x0B,0x1C,0x9E,0x59,0xE7,0xC9,0x7F,0xBE,0xC7,0xE8,0xF3, | ||
| 367 | 0x23,0xA9,0x7A,0x7E,0x36,0xCC,0x88,0xBE,0x0F,0x1D,0x45,0xB7, | ||
| 368 | 0xFF,0x58,0x5A,0xC5,0x4B,0xD4,0x07,0xB2,0x2B,0x41,0x54,0xAA, | ||
| 369 | 0xCC,0x8F,0x6D,0x7E,0xBF,0x48,0xE1,0xD8,0x14,0xCC,0x5E,0xD2, | ||
| 370 | 0x0F,0x80,0x37,0xE0,0xA7,0x97,0x15,0xEE,0xF2,0x9B,0xE3,0x28, | ||
| 371 | 0x06,0xA1,0xD5,0x8B,0xB7,0xC5,0xDA,0x76,0xF5,0x50,0xAA,0x3D, | ||
| 372 | 0x8A,0x1F,0xBF,0xF0,0xEB,0x19,0xCC,0xB1,0xA3,0x13,0xD5,0x5C, | ||
| 373 | 0xDA,0x56,0xC9,0xEC,0x2E,0xF2,0x96,0x32,0x38,0x7F,0xE8,0xD7, | ||
| 374 | 0x6E,0x3C,0x04,0x68,0x04,0x3E,0x8F,0x66,0x3F,0x48,0x60,0xEE, | ||
| 375 | 0x12,0xBF,0x2D,0x5B,0x0B,0x74,0x74,0xD6,0xE6,0x94,0xF9,0x1E, | ||
| 376 | 0x6D,0xBE,0x11,0x59,0x74,0xA3,0x92,0x6F,0x12,0xFE,0xE5,0xE4, | ||
| 377 | 0x38,0x77,0x7C,0xB6,0xA9,0x32,0xDF,0x8C,0xD8,0xBE,0xC4,0xD0, | ||
| 378 | 0x73,0xB9,0x31,0xBA,0x3B,0xC8,0x32,0xB6,0x8D,0x9D,0xD3,0x00, | ||
| 379 | 0x74,0x1F,0xA7,0xBF,0x8A,0xFC,0x47,0xED,0x25,0x76,0xF6,0x93, | ||
| 380 | 0x6B,0xA4,0x24,0x66,0x3A,0xAB,0x63,0x9C,0x5A,0xE4,0xF5,0x68, | ||
| 381 | 0x34,0x23,0xB4,0x74,0x2B,0xF1,0xC9,0x78,0x23,0x8F,0x16,0xCB, | ||
| 382 | 0xE3,0x9D,0x65,0x2D,0xE3,0xFD,0xB8,0xBE,0xFC,0x84,0x8A,0xD9, | ||
| 383 | 0x22,0x22,0x2E,0x04,0xA4,0x03,0x7C,0x07,0x13,0xEB,0x57,0xA8, | ||
| 384 | 0x1A,0x23,0xF0,0xC7,0x34,0x73,0xFC,0x64,0x6C,0xEA,0x30,0x6B, | ||
| 385 | 0x4B,0xCB,0xC8,0x86,0x2F,0x83,0x85,0xDD,0xFA,0x9D,0x4B,0x7F, | ||
| 386 | 0xA2,0xC0,0x87,0xE8,0x79,0x68,0x33,0x03,0xED,0x5B,0xDD,0x3A, | ||
| 387 | 0x06,0x2B,0x3C,0xF5,0xB3,0xA2,0x78,0xA6,0x6D,0x2A,0x13,0xF8, | ||
| 388 | 0x3F,0x44,0xF8,0x2D,0xDF,0x31,0x0E,0xE0,0x74,0xAB,0x6A,0x36, | ||
| 389 | 0x45,0x97,0xE8,0x99,0xA0,0x25,0x5D,0xC1,0x64,0xF3,0x1C,0xC5, | ||
| 390 | 0x08,0x46,0x85,0x1D,0xF9,0xAB,0x48,0x19,0x5D,0xED,0x7E,0xA1, | ||
| 391 | 0xB1,0xD5,0x10,0xBD,0x7E,0xE7,0x4D,0x73,0xFA,0xF3,0x6B,0xC3, | ||
| 392 | 0x1E,0xCF,0xA2,0x68,0x35,0x90,0x46,0xF4,0xEB,0x87,0x9F,0x92, | ||
| 393 | 0x40,0x09,0x43,0x8B,0x48,0x1C,0x6C,0xD7,0x88,0x9A,0x00,0x2E, | ||
| 394 | 0xD5,0xEE,0x38,0x2B,0xC9,0x19,0x0D,0xA6,0xFC,0x02,0x6E,0x47, | ||
| 395 | 0x95,0x58,0xE4,0x47,0x56,0x77,0xE9,0xAA,0x9E,0x30,0x50,0xE2, | ||
| 396 | 0x76,0x56,0x94,0xDF,0xC8,0x1F,0x56,0xE8,0x80,0xB9,0x6E,0x71, | ||
| 397 | 0x60,0xC9,0x80,0xDD,0x98,0xED,0xD3,0xDF,0xFF,0xFF,0xFF,0xFF, | ||
| 398 | 0xFF,0xFF,0xFF,0xFF, | ||
| 399 | }; | ||
| 400 | return BN_bin2bn(RFC3526_PRIME_8192,sizeof(RFC3526_PRIME_8192),bn); | ||
| 401 | } | ||
| 402 | |||
diff --git a/src/lib/libcrypto/bn/bn_depr.c b/src/lib/libcrypto/bn/bn_depr.c new file mode 100644 index 0000000000..27535e4fca --- /dev/null +++ b/src/lib/libcrypto/bn/bn_depr.c | |||
| @@ -0,0 +1,112 @@ | |||
| 1 | /* crypto/bn/bn_depr.c */ | ||
| 2 | /* ==================================================================== | ||
| 3 | * Copyright (c) 1998-2002 The OpenSSL Project. All rights reserved. | ||
| 4 | * | ||
| 5 | * Redistribution and use in source and binary forms, with or without | ||
| 6 | * modification, are permitted provided that the following conditions | ||
| 7 | * are met: | ||
| 8 | * | ||
| 9 | * 1. Redistributions of source code must retain the above copyright | ||
| 10 | * notice, this list of conditions and the following disclaimer. | ||
| 11 | * | ||
| 12 | * 2. Redistributions in binary form must reproduce the above copyright | ||
| 13 | * notice, this list of conditions and the following disclaimer in | ||
| 14 | * the documentation and/or other materials provided with the | ||
| 15 | * distribution. | ||
| 16 | * | ||
| 17 | * 3. All advertising materials mentioning features or use of this | ||
| 18 | * software must display the following acknowledgment: | ||
| 19 | * "This product includes software developed by the OpenSSL Project | ||
| 20 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | ||
| 21 | * | ||
| 22 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
| 23 | * endorse or promote products derived from this software without | ||
| 24 | * prior written permission. For written permission, please contact | ||
| 25 | * openssl-core@openssl.org. | ||
| 26 | * | ||
| 27 | * 5. Products derived from this software may not be called "OpenSSL" | ||
| 28 | * nor may "OpenSSL" appear in their names without prior written | ||
| 29 | * permission of the OpenSSL Project. | ||
| 30 | * | ||
| 31 | * 6. Redistributions of any form whatsoever must retain the following | ||
| 32 | * acknowledgment: | ||
| 33 | * "This product includes software developed by the OpenSSL Project | ||
| 34 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" | ||
| 35 | * | ||
| 36 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
| 37 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
| 38 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
| 39 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
| 40 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
| 41 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
| 42 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
| 43 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
| 44 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
| 45 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
| 46 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
| 47 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
| 48 | * ==================================================================== | ||
| 49 | * | ||
| 50 | * This product includes cryptographic software written by Eric Young | ||
| 51 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
| 52 | * Hudson (tjh@cryptsoft.com). | ||
| 53 | * | ||
| 54 | */ | ||
| 55 | |||
| 56 | /* Support for deprecated functions goes here - static linkage will only slurp | ||
| 57 | * this code if applications are using them directly. */ | ||
| 58 | |||
| 59 | #include <stdio.h> | ||
| 60 | #include <time.h> | ||
| 61 | #include "cryptlib.h" | ||
| 62 | #include "bn_lcl.h" | ||
| 63 | #include <openssl/rand.h> | ||
| 64 | |||
| 65 | static void *dummy=&dummy; | ||
| 66 | |||
| 67 | #ifndef OPENSSL_NO_DEPRECATED | ||
| 68 | BIGNUM *BN_generate_prime(BIGNUM *ret, int bits, int safe, | ||
| 69 | const BIGNUM *add, const BIGNUM *rem, | ||
| 70 | void (*callback)(int,int,void *), void *cb_arg) | ||
| 71 | { | ||
| 72 | BN_GENCB cb; | ||
| 73 | BIGNUM *rnd=NULL; | ||
| 74 | int found = 0; | ||
| 75 | |||
| 76 | BN_GENCB_set_old(&cb, callback, cb_arg); | ||
| 77 | |||
| 78 | if (ret == NULL) | ||
| 79 | { | ||
| 80 | if ((rnd=BN_new()) == NULL) goto err; | ||
| 81 | } | ||
| 82 | else | ||
| 83 | rnd=ret; | ||
| 84 | if(!BN_generate_prime_ex(rnd, bits, safe, add, rem, &cb)) | ||
| 85 | goto err; | ||
| 86 | |||
| 87 | /* we have a prime :-) */ | ||
| 88 | found = 1; | ||
| 89 | err: | ||
| 90 | if (!found && (ret == NULL) && (rnd != NULL)) BN_free(rnd); | ||
| 91 | return(found ? rnd : NULL); | ||
| 92 | } | ||
| 93 | |||
| 94 | int BN_is_prime(const BIGNUM *a, int checks, void (*callback)(int,int,void *), | ||
| 95 | BN_CTX *ctx_passed, void *cb_arg) | ||
| 96 | { | ||
| 97 | BN_GENCB cb; | ||
| 98 | BN_GENCB_set_old(&cb, callback, cb_arg); | ||
| 99 | return BN_is_prime_ex(a, checks, ctx_passed, &cb); | ||
| 100 | } | ||
| 101 | |||
| 102 | int BN_is_prime_fasttest(const BIGNUM *a, int checks, | ||
| 103 | void (*callback)(int,int,void *), | ||
| 104 | BN_CTX *ctx_passed, void *cb_arg, | ||
| 105 | int do_trial_division) | ||
| 106 | { | ||
| 107 | BN_GENCB cb; | ||
| 108 | BN_GENCB_set_old(&cb, callback, cb_arg); | ||
| 109 | return BN_is_prime_fasttest_ex(a, checks, ctx_passed, | ||
| 110 | do_trial_division, &cb); | ||
| 111 | } | ||
| 112 | #endif | ||
diff --git a/src/lib/libcrypto/bn/bn_gf2m.c b/src/lib/libcrypto/bn/bn_gf2m.c new file mode 100644 index 0000000000..6a793857e1 --- /dev/null +++ b/src/lib/libcrypto/bn/bn_gf2m.c | |||
| @@ -0,0 +1,1091 @@ | |||
| 1 | /* crypto/bn/bn_gf2m.c */ | ||
| 2 | /* ==================================================================== | ||
| 3 | * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. | ||
| 4 | * | ||
| 5 | * The Elliptic Curve Public-Key Crypto Library (ECC Code) included | ||
| 6 | * herein is developed by SUN MICROSYSTEMS, INC., and is contributed | ||
| 7 | * to the OpenSSL project. | ||
| 8 | * | ||
| 9 | * The ECC Code is licensed pursuant to the OpenSSL open source | ||
| 10 | * license provided below. | ||
| 11 | * | ||
| 12 | * In addition, Sun covenants to all licensees who provide a reciprocal | ||
| 13 | * covenant with respect to their own patents if any, not to sue under | ||
| 14 | * current and future patent claims necessarily infringed by the making, | ||
| 15 | * using, practicing, selling, offering for sale and/or otherwise | ||
| 16 | * disposing of the ECC Code as delivered hereunder (or portions thereof), | ||
| 17 | * provided that such covenant shall not apply: | ||
| 18 | * 1) for code that a licensee deletes from the ECC Code; | ||
| 19 | * 2) separates from the ECC Code; or | ||
| 20 | * 3) for infringements caused by: | ||
| 21 | * i) the modification of the ECC Code or | ||
| 22 | * ii) the combination of the ECC Code with other software or | ||
| 23 | * devices where such combination causes the infringement. | ||
| 24 | * | ||
| 25 | * The software is originally written by Sheueling Chang Shantz and | ||
| 26 | * Douglas Stebila of Sun Microsystems Laboratories. | ||
| 27 | * | ||
| 28 | */ | ||
| 29 | |||
| 30 | /* NOTE: This file is licensed pursuant to the OpenSSL license below | ||
| 31 | * and may be modified; but after modifications, the above covenant | ||
| 32 | * may no longer apply! In such cases, the corresponding paragraph | ||
| 33 | * ["In addition, Sun covenants ... causes the infringement."] and | ||
| 34 | * this note can be edited out; but please keep the Sun copyright | ||
| 35 | * notice and attribution. */ | ||
| 36 | |||
| 37 | /* ==================================================================== | ||
| 38 | * Copyright (c) 1998-2002 The OpenSSL Project. All rights reserved. | ||
| 39 | * | ||
| 40 | * Redistribution and use in source and binary forms, with or without | ||
| 41 | * modification, are permitted provided that the following conditions | ||
| 42 | * are met: | ||
| 43 | * | ||
| 44 | * 1. Redistributions of source code must retain the above copyright | ||
| 45 | * notice, this list of conditions and the following disclaimer. | ||
| 46 | * | ||
| 47 | * 2. Redistributions in binary form must reproduce the above copyright | ||
| 48 | * notice, this list of conditions and the following disclaimer in | ||
| 49 | * the documentation and/or other materials provided with the | ||
| 50 | * distribution. | ||
| 51 | * | ||
| 52 | * 3. All advertising materials mentioning features or use of this | ||
| 53 | * software must display the following acknowledgment: | ||
| 54 | * "This product includes software developed by the OpenSSL Project | ||
| 55 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | ||
| 56 | * | ||
| 57 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
| 58 | * endorse or promote products derived from this software without | ||
| 59 | * prior written permission. For written permission, please contact | ||
| 60 | * openssl-core@openssl.org. | ||
| 61 | * | ||
| 62 | * 5. Products derived from this software may not be called "OpenSSL" | ||
| 63 | * nor may "OpenSSL" appear in their names without prior written | ||
| 64 | * permission of the OpenSSL Project. | ||
| 65 | * | ||
| 66 | * 6. Redistributions of any form whatsoever must retain the following | ||
| 67 | * acknowledgment: | ||
| 68 | * "This product includes software developed by the OpenSSL Project | ||
| 69 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" | ||
| 70 | * | ||
| 71 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
| 72 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
| 73 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
| 74 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
| 75 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
| 76 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
| 77 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
| 78 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
| 79 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
| 80 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
| 81 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
| 82 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
| 83 | * ==================================================================== | ||
| 84 | * | ||
| 85 | * This product includes cryptographic software written by Eric Young | ||
| 86 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
| 87 | * Hudson (tjh@cryptsoft.com). | ||
| 88 | * | ||
| 89 | */ | ||
| 90 | |||
| 91 | #include <assert.h> | ||
| 92 | #include <limits.h> | ||
| 93 | #include <stdio.h> | ||
| 94 | #include "cryptlib.h" | ||
| 95 | #include "bn_lcl.h" | ||
| 96 | |||
| 97 | /* Maximum number of iterations before BN_GF2m_mod_solve_quad_arr should fail. */ | ||
| 98 | #define MAX_ITERATIONS 50 | ||
| 99 | |||
| 100 | static const BN_ULONG SQR_tb[16] = | ||
| 101 | { 0, 1, 4, 5, 16, 17, 20, 21, | ||
| 102 | 64, 65, 68, 69, 80, 81, 84, 85 }; | ||
| 103 | /* Platform-specific macros to accelerate squaring. */ | ||
| 104 | #if defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG) | ||
| 105 | #define SQR1(w) \ | ||
| 106 | SQR_tb[(w) >> 60 & 0xF] << 56 | SQR_tb[(w) >> 56 & 0xF] << 48 | \ | ||
| 107 | SQR_tb[(w) >> 52 & 0xF] << 40 | SQR_tb[(w) >> 48 & 0xF] << 32 | \ | ||
| 108 | SQR_tb[(w) >> 44 & 0xF] << 24 | SQR_tb[(w) >> 40 & 0xF] << 16 | \ | ||
| 109 | SQR_tb[(w) >> 36 & 0xF] << 8 | SQR_tb[(w) >> 32 & 0xF] | ||
| 110 | #define SQR0(w) \ | ||
| 111 | SQR_tb[(w) >> 28 & 0xF] << 56 | SQR_tb[(w) >> 24 & 0xF] << 48 | \ | ||
| 112 | SQR_tb[(w) >> 20 & 0xF] << 40 | SQR_tb[(w) >> 16 & 0xF] << 32 | \ | ||
| 113 | SQR_tb[(w) >> 12 & 0xF] << 24 | SQR_tb[(w) >> 8 & 0xF] << 16 | \ | ||
| 114 | SQR_tb[(w) >> 4 & 0xF] << 8 | SQR_tb[(w) & 0xF] | ||
| 115 | #endif | ||
| 116 | #ifdef THIRTY_TWO_BIT | ||
| 117 | #define SQR1(w) \ | ||
| 118 | SQR_tb[(w) >> 28 & 0xF] << 24 | SQR_tb[(w) >> 24 & 0xF] << 16 | \ | ||
| 119 | SQR_tb[(w) >> 20 & 0xF] << 8 | SQR_tb[(w) >> 16 & 0xF] | ||
| 120 | #define SQR0(w) \ | ||
| 121 | SQR_tb[(w) >> 12 & 0xF] << 24 | SQR_tb[(w) >> 8 & 0xF] << 16 | \ | ||
| 122 | SQR_tb[(w) >> 4 & 0xF] << 8 | SQR_tb[(w) & 0xF] | ||
| 123 | #endif | ||
| 124 | #ifdef SIXTEEN_BIT | ||
| 125 | #define SQR1(w) \ | ||
| 126 | SQR_tb[(w) >> 12 & 0xF] << 8 | SQR_tb[(w) >> 8 & 0xF] | ||
| 127 | #define SQR0(w) \ | ||
| 128 | SQR_tb[(w) >> 4 & 0xF] << 8 | SQR_tb[(w) & 0xF] | ||
| 129 | #endif | ||
| 130 | #ifdef EIGHT_BIT | ||
| 131 | #define SQR1(w) \ | ||
| 132 | SQR_tb[(w) >> 4 & 0xF] | ||
| 133 | #define SQR0(w) \ | ||
| 134 | SQR_tb[(w) & 15] | ||
| 135 | #endif | ||
| 136 | |||
| 137 | /* Product of two polynomials a, b each with degree < BN_BITS2 - 1, | ||
| 138 | * result is a polynomial r with degree < 2 * BN_BITS - 1 | ||
| 139 | * The caller MUST ensure that the variables have the right amount | ||
| 140 | * of space allocated. | ||
| 141 | */ | ||
| 142 | #ifdef EIGHT_BIT | ||
| 143 | static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, const BN_ULONG b) | ||
| 144 | { | ||
| 145 | register BN_ULONG h, l, s; | ||
| 146 | BN_ULONG tab[4], top1b = a >> 7; | ||
| 147 | register BN_ULONG a1, a2; | ||
| 148 | |||
| 149 | a1 = a & (0x7F); a2 = a1 << 1; | ||
| 150 | |||
| 151 | tab[0] = 0; tab[1] = a1; tab[2] = a2; tab[3] = a1^a2; | ||
| 152 | |||
| 153 | s = tab[b & 0x3]; l = s; | ||
| 154 | s = tab[b >> 2 & 0x3]; l ^= s << 2; h = s >> 6; | ||
| 155 | s = tab[b >> 4 & 0x3]; l ^= s << 4; h ^= s >> 4; | ||
| 156 | s = tab[b >> 6 ]; l ^= s << 6; h ^= s >> 2; | ||
| 157 | |||
| 158 | /* compensate for the top bit of a */ | ||
| 159 | |||
| 160 | if (top1b & 01) { l ^= b << 7; h ^= b >> 1; } | ||
| 161 | |||
| 162 | *r1 = h; *r0 = l; | ||
| 163 | } | ||
| 164 | #endif | ||
| 165 | #ifdef SIXTEEN_BIT | ||
| 166 | static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, const BN_ULONG b) | ||
| 167 | { | ||
| 168 | register BN_ULONG h, l, s; | ||
| 169 | BN_ULONG tab[4], top1b = a >> 15; | ||
| 170 | register BN_ULONG a1, a2; | ||
| 171 | |||
| 172 | a1 = a & (0x7FFF); a2 = a1 << 1; | ||
| 173 | |||
| 174 | tab[0] = 0; tab[1] = a1; tab[2] = a2; tab[3] = a1^a2; | ||
| 175 | |||
| 176 | s = tab[b & 0x3]; l = s; | ||
| 177 | s = tab[b >> 2 & 0x3]; l ^= s << 2; h = s >> 14; | ||
| 178 | s = tab[b >> 4 & 0x3]; l ^= s << 4; h ^= s >> 12; | ||
| 179 | s = tab[b >> 6 & 0x3]; l ^= s << 6; h ^= s >> 10; | ||
| 180 | s = tab[b >> 8 & 0x3]; l ^= s << 8; h ^= s >> 8; | ||
| 181 | s = tab[b >>10 & 0x3]; l ^= s << 10; h ^= s >> 6; | ||
| 182 | s = tab[b >>12 & 0x3]; l ^= s << 12; h ^= s >> 4; | ||
| 183 | s = tab[b >>14 ]; l ^= s << 14; h ^= s >> 2; | ||
| 184 | |||
| 185 | /* compensate for the top bit of a */ | ||
| 186 | |||
| 187 | if (top1b & 01) { l ^= b << 15; h ^= b >> 1; } | ||
| 188 | |||
| 189 | *r1 = h; *r0 = l; | ||
| 190 | } | ||
| 191 | #endif | ||
| 192 | #ifdef THIRTY_TWO_BIT | ||
| 193 | static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, const BN_ULONG b) | ||
| 194 | { | ||
| 195 | register BN_ULONG h, l, s; | ||
| 196 | BN_ULONG tab[8], top2b = a >> 30; | ||
| 197 | register BN_ULONG a1, a2, a4; | ||
| 198 | |||
| 199 | a1 = a & (0x3FFFFFFF); a2 = a1 << 1; a4 = a2 << 1; | ||
| 200 | |||
| 201 | tab[0] = 0; tab[1] = a1; tab[2] = a2; tab[3] = a1^a2; | ||
| 202 | tab[4] = a4; tab[5] = a1^a4; tab[6] = a2^a4; tab[7] = a1^a2^a4; | ||
| 203 | |||
| 204 | s = tab[b & 0x7]; l = s; | ||
| 205 | s = tab[b >> 3 & 0x7]; l ^= s << 3; h = s >> 29; | ||
| 206 | s = tab[b >> 6 & 0x7]; l ^= s << 6; h ^= s >> 26; | ||
| 207 | s = tab[b >> 9 & 0x7]; l ^= s << 9; h ^= s >> 23; | ||
| 208 | s = tab[b >> 12 & 0x7]; l ^= s << 12; h ^= s >> 20; | ||
| 209 | s = tab[b >> 15 & 0x7]; l ^= s << 15; h ^= s >> 17; | ||
| 210 | s = tab[b >> 18 & 0x7]; l ^= s << 18; h ^= s >> 14; | ||
| 211 | s = tab[b >> 21 & 0x7]; l ^= s << 21; h ^= s >> 11; | ||
| 212 | s = tab[b >> 24 & 0x7]; l ^= s << 24; h ^= s >> 8; | ||
| 213 | s = tab[b >> 27 & 0x7]; l ^= s << 27; h ^= s >> 5; | ||
| 214 | s = tab[b >> 30 ]; l ^= s << 30; h ^= s >> 2; | ||
| 215 | |||
| 216 | /* compensate for the top two bits of a */ | ||
| 217 | |||
| 218 | if (top2b & 01) { l ^= b << 30; h ^= b >> 2; } | ||
| 219 | if (top2b & 02) { l ^= b << 31; h ^= b >> 1; } | ||
| 220 | |||
| 221 | *r1 = h; *r0 = l; | ||
| 222 | } | ||
| 223 | #endif | ||
| 224 | #if defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG) | ||
| 225 | static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, const BN_ULONG b) | ||
| 226 | { | ||
| 227 | register BN_ULONG h, l, s; | ||
| 228 | BN_ULONG tab[16], top3b = a >> 61; | ||
| 229 | register BN_ULONG a1, a2, a4, a8; | ||
| 230 | |||
| 231 | a1 = a & (0x1FFFFFFFFFFFFFFFULL); a2 = a1 << 1; a4 = a2 << 1; a8 = a4 << 1; | ||
| 232 | |||
| 233 | tab[ 0] = 0; tab[ 1] = a1; tab[ 2] = a2; tab[ 3] = a1^a2; | ||
| 234 | tab[ 4] = a4; tab[ 5] = a1^a4; tab[ 6] = a2^a4; tab[ 7] = a1^a2^a4; | ||
| 235 | tab[ 8] = a8; tab[ 9] = a1^a8; tab[10] = a2^a8; tab[11] = a1^a2^a8; | ||
| 236 | tab[12] = a4^a8; tab[13] = a1^a4^a8; tab[14] = a2^a4^a8; tab[15] = a1^a2^a4^a8; | ||
| 237 | |||
| 238 | s = tab[b & 0xF]; l = s; | ||
| 239 | s = tab[b >> 4 & 0xF]; l ^= s << 4; h = s >> 60; | ||
| 240 | s = tab[b >> 8 & 0xF]; l ^= s << 8; h ^= s >> 56; | ||
| 241 | s = tab[b >> 12 & 0xF]; l ^= s << 12; h ^= s >> 52; | ||
| 242 | s = tab[b >> 16 & 0xF]; l ^= s << 16; h ^= s >> 48; | ||
| 243 | s = tab[b >> 20 & 0xF]; l ^= s << 20; h ^= s >> 44; | ||
| 244 | s = tab[b >> 24 & 0xF]; l ^= s << 24; h ^= s >> 40; | ||
| 245 | s = tab[b >> 28 & 0xF]; l ^= s << 28; h ^= s >> 36; | ||
| 246 | s = tab[b >> 32 & 0xF]; l ^= s << 32; h ^= s >> 32; | ||
| 247 | s = tab[b >> 36 & 0xF]; l ^= s << 36; h ^= s >> 28; | ||
| 248 | s = tab[b >> 40 & 0xF]; l ^= s << 40; h ^= s >> 24; | ||
| 249 | s = tab[b >> 44 & 0xF]; l ^= s << 44; h ^= s >> 20; | ||
| 250 | s = tab[b >> 48 & 0xF]; l ^= s << 48; h ^= s >> 16; | ||
| 251 | s = tab[b >> 52 & 0xF]; l ^= s << 52; h ^= s >> 12; | ||
| 252 | s = tab[b >> 56 & 0xF]; l ^= s << 56; h ^= s >> 8; | ||
| 253 | s = tab[b >> 60 ]; l ^= s << 60; h ^= s >> 4; | ||
| 254 | |||
| 255 | /* compensate for the top three bits of a */ | ||
| 256 | |||
| 257 | if (top3b & 01) { l ^= b << 61; h ^= b >> 3; } | ||
| 258 | if (top3b & 02) { l ^= b << 62; h ^= b >> 2; } | ||
| 259 | if (top3b & 04) { l ^= b << 63; h ^= b >> 1; } | ||
| 260 | |||
| 261 | *r1 = h; *r0 = l; | ||
| 262 | } | ||
| 263 | #endif | ||
| 264 | |||
| 265 | /* Product of two polynomials a, b each with degree < 2 * BN_BITS2 - 1, | ||
| 266 | * result is a polynomial r with degree < 4 * BN_BITS2 - 1 | ||
| 267 | * The caller MUST ensure that the variables have the right amount | ||
| 268 | * of space allocated. | ||
| 269 | */ | ||
| 270 | static void bn_GF2m_mul_2x2(BN_ULONG *r, const BN_ULONG a1, const BN_ULONG a0, const BN_ULONG b1, const BN_ULONG b0) | ||
| 271 | { | ||
| 272 | BN_ULONG m1, m0; | ||
| 273 | /* r[3] = h1, r[2] = h0; r[1] = l1; r[0] = l0 */ | ||
| 274 | bn_GF2m_mul_1x1(r+3, r+2, a1, b1); | ||
| 275 | bn_GF2m_mul_1x1(r+1, r, a0, b0); | ||
| 276 | bn_GF2m_mul_1x1(&m1, &m0, a0 ^ a1, b0 ^ b1); | ||
| 277 | /* Correction on m1 ^= l1 ^ h1; m0 ^= l0 ^ h0; */ | ||
| 278 | r[2] ^= m1 ^ r[1] ^ r[3]; /* h0 ^= m1 ^ l1 ^ h1; */ | ||
| 279 | r[1] = r[3] ^ r[2] ^ r[0] ^ m1 ^ m0; /* l1 ^= l0 ^ h0 ^ m0; */ | ||
| 280 | } | ||
| 281 | |||
| 282 | |||
| 283 | /* Add polynomials a and b and store result in r; r could be a or b, a and b | ||
| 284 | * could be equal; r is the bitwise XOR of a and b. | ||
| 285 | */ | ||
| 286 | int BN_GF2m_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b) | ||
| 287 | { | ||
| 288 | int i; | ||
| 289 | const BIGNUM *at, *bt; | ||
| 290 | |||
| 291 | bn_check_top(a); | ||
| 292 | bn_check_top(b); | ||
| 293 | |||
| 294 | if (a->top < b->top) { at = b; bt = a; } | ||
| 295 | else { at = a; bt = b; } | ||
| 296 | |||
| 297 | bn_wexpand(r, at->top); | ||
| 298 | |||
| 299 | for (i = 0; i < bt->top; i++) | ||
| 300 | { | ||
| 301 | r->d[i] = at->d[i] ^ bt->d[i]; | ||
| 302 | } | ||
| 303 | for (; i < at->top; i++) | ||
| 304 | { | ||
| 305 | r->d[i] = at->d[i]; | ||
| 306 | } | ||
| 307 | |||
| 308 | r->top = at->top; | ||
| 309 | bn_correct_top(r); | ||
| 310 | |||
| 311 | return 1; | ||
| 312 | } | ||
| 313 | |||
| 314 | |||
| 315 | /* Some functions allow for representation of the irreducible polynomials | ||
| 316 | * as an int[], say p. The irreducible f(t) is then of the form: | ||
| 317 | * t^p[0] + t^p[1] + ... + t^p[k] | ||
| 318 | * where m = p[0] > p[1] > ... > p[k] = 0. | ||
| 319 | */ | ||
| 320 | |||
| 321 | |||
| 322 | /* Performs modular reduction of a and store result in r. r could be a. */ | ||
| 323 | int BN_GF2m_mod_arr(BIGNUM *r, const BIGNUM *a, const unsigned int p[]) | ||
| 324 | { | ||
| 325 | int j, k; | ||
| 326 | int n, dN, d0, d1; | ||
| 327 | BN_ULONG zz, *z; | ||
| 328 | |||
| 329 | bn_check_top(a); | ||
| 330 | |||
| 331 | if (!p[0]) | ||
| 332 | { | ||
| 333 | /* reduction mod 1 => return 0 */ | ||
| 334 | BN_zero(r); | ||
| 335 | return 1; | ||
| 336 | } | ||
| 337 | |||
| 338 | /* Since the algorithm does reduction in the r value, if a != r, copy | ||
| 339 | * the contents of a into r so we can do reduction in r. | ||
| 340 | */ | ||
| 341 | if (a != r) | ||
| 342 | { | ||
| 343 | if (!bn_wexpand(r, a->top)) return 0; | ||
| 344 | for (j = 0; j < a->top; j++) | ||
| 345 | { | ||
| 346 | r->d[j] = a->d[j]; | ||
| 347 | } | ||
| 348 | r->top = a->top; | ||
| 349 | } | ||
| 350 | z = r->d; | ||
| 351 | |||
| 352 | /* start reduction */ | ||
| 353 | dN = p[0] / BN_BITS2; | ||
| 354 | for (j = r->top - 1; j > dN;) | ||
| 355 | { | ||
| 356 | zz = z[j]; | ||
| 357 | if (z[j] == 0) { j--; continue; } | ||
| 358 | z[j] = 0; | ||
| 359 | |||
| 360 | for (k = 1; p[k] != 0; k++) | ||
| 361 | { | ||
| 362 | /* reducing component t^p[k] */ | ||
| 363 | n = p[0] - p[k]; | ||
| 364 | d0 = n % BN_BITS2; d1 = BN_BITS2 - d0; | ||
| 365 | n /= BN_BITS2; | ||
| 366 | z[j-n] ^= (zz>>d0); | ||
| 367 | if (d0) z[j-n-1] ^= (zz<<d1); | ||
| 368 | } | ||
| 369 | |||
| 370 | /* reducing component t^0 */ | ||
| 371 | n = dN; | ||
| 372 | d0 = p[0] % BN_BITS2; | ||
| 373 | d1 = BN_BITS2 - d0; | ||
| 374 | z[j-n] ^= (zz >> d0); | ||
| 375 | if (d0) z[j-n-1] ^= (zz << d1); | ||
| 376 | } | ||
| 377 | |||
| 378 | /* final round of reduction */ | ||
| 379 | while (j == dN) | ||
| 380 | { | ||
| 381 | |||
| 382 | d0 = p[0] % BN_BITS2; | ||
| 383 | zz = z[dN] >> d0; | ||
| 384 | if (zz == 0) break; | ||
| 385 | d1 = BN_BITS2 - d0; | ||
| 386 | |||
| 387 | if (d0) z[dN] = (z[dN] << d1) >> d1; /* clear up the top d1 bits */ | ||
| 388 | z[0] ^= zz; /* reduction t^0 component */ | ||
| 389 | |||
| 390 | for (k = 1; p[k] != 0; k++) | ||
| 391 | { | ||
| 392 | BN_ULONG tmp_ulong; | ||
| 393 | |||
| 394 | /* reducing component t^p[k]*/ | ||
| 395 | n = p[k] / BN_BITS2; | ||
| 396 | d0 = p[k] % BN_BITS2; | ||
| 397 | d1 = BN_BITS2 - d0; | ||
| 398 | z[n] ^= (zz << d0); | ||
| 399 | tmp_ulong = zz >> d1; | ||
| 400 | if (d0 && tmp_ulong) | ||
| 401 | z[n+1] ^= tmp_ulong; | ||
| 402 | } | ||
| 403 | |||
| 404 | |||
| 405 | } | ||
| 406 | |||
| 407 | bn_correct_top(r); | ||
| 408 | return 1; | ||
| 409 | } | ||
| 410 | |||
| 411 | /* Performs modular reduction of a by p and store result in r. r could be a. | ||
| 412 | * | ||
| 413 | * This function calls down to the BN_GF2m_mod_arr implementation; this wrapper | ||
| 414 | * function is only provided for convenience; for best performance, use the | ||
| 415 | * BN_GF2m_mod_arr function. | ||
| 416 | */ | ||
| 417 | int BN_GF2m_mod(BIGNUM *r, const BIGNUM *a, const BIGNUM *p) | ||
| 418 | { | ||
| 419 | int ret = 0; | ||
| 420 | const int max = BN_num_bits(p); | ||
| 421 | unsigned int *arr=NULL; | ||
| 422 | bn_check_top(a); | ||
| 423 | bn_check_top(p); | ||
| 424 | if ((arr = (unsigned int *)OPENSSL_malloc(sizeof(unsigned int) * max)) == NULL) goto err; | ||
| 425 | ret = BN_GF2m_poly2arr(p, arr, max); | ||
| 426 | if (!ret || ret > max) | ||
| 427 | { | ||
| 428 | BNerr(BN_F_BN_GF2M_MOD,BN_R_INVALID_LENGTH); | ||
| 429 | goto err; | ||
| 430 | } | ||
| 431 | ret = BN_GF2m_mod_arr(r, a, arr); | ||
| 432 | bn_check_top(r); | ||
| 433 | err: | ||
| 434 | if (arr) OPENSSL_free(arr); | ||
| 435 | return ret; | ||
| 436 | } | ||
| 437 | |||
| 438 | |||
| 439 | /* Compute the product of two polynomials a and b, reduce modulo p, and store | ||
| 440 | * the result in r. r could be a or b; a could be b. | ||
| 441 | */ | ||
| 442 | int BN_GF2m_mod_mul_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const unsigned int p[], BN_CTX *ctx) | ||
| 443 | { | ||
| 444 | int zlen, i, j, k, ret = 0; | ||
| 445 | BIGNUM *s; | ||
| 446 | BN_ULONG x1, x0, y1, y0, zz[4]; | ||
| 447 | |||
| 448 | bn_check_top(a); | ||
| 449 | bn_check_top(b); | ||
| 450 | |||
| 451 | if (a == b) | ||
| 452 | { | ||
| 453 | return BN_GF2m_mod_sqr_arr(r, a, p, ctx); | ||
| 454 | } | ||
| 455 | |||
| 456 | BN_CTX_start(ctx); | ||
| 457 | if ((s = BN_CTX_get(ctx)) == NULL) goto err; | ||
| 458 | |||
| 459 | zlen = a->top + b->top + 4; | ||
| 460 | if (!bn_wexpand(s, zlen)) goto err; | ||
| 461 | s->top = zlen; | ||
| 462 | |||
| 463 | for (i = 0; i < zlen; i++) s->d[i] = 0; | ||
| 464 | |||
| 465 | for (j = 0; j < b->top; j += 2) | ||
| 466 | { | ||
| 467 | y0 = b->d[j]; | ||
| 468 | y1 = ((j+1) == b->top) ? 0 : b->d[j+1]; | ||
| 469 | for (i = 0; i < a->top; i += 2) | ||
| 470 | { | ||
| 471 | x0 = a->d[i]; | ||
| 472 | x1 = ((i+1) == a->top) ? 0 : a->d[i+1]; | ||
| 473 | bn_GF2m_mul_2x2(zz, x1, x0, y1, y0); | ||
| 474 | for (k = 0; k < 4; k++) s->d[i+j+k] ^= zz[k]; | ||
| 475 | } | ||
| 476 | } | ||
| 477 | |||
| 478 | bn_correct_top(s); | ||
| 479 | if (BN_GF2m_mod_arr(r, s, p)) | ||
| 480 | ret = 1; | ||
| 481 | bn_check_top(r); | ||
| 482 | |||
| 483 | err: | ||
| 484 | BN_CTX_end(ctx); | ||
| 485 | return ret; | ||
| 486 | } | ||
| 487 | |||
| 488 | /* Compute the product of two polynomials a and b, reduce modulo p, and store | ||
| 489 | * the result in r. r could be a or b; a could equal b. | ||
| 490 | * | ||
| 491 | * This function calls down to the BN_GF2m_mod_mul_arr implementation; this wrapper | ||
| 492 | * function is only provided for convenience; for best performance, use the | ||
| 493 | * BN_GF2m_mod_mul_arr function. | ||
| 494 | */ | ||
| 495 | int BN_GF2m_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *p, BN_CTX *ctx) | ||
| 496 | { | ||
| 497 | int ret = 0; | ||
| 498 | const int max = BN_num_bits(p); | ||
| 499 | unsigned int *arr=NULL; | ||
| 500 | bn_check_top(a); | ||
| 501 | bn_check_top(b); | ||
| 502 | bn_check_top(p); | ||
| 503 | if ((arr = (unsigned int *)OPENSSL_malloc(sizeof(unsigned int) * max)) == NULL) goto err; | ||
| 504 | ret = BN_GF2m_poly2arr(p, arr, max); | ||
| 505 | if (!ret || ret > max) | ||
| 506 | { | ||
| 507 | BNerr(BN_F_BN_GF2M_MOD_MUL,BN_R_INVALID_LENGTH); | ||
| 508 | goto err; | ||
| 509 | } | ||
| 510 | ret = BN_GF2m_mod_mul_arr(r, a, b, arr, ctx); | ||
| 511 | bn_check_top(r); | ||
| 512 | err: | ||
| 513 | if (arr) OPENSSL_free(arr); | ||
| 514 | return ret; | ||
| 515 | } | ||
| 516 | |||
| 517 | |||
| 518 | /* Square a, reduce the result mod p, and store it in a. r could be a. */ | ||
| 519 | int BN_GF2m_mod_sqr_arr(BIGNUM *r, const BIGNUM *a, const unsigned int p[], BN_CTX *ctx) | ||
| 520 | { | ||
| 521 | int i, ret = 0; | ||
| 522 | BIGNUM *s; | ||
| 523 | |||
| 524 | bn_check_top(a); | ||
| 525 | BN_CTX_start(ctx); | ||
| 526 | if ((s = BN_CTX_get(ctx)) == NULL) return 0; | ||
| 527 | if (!bn_wexpand(s, 2 * a->top)) goto err; | ||
| 528 | |||
| 529 | for (i = a->top - 1; i >= 0; i--) | ||
| 530 | { | ||
| 531 | s->d[2*i+1] = SQR1(a->d[i]); | ||
| 532 | s->d[2*i ] = SQR0(a->d[i]); | ||
| 533 | } | ||
| 534 | |||
| 535 | s->top = 2 * a->top; | ||
| 536 | bn_correct_top(s); | ||
| 537 | if (!BN_GF2m_mod_arr(r, s, p)) goto err; | ||
| 538 | bn_check_top(r); | ||
| 539 | ret = 1; | ||
| 540 | err: | ||
| 541 | BN_CTX_end(ctx); | ||
| 542 | return ret; | ||
| 543 | } | ||
| 544 | |||
| 545 | /* Square a, reduce the result mod p, and store it in a. r could be a. | ||
| 546 | * | ||
| 547 | * This function calls down to the BN_GF2m_mod_sqr_arr implementation; this wrapper | ||
| 548 | * function is only provided for convenience; for best performance, use the | ||
| 549 | * BN_GF2m_mod_sqr_arr function. | ||
| 550 | */ | ||
| 551 | int BN_GF2m_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) | ||
| 552 | { | ||
| 553 | int ret = 0; | ||
| 554 | const int max = BN_num_bits(p); | ||
| 555 | unsigned int *arr=NULL; | ||
| 556 | |||
| 557 | bn_check_top(a); | ||
| 558 | bn_check_top(p); | ||
| 559 | if ((arr = (unsigned int *)OPENSSL_malloc(sizeof(unsigned int) * max)) == NULL) goto err; | ||
| 560 | ret = BN_GF2m_poly2arr(p, arr, max); | ||
| 561 | if (!ret || ret > max) | ||
| 562 | { | ||
| 563 | BNerr(BN_F_BN_GF2M_MOD_SQR,BN_R_INVALID_LENGTH); | ||
| 564 | goto err; | ||
| 565 | } | ||
| 566 | ret = BN_GF2m_mod_sqr_arr(r, a, arr, ctx); | ||
| 567 | bn_check_top(r); | ||
| 568 | err: | ||
| 569 | if (arr) OPENSSL_free(arr); | ||
| 570 | return ret; | ||
| 571 | } | ||
| 572 | |||
| 573 | |||
| 574 | /* Invert a, reduce modulo p, and store the result in r. r could be a. | ||
| 575 | * Uses Modified Almost Inverse Algorithm (Algorithm 10) from | ||
| 576 | * Hankerson, D., Hernandez, J.L., and Menezes, A. "Software Implementation | ||
| 577 | * of Elliptic Curve Cryptography Over Binary Fields". | ||
| 578 | */ | ||
| 579 | int BN_GF2m_mod_inv(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) | ||
| 580 | { | ||
| 581 | BIGNUM *b, *c, *u, *v, *tmp; | ||
| 582 | int ret = 0; | ||
| 583 | |||
| 584 | bn_check_top(a); | ||
| 585 | bn_check_top(p); | ||
| 586 | |||
| 587 | BN_CTX_start(ctx); | ||
| 588 | |||
| 589 | b = BN_CTX_get(ctx); | ||
| 590 | c = BN_CTX_get(ctx); | ||
| 591 | u = BN_CTX_get(ctx); | ||
| 592 | v = BN_CTX_get(ctx); | ||
| 593 | if (v == NULL) goto err; | ||
| 594 | |||
| 595 | if (!BN_one(b)) goto err; | ||
| 596 | if (!BN_GF2m_mod(u, a, p)) goto err; | ||
| 597 | if (!BN_copy(v, p)) goto err; | ||
| 598 | |||
| 599 | if (BN_is_zero(u)) goto err; | ||
| 600 | |||
| 601 | while (1) | ||
| 602 | { | ||
| 603 | while (!BN_is_odd(u)) | ||
| 604 | { | ||
| 605 | if (!BN_rshift1(u, u)) goto err; | ||
| 606 | if (BN_is_odd(b)) | ||
| 607 | { | ||
| 608 | if (!BN_GF2m_add(b, b, p)) goto err; | ||
| 609 | } | ||
| 610 | if (!BN_rshift1(b, b)) goto err; | ||
| 611 | } | ||
| 612 | |||
| 613 | if (BN_abs_is_word(u, 1)) break; | ||
| 614 | |||
| 615 | if (BN_num_bits(u) < BN_num_bits(v)) | ||
| 616 | { | ||
| 617 | tmp = u; u = v; v = tmp; | ||
| 618 | tmp = b; b = c; c = tmp; | ||
| 619 | } | ||
| 620 | |||
| 621 | if (!BN_GF2m_add(u, u, v)) goto err; | ||
| 622 | if (!BN_GF2m_add(b, b, c)) goto err; | ||
| 623 | } | ||
| 624 | |||
| 625 | |||
| 626 | if (!BN_copy(r, b)) goto err; | ||
| 627 | bn_check_top(r); | ||
| 628 | ret = 1; | ||
| 629 | |||
| 630 | err: | ||
| 631 | BN_CTX_end(ctx); | ||
| 632 | return ret; | ||
| 633 | } | ||
| 634 | |||
| 635 | /* Invert xx, reduce modulo p, and store the result in r. r could be xx. | ||
| 636 | * | ||
| 637 | * This function calls down to the BN_GF2m_mod_inv implementation; this wrapper | ||
| 638 | * function is only provided for convenience; for best performance, use the | ||
| 639 | * BN_GF2m_mod_inv function. | ||
| 640 | */ | ||
| 641 | int BN_GF2m_mod_inv_arr(BIGNUM *r, const BIGNUM *xx, const unsigned int p[], BN_CTX *ctx) | ||
| 642 | { | ||
| 643 | BIGNUM *field; | ||
| 644 | int ret = 0; | ||
| 645 | |||
| 646 | bn_check_top(xx); | ||
| 647 | BN_CTX_start(ctx); | ||
| 648 | if ((field = BN_CTX_get(ctx)) == NULL) goto err; | ||
| 649 | if (!BN_GF2m_arr2poly(p, field)) goto err; | ||
| 650 | |||
| 651 | ret = BN_GF2m_mod_inv(r, xx, field, ctx); | ||
| 652 | bn_check_top(r); | ||
| 653 | |||
| 654 | err: | ||
| 655 | BN_CTX_end(ctx); | ||
| 656 | return ret; | ||
| 657 | } | ||
| 658 | |||
| 659 | |||
| 660 | #ifndef OPENSSL_SUN_GF2M_DIV | ||
| 661 | /* Divide y by x, reduce modulo p, and store the result in r. r could be x | ||
| 662 | * or y, x could equal y. | ||
| 663 | */ | ||
| 664 | int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x, const BIGNUM *p, BN_CTX *ctx) | ||
| 665 | { | ||
| 666 | BIGNUM *xinv = NULL; | ||
| 667 | int ret = 0; | ||
| 668 | |||
| 669 | bn_check_top(y); | ||
| 670 | bn_check_top(x); | ||
| 671 | bn_check_top(p); | ||
| 672 | |||
| 673 | BN_CTX_start(ctx); | ||
| 674 | xinv = BN_CTX_get(ctx); | ||
| 675 | if (xinv == NULL) goto err; | ||
| 676 | |||
| 677 | if (!BN_GF2m_mod_inv(xinv, x, p, ctx)) goto err; | ||
| 678 | if (!BN_GF2m_mod_mul(r, y, xinv, p, ctx)) goto err; | ||
| 679 | bn_check_top(r); | ||
| 680 | ret = 1; | ||
| 681 | |||
| 682 | err: | ||
| 683 | BN_CTX_end(ctx); | ||
| 684 | return ret; | ||
| 685 | } | ||
| 686 | #else | ||
| 687 | /* Divide y by x, reduce modulo p, and store the result in r. r could be x | ||
| 688 | * or y, x could equal y. | ||
| 689 | * Uses algorithm Modular_Division_GF(2^m) from | ||
| 690 | * Chang-Shantz, S. "From Euclid's GCD to Montgomery Multiplication to | ||
| 691 | * the Great Divide". | ||
| 692 | */ | ||
| 693 | int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x, const BIGNUM *p, BN_CTX *ctx) | ||
| 694 | { | ||
| 695 | BIGNUM *a, *b, *u, *v; | ||
| 696 | int ret = 0; | ||
| 697 | |||
| 698 | bn_check_top(y); | ||
| 699 | bn_check_top(x); | ||
| 700 | bn_check_top(p); | ||
| 701 | |||
| 702 | BN_CTX_start(ctx); | ||
| 703 | |||
| 704 | a = BN_CTX_get(ctx); | ||
| 705 | b = BN_CTX_get(ctx); | ||
| 706 | u = BN_CTX_get(ctx); | ||
| 707 | v = BN_CTX_get(ctx); | ||
| 708 | if (v == NULL) goto err; | ||
| 709 | |||
| 710 | /* reduce x and y mod p */ | ||
| 711 | if (!BN_GF2m_mod(u, y, p)) goto err; | ||
| 712 | if (!BN_GF2m_mod(a, x, p)) goto err; | ||
| 713 | if (!BN_copy(b, p)) goto err; | ||
| 714 | |||
| 715 | while (!BN_is_odd(a)) | ||
| 716 | { | ||
| 717 | if (!BN_rshift1(a, a)) goto err; | ||
| 718 | if (BN_is_odd(u)) if (!BN_GF2m_add(u, u, p)) goto err; | ||
| 719 | if (!BN_rshift1(u, u)) goto err; | ||
| 720 | } | ||
| 721 | |||
| 722 | do | ||
| 723 | { | ||
| 724 | if (BN_GF2m_cmp(b, a) > 0) | ||
| 725 | { | ||
| 726 | if (!BN_GF2m_add(b, b, a)) goto err; | ||
| 727 | if (!BN_GF2m_add(v, v, u)) goto err; | ||
| 728 | do | ||
| 729 | { | ||
| 730 | if (!BN_rshift1(b, b)) goto err; | ||
| 731 | if (BN_is_odd(v)) if (!BN_GF2m_add(v, v, p)) goto err; | ||
| 732 | if (!BN_rshift1(v, v)) goto err; | ||
| 733 | } while (!BN_is_odd(b)); | ||
| 734 | } | ||
| 735 | else if (BN_abs_is_word(a, 1)) | ||
| 736 | break; | ||
| 737 | else | ||
| 738 | { | ||
| 739 | if (!BN_GF2m_add(a, a, b)) goto err; | ||
| 740 | if (!BN_GF2m_add(u, u, v)) goto err; | ||
| 741 | do | ||
| 742 | { | ||
| 743 | if (!BN_rshift1(a, a)) goto err; | ||
| 744 | if (BN_is_odd(u)) if (!BN_GF2m_add(u, u, p)) goto err; | ||
| 745 | if (!BN_rshift1(u, u)) goto err; | ||
| 746 | } while (!BN_is_odd(a)); | ||
| 747 | } | ||
| 748 | } while (1); | ||
| 749 | |||
| 750 | if (!BN_copy(r, u)) goto err; | ||
| 751 | bn_check_top(r); | ||
| 752 | ret = 1; | ||
| 753 | |||
| 754 | err: | ||
| 755 | BN_CTX_end(ctx); | ||
| 756 | return ret; | ||
| 757 | } | ||
| 758 | #endif | ||
| 759 | |||
| 760 | /* Divide yy by xx, reduce modulo p, and store the result in r. r could be xx | ||
| 761 | * or yy, xx could equal yy. | ||
| 762 | * | ||
| 763 | * This function calls down to the BN_GF2m_mod_div implementation; this wrapper | ||
| 764 | * function is only provided for convenience; for best performance, use the | ||
| 765 | * BN_GF2m_mod_div function. | ||
| 766 | */ | ||
| 767 | int BN_GF2m_mod_div_arr(BIGNUM *r, const BIGNUM *yy, const BIGNUM *xx, const unsigned int p[], BN_CTX *ctx) | ||
| 768 | { | ||
| 769 | BIGNUM *field; | ||
| 770 | int ret = 0; | ||
| 771 | |||
| 772 | bn_check_top(yy); | ||
| 773 | bn_check_top(xx); | ||
| 774 | |||
| 775 | BN_CTX_start(ctx); | ||
| 776 | if ((field = BN_CTX_get(ctx)) == NULL) goto err; | ||
| 777 | if (!BN_GF2m_arr2poly(p, field)) goto err; | ||
| 778 | |||
| 779 | ret = BN_GF2m_mod_div(r, yy, xx, field, ctx); | ||
| 780 | bn_check_top(r); | ||
| 781 | |||
| 782 | err: | ||
| 783 | BN_CTX_end(ctx); | ||
| 784 | return ret; | ||
| 785 | } | ||
| 786 | |||
| 787 | |||
| 788 | /* Compute the bth power of a, reduce modulo p, and store | ||
| 789 | * the result in r. r could be a. | ||
| 790 | * Uses simple square-and-multiply algorithm A.5.1 from IEEE P1363. | ||
| 791 | */ | ||
| 792 | int BN_GF2m_mod_exp_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const unsigned int p[], BN_CTX *ctx) | ||
| 793 | { | ||
| 794 | int ret = 0, i, n; | ||
| 795 | BIGNUM *u; | ||
| 796 | |||
| 797 | bn_check_top(a); | ||
| 798 | bn_check_top(b); | ||
| 799 | |||
| 800 | if (BN_is_zero(b)) | ||
| 801 | return(BN_one(r)); | ||
| 802 | |||
| 803 | if (BN_abs_is_word(b, 1)) | ||
| 804 | return (BN_copy(r, a) != NULL); | ||
| 805 | |||
| 806 | BN_CTX_start(ctx); | ||
| 807 | if ((u = BN_CTX_get(ctx)) == NULL) goto err; | ||
| 808 | |||
| 809 | if (!BN_GF2m_mod_arr(u, a, p)) goto err; | ||
| 810 | |||
| 811 | n = BN_num_bits(b) - 1; | ||
| 812 | for (i = n - 1; i >= 0; i--) | ||
| 813 | { | ||
| 814 | if (!BN_GF2m_mod_sqr_arr(u, u, p, ctx)) goto err; | ||
| 815 | if (BN_is_bit_set(b, i)) | ||
| 816 | { | ||
| 817 | if (!BN_GF2m_mod_mul_arr(u, u, a, p, ctx)) goto err; | ||
| 818 | } | ||
| 819 | } | ||
| 820 | if (!BN_copy(r, u)) goto err; | ||
| 821 | bn_check_top(r); | ||
| 822 | ret = 1; | ||
| 823 | err: | ||
| 824 | BN_CTX_end(ctx); | ||
| 825 | return ret; | ||
| 826 | } | ||
| 827 | |||
| 828 | /* Compute the bth power of a, reduce modulo p, and store | ||
| 829 | * the result in r. r could be a. | ||
| 830 | * | ||
| 831 | * This function calls down to the BN_GF2m_mod_exp_arr implementation; this wrapper | ||
| 832 | * function is only provided for convenience; for best performance, use the | ||
| 833 | * BN_GF2m_mod_exp_arr function. | ||
| 834 | */ | ||
| 835 | int BN_GF2m_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *p, BN_CTX *ctx) | ||
| 836 | { | ||
| 837 | int ret = 0; | ||
| 838 | const int max = BN_num_bits(p); | ||
| 839 | unsigned int *arr=NULL; | ||
| 840 | bn_check_top(a); | ||
| 841 | bn_check_top(b); | ||
| 842 | bn_check_top(p); | ||
| 843 | if ((arr = (unsigned int *)OPENSSL_malloc(sizeof(unsigned int) * max)) == NULL) goto err; | ||
| 844 | ret = BN_GF2m_poly2arr(p, arr, max); | ||
| 845 | if (!ret || ret > max) | ||
| 846 | { | ||
| 847 | BNerr(BN_F_BN_GF2M_MOD_EXP,BN_R_INVALID_LENGTH); | ||
| 848 | goto err; | ||
| 849 | } | ||
| 850 | ret = BN_GF2m_mod_exp_arr(r, a, b, arr, ctx); | ||
| 851 | bn_check_top(r); | ||
| 852 | err: | ||
| 853 | if (arr) OPENSSL_free(arr); | ||
| 854 | return ret; | ||
| 855 | } | ||
| 856 | |||
| 857 | /* Compute the square root of a, reduce modulo p, and store | ||
| 858 | * the result in r. r could be a. | ||
| 859 | * Uses exponentiation as in algorithm A.4.1 from IEEE P1363. | ||
| 860 | */ | ||
| 861 | int BN_GF2m_mod_sqrt_arr(BIGNUM *r, const BIGNUM *a, const unsigned int p[], BN_CTX *ctx) | ||
| 862 | { | ||
| 863 | int ret = 0; | ||
| 864 | BIGNUM *u; | ||
| 865 | |||
| 866 | bn_check_top(a); | ||
| 867 | |||
| 868 | if (!p[0]) | ||
| 869 | { | ||
| 870 | /* reduction mod 1 => return 0 */ | ||
| 871 | BN_zero(r); | ||
| 872 | return 1; | ||
| 873 | } | ||
| 874 | |||
| 875 | BN_CTX_start(ctx); | ||
| 876 | if ((u = BN_CTX_get(ctx)) == NULL) goto err; | ||
| 877 | |||
| 878 | if (!BN_set_bit(u, p[0] - 1)) goto err; | ||
| 879 | ret = BN_GF2m_mod_exp_arr(r, a, u, p, ctx); | ||
| 880 | bn_check_top(r); | ||
| 881 | |||
| 882 | err: | ||
| 883 | BN_CTX_end(ctx); | ||
| 884 | return ret; | ||
| 885 | } | ||
| 886 | |||
| 887 | /* Compute the square root of a, reduce modulo p, and store | ||
| 888 | * the result in r. r could be a. | ||
| 889 | * | ||
| 890 | * This function calls down to the BN_GF2m_mod_sqrt_arr implementation; this wrapper | ||
| 891 | * function is only provided for convenience; for best performance, use the | ||
| 892 | * BN_GF2m_mod_sqrt_arr function. | ||
| 893 | */ | ||
| 894 | int BN_GF2m_mod_sqrt(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) | ||
| 895 | { | ||
| 896 | int ret = 0; | ||
| 897 | const int max = BN_num_bits(p); | ||
| 898 | unsigned int *arr=NULL; | ||
| 899 | bn_check_top(a); | ||
| 900 | bn_check_top(p); | ||
| 901 | if ((arr = (unsigned int *)OPENSSL_malloc(sizeof(unsigned int) * max)) == NULL) goto err; | ||
| 902 | ret = BN_GF2m_poly2arr(p, arr, max); | ||
| 903 | if (!ret || ret > max) | ||
| 904 | { | ||
| 905 | BNerr(BN_F_BN_GF2M_MOD_SQRT,BN_R_INVALID_LENGTH); | ||
| 906 | goto err; | ||
| 907 | } | ||
| 908 | ret = BN_GF2m_mod_sqrt_arr(r, a, arr, ctx); | ||
| 909 | bn_check_top(r); | ||
| 910 | err: | ||
| 911 | if (arr) OPENSSL_free(arr); | ||
| 912 | return ret; | ||
| 913 | } | ||
| 914 | |||
| 915 | /* Find r such that r^2 + r = a mod p. r could be a. If no r exists returns 0. | ||
| 916 | * Uses algorithms A.4.7 and A.4.6 from IEEE P1363. | ||
| 917 | */ | ||
| 918 | int BN_GF2m_mod_solve_quad_arr(BIGNUM *r, const BIGNUM *a_, const unsigned int p[], BN_CTX *ctx) | ||
| 919 | { | ||
| 920 | int ret = 0, count = 0; | ||
| 921 | unsigned int j; | ||
| 922 | BIGNUM *a, *z, *rho, *w, *w2, *tmp; | ||
| 923 | |||
| 924 | bn_check_top(a_); | ||
| 925 | |||
| 926 | if (!p[0]) | ||
| 927 | { | ||
| 928 | /* reduction mod 1 => return 0 */ | ||
| 929 | BN_zero(r); | ||
| 930 | return 1; | ||
| 931 | } | ||
| 932 | |||
| 933 | BN_CTX_start(ctx); | ||
| 934 | a = BN_CTX_get(ctx); | ||
| 935 | z = BN_CTX_get(ctx); | ||
| 936 | w = BN_CTX_get(ctx); | ||
| 937 | if (w == NULL) goto err; | ||
| 938 | |||
| 939 | if (!BN_GF2m_mod_arr(a, a_, p)) goto err; | ||
| 940 | |||
| 941 | if (BN_is_zero(a)) | ||
| 942 | { | ||
| 943 | BN_zero(r); | ||
| 944 | ret = 1; | ||
| 945 | goto err; | ||
| 946 | } | ||
| 947 | |||
| 948 | if (p[0] & 0x1) /* m is odd */ | ||
| 949 | { | ||
| 950 | /* compute half-trace of a */ | ||
| 951 | if (!BN_copy(z, a)) goto err; | ||
| 952 | for (j = 1; j <= (p[0] - 1) / 2; j++) | ||
| 953 | { | ||
| 954 | if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) goto err; | ||
| 955 | if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) goto err; | ||
| 956 | if (!BN_GF2m_add(z, z, a)) goto err; | ||
| 957 | } | ||
| 958 | |||
| 959 | } | ||
| 960 | else /* m is even */ | ||
| 961 | { | ||
| 962 | rho = BN_CTX_get(ctx); | ||
| 963 | w2 = BN_CTX_get(ctx); | ||
| 964 | tmp = BN_CTX_get(ctx); | ||
| 965 | if (tmp == NULL) goto err; | ||
| 966 | do | ||
| 967 | { | ||
| 968 | if (!BN_rand(rho, p[0], 0, 0)) goto err; | ||
| 969 | if (!BN_GF2m_mod_arr(rho, rho, p)) goto err; | ||
| 970 | BN_zero(z); | ||
| 971 | if (!BN_copy(w, rho)) goto err; | ||
| 972 | for (j = 1; j <= p[0] - 1; j++) | ||
| 973 | { | ||
| 974 | if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) goto err; | ||
| 975 | if (!BN_GF2m_mod_sqr_arr(w2, w, p, ctx)) goto err; | ||
| 976 | if (!BN_GF2m_mod_mul_arr(tmp, w2, a, p, ctx)) goto err; | ||
| 977 | if (!BN_GF2m_add(z, z, tmp)) goto err; | ||
| 978 | if (!BN_GF2m_add(w, w2, rho)) goto err; | ||
| 979 | } | ||
| 980 | count++; | ||
| 981 | } while (BN_is_zero(w) && (count < MAX_ITERATIONS)); | ||
| 982 | if (BN_is_zero(w)) | ||
| 983 | { | ||
| 984 | BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD_ARR,BN_R_TOO_MANY_ITERATIONS); | ||
| 985 | goto err; | ||
| 986 | } | ||
| 987 | } | ||
| 988 | |||
| 989 | if (!BN_GF2m_mod_sqr_arr(w, z, p, ctx)) goto err; | ||
| 990 | if (!BN_GF2m_add(w, z, w)) goto err; | ||
| 991 | if (BN_GF2m_cmp(w, a)) | ||
| 992 | { | ||
| 993 | BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD_ARR, BN_R_NO_SOLUTION); | ||
| 994 | goto err; | ||
| 995 | } | ||
| 996 | |||
| 997 | if (!BN_copy(r, z)) goto err; | ||
| 998 | bn_check_top(r); | ||
| 999 | |||
| 1000 | ret = 1; | ||
| 1001 | |||
| 1002 | err: | ||
| 1003 | BN_CTX_end(ctx); | ||
| 1004 | return ret; | ||
| 1005 | } | ||
| 1006 | |||
| 1007 | /* Find r such that r^2 + r = a mod p. r could be a. If no r exists returns 0. | ||
| 1008 | * | ||
| 1009 | * This function calls down to the BN_GF2m_mod_solve_quad_arr implementation; this wrapper | ||
| 1010 | * function is only provided for convenience; for best performance, use the | ||
| 1011 | * BN_GF2m_mod_solve_quad_arr function. | ||
| 1012 | */ | ||
| 1013 | int BN_GF2m_mod_solve_quad(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) | ||
| 1014 | { | ||
| 1015 | int ret = 0; | ||
| 1016 | const int max = BN_num_bits(p); | ||
| 1017 | unsigned int *arr=NULL; | ||
| 1018 | bn_check_top(a); | ||
| 1019 | bn_check_top(p); | ||
| 1020 | if ((arr = (unsigned int *)OPENSSL_malloc(sizeof(unsigned int) * | ||
| 1021 | max)) == NULL) goto err; | ||
| 1022 | ret = BN_GF2m_poly2arr(p, arr, max); | ||
| 1023 | if (!ret || ret > max) | ||
| 1024 | { | ||
| 1025 | BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD,BN_R_INVALID_LENGTH); | ||
| 1026 | goto err; | ||
| 1027 | } | ||
| 1028 | ret = BN_GF2m_mod_solve_quad_arr(r, a, arr, ctx); | ||
| 1029 | bn_check_top(r); | ||
| 1030 | err: | ||
| 1031 | if (arr) OPENSSL_free(arr); | ||
| 1032 | return ret; | ||
| 1033 | } | ||
| 1034 | |||
| 1035 | /* Convert the bit-string representation of a polynomial | ||
| 1036 | * ( \sum_{i=0}^n a_i * x^i , where a_0 is *not* zero) into an array | ||
| 1037 | * of integers corresponding to the bits with non-zero coefficient. | ||
| 1038 | * Up to max elements of the array will be filled. Return value is total | ||
| 1039 | * number of coefficients that would be extracted if array was large enough. | ||
| 1040 | */ | ||
| 1041 | int BN_GF2m_poly2arr(const BIGNUM *a, unsigned int p[], int max) | ||
| 1042 | { | ||
| 1043 | int i, j, k = 0; | ||
| 1044 | BN_ULONG mask; | ||
| 1045 | |||
| 1046 | if (BN_is_zero(a) || !BN_is_bit_set(a, 0)) | ||
| 1047 | /* a_0 == 0 => return error (the unsigned int array | ||
| 1048 | * must be terminated by 0) | ||
| 1049 | */ | ||
| 1050 | return 0; | ||
| 1051 | |||
| 1052 | for (i = a->top - 1; i >= 0; i--) | ||
| 1053 | { | ||
| 1054 | if (!a->d[i]) | ||
| 1055 | /* skip word if a->d[i] == 0 */ | ||
| 1056 | continue; | ||
| 1057 | mask = BN_TBIT; | ||
| 1058 | for (j = BN_BITS2 - 1; j >= 0; j--) | ||
| 1059 | { | ||
| 1060 | if (a->d[i] & mask) | ||
| 1061 | { | ||
| 1062 | if (k < max) p[k] = BN_BITS2 * i + j; | ||
| 1063 | k++; | ||
| 1064 | } | ||
| 1065 | mask >>= 1; | ||
| 1066 | } | ||
| 1067 | } | ||
| 1068 | |||
| 1069 | return k; | ||
| 1070 | } | ||
| 1071 | |||
| 1072 | /* Convert the coefficient array representation of a polynomial to a | ||
| 1073 | * bit-string. The array must be terminated by 0. | ||
| 1074 | */ | ||
| 1075 | int BN_GF2m_arr2poly(const unsigned int p[], BIGNUM *a) | ||
| 1076 | { | ||
| 1077 | int i; | ||
| 1078 | |||
| 1079 | bn_check_top(a); | ||
| 1080 | BN_zero(a); | ||
| 1081 | for (i = 0; p[i] != 0; i++) | ||
| 1082 | { | ||
| 1083 | if (BN_set_bit(a, p[i]) == 0) | ||
| 1084 | return 0; | ||
| 1085 | } | ||
| 1086 | BN_set_bit(a, 0); | ||
| 1087 | bn_check_top(a); | ||
| 1088 | |||
| 1089 | return 1; | ||
| 1090 | } | ||
| 1091 | |||
diff --git a/src/lib/libcrypto/bn/bn_nist.c b/src/lib/libcrypto/bn/bn_nist.c new file mode 100644 index 0000000000..e14232fdbb --- /dev/null +++ b/src/lib/libcrypto/bn/bn_nist.c | |||
| @@ -0,0 +1,692 @@ | |||
| 1 | /* crypto/bn/bn_nist.c */ | ||
| 2 | /* | ||
| 3 | * Written by Nils Larsch for the OpenSSL project | ||
| 4 | */ | ||
| 5 | /* ==================================================================== | ||
| 6 | * Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved. | ||
| 7 | * | ||
| 8 | * Redistribution and use in source and binary forms, with or without | ||
| 9 | * modification, are permitted provided that the following conditions | ||
| 10 | * are met: | ||
| 11 | * | ||
| 12 | * 1. Redistributions of source code must retain the above copyright | ||
| 13 | * notice, this list of conditions and the following disclaimer. | ||
| 14 | * | ||
| 15 | * 2. Redistributions in binary form must reproduce the above copyright | ||
| 16 | * notice, this list of conditions and the following disclaimer in | ||
| 17 | * the documentation and/or other materials provided with the | ||
| 18 | * distribution. | ||
| 19 | * | ||
| 20 | * 3. All advertising materials mentioning features or use of this | ||
| 21 | * software must display the following acknowledgment: | ||
| 22 | * "This product includes software developed by the OpenSSL Project | ||
| 23 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | ||
| 24 | * | ||
| 25 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
| 26 | * endorse or promote products derived from this software without | ||
| 27 | * prior written permission. For written permission, please contact | ||
| 28 | * openssl-core@openssl.org. | ||
| 29 | * | ||
| 30 | * 5. Products derived from this software may not be called "OpenSSL" | ||
| 31 | * nor may "OpenSSL" appear in their names without prior written | ||
| 32 | * permission of the OpenSSL Project. | ||
| 33 | * | ||
| 34 | * 6. Redistributions of any form whatsoever must retain the following | ||
| 35 | * acknowledgment: | ||
| 36 | * "This product includes software developed by the OpenSSL Project | ||
| 37 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" | ||
| 38 | * | ||
| 39 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
| 40 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
| 41 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
| 42 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
| 43 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
| 44 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
| 45 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
| 46 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
| 47 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
| 48 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
| 49 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
| 50 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
| 51 | * ==================================================================== | ||
| 52 | * | ||
| 53 | * This product includes cryptographic software written by Eric Young | ||
| 54 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
| 55 | * Hudson (tjh@cryptsoft.com). | ||
| 56 | * | ||
| 57 | */ | ||
| 58 | |||
| 59 | #include "bn_lcl.h" | ||
| 60 | #include "cryptlib.h" | ||
| 61 | |||
| 62 | #define BN_NIST_192_TOP (192+BN_BITS2-1)/BN_BITS2 | ||
| 63 | #define BN_NIST_224_TOP (224+BN_BITS2-1)/BN_BITS2 | ||
| 64 | #define BN_NIST_256_TOP (256+BN_BITS2-1)/BN_BITS2 | ||
| 65 | #define BN_NIST_384_TOP (384+BN_BITS2-1)/BN_BITS2 | ||
| 66 | #define BN_NIST_521_TOP (521+BN_BITS2-1)/BN_BITS2 | ||
| 67 | |||
| 68 | #if BN_BITS2 == 64 | ||
| 69 | static const BN_ULONG _nist_p_192[] = | ||
| 70 | {0xFFFFFFFFFFFFFFFFULL,0xFFFFFFFFFFFFFFFEULL, | ||
| 71 | 0xFFFFFFFFFFFFFFFFULL}; | ||
| 72 | static const BN_ULONG _nist_p_224[] = | ||
| 73 | {0x0000000000000001ULL,0xFFFFFFFF00000000ULL, | ||
| 74 | 0xFFFFFFFFFFFFFFFFULL,0x00000000FFFFFFFFULL}; | ||
| 75 | static const BN_ULONG _nist_p_256[] = | ||
| 76 | {0xFFFFFFFFFFFFFFFFULL,0x00000000FFFFFFFFULL, | ||
| 77 | 0x0000000000000000ULL,0xFFFFFFFF00000001ULL}; | ||
| 78 | static const BN_ULONG _nist_p_384[] = | ||
| 79 | {0x00000000FFFFFFFFULL,0xFFFFFFFF00000000ULL, | ||
| 80 | 0xFFFFFFFFFFFFFFFEULL,0xFFFFFFFFFFFFFFFFULL, | ||
| 81 | 0xFFFFFFFFFFFFFFFFULL,0xFFFFFFFFFFFFFFFFULL}; | ||
| 82 | static const BN_ULONG _nist_p_521[] = | ||
| 83 | {0xFFFFFFFFFFFFFFFFULL,0xFFFFFFFFFFFFFFFFULL, | ||
| 84 | 0xFFFFFFFFFFFFFFFFULL,0xFFFFFFFFFFFFFFFFULL, | ||
| 85 | 0xFFFFFFFFFFFFFFFFULL,0xFFFFFFFFFFFFFFFFULL, | ||
| 86 | 0xFFFFFFFFFFFFFFFFULL,0xFFFFFFFFFFFFFFFFULL, | ||
| 87 | 0x00000000000001FFULL}; | ||
| 88 | #elif BN_BITS2 == 32 | ||
| 89 | static const BN_ULONG _nist_p_192[] = {0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFE, | ||
| 90 | 0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF}; | ||
| 91 | static const BN_ULONG _nist_p_224[] = {0x00000001,0x00000000,0x00000000, | ||
| 92 | 0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF}; | ||
| 93 | static const BN_ULONG _nist_p_256[] = {0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF, | ||
| 94 | 0x00000000,0x00000000,0x00000000,0x00000001,0xFFFFFFFF}; | ||
| 95 | static const BN_ULONG _nist_p_384[] = {0xFFFFFFFF,0x00000000,0x00000000, | ||
| 96 | 0xFFFFFFFF,0xFFFFFFFE,0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF, | ||
| 97 | 0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF}; | ||
| 98 | static const BN_ULONG _nist_p_521[] = {0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF, | ||
| 99 | 0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF, | ||
| 100 | 0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF, | ||
| 101 | 0xFFFFFFFF,0x000001FF}; | ||
| 102 | #endif | ||
| 103 | |||
| 104 | const BIGNUM *BN_get0_nist_prime_192(void) | ||
| 105 | { | ||
| 106 | static BIGNUM const_nist_192 = { (BN_ULONG *)_nist_p_192, | ||
| 107 | BN_NIST_192_TOP, BN_NIST_192_TOP, 0, BN_FLG_STATIC_DATA }; | ||
| 108 | return &const_nist_192; | ||
| 109 | } | ||
| 110 | |||
| 111 | const BIGNUM *BN_get0_nist_prime_224(void) | ||
| 112 | { | ||
| 113 | static BIGNUM const_nist_224 = { (BN_ULONG *)_nist_p_224, | ||
| 114 | BN_NIST_224_TOP, BN_NIST_224_TOP, 0, BN_FLG_STATIC_DATA }; | ||
| 115 | return &const_nist_224; | ||
| 116 | } | ||
| 117 | |||
| 118 | const BIGNUM *BN_get0_nist_prime_256(void) | ||
| 119 | { | ||
| 120 | static BIGNUM const_nist_256 = { (BN_ULONG *)_nist_p_256, | ||
| 121 | BN_NIST_256_TOP, BN_NIST_256_TOP, 0, BN_FLG_STATIC_DATA }; | ||
| 122 | return &const_nist_256; | ||
| 123 | } | ||
| 124 | |||
| 125 | const BIGNUM *BN_get0_nist_prime_384(void) | ||
| 126 | { | ||
| 127 | static BIGNUM const_nist_384 = { (BN_ULONG *)_nist_p_384, | ||
| 128 | BN_NIST_384_TOP, BN_NIST_384_TOP, 0, BN_FLG_STATIC_DATA }; | ||
| 129 | return &const_nist_384; | ||
| 130 | } | ||
| 131 | |||
| 132 | const BIGNUM *BN_get0_nist_prime_521(void) | ||
| 133 | { | ||
| 134 | static BIGNUM const_nist_521 = { (BN_ULONG *)_nist_p_521, | ||
| 135 | BN_NIST_521_TOP, BN_NIST_521_TOP, 0, BN_FLG_STATIC_DATA }; | ||
| 136 | return &const_nist_521; | ||
| 137 | } | ||
| 138 | |||
| 139 | #define BN_NIST_ADD_ONE(a) while (!(*(a)=(*(a)+1)&BN_MASK2)) ++(a); | ||
| 140 | |||
| 141 | static void nist_cp_bn_0(BN_ULONG *buf, BN_ULONG *a, int top, int max) | ||
| 142 | { | ||
| 143 | int i; | ||
| 144 | BN_ULONG *_tmp1 = (buf), *_tmp2 = (a); | ||
| 145 | for (i = (top); i != 0; i--) | ||
| 146 | *_tmp1++ = *_tmp2++; | ||
| 147 | for (i = (max) - (top); i != 0; i--) | ||
| 148 | *_tmp1++ = (BN_ULONG) 0; | ||
| 149 | } | ||
| 150 | |||
| 151 | static void nist_cp_bn(BN_ULONG *buf, BN_ULONG *a, int top) | ||
| 152 | { | ||
| 153 | int i; | ||
| 154 | BN_ULONG *_tmp1 = (buf), *_tmp2 = (a); | ||
| 155 | for (i = (top); i != 0; i--) | ||
| 156 | *_tmp1++ = *_tmp2++; | ||
| 157 | } | ||
| 158 | |||
| 159 | #if BN_BITS2 == 64 | ||
| 160 | #define bn_cp_64(to, n, from, m) (to)[n] = (m>=0)?((from)[m]):0; | ||
| 161 | #define bn_64_set_0(to, n) (to)[n] = (BN_ULONG)0; | ||
| 162 | /* TBD */ | ||
| 163 | #define bn_cp_32(to, n, from, m) (to)[n] = (m>=0)?((from)[m]):0; | ||
| 164 | #define bn_32_set_0(to, n) (to)[n] = (BN_ULONG)0; | ||
| 165 | #else | ||
| 166 | #define bn_cp_64(to, n, from, m) \ | ||
| 167 | { \ | ||
| 168 | bn_cp_32(to, (n)*2, from, (m)*2); \ | ||
| 169 | bn_cp_32(to, (n)*2+1, from, (m)*2+1); \ | ||
| 170 | } | ||
| 171 | #define bn_64_set_0(to, n) \ | ||
| 172 | { \ | ||
| 173 | bn_32_set_0(to, (n)*2); \ | ||
| 174 | bn_32_set_0(to, (n)*2+1); \ | ||
| 175 | } | ||
| 176 | #if BN_BITS2 == 32 | ||
| 177 | #define bn_cp_32(to, n, from, m) (to)[n] = (m>=0)?((from)[m]):0; | ||
| 178 | #define bn_32_set_0(to, n) (to)[n] = (BN_ULONG)0; | ||
| 179 | #endif | ||
| 180 | #endif /* BN_BITS2 != 64 */ | ||
| 181 | |||
| 182 | |||
| 183 | #define nist_set_192(to, from, a1, a2, a3) \ | ||
| 184 | { \ | ||
| 185 | if (a3 != 0) bn_cp_64(to, 0, from, (a3) - 3) else bn_64_set_0(to, 0)\ | ||
| 186 | bn_cp_64(to, 1, from, (a2) - 3) \ | ||
| 187 | if (a1 != 0) bn_cp_64(to, 2, from, (a1) - 3) else bn_64_set_0(to, 2)\ | ||
| 188 | } | ||
| 189 | |||
| 190 | int BN_nist_mod_192(BIGNUM *r, const BIGNUM *a, const BIGNUM *field, | ||
| 191 | BN_CTX *ctx) | ||
| 192 | { | ||
| 193 | int top = a->top, i; | ||
| 194 | int carry; | ||
| 195 | register BN_ULONG *r_d, *a_d = a->d; | ||
| 196 | BN_ULONG t_d[BN_NIST_192_TOP], | ||
| 197 | buf[BN_NIST_192_TOP], | ||
| 198 | c_d[BN_NIST_192_TOP], | ||
| 199 | *res; | ||
| 200 | size_t mask; | ||
| 201 | |||
| 202 | i = BN_ucmp(field, a); | ||
| 203 | if (i == 0) | ||
| 204 | { | ||
| 205 | BN_zero(r); | ||
| 206 | return 1; | ||
| 207 | } | ||
| 208 | else if (i > 0) | ||
| 209 | return (r == a) ? 1 : (BN_copy(r ,a) != NULL); | ||
| 210 | |||
| 211 | if (top == BN_NIST_192_TOP) | ||
| 212 | return BN_usub(r, a, field); | ||
| 213 | |||
| 214 | if (r != a) | ||
| 215 | { | ||
| 216 | if (!bn_wexpand(r, BN_NIST_192_TOP)) | ||
| 217 | return 0; | ||
| 218 | r_d = r->d; | ||
| 219 | nist_cp_bn(r_d, a_d, BN_NIST_192_TOP); | ||
| 220 | } | ||
| 221 | else | ||
| 222 | r_d = a_d; | ||
| 223 | |||
| 224 | nist_cp_bn_0(buf, a_d + BN_NIST_192_TOP, top - BN_NIST_192_TOP, BN_NIST_192_TOP); | ||
| 225 | |||
| 226 | nist_set_192(t_d, buf, 0, 3, 3); | ||
| 227 | carry = bn_add_words(r_d, r_d, t_d, BN_NIST_192_TOP); | ||
| 228 | mask = 0-(size_t)bn_sub_words(c_d,r_d,_nist_p_192,BN_NIST_192_TOP); | ||
| 229 | mask = ~mask | (0-(size_t)carry); | ||
| 230 | res = (BN_ULONG *)(((size_t)c_d&mask) | ((size_t)r_d&~mask)); | ||
| 231 | |||
| 232 | nist_set_192(t_d, buf, 4, 4, 0); | ||
| 233 | carry = bn_add_words(r_d, res, t_d, BN_NIST_192_TOP); | ||
| 234 | mask = 0-(size_t)bn_sub_words(c_d,r_d,_nist_p_192,BN_NIST_192_TOP); | ||
| 235 | mask = ~mask | (0-(size_t)carry); | ||
| 236 | res = (BN_ULONG *)(((size_t)c_d&mask) | ((size_t)r_d&~mask)); | ||
| 237 | |||
| 238 | nist_set_192(t_d, buf, 5, 5, 5) | ||
| 239 | carry = bn_add_words(r_d, res, t_d, BN_NIST_192_TOP); | ||
| 240 | mask = 0-(size_t)bn_sub_words(c_d,r_d,_nist_p_192,BN_NIST_192_TOP); | ||
| 241 | mask = ~mask | (0-(size_t)carry); | ||
| 242 | res = (BN_ULONG *)(((size_t)c_d&mask) | ((size_t)r_d&~mask)); | ||
| 243 | |||
| 244 | nist_cp_bn(r_d, res, BN_NIST_192_TOP); | ||
| 245 | r->top = BN_NIST_192_TOP; | ||
| 246 | bn_correct_top(r); | ||
| 247 | |||
| 248 | return 1; | ||
| 249 | } | ||
| 250 | |||
| 251 | #define nist_set_224(to, from, a1, a2, a3, a4, a5, a6, a7) \ | ||
| 252 | { \ | ||
| 253 | if (a7 != 0) bn_cp_32(to, 0, from, (a7) - 7) else bn_32_set_0(to, 0)\ | ||
| 254 | if (a6 != 0) bn_cp_32(to, 1, from, (a6) - 7) else bn_32_set_0(to, 1)\ | ||
| 255 | if (a5 != 0) bn_cp_32(to, 2, from, (a5) - 7) else bn_32_set_0(to, 2)\ | ||
| 256 | if (a4 != 0) bn_cp_32(to, 3, from, (a4) - 7) else bn_32_set_0(to, 3)\ | ||
| 257 | if (a3 != 0) bn_cp_32(to, 4, from, (a3) - 7) else bn_32_set_0(to, 4)\ | ||
| 258 | if (a2 != 0) bn_cp_32(to, 5, from, (a2) - 7) else bn_32_set_0(to, 5)\ | ||
| 259 | if (a1 != 0) bn_cp_32(to, 6, from, (a1) - 7) else bn_32_set_0(to, 6)\ | ||
| 260 | } | ||
| 261 | |||
| 262 | int BN_nist_mod_224(BIGNUM *r, const BIGNUM *a, const BIGNUM *field, | ||
| 263 | BN_CTX *ctx) | ||
| 264 | { | ||
| 265 | #if BN_BITS2 == 32 | ||
| 266 | int top = a->top, i; | ||
| 267 | int carry; | ||
| 268 | BN_ULONG *r_d, *a_d = a->d; | ||
| 269 | BN_ULONG t_d[BN_NIST_224_TOP], | ||
| 270 | buf[BN_NIST_224_TOP], | ||
| 271 | c_d[BN_NIST_224_TOP], | ||
| 272 | *res; | ||
| 273 | size_t mask; | ||
| 274 | |||
| 275 | i = BN_ucmp(field, a); | ||
| 276 | if (i == 0) | ||
| 277 | { | ||
| 278 | BN_zero(r); | ||
| 279 | return 1; | ||
| 280 | } | ||
| 281 | else if (i > 0) | ||
| 282 | return (r == a)? 1 : (BN_copy(r ,a) != NULL); | ||
| 283 | |||
| 284 | if (top == BN_NIST_224_TOP) | ||
| 285 | return BN_usub(r, a, field); | ||
| 286 | |||
| 287 | if (r != a) | ||
| 288 | { | ||
| 289 | if (!bn_wexpand(r, BN_NIST_224_TOP)) | ||
| 290 | return 0; | ||
| 291 | r_d = r->d; | ||
| 292 | nist_cp_bn(r_d, a_d, BN_NIST_224_TOP); | ||
| 293 | } | ||
| 294 | else | ||
| 295 | r_d = a_d; | ||
| 296 | |||
| 297 | nist_cp_bn_0(buf, a_d + BN_NIST_224_TOP, top - BN_NIST_224_TOP, BN_NIST_224_TOP); | ||
| 298 | |||
| 299 | nist_set_224(t_d, buf, 10, 9, 8, 7, 0, 0, 0); | ||
| 300 | carry = bn_add_words(r_d, r_d, t_d, BN_NIST_224_TOP); | ||
| 301 | mask = 0-(size_t)bn_sub_words(c_d,r_d,_nist_p_224,BN_NIST_224_TOP); | ||
| 302 | mask = ~mask | (0-(size_t)carry); | ||
| 303 | res = (BN_ULONG *)(((size_t)c_d&mask) | ((size_t)r_d&~mask)); | ||
| 304 | |||
| 305 | nist_set_224(t_d, buf, 0, 13, 12, 11, 0, 0, 0); | ||
| 306 | carry = bn_add_words(r_d, res, t_d, BN_NIST_224_TOP); | ||
| 307 | mask = 0-(size_t)bn_sub_words(c_d,r_d,_nist_p_224,BN_NIST_224_TOP); | ||
| 308 | mask = ~mask | (0-(size_t)carry); | ||
| 309 | res = (BN_ULONG *)(((size_t)c_d&mask) | ((size_t)r_d&~mask)); | ||
| 310 | |||
| 311 | nist_set_224(t_d, buf, 13, 12, 11, 10, 9, 8, 7); | ||
| 312 | #if BRANCH_FREE | ||
| 313 | carry = bn_sub_words(r_d, res, t_d, BN_NIST_224_TOP); | ||
| 314 | bn_add_words(c_d,r_d,_nist_p_224,BN_NIST_224_TOP); | ||
| 315 | mask = 0-(size_t)carry; | ||
| 316 | res = (BN_ULONG *)(((size_t)c_d&mask) | ((size_t)r_d&~mask)); | ||
| 317 | #else | ||
| 318 | if (bn_sub_words(r_d, res, t_d, BN_NIST_224_TOP)) | ||
| 319 | bn_add_words(r_d,r_d,_nist_p_224,BN_NIST_224_TOP); | ||
| 320 | #endif | ||
| 321 | nist_set_224(t_d, buf, 0, 0, 0, 0, 13, 12, 11); | ||
| 322 | #if BRANCH_FREE | ||
| 323 | carry = bn_sub_words(r_d, res, t_d, BN_NIST_224_TOP); | ||
| 324 | bn_add_words(c_d,r_d,_nist_p_224,BN_NIST_224_TOP); | ||
| 325 | mask = 0-(size_t)carry; | ||
| 326 | res = (BN_ULONG *)(((size_t)c_d&mask) | ((size_t)r_d&~mask)); | ||
| 327 | |||
| 328 | nist_cp_bn(r_d, res, BN_NIST_224_TOP); | ||
| 329 | #else | ||
| 330 | if (bn_sub_words(r_d, r_d, t_d, BN_NIST_224_TOP)) | ||
| 331 | bn_add_words(r_d,r_d,_nist_p_224,BN_NIST_224_TOP); | ||
| 332 | #endif | ||
| 333 | r->top = BN_NIST_224_TOP; | ||
| 334 | bn_correct_top(r); | ||
| 335 | |||
| 336 | return 1; | ||
| 337 | #else /* BN_BITS!=32 */ | ||
| 338 | return 0; | ||
| 339 | #endif | ||
| 340 | } | ||
| 341 | |||
| 342 | #define nist_set_256(to, from, a1, a2, a3, a4, a5, a6, a7, a8) \ | ||
| 343 | { \ | ||
| 344 | if (a8 != 0) bn_cp_32(to, 0, from, (a8) - 8) else bn_32_set_0(to, 0)\ | ||
| 345 | if (a7 != 0) bn_cp_32(to, 1, from, (a7) - 8) else bn_32_set_0(to, 1)\ | ||
| 346 | if (a6 != 0) bn_cp_32(to, 2, from, (a6) - 8) else bn_32_set_0(to, 2)\ | ||
| 347 | if (a5 != 0) bn_cp_32(to, 3, from, (a5) - 8) else bn_32_set_0(to, 3)\ | ||
| 348 | if (a4 != 0) bn_cp_32(to, 4, from, (a4) - 8) else bn_32_set_0(to, 4)\ | ||
| 349 | if (a3 != 0) bn_cp_32(to, 5, from, (a3) - 8) else bn_32_set_0(to, 5)\ | ||
| 350 | if (a2 != 0) bn_cp_32(to, 6, from, (a2) - 8) else bn_32_set_0(to, 6)\ | ||
| 351 | if (a1 != 0) bn_cp_32(to, 7, from, (a1) - 8) else bn_32_set_0(to, 7)\ | ||
| 352 | } | ||
| 353 | |||
| 354 | int BN_nist_mod_256(BIGNUM *r, const BIGNUM *a, const BIGNUM *field, | ||
| 355 | BN_CTX *ctx) | ||
| 356 | { | ||
| 357 | #if BN_BITS2 == 32 | ||
| 358 | int i, top = a->top; | ||
| 359 | int carry = 0; | ||
| 360 | register BN_ULONG *a_d = a->d, *r_d; | ||
| 361 | BN_ULONG t_d[BN_NIST_256_TOP], | ||
| 362 | buf[BN_NIST_256_TOP], | ||
| 363 | c_d[BN_NIST_256_TOP], | ||
| 364 | *res; | ||
| 365 | size_t mask; | ||
| 366 | |||
| 367 | i = BN_ucmp(field, a); | ||
| 368 | if (i == 0) | ||
| 369 | { | ||
| 370 | BN_zero(r); | ||
| 371 | return 1; | ||
| 372 | } | ||
| 373 | else if (i > 0) | ||
| 374 | return (r == a)? 1 : (BN_copy(r ,a) != NULL); | ||
| 375 | |||
| 376 | if (top == BN_NIST_256_TOP) | ||
| 377 | return BN_usub(r, a, field); | ||
| 378 | |||
| 379 | if (r != a) | ||
| 380 | { | ||
| 381 | if (!bn_wexpand(r, BN_NIST_256_TOP)) | ||
| 382 | return 0; | ||
| 383 | r_d = r->d; | ||
| 384 | nist_cp_bn(r_d, a_d, BN_NIST_256_TOP); | ||
| 385 | } | ||
| 386 | else | ||
| 387 | r_d = a_d; | ||
| 388 | |||
| 389 | nist_cp_bn_0(buf, a_d + BN_NIST_256_TOP, top - BN_NIST_256_TOP, BN_NIST_256_TOP); | ||
| 390 | |||
| 391 | /*S1*/ | ||
| 392 | nist_set_256(t_d, buf, 15, 14, 13, 12, 11, 0, 0, 0); | ||
| 393 | /*S2*/ | ||
| 394 | nist_set_256(c_d,buf, 0, 15, 14, 13, 12, 0, 0, 0); | ||
| 395 | carry = bn_add_words(t_d, t_d, c_d, BN_NIST_256_TOP); | ||
| 396 | mask = 0-(size_t)bn_sub_words(c_d,t_d,_nist_p_256,BN_NIST_256_TOP); | ||
| 397 | mask = ~mask | (0-(size_t)carry); | ||
| 398 | res = (BN_ULONG *)(((size_t)c_d&mask) | ((size_t)t_d&~mask)); | ||
| 399 | |||
| 400 | carry = bn_add_words(t_d, res, res, BN_NIST_256_TOP); | ||
| 401 | mask = 0-(size_t)bn_sub_words(c_d,t_d,_nist_p_256,BN_NIST_256_TOP); | ||
| 402 | mask = ~mask | (0-(size_t)carry); | ||
| 403 | res = (BN_ULONG *)(((size_t)c_d&mask) | ((size_t)t_d&~mask)); | ||
| 404 | |||
| 405 | carry = bn_add_words(r_d, r_d, res, BN_NIST_256_TOP); | ||
| 406 | mask = 0-(size_t)bn_sub_words(c_d,r_d,_nist_p_256,BN_NIST_256_TOP); | ||
| 407 | mask = ~mask | (0-(size_t)carry); | ||
| 408 | res = (BN_ULONG *)(((size_t)c_d&mask) | ((size_t)r_d&~mask)); | ||
| 409 | |||
| 410 | /*S3*/ | ||
| 411 | nist_set_256(t_d, buf, 15, 14, 0, 0, 0, 10, 9, 8); | ||
| 412 | carry = bn_add_words(r_d, res, t_d, BN_NIST_256_TOP); | ||
| 413 | mask = 0-(size_t)bn_sub_words(c_d,r_d,_nist_p_256,BN_NIST_256_TOP); | ||
| 414 | mask = ~mask | (0-(size_t)carry); | ||
| 415 | res = (BN_ULONG *)(((size_t)c_d&mask) | ((size_t)r_d&~mask)); | ||
| 416 | |||
| 417 | /*S4*/ | ||
| 418 | nist_set_256(t_d, buf, 8, 13, 15, 14, 13, 11, 10, 9); | ||
| 419 | carry = bn_add_words(r_d, res, t_d, BN_NIST_256_TOP); | ||
| 420 | mask = 0-(size_t)bn_sub_words(c_d,r_d,_nist_p_256,BN_NIST_256_TOP); | ||
| 421 | mask = ~mask | (0-(size_t)carry); | ||
| 422 | res = (BN_ULONG *)(((size_t)c_d&mask) | ((size_t)r_d&~mask)); | ||
| 423 | |||
| 424 | /*D1*/ | ||
| 425 | nist_set_256(t_d, buf, 10, 8, 0, 0, 0, 13, 12, 11); | ||
| 426 | #if BRANCH_FREE | ||
| 427 | carry = bn_sub_words(r_d, res, t_d, BN_NIST_256_TOP); | ||
| 428 | bn_add_words(c_d,r_d,_nist_p_256,BN_NIST_256_TOP); | ||
| 429 | mask = 0-(size_t)carry; | ||
| 430 | res = (BN_ULONG *)(((size_t)c_d&mask) | ((size_t)r_d&~mask)); | ||
| 431 | #else | ||
| 432 | if (bn_sub_words(r_d, res, t_d, BN_NIST_256_TOP)) | ||
| 433 | bn_add_words(r_d,r_d,_nist_p_256,BN_NIST_256_TOP); | ||
| 434 | #endif | ||
| 435 | /*D2*/ | ||
| 436 | nist_set_256(t_d, buf, 11, 9, 0, 0, 15, 14, 13, 12); | ||
| 437 | #if BRANCH_FREE | ||
| 438 | carry = bn_sub_words(r_d, res, t_d, BN_NIST_256_TOP); | ||
| 439 | bn_add_words(c_d,r_d,_nist_p_256,BN_NIST_256_TOP); | ||
| 440 | mask = 0-(size_t)carry; | ||
| 441 | res = (BN_ULONG *)(((size_t)c_d&mask) | ((size_t)r_d&~mask)); | ||
| 442 | #else | ||
| 443 | if (bn_sub_words(r_d, r_d, t_d, BN_NIST_256_TOP)) | ||
| 444 | bn_add_words(r_d,r_d,_nist_p_256,BN_NIST_256_TOP); | ||
| 445 | #endif | ||
| 446 | /*D3*/ | ||
| 447 | nist_set_256(t_d, buf, 12, 0, 10, 9, 8, 15, 14, 13); | ||
| 448 | #if BRANCH_FREE | ||
| 449 | carry = bn_sub_words(r_d, res, t_d, BN_NIST_256_TOP); | ||
| 450 | bn_add_words(c_d,r_d,_nist_p_256,BN_NIST_256_TOP); | ||
| 451 | mask = 0-(size_t)carry; | ||
| 452 | res = (BN_ULONG *)(((size_t)c_d&mask) | ((size_t)r_d&~mask)); | ||
| 453 | #else | ||
| 454 | if (bn_sub_words(r_d, r_d, t_d, BN_NIST_256_TOP)) | ||
| 455 | bn_add_words(r_d,r_d,_nist_p_256,BN_NIST_256_TOP); | ||
| 456 | #endif | ||
| 457 | /*D4*/ | ||
| 458 | nist_set_256(t_d, buf, 13, 0, 11, 10, 9, 0, 15, 14); | ||
| 459 | #if BRANCH_FREE | ||
| 460 | carry = bn_sub_words(r_d, res, t_d, BN_NIST_256_TOP); | ||
| 461 | bn_add_words(c_d,r_d,_nist_p_256,BN_NIST_256_TOP); | ||
| 462 | mask = 0-(size_t)carry; | ||
| 463 | res = (BN_ULONG *)(((size_t)c_d&mask) | ((size_t)r_d&~mask)); | ||
| 464 | |||
| 465 | nist_cp_bn(r_d, res, BN_NIST_384_TOP); | ||
| 466 | #else | ||
| 467 | if (bn_sub_words(r_d, r_d, t_d, BN_NIST_256_TOP)) | ||
| 468 | bn_add_words(r_d,r_d,_nist_p_256,BN_NIST_256_TOP); | ||
| 469 | #endif | ||
| 470 | r->top = BN_NIST_256_TOP; | ||
| 471 | bn_correct_top(r); | ||
| 472 | |||
| 473 | return 1; | ||
| 474 | #else /* BN_BITS!=32 */ | ||
| 475 | return 0; | ||
| 476 | #endif | ||
| 477 | } | ||
| 478 | |||
| 479 | #define nist_set_384(to,from,a1,a2,a3,a4,a5,a6,a7,a8,a9,a10,a11,a12) \ | ||
| 480 | { \ | ||
| 481 | if (a12 != 0) bn_cp_32(to, 0, from, (a12) - 12) else bn_32_set_0(to, 0)\ | ||
| 482 | if (a11 != 0) bn_cp_32(to, 1, from, (a11) - 12) else bn_32_set_0(to, 1)\ | ||
| 483 | if (a10 != 0) bn_cp_32(to, 2, from, (a10) - 12) else bn_32_set_0(to, 2)\ | ||
| 484 | if (a9 != 0) bn_cp_32(to, 3, from, (a9) - 12) else bn_32_set_0(to, 3)\ | ||
| 485 | if (a8 != 0) bn_cp_32(to, 4, from, (a8) - 12) else bn_32_set_0(to, 4)\ | ||
| 486 | if (a7 != 0) bn_cp_32(to, 5, from, (a7) - 12) else bn_32_set_0(to, 5)\ | ||
| 487 | if (a6 != 0) bn_cp_32(to, 6, from, (a6) - 12) else bn_32_set_0(to, 6)\ | ||
| 488 | if (a5 != 0) bn_cp_32(to, 7, from, (a5) - 12) else bn_32_set_0(to, 7)\ | ||
| 489 | if (a4 != 0) bn_cp_32(to, 8, from, (a4) - 12) else bn_32_set_0(to, 8)\ | ||
| 490 | if (a3 != 0) bn_cp_32(to, 9, from, (a3) - 12) else bn_32_set_0(to, 9)\ | ||
| 491 | if (a2 != 0) bn_cp_32(to, 10, from, (a2) - 12) else bn_32_set_0(to, 10)\ | ||
| 492 | if (a1 != 0) bn_cp_32(to, 11, from, (a1) - 12) else bn_32_set_0(to, 11)\ | ||
| 493 | } | ||
| 494 | |||
| 495 | int BN_nist_mod_384(BIGNUM *r, const BIGNUM *a, const BIGNUM *field, | ||
| 496 | BN_CTX *ctx) | ||
| 497 | { | ||
| 498 | #if BN_BITS2 == 32 | ||
| 499 | int i, top = a->top; | ||
| 500 | int carry = 0; | ||
| 501 | register BN_ULONG *r_d, *a_d = a->d; | ||
| 502 | BN_ULONG t_d[BN_NIST_384_TOP], | ||
| 503 | buf[BN_NIST_384_TOP], | ||
| 504 | c_d[BN_NIST_384_TOP], | ||
| 505 | *res; | ||
| 506 | size_t mask; | ||
| 507 | |||
| 508 | i = BN_ucmp(field, a); | ||
| 509 | if (i == 0) | ||
| 510 | { | ||
| 511 | BN_zero(r); | ||
| 512 | return 1; | ||
| 513 | } | ||
| 514 | else if (i > 0) | ||
| 515 | return (r == a)? 1 : (BN_copy(r ,a) != NULL); | ||
| 516 | |||
| 517 | if (top == BN_NIST_384_TOP) | ||
| 518 | return BN_usub(r, a, field); | ||
| 519 | |||
| 520 | if (r != a) | ||
| 521 | { | ||
| 522 | if (!bn_wexpand(r, BN_NIST_384_TOP)) | ||
| 523 | return 0; | ||
| 524 | r_d = r->d; | ||
| 525 | nist_cp_bn(r_d, a_d, BN_NIST_384_TOP); | ||
| 526 | } | ||
| 527 | else | ||
| 528 | r_d = a_d; | ||
| 529 | |||
| 530 | nist_cp_bn_0(buf, a_d + BN_NIST_384_TOP, top - BN_NIST_384_TOP, BN_NIST_384_TOP); | ||
| 531 | |||
| 532 | /*S1*/ | ||
| 533 | nist_set_256(t_d, buf, 0, 0, 0, 0, 0, 23-4, 22-4, 21-4); | ||
| 534 | /* left shift */ | ||
| 535 | { | ||
| 536 | register BN_ULONG *ap,t,c; | ||
| 537 | ap = t_d; | ||
| 538 | c=0; | ||
| 539 | for (i = 3; i != 0; --i) | ||
| 540 | { | ||
| 541 | t= *ap; | ||
| 542 | *(ap++)=((t<<1)|c)&BN_MASK2; | ||
| 543 | c=(t & BN_TBIT)?1:0; | ||
| 544 | } | ||
| 545 | *ap=c; | ||
| 546 | } | ||
| 547 | carry = bn_add_words(r_d+(128/BN_BITS2), r_d+(128/BN_BITS2), | ||
| 548 | t_d, BN_NIST_256_TOP); | ||
| 549 | /* | ||
| 550 | * we need if (result>=modulus) subtract(result,modulus); | ||
| 551 | * in n-bit space this can be expressed as | ||
| 552 | * if (carry || result>=modulus) subtract(result,modulus); | ||
| 553 | * the catch is that comparison implies subtraction and | ||
| 554 | * therefore one can write tmp=subtract(result,modulus); | ||
| 555 | * and then if(carry || !borrow) result=tmp; this's what | ||
| 556 | * happens below, but without explicit if:-) a. | ||
| 557 | */ | ||
| 558 | mask = 0-(size_t)bn_sub_words(c_d,r_d,_nist_p_384,BN_NIST_384_TOP); | ||
| 559 | mask = ~mask | (0-(size_t)carry); | ||
| 560 | res = (BN_ULONG *)(((size_t)c_d&mask) | ((size_t)r_d&~mask)); | ||
| 561 | |||
| 562 | /*S2 */ | ||
| 563 | carry = bn_add_words(r_d, res, buf, BN_NIST_384_TOP); | ||
| 564 | mask = 0-(size_t)bn_sub_words(c_d,r_d,_nist_p_384,BN_NIST_384_TOP); | ||
| 565 | mask = ~mask | (0-(size_t)carry); | ||
| 566 | res = (BN_ULONG *)(((size_t)c_d&mask) | ((size_t)r_d&~mask)); | ||
| 567 | |||
| 568 | /*S3*/ | ||
| 569 | nist_set_384(t_d,buf,20,19,18,17,16,15,14,13,12,23,22,21); | ||
| 570 | carry = bn_add_words(r_d, res, t_d, BN_NIST_384_TOP); | ||
| 571 | mask = 0-(size_t)bn_sub_words(c_d,r_d,_nist_p_384,BN_NIST_384_TOP); | ||
| 572 | mask = ~mask | (0-(size_t)carry); | ||
| 573 | res = (BN_ULONG *)(((size_t)c_d&mask) | ((size_t)r_d&~mask)); | ||
| 574 | |||
| 575 | /*S4*/ | ||
| 576 | nist_set_384(t_d,buf,19,18,17,16,15,14,13,12,20,0,23,0); | ||
| 577 | carry = bn_add_words(r_d, res, t_d, BN_NIST_384_TOP); | ||
| 578 | mask = 0-(size_t)bn_sub_words(c_d,r_d,_nist_p_384,BN_NIST_384_TOP); | ||
| 579 | mask = ~mask | (0-(size_t)carry); | ||
| 580 | res = (BN_ULONG *)(((size_t)c_d&mask) | ((size_t)r_d&~mask)); | ||
| 581 | |||
| 582 | /*S5*/ | ||
| 583 | nist_set_384(t_d, buf,0,0,0,0,23,22,21,20,0,0,0,0); | ||
| 584 | carry = bn_add_words(r_d, res, t_d, BN_NIST_384_TOP); | ||
| 585 | mask = 0-(size_t)bn_sub_words(c_d,r_d,_nist_p_384,BN_NIST_384_TOP); | ||
| 586 | mask = ~mask | (0-(size_t)carry); | ||
| 587 | res = (BN_ULONG *)(((size_t)c_d&mask) | ((size_t)r_d&~mask)); | ||
| 588 | |||
| 589 | /*S6*/ | ||
| 590 | nist_set_384(t_d,buf,0,0,0,0,0,0,23,22,21,0,0,20); | ||
| 591 | carry = bn_add_words(r_d, res, t_d, BN_NIST_384_TOP); | ||
| 592 | mask = 0-(size_t)bn_sub_words(c_d,r_d,_nist_p_384,BN_NIST_384_TOP); | ||
| 593 | mask = ~mask | (0-(size_t)carry); | ||
| 594 | res = (BN_ULONG *)(((size_t)c_d&mask) | ((size_t)r_d&~mask)); | ||
| 595 | |||
| 596 | /*D1*/ | ||
| 597 | nist_set_384(t_d,buf,22,21,20,19,18,17,16,15,14,13,12,23); | ||
| 598 | #if BRANCH_FREE | ||
| 599 | carry = bn_sub_words(r_d, res, t_d, BN_NIST_384_TOP); | ||
| 600 | bn_add_words(c_d,r_d,_nist_p_384,BN_NIST_384_TOP); | ||
| 601 | mask = 0-(size_t)carry; | ||
| 602 | res = (BN_ULONG *)(((size_t)c_d&mask) | ((size_t)r_d&~mask)); | ||
| 603 | #else | ||
| 604 | if (bn_sub_words(r_d, res, t_d, BN_NIST_384_TOP)) | ||
| 605 | bn_add_words(r_d,r_d,_nist_p_384,BN_NIST_384_TOP); | ||
| 606 | #endif | ||
| 607 | /*D2*/ | ||
| 608 | nist_set_384(t_d,buf,0,0,0,0,0,0,0,23,22,21,20,0); | ||
| 609 | #if BRANCH_FREE | ||
| 610 | carry = bn_sub_words(r_d, res, t_d, BN_NIST_384_TOP); | ||
| 611 | bn_add_words(c_d,r_d,_nist_p_384,BN_NIST_384_TOP); | ||
| 612 | mask = 0-(size_t)carry; | ||
| 613 | res = (BN_ULONG *)(((size_t)c_d&mask) | ((size_t)r_d&~mask)); | ||
| 614 | #else | ||
| 615 | if (bn_sub_words(r_d, r_d, t_d, BN_NIST_384_TOP)) | ||
| 616 | bn_add_words(r_d,r_d,_nist_p_384,BN_NIST_384_TOP); | ||
| 617 | #endif | ||
| 618 | /*D3*/ | ||
| 619 | nist_set_384(t_d,buf,0,0,0,0,0,0,0,23,23,0,0,0); | ||
| 620 | #if BRANCH_FREE | ||
| 621 | carry = bn_sub_words(r_d, res, t_d, BN_NIST_384_TOP); | ||
| 622 | bn_add_words(c_d,r_d,_nist_p_384,BN_NIST_384_TOP); | ||
| 623 | mask = 0-(size_t)carry; | ||
| 624 | res = (BN_ULONG *)(((size_t)c_d&mask) | ((size_t)r_d&~mask)); | ||
| 625 | |||
| 626 | nist_cp_bn(r_d, res, BN_NIST_384_TOP); | ||
| 627 | #else | ||
| 628 | if (bn_sub_words(r_d, r_d, t_d, BN_NIST_384_TOP)) | ||
| 629 | bn_add_words(r_d,r_d,_nist_p_384,BN_NIST_384_TOP); | ||
| 630 | #endif | ||
| 631 | r->top = BN_NIST_384_TOP; | ||
| 632 | bn_correct_top(r); | ||
| 633 | |||
| 634 | return 1; | ||
| 635 | #else /* BN_BITS!=32 */ | ||
| 636 | return 0; | ||
| 637 | #endif | ||
| 638 | } | ||
| 639 | |||
| 640 | int BN_nist_mod_521(BIGNUM *r, const BIGNUM *a, const BIGNUM *field, | ||
| 641 | BN_CTX *ctx) | ||
| 642 | { | ||
| 643 | #if BN_BITS2 == 64 | ||
| 644 | #define BN_NIST_521_TOP_MASK (BN_ULONG)0x1FF | ||
| 645 | #elif BN_BITS2 == 32 | ||
| 646 | #define BN_NIST_521_TOP_MASK (BN_ULONG)0x1FF | ||
| 647 | #endif | ||
| 648 | int top, ret = 0; | ||
| 649 | BN_ULONG *r_d; | ||
| 650 | BIGNUM *tmp; | ||
| 651 | |||
| 652 | /* check whether a reduction is necessary */ | ||
| 653 | top = a->top; | ||
| 654 | if (top < BN_NIST_521_TOP || ( top == BN_NIST_521_TOP && | ||
| 655 | (!(a->d[BN_NIST_521_TOP-1] & ~(BN_NIST_521_TOP_MASK))))) | ||
| 656 | return (r == a)? 1 : (BN_copy(r ,a) != NULL); | ||
| 657 | |||
| 658 | BN_CTX_start(ctx); | ||
| 659 | tmp = BN_CTX_get(ctx); | ||
| 660 | if (!tmp) | ||
| 661 | goto err; | ||
| 662 | |||
| 663 | if (!bn_wexpand(tmp, BN_NIST_521_TOP)) | ||
| 664 | goto err; | ||
| 665 | nist_cp_bn(tmp->d, a->d, BN_NIST_521_TOP); | ||
| 666 | |||
| 667 | tmp->top = BN_NIST_521_TOP; | ||
| 668 | tmp->d[BN_NIST_521_TOP-1] &= BN_NIST_521_TOP_MASK; | ||
| 669 | bn_correct_top(tmp); | ||
| 670 | |||
| 671 | if (!BN_rshift(r, a, 521)) | ||
| 672 | goto err; | ||
| 673 | |||
| 674 | if (!BN_uadd(r, tmp, r)) | ||
| 675 | goto err; | ||
| 676 | top = r->top; | ||
| 677 | r_d = r->d; | ||
| 678 | if (top == BN_NIST_521_TOP && | ||
| 679 | (r_d[BN_NIST_521_TOP-1] & ~(BN_NIST_521_TOP_MASK))) | ||
| 680 | { | ||
| 681 | BN_NIST_ADD_ONE(r_d) | ||
| 682 | r->d[BN_NIST_521_TOP-1] &= BN_NIST_521_TOP_MASK; | ||
| 683 | } | ||
| 684 | bn_correct_top(r); | ||
| 685 | |||
| 686 | ret = 1; | ||
| 687 | err: | ||
| 688 | BN_CTX_end(ctx); | ||
| 689 | |||
| 690 | bn_check_top(r); | ||
| 691 | return ret; | ||
| 692 | } | ||
