diff options
Diffstat (limited to 'src/lib/libcrypto/doc')
-rw-r--r-- | src/lib/libcrypto/doc/DSA_SIG_new.pod | 38 | ||||
-rw-r--r-- | src/lib/libcrypto/doc/DSA_do_sign.pod | 47 | ||||
-rw-r--r-- | src/lib/libcrypto/doc/DSA_dup_DH.pod | 36 | ||||
-rw-r--r-- | src/lib/libcrypto/doc/DSA_generate_key.pod | 32 | ||||
-rw-r--r-- | src/lib/libcrypto/doc/DSA_generate_parameters.pod | 122 | ||||
-rw-r--r-- | src/lib/libcrypto/doc/DSA_get_ex_new_index.pod | 37 | ||||
-rw-r--r-- | src/lib/libcrypto/doc/DSA_new.pod | 40 | ||||
-rw-r--r-- | src/lib/libcrypto/doc/DSA_set_method.pod | 143 | ||||
-rw-r--r-- | src/lib/libcrypto/doc/DSA_sign.pod | 63 | ||||
-rw-r--r-- | src/lib/libcrypto/doc/DSA_size.pod | 33 | ||||
-rw-r--r-- | src/lib/libcrypto/doc/EC_GFp_simple_method.pod | 60 | ||||
-rw-r--r-- | src/lib/libcrypto/doc/EC_GROUP_copy.pod | 174 | ||||
-rw-r--r-- | src/lib/libcrypto/doc/EC_GROUP_new.pod | 95 | ||||
-rw-r--r-- | src/lib/libcrypto/doc/EC_KEY_new.pod | 115 | ||||
-rw-r--r-- | src/lib/libcrypto/doc/EC_POINT_add.pod | 72 | ||||
-rw-r--r-- | src/lib/libcrypto/doc/EC_POINT_new.pod | 123 |
16 files changed, 0 insertions, 1230 deletions
diff --git a/src/lib/libcrypto/doc/DSA_SIG_new.pod b/src/lib/libcrypto/doc/DSA_SIG_new.pod deleted file mode 100644 index 77aa649db0..0000000000 --- a/src/lib/libcrypto/doc/DSA_SIG_new.pod +++ /dev/null | |||
@@ -1,38 +0,0 @@ | |||
1 | =pod | ||
2 | |||
3 | =head1 NAME | ||
4 | |||
5 | DSA_SIG_new, DSA_SIG_free - allocate and free DSA signature objects | ||
6 | |||
7 | =head1 SYNOPSIS | ||
8 | |||
9 | #include <openssl/dsa.h> | ||
10 | |||
11 | DSA_SIG *DSA_SIG_new(void); | ||
12 | |||
13 | void DSA_SIG_free(DSA_SIG *a); | ||
14 | |||
15 | =head1 DESCRIPTION | ||
16 | |||
17 | DSA_SIG_new() allocates and initializes a B<DSA_SIG> structure. | ||
18 | |||
19 | DSA_SIG_free() frees the B<DSA_SIG> structure and its components. The | ||
20 | values are erased before the memory is returned to the system. | ||
21 | |||
22 | =head1 RETURN VALUES | ||
23 | |||
24 | If the allocation fails, DSA_SIG_new() returns B<NULL> and sets an | ||
25 | error code that can be obtained by | ||
26 | L<ERR_get_error(3)|ERR_get_error(3)>. Otherwise it returns a pointer | ||
27 | to the newly allocated structure. | ||
28 | |||
29 | =head1 SEE ALSO | ||
30 | |||
31 | L<dsa(3)|dsa(3)>, L<ERR_get_error(3)|ERR_get_error(3)>, | ||
32 | L<DSA_do_sign(3)|DSA_do_sign(3)> | ||
33 | |||
34 | =head1 HISTORY | ||
35 | |||
36 | DSA_SIG_new() and DSA_SIG_free() were added in OpenSSL 0.9.3. | ||
37 | |||
38 | =cut | ||
diff --git a/src/lib/libcrypto/doc/DSA_do_sign.pod b/src/lib/libcrypto/doc/DSA_do_sign.pod deleted file mode 100644 index 5dfc733b20..0000000000 --- a/src/lib/libcrypto/doc/DSA_do_sign.pod +++ /dev/null | |||
@@ -1,47 +0,0 @@ | |||
1 | =pod | ||
2 | |||
3 | =head1 NAME | ||
4 | |||
5 | DSA_do_sign, DSA_do_verify - raw DSA signature operations | ||
6 | |||
7 | =head1 SYNOPSIS | ||
8 | |||
9 | #include <openssl/dsa.h> | ||
10 | |||
11 | DSA_SIG *DSA_do_sign(const unsigned char *dgst, int dlen, DSA *dsa); | ||
12 | |||
13 | int DSA_do_verify(const unsigned char *dgst, int dgst_len, | ||
14 | DSA_SIG *sig, DSA *dsa); | ||
15 | |||
16 | =head1 DESCRIPTION | ||
17 | |||
18 | DSA_do_sign() computes a digital signature on the B<len> byte message | ||
19 | digest B<dgst> using the private key B<dsa> and returns it in a | ||
20 | newly allocated B<DSA_SIG> structure. | ||
21 | |||
22 | L<DSA_sign_setup(3)|DSA_sign_setup(3)> may be used to precompute part | ||
23 | of the signing operation in case signature generation is | ||
24 | time-critical. | ||
25 | |||
26 | DSA_do_verify() verifies that the signature B<sig> matches a given | ||
27 | message digest B<dgst> of size B<len>. B<dsa> is the signer's public | ||
28 | key. | ||
29 | |||
30 | =head1 RETURN VALUES | ||
31 | |||
32 | DSA_do_sign() returns the signature, NULL on error. DSA_do_verify() | ||
33 | returns 1 for a valid signature, 0 for an incorrect signature and -1 | ||
34 | on error. The error codes can be obtained by | ||
35 | L<ERR_get_error(3)|ERR_get_error(3)>. | ||
36 | |||
37 | =head1 SEE ALSO | ||
38 | |||
39 | L<dsa(3)|dsa(3)>, L<ERR_get_error(3)|ERR_get_error(3)>, L<rand(3)|rand(3)>, | ||
40 | L<DSA_SIG_new(3)|DSA_SIG_new(3)>, | ||
41 | L<DSA_sign(3)|DSA_sign(3)> | ||
42 | |||
43 | =head1 HISTORY | ||
44 | |||
45 | DSA_do_sign() and DSA_do_verify() were added in OpenSSL 0.9.3. | ||
46 | |||
47 | =cut | ||
diff --git a/src/lib/libcrypto/doc/DSA_dup_DH.pod b/src/lib/libcrypto/doc/DSA_dup_DH.pod deleted file mode 100644 index 7f6f0d1115..0000000000 --- a/src/lib/libcrypto/doc/DSA_dup_DH.pod +++ /dev/null | |||
@@ -1,36 +0,0 @@ | |||
1 | =pod | ||
2 | |||
3 | =head1 NAME | ||
4 | |||
5 | DSA_dup_DH - create a DH structure out of DSA structure | ||
6 | |||
7 | =head1 SYNOPSIS | ||
8 | |||
9 | #include <openssl/dsa.h> | ||
10 | |||
11 | DH * DSA_dup_DH(const DSA *r); | ||
12 | |||
13 | =head1 DESCRIPTION | ||
14 | |||
15 | DSA_dup_DH() duplicates DSA parameters/keys as DH parameters/keys. q | ||
16 | is lost during that conversion, but the resulting DH parameters | ||
17 | contain its length. | ||
18 | |||
19 | =head1 RETURN VALUE | ||
20 | |||
21 | DSA_dup_DH() returns the new B<DH> structure, and NULL on error. The | ||
22 | error codes can be obtained by L<ERR_get_error(3)|ERR_get_error(3)>. | ||
23 | |||
24 | =head1 NOTE | ||
25 | |||
26 | Be careful to avoid small subgroup attacks when using this. | ||
27 | |||
28 | =head1 SEE ALSO | ||
29 | |||
30 | L<dh(3)|dh(3)>, L<dsa(3)|dsa(3)>, L<ERR_get_error(3)|ERR_get_error(3)> | ||
31 | |||
32 | =head1 HISTORY | ||
33 | |||
34 | DSA_dup_DH() was added in OpenSSL 0.9.4. | ||
35 | |||
36 | =cut | ||
diff --git a/src/lib/libcrypto/doc/DSA_generate_key.pod b/src/lib/libcrypto/doc/DSA_generate_key.pod deleted file mode 100644 index 069a05767c..0000000000 --- a/src/lib/libcrypto/doc/DSA_generate_key.pod +++ /dev/null | |||
@@ -1,32 +0,0 @@ | |||
1 | =pod | ||
2 | |||
3 | =head1 NAME | ||
4 | |||
5 | DSA_generate_key - generate DSA key pair | ||
6 | |||
7 | =head1 SYNOPSIS | ||
8 | |||
9 | #include <openssl/dsa.h> | ||
10 | |||
11 | int DSA_generate_key(DSA *a); | ||
12 | |||
13 | =head1 DESCRIPTION | ||
14 | |||
15 | DSA_generate_key() expects B<a> to contain DSA parameters. It generates | ||
16 | a new key pair and stores it in B<a-E<gt>pub_key> and B<a-E<gt>priv_key>. | ||
17 | |||
18 | =head1 RETURN VALUE | ||
19 | |||
20 | DSA_generate_key() returns 1 on success, 0 otherwise. | ||
21 | The error codes can be obtained by L<ERR_get_error(3)|ERR_get_error(3)>. | ||
22 | |||
23 | =head1 SEE ALSO | ||
24 | |||
25 | L<dsa(3)|dsa(3)>, L<ERR_get_error(3)|ERR_get_error(3)>, L<rand(3)|rand(3)>, | ||
26 | L<DSA_generate_parameters(3)|DSA_generate_parameters(3)> | ||
27 | |||
28 | =head1 HISTORY | ||
29 | |||
30 | DSA_generate_key() is available since SSLeay 0.8. | ||
31 | |||
32 | =cut | ||
diff --git a/src/lib/libcrypto/doc/DSA_generate_parameters.pod b/src/lib/libcrypto/doc/DSA_generate_parameters.pod deleted file mode 100644 index 698b555a0e..0000000000 --- a/src/lib/libcrypto/doc/DSA_generate_parameters.pod +++ /dev/null | |||
@@ -1,122 +0,0 @@ | |||
1 | =pod | ||
2 | |||
3 | =head1 NAME | ||
4 | |||
5 | DSA_generate_parameters_ex, DSA_generate_parameters - generate DSA parameters | ||
6 | |||
7 | =head1 SYNOPSIS | ||
8 | |||
9 | #include <openssl/dsa.h> | ||
10 | |||
11 | int DSA_generate_parameters_ex(DSA *dsa, int bits, | ||
12 | const unsigned char *seed,int seed_len, | ||
13 | int *counter_ret, unsigned long *h_ret, BN_GENCB *cb); | ||
14 | |||
15 | Deprecated: | ||
16 | |||
17 | DSA *DSA_generate_parameters(int bits, unsigned char *seed, | ||
18 | int seed_len, int *counter_ret, unsigned long *h_ret, | ||
19 | void (*callback)(int, int, void *), void *cb_arg); | ||
20 | |||
21 | =head1 DESCRIPTION | ||
22 | |||
23 | DSA_generate_parameters_ex() generates primes p and q and a generator g | ||
24 | for use in the DSA and stores the result in B<dsa>. | ||
25 | |||
26 | B<bits> is the length of the prime to be generated; the DSS allows a | ||
27 | maximum of 1024 bits. | ||
28 | |||
29 | If B<seed> is B<NULL> or B<seed_len> E<lt> 20, the primes will be | ||
30 | generated at random. Otherwise, the seed is used to generate | ||
31 | them. If the given seed does not yield a prime q, a new random | ||
32 | seed is chosen and placed at B<seed>. | ||
33 | |||
34 | DSA_generate_parameters_ex() places the iteration count in | ||
35 | *B<counter_ret> and a counter used for finding a generator in | ||
36 | *B<h_ret>, unless these are B<NULL>. | ||
37 | |||
38 | A callback function may be used to provide feedback about the progress | ||
39 | of the key generation. If B<cb> is not B<NULL>, it will be | ||
40 | called as shown below. For information on the BN_GENCB structure and the | ||
41 | BN_GENCB_call function discussed below, refer to | ||
42 | L<BN_generate_prime(3)|BN_generate_prime(3)>. | ||
43 | |||
44 | =over 4 | ||
45 | |||
46 | =item * | ||
47 | |||
48 | When a candidate for q is generated, B<BN_GENCB_call(cb, 0, m++)> is called | ||
49 | (m is 0 for the first candidate). | ||
50 | |||
51 | =item * | ||
52 | |||
53 | When a candidate for q has passed a test by trial division, | ||
54 | B<BN_GENCB_call(cb, 1, -1)> is called. | ||
55 | While a candidate for q is tested by Miller-Rabin primality tests, | ||
56 | B<BN_GENCB_call(cb, 1, i)> is called in the outer loop | ||
57 | (once for each witness that confirms that the candidate may be prime); | ||
58 | i is the loop counter (starting at 0). | ||
59 | |||
60 | =item * | ||
61 | |||
62 | When a prime q has been found, B<BN_GENCB_call(cb, 2, 0)> and | ||
63 | B<BN_GENCB_call(cb, 3, 0)> are called. | ||
64 | |||
65 | =item * | ||
66 | |||
67 | Before a candidate for p (other than the first) is generated and tested, | ||
68 | B<BN_GENCB_call(cb, 0, counter)> is called. | ||
69 | |||
70 | =item * | ||
71 | |||
72 | When a candidate for p has passed the test by trial division, | ||
73 | B<BN_GENCB_call(cb, 1, -1)> is called. | ||
74 | While it is tested by the Miller-Rabin primality test, | ||
75 | B<BN_GENCB_call(cb, 1, i)> is called in the outer loop | ||
76 | (once for each witness that confirms that the candidate may be prime). | ||
77 | i is the loop counter (starting at 0). | ||
78 | |||
79 | =item * | ||
80 | |||
81 | When p has been found, B<BN_GENCB_call(cb, 2, 1)> is called. | ||
82 | |||
83 | =item * | ||
84 | |||
85 | When the generator has been found, B<BN_GENCB_call(cb, 3, 1)> is called. | ||
86 | |||
87 | =back | ||
88 | |||
89 | DSA_generate_parameters() (deprecated) works in much the same way as for DSA_generate_parameters_ex, except that no B<dsa> parameter is passed and | ||
90 | instead a newly allocated B<DSA> structure is returned. Additionally "old | ||
91 | style" callbacks are used instead of the newer BN_GENCB based approach. | ||
92 | Refer to L<BN_generate_prime(3)|BN_generate_prime(3)> for further information. | ||
93 | |||
94 | =head1 RETURN VALUE | ||
95 | |||
96 | DSA_generate_parameters_ex() returns a 1 on success, or 0 otherwise. | ||
97 | |||
98 | DSA_generate_parameters() returns a pointer to the DSA structure, or | ||
99 | B<NULL> if the parameter generation fails. | ||
100 | |||
101 | The error codes can be obtained by L<ERR_get_error(3)|ERR_get_error(3)>. | ||
102 | |||
103 | =head1 BUGS | ||
104 | |||
105 | Seed lengths E<gt> 20 are not supported. | ||
106 | |||
107 | =head1 SEE ALSO | ||
108 | |||
109 | L<dsa(3)|dsa(3)>, L<ERR_get_error(3)|ERR_get_error(3)>, L<rand(3)|rand(3)>, | ||
110 | L<DSA_free(3)|DSA_free(3)>, L<BN_generate_prime(3)|BN_generate_prime(3)> | ||
111 | |||
112 | =head1 HISTORY | ||
113 | |||
114 | DSA_generate_parameters() appeared in SSLeay 0.8. The B<cb_arg> | ||
115 | argument was added in SSLeay 0.9.0. | ||
116 | In versions up to OpenSSL 0.9.4, B<callback(1, ...)> was called | ||
117 | in the inner loop of the Miller-Rabin test whenever it reached the | ||
118 | squaring step (the parameters to B<callback> did not reveal how many | ||
119 | witnesses had been tested); since OpenSSL 0.9.5, B<callback(1, ...)> | ||
120 | is called as in BN_is_prime(3), i.e. once for each witness. | ||
121 | |||
122 | =cut | ||
diff --git a/src/lib/libcrypto/doc/DSA_get_ex_new_index.pod b/src/lib/libcrypto/doc/DSA_get_ex_new_index.pod deleted file mode 100644 index e2fcabf370..0000000000 --- a/src/lib/libcrypto/doc/DSA_get_ex_new_index.pod +++ /dev/null | |||
@@ -1,37 +0,0 @@ | |||
1 | =pod | ||
2 | |||
3 | =head1 NAME | ||
4 | |||
5 | DSA_get_ex_new_index, DSA_set_ex_data, DSA_get_ex_data - add application | ||
6 | specific data to DSA structures | ||
7 | |||
8 | =head1 SYNOPSIS | ||
9 | |||
10 | #include <openssl/dsa.h> | ||
11 | |||
12 | int DSA_get_ex_new_index(long argl, void *argp, | ||
13 | CRYPTO_EX_new *new_func, | ||
14 | CRYPTO_EX_dup *dup_func, | ||
15 | CRYPTO_EX_free *free_func); | ||
16 | |||
17 | int DSA_set_ex_data(DSA *d, int idx, void *arg); | ||
18 | |||
19 | char *DSA_get_ex_data(DSA *d, int idx); | ||
20 | |||
21 | =head1 DESCRIPTION | ||
22 | |||
23 | These functions handle application specific data in DSA | ||
24 | structures. Their usage is identical to that of | ||
25 | RSA_get_ex_new_index(), RSA_set_ex_data() and RSA_get_ex_data() | ||
26 | as described in L<RSA_get_ex_new_index(3)>. | ||
27 | |||
28 | =head1 SEE ALSO | ||
29 | |||
30 | L<RSA_get_ex_new_index(3)|RSA_get_ex_new_index(3)>, L<dsa(3)|dsa(3)> | ||
31 | |||
32 | =head1 HISTORY | ||
33 | |||
34 | DSA_get_ex_new_index(), DSA_set_ex_data() and DSA_get_ex_data() are | ||
35 | available since OpenSSL 0.9.5. | ||
36 | |||
37 | =cut | ||
diff --git a/src/lib/libcrypto/doc/DSA_new.pod b/src/lib/libcrypto/doc/DSA_new.pod deleted file mode 100644 index e1e30b9a07..0000000000 --- a/src/lib/libcrypto/doc/DSA_new.pod +++ /dev/null | |||
@@ -1,40 +0,0 @@ | |||
1 | =pod | ||
2 | |||
3 | =head1 NAME | ||
4 | |||
5 | DSA_new, DSA_free - allocate and free DSA objects | ||
6 | |||
7 | =head1 SYNOPSIS | ||
8 | |||
9 | #include <openssl/dsa.h> | ||
10 | |||
11 | DSA* DSA_new(void); | ||
12 | |||
13 | void DSA_free(DSA *dsa); | ||
14 | |||
15 | =head1 DESCRIPTION | ||
16 | |||
17 | DSA_new() allocates and initializes a B<DSA> structure. It is equivalent to | ||
18 | calling DSA_new_method(NULL). | ||
19 | |||
20 | DSA_free() frees the B<DSA> structure and its components. The values are | ||
21 | erased before the memory is returned to the system. | ||
22 | |||
23 | =head1 RETURN VALUES | ||
24 | |||
25 | If the allocation fails, DSA_new() returns B<NULL> and sets an error | ||
26 | code that can be obtained by | ||
27 | L<ERR_get_error(3)|ERR_get_error(3)>. Otherwise it returns a pointer | ||
28 | to the newly allocated structure. | ||
29 | |||
30 | =head1 SEE ALSO | ||
31 | |||
32 | L<dsa(3)|dsa(3)>, L<ERR_get_error(3)|ERR_get_error(3)>, | ||
33 | L<DSA_generate_parameters(3)|DSA_generate_parameters(3)>, | ||
34 | L<DSA_generate_key(3)|DSA_generate_key(3)> | ||
35 | |||
36 | =head1 HISTORY | ||
37 | |||
38 | DSA_new() and DSA_free() are available in all versions of SSLeay and OpenSSL. | ||
39 | |||
40 | =cut | ||
diff --git a/src/lib/libcrypto/doc/DSA_set_method.pod b/src/lib/libcrypto/doc/DSA_set_method.pod deleted file mode 100644 index bc57a3e8e2..0000000000 --- a/src/lib/libcrypto/doc/DSA_set_method.pod +++ /dev/null | |||
@@ -1,143 +0,0 @@ | |||
1 | =pod | ||
2 | |||
3 | =head1 NAME | ||
4 | |||
5 | DSA_set_default_method, DSA_get_default_method, | ||
6 | DSA_set_method, DSA_new_method, DSA_OpenSSL, | ||
7 | DSA_set_default_openssl_method, DSA_get_default_openssl_method | ||
8 | - select DSA method | ||
9 | |||
10 | =head1 SYNOPSIS | ||
11 | |||
12 | #include <openssl/dsa.h> | ||
13 | #include <openssl/engine.h> | ||
14 | |||
15 | void DSA_set_default_method(const DSA_METHOD *meth); | ||
16 | |||
17 | const DSA_METHOD *DSA_get_default_method(void); | ||
18 | |||
19 | int DSA_set_method(DSA *dsa, const DSA_METHOD *meth); | ||
20 | |||
21 | DSA *DSA_new_method(ENGINE *engine); | ||
22 | |||
23 | DSA_METHOD *DSA_OpenSSL(void); | ||
24 | |||
25 | =head1 DESCRIPTION | ||
26 | |||
27 | A B<DSA_METHOD> specifies the functions that OpenSSL uses for DSA | ||
28 | operations. By modifying the method, alternative implementations | ||
29 | such as hardware accelerators may be used. IMPORTANT: See the NOTES section for | ||
30 | important information about how these DSA API functions are affected by the use | ||
31 | of B<ENGINE> API calls. | ||
32 | |||
33 | Initially, the default DSA_METHOD is the OpenSSL internal implementation, | ||
34 | as returned by DSA_OpenSSL(). | ||
35 | |||
36 | DSA_set_default_method() makes B<meth> the default method for all DSA | ||
37 | structures created later. B<NB>: This is true only whilst no ENGINE has | ||
38 | been set as a default for DSA, so this function is no longer recommended. | ||
39 | |||
40 | DSA_get_default_method() returns a pointer to the current default | ||
41 | DSA_METHOD. However, the meaningfulness of this result is dependent on | ||
42 | whether the ENGINE API is being used, so this function is no longer | ||
43 | recommended. | ||
44 | |||
45 | DSA_set_method() selects B<meth> to perform all operations using the key | ||
46 | B<rsa>. This will replace the DSA_METHOD used by the DSA key and if the | ||
47 | previous method was supplied by an ENGINE, the handle to that ENGINE will | ||
48 | be released during the change. It is possible to have DSA keys that only | ||
49 | work with certain DSA_METHOD implementations (eg. from an ENGINE module | ||
50 | that supports embedded hardware-protected keys), and in such cases | ||
51 | attempting to change the DSA_METHOD for the key can have unexpected | ||
52 | results. | ||
53 | |||
54 | DSA_new_method() allocates and initializes a DSA structure so that B<engine> | ||
55 | will be used for the DSA operations. If B<engine> is NULL, the default engine | ||
56 | for DSA operations is used, and if no default ENGINE is set, the DSA_METHOD | ||
57 | controlled by DSA_set_default_method() is used. | ||
58 | |||
59 | =head1 THE DSA_METHOD STRUCTURE | ||
60 | |||
61 | struct | ||
62 | { | ||
63 | /* name of the implementation */ | ||
64 | const char *name; | ||
65 | |||
66 | /* sign */ | ||
67 | DSA_SIG *(*dsa_do_sign)(const unsigned char *dgst, int dlen, | ||
68 | DSA *dsa); | ||
69 | |||
70 | /* pre-compute k^-1 and r */ | ||
71 | int (*dsa_sign_setup)(DSA *dsa, BN_CTX *ctx_in, BIGNUM **kinvp, | ||
72 | BIGNUM **rp); | ||
73 | |||
74 | /* verify */ | ||
75 | int (*dsa_do_verify)(const unsigned char *dgst, int dgst_len, | ||
76 | DSA_SIG *sig, DSA *dsa); | ||
77 | |||
78 | /* compute rr = a1^p1 * a2^p2 mod m (May be NULL for some | ||
79 | implementations) */ | ||
80 | int (*dsa_mod_exp)(DSA *dsa, BIGNUM *rr, BIGNUM *a1, BIGNUM *p1, | ||
81 | BIGNUM *a2, BIGNUM *p2, BIGNUM *m, | ||
82 | BN_CTX *ctx, BN_MONT_CTX *in_mont); | ||
83 | |||
84 | /* compute r = a ^ p mod m (May be NULL for some implementations) */ | ||
85 | int (*bn_mod_exp)(DSA *dsa, BIGNUM *r, BIGNUM *a, | ||
86 | const BIGNUM *p, const BIGNUM *m, | ||
87 | BN_CTX *ctx, BN_MONT_CTX *m_ctx); | ||
88 | |||
89 | /* called at DSA_new */ | ||
90 | int (*init)(DSA *DSA); | ||
91 | |||
92 | /* called at DSA_free */ | ||
93 | int (*finish)(DSA *DSA); | ||
94 | |||
95 | int flags; | ||
96 | |||
97 | char *app_data; /* ?? */ | ||
98 | |||
99 | } DSA_METHOD; | ||
100 | |||
101 | =head1 RETURN VALUES | ||
102 | |||
103 | DSA_OpenSSL() and DSA_get_default_method() return pointers to the respective | ||
104 | B<DSA_METHOD>s. | ||
105 | |||
106 | DSA_set_method() returns non-zero if the provided B<meth> was successfully set | ||
107 | as the method for B<dsa> (including unloading the ENGINE handle if the previous | ||
108 | method was supplied by an ENGINE). | ||
109 | |||
110 | DSA_new_method() returns NULL and sets an error code that can be | ||
111 | obtained by L<ERR_get_error(3)|ERR_get_error(3)> if the allocation | ||
112 | fails. Otherwise it returns a pointer to the newly allocated structure. | ||
113 | |||
114 | =head1 NOTES | ||
115 | |||
116 | As of version 0.9.7, DSA_METHOD implementations are grouped together with other | ||
117 | algorithmic APIs (eg. RSA_METHOD, EVP_CIPHER, etc) in B<ENGINE> modules. If a | ||
118 | default ENGINE is specified for DSA functionality using an ENGINE API function, | ||
119 | that will override any DSA defaults set using the DSA API (ie. | ||
120 | DSA_set_default_method()). For this reason, the ENGINE API is the recommended | ||
121 | way to control default implementations for use in DSA and other cryptographic | ||
122 | algorithms. | ||
123 | |||
124 | =head1 SEE ALSO | ||
125 | |||
126 | L<dsa(3)|dsa(3)>, L<DSA_new(3)|DSA_new(3)> | ||
127 | |||
128 | =head1 HISTORY | ||
129 | |||
130 | DSA_set_default_method(), DSA_get_default_method(), DSA_set_method(), | ||
131 | DSA_new_method() and DSA_OpenSSL() were added in OpenSSL 0.9.4. | ||
132 | |||
133 | DSA_set_default_openssl_method() and DSA_get_default_openssl_method() replaced | ||
134 | DSA_set_default_method() and DSA_get_default_method() respectively, and | ||
135 | DSA_set_method() and DSA_new_method() were altered to use B<ENGINE>s rather than | ||
136 | B<DSA_METHOD>s during development of the engine version of OpenSSL 0.9.6. For | ||
137 | 0.9.7, the handling of defaults in the ENGINE API was restructured so that this | ||
138 | change was reversed, and behaviour of the other functions resembled more closely | ||
139 | the previous behaviour. The behaviour of defaults in the ENGINE API now | ||
140 | transparently overrides the behaviour of defaults in the DSA API without | ||
141 | requiring changing these function prototypes. | ||
142 | |||
143 | =cut | ||
diff --git a/src/lib/libcrypto/doc/DSA_sign.pod b/src/lib/libcrypto/doc/DSA_sign.pod deleted file mode 100644 index 4e78a71390..0000000000 --- a/src/lib/libcrypto/doc/DSA_sign.pod +++ /dev/null | |||
@@ -1,63 +0,0 @@ | |||
1 | =pod | ||
2 | |||
3 | =head1 NAME | ||
4 | |||
5 | DSA_sign, DSA_sign_setup, DSA_verify - DSA signatures | ||
6 | |||
7 | =head1 SYNOPSIS | ||
8 | |||
9 | #include <openssl/dsa.h> | ||
10 | |||
11 | int DSA_sign(int type, const unsigned char *dgst, int len, | ||
12 | unsigned char *sigret, unsigned int *siglen, DSA *dsa); | ||
13 | |||
14 | int DSA_sign_setup(DSA *dsa, BN_CTX *ctx, BIGNUM **kinvp, | ||
15 | BIGNUM **rp); | ||
16 | |||
17 | int DSA_verify(int type, const unsigned char *dgst, int len, | ||
18 | unsigned char *sigbuf, int siglen, DSA *dsa); | ||
19 | |||
20 | =head1 DESCRIPTION | ||
21 | |||
22 | DSA_sign() computes a digital signature on the B<len> byte message | ||
23 | digest B<dgst> using the private key B<dsa> and places its ASN.1 DER | ||
24 | encoding at B<sigret>. The length of the signature is places in | ||
25 | *B<siglen>. B<sigret> must point to DSA_size(B<dsa>) bytes of memory. | ||
26 | |||
27 | DSA_sign_setup() may be used to precompute part of the signing | ||
28 | operation in case signature generation is time-critical. It expects | ||
29 | B<dsa> to contain DSA parameters. It places the precomputed values | ||
30 | in newly allocated B<BIGNUM>s at *B<kinvp> and *B<rp>, after freeing | ||
31 | the old ones unless *B<kinvp> and *B<rp> are NULL. These values may | ||
32 | be passed to DSA_sign() in B<dsa-E<gt>kinv> and B<dsa-E<gt>r>. | ||
33 | B<ctx> is a pre-allocated B<BN_CTX> or NULL. | ||
34 | |||
35 | DSA_verify() verifies that the signature B<sigbuf> of size B<siglen> | ||
36 | matches a given message digest B<dgst> of size B<len>. | ||
37 | B<dsa> is the signer's public key. | ||
38 | |||
39 | The B<type> parameter is ignored. | ||
40 | |||
41 | =head1 RETURN VALUES | ||
42 | |||
43 | DSA_sign() and DSA_sign_setup() return 1 on success, 0 on error. | ||
44 | DSA_verify() returns 1 for a valid signature, 0 for an incorrect | ||
45 | signature and -1 on error. The error codes can be obtained by | ||
46 | L<ERR_get_error(3)|ERR_get_error(3)>. | ||
47 | |||
48 | =head1 CONFORMING TO | ||
49 | |||
50 | US Federal Information Processing Standard FIPS 186 (Digital Signature | ||
51 | Standard, DSS), ANSI X9.30 | ||
52 | |||
53 | =head1 SEE ALSO | ||
54 | |||
55 | L<dsa(3)|dsa(3)>, L<ERR_get_error(3)|ERR_get_error(3)>, L<rand(3)|rand(3)>, | ||
56 | L<DSA_do_sign(3)|DSA_do_sign(3)> | ||
57 | |||
58 | =head1 HISTORY | ||
59 | |||
60 | DSA_sign() and DSA_verify() are available in all versions of SSLeay. | ||
61 | DSA_sign_setup() was added in SSLeay 0.8. | ||
62 | |||
63 | =cut | ||
diff --git a/src/lib/libcrypto/doc/DSA_size.pod b/src/lib/libcrypto/doc/DSA_size.pod deleted file mode 100644 index ba4f650361..0000000000 --- a/src/lib/libcrypto/doc/DSA_size.pod +++ /dev/null | |||
@@ -1,33 +0,0 @@ | |||
1 | =pod | ||
2 | |||
3 | =head1 NAME | ||
4 | |||
5 | DSA_size - get DSA signature size | ||
6 | |||
7 | =head1 SYNOPSIS | ||
8 | |||
9 | #include <openssl/dsa.h> | ||
10 | |||
11 | int DSA_size(const DSA *dsa); | ||
12 | |||
13 | =head1 DESCRIPTION | ||
14 | |||
15 | This function returns the size of an ASN.1 encoded DSA signature in | ||
16 | bytes. It can be used to determine how much memory must be allocated | ||
17 | for a DSA signature. | ||
18 | |||
19 | B<dsa-E<gt>q> must not be B<NULL>. | ||
20 | |||
21 | =head1 RETURN VALUE | ||
22 | |||
23 | The size in bytes. | ||
24 | |||
25 | =head1 SEE ALSO | ||
26 | |||
27 | L<dsa(3)|dsa(3)>, L<DSA_sign(3)|DSA_sign(3)> | ||
28 | |||
29 | =head1 HISTORY | ||
30 | |||
31 | DSA_size() is available in all versions of SSLeay and OpenSSL. | ||
32 | |||
33 | =cut | ||
diff --git a/src/lib/libcrypto/doc/EC_GFp_simple_method.pod b/src/lib/libcrypto/doc/EC_GFp_simple_method.pod deleted file mode 100644 index aff20ac175..0000000000 --- a/src/lib/libcrypto/doc/EC_GFp_simple_method.pod +++ /dev/null | |||
@@ -1,60 +0,0 @@ | |||
1 | =pod | ||
2 | |||
3 | =head1 NAME | ||
4 | |||
5 | EC_GFp_simple_method, EC_GFp_mont_method, EC_GFp_nist_method, EC_GFp_nistp224_method, EC_GFp_nistp256_method, EC_GFp_nistp521_method, EC_GF2m_simple_method, EC_METHOD_get_field_type - Functions for obtaining B<EC_METHOD> objects. | ||
6 | |||
7 | =head1 SYNOPSIS | ||
8 | |||
9 | #include <openssl/ec.h> | ||
10 | |||
11 | const EC_METHOD *EC_GFp_simple_method(void); | ||
12 | const EC_METHOD *EC_GFp_mont_method(void); | ||
13 | const EC_METHOD *EC_GFp_nist_method(void); | ||
14 | const EC_METHOD *EC_GFp_nistp224_method(void); | ||
15 | const EC_METHOD *EC_GFp_nistp256_method(void); | ||
16 | const EC_METHOD *EC_GFp_nistp521_method(void); | ||
17 | |||
18 | const EC_METHOD *EC_GF2m_simple_method(void); | ||
19 | |||
20 | int EC_METHOD_get_field_type(const EC_METHOD *meth); | ||
21 | |||
22 | =head1 DESCRIPTION | ||
23 | |||
24 | The Elliptic Curve library provides a number of different implementations through a single common interface. | ||
25 | When constructing a curve using EC_GROUP_new (see L<EC_GROUP_new(3)|EC_GROUP_new(3)>) an | ||
26 | implementation method must be provided. The functions described here all return a const pointer to an | ||
27 | B<EC_METHOD> structure that can be passed to EC_GROUP_NEW. It is important that the correct implementation | ||
28 | type for the form of curve selected is used. | ||
29 | |||
30 | For F2^m curves there is only one implementation choice, i.e. EC_GF2_simple_method. | ||
31 | |||
32 | For Fp curves the lowest common denominator implementation is the EC_GFp_simple_method implementation. All | ||
33 | other implementations are based on this one. EC_GFp_mont_method builds on EC_GFp_simple_method but adds the | ||
34 | use of montgomery multiplication (see L<BN_mod_mul_montgomery(3)|BN_mod_mul_montgomery(3)>). EC_GFp_nist_method | ||
35 | offers an implementation optimised for use with NIST recommended curves (NIST curves are available through | ||
36 | EC_GROUP_new_by_curve_name as described in L<EC_GROUP_new(3)|EC_GROUP_new(3)>). | ||
37 | |||
38 | The functions EC_GFp_nistp224_method, EC_GFp_nistp256_method and EC_GFp_nistp521_method offer 64 bit | ||
39 | optimised implementations for the NIST P224, P256 and P521 curves respectively. Note, however, that these | ||
40 | implementations are not available on all platforms. | ||
41 | |||
42 | EC_METHOD_get_field_type identifies what type of field the EC_METHOD structure supports, which will be either | ||
43 | F2^m or Fp. If the field type is Fp then the value B<NID_X9_62_prime_field> is returned. If the field type is | ||
44 | F2^m then the value B<NID_X9_62_characteristic_two_field> is returned. These values are defined in the | ||
45 | obj_mac.h header file. | ||
46 | |||
47 | =head1 RETURN VALUES | ||
48 | |||
49 | All EC_GFp* functions and EC_GF2m_simple_method always return a const pointer to an EC_METHOD structure. | ||
50 | |||
51 | EC_METHOD_get_field_type returns an integer that identifies the type of field the EC_METHOD structure supports. | ||
52 | |||
53 | =head1 SEE ALSO | ||
54 | |||
55 | L<crypto(3)|crypto(3)>, L<ec(3)|ec(3)>, L<EC_GROUP_new(3)|EC_GROUP_new(3)>, L<EC_GROUP_copy(3)|EC_GROUP_copy(3)>, | ||
56 | L<EC_POINT_new(3)|EC_POINT_new(3)>, L<EC_POINT_add(3)|EC_POINT_add(3)>, L<EC_KEY_new(3)|EC_KEY_new(3)>, | ||
57 | L<d2i_ECPKParameters(3)|d2i_ECPKParameters(3)>, | ||
58 | L<BN_mod_mul_montgomery(3)|BN_mod_mul_montgomery(3)> | ||
59 | |||
60 | =cut | ||
diff --git a/src/lib/libcrypto/doc/EC_GROUP_copy.pod b/src/lib/libcrypto/doc/EC_GROUP_copy.pod deleted file mode 100644 index d4896af1d5..0000000000 --- a/src/lib/libcrypto/doc/EC_GROUP_copy.pod +++ /dev/null | |||
@@ -1,174 +0,0 @@ | |||
1 | =pod | ||
2 | |||
3 | =head1 NAME | ||
4 | |||
5 | EC_GROUP_copy, EC_GROUP_dup, EC_GROUP_method_of, EC_GROUP_set_generator, EC_GROUP_get0_generator, EC_GROUP_get_order, EC_GROUP_get_cofactor, EC_GROUP_set_curve_name, EC_GROUP_get_curve_name, EC_GROUP_set_asn1_flag, EC_GROUP_get_asn1_flag, EC_GROUP_set_point_conversion_form, EC_GROUP_get_point_conversion_form, EC_GROUP_get0_seed, EC_GROUP_get_seed_len, EC_GROUP_set_seed, EC_GROUP_get_degree, EC_GROUP_check, EC_GROUP_check_discriminant, EC_GROUP_cmp, EC_GROUP_get_basis_type, EC_GROUP_get_trinomial_basis, EC_GROUP_get_pentanomial_basis - Functions for manipulating B<EC_GROUP> objects. | ||
6 | |||
7 | =head1 SYNOPSIS | ||
8 | |||
9 | #include <openssl/ec.h> | ||
10 | #include <openssl/bn.h> | ||
11 | |||
12 | int EC_GROUP_copy(EC_GROUP *dst, const EC_GROUP *src); | ||
13 | EC_GROUP *EC_GROUP_dup(const EC_GROUP *src); | ||
14 | |||
15 | const EC_METHOD *EC_GROUP_method_of(const EC_GROUP *group); | ||
16 | |||
17 | int EC_GROUP_set_generator(EC_GROUP *group, const EC_POINT *generator, const BIGNUM *order, const BIGNUM *cofactor); | ||
18 | const EC_POINT *EC_GROUP_get0_generator(const EC_GROUP *group); | ||
19 | |||
20 | int EC_GROUP_get_order(const EC_GROUP *group, BIGNUM *order, BN_CTX *ctx); | ||
21 | int EC_GROUP_get_cofactor(const EC_GROUP *group, BIGNUM *cofactor, BN_CTX *ctx); | ||
22 | |||
23 | void EC_GROUP_set_curve_name(EC_GROUP *group, int nid); | ||
24 | int EC_GROUP_get_curve_name(const EC_GROUP *group); | ||
25 | |||
26 | void EC_GROUP_set_asn1_flag(EC_GROUP *group, int flag); | ||
27 | int EC_GROUP_get_asn1_flag(const EC_GROUP *group); | ||
28 | |||
29 | void EC_GROUP_set_point_conversion_form(EC_GROUP *group, point_conversion_form_t form); | ||
30 | point_conversion_form_t EC_GROUP_get_point_conversion_form(const EC_GROUP *); | ||
31 | |||
32 | unsigned char *EC_GROUP_get0_seed(const EC_GROUP *x); | ||
33 | size_t EC_GROUP_get_seed_len(const EC_GROUP *); | ||
34 | size_t EC_GROUP_set_seed(EC_GROUP *, const unsigned char *, size_t len); | ||
35 | |||
36 | int EC_GROUP_get_degree(const EC_GROUP *group); | ||
37 | |||
38 | int EC_GROUP_check(const EC_GROUP *group, BN_CTX *ctx); | ||
39 | |||
40 | int EC_GROUP_check_discriminant(const EC_GROUP *group, BN_CTX *ctx); | ||
41 | |||
42 | int EC_GROUP_cmp(const EC_GROUP *a, const EC_GROUP *b, BN_CTX *ctx); | ||
43 | |||
44 | int EC_GROUP_get_basis_type(const EC_GROUP *); | ||
45 | int EC_GROUP_get_trinomial_basis(const EC_GROUP *, unsigned int *k); | ||
46 | int EC_GROUP_get_pentanomial_basis(const EC_GROUP *, unsigned int *k1, | ||
47 | unsigned int *k2, unsigned int *k3); | ||
48 | |||
49 | =head1 DESCRIPTION | ||
50 | |||
51 | EC_GROUP_copy copies the curve B<src> into B<dst>. Both B<src> and B<dst> must use the same EC_METHOD. | ||
52 | |||
53 | EC_GROUP_dup creates a new EC_GROUP object and copies the content from B<src> to the newly created | ||
54 | EC_GROUP object. | ||
55 | |||
56 | EC_GROUP_method_of obtains the EC_METHOD of B<group>. | ||
57 | |||
58 | EC_GROUP_set_generator sets curve paramaters that must be agreed by all participants using the curve. These | ||
59 | paramaters include the B<generator>, the B<order> and the B<cofactor>. The B<generator> is a well defined point on the | ||
60 | curve chosen for cryptographic operations. Integers used for point multiplications will be between 0 and | ||
61 | n-1 where n is the B<order>. The B<order> multipied by the B<cofactor> gives the number of points on the curve. | ||
62 | |||
63 | EC_GROUP_get0_generator returns the generator for the identified B<group>. | ||
64 | |||
65 | The functions EC_GROUP_get_order and EC_GROUP_get_cofactor populate the provided B<order> and B<cofactor> parameters | ||
66 | with the respective order and cofactors for the B<group>. | ||
67 | |||
68 | The functions EC_GROUP_set_curve_name and EC_GROUP_get_curve_name, set and get the NID for the curve respectively | ||
69 | (see L<EC_GROUP_new(3)|EC_GROUP_new(3)>). If a curve does not have a NID associated with it, then EC_GROUP_get_curve_name | ||
70 | will return 0. | ||
71 | |||
72 | The asn1_flag value on a curve is used to determine whether there is a specific ASN1 OID to describe the curve or not. | ||
73 | If the asn1_flag is 1 then this is a named curve with an associated ASN1 OID. If not then asn1_flag is 0. The functions | ||
74 | EC_GROUP_get_asn1_flag and EC_GROUP_set_asn1_flag get and set the status of the asn1_flag for the curve. If set then | ||
75 | the curve_name must also be set. | ||
76 | |||
77 | The point_conversion_form for a curve controls how EC_POINT data is encoded as ASN1 as defined in X9.62 (ECDSA). | ||
78 | point_conversion_form_t is an enum defined as follows: | ||
79 | |||
80 | typedef enum { | ||
81 | /** the point is encoded as z||x, where the octet z specifies | ||
82 | * which solution of the quadratic equation y is */ | ||
83 | POINT_CONVERSION_COMPRESSED = 2, | ||
84 | /** the point is encoded as z||x||y, where z is the octet 0x02 */ | ||
85 | POINT_CONVERSION_UNCOMPRESSED = 4, | ||
86 | /** the point is encoded as z||x||y, where the octet z specifies | ||
87 | * which solution of the quadratic equation y is */ | ||
88 | POINT_CONVERSION_HYBRID = 6 | ||
89 | } point_conversion_form_t; | ||
90 | |||
91 | |||
92 | For POINT_CONVERSION_UNCOMPRESSED the point is encoded as an octet signifying the UNCOMPRESSED form has been used followed by | ||
93 | the octets for x, followed by the octets for y. | ||
94 | |||
95 | For any given x co-ordinate for a point on a curve it is possible to derive two possible y values. For | ||
96 | POINT_CONVERSION_COMPRESSED the point is encoded as an octet signifying that the COMPRESSED form has been used AND which of | ||
97 | the two possible solutions for y has been used, followed by the octets for x. | ||
98 | |||
99 | For POINT_CONVERSION_HYBRID the point is encoded as an octet signifying the HYBRID form has been used AND which of the two | ||
100 | possible solutions for y has been used, followed by the octets for x, followed by the octets for y. | ||
101 | |||
102 | The functions EC_GROUP_set_point_conversion_form and EC_GROUP_get_point_conversion_form set and get the point_conversion_form | ||
103 | for the curve respectively. | ||
104 | |||
105 | ANSI X9.62 (ECDSA standard) defines a method of generating the curve parameter b from a random number. This provides advantages | ||
106 | in that a parameter obtained in this way is highly unlikely to be susceptible to special purpose attacks, or have any trapdoors in it. | ||
107 | If the seed is present for a curve then the b parameter was generated in a verifiable fashion using that seed. The OpenSSL EC library | ||
108 | does not use this seed value but does enable you to inspect it using EC_GROUP_get0_seed. This returns a pointer to a memory block | ||
109 | containing the seed that was used. The length of the memory block can be obtained using EC_GROUP_get_seed_len. A number of the | ||
110 | builtin curves within the library provide seed values that can be obtained. It is also possible to set a custom seed using | ||
111 | EC_GROUP_set_seed and passing a pointer to a memory block, along with the length of the seed. Again, the EC library will not use | ||
112 | this seed value, although it will be preserved in any ASN1 based communications. | ||
113 | |||
114 | EC_GROUP_get_degree gets the degree of the field. For Fp fields this will be the number of bits in p. For F2^m fields this will be | ||
115 | the value m. | ||
116 | |||
117 | The function EC_GROUP_check_discriminant calculates the discriminant for the curve and verifies that it is valid. | ||
118 | For a curve defined over Fp the discriminant is given by the formula 4*a^3 + 27*b^2 whilst for F2^m curves the discriminant is | ||
119 | simply b. In either case for the curve to be valid the discriminant must be non zero. | ||
120 | |||
121 | The function EC_GROUP_check performs a number of checks on a curve to verify that it is valid. Checks performed include | ||
122 | verifying that the discriminant is non zero; that a generator has been defined; that the generator is on the curve and has | ||
123 | the correct order. | ||
124 | |||
125 | EC_GROUP_cmp compares B<a> and B<b> to determine whether they represent the same curve or not. | ||
126 | |||
127 | The functions EC_GROUP_get_basis_type, EC_GROUP_get_trinomial_basis and EC_GROUP_get_pentanomial_basis should only be called for curves | ||
128 | defined over an F2^m field. Addition and multiplication operations within an F2^m field are performed using an irreducible polynomial | ||
129 | function f(x). This function is either a trinomial of the form: | ||
130 | |||
131 | f(x) = x^m + x^k + 1 with m > k >= 1 | ||
132 | |||
133 | or a pentanomial of the form: | ||
134 | |||
135 | f(x) = x^m + x^k3 + x^k2 + x^k1 + 1 with m > k3 > k2 > k1 >= 1 | ||
136 | |||
137 | The function EC_GROUP_get_basis_type returns a NID identifying whether a trinomial or pentanomial is in use for the field. The | ||
138 | function EC_GROUP_get_trinomial_basis must only be called where f(x) is of the trinomial form, and returns the value of B<k>. Similarly | ||
139 | the function EC_GROUP_get_pentanomial_basis must only be called where f(x) is of the pentanomial form, and returns the values of B<k1>, | ||
140 | B<k2> and B<k3> respectively. | ||
141 | |||
142 | =head1 RETURN VALUES | ||
143 | |||
144 | The following functions return 1 on success or 0 on error: EC_GROUP_copy, EC_GROUP_set_generator, EC_GROUP_check, | ||
145 | EC_GROUP_check_discriminant, EC_GROUP_get_trinomial_basis and EC_GROUP_get_pentanomial_basis. | ||
146 | |||
147 | EC_GROUP_dup returns a pointer to the duplicated curve, or NULL on error. | ||
148 | |||
149 | EC_GROUP_method_of returns the EC_METHOD implementation in use for the given curve or NULL on error. | ||
150 | |||
151 | EC_GROUP_get0_generator returns the generator for the given curve or NULL on error. | ||
152 | |||
153 | EC_GROUP_get_order, EC_GROUP_get_cofactor, EC_GROUP_get_curve_name, EC_GROUP_get_asn1_flag, EC_GROUP_get_point_conversion_form | ||
154 | and EC_GROUP_get_degree return the order, cofactor, curve name (NID), ASN1 flag, point_conversion_form and degree for the | ||
155 | specified curve respectively. If there is no curve name associated with a curve then EC_GROUP_get_curve_name will return 0. | ||
156 | |||
157 | EC_GROUP_get0_seed returns a pointer to the seed that was used to generate the parameter b, or NULL if the seed is not | ||
158 | specified. EC_GROUP_get_seed_len returns the length of the seed or 0 if the seed is not specified. | ||
159 | |||
160 | EC_GROUP_set_seed returns the length of the seed that has been set. If the supplied seed is NULL, or the supplied seed length is | ||
161 | 0, the return value will be 1. On error 0 is returned. | ||
162 | |||
163 | EC_GROUP_cmp returns 0 if the curves are equal, 1 if they are not equal, or -1 on error. | ||
164 | |||
165 | EC_GROUP_get_basis_type returns the values NID_X9_62_tpBasis or NID_X9_62_ppBasis (as defined in <openssl/obj_mac.h>) for a | ||
166 | trinomial or pentanomial respectively. Alternatively in the event of an error a 0 is returned. | ||
167 | |||
168 | =head1 SEE ALSO | ||
169 | |||
170 | L<crypto(3)|crypto(3)>, L<ec(3)|ec(3)>, L<EC_GROUP_new(3)|EC_GROUP_new(3)>, | ||
171 | L<EC_POINT_new(3)|EC_POINT_new(3)>, L<EC_POINT_add(3)|EC_POINT_add(3)>, L<EC_KEY_new(3)|EC_KEY_new(3)>, | ||
172 | L<EC_GFp_simple_method(3)|EC_GFp_simple_method(3)>, L<d2i_ECPKParameters(3)|d2i_ECPKParameters(3)> | ||
173 | |||
174 | =cut | ||
diff --git a/src/lib/libcrypto/doc/EC_GROUP_new.pod b/src/lib/libcrypto/doc/EC_GROUP_new.pod deleted file mode 100644 index 9ab3566e65..0000000000 --- a/src/lib/libcrypto/doc/EC_GROUP_new.pod +++ /dev/null | |||
@@ -1,95 +0,0 @@ | |||
1 | =pod | ||
2 | |||
3 | =head1 NAME | ||
4 | |||
5 | EC_GROUP_new, EC_GROUP_free, EC_GROUP_clear_free, EC_GROUP_new_curve_GFp, EC_GROUP_new_curve_GF2m, EC_GROUP_new_by_curve_name, EC_GROUP_set_curve_GFp, EC_GROUP_get_curve_GFp, EC_GROUP_set_curve_GF2m, EC_GROUP_get_curve_GF2m, EC_get_builtin_curves - Functions for creating and destroying B<EC_GROUP> objects. | ||
6 | |||
7 | =head1 SYNOPSIS | ||
8 | |||
9 | #include <openssl/ec.h> | ||
10 | #include <openssl/bn.h> | ||
11 | |||
12 | EC_GROUP *EC_GROUP_new(const EC_METHOD *meth); | ||
13 | void EC_GROUP_free(EC_GROUP *group); | ||
14 | void EC_GROUP_clear_free(EC_GROUP *group); | ||
15 | |||
16 | EC_GROUP *EC_GROUP_new_curve_GFp(const BIGNUM *p, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx); | ||
17 | EC_GROUP *EC_GROUP_new_curve_GF2m(const BIGNUM *p, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx); | ||
18 | EC_GROUP *EC_GROUP_new_by_curve_name(int nid); | ||
19 | |||
20 | int EC_GROUP_set_curve_GFp(EC_GROUP *group, const BIGNUM *p, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx); | ||
21 | int EC_GROUP_get_curve_GFp(const EC_GROUP *group, BIGNUM *p, BIGNUM *a, BIGNUM *b, BN_CTX *ctx); | ||
22 | int EC_GROUP_set_curve_GF2m(EC_GROUP *group, const BIGNUM *p, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx); | ||
23 | int EC_GROUP_get_curve_GF2m(const EC_GROUP *group, BIGNUM *p, BIGNUM *a, BIGNUM *b, BN_CTX *ctx); | ||
24 | |||
25 | size_t EC_get_builtin_curves(EC_builtin_curve *r, size_t nitems); | ||
26 | |||
27 | =head1 DESCRIPTION | ||
28 | |||
29 | Within the library there are two forms of elliptic curve that are of interest. The first form is those defined over the | ||
30 | prime field Fp. The elements of Fp are the integers 0 to p-1, where p is a prime number. This gives us a revised | ||
31 | elliptic curve equation as follows: | ||
32 | |||
33 | y^2 mod p = x^3 +ax + b mod p | ||
34 | |||
35 | The second form is those defined over a binary field F2^m where the elements of the field are integers of length at | ||
36 | most m bits. For this form the elliptic curve equation is modified to: | ||
37 | |||
38 | y^2 + xy = x^3 + ax^2 + b (where b != 0) | ||
39 | |||
40 | Operations in a binary field are performed relative to an B<irreducible polynomial>. All such curves with OpenSSL | ||
41 | use a trinomial or a pentanomial for this parameter. | ||
42 | |||
43 | A new curve can be constructed by calling EC_GROUP_new, using the implementation provided by B<meth> (see | ||
44 | L<EC_GFp_simple_method(3)|EC_GFp_simple_method(3)>). It is then necessary to call either EC_GROUP_set_curve_GFp or | ||
45 | EC_GROUP_set_curve_GF2m as appropriate to create a curve defined over Fp or over F2^m respectively. | ||
46 | |||
47 | EC_GROUP_set_curve_GFp sets the curve parameters B<p>, B<a> and B<b> for a curve over Fp stored in B<group>. | ||
48 | EC_group_get_curve_GFp obtains the previously set curve parameters. | ||
49 | |||
50 | EC_GROUP_set_curve_GF2m sets the equivalent curve parameters for a curve over F2^m. In this case B<p> represents | ||
51 | the irreducible polynomial - each bit represents a term in the polynomial. Therefore there will either be three | ||
52 | or five bits set dependent on whether the polynomial is a trinomial or a pentanomial. | ||
53 | EC_group_get_curve_GF2m obtains the previously set curve parameters. | ||
54 | |||
55 | The functions EC_GROUP_new_curve_GFp and EC_GROUP_new_curve_GF2m are shortcuts for calling EC_GROUP_new and the | ||
56 | appropriate EC_group_set_curve function. An appropriate default implementation method will be used. | ||
57 | |||
58 | Whilst the library can be used to create any curve using the functions described above, there are also a number of | ||
59 | predefined curves that are available. In order to obtain a list of all of the predefined curves, call the function | ||
60 | EC_get_builtin_curves. The parameter B<r> should be an array of EC_builtin_curve structures of size B<nitems>. The function | ||
61 | will populate the B<r> array with information about the builtin curves. If B<nitems> is less than the total number of | ||
62 | curves available, then the first B<nitems> curves will be returned. Otherwise the total number of curves will be | ||
63 | provided. The return value is the total number of curves available (whether that number has been populated in B<r> or | ||
64 | not). Passing a NULL B<r>, or setting B<nitems> to 0 will do nothing other than return the total number of curves available. | ||
65 | The EC_builtin_curve structure is defined as follows: | ||
66 | |||
67 | typedef struct { | ||
68 | int nid; | ||
69 | const char *comment; | ||
70 | } EC_builtin_curve; | ||
71 | |||
72 | Each EC_builtin_curve item has a unique integer id (B<nid>), and a human readable comment string describing the curve. | ||
73 | |||
74 | In order to construct a builtin curve use the function EC_GROUP_new_by_curve_name and provide the B<nid> of the curve to | ||
75 | be constructed. | ||
76 | |||
77 | EC_GROUP_free frees the memory associated with the EC_GROUP. | ||
78 | |||
79 | EC_GROUP_clear_free destroys any sensitive data held within the EC_GROUP and then frees its memory. | ||
80 | |||
81 | =head1 RETURN VALUES | ||
82 | |||
83 | All EC_GROUP_new* functions return a pointer to the newly constructed group, or NULL on error. | ||
84 | |||
85 | EC_get_builtin_curves returns the number of builtin curves that are available. | ||
86 | |||
87 | EC_GROUP_set_curve_GFp, EC_GROUP_get_curve_GFp, EC_GROUP_set_curve_GF2m, EC_GROUP_get_curve_GF2m return 1 on success or 0 on error. | ||
88 | |||
89 | =head1 SEE ALSO | ||
90 | |||
91 | L<crypto(3)|crypto(3)>, L<ec(3)|ec(3)>, L<EC_GROUP_copy(3)|EC_GROUP_copy(3)>, | ||
92 | L<EC_POINT_new(3)|EC_POINT_new(3)>, L<EC_POINT_add(3)|EC_POINT_add(3)>, L<EC_KEY_new(3)|EC_KEY_new(3)>, | ||
93 | L<EC_GFp_simple_method(3)|EC_GFp_simple_method(3)>, L<d2i_ECPKParameters(3)|d2i_ECPKParameters(3)> | ||
94 | |||
95 | =cut | ||
diff --git a/src/lib/libcrypto/doc/EC_KEY_new.pod b/src/lib/libcrypto/doc/EC_KEY_new.pod deleted file mode 100644 index 02d7bac82c..0000000000 --- a/src/lib/libcrypto/doc/EC_KEY_new.pod +++ /dev/null | |||
@@ -1,115 +0,0 @@ | |||
1 | =pod | ||
2 | |||
3 | =head1 NAME | ||
4 | |||
5 | EC_KEY_new, EC_KEY_get_flags, EC_KEY_set_flags, EC_KEY_clear_flags, EC_KEY_new_by_curve_name, EC_KEY_free, EC_KEY_copy, EC_KEY_dup, EC_KEY_up_ref, EC_KEY_get0_group, EC_KEY_set_group, EC_KEY_get0_private_key, EC_KEY_set_private_key, EC_KEY_get0_public_key, EC_KEY_set_public_key, EC_KEY_get_enc_flags, EC_KEY_set_enc_flags, EC_KEY_get_conv_form, EC_KEY_set_conv_form, EC_KEY_get_key_method_data, EC_KEY_insert_key_method_data, EC_KEY_set_asn1_flag, EC_KEY_precompute_mult, EC_KEY_generate_key, EC_KEY_check_key, EC_KEY_set_public_key_affine_coordinates - Functions for creating, destroying and manipulating B<EC_KEY> objects. | ||
6 | |||
7 | =head1 SYNOPSIS | ||
8 | |||
9 | #include <openssl/ec.h> | ||
10 | #include <openssl/bn.h> | ||
11 | |||
12 | EC_KEY *EC_KEY_new(void); | ||
13 | int EC_KEY_get_flags(const EC_KEY *key); | ||
14 | void EC_KEY_set_flags(EC_KEY *key, int flags); | ||
15 | void EC_KEY_clear_flags(EC_KEY *key, int flags); | ||
16 | EC_KEY *EC_KEY_new_by_curve_name(int nid); | ||
17 | void EC_KEY_free(EC_KEY *key); | ||
18 | EC_KEY *EC_KEY_copy(EC_KEY *dst, const EC_KEY *src); | ||
19 | EC_KEY *EC_KEY_dup(const EC_KEY *src); | ||
20 | int EC_KEY_up_ref(EC_KEY *key); | ||
21 | const EC_GROUP *EC_KEY_get0_group(const EC_KEY *key); | ||
22 | int EC_KEY_set_group(EC_KEY *key, const EC_GROUP *group); | ||
23 | const BIGNUM *EC_KEY_get0_private_key(const EC_KEY *key); | ||
24 | int EC_KEY_set_private_key(EC_KEY *key, const BIGNUM *prv); | ||
25 | const EC_POINT *EC_KEY_get0_public_key(const EC_KEY *key); | ||
26 | int EC_KEY_set_public_key(EC_KEY *key, const EC_POINT *pub); | ||
27 | unsigned int EC_KEY_get_enc_flags(const EC_KEY *key); | ||
28 | void EC_KEY_set_enc_flags(EC_KEY *eckey, unsigned int flags); | ||
29 | point_conversion_form_t EC_KEY_get_conv_form(const EC_KEY *key); | ||
30 | void EC_KEY_set_conv_form(EC_KEY *eckey, point_conversion_form_t cform); | ||
31 | void *EC_KEY_get_key_method_data(EC_KEY *key, | ||
32 | void *(*dup_func)(void *), void (*free_func)(void *), void (*clear_free_func)(void *)); | ||
33 | void EC_KEY_insert_key_method_data(EC_KEY *key, void *data, | ||
34 | void *(*dup_func)(void *), void (*free_func)(void *), void (*clear_free_func)(void *)); | ||
35 | void EC_KEY_set_asn1_flag(EC_KEY *eckey, int asn1_flag); | ||
36 | int EC_KEY_precompute_mult(EC_KEY *key, BN_CTX *ctx); | ||
37 | int EC_KEY_generate_key(EC_KEY *key); | ||
38 | int EC_KEY_check_key(const EC_KEY *key); | ||
39 | int EC_KEY_set_public_key_affine_coordinates(EC_KEY *key, BIGNUM *x, BIGNUM *y); | ||
40 | |||
41 | =head1 DESCRIPTION | ||
42 | |||
43 | An EC_KEY represents a public key and (optionally) an associated private key. A new EC_KEY (with no associated curve) can be constructed by calling EC_KEY_new. | ||
44 | The reference count for the newly created EC_KEY is initially set to 1. A curve can be associated with the EC_KEY by calling | ||
45 | EC_KEY_set_group. | ||
46 | |||
47 | Alternatively a new EC_KEY can be constructed by calling EC_KEY_new_by_curve_name and supplying the nid of the associated curve. Refer to L<EC_GROUP_new(3)|EC_GROUP_new(3)> for a description of curve names. This function simply wraps calls to EC_KEY_new and | ||
48 | EC_GROUP_new_by_curve_name. | ||
49 | |||
50 | Calling EC_KEY_free decrements the reference count for the EC_KEY object, and if it has dropped to zero then frees the memory associated | ||
51 | with it. | ||
52 | |||
53 | EC_KEY_copy copies the contents of the EC_KEY in B<src> into B<dest>. | ||
54 | |||
55 | EC_KEY_dup creates a new EC_KEY object and copies B<ec_key> into it. | ||
56 | |||
57 | EC_KEY_up_ref increments the reference count associated with the EC_KEY object. | ||
58 | |||
59 | EC_KEY_generate_key generates a new public and private key for the supplied B<eckey> object. B<eckey> must have an EC_GROUP object | ||
60 | associated with it before calling this function. The private key is a random integer (0 < priv_key < order, where order is the order | ||
61 | of the EC_GROUP object). The public key is an EC_POINT on the curve calculated by multiplying the generator for the curve by the | ||
62 | private key. | ||
63 | |||
64 | EC_KEY_check_key performs various sanity checks on the EC_KEY object to confirm that it is valid. | ||
65 | |||
66 | EC_KEY_set_public_key_affine_coordinates sets the public key for B<key> based on its affine co-ordinates, i.e. it constructs an EC_POINT | ||
67 | object based on the supplied B<x> and B<y> values and sets the public key to be this EC_POINT. It will also performs certain sanity checks | ||
68 | on the key to confirm that it is valid. | ||
69 | |||
70 | The functions EC_KEY_get0_group, EC_KEY_set_group, EC_KEY_get0_private_key, EC_KEY_set_private_key, EC_KEY_get0_public_key, and EC_KEY_set_public_key get and set the EC_GROUP object, the private key and the EC_POINT public key for the B<key> respectively. | ||
71 | |||
72 | The functions EC_KEY_get_enc_flags and EC_KEY_set_enc_flags get and set the value of the encoding flags for the B<key>. There are two encoding | ||
73 | flags currently defined - EC_PKEY_NO_PARAMETERS and EC_PKEY_NO_PUBKEY. These flags define the behaviour of how the B<key> is | ||
74 | converted into ASN1 in a call to i2d_ECPrivateKey. If EC_PKEY_NO_PARAMETERS is set then the public parameters for the curve are not encoded | ||
75 | along with the private key. If EC_PKEY_NO_PUBKEY is set then the public key is not encoded along with the private key. | ||
76 | |||
77 | The functions EC_KEY_get_conv_form and EC_KEY_set_conv_form get and set the point_conversion_form for the B<key>. For a description | ||
78 | of point_conversion_forms please refer to L<EC_POINT_new(3)|EC_POINT_new(3)>. | ||
79 | |||
80 | EC_KEY_insert_key_method_data and EC_KEY_get_key_method_data enable the caller to associate arbitrary additional data specific to the | ||
81 | elliptic curve scheme being used with the EC_KEY object. This data is treated as a "black box" by the ec library. The data to be stored by EC_KEY_insert_key_method_data is provided in the B<data> parameter, which must have associated functions for duplicating, freeing and "clear_freeing" the data item. If a subsequent EC_KEY_get_key_method_data call is issued, the functions for duplicating, freeing and "clear_freeing" the data item must be provided again, and they must be the same as they were when the data item was inserted. | ||
82 | |||
83 | EC_KEY_set_flags sets the flags in the B<flags> parameter on the EC_KEY object. Any flags that are already set are left set. The currently defined standard flags are EC_FLAG_NON_FIPS_ALLOW and EC_FLAG_FIPS_CHECKED. In addition there is the flag EC_FLAG_COFACTOR_ECDH which is specific to ECDH and is defined in ecdh.h. EC_KEY_get_flags returns the current flags that are set for this EC_KEY. EC_KEY_clear_flags clears the flags indicated by the B<flags> parameter. All other flags are left in their existing state. | ||
84 | |||
85 | EC_KEY_set_asn1_flag sets the asn1_flag on the underlying EC_GROUP object (if set). Refer to L<EC_GROUP_copy(3)|EC_GROUP_copy(3)> for further information on the asn1_flag. | ||
86 | |||
87 | EC_KEY_precompute_mult stores multiples of the underlying EC_GROUP generator for faster point multiplication. See also L<EC_POINT_add(3)|EC_POINT_add(3)>. | ||
88 | |||
89 | |||
90 | =head1 RETURN VALUES | ||
91 | |||
92 | EC_KEY_new, EC_KEY_new_by_curve_name and EC_KEY_dup return a pointer to the newly created EC_KEY object, or NULL on error. | ||
93 | |||
94 | EC_KEY_get_flags returns the flags associated with the EC_KEY object as an integer. | ||
95 | |||
96 | EC_KEY_copy returns a pointer to the destination key, or NULL on error. | ||
97 | |||
98 | EC_KEY_up_ref, EC_KEY_set_group, EC_KEY_set_private_key, EC_KEY_set_public_key, EC_KEY_precompute_mult, EC_KEY_generate_key, EC_KEY_check_key and EC_KEY_set_public_key_affine_coordinates return 1 on success or 0 on error. | ||
99 | |||
100 | EC_KEY_get0_group returns the EC_GROUP associated with the EC_KEY. | ||
101 | |||
102 | EC_KEY_get0_private_key returns the private key associated with the EC_KEY. | ||
103 | |||
104 | EC_KEY_get_enc_flags returns the value of the current encoding flags for the EC_KEY. | ||
105 | |||
106 | EC_KEY_get_conv_form return the point_conversion_form for the EC_KEY. | ||
107 | |||
108 | |||
109 | =head1 SEE ALSO | ||
110 | |||
111 | L<crypto(3)|crypto(3)>, L<ec(3)|ec(3)>, L<EC_GROUP_new(3)|EC_GROUP_new(3)>, L<EC_GROUP_copy(3)|EC_GROUP_copy(3)>, | ||
112 | L<EC_POINT_new(3)|EC_POINT_new(3)>, L<EC_POINT_add(3)|EC_POINT_add(3)>, | ||
113 | L<EC_GFp_simple_method(3)|EC_GFp_simple_method(3)>, L<d2i_ECPKParameters(3)|d2i_ECPKParameters(3)> | ||
114 | |||
115 | =cut | ||
diff --git a/src/lib/libcrypto/doc/EC_POINT_add.pod b/src/lib/libcrypto/doc/EC_POINT_add.pod deleted file mode 100644 index ae92640843..0000000000 --- a/src/lib/libcrypto/doc/EC_POINT_add.pod +++ /dev/null | |||
@@ -1,72 +0,0 @@ | |||
1 | =pod | ||
2 | |||
3 | =head1 NAME | ||
4 | |||
5 | EC_POINT_add, EC_POINT_dbl, EC_POINT_invert, EC_POINT_is_at_infinity, EC_POINT_is_on_curve, EC_POINT_cmp, EC_POINT_make_affine, EC_POINTs_make_affine, EC_POINTs_mul, EC_POINT_mul, EC_GROUP_precompute_mult, EC_GROUP_have_precompute_mult - Functions for performing mathematical operations and tests on B<EC_POINT> objects. | ||
6 | |||
7 | =head1 SYNOPSIS | ||
8 | |||
9 | #include <openssl/ec.h> | ||
10 | #include <openssl/bn.h> | ||
11 | |||
12 | int EC_POINT_add(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, const EC_POINT *b, BN_CTX *ctx); | ||
13 | int EC_POINT_dbl(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, BN_CTX *ctx); | ||
14 | int EC_POINT_invert(const EC_GROUP *group, EC_POINT *a, BN_CTX *ctx); | ||
15 | int EC_POINT_is_at_infinity(const EC_GROUP *group, const EC_POINT *p); | ||
16 | int EC_POINT_is_on_curve(const EC_GROUP *group, const EC_POINT *point, BN_CTX *ctx); | ||
17 | int EC_POINT_cmp(const EC_GROUP *group, const EC_POINT *a, const EC_POINT *b, BN_CTX *ctx); | ||
18 | int EC_POINT_make_affine(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx); | ||
19 | int EC_POINTs_make_affine(const EC_GROUP *group, size_t num, EC_POINT *points[], BN_CTX *ctx); | ||
20 | int EC_POINTs_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *n, size_t num, const EC_POINT *p[], const BIGNUM *m[], BN_CTX *ctx); | ||
21 | int EC_POINT_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *n, const EC_POINT *q, const BIGNUM *m, BN_CTX *ctx); | ||
22 | int EC_GROUP_precompute_mult(EC_GROUP *group, BN_CTX *ctx); | ||
23 | int EC_GROUP_have_precompute_mult(const EC_GROUP *group); | ||
24 | |||
25 | |||
26 | =head1 DESCRIPTION | ||
27 | |||
28 | EC_POINT_add adds the two points B<a> and B<b> and places the result in B<r>. Similarly EC_POINT_dbl doubles the point B<a> and places the | ||
29 | result in B<r>. In both cases it is valid for B<r> to be one of B<a> or B<b>. | ||
30 | |||
31 | EC_POINT_invert calculates the inverse of the supplied point B<a>. The result is placed back in B<a>. | ||
32 | |||
33 | The function EC_POINT_is_at_infinity tests whether the supplied point is at infinity or not. | ||
34 | |||
35 | EC_POINT_is_on_curve tests whether the supplied point is on the curve or not. | ||
36 | |||
37 | EC_POINT_cmp compares the two supplied points and tests whether or not they are equal. | ||
38 | |||
39 | The functions EC_POINT_make_affine and EC_POINTs_make_affine force the internal representation of the EC_POINT(s) into the affine | ||
40 | co-ordinate system. In the case of EC_POINTs_make_affine the value B<num> provides the number of points in the array B<points> to be | ||
41 | forced. | ||
42 | |||
43 | EC_POINT_mul calculates the value generator * B<n> + B<q> * B<m> and stores the result in B<r>. The value B<n> may be NULL in which case the result is just B<q> * B<m>. | ||
44 | |||
45 | EC_POINTs_mul calculates the value generator * B<n> + B<q[0]> * B<m[0]> + ... + B<q[num-1]> * B<m[num-1]>. As for EC_POINT_mul the value | ||
46 | B<n> may be NULL. | ||
47 | |||
48 | The function EC_GROUP_precompute_mult stores multiples of the generator for faster point multiplication, whilst | ||
49 | EC_GROUP_have_precompute_mult tests whether precomputation has already been done. See L<EC_GROUP_copy(3)|EC_GROUP_copy(3)> for information | ||
50 | about the generator. | ||
51 | |||
52 | |||
53 | =head1 RETURN VALUES | ||
54 | |||
55 | The following functions return 1 on success or 0 on error: EC_POINT_add, EC_POINT_dbl, EC_POINT_invert, EC_POINT_make_affine, | ||
56 | EC_POINTs_make_affine, EC_POINTs_make_affine, EC_POINT_mul, EC_POINTs_mul and EC_GROUP_precompute_mult. | ||
57 | |||
58 | EC_POINT_is_at_infinity returns 1 if the point is at infinity, or 0 otherwise. | ||
59 | |||
60 | EC_POINT_is_on_curve returns 1 if the point is on the curve, 0 if not, or -1 on error. | ||
61 | |||
62 | EC_POINT_cmp returns 1 if the points are not equal, 0 if they are, or -1 on error. | ||
63 | |||
64 | EC_GROUP_have_precompute_mult return 1 if a precomputation has been done, or 0 if not. | ||
65 | |||
66 | =head1 SEE ALSO | ||
67 | |||
68 | L<crypto(3)|crypto(3)>, L<ec(3)|ec(3)>, L<EC_GROUP_new(3)|EC_GROUP_new(3)>, L<EC_GROUP_copy(3)|EC_GROUP_copy(3)>, | ||
69 | L<EC_POINT_new(3)|EC_POINT_new(3)>, L<EC_KEY_new(3)|EC_KEY_new(3)>, | ||
70 | L<EC_GFp_simple_method(3)|EC_GFp_simple_method(3)>, L<d2i_ECPKParameters(3)|d2i_ECPKParameters(3)> | ||
71 | |||
72 | =cut | ||
diff --git a/src/lib/libcrypto/doc/EC_POINT_new.pod b/src/lib/libcrypto/doc/EC_POINT_new.pod deleted file mode 100644 index b41ca0ed0c..0000000000 --- a/src/lib/libcrypto/doc/EC_POINT_new.pod +++ /dev/null | |||
@@ -1,123 +0,0 @@ | |||
1 | =pod | ||
2 | |||
3 | =head1 NAME | ||
4 | |||
5 | EC_POINT_new, EC_POINT_free, EC_POINT_clear_free, EC_POINT_copy, EC_POINT_dup, EC_POINT_method_of, EC_POINT_set_to_infinity, EC_POINT_set_Jprojective_coordinates, EC_POINT_get_Jprojective_coordinates_GFp, EC_POINT_set_affine_coordinates_GFp, EC_POINT_get_affine_coordinates_GFp, EC_POINT_set_compressed_coordinates_GFp, EC_POINT_set_affine_coordinates_GF2m, EC_POINT_get_affine_coordinates_GF2m, EC_POINT_set_compressed_coordinates_GF2m, EC_POINT_point2oct, EC_POINT_oct2point, EC_POINT_point2bn, EC_POINT_bn2point, EC_POINT_point2hex, EC_POINT_hex2point - Functions for creating, destroying and manipulating B<EC_POINT> objects. | ||
6 | |||
7 | =head1 SYNOPSIS | ||
8 | |||
9 | #include <openssl/ec.h> | ||
10 | #include <openssl/bn.h> | ||
11 | |||
12 | EC_POINT *EC_POINT_new(const EC_GROUP *group); | ||
13 | void EC_POINT_free(EC_POINT *point); | ||
14 | void EC_POINT_clear_free(EC_POINT *point); | ||
15 | int EC_POINT_copy(EC_POINT *dst, const EC_POINT *src); | ||
16 | EC_POINT *EC_POINT_dup(const EC_POINT *src, const EC_GROUP *group); | ||
17 | const EC_METHOD *EC_POINT_method_of(const EC_POINT *point); | ||
18 | int EC_POINT_set_to_infinity(const EC_GROUP *group, EC_POINT *point); | ||
19 | int EC_POINT_set_Jprojective_coordinates_GFp(const EC_GROUP *group, EC_POINT *p, | ||
20 | const BIGNUM *x, const BIGNUM *y, const BIGNUM *z, BN_CTX *ctx); | ||
21 | int EC_POINT_get_Jprojective_coordinates_GFp(const EC_GROUP *group, | ||
22 | const EC_POINT *p, BIGNUM *x, BIGNUM *y, BIGNUM *z, BN_CTX *ctx); | ||
23 | int EC_POINT_set_affine_coordinates_GFp(const EC_GROUP *group, EC_POINT *p, | ||
24 | const BIGNUM *x, const BIGNUM *y, BN_CTX *ctx); | ||
25 | int EC_POINT_get_affine_coordinates_GFp(const EC_GROUP *group, | ||
26 | const EC_POINT *p, BIGNUM *x, BIGNUM *y, BN_CTX *ctx); | ||
27 | int EC_POINT_set_compressed_coordinates_GFp(const EC_GROUP *group, EC_POINT *p, | ||
28 | const BIGNUM *x, int y_bit, BN_CTX *ctx); | ||
29 | int EC_POINT_set_affine_coordinates_GF2m(const EC_GROUP *group, EC_POINT *p, | ||
30 | const BIGNUM *x, const BIGNUM *y, BN_CTX *ctx); | ||
31 | int EC_POINT_get_affine_coordinates_GF2m(const EC_GROUP *group, | ||
32 | const EC_POINT *p, BIGNUM *x, BIGNUM *y, BN_CTX *ctx); | ||
33 | int EC_POINT_set_compressed_coordinates_GF2m(const EC_GROUP *group, EC_POINT *p, | ||
34 | const BIGNUM *x, int y_bit, BN_CTX *ctx); | ||
35 | size_t EC_POINT_point2oct(const EC_GROUP *group, const EC_POINT *p, | ||
36 | point_conversion_form_t form, | ||
37 | unsigned char *buf, size_t len, BN_CTX *ctx); | ||
38 | int EC_POINT_oct2point(const EC_GROUP *group, EC_POINT *p, | ||
39 | const unsigned char *buf, size_t len, BN_CTX *ctx); | ||
40 | BIGNUM *EC_POINT_point2bn(const EC_GROUP *, const EC_POINT *, | ||
41 | point_conversion_form_t form, BIGNUM *, BN_CTX *); | ||
42 | EC_POINT *EC_POINT_bn2point(const EC_GROUP *, const BIGNUM *, | ||
43 | EC_POINT *, BN_CTX *); | ||
44 | char *EC_POINT_point2hex(const EC_GROUP *, const EC_POINT *, | ||
45 | point_conversion_form_t form, BN_CTX *); | ||
46 | EC_POINT *EC_POINT_hex2point(const EC_GROUP *, const char *, | ||
47 | EC_POINT *, BN_CTX *); | ||
48 | |||
49 | |||
50 | =head1 DESCRIPTION | ||
51 | |||
52 | An EC_POINT represents a point on a curve. A new point is constructed by calling the function EC_POINT_new and providing the B<group> | ||
53 | object that the point relates to. | ||
54 | |||
55 | EC_POINT_free frees the memory associated with the EC_POINT. | ||
56 | |||
57 | EC_POINT_clear_free destroys any sensitive data held within the EC_POINT and then frees its memory. | ||
58 | |||
59 | EC_POINT_copy copies the point B<src> into B<dst>. Both B<src> and B<dst> must use the same EC_METHOD. | ||
60 | |||
61 | EC_POINT_dup creates a new EC_POINT object and copies the content from B<src> to the newly created | ||
62 | EC_POINT object. | ||
63 | |||
64 | EC_POINT_method_of obtains the EC_METHOD associated with B<point>. | ||
65 | |||
66 | A valid point on a curve is the special point at infinity. A point is set to be at infinity by calling EC_POINT_set_to_infinity. | ||
67 | |||
68 | The affine co-ordinates for a point describe a point in terms of its x and y position. The functions | ||
69 | EC_POINT_set_affine_coordinates_GFp and EC_POINT_set_affine_coordinates_GF2m set the B<x> and B<y> co-ordinates for the point | ||
70 | B<p> defined over the curve given in B<group>. | ||
71 | |||
72 | As well as the affine co-ordinates, a point can alternatively be described in terms of its Jacobian | ||
73 | projective co-ordinates (for Fp curves only). Jacobian projective co-ordinates are expressed as three values x, y and z. Working in | ||
74 | this co-ordinate system provides more efficient point multiplication operations. | ||
75 | A mapping exists between Jacobian projective co-ordinates and affine co-ordinates. A Jacobian projective co-ordinate (x, y, z) can be written as an affine co-ordinate as (x/(z^2), y/(z^3)). Conversion to Jacobian projective to affine co-ordinates is simple. The co-ordinate (x, y) is | ||
76 | mapped to (x, y, 1). To set or get the projective co-ordinates use EC_POINT_set_Jprojective_coordinates_GFp and | ||
77 | EC_POINT_get_Jprojective_coordinates_GFp respectively. | ||
78 | |||
79 | Points can also be described in terms of their compressed co-ordinates. For a point (x, y), for any given value for x such that the point is | ||
80 | on the curve there will only ever be two possible values for y. Therefore a point can be set using the EC_POINT_set_compressed_coordinates_GFp | ||
81 | and EC_POINT_set_compressed_coordinates_GF2m functions where B<x> is the x co-ordinate and B<y_bit> is a value 0 or 1 to identify which of | ||
82 | the two possible values for y should be used. | ||
83 | |||
84 | In addition EC_POINTs can be converted to and from various external representations. Supported representations are octet strings, BIGNUMs and hexadecimal. The format of the external representation is described by the point_conversion_form. See L<EC_GROUP_copy(3)|EC_GROUP_copy(3)> for | ||
85 | a description of point_conversion_form. Octet strings are stored in a buffer along with an associated buffer length. A point held in a BIGNUM is calculated by converting the point to an octet string and then converting that octet string into a BIGNUM integer. Points in hexadecimal format are stored in a NULL terminated character string where each character is one of the printable values 0-9 or A-F (or a-f). | ||
86 | |||
87 | The functions EC_POINT_point2oct, EC_POINT_oct2point, EC_POINT_point2bn, EC_POINT_bn2point, EC_POINT_point2hex and EC_POINT_hex2point convert | ||
88 | from and to EC_POINTs for the formats: octet string, BIGNUM and hexadecimal respectively. | ||
89 | |||
90 | The function EC_POINT_point2oct must be supplied with a buffer long enough to store the octet string. The return value provides the number of | ||
91 | octets stored. Calling the function with a NULL buffer will not perform the conversion but will still return the required buffer length. | ||
92 | |||
93 | The function EC_POINT_point2hex will allocate sufficient memory to store the hexadecimal string. It is the caller's responsibility to free | ||
94 | this memory with a subsequent call to free(). | ||
95 | |||
96 | =head1 RETURN VALUES | ||
97 | |||
98 | EC_POINT_new and EC_POINT_dup return the newly allocated EC_POINT or NULL on error. | ||
99 | |||
100 | The following functions return 1 on success or 0 on error: EC_POINT_copy, EC_POINT_set_to_infinity, EC_POINT_set_Jprojective_coordinates_GFp, | ||
101 | EC_POINT_get_Jprojective_coordinates_GFp, EC_POINT_set_affine_coordinates_GFp, EC_POINT_get_affine_coordinates_GFp, | ||
102 | EC_POINT_set_compressed_coordinates_GFp, EC_POINT_set_affine_coordinates_GF2m, EC_POINT_get_affine_coordinates_GF2m, | ||
103 | EC_POINT_set_compressed_coordinates_GF2m and EC_POINT_oct2point. | ||
104 | |||
105 | EC_POINT_method_of returns the EC_METHOD associated with the supplied EC_POINT. | ||
106 | |||
107 | EC_POINT_point2oct returns the length of the required buffer, or 0 on error. | ||
108 | |||
109 | EC_POINT_point2bn returns the pointer to the BIGNUM supplied, or NULL on error. | ||
110 | |||
111 | EC_POINT_bn2point returns the pointer to the EC_POINT supplied, or NULL on error. | ||
112 | |||
113 | EC_POINT_point2hex returns a pointer to the hex string, or NULL on error. | ||
114 | |||
115 | EC_POINT_hex2point returns the pointer to the EC_POINT supplied, or NULL on error. | ||
116 | |||
117 | =head1 SEE ALSO | ||
118 | |||
119 | L<crypto(3)|crypto(3)>, L<ec(3)|ec(3)>, L<EC_GROUP_new(3)|EC_GROUP_new(3)>, L<EC_GROUP_copy(3)|EC_GROUP_copy(3)>, | ||
120 | L<EC_POINT_add(3)|EC_POINT_add(3)>, L<EC_KEY_new(3)|EC_KEY_new(3)>, | ||
121 | L<EC_GFp_simple_method(3)|EC_GFp_simple_method(3)>, L<d2i_ECPKParameters(3)|d2i_ECPKParameters(3)> | ||
122 | |||
123 | =cut | ||