diff options
Diffstat (limited to 'src/lib/libcrypto/cmac/cmac.c')
| -rw-r--r-- | src/lib/libcrypto/cmac/cmac.c | 325 |
1 files changed, 0 insertions, 325 deletions
diff --git a/src/lib/libcrypto/cmac/cmac.c b/src/lib/libcrypto/cmac/cmac.c deleted file mode 100644 index 5c917439a1..0000000000 --- a/src/lib/libcrypto/cmac/cmac.c +++ /dev/null | |||
| @@ -1,325 +0,0 @@ | |||
| 1 | /* $OpenBSD: cmac.c,v 1.24 2024/05/20 14:53:37 tb Exp $ */ | ||
| 2 | /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL | ||
| 3 | * project. | ||
| 4 | */ | ||
| 5 | /* ==================================================================== | ||
| 6 | * Copyright (c) 2010 The OpenSSL Project. All rights reserved. | ||
| 7 | * | ||
| 8 | * Redistribution and use in source and binary forms, with or without | ||
| 9 | * modification, are permitted provided that the following conditions | ||
| 10 | * are met: | ||
| 11 | * | ||
| 12 | * 1. Redistributions of source code must retain the above copyright | ||
| 13 | * notice, this list of conditions and the following disclaimer. | ||
| 14 | * | ||
| 15 | * 2. Redistributions in binary form must reproduce the above copyright | ||
| 16 | * notice, this list of conditions and the following disclaimer in | ||
| 17 | * the documentation and/or other materials provided with the | ||
| 18 | * distribution. | ||
| 19 | * | ||
| 20 | * 3. All advertising materials mentioning features or use of this | ||
| 21 | * software must display the following acknowledgment: | ||
| 22 | * "This product includes software developed by the OpenSSL Project | ||
| 23 | * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" | ||
| 24 | * | ||
| 25 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
| 26 | * endorse or promote products derived from this software without | ||
| 27 | * prior written permission. For written permission, please contact | ||
| 28 | * licensing@OpenSSL.org. | ||
| 29 | * | ||
| 30 | * 5. Products derived from this software may not be called "OpenSSL" | ||
| 31 | * nor may "OpenSSL" appear in their names without prior written | ||
| 32 | * permission of the OpenSSL Project. | ||
| 33 | * | ||
| 34 | * 6. Redistributions of any form whatsoever must retain the following | ||
| 35 | * acknowledgment: | ||
| 36 | * "This product includes software developed by the OpenSSL Project | ||
| 37 | * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" | ||
| 38 | * | ||
| 39 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
| 40 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
| 41 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
| 42 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
| 43 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
| 44 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
| 45 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
| 46 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
| 47 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
| 48 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
| 49 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
| 50 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
| 51 | * ==================================================================== | ||
| 52 | */ | ||
| 53 | |||
| 54 | #include <stdio.h> | ||
| 55 | #include <stdlib.h> | ||
| 56 | #include <string.h> | ||
| 57 | |||
| 58 | #include <openssl/cmac.h> | ||
| 59 | |||
| 60 | #include "evp_local.h" | ||
| 61 | |||
| 62 | /* | ||
| 63 | * This implementation follows https://doi.org/10.6028/NIST.SP.800-38B | ||
| 64 | */ | ||
| 65 | |||
| 66 | /* | ||
| 67 | * CMAC context. k1 and k2 are the secret subkeys, computed as in section 6.1. | ||
| 68 | * The temporary block tbl is a scratch buffer that holds intermediate secrets. | ||
| 69 | */ | ||
| 70 | struct CMAC_CTX_st { | ||
| 71 | EVP_CIPHER_CTX *cipher_ctx; | ||
| 72 | unsigned char k1[EVP_MAX_BLOCK_LENGTH]; | ||
| 73 | unsigned char k2[EVP_MAX_BLOCK_LENGTH]; | ||
| 74 | unsigned char tbl[EVP_MAX_BLOCK_LENGTH]; | ||
| 75 | unsigned char last_block[EVP_MAX_BLOCK_LENGTH]; | ||
| 76 | /* Bytes in last block. -1 means not initialized. */ | ||
| 77 | int nlast_block; | ||
| 78 | }; | ||
| 79 | |||
| 80 | /* | ||
| 81 | * SP 800-38B, section 6.1, steps 2 and 3: given the input key l, calculate | ||
| 82 | * the subkeys k1 and k2: shift l one bit to the left. If the most significant | ||
| 83 | * bit of l was 1, additionally xor the result with Rb to get kn. | ||
| 84 | * | ||
| 85 | * Step 2: calculate k1 with l being the intermediate block CIPH_K(0), | ||
| 86 | * Step 3: calculate k2 from l == k1. | ||
| 87 | * | ||
| 88 | * Per 5.3, Rb is the lexically first irreducible polynomial of degree b with | ||
| 89 | * the minimum number of non-zero terms. This gives R128 = (1 << 128) | 0x87 | ||
| 90 | * and R64 = (1 << 64) | 0x1b for the only supported block sizes 128 and 64. | ||
| 91 | */ | ||
| 92 | static void | ||
| 93 | make_kn(unsigned char *kn, const unsigned char *l, int block_size) | ||
| 94 | { | ||
| 95 | unsigned char mask, Rb; | ||
| 96 | int i; | ||
| 97 | |||
| 98 | /* Choose Rb according to the block size in bytes. */ | ||
| 99 | Rb = block_size == 16 ? 0x87 : 0x1b; | ||
| 100 | |||
| 101 | /* Compute l << 1 up to last byte. */ | ||
| 102 | for (i = 0; i < block_size - 1; i++) | ||
| 103 | kn[i] = (l[i] << 1) | (l[i + 1] >> 7); | ||
| 104 | |||
| 105 | /* Only xor with Rb if the MSB is one. */ | ||
| 106 | mask = 0 - (l[0] >> 7); | ||
| 107 | kn[block_size - 1] = (l[block_size - 1] << 1) ^ (Rb & mask); | ||
| 108 | } | ||
| 109 | |||
| 110 | CMAC_CTX * | ||
| 111 | CMAC_CTX_new(void) | ||
| 112 | { | ||
| 113 | CMAC_CTX *ctx; | ||
| 114 | |||
| 115 | if ((ctx = calloc(1, sizeof(CMAC_CTX))) == NULL) | ||
| 116 | goto err; | ||
| 117 | if ((ctx->cipher_ctx = EVP_CIPHER_CTX_new()) == NULL) | ||
| 118 | goto err; | ||
| 119 | |||
| 120 | ctx->nlast_block = -1; | ||
| 121 | |||
| 122 | return ctx; | ||
| 123 | |||
| 124 | err: | ||
| 125 | CMAC_CTX_free(ctx); | ||
| 126 | |||
| 127 | return NULL; | ||
| 128 | } | ||
| 129 | LCRYPTO_ALIAS(CMAC_CTX_new); | ||
| 130 | |||
| 131 | void | ||
| 132 | CMAC_CTX_cleanup(CMAC_CTX *ctx) | ||
| 133 | { | ||
| 134 | (void)EVP_CIPHER_CTX_reset(ctx->cipher_ctx); | ||
| 135 | explicit_bzero(ctx->tbl, EVP_MAX_BLOCK_LENGTH); | ||
| 136 | explicit_bzero(ctx->k1, EVP_MAX_BLOCK_LENGTH); | ||
| 137 | explicit_bzero(ctx->k2, EVP_MAX_BLOCK_LENGTH); | ||
| 138 | explicit_bzero(ctx->last_block, EVP_MAX_BLOCK_LENGTH); | ||
| 139 | ctx->nlast_block = -1; | ||
| 140 | } | ||
| 141 | LCRYPTO_ALIAS(CMAC_CTX_cleanup); | ||
| 142 | |||
| 143 | EVP_CIPHER_CTX * | ||
| 144 | CMAC_CTX_get0_cipher_ctx(CMAC_CTX *ctx) | ||
| 145 | { | ||
| 146 | return ctx->cipher_ctx; | ||
| 147 | } | ||
| 148 | LCRYPTO_ALIAS(CMAC_CTX_get0_cipher_ctx); | ||
| 149 | |||
| 150 | void | ||
| 151 | CMAC_CTX_free(CMAC_CTX *ctx) | ||
| 152 | { | ||
| 153 | if (ctx == NULL) | ||
| 154 | return; | ||
| 155 | |||
| 156 | CMAC_CTX_cleanup(ctx); | ||
| 157 | EVP_CIPHER_CTX_free(ctx->cipher_ctx); | ||
| 158 | freezero(ctx, sizeof(CMAC_CTX)); | ||
| 159 | } | ||
| 160 | LCRYPTO_ALIAS(CMAC_CTX_free); | ||
| 161 | |||
| 162 | int | ||
| 163 | CMAC_CTX_copy(CMAC_CTX *out, const CMAC_CTX *in) | ||
| 164 | { | ||
| 165 | int block_size; | ||
| 166 | |||
| 167 | if (in->nlast_block == -1) | ||
| 168 | return 0; | ||
| 169 | if (!EVP_CIPHER_CTX_copy(out->cipher_ctx, in->cipher_ctx)) | ||
| 170 | return 0; | ||
| 171 | block_size = EVP_CIPHER_CTX_block_size(in->cipher_ctx); | ||
| 172 | memcpy(out->k1, in->k1, block_size); | ||
| 173 | memcpy(out->k2, in->k2, block_size); | ||
| 174 | memcpy(out->tbl, in->tbl, block_size); | ||
| 175 | memcpy(out->last_block, in->last_block, block_size); | ||
| 176 | out->nlast_block = in->nlast_block; | ||
| 177 | return 1; | ||
| 178 | } | ||
| 179 | LCRYPTO_ALIAS(CMAC_CTX_copy); | ||
| 180 | |||
| 181 | int | ||
| 182 | CMAC_Init(CMAC_CTX *ctx, const void *key, size_t keylen, | ||
| 183 | const EVP_CIPHER *cipher, ENGINE *impl) | ||
| 184 | { | ||
| 185 | static const unsigned char zero_iv[EVP_MAX_BLOCK_LENGTH]; | ||
| 186 | int block_size; | ||
| 187 | |||
| 188 | /* All zeros means restart */ | ||
| 189 | if (key == NULL && cipher == NULL && keylen == 0) { | ||
| 190 | /* Not initialised */ | ||
| 191 | if (ctx->nlast_block == -1) | ||
| 192 | return 0; | ||
| 193 | if (!EVP_EncryptInit_ex(ctx->cipher_ctx, NULL, NULL, NULL, zero_iv)) | ||
| 194 | return 0; | ||
| 195 | explicit_bzero(ctx->tbl, sizeof(ctx->tbl)); | ||
| 196 | ctx->nlast_block = 0; | ||
| 197 | return 1; | ||
| 198 | } | ||
| 199 | |||
| 200 | /* Initialise context. */ | ||
| 201 | if (cipher != NULL) { | ||
| 202 | /* | ||
| 203 | * Disallow ciphers for which EVP_Cipher() behaves differently. | ||
| 204 | * These are AEAD ciphers (or AES keywrap) for which the CMAC | ||
| 205 | * construction makes little sense. | ||
| 206 | */ | ||
| 207 | if ((cipher->flags & EVP_CIPH_FLAG_CUSTOM_CIPHER) != 0) | ||
| 208 | return 0; | ||
| 209 | if (!EVP_EncryptInit_ex(ctx->cipher_ctx, cipher, NULL, NULL, NULL)) | ||
| 210 | return 0; | ||
| 211 | } | ||
| 212 | |||
| 213 | /* Non-NULL key means initialisation is complete. */ | ||
| 214 | if (key != NULL) { | ||
| 215 | if (EVP_CIPHER_CTX_cipher(ctx->cipher_ctx) == NULL) | ||
| 216 | return 0; | ||
| 217 | |||
| 218 | /* make_kn() only supports block sizes of 8 and 16 bytes. */ | ||
| 219 | block_size = EVP_CIPHER_CTX_block_size(ctx->cipher_ctx); | ||
| 220 | if (block_size != 8 && block_size != 16) | ||
| 221 | return 0; | ||
| 222 | |||
| 223 | /* | ||
| 224 | * Section 6.1, step 1: store the intermediate secret CIPH_K(0) | ||
| 225 | * in ctx->tbl. | ||
| 226 | */ | ||
| 227 | if (!EVP_CIPHER_CTX_set_key_length(ctx->cipher_ctx, keylen)) | ||
| 228 | return 0; | ||
| 229 | if (!EVP_EncryptInit_ex(ctx->cipher_ctx, NULL, NULL, key, zero_iv)) | ||
| 230 | return 0; | ||
| 231 | if (!EVP_Cipher(ctx->cipher_ctx, ctx->tbl, zero_iv, block_size)) | ||
| 232 | return 0; | ||
| 233 | |||
| 234 | /* Section 6.1, step 2: compute k1 from intermediate secret. */ | ||
| 235 | make_kn(ctx->k1, ctx->tbl, block_size); | ||
| 236 | /* Section 6.1, step 3: compute k2 from k1. */ | ||
| 237 | make_kn(ctx->k2, ctx->k1, block_size); | ||
| 238 | |||
| 239 | /* Destroy intermediate secret and reset last block count. */ | ||
| 240 | explicit_bzero(ctx->tbl, sizeof(ctx->tbl)); | ||
| 241 | ctx->nlast_block = 0; | ||
| 242 | |||
| 243 | /* Reset context again to get ready for the first data block. */ | ||
| 244 | if (!EVP_EncryptInit_ex(ctx->cipher_ctx, NULL, NULL, NULL, zero_iv)) | ||
| 245 | return 0; | ||
| 246 | } | ||
| 247 | |||
| 248 | return 1; | ||
| 249 | } | ||
| 250 | LCRYPTO_ALIAS(CMAC_Init); | ||
| 251 | |||
| 252 | int | ||
| 253 | CMAC_Update(CMAC_CTX *ctx, const void *in, size_t dlen) | ||
| 254 | { | ||
| 255 | const unsigned char *data = in; | ||
| 256 | size_t block_size; | ||
| 257 | |||
| 258 | if (ctx->nlast_block == -1) | ||
| 259 | return 0; | ||
| 260 | if (dlen == 0) | ||
| 261 | return 1; | ||
| 262 | block_size = EVP_CIPHER_CTX_block_size(ctx->cipher_ctx); | ||
| 263 | /* Copy into partial block if we need to */ | ||
| 264 | if (ctx->nlast_block > 0) { | ||
| 265 | size_t nleft; | ||
| 266 | |||
| 267 | nleft = block_size - ctx->nlast_block; | ||
| 268 | if (dlen < nleft) | ||
| 269 | nleft = dlen; | ||
| 270 | memcpy(ctx->last_block + ctx->nlast_block, data, nleft); | ||
| 271 | dlen -= nleft; | ||
| 272 | ctx->nlast_block += nleft; | ||
| 273 | /* If no more to process return */ | ||
| 274 | if (dlen == 0) | ||
| 275 | return 1; | ||
| 276 | data += nleft; | ||
| 277 | /* Else not final block so encrypt it */ | ||
| 278 | if (!EVP_Cipher(ctx->cipher_ctx, ctx->tbl, ctx->last_block, | ||
| 279 | block_size)) | ||
| 280 | return 0; | ||
| 281 | } | ||
| 282 | /* Encrypt all but one of the complete blocks left */ | ||
| 283 | while (dlen > block_size) { | ||
| 284 | if (!EVP_Cipher(ctx->cipher_ctx, ctx->tbl, data, block_size)) | ||
| 285 | return 0; | ||
| 286 | dlen -= block_size; | ||
| 287 | data += block_size; | ||
| 288 | } | ||
| 289 | /* Copy any data left to last block buffer */ | ||
| 290 | memcpy(ctx->last_block, data, dlen); | ||
| 291 | ctx->nlast_block = dlen; | ||
| 292 | return 1; | ||
| 293 | } | ||
| 294 | LCRYPTO_ALIAS(CMAC_Update); | ||
| 295 | |||
| 296 | int | ||
| 297 | CMAC_Final(CMAC_CTX *ctx, unsigned char *out, size_t *poutlen) | ||
| 298 | { | ||
| 299 | int i, block_size, lb; | ||
| 300 | |||
| 301 | if (ctx->nlast_block == -1) | ||
| 302 | return 0; | ||
| 303 | block_size = EVP_CIPHER_CTX_block_size(ctx->cipher_ctx); | ||
| 304 | *poutlen = (size_t)block_size; | ||
| 305 | if (!out) | ||
| 306 | return 1; | ||
| 307 | lb = ctx->nlast_block; | ||
| 308 | /* Is last block complete? */ | ||
| 309 | if (lb == block_size) { | ||
| 310 | for (i = 0; i < block_size; i++) | ||
| 311 | out[i] = ctx->last_block[i] ^ ctx->k1[i]; | ||
| 312 | } else { | ||
| 313 | ctx->last_block[lb] = 0x80; | ||
| 314 | if (block_size - lb > 1) | ||
| 315 | memset(ctx->last_block + lb + 1, 0, block_size - lb - 1); | ||
| 316 | for (i = 0; i < block_size; i++) | ||
| 317 | out[i] = ctx->last_block[i] ^ ctx->k2[i]; | ||
| 318 | } | ||
| 319 | if (!EVP_Cipher(ctx->cipher_ctx, out, out, block_size)) { | ||
| 320 | explicit_bzero(out, block_size); | ||
| 321 | return 0; | ||
| 322 | } | ||
| 323 | return 1; | ||
| 324 | } | ||
| 325 | LCRYPTO_ALIAS(CMAC_Final); | ||
