diff options
Diffstat (limited to 'src/lib/libcrypto/doc')
24 files changed, 0 insertions, 2714 deletions
diff --git a/src/lib/libcrypto/doc/EVP_BytesToKey.pod b/src/lib/libcrypto/doc/EVP_BytesToKey.pod deleted file mode 100644 index 2dffaa1efa..0000000000 --- a/src/lib/libcrypto/doc/EVP_BytesToKey.pod +++ /dev/null | |||
| @@ -1,68 +0,0 @@ | |||
| 1 | =pod | ||
| 2 | |||
| 3 | =head1 NAME | ||
| 4 | |||
| 5 | EVP_BytesToKey - password based encryption routine | ||
| 6 | |||
| 7 | =head1 SYNOPSIS | ||
| 8 | |||
| 9 | #include <openssl/evp.h> | ||
| 10 | |||
| 11 | int EVP_BytesToKey(const EVP_CIPHER *type,const EVP_MD *md, | ||
| 12 | const unsigned char *salt, | ||
| 13 | const unsigned char *data, int datal, int count, | ||
| 14 | unsigned char *key,unsigned char *iv); | ||
| 15 | |||
| 16 | =head1 DESCRIPTION | ||
| 17 | |||
| 18 | EVP_BytesToKey() derives a key and IV from various parameters. B<type> is | ||
| 19 | the cipher to derive the key and IV for. B<md> is the message digest to use. | ||
| 20 | The B<salt> parameter is used as a salt in the derivation: it should point to | ||
| 21 | an 8 byte buffer or NULL if no salt is used. B<data> is a buffer containing | ||
| 22 | B<datal> bytes which is used to derive the keying data. B<count> is the | ||
| 23 | iteration count to use. The derived key and IV will be written to B<key> | ||
| 24 | and B<iv> respectively. | ||
| 25 | |||
| 26 | =head1 NOTES | ||
| 27 | |||
| 28 | A typical application of this function is to derive keying material for an | ||
| 29 | encryption algorithm from a password in the B<data> parameter. | ||
| 30 | |||
| 31 | Increasing the B<count> parameter slows down the algorithm which makes it | ||
| 32 | harder for an attacker to perform a brute force attack using a large number | ||
| 33 | of candidate passwords. | ||
| 34 | |||
| 35 | If the total key and IV length is less than the digest length and | ||
| 36 | B<MD5> is used then the derivation algorithm is compatible with PKCS#5 v1.5 | ||
| 37 | otherwise a non standard extension is used to derive the extra data. | ||
| 38 | |||
| 39 | Newer applications should use more standard algorithms such as PBKDF2 as | ||
| 40 | defined in PKCS#5v2.1 for key derivation. | ||
| 41 | |||
| 42 | =head1 KEY DERIVATION ALGORITHM | ||
| 43 | |||
| 44 | The key and IV is derived by concatenating D_1, D_2, etc until | ||
| 45 | enough data is available for the key and IV. D_i is defined as: | ||
| 46 | |||
| 47 | D_i = HASH^count(D_(i-1) || data || salt) | ||
| 48 | |||
| 49 | where || denotes concatenation, D_0 is empty, HASH is the digest | ||
| 50 | algorithm in use, HASH^1(data) is simply HASH(data), HASH^2(data) | ||
| 51 | is HASH(HASH(data)) and so on. | ||
| 52 | |||
| 53 | The initial bytes are used for the key and the subsequent bytes for | ||
| 54 | the IV. | ||
| 55 | |||
| 56 | =head1 RETURN VALUES | ||
| 57 | |||
| 58 | EVP_BytesToKey() returns the size of the derived key in bytes. | ||
| 59 | |||
| 60 | =head1 SEE ALSO | ||
| 61 | |||
| 62 | L<evp(3)|evp(3)>, L<rand(3)|rand(3)>, | ||
| 63 | L<PKCS5_PBKDF2_HMAC(3)|PKCS5_PBKDF2_HMAC(3)>, | ||
| 64 | L<EVP_EncryptInit(3)|EVP_EncryptInit(3)> | ||
| 65 | |||
| 66 | =head1 HISTORY | ||
| 67 | |||
| 68 | =cut | ||
diff --git a/src/lib/libcrypto/doc/EVP_DigestInit.pod b/src/lib/libcrypto/doc/EVP_DigestInit.pod deleted file mode 100644 index c83dcc736f..0000000000 --- a/src/lib/libcrypto/doc/EVP_DigestInit.pod +++ /dev/null | |||
| @@ -1,277 +0,0 @@ | |||
| 1 | =pod | ||
| 2 | |||
| 3 | =head1 NAME | ||
| 4 | |||
| 5 | EVP_MD_CTX_init, EVP_MD_CTX_create, EVP_DigestInit_ex, EVP_DigestUpdate, | ||
| 6 | EVP_DigestFinal_ex, EVP_MD_CTX_cleanup, EVP_MD_CTX_destroy, EVP_MAX_MD_SIZE, | ||
| 7 | EVP_MD_CTX_copy_ex, EVP_MD_CTX_copy, EVP_MD_type, EVP_MD_pkey_type, | ||
| 8 | EVP_MD_size, EVP_MD_block_size, EVP_MD_CTX_md, EVP_MD_CTX_size, | ||
| 9 | EVP_MD_CTX_block_size, EVP_MD_CTX_type, EVP_md_null, EVP_md2, EVP_md5, | ||
| 10 | EVP_sha1, EVP_sha224, EVP_sha256, EVP_sha384, EVP_sha512, EVP_dss, EVP_dss1, | ||
| 11 | EVP_ripemd160, EVP_get_digestbyname, EVP_get_digestbynid, | ||
| 12 | EVP_get_digestbyobj, EVP_DigestInit, EVP_DigestFinal - EVP digest routines | ||
| 13 | |||
| 14 | =head1 SYNOPSIS | ||
| 15 | |||
| 16 | #include <openssl/evp.h> | ||
| 17 | |||
| 18 | void EVP_MD_CTX_init(EVP_MD_CTX *ctx); | ||
| 19 | EVP_MD_CTX *EVP_MD_CTX_create(void); | ||
| 20 | |||
| 21 | int EVP_DigestInit_ex(EVP_MD_CTX *ctx, const EVP_MD *type, ENGINE *impl); | ||
| 22 | int EVP_DigestUpdate(EVP_MD_CTX *ctx, const void *d, size_t cnt); | ||
| 23 | int EVP_DigestFinal_ex(EVP_MD_CTX *ctx, unsigned char *md, | ||
| 24 | unsigned int *s); | ||
| 25 | |||
| 26 | int EVP_MD_CTX_cleanup(EVP_MD_CTX *ctx); | ||
| 27 | void EVP_MD_CTX_destroy(EVP_MD_CTX *ctx); | ||
| 28 | |||
| 29 | int EVP_MD_CTX_copy_ex(EVP_MD_CTX *out,const EVP_MD_CTX *in); | ||
| 30 | |||
| 31 | int EVP_DigestInit(EVP_MD_CTX *ctx, const EVP_MD *type); | ||
| 32 | int EVP_DigestFinal(EVP_MD_CTX *ctx, unsigned char *md, | ||
| 33 | unsigned int *s); | ||
| 34 | |||
| 35 | int EVP_MD_CTX_copy(EVP_MD_CTX *out,EVP_MD_CTX *in); | ||
| 36 | |||
| 37 | #define EVP_MAX_MD_SIZE 64 /* SHA512 */ | ||
| 38 | |||
| 39 | int EVP_MD_type(const EVP_MD *md); | ||
| 40 | int EVP_MD_pkey_type(const EVP_MD *md); | ||
| 41 | int EVP_MD_size(const EVP_MD *md); | ||
| 42 | int EVP_MD_block_size(const EVP_MD *md); | ||
| 43 | |||
| 44 | const EVP_MD *EVP_MD_CTX_md(const EVP_MD_CTX *ctx); | ||
| 45 | #define EVP_MD_CTX_size(e) EVP_MD_size(EVP_MD_CTX_md(e)) | ||
| 46 | #define EVP_MD_CTX_block_size(e) EVP_MD_block_size((e)->digest) | ||
| 47 | #define EVP_MD_CTX_type(e) EVP_MD_type((e)->digest) | ||
| 48 | |||
| 49 | const EVP_MD *EVP_md_null(void); | ||
| 50 | const EVP_MD *EVP_md2(void); | ||
| 51 | const EVP_MD *EVP_md5(void); | ||
| 52 | const EVP_MD *EVP_sha1(void); | ||
| 53 | const EVP_MD *EVP_dss(void); | ||
| 54 | const EVP_MD *EVP_dss1(void); | ||
| 55 | const EVP_MD *EVP_ripemd160(void); | ||
| 56 | |||
| 57 | const EVP_MD *EVP_sha224(void); | ||
| 58 | const EVP_MD *EVP_sha256(void); | ||
| 59 | const EVP_MD *EVP_sha384(void); | ||
| 60 | const EVP_MD *EVP_sha512(void); | ||
| 61 | |||
| 62 | const EVP_MD *EVP_get_digestbyname(const char *name); | ||
| 63 | #define EVP_get_digestbynid(a) EVP_get_digestbyname(OBJ_nid2sn(a)) | ||
| 64 | #define EVP_get_digestbyobj(a) EVP_get_digestbynid(OBJ_obj2nid(a)) | ||
| 65 | |||
| 66 | =head1 DESCRIPTION | ||
| 67 | |||
| 68 | The EVP digest routines are a high level interface to message digests. | ||
| 69 | |||
| 70 | EVP_MD_CTX_init() initializes digest context B<ctx>. | ||
| 71 | |||
| 72 | EVP_MD_CTX_create() allocates, initializes and returns a digest context. | ||
| 73 | |||
| 74 | EVP_DigestInit_ex() sets up digest context B<ctx> to use a digest | ||
| 75 | B<type> from ENGINE B<impl>. B<ctx> must be initialized before calling this | ||
| 76 | function. B<type> will typically be supplied by a function such as EVP_sha1(). | ||
| 77 | If B<impl> is NULL then the default implementation of digest B<type> is used. | ||
| 78 | |||
| 79 | EVP_DigestUpdate() hashes B<cnt> bytes of data at B<d> into the | ||
| 80 | digest context B<ctx>. This function can be called several times on the | ||
| 81 | same B<ctx> to hash additional data. | ||
| 82 | |||
| 83 | EVP_DigestFinal_ex() retrieves the digest value from B<ctx> and places | ||
| 84 | it in B<md>. If the B<s> parameter is not NULL then the number of | ||
| 85 | bytes of data written (i.e. the length of the digest) will be written | ||
| 86 | to the integer at B<s>, at most B<EVP_MAX_MD_SIZE> bytes will be written. | ||
| 87 | After calling EVP_DigestFinal_ex() no additional calls to EVP_DigestUpdate() | ||
| 88 | can be made, but EVP_DigestInit_ex() can be called to initialize a new | ||
| 89 | digest operation. | ||
| 90 | |||
| 91 | EVP_MD_CTX_cleanup() cleans up digest context B<ctx>, it should be called | ||
| 92 | after a digest context is no longer needed. | ||
| 93 | |||
| 94 | EVP_MD_CTX_destroy() cleans up digest context B<ctx> and frees up the | ||
| 95 | space allocated to it, it should be called only on a context created | ||
| 96 | using EVP_MD_CTX_create(). | ||
| 97 | |||
| 98 | EVP_MD_CTX_copy_ex() can be used to copy the message digest state from | ||
| 99 | B<in> to B<out>. This is useful if large amounts of data are to be | ||
| 100 | hashed which only differ in the last few bytes. B<out> must be initialized | ||
| 101 | before calling this function. | ||
| 102 | |||
| 103 | EVP_DigestInit() behaves in the same way as EVP_DigestInit_ex() except | ||
| 104 | the passed context B<ctx> does not have to be initialized, and it always | ||
| 105 | uses the default digest implementation. | ||
| 106 | |||
| 107 | EVP_DigestFinal() is similar to EVP_DigestFinal_ex() except the digest | ||
| 108 | context B<ctx> is automatically cleaned up. | ||
| 109 | |||
| 110 | EVP_MD_CTX_copy() is similar to EVP_MD_CTX_copy_ex() except the destination | ||
| 111 | B<out> does not have to be initialized. | ||
| 112 | |||
| 113 | EVP_MD_size() and EVP_MD_CTX_size() return the size of the message digest | ||
| 114 | when passed an B<EVP_MD> or an B<EVP_MD_CTX> structure, i.e. the size of the | ||
| 115 | hash. | ||
| 116 | |||
| 117 | EVP_MD_block_size() and EVP_MD_CTX_block_size() return the block size of the | ||
| 118 | message digest when passed an B<EVP_MD> or an B<EVP_MD_CTX> structure. | ||
| 119 | |||
| 120 | EVP_MD_type() and EVP_MD_CTX_type() return the NID of the OBJECT IDENTIFIER | ||
| 121 | representing the given message digest when passed an B<EVP_MD> structure. | ||
| 122 | For example EVP_MD_type(EVP_sha1()) returns B<NID_sha1>. This function is | ||
| 123 | normally used when setting ASN1 OIDs. | ||
| 124 | |||
| 125 | EVP_MD_CTX_md() returns the B<EVP_MD> structure corresponding to the passed | ||
| 126 | B<EVP_MD_CTX>. | ||
| 127 | |||
| 128 | EVP_MD_pkey_type() returns the NID of the public key signing algorithm | ||
| 129 | associated with this digest. For example EVP_sha1() is associated with RSA so | ||
| 130 | this will return B<NID_sha1WithRSAEncryption>. Since digests and signature | ||
| 131 | algorithms are no longer linked this function is only retained for | ||
| 132 | compatibility reasons. | ||
| 133 | |||
| 134 | EVP_md2(), EVP_md5(), EVP_sha1(), EVP_sha224(), EVP_sha256(), EVP_sha384(), | ||
| 135 | EVP_sha512() and EVP_ripemd160() return B<EVP_MD> structures for the MD2, MD5, | ||
| 136 | SHA1, SHA224, SHA256, SHA384, SHA512 and RIPEMD160 digest algorithms | ||
| 137 | respectively. | ||
| 138 | |||
| 139 | EVP_dss() and EVP_dss1() return B<EVP_MD> structures for SHA1 digest | ||
| 140 | algorithms but using DSS (DSA) for the signature algorithm. Note: there is | ||
| 141 | no need to use these pseudo-digests in OpenSSL 1.0.0 and later, they are | ||
| 142 | however retained for compatibility. | ||
| 143 | |||
| 144 | EVP_md_null() is a "null" message digest that does nothing: i.e. the hash it | ||
| 145 | returns is of zero length. | ||
| 146 | |||
| 147 | EVP_get_digestbyname(), EVP_get_digestbynid() and EVP_get_digestbyobj() | ||
| 148 | return an B<EVP_MD> structure when passed a digest name, a digest NID or | ||
| 149 | an ASN1_OBJECT structure respectively. The digest table must be initialized | ||
| 150 | using, for example, OpenSSL_add_all_digests() for these functions to work. | ||
| 151 | |||
| 152 | =head1 RETURN VALUES | ||
| 153 | |||
| 154 | EVP_DigestInit_ex(), EVP_DigestUpdate() and EVP_DigestFinal_ex() return 1 for | ||
| 155 | success and 0 for failure. | ||
| 156 | |||
| 157 | EVP_MD_CTX_copy_ex() returns 1 if successful or 0 for failure. | ||
| 158 | |||
| 159 | EVP_MD_type(), EVP_MD_pkey_type() and EVP_MD_type() return the NID of the | ||
| 160 | corresponding OBJECT IDENTIFIER or NID_undef if none exists. | ||
| 161 | |||
| 162 | EVP_MD_size(), EVP_MD_block_size(), EVP_MD_CTX_size() and | ||
| 163 | EVP_MD_CTX_block_size() return the digest or block size in bytes. | ||
| 164 | |||
| 165 | EVP_md_null(), EVP_md2(), EVP_md5(), EVP_sha1(), EVP_dss(), | ||
| 166 | EVP_dss1() and EVP_ripemd160() return pointers to the | ||
| 167 | corresponding EVP_MD structures. | ||
| 168 | |||
| 169 | EVP_get_digestbyname(), EVP_get_digestbynid() and EVP_get_digestbyobj() | ||
| 170 | return either an B<EVP_MD> structure or NULL if an error occurs. | ||
| 171 | |||
| 172 | =head1 NOTES | ||
| 173 | |||
| 174 | The B<EVP> interface to message digests should almost always be used in | ||
| 175 | preference to the low level interfaces. This is because the code then becomes | ||
| 176 | transparent to the digest used and much more flexible. | ||
| 177 | |||
| 178 | New applications should use the SHA2 digest algorithms such as SHA256. | ||
| 179 | The other digest algorithms are still in common use. | ||
| 180 | |||
| 181 | For most applications the B<impl> parameter to EVP_DigestInit_ex() will be | ||
| 182 | set to NULL to use the default digest implementation. | ||
| 183 | |||
| 184 | The functions EVP_DigestInit(), EVP_DigestFinal() and EVP_MD_CTX_copy() are | ||
| 185 | obsolete but are retained to maintain compatibility with existing code. New | ||
| 186 | applications should use EVP_DigestInit_ex(), EVP_DigestFinal_ex() and | ||
| 187 | EVP_MD_CTX_copy_ex() because they can efficiently reuse a digest context | ||
| 188 | instead of initializing and cleaning it up on each call and allow non default | ||
| 189 | implementations of digests to be specified. | ||
| 190 | |||
| 191 | In OpenSSL 0.9.7 and later if digest contexts are not cleaned up after use | ||
| 192 | memory leaks will occur. | ||
| 193 | |||
| 194 | Stack allocation of EVP_MD_CTX structures is common, for example: | ||
| 195 | |||
| 196 | EVP_MD_CTX mctx; | ||
| 197 | EVP_MD_CTX_init(&mctx); | ||
| 198 | |||
| 199 | This will cause binary compatibility issues if the size of EVP_MD_CTX | ||
| 200 | structure changes (this will only happen with a major release of OpenSSL). | ||
| 201 | Applications wishing to avoid this should use EVP_MD_CTX_create() instead: | ||
| 202 | |||
| 203 | EVP_MD_CTX *mctx; | ||
| 204 | mctx = EVP_MD_CTX_create(); | ||
| 205 | |||
| 206 | |||
| 207 | =head1 EXAMPLE | ||
| 208 | |||
| 209 | This example digests the data "Test Message\n" and "Hello World\n", using the | ||
| 210 | digest name passed on the command line. | ||
| 211 | |||
| 212 | #include <stdio.h> | ||
| 213 | #include <openssl/evp.h> | ||
| 214 | |||
| 215 | int | ||
| 216 | main(int argc, char *argv[]) | ||
| 217 | { | ||
| 218 | EVP_MD_CTX *mdctx; | ||
| 219 | const EVP_MD *md; | ||
| 220 | const char mess1[] = "Test Message\n"; | ||
| 221 | const char mess2[] = "Hello World\n"; | ||
| 222 | unsigned char md_value[EVP_MAX_MD_SIZE]; | ||
| 223 | int md_len, i; | ||
| 224 | |||
| 225 | OpenSSL_add_all_digests(); | ||
| 226 | |||
| 227 | if (argc <= 1) { | ||
| 228 | printf("Usage: mdtest digestname\n"); | ||
| 229 | exit(1); | ||
| 230 | } | ||
| 231 | |||
| 232 | md = EVP_get_digestbyname(argv[1]); | ||
| 233 | if (md == NULL) { | ||
| 234 | printf("Unknown message digest %s\n", argv[1]); | ||
| 235 | exit(1); | ||
| 236 | } | ||
| 237 | |||
| 238 | mdctx = EVP_MD_CTX_create(); | ||
| 239 | EVP_DigestInit_ex(mdctx, md, NULL); | ||
| 240 | EVP_DigestUpdate(mdctx, mess1, strlen(mess1)); | ||
| 241 | EVP_DigestUpdate(mdctx, mess2, strlen(mess2)); | ||
| 242 | EVP_DigestFinal_ex(mdctx, md_value, &md_len); | ||
| 243 | EVP_MD_CTX_destroy(mdctx); | ||
| 244 | |||
| 245 | printf("Digest is: "); | ||
| 246 | for(i = 0; i < md_len; i++) | ||
| 247 | printf("%02x", md_value[i]); | ||
| 248 | printf("\n"); | ||
| 249 | } | ||
| 250 | |||
| 251 | =head1 SEE ALSO | ||
| 252 | |||
| 253 | L<evp(3)|evp(3)>, L<hmac(3)|hmac(3)>, L<md2(3)|md2(3)>, | ||
| 254 | L<md5(3)|md5(3)>, L<ripemd(3)|ripemd(3)>, | ||
| 255 | L<sha(3)|sha(3)>, L<dgst(1)|dgst(1)> | ||
| 256 | |||
| 257 | =head1 HISTORY | ||
| 258 | |||
| 259 | EVP_DigestInit(), EVP_DigestUpdate() and EVP_DigestFinal() are | ||
| 260 | available in all versions of SSLeay and OpenSSL. | ||
| 261 | |||
| 262 | EVP_MD_CTX_init(), EVP_MD_CTX_create(), EVP_MD_CTX_copy_ex(), | ||
| 263 | EVP_MD_CTX_cleanup(), EVP_MD_CTX_destroy(), EVP_DigestInit_ex() | ||
| 264 | and EVP_DigestFinal_ex() were added in OpenSSL 0.9.7. | ||
| 265 | |||
| 266 | EVP_md_null(), EVP_md2(), EVP_md5(), EVP_sha1(), | ||
| 267 | EVP_dss(), EVP_dss1() and EVP_ripemd160() were | ||
| 268 | changed to return truely const EVP_MD * in OpenSSL 0.9.7. | ||
| 269 | |||
| 270 | The link between digests and signing algorithms was fixed in OpenSSL 1.0 and | ||
| 271 | later, so now EVP_sha1() can be used with RSA and DSA, there is no need to | ||
| 272 | use EVP_dss1() any more. | ||
| 273 | |||
| 274 | OpenSSL 1.0 and later does not include the MD2 digest algorithm in the | ||
| 275 | default configuration due to its security weaknesses. | ||
| 276 | |||
| 277 | =cut | ||
diff --git a/src/lib/libcrypto/doc/EVP_DigestSignInit.pod b/src/lib/libcrypto/doc/EVP_DigestSignInit.pod deleted file mode 100644 index 00205d2ae9..0000000000 --- a/src/lib/libcrypto/doc/EVP_DigestSignInit.pod +++ /dev/null | |||
| @@ -1,85 +0,0 @@ | |||
| 1 | =pod | ||
| 2 | |||
| 3 | =head1 NAME | ||
| 4 | |||
| 5 | EVP_DigestSignInit, EVP_DigestSignUpdate, EVP_DigestSignFinal - EVP signing | ||
| 6 | functions | ||
| 7 | |||
| 8 | =head1 SYNOPSIS | ||
| 9 | |||
| 10 | #include <openssl/evp.h> | ||
| 11 | |||
| 12 | int EVP_DigestSignInit(EVP_MD_CTX *ctx, EVP_PKEY_CTX **pctx, | ||
| 13 | const EVP_MD *type, ENGINE *e, EVP_PKEY *pkey); | ||
| 14 | int EVP_DigestSignUpdate(EVP_MD_CTX *ctx, const void *d, unsigned int cnt); | ||
| 15 | int EVP_DigestSignFinal(EVP_MD_CTX *ctx, unsigned char *sig, size_t *siglen); | ||
| 16 | |||
| 17 | =head1 DESCRIPTION | ||
| 18 | |||
| 19 | The EVP signature routines are a high level interface to digital signatures. | ||
| 20 | |||
| 21 | EVP_DigestSignInit() sets up signing context B<ctx> to use digest B<type> from | ||
| 22 | ENGINE B<impl> and private key B<pkey>. B<ctx> must be initialized with | ||
| 23 | EVP_MD_CTX_init() before calling this function. If B<pctx> is not NULL the | ||
| 24 | EVP_PKEY_CTX of the signing operation will be written to B<*pctx>: this can | ||
| 25 | be used to set alternative signing options. | ||
| 26 | |||
| 27 | EVP_DigestSignUpdate() hashes B<cnt> bytes of data at B<d> into the | ||
| 28 | signature context B<ctx>. This function can be called several times on the | ||
| 29 | same B<ctx> to include additional data. This function is currently implemented | ||
| 30 | using a macro. | ||
| 31 | |||
| 32 | EVP_DigestSignFinal() signs the data in B<ctx> places the signature in B<sig>. | ||
| 33 | If B<sig> is B<NULL> then the maximum size of the output buffer is written to | ||
| 34 | the B<siglen> parameter. If B<sig> is not B<NULL> then before the call the | ||
| 35 | B<siglen> parameter should contain the length of the B<sig> buffer, if the | ||
| 36 | call is successful the signature is written to B<sig> and the amount of data | ||
| 37 | written to B<siglen>. | ||
| 38 | |||
| 39 | =head1 RETURN VALUES | ||
| 40 | |||
| 41 | EVP_DigestSignInit() EVP_DigestSignUpdate() and EVP_DigestSignaFinal() return | ||
| 42 | 1 for success and 0 or a negative value for failure. In particular a return | ||
| 43 | value of -2 indicates the operation is not supported by the public key | ||
| 44 | algorithm. | ||
| 45 | |||
| 46 | The error codes can be obtained from L<ERR_get_error(3)|ERR_get_error(3)>. | ||
| 47 | |||
| 48 | =head1 NOTES | ||
| 49 | |||
| 50 | The B<EVP> interface to digital signatures should almost always be used in | ||
| 51 | preference to the low level interfaces. This is because the code then becomes | ||
| 52 | transparent to the algorithm used and much more flexible. | ||
| 53 | |||
| 54 | In previous versions of OpenSSL there was a link between message digest types | ||
| 55 | and public key algorithms. This meant that "clone" digests such as EVP_dss1() | ||
| 56 | needed to be used to sign using SHA1 and DSA. This is no longer necessary and | ||
| 57 | the use of clone digest is now discouraged. | ||
| 58 | |||
| 59 | The call to EVP_DigestSignFinal() internally finalizes a copy of the digest | ||
| 60 | context. This means that calls to EVP_DigestSignUpdate() and | ||
| 61 | EVP_DigestSignFinal() can be called later to digest and sign additional data. | ||
| 62 | |||
| 63 | Since only a copy of the digest context is ever finalized the context must | ||
| 64 | be cleaned up after use by calling EVP_MD_CTX_cleanup() or a memory leak | ||
| 65 | will occur. | ||
| 66 | |||
| 67 | The use of EVP_PKEY_size() with these functions is discouraged because some | ||
| 68 | signature operations may have a signature length which depends on the | ||
| 69 | parameters set. As a result EVP_PKEY_size() would have to return a value | ||
| 70 | which indicates the maximum possible signature for any set of parameters. | ||
| 71 | |||
| 72 | =head1 SEE ALSO | ||
| 73 | |||
| 74 | L<EVP_DigestVerifyInit(3)|EVP_DigestVerifyInit(3)>, | ||
| 75 | L<EVP_DigestInit(3)|EVP_DigestInit(3)>, L<err(3)|err(3)>, | ||
| 76 | L<evp(3)|evp(3)>, L<hmac(3)|hmac(3)>, L<md2(3)|md2(3)>, | ||
| 77 | L<md5(3)|md5(3)>, L<ripemd(3)|ripemd(3)>, | ||
| 78 | L<sha(3)|sha(3)>, L<dgst(1)|dgst(1)> | ||
| 79 | |||
| 80 | =head1 HISTORY | ||
| 81 | |||
| 82 | EVP_DigestSignInit(), EVP_DigestSignUpdate() and EVP_DigestSignFinal() | ||
| 83 | were first added to OpenSSL 1.0.0. | ||
| 84 | |||
| 85 | =cut | ||
diff --git a/src/lib/libcrypto/doc/EVP_DigestVerifyInit.pod b/src/lib/libcrypto/doc/EVP_DigestVerifyInit.pod deleted file mode 100644 index 5dcfec1837..0000000000 --- a/src/lib/libcrypto/doc/EVP_DigestVerifyInit.pod +++ /dev/null | |||
| @@ -1,80 +0,0 @@ | |||
| 1 | =pod | ||
| 2 | |||
| 3 | =head1 NAME | ||
| 4 | |||
| 5 | EVP_DigestVerifyInit, EVP_DigestVerifyUpdate, EVP_DigestVerifyFinal - EVP | ||
| 6 | signature verification functions | ||
| 7 | |||
| 8 | =head1 SYNOPSIS | ||
| 9 | |||
| 10 | #include <openssl/evp.h> | ||
| 11 | |||
| 12 | int EVP_DigestVerifyInit(EVP_MD_CTX *ctx, EVP_PKEY_CTX **pctx, | ||
| 13 | const EVP_MD *type, ENGINE *e, EVP_PKEY *pkey); | ||
| 14 | int EVP_DigestVerifyUpdate(EVP_MD_CTX *ctx, const void *d, unsigned int cnt); | ||
| 15 | int EVP_DigestVerifyFinal(EVP_MD_CTX *ctx, unsigned char *sig, size_t siglen); | ||
| 16 | |||
| 17 | =head1 DESCRIPTION | ||
| 18 | |||
| 19 | The EVP signature routines are a high level interface to digital signatures. | ||
| 20 | |||
| 21 | EVP_DigestVerifyInit() sets up verification context B<ctx> to use digest | ||
| 22 | B<type> from ENGINE B<impl> and public key B<pkey>. B<ctx> must be initialized | ||
| 23 | with EVP_MD_CTX_init() before calling this function. If B<pctx> is not NULL the | ||
| 24 | EVP_PKEY_CTX of the verification operation will be written to B<*pctx>: this | ||
| 25 | can be used to set alternative verification options. | ||
| 26 | |||
| 27 | EVP_DigestVerifyUpdate() hashes B<cnt> bytes of data at B<d> into the | ||
| 28 | verification context B<ctx>. This function can be called several times on the | ||
| 29 | same B<ctx> to include additional data. This function is currently implemented | ||
| 30 | using a macro. | ||
| 31 | |||
| 32 | EVP_DigestVerifyFinal() verifies the data in B<ctx> against the signature in | ||
| 33 | B<sig> of length B<siglen>. | ||
| 34 | |||
| 35 | =head1 RETURN VALUES | ||
| 36 | |||
| 37 | EVP_DigestVerifyInit() and EVP_DigestVerifyUpdate() return 1 for success and 0 | ||
| 38 | or a negative value for failure. In particular a return value of -2 indicates | ||
| 39 | the operation is not supported by the public key algorithm. | ||
| 40 | |||
| 41 | Unlike other functions the return value 0 from EVP_DigestVerifyFinal() only | ||
| 42 | indicates that the signature did not verify successfully (that is tbs did | ||
| 43 | not match the original data or the signature was of invalid form) it is not an | ||
| 44 | indication of a more serious error. | ||
| 45 | |||
| 46 | The error codes can be obtained from L<ERR_get_error(3)|ERR_get_error(3)>. | ||
| 47 | |||
| 48 | =head1 NOTES | ||
| 49 | |||
| 50 | The B<EVP> interface to digital signatures should almost always be used in | ||
| 51 | preference to the low level interfaces. This is because the code then becomes | ||
| 52 | transparent to the algorithm used and much more flexible. | ||
| 53 | |||
| 54 | In previous versions of OpenSSL there was a link between message digest types | ||
| 55 | and public key algorithms. This meant that "clone" digests such as EVP_dss1() | ||
| 56 | needed to be used to sign using SHA1 and DSA. This is no longer necessary and | ||
| 57 | the use of clone digest is now discouraged. | ||
| 58 | |||
| 59 | The call to EVP_DigestVerifyFinal() internally finalizes a copy of the digest | ||
| 60 | context. This means that calls to EVP_VerifyUpdate() and EVP_VerifyFinal() can | ||
| 61 | be called later to digest and verify additional data. | ||
| 62 | |||
| 63 | Since only a copy of the digest context is ever finalized the context must | ||
| 64 | be cleaned up after use by calling EVP_MD_CTX_cleanup() or a memory leak | ||
| 65 | will occur. | ||
| 66 | |||
| 67 | =head1 SEE ALSO | ||
| 68 | |||
| 69 | L<EVP_DigestSignInit(3)|EVP_DigestSignInit(3)>, | ||
| 70 | L<EVP_DigestInit(3)|EVP_DigestInit(3)>, L<err(3)|err(3)>, | ||
| 71 | L<evp(3)|evp(3)>, L<hmac(3)|hmac(3)>, L<md2(3)|md2(3)>, | ||
| 72 | L<md5(3)|md5(3)>, L<ripemd(3)|ripemd(3)>, | ||
| 73 | L<sha(3)|sha(3)>, L<dgst(1)|dgst(1)> | ||
| 74 | |||
| 75 | =head1 HISTORY | ||
| 76 | |||
| 77 | EVP_DigestVerifyInit(), EVP_DigestVerifyUpdate() and EVP_DigestVerifyFinal() | ||
| 78 | were first added to OpenSSL 1.0.0. | ||
| 79 | |||
| 80 | =cut | ||
diff --git a/src/lib/libcrypto/doc/EVP_EncryptInit.pod b/src/lib/libcrypto/doc/EVP_EncryptInit.pod deleted file mode 100644 index 7ae3fe31ea..0000000000 --- a/src/lib/libcrypto/doc/EVP_EncryptInit.pod +++ /dev/null | |||
| @@ -1,548 +0,0 @@ | |||
| 1 | =pod | ||
| 2 | |||
| 3 | =head1 NAME | ||
| 4 | |||
| 5 | EVP_CIPHER_CTX_init, EVP_EncryptInit_ex, EVP_EncryptUpdate, | ||
| 6 | EVP_EncryptFinal_ex, EVP_DecryptInit_ex, EVP_DecryptUpdate, | ||
| 7 | EVP_DecryptFinal_ex, EVP_CipherInit_ex, EVP_CipherUpdate, | ||
| 8 | EVP_CipherFinal_ex, EVP_CIPHER_CTX_set_key_length, | ||
| 9 | EVP_CIPHER_CTX_ctrl, EVP_CIPHER_CTX_cleanup, EVP_EncryptInit, | ||
| 10 | EVP_EncryptFinal, EVP_DecryptInit, EVP_DecryptFinal, | ||
| 11 | EVP_CipherInit, EVP_CipherFinal, EVP_get_cipherbyname, | ||
| 12 | EVP_get_cipherbynid, EVP_get_cipherbyobj, EVP_CIPHER_nid, | ||
| 13 | EVP_CIPHER_block_size, EVP_CIPHER_key_length, EVP_CIPHER_iv_length, | ||
| 14 | EVP_CIPHER_flags, EVP_CIPHER_mode, EVP_CIPHER_type, EVP_CIPHER_CTX_cipher, | ||
| 15 | EVP_CIPHER_CTX_nid, EVP_CIPHER_CTX_block_size, EVP_CIPHER_CTX_key_length, | ||
| 16 | EVP_CIPHER_CTX_iv_length, EVP_CIPHER_CTX_get_app_data, | ||
| 17 | EVP_CIPHER_CTX_set_app_data, EVP_CIPHER_CTX_type, EVP_CIPHER_CTX_flags, | ||
| 18 | EVP_CIPHER_CTX_mode, EVP_CIPHER_param_to_asn1, EVP_CIPHER_asn1_to_param, | ||
| 19 | EVP_CIPHER_CTX_set_padding, EVP_enc_null, EVP_des_cbc, EVP_des_ecb, | ||
| 20 | EVP_des_cfb, EVP_des_ofb, EVP_des_ede_cbc, EVP_des_ede, EVP_des_ede_ofb, | ||
| 21 | EVP_des_ede_cfb, EVP_des_ede3_cbc, EVP_des_ede3, EVP_des_ede3_ofb, | ||
| 22 | EVP_des_ede3_cfb, EVP_desx_cbc, EVP_rc4, EVP_rc4_40, EVP_idea_cbc, | ||
| 23 | EVP_idea_ecb, EVP_idea_cfb, EVP_idea_ofb, EVP_idea_cbc, EVP_rc2_cbc, | ||
| 24 | EVP_rc2_ecb, EVP_rc2_cfb, EVP_rc2_ofb, EVP_rc2_40_cbc, EVP_rc2_64_cbc, | ||
| 25 | EVP_bf_cbc, EVP_bf_ecb, EVP_bf_cfb, EVP_bf_ofb, EVP_cast5_cbc, | ||
| 26 | EVP_cast5_ecb, EVP_cast5_cfb, EVP_cast5_ofb, | ||
| 27 | EVP_aes_128_gcm, EVP_aes_192_gcm, EVP_aes_256_gcm, EVP_aes_128_ccm, | ||
| 28 | EVP_aes_192_ccm, EVP_aes_256_ccm, EVP_rc5_32_12_16_cbc, | ||
| 29 | EVP_rc5_32_12_16_cfb, EVP_rc5_32_12_16_ecb, EVP_rc5_32_12_16_ofb | ||
| 30 | - EVP cipher routines | ||
| 31 | |||
| 32 | =head1 SYNOPSIS | ||
| 33 | |||
| 34 | #include <openssl/evp.h> | ||
| 35 | |||
| 36 | void EVP_CIPHER_CTX_init(EVP_CIPHER_CTX *a); | ||
| 37 | |||
| 38 | int EVP_EncryptInit_ex(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *type, | ||
| 39 | ENGINE *impl, unsigned char *key, unsigned char *iv); | ||
| 40 | int EVP_EncryptUpdate(EVP_CIPHER_CTX *ctx, unsigned char *out, | ||
| 41 | int *outl, unsigned char *in, int inl); | ||
| 42 | int EVP_EncryptFinal_ex(EVP_CIPHER_CTX *ctx, unsigned char *out, | ||
| 43 | int *outl); | ||
| 44 | |||
| 45 | int EVP_DecryptInit_ex(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *type, | ||
| 46 | ENGINE *impl, unsigned char *key, unsigned char *iv); | ||
| 47 | int EVP_DecryptUpdate(EVP_CIPHER_CTX *ctx, unsigned char *out, | ||
| 48 | int *outl, unsigned char *in, int inl); | ||
| 49 | int EVP_DecryptFinal_ex(EVP_CIPHER_CTX *ctx, unsigned char *outm, | ||
| 50 | int *outl); | ||
| 51 | |||
| 52 | int EVP_CipherInit_ex(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *type, | ||
| 53 | ENGINE *impl, unsigned char *key, unsigned char *iv, int enc); | ||
| 54 | int EVP_CipherUpdate(EVP_CIPHER_CTX *ctx, unsigned char *out, | ||
| 55 | int *outl, unsigned char *in, int inl); | ||
| 56 | int EVP_CipherFinal_ex(EVP_CIPHER_CTX *ctx, unsigned char *outm, | ||
| 57 | int *outl); | ||
| 58 | |||
| 59 | int EVP_EncryptInit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *type, | ||
| 60 | unsigned char *key, unsigned char *iv); | ||
| 61 | int EVP_EncryptFinal(EVP_CIPHER_CTX *ctx, unsigned char *out, | ||
| 62 | int *outl); | ||
| 63 | |||
| 64 | int EVP_DecryptInit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *type, | ||
| 65 | unsigned char *key, unsigned char *iv); | ||
| 66 | int EVP_DecryptFinal(EVP_CIPHER_CTX *ctx, unsigned char *outm, | ||
| 67 | int *outl); | ||
| 68 | |||
| 69 | int EVP_CipherInit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *type, | ||
| 70 | unsigned char *key, unsigned char *iv, int enc); | ||
| 71 | int EVP_CipherFinal(EVP_CIPHER_CTX *ctx, unsigned char *outm, | ||
| 72 | int *outl); | ||
| 73 | |||
| 74 | int EVP_CIPHER_CTX_set_padding(EVP_CIPHER_CTX *x, int padding); | ||
| 75 | int EVP_CIPHER_CTX_set_key_length(EVP_CIPHER_CTX *x, int keylen); | ||
| 76 | int EVP_CIPHER_CTX_ctrl(EVP_CIPHER_CTX *ctx, int type, int arg, void *ptr); | ||
| 77 | int EVP_CIPHER_CTX_cleanup(EVP_CIPHER_CTX *a); | ||
| 78 | |||
| 79 | const EVP_CIPHER *EVP_get_cipherbyname(const char *name); | ||
| 80 | #define EVP_get_cipherbynid(a) EVP_get_cipherbyname(OBJ_nid2sn(a)) | ||
| 81 | #define EVP_get_cipherbyobj(a) EVP_get_cipherbynid(OBJ_obj2nid(a)) | ||
| 82 | |||
| 83 | #define EVP_CIPHER_nid(e) ((e)->nid) | ||
| 84 | #define EVP_CIPHER_block_size(e) ((e)->block_size) | ||
| 85 | #define EVP_CIPHER_key_length(e) ((e)->key_len) | ||
| 86 | #define EVP_CIPHER_iv_length(e) ((e)->iv_len) | ||
| 87 | #define EVP_CIPHER_flags(e) ((e)->flags) | ||
| 88 | #define EVP_CIPHER_mode(e) ((e)->flags) & EVP_CIPH_MODE) | ||
| 89 | int EVP_CIPHER_type(const EVP_CIPHER *ctx); | ||
| 90 | |||
| 91 | #define EVP_CIPHER_CTX_cipher(e) ((e)->cipher) | ||
| 92 | #define EVP_CIPHER_CTX_nid(e) ((e)->cipher->nid) | ||
| 93 | #define EVP_CIPHER_CTX_block_size(e) ((e)->cipher->block_size) | ||
| 94 | #define EVP_CIPHER_CTX_key_length(e) ((e)->key_len) | ||
| 95 | #define EVP_CIPHER_CTX_iv_length(e) ((e)->cipher->iv_len) | ||
| 96 | #define EVP_CIPHER_CTX_get_app_data(e) ((e)->app_data) | ||
| 97 | #define EVP_CIPHER_CTX_set_app_data(e,d) ((e)->app_data=(char *)(d)) | ||
| 98 | #define EVP_CIPHER_CTX_type(c) EVP_CIPHER_type(EVP_CIPHER_CTX_cipher(c)) | ||
| 99 | #define EVP_CIPHER_CTX_flags(e) ((e)->cipher->flags) | ||
| 100 | #define EVP_CIPHER_CTX_mode(e) ((e)->cipher->flags & EVP_CIPH_MODE) | ||
| 101 | |||
| 102 | int EVP_CIPHER_param_to_asn1(EVP_CIPHER_CTX *c, ASN1_TYPE *type); | ||
| 103 | int EVP_CIPHER_asn1_to_param(EVP_CIPHER_CTX *c, ASN1_TYPE *type); | ||
| 104 | |||
| 105 | =head1 DESCRIPTION | ||
| 106 | |||
| 107 | The EVP cipher routines are a high level interface to certain | ||
| 108 | symmetric ciphers. | ||
| 109 | |||
| 110 | EVP_CIPHER_CTX_init() initializes cipher context B<ctx>. | ||
| 111 | |||
| 112 | EVP_EncryptInit_ex() sets up cipher context B<ctx> for encryption | ||
| 113 | with cipher B<type> from ENGINE B<impl>. B<ctx> must be initialized | ||
| 114 | before calling this function. B<type> is normally supplied | ||
| 115 | by a function such as EVP_aes_256_cbc(). If B<impl> is NULL then the | ||
| 116 | default implementation is used. B<key> is the symmetric key to use | ||
| 117 | and B<iv> is the IV to use (if necessary), the actual number of bytes | ||
| 118 | used for the key and IV depends on the cipher. It is possible to set | ||
| 119 | all parameters to NULL except B<type> in an initial call and supply | ||
| 120 | the remaining parameters in subsequent calls, all of which have B<type> | ||
| 121 | set to NULL. This is done when the default cipher parameters are not | ||
| 122 | appropriate. | ||
| 123 | |||
| 124 | EVP_EncryptUpdate() encrypts B<inl> bytes from the buffer B<in> and | ||
| 125 | writes the encrypted version to B<out>. This function can be called | ||
| 126 | multiple times to encrypt successive blocks of data. The amount | ||
| 127 | of data written depends on the block alignment of the encrypted data: | ||
| 128 | as a result the amount of data written may be anything from zero bytes | ||
| 129 | to (inl + cipher_block_size - 1) so B<outl> should contain sufficient | ||
| 130 | room. The actual number of bytes written is placed in B<outl>. | ||
| 131 | |||
| 132 | If padding is enabled (the default) then EVP_EncryptFinal_ex() encrypts | ||
| 133 | the "final" data, that is any data that remains in a partial block. | ||
| 134 | It uses L<standard block padding|/NOTES> (aka PKCS padding). The encrypted | ||
| 135 | final data is written to B<out> which should have sufficient space for | ||
| 136 | one cipher block. The number of bytes written is placed in B<outl>. After | ||
| 137 | this function is called the encryption operation is finished and no further | ||
| 138 | calls to EVP_EncryptUpdate() should be made. | ||
| 139 | |||
| 140 | If padding is disabled then EVP_EncryptFinal_ex() will not encrypt any more | ||
| 141 | data and it will return an error if any data remains in a partial block: | ||
| 142 | that is if the total data length is not a multiple of the block size. | ||
| 143 | |||
| 144 | EVP_DecryptInit_ex(), EVP_DecryptUpdate() and EVP_DecryptFinal_ex() are the | ||
| 145 | corresponding decryption operations. EVP_DecryptFinal() will return an | ||
| 146 | error code if padding is enabled and the final block is not correctly | ||
| 147 | formatted. The parameters and restrictions are identical to the encryption | ||
| 148 | operations except that if padding is enabled the decrypted data buffer B<out> | ||
| 149 | passed to EVP_DecryptUpdate() should have sufficient room for | ||
| 150 | (B<inl> + cipher_block_size) bytes unless the cipher block size is 1 in | ||
| 151 | which case B<inl> bytes is sufficient. | ||
| 152 | |||
| 153 | EVP_CipherInit_ex(), EVP_CipherUpdate() and EVP_CipherFinal_ex() are | ||
| 154 | functions that can be used for decryption or encryption. The operation | ||
| 155 | performed depends on the value of the B<enc> parameter. It should be set | ||
| 156 | to 1 for encryption, 0 for decryption and -1 to leave the value unchanged | ||
| 157 | (the actual value of 'enc' being supplied in a previous call). | ||
| 158 | |||
| 159 | EVP_CIPHER_CTX_cleanup() clears all information from a cipher context | ||
| 160 | and free up any allocated memory associate with it. It should be called | ||
| 161 | after all operations using a cipher are complete so sensitive information | ||
| 162 | does not remain in memory. | ||
| 163 | |||
| 164 | EVP_EncryptInit(), EVP_DecryptInit() and EVP_CipherInit() behave in a | ||
| 165 | similar way to EVP_EncryptInit_ex(), EVP_DecryptInit_ex and | ||
| 166 | EVP_CipherInit_ex() except the B<ctx> parameter does not need to be | ||
| 167 | initialized and they always use the default cipher implementation. | ||
| 168 | |||
| 169 | EVP_EncryptFinal(), EVP_DecryptFinal() and EVP_CipherFinal() are | ||
| 170 | identical to EVP_EncryptFinal_ex(), EVP_DecryptFinal_ex() and | ||
| 171 | EVP_CipherFinal_ex(). In previous releases of OpenSSL they also used to clean | ||
| 172 | up the B<ctx>, but this is no longer done and EVP_CIPHER_CTX_clean() | ||
| 173 | must be called to free any context resources. | ||
| 174 | |||
| 175 | EVP_get_cipherbyname(), EVP_get_cipherbynid() and EVP_get_cipherbyobj() | ||
| 176 | return an EVP_CIPHER structure when passed a cipher name, a NID or an | ||
| 177 | ASN1_OBJECT structure. | ||
| 178 | |||
| 179 | EVP_CIPHER_nid() and EVP_CIPHER_CTX_nid() return the NID of a cipher when | ||
| 180 | passed an B<EVP_CIPHER> or B<EVP_CIPHER_CTX> structure. The actual NID | ||
| 181 | value is an internal value which may not have a corresponding OBJECT | ||
| 182 | IDENTIFIER. | ||
| 183 | |||
| 184 | EVP_CIPHER_CTX_set_padding() enables or disables padding. By default | ||
| 185 | encryption operations are padded using standard block padding and the | ||
| 186 | padding is checked and removed when decrypting. If the B<pad> parameter | ||
| 187 | is zero then no padding is performed, the total amount of data encrypted | ||
| 188 | or decrypted must then be a multiple of the block size or an error will | ||
| 189 | occur. | ||
| 190 | |||
| 191 | EVP_CIPHER_key_length() and EVP_CIPHER_CTX_key_length() return the key | ||
| 192 | length of a cipher when passed an B<EVP_CIPHER> or B<EVP_CIPHER_CTX> | ||
| 193 | structure. The constant B<EVP_MAX_KEY_LENGTH> is the maximum key length | ||
| 194 | for all ciphers. Note: although EVP_CIPHER_key_length() is fixed for a | ||
| 195 | given cipher, the value of EVP_CIPHER_CTX_key_length() may be different | ||
| 196 | for variable key length ciphers. | ||
| 197 | |||
| 198 | EVP_CIPHER_CTX_set_key_length() sets the key length of the cipher ctx. | ||
| 199 | If the cipher is a fixed length cipher then attempting to set the key | ||
| 200 | length to any value other than the fixed value is an error. | ||
| 201 | |||
| 202 | EVP_CIPHER_iv_length() and EVP_CIPHER_CTX_iv_length() return the IV | ||
| 203 | length of a cipher when passed an B<EVP_CIPHER> or B<EVP_CIPHER_CTX>. | ||
| 204 | It will return zero if the cipher does not use an IV. The constant | ||
| 205 | B<EVP_MAX_IV_LENGTH> is the maximum IV length for all ciphers. | ||
| 206 | |||
| 207 | EVP_CIPHER_block_size() and EVP_CIPHER_CTX_block_size() return the block | ||
| 208 | size of a cipher when passed an B<EVP_CIPHER> or B<EVP_CIPHER_CTX> | ||
| 209 | structure. The constant B<EVP_MAX_IV_LENGTH> is also the maximum block | ||
| 210 | length for all ciphers. | ||
| 211 | |||
| 212 | EVP_CIPHER_type() and EVP_CIPHER_CTX_type() return the type of the passed | ||
| 213 | cipher or context. This "type" is the actual NID of the cipher OBJECT | ||
| 214 | IDENTIFIER as such it ignores the cipher parameters and 40 bit RC2 and | ||
| 215 | 128 bit RC2 have the same NID. If the cipher does not have an object | ||
| 216 | identifier or does not have ASN1 support this function will return | ||
| 217 | B<NID_undef>. | ||
| 218 | |||
| 219 | EVP_CIPHER_CTX_cipher() returns the B<EVP_CIPHER> structure when passed | ||
| 220 | an B<EVP_CIPHER_CTX> structure. | ||
| 221 | |||
| 222 | EVP_CIPHER_mode() and EVP_CIPHER_CTX_mode() return the block cipher mode: | ||
| 223 | EVP_CIPH_ECB_MODE, EVP_CIPH_CBC_MODE, EVP_CIPH_CFB_MODE or | ||
| 224 | EVP_CIPH_OFB_MODE. If the cipher is a stream cipher then | ||
| 225 | EVP_CIPH_STREAM_CIPHER is returned. | ||
| 226 | |||
| 227 | EVP_CIPHER_param_to_asn1() sets the AlgorithmIdentifier "parameter" based | ||
| 228 | on the passed cipher. This will typically include any parameters and an | ||
| 229 | IV. The cipher IV (if any) must be set when this call is made. This call | ||
| 230 | should be made before the cipher is actually "used" (before any | ||
| 231 | EVP_EncryptUpdate(), EVP_DecryptUpdate() calls for example). This function | ||
| 232 | may fail if the cipher does not have any ASN1 support. | ||
| 233 | |||
| 234 | EVP_CIPHER_asn1_to_param() sets the cipher parameters based on an ASN1 | ||
| 235 | AlgorithmIdentifier "parameter". The precise effect depends on the cipher | ||
| 236 | In the case of RC2, for example, it will set the IV and effective key length. | ||
| 237 | This function should be called after the base cipher type is set but before | ||
| 238 | the key is set. For example EVP_CipherInit() will be called with the IV and | ||
| 239 | key set to NULL, EVP_CIPHER_asn1_to_param() will be called and finally | ||
| 240 | EVP_CipherInit() again with all parameters except the key set to NULL. It is | ||
| 241 | possible for this function to fail if the cipher does not have any ASN1 support | ||
| 242 | or the parameters cannot be set (for example the RC2 effective key length | ||
| 243 | is not supported. | ||
| 244 | |||
| 245 | EVP_CIPHER_CTX_ctrl() allows various cipher specific parameters to be determined | ||
| 246 | and set. Currently only the RC2 effective key length and the number of rounds of | ||
| 247 | RC5 can be set. | ||
| 248 | |||
| 249 | =head1 RETURN VALUES | ||
| 250 | |||
| 251 | EVP_EncryptInit_ex(), EVP_EncryptUpdate() and EVP_EncryptFinal_ex() | ||
| 252 | return 1 for success and 0 for failure. | ||
| 253 | |||
| 254 | EVP_DecryptInit_ex() and EVP_DecryptUpdate() return 1 for success and 0 for | ||
| 255 | failure. EVP_DecryptFinal_ex() returns 0 if the decrypt failed or 1 for | ||
| 256 | success. | ||
| 257 | |||
| 258 | EVP_CipherInit_ex() and EVP_CipherUpdate() return 1 for success and 0 for | ||
| 259 | failure. EVP_CipherFinal_ex() returns 0 for a decryption failure or 1 for | ||
| 260 | success. | ||
| 261 | |||
| 262 | EVP_CIPHER_CTX_cleanup() returns 1 for success and 0 for failure. | ||
| 263 | |||
| 264 | EVP_get_cipherbyname(), EVP_get_cipherbynid() and EVP_get_cipherbyobj() | ||
| 265 | return an B<EVP_CIPHER> structure or NULL on error. | ||
| 266 | |||
| 267 | EVP_CIPHER_nid() and EVP_CIPHER_CTX_nid() return a NID. | ||
| 268 | |||
| 269 | EVP_CIPHER_block_size() and EVP_CIPHER_CTX_block_size() return the block | ||
| 270 | size. | ||
| 271 | |||
| 272 | EVP_CIPHER_key_length() and EVP_CIPHER_CTX_key_length() return the key | ||
| 273 | length. | ||
| 274 | |||
| 275 | EVP_CIPHER_CTX_set_padding() always returns 1. | ||
| 276 | |||
| 277 | EVP_CIPHER_iv_length() and EVP_CIPHER_CTX_iv_length() return the IV | ||
| 278 | length or zero if the cipher does not use an IV. | ||
| 279 | |||
| 280 | EVP_CIPHER_type() and EVP_CIPHER_CTX_type() return the NID of the cipher's | ||
| 281 | OBJECT IDENTIFIER or NID_undef if it has no defined OBJECT IDENTIFIER. | ||
| 282 | |||
| 283 | EVP_CIPHER_CTX_cipher() returns an B<EVP_CIPHER> structure. | ||
| 284 | |||
| 285 | EVP_CIPHER_param_to_asn1() and EVP_CIPHER_asn1_to_param() return 1 for | ||
| 286 | success or zero for failure. | ||
| 287 | |||
| 288 | =head1 CIPHER LISTING | ||
| 289 | |||
| 290 | All algorithms have a fixed key length unless otherwise stated. | ||
| 291 | |||
| 292 | =over 4 | ||
| 293 | |||
| 294 | =item EVP_enc_null(void) | ||
| 295 | |||
| 296 | Null cipher: does nothing. | ||
| 297 | |||
| 298 | =item EVP_aes_128_cbc(void), EVP_aes_128_ecb(void), EVP_aes_128_cfb(void), EVP_aes_128_ofb(void) | ||
| 299 | |||
| 300 | 128-bit AES in CBC, ECB, CFB and OFB modes respectively. | ||
| 301 | |||
| 302 | =item EVP_aes_192_cbc(void), EVP_aes_192_ecb(void), EVP_aes_192_cfb(void), EVP_aes_192_ofb(void) | ||
| 303 | |||
| 304 | 192-bit AES in CBC, ECB, CFB and OFB modes respectively. | ||
| 305 | |||
| 306 | =item EVP_aes_256_cbc(void), EVP_aes_256_ecb(void), EVP_aes_256_cfb(void), EVP_aes_256_ofb(void) | ||
| 307 | |||
| 308 | 256-bit AES in CBC, ECB, CFB and OFB modes respectively. | ||
| 309 | |||
| 310 | =item EVP_des_cbc(void), EVP_des_ecb(void), EVP_des_cfb(void), EVP_des_ofb(void) | ||
| 311 | |||
| 312 | DES in CBC, ECB, CFB and OFB modes respectively. | ||
| 313 | |||
| 314 | =item EVP_des_ede_cbc(void), EVP_des_ede(), EVP_des_ede_ofb(void), | ||
| 315 | EVP_des_ede_cfb(void) | ||
| 316 | |||
| 317 | Two key triple DES in CBC, ECB, CFB and OFB modes respectively. | ||
| 318 | |||
| 319 | =item EVP_des_ede3_cbc(void), EVP_des_ede3(), EVP_des_ede3_ofb(void), | ||
| 320 | EVP_des_ede3_cfb(void) | ||
| 321 | |||
| 322 | Three key triple DES in CBC, ECB, CFB and OFB modes respectively. | ||
| 323 | |||
| 324 | =item EVP_desx_cbc(void) | ||
| 325 | |||
| 326 | DESX algorithm in CBC mode. | ||
| 327 | |||
| 328 | =item EVP_rc4(void) | ||
| 329 | |||
| 330 | RC4 stream cipher. This is a variable key length cipher with default key length | ||
| 331 | 128 bits. | ||
| 332 | |||
| 333 | =item EVP_rc4_40(void) | ||
| 334 | |||
| 335 | RC4 stream cipher with 40 bit key length. This is obsolete and new code should | ||
| 336 | use EVP_rc4() and the EVP_CIPHER_CTX_set_key_length() function. | ||
| 337 | |||
| 338 | =item EVP_idea_cbc() EVP_idea_ecb(void), EVP_idea_cfb(void), | ||
| 339 | EVP_idea_ofb(void), EVP_idea_cbc(void) | ||
| 340 | |||
| 341 | IDEA encryption algorithm in CBC, ECB, CFB and OFB modes respectively. | ||
| 342 | |||
| 343 | =item EVP_rc2_cbc(void), EVP_rc2_ecb(void), EVP_rc2_cfb(void), EVP_rc2_ofb(void) | ||
| 344 | |||
| 345 | RC2 encryption algorithm in CBC, ECB, CFB and OFB modes respectively. This is a | ||
| 346 | variable key length cipher with an additional parameter called "effective key | ||
| 347 | bits" or "effective key length". By default both are set to 128 bits. | ||
| 348 | |||
| 349 | =item EVP_rc2_40_cbc(void), EVP_rc2_64_cbc(void) | ||
| 350 | |||
| 351 | RC2 algorithm in CBC mode with a default key length and effective key length of | ||
| 352 | 40 and 64 bits. These are obsolete and new code should use EVP_rc2_cbc(), | ||
| 353 | EVP_CIPHER_CTX_set_key_length() and EVP_CIPHER_CTX_ctrl() to set the key length | ||
| 354 | and effective key length. | ||
| 355 | |||
| 356 | =item EVP_bf_cbc(void), EVP_bf_ecb(void), EVP_bf_cfb(void), EVP_bf_ofb(void); | ||
| 357 | |||
| 358 | Blowfish encryption algorithm in CBC, ECB, CFB and OFB modes respectively. This | ||
| 359 | is a variable key length cipher. | ||
| 360 | |||
| 361 | =item EVP_cast5_cbc(void), EVP_cast5_ecb(void), EVP_cast5_cfb(void), | ||
| 362 | EVP_cast5_ofb(void) | ||
| 363 | |||
| 364 | CAST encryption algorithm in CBC, ECB, CFB and OFB modes respectively. This is | ||
| 365 | a variable key length cipher. | ||
| 366 | |||
| 367 | =item EVP_rc5_32_12_16_cbc(void), EVP_rc5_32_12_16_ecb(void), | ||
| 368 | EVP_rc5_32_12_16_cfb(void), EVP_rc5_32_12_16_ofb(void) | ||
| 369 | |||
| 370 | RC5 encryption algorithm in CBC, ECB, CFB and OFB modes respectively. This is a | ||
| 371 | variable key length cipher with an additional "number of rounds" parameter. By | ||
| 372 | default the key length is set to 128 bits and 12 rounds. | ||
| 373 | |||
| 374 | =back | ||
| 375 | |||
| 376 | =head1 NOTES | ||
| 377 | |||
| 378 | Where possible the B<EVP> interface to symmetric ciphers should be used in | ||
| 379 | preference to the low level interfaces. This is because the code then becomes | ||
| 380 | transparent to the cipher used and much more flexible. | ||
| 381 | |||
| 382 | PKCS padding works by adding B<n> padding bytes of value B<n> to make the total | ||
| 383 | length of the encrypted data a multiple of the block size. Padding is always | ||
| 384 | added so if the data is already a multiple of the block size B<n> will equal | ||
| 385 | the block size. For example if the block size is 8 and 11 bytes are to be | ||
| 386 | encrypted then 5 padding bytes of value 5 will be added. | ||
| 387 | |||
| 388 | When decrypting the final block is checked to see if it has the correct form. | ||
| 389 | |||
| 390 | Although the decryption operation can produce an error if padding is enabled, | ||
| 391 | it is not a strong test that the input data or key is correct. A random block | ||
| 392 | has better than 1 in 256 chance of being of the correct format and problems with | ||
| 393 | the input data earlier on will not produce a final decrypt error. | ||
| 394 | |||
| 395 | If padding is disabled then the decryption operation will always succeed if | ||
| 396 | the total amount of data decrypted is a multiple of the block size. | ||
| 397 | |||
| 398 | The functions EVP_EncryptInit(), EVP_EncryptFinal(), EVP_DecryptInit(), | ||
| 399 | EVP_CipherInit() and EVP_CipherFinal() are obsolete but are retained for | ||
| 400 | compatibility with existing code. New code should use EVP_EncryptInit_ex(), | ||
| 401 | EVP_EncryptFinal_ex(), EVP_DecryptInit_ex(), EVP_DecryptFinal_ex(), | ||
| 402 | EVP_CipherInit_ex() and EVP_CipherFinal_ex() because they can reuse an | ||
| 403 | existing context without allocating and freeing it up on each call. | ||
| 404 | |||
| 405 | =head1 BUGS | ||
| 406 | |||
| 407 | For RC5 the number of rounds can currently only be set to 8, 12 or 16. This is | ||
| 408 | a limitation of the current RC5 code rather than the EVP interface. | ||
| 409 | |||
| 410 | EVP_MAX_KEY_LENGTH and EVP_MAX_IV_LENGTH only refer to the internal ciphers with | ||
| 411 | default key lengths. If custom ciphers exceed these values the results are | ||
| 412 | unpredictable. This is because it has become standard practice to define a | ||
| 413 | generic key as a fixed unsigned char array containing EVP_MAX_KEY_LENGTH bytes. | ||
| 414 | |||
| 415 | The ASN1 code is incomplete (and sometimes inaccurate) it has only been tested | ||
| 416 | for certain common S/MIME ciphers (RC2, DES, triple DES) in CBC mode. | ||
| 417 | |||
| 418 | =head1 EXAMPLES | ||
| 419 | |||
| 420 | Get the number of rounds used in RC5: | ||
| 421 | |||
| 422 | int nrounds; | ||
| 423 | EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_GET_RC5_ROUNDS, 0, &nrounds); | ||
| 424 | |||
| 425 | Get the RC2 effective key length: | ||
| 426 | |||
| 427 | int key_bits; | ||
| 428 | EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_GET_RC2_KEY_BITS, 0, &key_bits); | ||
| 429 | |||
| 430 | Set the number of rounds used in RC5: | ||
| 431 | |||
| 432 | int nrounds; | ||
| 433 | EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_SET_RC5_ROUNDS, nrounds, NULL); | ||
| 434 | |||
| 435 | Set the effective key length used in RC2: | ||
| 436 | |||
| 437 | int key_bits; | ||
| 438 | EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_SET_RC2_KEY_BITS, key_bits, NULL); | ||
| 439 | |||
| 440 | Encrypt a string using blowfish: | ||
| 441 | |||
| 442 | int | ||
| 443 | do_crypt(char *outfile) | ||
| 444 | { | ||
| 445 | unsigned char outbuf[1024]; | ||
| 446 | int outlen, tmplen; | ||
| 447 | /* | ||
| 448 | * Bogus key and IV: we'd normally set these from | ||
| 449 | * another source. | ||
| 450 | */ | ||
| 451 | unsigned char key[] = {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15}; | ||
| 452 | unsigned char iv[] = {1,2,3,4,5,6,7,8}; | ||
| 453 | const char intext[] = "Some Crypto Text"; | ||
| 454 | EVP_CIPHER_CTX ctx; | ||
| 455 | FILE *out; | ||
| 456 | EVP_CIPHER_CTX_init(&ctx); | ||
| 457 | EVP_EncryptInit_ex(&ctx, EVP_bf_cbc(), NULL, key, iv); | ||
| 458 | |||
| 459 | if (!EVP_EncryptUpdate(&ctx, outbuf, &outlen, intext, | ||
| 460 | strlen(intext))) { | ||
| 461 | /* Error */ | ||
| 462 | return 0; | ||
| 463 | } | ||
| 464 | /* | ||
| 465 | * Buffer passed to EVP_EncryptFinal() must be after data just | ||
| 466 | * encrypted to avoid overwriting it. | ||
| 467 | */ | ||
| 468 | if (!EVP_EncryptFinal_ex(&ctx, outbuf + outlen, &tmplen)) { | ||
| 469 | /* Error */ | ||
| 470 | return 0; | ||
| 471 | } | ||
| 472 | outlen += tmplen; | ||
| 473 | EVP_CIPHER_CTX_cleanup(&ctx); | ||
| 474 | /* | ||
| 475 | * Need binary mode for fopen because encrypted data is | ||
| 476 | * binary data. Also cannot use strlen() on it because | ||
| 477 | * it won't be NUL terminated and may contain embedded | ||
| 478 | * NULs. | ||
| 479 | */ | ||
| 480 | out = fopen(outfile, "wb"); | ||
| 481 | fwrite(outbuf, 1, outlen, out); | ||
| 482 | fclose(out); | ||
| 483 | return 1; | ||
| 484 | } | ||
| 485 | |||
| 486 | The ciphertext from the above example can be decrypted using the B<openssl> | ||
| 487 | utility with the command line: | ||
| 488 | |||
| 489 | S<openssl bf -in cipher.bin -K 000102030405060708090A0B0C0D0E0F -iv 0102030405060708 -d> | ||
| 490 | |||
| 491 | General encryption, decryption function example using FILE I/O and RC2 with an | ||
| 492 | 80 bit key: | ||
| 493 | |||
| 494 | int | ||
| 495 | do_crypt(FILE *in, FILE *out, int do_encrypt) | ||
| 496 | { | ||
| 497 | /* Allow enough space in output buffer for additional block */ | ||
| 498 | inbuf[1024], outbuf[1024 + EVP_MAX_BLOCK_LENGTH]; | ||
| 499 | int inlen, outlen; | ||
| 500 | /* | ||
| 501 | * Bogus key and IV: we'd normally set these from | ||
| 502 | * another source. | ||
| 503 | */ | ||
| 504 | unsigned char key[] = "0123456789"; | ||
| 505 | unsigned char iv[] = "12345678"; | ||
| 506 | |||
| 507 | /* Don't set key or IV because we will modify the parameters */ | ||
| 508 | EVP_CIPHER_CTX_init(&ctx); | ||
| 509 | EVP_CipherInit_ex(&ctx, EVP_rc2(), NULL, NULL, NULL, do_encrypt); | ||
| 510 | EVP_CIPHER_CTX_set_key_length(&ctx, 10); | ||
| 511 | /* We finished modifying parameters so now we can set key and IV */ | ||
| 512 | EVP_CipherInit_ex(&ctx, NULL, NULL, key, iv, do_encrypt); | ||
| 513 | |||
| 514 | for(;;) { | ||
| 515 | inlen = fread(inbuf, 1, 1024, in); | ||
| 516 | if (inlen <= 0) | ||
| 517 | break; | ||
| 518 | if (!EVP_CipherUpdate(&ctx, outbuf, &outlen, inbuf, | ||
| 519 | inlen)) { | ||
| 520 | /* Error */ | ||
| 521 | EVP_CIPHER_CTX_cleanup(&ctx); | ||
| 522 | return 0; | ||
| 523 | } | ||
| 524 | fwrite(outbuf, 1, outlen, out); | ||
| 525 | } | ||
| 526 | if (!EVP_CipherFinal_ex(&ctx, outbuf, &outlen)) { | ||
| 527 | /* Error */ | ||
| 528 | EVP_CIPHER_CTX_cleanup(&ctx); | ||
| 529 | return 0; | ||
| 530 | } | ||
| 531 | fwrite(outbuf, 1, outlen, out); | ||
| 532 | |||
| 533 | EVP_CIPHER_CTX_cleanup(&ctx); | ||
| 534 | return 1; | ||
| 535 | } | ||
| 536 | |||
| 537 | =head1 SEE ALSO | ||
| 538 | |||
| 539 | L<evp(3)|evp(3)> | ||
| 540 | |||
| 541 | =head1 HISTORY | ||
| 542 | |||
| 543 | EVP_CIPHER_CTX_init(), EVP_EncryptInit_ex(), EVP_EncryptFinal_ex(), | ||
| 544 | EVP_DecryptInit_ex(), EVP_DecryptFinal_ex(), EVP_CipherInit_ex(), | ||
| 545 | EVP_CipherFinal_ex() and EVP_CIPHER_CTX_set_padding() appeared in | ||
| 546 | OpenSSL 0.9.7. | ||
| 547 | |||
| 548 | =cut | ||
diff --git a/src/lib/libcrypto/doc/EVP_OpenInit.pod b/src/lib/libcrypto/doc/EVP_OpenInit.pod deleted file mode 100644 index 0242f66715..0000000000 --- a/src/lib/libcrypto/doc/EVP_OpenInit.pod +++ /dev/null | |||
| @@ -1,61 +0,0 @@ | |||
| 1 | =pod | ||
| 2 | |||
| 3 | =head1 NAME | ||
| 4 | |||
| 5 | EVP_OpenInit, EVP_OpenUpdate, EVP_OpenFinal - EVP envelope decryption | ||
| 6 | |||
| 7 | =head1 SYNOPSIS | ||
| 8 | |||
| 9 | #include <openssl/evp.h> | ||
| 10 | |||
| 11 | int EVP_OpenInit(EVP_CIPHER_CTX *ctx,EVP_CIPHER *type,unsigned char *ek, | ||
| 12 | int ekl,unsigned char *iv,EVP_PKEY *priv); | ||
| 13 | int EVP_OpenUpdate(EVP_CIPHER_CTX *ctx, unsigned char *out, | ||
| 14 | int *outl, unsigned char *in, int inl); | ||
| 15 | int EVP_OpenFinal(EVP_CIPHER_CTX *ctx, unsigned char *out, | ||
| 16 | int *outl); | ||
| 17 | |||
| 18 | =head1 DESCRIPTION | ||
| 19 | |||
| 20 | The EVP envelope routines are a high level interface to envelope | ||
| 21 | decryption. They decrypt a public key encrypted symmetric key and | ||
| 22 | then decrypt data using it. | ||
| 23 | |||
| 24 | EVP_OpenInit() initializes a cipher context B<ctx> for decryption | ||
| 25 | with cipher B<type>. It decrypts the encrypted symmetric key of length | ||
| 26 | B<ekl> bytes passed in the B<ek> parameter using the private key B<priv>. | ||
| 27 | The IV is supplied in the B<iv> parameter. | ||
| 28 | |||
| 29 | EVP_OpenUpdate() and EVP_OpenFinal() have exactly the same properties | ||
| 30 | as the EVP_DecryptUpdate() and EVP_DecryptFinal() routines, as | ||
| 31 | documented on the L<EVP_EncryptInit(3)|EVP_EncryptInit(3)> manual | ||
| 32 | page. | ||
| 33 | |||
| 34 | =head1 NOTES | ||
| 35 | |||
| 36 | It is possible to call EVP_OpenInit() twice in the same way as | ||
| 37 | EVP_DecryptInit(). The first call should have B<priv> set to NULL | ||
| 38 | and (after setting any cipher parameters) it should be called again | ||
| 39 | with B<type> set to NULL. | ||
| 40 | |||
| 41 | If the cipher passed in the B<type> parameter is a variable length | ||
| 42 | cipher then the key length will be set to the value of the recovered | ||
| 43 | key length. If the cipher is a fixed length cipher then the recovered | ||
| 44 | key length must match the fixed cipher length. | ||
| 45 | |||
| 46 | =head1 RETURN VALUES | ||
| 47 | |||
| 48 | EVP_OpenInit() returns 0 on error or a non zero integer (actually the | ||
| 49 | recovered secret key size) if successful. | ||
| 50 | |||
| 51 | EVP_OpenUpdate() returns 1 for success or 0 for failure. | ||
| 52 | |||
| 53 | EVP_OpenFinal() returns 0 if the decrypt failed or 1 for success. | ||
| 54 | |||
| 55 | =head1 SEE ALSO | ||
| 56 | |||
| 57 | L<evp(3)|evp(3)>, L<rand(3)|rand(3)>, | ||
| 58 | L<EVP_EncryptInit(3)|EVP_EncryptInit(3)>, | ||
| 59 | L<EVP_SealInit(3)|EVP_SealInit(3)> | ||
| 60 | |||
| 61 | =cut | ||
diff --git a/src/lib/libcrypto/doc/EVP_PKEY_CTX_ctrl.pod b/src/lib/libcrypto/doc/EVP_PKEY_CTX_ctrl.pod deleted file mode 100644 index e8776e1e67..0000000000 --- a/src/lib/libcrypto/doc/EVP_PKEY_CTX_ctrl.pod +++ /dev/null | |||
| @@ -1,135 +0,0 @@ | |||
| 1 | =pod | ||
| 2 | |||
| 3 | =head1 NAME | ||
| 4 | |||
| 5 | EVP_PKEY_CTX_ctrl, EVP_PKEY_CTX_ctrl_str, EVP_PKEY_get_default_digest_nid, | ||
| 6 | EVP_PKEY_CTX_set_signature_md, EVP_PKEY_CTX_set_rsa_padding, | ||
| 7 | EVP_PKEY_CTX_set_rsa_pss_saltlen, EVP_PKEY_CTX_set_rsa_rsa_keygen_bits, | ||
| 8 | EVP_PKEY_CTX_set_rsa_keygen_pubexp, EVP_PKEY_CTX_set_dsa_paramgen_bits, | ||
| 9 | EVP_PKEY_CTX_set_dh_paramgen_prime_len, | ||
| 10 | EVP_PKEY_CTX_set_dh_paramgen_generator, | ||
| 11 | EVP_PKEY_CTX_set_ec_paramgen_curve_nid - algorithm specific control operations | ||
| 12 | |||
| 13 | =head1 SYNOPSIS | ||
| 14 | |||
| 15 | #include <openssl/evp.h> | ||
| 16 | |||
| 17 | int EVP_PKEY_CTX_ctrl(EVP_PKEY_CTX *ctx, int keytype, int optype, | ||
| 18 | int cmd, int p1, void *p2); | ||
| 19 | int EVP_PKEY_CTX_ctrl_str(EVP_PKEY_CTX *ctx, const char *type, | ||
| 20 | const char *value); | ||
| 21 | |||
| 22 | int EVP_PKEY_get_default_digest_nid(EVP_PKEY *pkey, int *pnid); | ||
| 23 | |||
| 24 | #include <openssl/rsa.h> | ||
| 25 | |||
| 26 | int EVP_PKEY_CTX_set_signature_md(EVP_PKEY_CTX *ctx, const EVP_MD *md); | ||
| 27 | |||
| 28 | int EVP_PKEY_CTX_set_rsa_padding(EVP_PKEY_CTX *ctx, int pad); | ||
| 29 | int EVP_PKEY_CTX_set_rsa_pss_saltlen(EVP_PKEY_CTX *ctx, int len); | ||
| 30 | int EVP_PKEY_CTX_set_rsa_rsa_keygen_bits(EVP_PKEY_CTX *ctx, int mbits); | ||
| 31 | int EVP_PKEY_CTX_set_rsa_keygen_pubexp(EVP_PKEY_CTX *ctx, BIGNUM *pubexp); | ||
| 32 | |||
| 33 | #include <openssl/dsa.h> | ||
| 34 | int EVP_PKEY_CTX_set_dsa_paramgen_bits(EVP_PKEY_CTX *ctx, int nbits); | ||
| 35 | |||
| 36 | #include <openssl/dh.h> | ||
| 37 | int EVP_PKEY_CTX_set_dh_paramgen_prime_len(EVP_PKEY_CTX *ctx, int len); | ||
| 38 | int EVP_PKEY_CTX_set_dh_paramgen_generator(EVP_PKEY_CTX *ctx, int gen); | ||
| 39 | |||
| 40 | #include <openssl/ec.h> | ||
| 41 | int EVP_PKEY_CTX_set_ec_paramgen_curve_nid(EVP_PKEY_CTX *ctx, int nid); | ||
| 42 | |||
| 43 | =head1 DESCRIPTION | ||
| 44 | |||
| 45 | The function EVP_PKEY_CTX_ctrl() sends a control operation to the context | ||
| 46 | B<ctx>. The key type used must match B<keytype> if it is not -1. The parameter | ||
| 47 | B<optype> is a mask indicating which operations the control can be applied to. | ||
| 48 | The control command is indicated in B<cmd> and any additional arguments in | ||
| 49 | B<p1> and B<p2>. | ||
| 50 | |||
| 51 | Applications will not normally call EVP_PKEY_CTX_ctrl() directly but will | ||
| 52 | instead call one of the algorithm specific macros below. | ||
| 53 | |||
| 54 | The function EVP_PKEY_CTX_ctrl_str() allows an application to send an algorithm | ||
| 55 | specific control operation to a context B<ctx> in string form. This is | ||
| 56 | intended to be used for options specified on the command line or in text | ||
| 57 | files. The commands supported are documented in the openssl utility | ||
| 58 | command line pages for the option B<-pkeyopt> which is supported by the | ||
| 59 | B<pkeyutl>, B<genpkey> and B<req> commands. | ||
| 60 | |||
| 61 | All the remaining "functions" are implemented as macros. | ||
| 62 | |||
| 63 | The EVP_PKEY_CTX_set_signature_md() macro sets the message digest type used | ||
| 64 | in a signature. It can be used with any public key algorithm supporting | ||
| 65 | signature operations. | ||
| 66 | |||
| 67 | The macro EVP_PKEY_CTX_set_rsa_padding() sets the RSA padding mode for B<ctx>. | ||
| 68 | The B<pad> parameter can take the value RSA_PKCS1_PADDING for PKCS#1 padding, | ||
| 69 | RSA_SSLV23_PADDING for SSLv23 padding, RSA_NO_PADDING for no padding, | ||
| 70 | RSA_PKCS1_OAEP_PADDING for OAEP padding (encrypt and decrypt only), | ||
| 71 | RSA_X931_PADDING for X9.31 padding (signature operations only) and | ||
| 72 | RSA_PKCS1_PSS_PADDING (sign and verify only). | ||
| 73 | |||
| 74 | Two RSA padding modes behave differently if EVP_PKEY_CTX_set_signature_md() is | ||
| 75 | used. If this macro is called for PKCS#1 padding the plaintext buffer is an | ||
| 76 | actual digest value and is encapsulated in a DigestInfo structure according to | ||
| 77 | PKCS#1 when signing and this structure is expected (and stripped off) when | ||
| 78 | verifying. If this control is not used with RSA and PKCS#1 padding then the | ||
| 79 | supplied data is used directly and not encapsulated. In the case of X9.31 | ||
| 80 | padding for RSA the algorithm identifier byte is added or checked and removed | ||
| 81 | if this control is called. If it is not called then the first byte of the | ||
| 82 | plaintext buffer is expected to be the algorithm identifier byte. | ||
| 83 | |||
| 84 | The EVP_PKEY_CTX_set_rsa_pss_saltlen() macro sets the RSA PSS salt length to | ||
| 85 | B<len> as its name implies it is only supported for PSS padding. Two special | ||
| 86 | values are supported: -1 sets the salt length to the digest length. When | ||
| 87 | signing -2 sets the salt length to the maximum permissible value. When | ||
| 88 | verifying -2 causes the salt length to be automatically determined based on the | ||
| 89 | B<PSS> block structure. If this macro is not called a salt length value of -2 | ||
| 90 | is used by default. | ||
| 91 | |||
| 92 | The EVP_PKEY_CTX_set_rsa_rsa_keygen_bits() macro sets the RSA key length for | ||
| 93 | RSA key generation to B<bits>. If not specified 1024 bits is used. | ||
| 94 | |||
| 95 | The EVP_PKEY_CTX_set_rsa_keygen_pubexp() macro sets the public exponent value | ||
| 96 | for RSA key generation to B<pubexp> currently it should be an odd integer. The | ||
| 97 | B<pubexp> pointer is used internally by this function so it should not be | ||
| 98 | modified or free after the call. If this macro is not called then 65537 is used. | ||
| 99 | |||
| 100 | The macro EVP_PKEY_CTX_set_dsa_paramgen_bits() sets the number of bits used | ||
| 101 | for DSA parameter generation to B<bits>. If not specified 1024 is used. | ||
| 102 | |||
| 103 | The macro EVP_PKEY_CTX_set_dh_paramgen_prime_len() sets the length of the DH | ||
| 104 | prime parameter B<p> for DH parameter generation. If this macro is not called | ||
| 105 | then 1024 is used. | ||
| 106 | |||
| 107 | The EVP_PKEY_CTX_set_dh_paramgen_generator() macro sets DH generator to B<gen> | ||
| 108 | for DH parameter generation. If not specified 2 is used. | ||
| 109 | |||
| 110 | The EVP_PKEY_CTX_set_ec_paramgen_curve_nid() sets the EC curve for EC parameter | ||
| 111 | generation to B<nid>. For EC parameter generation this macro must be called | ||
| 112 | or an error occurs because there is no default curve. | ||
| 113 | |||
| 114 | =head1 RETURN VALUES | ||
| 115 | |||
| 116 | EVP_PKEY_CTX_ctrl() and its macros return a positive value for success and 0 | ||
| 117 | or a negative value for failure. In particular a return value of -2 | ||
| 118 | indicates the operation is not supported by the public key algorithm. | ||
| 119 | |||
| 120 | =head1 SEE ALSO | ||
| 121 | |||
| 122 | L<EVP_PKEY_CTX_new(3)|EVP_PKEY_CTX_new(3)>, | ||
| 123 | L<EVP_PKEY_encrypt(3)|EVP_PKEY_encrypt(3)>, | ||
| 124 | L<EVP_PKEY_decrypt(3)|EVP_PKEY_decrypt(3)>, | ||
| 125 | L<EVP_PKEY_sign(3)|EVP_PKEY_sign(3)>, | ||
| 126 | L<EVP_PKEY_verify(3)|EVP_PKEY_verify(3)>, | ||
| 127 | L<EVP_PKEY_verify_recover(3)|EVP_PKEY_verify_recover(3)>, | ||
| 128 | L<EVP_PKEY_derive(3)|EVP_PKEY_derive(3)> | ||
| 129 | L<EVP_PKEY_keygen(3)|EVP_PKEY_keygen(3)> | ||
| 130 | |||
| 131 | =head1 HISTORY | ||
| 132 | |||
| 133 | These functions were first added to OpenSSL 1.0.0. | ||
| 134 | |||
| 135 | =cut | ||
diff --git a/src/lib/libcrypto/doc/EVP_PKEY_CTX_new.pod b/src/lib/libcrypto/doc/EVP_PKEY_CTX_new.pod deleted file mode 100644 index 60ad61e853..0000000000 --- a/src/lib/libcrypto/doc/EVP_PKEY_CTX_new.pod +++ /dev/null | |||
| @@ -1,53 +0,0 @@ | |||
| 1 | =pod | ||
| 2 | |||
| 3 | =head1 NAME | ||
| 4 | |||
| 5 | EVP_PKEY_CTX_new, EVP_PKEY_CTX_new_id, EVP_PKEY_CTX_dup, EVP_PKEY_CTX_free - | ||
| 6 | public key algorithm context functions. | ||
| 7 | |||
| 8 | =head1 SYNOPSIS | ||
| 9 | |||
| 10 | #include <openssl/evp.h> | ||
| 11 | |||
| 12 | EVP_PKEY_CTX *EVP_PKEY_CTX_new(EVP_PKEY *pkey, ENGINE *e); | ||
| 13 | EVP_PKEY_CTX *EVP_PKEY_CTX_new_id(int id, ENGINE *e); | ||
| 14 | EVP_PKEY_CTX *EVP_PKEY_CTX_dup(EVP_PKEY_CTX *ctx); | ||
| 15 | void EVP_PKEY_CTX_free(EVP_PKEY_CTX *ctx); | ||
| 16 | |||
| 17 | =head1 DESCRIPTION | ||
| 18 | |||
| 19 | The EVP_PKEY_CTX_new() function allocates public key algorithm context using | ||
| 20 | the algorithm specified in B<pkey> and ENGINE B<e>. | ||
| 21 | |||
| 22 | The EVP_PKEY_CTX_new_id() function allocates public key algorithm context | ||
| 23 | using the algorithm specified by B<id> and ENGINE B<e>. It is normally used | ||
| 24 | when no B<EVP_PKEY> structure is associated with the operations, for example | ||
| 25 | during parameter generation of key generation for some algorithms. | ||
| 26 | |||
| 27 | EVP_PKEY_CTX_dup() duplicates the context B<ctx>. | ||
| 28 | |||
| 29 | EVP_PKEY_CTX_free() frees up the context B<ctx>. | ||
| 30 | |||
| 31 | =head1 NOTES | ||
| 32 | |||
| 33 | The B<EVP_PKEY_CTX> structure is an opaque public key algorithm context used | ||
| 34 | by the OpenSSL high level public key API. Contexts B<MUST NOT> be shared between | ||
| 35 | threads: that is it is not permissible to use the same context simultaneously | ||
| 36 | in two threads. | ||
| 37 | |||
| 38 | =head1 RETURN VALUES | ||
| 39 | |||
| 40 | EVP_PKEY_CTX_new(), EVP_PKEY_CTX_new_id(), EVP_PKEY_CTX_dup() returns either | ||
| 41 | the newly allocated B<EVP_PKEY_CTX> structure of B<NULL> if an error occurred. | ||
| 42 | |||
| 43 | EVP_PKEY_CTX_free() does not return a value. | ||
| 44 | |||
| 45 | =head1 SEE ALSO | ||
| 46 | |||
| 47 | L<EVP_PKEY_new(3)|EVP_PKEY_new(3)> | ||
| 48 | |||
| 49 | =head1 HISTORY | ||
| 50 | |||
| 51 | These functions were first added to OpenSSL 1.0.0. | ||
| 52 | |||
| 53 | =cut | ||
diff --git a/src/lib/libcrypto/doc/EVP_PKEY_cmp.pod b/src/lib/libcrypto/doc/EVP_PKEY_cmp.pod deleted file mode 100644 index 7a690247bf..0000000000 --- a/src/lib/libcrypto/doc/EVP_PKEY_cmp.pod +++ /dev/null | |||
| @@ -1,62 +0,0 @@ | |||
| 1 | =pod | ||
| 2 | |||
| 3 | =head1 NAME | ||
| 4 | |||
| 5 | EVP_PKEY_copy_parameters, EVP_PKEY_missing_parameters, EVP_PKEY_cmp_parameters, | ||
| 6 | EVP_PKEY_cmp - public key parameter and comparison functions | ||
| 7 | |||
| 8 | =head1 SYNOPSIS | ||
| 9 | |||
| 10 | #include <openssl/evp.h> | ||
| 11 | |||
| 12 | int EVP_PKEY_missing_parameters(const EVP_PKEY *pkey); | ||
| 13 | int EVP_PKEY_copy_parameters(EVP_PKEY *to, const EVP_PKEY *from); | ||
| 14 | |||
| 15 | int EVP_PKEY_cmp_parameters(const EVP_PKEY *a, const EVP_PKEY *b); | ||
| 16 | int EVP_PKEY_cmp(const EVP_PKEY *a, const EVP_PKEY *b); | ||
| 17 | |||
| 18 | =head1 DESCRIPTION | ||
| 19 | |||
| 20 | The function EVP_PKEY_missing_parameters() returns 1 if the public key | ||
| 21 | parameters of B<pkey> are missing and 0 if they are present or the algorithm | ||
| 22 | doesn't use parameters. | ||
| 23 | |||
| 24 | The function EVP_PKEY_copy_parameters() copies the parameters from key | ||
| 25 | B<from> to key B<to>. | ||
| 26 | |||
| 27 | The function EVP_PKEY_cmp_parameters() compares the parameters of keys | ||
| 28 | B<a> and B<b>. | ||
| 29 | |||
| 30 | The function EVP_PKEY_cmp() compares the public key components and parameters | ||
| 31 | (if present) of keys B<a> and B<b>. | ||
| 32 | |||
| 33 | =head1 NOTES | ||
| 34 | |||
| 35 | The main purpose of the functions EVP_PKEY_missing_parameters() and | ||
| 36 | EVP_PKEY_copy_parameters() is to handle public keys in certificates where the | ||
| 37 | parameters are sometimes omitted from a public key if they are inherited from | ||
| 38 | the CA that signed it. | ||
| 39 | |||
| 40 | Since OpenSSL private keys contain public key components too the function | ||
| 41 | EVP_PKEY_cmp() can also be used to determine if a private key matches | ||
| 42 | a public key. | ||
| 43 | |||
| 44 | =head1 RETURN VALUES | ||
| 45 | |||
| 46 | The function EVP_PKEY_missing_parameters() returns 1 if the public key | ||
| 47 | parameters of B<pkey> are missing and 0 if they are present or the algorithm | ||
| 48 | doesn't use parameters. | ||
| 49 | |||
| 50 | These functions EVP_PKEY_copy_parameters() returns 1 for success and 0 for | ||
| 51 | failure. | ||
| 52 | |||
| 53 | The function EVP_PKEY_cmp_parameters() and EVP_PKEY_cmp() return 1 if the | ||
| 54 | keys match, 0 if they don't match, -1 if the key types are different and | ||
| 55 | -2 if the operation is not supported. | ||
| 56 | |||
| 57 | =head1 SEE ALSO | ||
| 58 | |||
| 59 | L<EVP_PKEY_CTX_new(3)|EVP_PKEY_CTX_new(3)>, | ||
| 60 | L<EVP_PKEY_keygen(3)|EVP_PKEY_keygen(3)> | ||
| 61 | |||
| 62 | =cut | ||
diff --git a/src/lib/libcrypto/doc/EVP_PKEY_decrypt.pod b/src/lib/libcrypto/doc/EVP_PKEY_decrypt.pod deleted file mode 100644 index a64ef12866..0000000000 --- a/src/lib/libcrypto/doc/EVP_PKEY_decrypt.pod +++ /dev/null | |||
| @@ -1,93 +0,0 @@ | |||
| 1 | =pod | ||
| 2 | |||
| 3 | =head1 NAME | ||
| 4 | |||
| 5 | EVP_PKEY_decrypt_init, EVP_PKEY_decrypt - decrypt using a public key algorithm | ||
| 6 | |||
| 7 | =head1 SYNOPSIS | ||
| 8 | |||
| 9 | #include <openssl/evp.h> | ||
| 10 | |||
| 11 | int EVP_PKEY_decrypt_init(EVP_PKEY_CTX *ctx); | ||
| 12 | int EVP_PKEY_decrypt(EVP_PKEY_CTX *ctx, | ||
| 13 | unsigned char *out, size_t *outlen, | ||
| 14 | const unsigned char *in, size_t inlen); | ||
| 15 | |||
| 16 | =head1 DESCRIPTION | ||
| 17 | |||
| 18 | The EVP_PKEY_decrypt_init() function initializes a public key algorithm | ||
| 19 | context using key B<pkey> for a decryption operation. | ||
| 20 | |||
| 21 | The EVP_PKEY_decrypt() function performs a public key decryption operation | ||
| 22 | using B<ctx>. The data to be decrypted is specified using the B<in> and | ||
| 23 | B<inlen> parameters. If B<out> is B<NULL> then the maximum size of the output | ||
| 24 | buffer is written to the B<outlen> parameter. If B<out> is not B<NULL> then | ||
| 25 | before the call the B<outlen> parameter should contain the length of the | ||
| 26 | B<out> buffer, if the call is successful the decrypted data is written to | ||
| 27 | B<out> and the amount of data written to B<outlen>. | ||
| 28 | |||
| 29 | =head1 NOTES | ||
| 30 | |||
| 31 | After the call to EVP_PKEY_decrypt_init() algorithm specific control | ||
| 32 | operations can be performed to set any appropriate parameters for the | ||
| 33 | operation. | ||
| 34 | |||
| 35 | The function EVP_PKEY_decrypt() can be called more than once on the same | ||
| 36 | context if several operations are performed using the same parameters. | ||
| 37 | |||
| 38 | =head1 RETURN VALUES | ||
| 39 | |||
| 40 | EVP_PKEY_decrypt_init() and EVP_PKEY_decrypt() return 1 for success and 0 | ||
| 41 | or a negative value for failure. In particular a return value of -2 | ||
| 42 | indicates the operation is not supported by the public key algorithm. | ||
| 43 | |||
| 44 | =head1 EXAMPLE | ||
| 45 | |||
| 46 | Decrypt data using OAEP (for RSA keys): | ||
| 47 | |||
| 48 | #include <openssl/evp.h> | ||
| 49 | #include <openssl/rsa.h> | ||
| 50 | |||
| 51 | EVP_PKEY_CTX *ctx; | ||
| 52 | unsigned char *out, *in; | ||
| 53 | size_t outlen, inlen; | ||
| 54 | EVP_PKEY *key; | ||
| 55 | /* NB: assumes key in, inlen are already set up | ||
| 56 | * and that key is an RSA private key | ||
| 57 | */ | ||
| 58 | ctx = EVP_PKEY_CTX_new(key); | ||
| 59 | if (!ctx) | ||
| 60 | /* Error occurred */ | ||
| 61 | if (EVP_PKEY_decrypt_init(ctx) <= 0) | ||
| 62 | /* Error */ | ||
| 63 | if (EVP_PKEY_CTX_set_rsa_padding(ctx, RSA_PKCS1_OAEP_PADDING) <= 0) | ||
| 64 | /* Error */ | ||
| 65 | |||
| 66 | /* Determine buffer length */ | ||
| 67 | if (EVP_PKEY_decrypt(ctx, NULL, &outlen, in, inlen) <= 0) | ||
| 68 | /* Error */ | ||
| 69 | |||
| 70 | out = malloc(outlen); | ||
| 71 | |||
| 72 | if (!out) | ||
| 73 | /* malloc failure */ | ||
| 74 | |||
| 75 | if (EVP_PKEY_decrypt(ctx, out, &outlen, in, inlen) <= 0) | ||
| 76 | /* Error */ | ||
| 77 | |||
| 78 | /* Decrypted data is outlen bytes written to buffer out */ | ||
| 79 | |||
| 80 | =head1 SEE ALSO | ||
| 81 | |||
| 82 | L<EVP_PKEY_CTX_new(3)|EVP_PKEY_CTX_new(3)>, | ||
| 83 | L<EVP_PKEY_encrypt(3)|EVP_PKEY_encrypt(3)>, | ||
| 84 | L<EVP_PKEY_sign(3)|EVP_PKEY_sign(3)>, | ||
| 85 | L<EVP_PKEY_verify(3)|EVP_PKEY_verify(3)>, | ||
| 86 | L<EVP_PKEY_verify_recover(3)|EVP_PKEY_verify_recover(3)>, | ||
| 87 | L<EVP_PKEY_derive(3)|EVP_PKEY_derive(3)> | ||
| 88 | |||
| 89 | =head1 HISTORY | ||
| 90 | |||
| 91 | These functions were first added to OpenSSL 1.0.0. | ||
| 92 | |||
| 93 | =cut | ||
diff --git a/src/lib/libcrypto/doc/EVP_PKEY_derive.pod b/src/lib/libcrypto/doc/EVP_PKEY_derive.pod deleted file mode 100644 index 09654e1b81..0000000000 --- a/src/lib/libcrypto/doc/EVP_PKEY_derive.pod +++ /dev/null | |||
| @@ -1,94 +0,0 @@ | |||
| 1 | =pod | ||
| 2 | |||
| 3 | =head1 NAME | ||
| 4 | |||
| 5 | EVP_PKEY_derive_init, EVP_PKEY_derive_set_peer, EVP_PKEY_derive - derive public | ||
| 6 | key algorithm shared secret. | ||
| 7 | |||
| 8 | =head1 SYNOPSIS | ||
| 9 | |||
| 10 | #include <openssl/evp.h> | ||
| 11 | |||
| 12 | int EVP_PKEY_derive_init(EVP_PKEY_CTX *ctx); | ||
| 13 | int EVP_PKEY_derive_set_peer(EVP_PKEY_CTX *ctx, EVP_PKEY *peer); | ||
| 14 | int EVP_PKEY_derive(EVP_PKEY_CTX *ctx, unsigned char *key, size_t *keylen); | ||
| 15 | |||
| 16 | =head1 DESCRIPTION | ||
| 17 | |||
| 18 | The EVP_PKEY_derive_init() function initializes a public key algorithm | ||
| 19 | context using key B<pkey> for shared secret derivation. | ||
| 20 | |||
| 21 | The EVP_PKEY_derive_set_peer() function sets the peer key: this will normally | ||
| 22 | be a public key. | ||
| 23 | |||
| 24 | The EVP_PKEY_derive() derives a shared secret using B<ctx>. | ||
| 25 | If B<key> is B<NULL> then the maximum size of the output buffer is written to | ||
| 26 | the B<keylen> parameter. If B<key> is not B<NULL> then before the call the | ||
| 27 | B<keylen> parameter should contain the length of the B<key> buffer, if the call | ||
| 28 | is successful the shared secret is written to B<key> and the amount of data | ||
| 29 | written to B<keylen>. | ||
| 30 | |||
| 31 | =head1 NOTES | ||
| 32 | |||
| 33 | After the call to EVP_PKEY_derive_init() algorithm specific control | ||
| 34 | operations can be performed to set any appropriate parameters for the | ||
| 35 | operation. | ||
| 36 | |||
| 37 | The function EVP_PKEY_derive() can be called more than once on the same | ||
| 38 | context if several operations are performed using the same parameters. | ||
| 39 | |||
| 40 | =head1 RETURN VALUES | ||
| 41 | |||
| 42 | EVP_PKEY_derive_init() and EVP_PKEY_derive() return 1 for success and 0 | ||
| 43 | or a negative value for failure. In particular a return value of -2 | ||
| 44 | indicates the operation is not supported by the public key algorithm. | ||
| 45 | |||
| 46 | =head1 EXAMPLE | ||
| 47 | |||
| 48 | Derive shared secret (for example DH or EC keys): | ||
| 49 | |||
| 50 | #include <openssl/evp.h> | ||
| 51 | #include <openssl/rsa.h> | ||
| 52 | |||
| 53 | EVP_PKEY_CTX *ctx; | ||
| 54 | unsigned char *skey; | ||
| 55 | size_t skeylen; | ||
| 56 | EVP_PKEY *pkey, *peerkey; | ||
| 57 | /* NB: assumes pkey, peerkey have been already set up */ | ||
| 58 | |||
| 59 | ctx = EVP_PKEY_CTX_new(pkey); | ||
| 60 | if (!ctx) | ||
| 61 | /* Error occurred */ | ||
| 62 | if (EVP_PKEY_derive_init(ctx) <= 0) | ||
| 63 | /* Error */ | ||
| 64 | if (EVP_PKEY_derive_set_peer(ctx, peerkey) <= 0) | ||
| 65 | /* Error */ | ||
| 66 | |||
| 67 | /* Determine buffer length */ | ||
| 68 | if (EVP_PKEY_derive(ctx, NULL, &skeylen) <= 0) | ||
| 69 | /* Error */ | ||
| 70 | |||
| 71 | skey = malloc(skeylen); | ||
| 72 | |||
| 73 | if (!skey) | ||
| 74 | /* malloc failure */ | ||
| 75 | |||
| 76 | if (EVP_PKEY_derive(ctx, skey, &skeylen) <= 0) | ||
| 77 | /* Error */ | ||
| 78 | |||
| 79 | /* Shared secret is skey bytes written to buffer skey */ | ||
| 80 | |||
| 81 | =head1 SEE ALSO | ||
| 82 | |||
| 83 | L<EVP_PKEY_CTX_new(3)|EVP_PKEY_CTX_new(3)>, | ||
| 84 | L<EVP_PKEY_encrypt(3)|EVP_PKEY_encrypt(3)>, | ||
| 85 | L<EVP_PKEY_decrypt(3)|EVP_PKEY_decrypt(3)>, | ||
| 86 | L<EVP_PKEY_sign(3)|EVP_PKEY_sign(3)>, | ||
| 87 | L<EVP_PKEY_verify(3)|EVP_PKEY_verify(3)>, | ||
| 88 | L<EVP_PKEY_verify_recover(3)|EVP_PKEY_verify_recover(3)>, | ||
| 89 | |||
| 90 | =head1 HISTORY | ||
| 91 | |||
| 92 | These functions were first added to OpenSSL 1.0.0. | ||
| 93 | |||
| 94 | =cut | ||
diff --git a/src/lib/libcrypto/doc/EVP_PKEY_encrypt.pod b/src/lib/libcrypto/doc/EVP_PKEY_encrypt.pod deleted file mode 100644 index b3ca123df0..0000000000 --- a/src/lib/libcrypto/doc/EVP_PKEY_encrypt.pod +++ /dev/null | |||
| @@ -1,93 +0,0 @@ | |||
| 1 | =pod | ||
| 2 | |||
| 3 | =head1 NAME | ||
| 4 | |||
| 5 | EVP_PKEY_encrypt_init, EVP_PKEY_encrypt - encrypt using a public key algorithm | ||
| 6 | |||
| 7 | =head1 SYNOPSIS | ||
| 8 | |||
| 9 | #include <openssl/evp.h> | ||
| 10 | |||
| 11 | int EVP_PKEY_encrypt_init(EVP_PKEY_CTX *ctx); | ||
| 12 | int EVP_PKEY_encrypt(EVP_PKEY_CTX *ctx, | ||
| 13 | unsigned char *out, size_t *outlen, | ||
| 14 | const unsigned char *in, size_t inlen); | ||
| 15 | |||
| 16 | =head1 DESCRIPTION | ||
| 17 | |||
| 18 | The EVP_PKEY_encrypt_init() function initializes a public key algorithm | ||
| 19 | context using key B<pkey> for an encryption operation. | ||
| 20 | |||
| 21 | The EVP_PKEY_encrypt() function performs a public key encryption operation | ||
| 22 | using B<ctx>. The data to be encrypted is specified using the B<in> and | ||
| 23 | B<inlen> parameters. If B<out> is B<NULL> then the maximum size of the output | ||
| 24 | buffer is written to the B<outlen> parameter. If B<out> is not B<NULL> then | ||
| 25 | before the call the B<outlen> parameter should contain the length of the | ||
| 26 | B<out> buffer, if the call is successful the encrypted data is written to | ||
| 27 | B<out> and the amount of data written to B<outlen>. | ||
| 28 | |||
| 29 | =head1 NOTES | ||
| 30 | |||
| 31 | After the call to EVP_PKEY_encrypt_init() algorithm specific control | ||
| 32 | operations can be performed to set any appropriate parameters for the | ||
| 33 | operation. | ||
| 34 | |||
| 35 | The function EVP_PKEY_encrypt() can be called more than once on the same | ||
| 36 | context if several operations are performed using the same parameters. | ||
| 37 | |||
| 38 | =head1 RETURN VALUES | ||
| 39 | |||
| 40 | EVP_PKEY_encrypt_init() and EVP_PKEY_encrypt() return 1 for success and 0 | ||
| 41 | or a negative value for failure. In particular a return value of -2 | ||
| 42 | indicates the operation is not supported by the public key algorithm. | ||
| 43 | |||
| 44 | =head1 EXAMPLE | ||
| 45 | |||
| 46 | Encrypt data using OAEP (for RSA keys): | ||
| 47 | |||
| 48 | #include <openssl/evp.h> | ||
| 49 | #include <openssl/rsa.h> | ||
| 50 | |||
| 51 | EVP_PKEY_CTX *ctx; | ||
| 52 | unsigned char *out, *in; | ||
| 53 | size_t outlen, inlen; | ||
| 54 | EVP_PKEY *key; | ||
| 55 | /* NB: assumes key in, inlen are already set up | ||
| 56 | * and that key is an RSA public key | ||
| 57 | */ | ||
| 58 | ctx = EVP_PKEY_CTX_new(key); | ||
| 59 | if (!ctx) | ||
| 60 | /* Error occurred */ | ||
| 61 | if (EVP_PKEY_encrypt_init(ctx) <= 0) | ||
| 62 | /* Error */ | ||
| 63 | if (EVP_PKEY_CTX_set_rsa_padding(ctx, RSA_PKCS1_OAEP_PADDING) <= 0) | ||
| 64 | /* Error */ | ||
| 65 | |||
| 66 | /* Determine buffer length */ | ||
| 67 | if (EVP_PKEY_encrypt(ctx, NULL, &outlen, in, inlen) <= 0) | ||
| 68 | /* Error */ | ||
| 69 | |||
| 70 | out = malloc(outlen); | ||
| 71 | |||
| 72 | if (!out) | ||
| 73 | /* malloc failure */ | ||
| 74 | |||
| 75 | if (EVP_PKEY_encrypt(ctx, out, &outlen, in, inlen) <= 0) | ||
| 76 | /* Error */ | ||
| 77 | |||
| 78 | /* Encrypted data is outlen bytes written to buffer out */ | ||
| 79 | |||
| 80 | =head1 SEE ALSO | ||
| 81 | |||
| 82 | L<EVP_PKEY_CTX_new(3)|EVP_PKEY_CTX_new(3)>, | ||
| 83 | L<EVP_PKEY_decrypt(3)|EVP_PKEY_decrypt(3)>, | ||
| 84 | L<EVP_PKEY_sign(3)|EVP_PKEY_sign(3)>, | ||
| 85 | L<EVP_PKEY_verify(3)|EVP_PKEY_verify(3)>, | ||
| 86 | L<EVP_PKEY_verify_recover(3)|EVP_PKEY_verify_recover(3)>, | ||
| 87 | L<EVP_PKEY_derive(3)|EVP_PKEY_derive(3)> | ||
| 88 | |||
| 89 | =head1 HISTORY | ||
| 90 | |||
| 91 | These functions were first added to OpenSSL 1.0.0. | ||
| 92 | |||
| 93 | =cut | ||
diff --git a/src/lib/libcrypto/doc/EVP_PKEY_get_default_digest.pod b/src/lib/libcrypto/doc/EVP_PKEY_get_default_digest.pod deleted file mode 100644 index 8ff597d44a..0000000000 --- a/src/lib/libcrypto/doc/EVP_PKEY_get_default_digest.pod +++ /dev/null | |||
| @@ -1,41 +0,0 @@ | |||
| 1 | =pod | ||
| 2 | |||
| 3 | =head1 NAME | ||
| 4 | |||
| 5 | EVP_PKEY_get_default_digest_nid - get default signature digest | ||
| 6 | |||
| 7 | =head1 SYNOPSIS | ||
| 8 | |||
| 9 | #include <openssl/evp.h> | ||
| 10 | int EVP_PKEY_get_default_digest_nid(EVP_PKEY *pkey, int *pnid); | ||
| 11 | |||
| 12 | =head1 DESCRIPTION | ||
| 13 | |||
| 14 | The EVP_PKEY_get_default_digest_nid() function sets B<pnid> to the default | ||
| 15 | message digest NID for the public key signature operations associated with key | ||
| 16 | B<pkey>. | ||
| 17 | |||
| 18 | =head1 NOTES | ||
| 19 | |||
| 20 | For all current standard OpenSSL public key algorithms SHA1 is returned. | ||
| 21 | |||
| 22 | =head1 RETURN VALUES | ||
| 23 | |||
| 24 | The EVP_PKEY_get_default_digest_nid() function returns 1 if the message digest | ||
| 25 | is advisory (that is other digests can be used) and 2 if it is mandatory (other | ||
| 26 | digests can not be used). It returns 0 or a negative value for failure. In | ||
| 27 | particular a return value of -2 indicates the operation is not supported by the | ||
| 28 | public key algorithm. | ||
| 29 | |||
| 30 | =head1 SEE ALSO | ||
| 31 | |||
| 32 | L<EVP_PKEY_CTX_new(3)|EVP_PKEY_CTX_new(3)>, | ||
| 33 | L<EVP_PKEY_sign(3)|EVP_PKEY_sign(3)>, | ||
| 34 | L<EVP_PKEY_verify(3)|EVP_PKEY_verify(3)>, | ||
| 35 | L<EVP_PKEY_verify_recover(3)|EVP_PKEY_verify_recover(3)>, | ||
| 36 | |||
| 37 | =head1 HISTORY | ||
| 38 | |||
| 39 | This function was first added to OpenSSL 1.0.0. | ||
| 40 | |||
| 41 | =cut | ||
diff --git a/src/lib/libcrypto/doc/EVP_PKEY_keygen.pod b/src/lib/libcrypto/doc/EVP_PKEY_keygen.pod deleted file mode 100644 index adcf3560e0..0000000000 --- a/src/lib/libcrypto/doc/EVP_PKEY_keygen.pod +++ /dev/null | |||
| @@ -1,170 +0,0 @@ | |||
| 1 | =pod | ||
| 2 | |||
| 3 | =head1 NAME | ||
| 4 | |||
| 5 | EVP_PKEY_keygen_init, EVP_PKEY_keygen, EVP_PKEY_paramgen_init, | ||
| 6 | EVP_PKEY_paramgen, EVP_PKEY_CTX_set_cb, EVP_PKEY_CTX_get_cb, | ||
| 7 | EVP_PKEY_CTX_get_keygen_info, EVP_PKEY_CTX_set_app_data, | ||
| 8 | EVP_PKEY_CTX_get_app_data - key and parameter generation functions | ||
| 9 | |||
| 10 | =head1 SYNOPSIS | ||
| 11 | |||
| 12 | #include <openssl/evp.h> | ||
| 13 | |||
| 14 | int EVP_PKEY_keygen_init(EVP_PKEY_CTX *ctx); | ||
| 15 | int EVP_PKEY_keygen(EVP_PKEY_CTX *ctx, EVP_PKEY **ppkey); | ||
| 16 | int EVP_PKEY_paramgen_init(EVP_PKEY_CTX *ctx); | ||
| 17 | int EVP_PKEY_paramgen(EVP_PKEY_CTX *ctx, EVP_PKEY **ppkey); | ||
| 18 | |||
| 19 | typedef int EVP_PKEY_gen_cb(EVP_PKEY_CTX *ctx); | ||
| 20 | |||
| 21 | void EVP_PKEY_CTX_set_cb(EVP_PKEY_CTX *ctx, EVP_PKEY_gen_cb *cb); | ||
| 22 | EVP_PKEY_gen_cb *EVP_PKEY_CTX_get_cb(EVP_PKEY_CTX *ctx); | ||
| 23 | |||
| 24 | int EVP_PKEY_CTX_get_keygen_info(EVP_PKEY_CTX *ctx, int idx); | ||
| 25 | |||
| 26 | void EVP_PKEY_CTX_set_app_data(EVP_PKEY_CTX *ctx, void *data); | ||
| 27 | void *EVP_PKEY_CTX_get_app_data(EVP_PKEY_CTX *ctx); | ||
| 28 | |||
| 29 | =head1 DESCRIPTION | ||
| 30 | |||
| 31 | The EVP_PKEY_keygen_init() function initializes a public key algorithm | ||
| 32 | context using key B<pkey> for a key generation operation. | ||
| 33 | |||
| 34 | The EVP_PKEY_keygen() function performs a key generation operation, the | ||
| 35 | generated key is written to B<ppkey>. | ||
| 36 | |||
| 37 | The functions EVP_PKEY_paramgen_init() and EVP_PKEY_paramgen() are similar | ||
| 38 | except parameters are generated. | ||
| 39 | |||
| 40 | The function EVP_PKEY_set_cb() sets the key or parameter generation callback | ||
| 41 | to B<cb>. The function EVP_PKEY_CTX_get_cb() returns the key or parameter | ||
| 42 | generation callback. | ||
| 43 | |||
| 44 | The function EVP_PKEY_CTX_get_keygen_info() returns parameters associated | ||
| 45 | with the generation operation. If B<idx> is -1 the total number of | ||
| 46 | parameters available is returned. Any non negative value returns the value of | ||
| 47 | that parameter. EVP_PKEY_CTX_gen_keygen_info() with a non-negative value for | ||
| 48 | B<idx> should only be called within the generation callback. | ||
| 49 | |||
| 50 | If the callback returns 0 then the key generation operation is aborted and an | ||
| 51 | error occurs. This might occur during a time consuming operation where | ||
| 52 | a user clicks on a "cancel" button. | ||
| 53 | |||
| 54 | The functions EVP_PKEY_CTX_set_app_data() and EVP_PKEY_CTX_get_app_data() set | ||
| 55 | and retrieve an opaque pointer. This can be used to set some application | ||
| 56 | defined value which can be retrieved in the callback: for example a handle | ||
| 57 | which is used to update a "progress dialog". | ||
| 58 | |||
| 59 | =head1 NOTES | ||
| 60 | |||
| 61 | After the call to EVP_PKEY_keygen_init() or EVP_PKEY_paramgen_init() algorithm | ||
| 62 | specific control operations can be performed to set any appropriate parameters | ||
| 63 | for the operation. | ||
| 64 | |||
| 65 | The functions EVP_PKEY_keygen() and EVP_PKEY_paramgen() can be called more than | ||
| 66 | once on the same context if several operations are performed using the same | ||
| 67 | parameters. | ||
| 68 | |||
| 69 | The meaning of the parameters passed to the callback will depend on the | ||
| 70 | algorithm and the specific implementation of the algorithm. Some might not | ||
| 71 | give any useful information at all during key or parameter generation. Others | ||
| 72 | might not even call the callback. | ||
| 73 | |||
| 74 | The operation performed by key or parameter generation depends on the algorithm | ||
| 75 | used. In some cases (e.g. EC with a supplied named curve) the "generation" | ||
| 76 | option merely sets the appropriate fields in an EVP_PKEY structure. | ||
| 77 | |||
| 78 | In OpenSSL an EVP_PKEY structure containing a private key also contains the | ||
| 79 | public key components and parameters (if any). An OpenSSL private key is | ||
| 80 | equivalent to what some libraries call a "key pair". A private key can be used | ||
| 81 | in functions which require the use of a public key or parameters. | ||
| 82 | |||
| 83 | =head1 RETURN VALUES | ||
| 84 | |||
| 85 | EVP_PKEY_keygen_init(), EVP_PKEY_paramgen_init(), EVP_PKEY_keygen() and | ||
| 86 | EVP_PKEY_paramgen() return 1 for success and 0 or a negative value for failure. | ||
| 87 | In particular a return value of -2 indicates the operation is not supported by | ||
| 88 | the public key algorithm. | ||
| 89 | |||
| 90 | =head1 EXAMPLES | ||
| 91 | |||
| 92 | Generate a 2048 bit RSA key: | ||
| 93 | |||
| 94 | #include <openssl/evp.h> | ||
| 95 | #include <openssl/rsa.h> | ||
| 96 | |||
| 97 | EVP_PKEY_CTX *ctx; | ||
| 98 | EVP_PKEY *pkey = NULL; | ||
| 99 | ctx = EVP_PKEY_CTX_new_id(EVP_PKEY_RSA, NULL); | ||
| 100 | if (!ctx) | ||
| 101 | /* Error occurred */ | ||
| 102 | if (EVP_PKEY_keygen_init(ctx) <= 0) | ||
| 103 | /* Error */ | ||
| 104 | if (EVP_PKEY_CTX_set_rsa_keygen_bits(ctx, 2048) <= 0) | ||
| 105 | /* Error */ | ||
| 106 | |||
| 107 | /* Generate key */ | ||
| 108 | if (EVP_PKEY_keygen(ctx, &pkey) <= 0) | ||
| 109 | /* Error */ | ||
| 110 | |||
| 111 | Generate a key from a set of parameters: | ||
| 112 | |||
| 113 | #include <openssl/evp.h> | ||
| 114 | #include <openssl/rsa.h> | ||
| 115 | |||
| 116 | EVP_PKEY_CTX *ctx; | ||
| 117 | EVP_PKEY *pkey = NULL, *param; | ||
| 118 | /* Assumed param is set up already */ | ||
| 119 | ctx = EVP_PKEY_CTX_new(param); | ||
| 120 | if (!ctx) | ||
| 121 | /* Error occurred */ | ||
| 122 | if (EVP_PKEY_keygen_init(ctx) <= 0) | ||
| 123 | /* Error */ | ||
| 124 | |||
| 125 | /* Generate key */ | ||
| 126 | if (EVP_PKEY_keygen(ctx, &pkey) <= 0) | ||
| 127 | /* Error */ | ||
| 128 | |||
| 129 | Example of generation callback for OpenSSL public key implementations: | ||
| 130 | |||
| 131 | /* Application data is a BIO to output status to */ | ||
| 132 | |||
| 133 | EVP_PKEY_CTX_set_app_data(ctx, status_bio); | ||
| 134 | |||
| 135 | static int | ||
| 136 | genpkey_cb(EVP_PKEY_CTX *ctx) | ||
| 137 | { | ||
| 138 | char c = '*'; | ||
| 139 | BIO *b = EVP_PKEY_CTX_get_app_data(ctx); | ||
| 140 | int p; | ||
| 141 | |||
| 142 | p = EVP_PKEY_CTX_get_keygen_info(ctx, 0); | ||
| 143 | if (p == 0) | ||
| 144 | c='.'; | ||
| 145 | if (p == 1) | ||
| 146 | c='+'; | ||
| 147 | if (p == 2) | ||
| 148 | c='*'; | ||
| 149 | if (p == 3) | ||
| 150 | c='\n'; | ||
| 151 | BIO_write(b,&c,1); | ||
| 152 | (void)BIO_flush(b); | ||
| 153 | return 1; | ||
| 154 | } | ||
| 155 | |||
| 156 | =head1 SEE ALSO | ||
| 157 | |||
| 158 | L<EVP_PKEY_CTX_new(3)|EVP_PKEY_CTX_new(3)>, | ||
| 159 | L<EVP_PKEY_encrypt(3)|EVP_PKEY_encrypt(3)>, | ||
| 160 | L<EVP_PKEY_decrypt(3)|EVP_PKEY_decrypt(3)>, | ||
| 161 | L<EVP_PKEY_sign(3)|EVP_PKEY_sign(3)>, | ||
| 162 | L<EVP_PKEY_verify(3)|EVP_PKEY_verify(3)>, | ||
| 163 | L<EVP_PKEY_verify_recover(3)|EVP_PKEY_verify_recover(3)>, | ||
| 164 | L<EVP_PKEY_derive(3)|EVP_PKEY_derive(3)> | ||
| 165 | |||
| 166 | =head1 HISTORY | ||
| 167 | |||
| 168 | These functions were first added to OpenSSL 1.0.0. | ||
| 169 | |||
| 170 | =cut | ||
diff --git a/src/lib/libcrypto/doc/EVP_PKEY_new.pod b/src/lib/libcrypto/doc/EVP_PKEY_new.pod deleted file mode 100644 index 7792714659..0000000000 --- a/src/lib/libcrypto/doc/EVP_PKEY_new.pod +++ /dev/null | |||
| @@ -1,43 +0,0 @@ | |||
| 1 | =pod | ||
| 2 | |||
| 3 | =head1 NAME | ||
| 4 | |||
| 5 | EVP_PKEY_new, EVP_PKEY_free - private key allocation functions. | ||
| 6 | |||
| 7 | =head1 SYNOPSIS | ||
| 8 | |||
| 9 | #include <openssl/evp.h> | ||
| 10 | |||
| 11 | EVP_PKEY *EVP_PKEY_new(void); | ||
| 12 | void EVP_PKEY_free(EVP_PKEY *key); | ||
| 13 | |||
| 14 | |||
| 15 | =head1 DESCRIPTION | ||
| 16 | |||
| 17 | The EVP_PKEY_new() function allocates an empty B<EVP_PKEY> | ||
| 18 | structure which is used by OpenSSL to store private keys. | ||
| 19 | |||
| 20 | EVP_PKEY_free() frees up the private key B<key>. | ||
| 21 | |||
| 22 | =head1 NOTES | ||
| 23 | |||
| 24 | The B<EVP_PKEY> structure is used by various OpenSSL functions | ||
| 25 | which require a general private key without reference to any | ||
| 26 | particular algorithm. | ||
| 27 | |||
| 28 | The structure returned by EVP_PKEY_new() is empty. To add a | ||
| 29 | private key to this empty structure the functions described in | ||
| 30 | L<EVP_PKEY_set1_RSA(3)|EVP_PKEY_set1_RSA(3)> should be used. | ||
| 31 | |||
| 32 | =head1 RETURN VALUES | ||
| 33 | |||
| 34 | EVP_PKEY_new() returns either the newly allocated B<EVP_PKEY> | ||
| 35 | structure of B<NULL> if an error occurred. | ||
| 36 | |||
| 37 | EVP_PKEY_free() does not return a value. | ||
| 38 | |||
| 39 | =head1 SEE ALSO | ||
| 40 | |||
| 41 | L<EVP_PKEY_set1_RSA(3)|EVP_PKEY_set1_RSA(3)> | ||
| 42 | |||
| 43 | =cut | ||
diff --git a/src/lib/libcrypto/doc/EVP_PKEY_print_private.pod b/src/lib/libcrypto/doc/EVP_PKEY_print_private.pod deleted file mode 100644 index eabbaed264..0000000000 --- a/src/lib/libcrypto/doc/EVP_PKEY_print_private.pod +++ /dev/null | |||
| @@ -1,54 +0,0 @@ | |||
| 1 | =pod | ||
| 2 | |||
| 3 | =head1 NAME | ||
| 4 | |||
| 5 | EVP_PKEY_print_public, EVP_PKEY_print_private, EVP_PKEY_print_params - public | ||
| 6 | key algorithm printing routines. | ||
| 7 | |||
| 8 | =head1 SYNOPSIS | ||
| 9 | |||
| 10 | #include <openssl/evp.h> | ||
| 11 | |||
| 12 | int EVP_PKEY_print_public(BIO *out, const EVP_PKEY *pkey, | ||
| 13 | int indent, ASN1_PCTX *pctx); | ||
| 14 | int EVP_PKEY_print_private(BIO *out, const EVP_PKEY *pkey, | ||
| 15 | int indent, ASN1_PCTX *pctx); | ||
| 16 | int EVP_PKEY_print_params(BIO *out, const EVP_PKEY *pkey, | ||
| 17 | int indent, ASN1_PCTX *pctx); | ||
| 18 | |||
| 19 | =head1 DESCRIPTION | ||
| 20 | |||
| 21 | The functions EVP_PKEY_print_public(), EVP_PKEY_print_private() and | ||
| 22 | EVP_PKEY_print_params() print out the public, private or parameter components | ||
| 23 | of key B<pkey> respectively. The key is sent to BIO B<out> in human readable | ||
| 24 | form. The parameter B<indent> indicated how far the printout should be indented. | ||
| 25 | |||
| 26 | The B<pctx> parameter allows the print output to be finely tuned by using | ||
| 27 | ASN1 printing options. If B<pctx> is set to NULL then default values will | ||
| 28 | be used. | ||
| 29 | |||
| 30 | =head1 NOTES | ||
| 31 | |||
| 32 | Currently no public key algorithms include any options in the B<pctx> parameter | ||
| 33 | parameter. | ||
| 34 | |||
| 35 | If the key does not include all the components indicated by the function then | ||
| 36 | only those contained in the key will be printed. For example passing a public | ||
| 37 | key to EVP_PKEY_print_private() will only print the public components. | ||
| 38 | |||
| 39 | =head1 RETURN VALUES | ||
| 40 | |||
| 41 | These functions all return 1 for success and 0 or a negative value for failure. | ||
| 42 | In particular a return value of -2 indicates the operation is not supported by | ||
| 43 | the public key algorithm. | ||
| 44 | |||
| 45 | =head1 SEE ALSO | ||
| 46 | |||
| 47 | L<EVP_PKEY_CTX_new(3)|EVP_PKEY_CTX_new(3)>, | ||
| 48 | L<EVP_PKEY_keygen(3)|EVP_PKEY_keygen(3)> | ||
| 49 | |||
| 50 | =head1 HISTORY | ||
| 51 | |||
| 52 | These functions were first added to OpenSSL 1.0.0. | ||
| 53 | |||
| 54 | =cut | ||
diff --git a/src/lib/libcrypto/doc/EVP_PKEY_set1_RSA.pod b/src/lib/libcrypto/doc/EVP_PKEY_set1_RSA.pod deleted file mode 100644 index 096e969fa3..0000000000 --- a/src/lib/libcrypto/doc/EVP_PKEY_set1_RSA.pod +++ /dev/null | |||
| @@ -1,76 +0,0 @@ | |||
| 1 | =pod | ||
| 2 | |||
| 3 | =head1 NAME | ||
| 4 | |||
| 5 | EVP_PKEY_set1_RSA, EVP_PKEY_set1_DSA, EVP_PKEY_set1_DH, EVP_PKEY_set1_EC_KEY, | ||
| 6 | EVP_PKEY_get1_RSA, EVP_PKEY_get1_DSA, EVP_PKEY_get1_DH, EVP_PKEY_get1_EC_KEY, | ||
| 7 | EVP_PKEY_assign_RSA, EVP_PKEY_assign_DSA, EVP_PKEY_assign_DH, | ||
| 8 | EVP_PKEY_assign_EC_KEY, EVP_PKEY_type - EVP_PKEY assignment functions. | ||
| 9 | |||
| 10 | =head1 SYNOPSIS | ||
| 11 | |||
| 12 | #include <openssl/evp.h> | ||
| 13 | |||
| 14 | int EVP_PKEY_set1_RSA(EVP_PKEY *pkey,RSA *key); | ||
| 15 | int EVP_PKEY_set1_DSA(EVP_PKEY *pkey,DSA *key); | ||
| 16 | int EVP_PKEY_set1_DH(EVP_PKEY *pkey,DH *key); | ||
| 17 | int EVP_PKEY_set1_EC_KEY(EVP_PKEY *pkey,EC_KEY *key); | ||
| 18 | |||
| 19 | RSA *EVP_PKEY_get1_RSA(EVP_PKEY *pkey); | ||
| 20 | DSA *EVP_PKEY_get1_DSA(EVP_PKEY *pkey); | ||
| 21 | DH *EVP_PKEY_get1_DH(EVP_PKEY *pkey); | ||
| 22 | EC_KEY *EVP_PKEY_get1_EC_KEY(EVP_PKEY *pkey); | ||
| 23 | |||
| 24 | int EVP_PKEY_assign_RSA(EVP_PKEY *pkey,RSA *key); | ||
| 25 | int EVP_PKEY_assign_DSA(EVP_PKEY *pkey,DSA *key); | ||
| 26 | int EVP_PKEY_assign_DH(EVP_PKEY *pkey,DH *key); | ||
| 27 | int EVP_PKEY_assign_EC_KEY(EVP_PKEY *pkey,EC_KEY *key); | ||
| 28 | |||
| 29 | int EVP_PKEY_type(int type); | ||
| 30 | |||
| 31 | =head1 DESCRIPTION | ||
| 32 | |||
| 33 | EVP_PKEY_set1_RSA(), EVP_PKEY_set1_DSA(), EVP_PKEY_set1_DH() and | ||
| 34 | EVP_PKEY_set1_EC_KEY() set the key referenced by B<pkey> to B<key>. | ||
| 35 | |||
| 36 | EVP_PKEY_get1_RSA(), EVP_PKEY_get1_DSA(), EVP_PKEY_get1_DH() and | ||
| 37 | EVP_PKEY_get1_EC_KEY() return the referenced key in B<pkey> or | ||
| 38 | B<NULL> if the key is not of the correct type. | ||
| 39 | |||
| 40 | EVP_PKEY_assign_RSA() EVP_PKEY_assign_DSA(), EVP_PKEY_assign_DH() | ||
| 41 | and EVP_PKEY_assign_EC_KEY() also set the referenced key to B<key> | ||
| 42 | however these use the supplied B<key> internally and so B<key> | ||
| 43 | will be freed when the parent B<pkey> is freed. | ||
| 44 | |||
| 45 | EVP_PKEY_type() returns the type of key corresponding to the value | ||
| 46 | B<type>. The type of a key can be obtained with | ||
| 47 | EVP_PKEY_type(pkey->type). The return value will be EVP_PKEY_RSA, | ||
| 48 | EVP_PKEY_DSA, EVP_PKEY_DH or EVP_PKEY_EC for the corresponding | ||
| 49 | key types or NID_undef if the key type is unassigned. | ||
| 50 | |||
| 51 | =head1 NOTES | ||
| 52 | |||
| 53 | In accordance with the OpenSSL naming convention the key obtained | ||
| 54 | from or assigned to the B<pkey> using the B<1> functions must be | ||
| 55 | freed as well as B<pkey>. | ||
| 56 | |||
| 57 | EVP_PKEY_assign_RSA() EVP_PKEY_assign_DSA(), EVP_PKEY_assign_DH() | ||
| 58 | EVP_PKEY_assign_EC_KEY() are implemented as macros. | ||
| 59 | |||
| 60 | =head1 RETURN VALUES | ||
| 61 | |||
| 62 | EVP_PKEY_set1_RSA(), EVP_PKEY_set1_DSA(), EVP_PKEY_set1_DH() and | ||
| 63 | EVP_PKEY_set1_EC_KEY() return 1 for success or 0 for failure. | ||
| 64 | |||
| 65 | EVP_PKEY_get1_RSA(), EVP_PKEY_get1_DSA(), EVP_PKEY_get1_DH() and | ||
| 66 | EVP_PKEY_get1_EC_KEY() return the referenced key or B<NULL> if | ||
| 67 | an error occurred. | ||
| 68 | |||
| 69 | EVP_PKEY_assign_RSA() EVP_PKEY_assign_DSA(), EVP_PKEY_assign_DH() | ||
| 70 | and EVP_PKEY_assign_EC_KEY() return 1 for success and 0 for failure. | ||
| 71 | |||
| 72 | =head1 SEE ALSO | ||
| 73 | |||
| 74 | L<EVP_PKEY_new(3)|EVP_PKEY_new(3)> | ||
| 75 | |||
| 76 | =cut | ||
diff --git a/src/lib/libcrypto/doc/EVP_PKEY_sign.pod b/src/lib/libcrypto/doc/EVP_PKEY_sign.pod deleted file mode 100644 index 1925706d96..0000000000 --- a/src/lib/libcrypto/doc/EVP_PKEY_sign.pod +++ /dev/null | |||
| @@ -1,96 +0,0 @@ | |||
| 1 | =pod | ||
| 2 | |||
| 3 | =head1 NAME | ||
| 4 | |||
| 5 | EVP_PKEY_sign_init, EVP_PKEY_sign - sign using a public key algorithm | ||
| 6 | |||
| 7 | =head1 SYNOPSIS | ||
| 8 | |||
| 9 | #include <openssl/evp.h> | ||
| 10 | |||
| 11 | int EVP_PKEY_sign_init(EVP_PKEY_CTX *ctx); | ||
| 12 | int EVP_PKEY_sign(EVP_PKEY_CTX *ctx, | ||
| 13 | unsigned char *sig, size_t *siglen, | ||
| 14 | const unsigned char *tbs, size_t tbslen); | ||
| 15 | |||
| 16 | =head1 DESCRIPTION | ||
| 17 | |||
| 18 | The EVP_PKEY_sign_init() function initializes a public key algorithm | ||
| 19 | context using key B<pkey> for a signing operation. | ||
| 20 | |||
| 21 | The EVP_PKEY_sign() function performs a public key signing operation | ||
| 22 | using B<ctx>. The data to be signed is specified using the B<tbs> and | ||
| 23 | B<tbslen> parameters. If B<sig> is B<NULL> then the maximum size of the output | ||
| 24 | buffer is written to the B<siglen> parameter. If B<sig> is not B<NULL> then | ||
| 25 | before the call the B<siglen> parameter should contain the length of the | ||
| 26 | B<sig> buffer, if the call is successful the signature is written to | ||
| 27 | B<sig> and the amount of data written to B<siglen>. | ||
| 28 | |||
| 29 | =head1 NOTES | ||
| 30 | |||
| 31 | After the call to EVP_PKEY_sign_init() algorithm specific control | ||
| 32 | operations can be performed to set any appropriate parameters for the | ||
| 33 | operation. | ||
| 34 | |||
| 35 | The function EVP_PKEY_sign() can be called more than once on the same | ||
| 36 | context if several operations are performed using the same parameters. | ||
| 37 | |||
| 38 | =head1 RETURN VALUES | ||
| 39 | |||
| 40 | EVP_PKEY_sign_init() and EVP_PKEY_sign() return 1 for success and 0 | ||
| 41 | or a negative value for failure. In particular a return value of -2 | ||
| 42 | indicates the operation is not supported by the public key algorithm. | ||
| 43 | |||
| 44 | =head1 EXAMPLE | ||
| 45 | |||
| 46 | Sign data using RSA with PKCS#1 padding and SHA256 digest: | ||
| 47 | |||
| 48 | #include <openssl/evp.h> | ||
| 49 | #include <openssl/rsa.h> | ||
| 50 | |||
| 51 | EVP_PKEY_CTX *ctx; | ||
| 52 | unsigned char *md, *sig; | ||
| 53 | size_t mdlen, siglen; | ||
| 54 | EVP_PKEY *signing_key; | ||
| 55 | /* NB: assumes signing_key, md and mdlen are already set up | ||
| 56 | * and that signing_key is an RSA private key | ||
| 57 | */ | ||
| 58 | ctx = EVP_PKEY_CTX_new(signing_key); | ||
| 59 | if (!ctx) | ||
| 60 | /* Error occurred */ | ||
| 61 | if (EVP_PKEY_sign_init(ctx) <= 0) | ||
| 62 | /* Error */ | ||
| 63 | if (EVP_PKEY_CTX_set_rsa_padding(ctx, RSA_PKCS1_PADDING) <= 0) | ||
| 64 | /* Error */ | ||
| 65 | if (EVP_PKEY_CTX_set_signature_md(ctx, EVP_sha256()) <= 0) | ||
| 66 | /* Error */ | ||
| 67 | |||
| 68 | /* Determine buffer length */ | ||
| 69 | if (EVP_PKEY_sign(ctx, NULL, &siglen, md, mdlen) <= 0) | ||
| 70 | /* Error */ | ||
| 71 | |||
| 72 | sig = malloc(siglen); | ||
| 73 | |||
| 74 | if (!sig) | ||
| 75 | /* malloc failure */ | ||
| 76 | |||
| 77 | if (EVP_PKEY_sign(ctx, sig, &siglen, md, mdlen) <= 0) | ||
| 78 | /* Error */ | ||
| 79 | |||
| 80 | /* Signature is siglen bytes written to buffer sig */ | ||
| 81 | |||
| 82 | |||
| 83 | =head1 SEE ALSO | ||
| 84 | |||
| 85 | L<EVP_PKEY_CTX_new(3)|EVP_PKEY_CTX_new(3)>, | ||
| 86 | L<EVP_PKEY_encrypt(3)|EVP_PKEY_encrypt(3)>, | ||
| 87 | L<EVP_PKEY_decrypt(3)|EVP_PKEY_decrypt(3)>, | ||
| 88 | L<EVP_PKEY_verify(3)|EVP_PKEY_verify(3)>, | ||
| 89 | L<EVP_PKEY_verify_recover(3)|EVP_PKEY_verify_recover(3)>, | ||
| 90 | L<EVP_PKEY_derive(3)|EVP_PKEY_derive(3)> | ||
| 91 | |||
| 92 | =head1 HISTORY | ||
| 93 | |||
| 94 | These functions were first added to OpenSSL 1.0.0. | ||
| 95 | |||
| 96 | =cut | ||
diff --git a/src/lib/libcrypto/doc/EVP_PKEY_verify.pod b/src/lib/libcrypto/doc/EVP_PKEY_verify.pod deleted file mode 100644 index 0f092ca8e1..0000000000 --- a/src/lib/libcrypto/doc/EVP_PKEY_verify.pod +++ /dev/null | |||
| @@ -1,92 +0,0 @@ | |||
| 1 | =pod | ||
| 2 | |||
| 3 | =head1 NAME | ||
| 4 | |||
| 5 | EVP_PKEY_verify_init, EVP_PKEY_verify - signature verification using a public | ||
| 6 | key algorithm | ||
| 7 | |||
| 8 | =head1 SYNOPSIS | ||
| 9 | |||
| 10 | #include <openssl/evp.h> | ||
| 11 | |||
| 12 | int EVP_PKEY_verify_init(EVP_PKEY_CTX *ctx); | ||
| 13 | int EVP_PKEY_verify(EVP_PKEY_CTX *ctx, | ||
| 14 | const unsigned char *sig, size_t siglen, | ||
| 15 | const unsigned char *tbs, size_t tbslen); | ||
| 16 | |||
| 17 | =head1 DESCRIPTION | ||
| 18 | |||
| 19 | The EVP_PKEY_verify_init() function initializes a public key algorithm | ||
| 20 | context using key B<pkey> for a signature verification operation. | ||
| 21 | |||
| 22 | The EVP_PKEY_verify() function performs a public key verification operation | ||
| 23 | using B<ctx>. The signature is specified using the B<sig> and | ||
| 24 | B<siglen> parameters. The verified data (i.e. the data believed originally | ||
| 25 | signed) is specified using the B<tbs> and B<tbslen> parameters. | ||
| 26 | |||
| 27 | =head1 NOTES | ||
| 28 | |||
| 29 | After the call to EVP_PKEY_verify_init() algorithm specific control | ||
| 30 | operations can be performed to set any appropriate parameters for the | ||
| 31 | operation. | ||
| 32 | |||
| 33 | The function EVP_PKEY_verify() can be called more than once on the same | ||
| 34 | context if several operations are performed using the same parameters. | ||
| 35 | |||
| 36 | =head1 RETURN VALUES | ||
| 37 | |||
| 38 | EVP_PKEY_verify_init() and EVP_PKEY_verify() return 1 if the verification was | ||
| 39 | successful and 0 if it failed. Unlike other functions the return value 0 from | ||
| 40 | EVP_PKEY_verify() only indicates that the signature did not verify | ||
| 41 | successfully (that is tbs did not match the original data or the signature was | ||
| 42 | of invalid form) it is not an indication of a more serious error. | ||
| 43 | |||
| 44 | A negative value indicates an error other that signature verification failure. | ||
| 45 | In particular a return value of -2 indicates the operation is not supported by | ||
| 46 | the public key algorithm. | ||
| 47 | |||
| 48 | =head1 EXAMPLE | ||
| 49 | |||
| 50 | Verify signature using PKCS#1 and SHA256 digest: | ||
| 51 | |||
| 52 | #include <openssl/evp.h> | ||
| 53 | #include <openssl/rsa.h> | ||
| 54 | |||
| 55 | EVP_PKEY_CTX *ctx; | ||
| 56 | unsigned char *md, *sig; | ||
| 57 | size_t mdlen, siglen; | ||
| 58 | EVP_PKEY *verify_key; | ||
| 59 | /* NB: assumes verify_key, sig, siglen md and mdlen are already set up | ||
| 60 | * and that verify_key is an RSA public key | ||
| 61 | */ | ||
| 62 | ctx = EVP_PKEY_CTX_new(verify_key); | ||
| 63 | if (!ctx) | ||
| 64 | /* Error occurred */ | ||
| 65 | if (EVP_PKEY_verify_init(ctx) <= 0) | ||
| 66 | /* Error */ | ||
| 67 | if (EVP_PKEY_CTX_set_rsa_padding(ctx, RSA_PKCS1_PADDING) <= 0) | ||
| 68 | /* Error */ | ||
| 69 | if (EVP_PKEY_CTX_set_signature_md(ctx, EVP_sha256()) <= 0) | ||
| 70 | /* Error */ | ||
| 71 | |||
| 72 | /* Perform operation */ | ||
| 73 | ret = EVP_PKEY_verify(ctx, sig, siglen, md, mdlen); | ||
| 74 | |||
| 75 | /* ret == 1 indicates success, 0 verify failure and < 0 for some | ||
| 76 | * other error. | ||
| 77 | */ | ||
| 78 | |||
| 79 | =head1 SEE ALSO | ||
| 80 | |||
| 81 | L<EVP_PKEY_CTX_new(3)|EVP_PKEY_CTX_new(3)>, | ||
| 82 | L<EVP_PKEY_encrypt(3)|EVP_PKEY_encrypt(3)>, | ||
| 83 | L<EVP_PKEY_decrypt(3)|EVP_PKEY_decrypt(3)>, | ||
| 84 | L<EVP_PKEY_sign(3)|EVP_PKEY_sign(3)>, | ||
| 85 | L<EVP_PKEY_verify_recover(3)|EVP_PKEY_verify_recover(3)>, | ||
| 86 | L<EVP_PKEY_derive(3)|EVP_PKEY_derive(3)> | ||
| 87 | |||
| 88 | =head1 HISTORY | ||
| 89 | |||
| 90 | These functions were first added to OpenSSL 1.0.0. | ||
| 91 | |||
| 92 | =cut | ||
diff --git a/src/lib/libcrypto/doc/EVP_PKEY_verify_recover.pod b/src/lib/libcrypto/doc/EVP_PKEY_verify_recover.pod deleted file mode 100644 index 095e53ea2f..0000000000 --- a/src/lib/libcrypto/doc/EVP_PKEY_verify_recover.pod +++ /dev/null | |||
| @@ -1,105 +0,0 @@ | |||
| 1 | =pod | ||
| 2 | |||
| 3 | =head1 NAME | ||
| 4 | |||
| 5 | EVP_PKEY_verify_recover_init, EVP_PKEY_verify_recover - recover signature using | ||
| 6 | a public key algorithm | ||
| 7 | |||
| 8 | =head1 SYNOPSIS | ||
| 9 | |||
| 10 | #include <openssl/evp.h> | ||
| 11 | |||
| 12 | int EVP_PKEY_verify_recover_init(EVP_PKEY_CTX *ctx); | ||
| 13 | int EVP_PKEY_verify_recover(EVP_PKEY_CTX *ctx, | ||
| 14 | unsigned char *rout, size_t *routlen, | ||
| 15 | const unsigned char *sig, size_t siglen); | ||
| 16 | |||
| 17 | =head1 DESCRIPTION | ||
| 18 | |||
| 19 | The EVP_PKEY_verify_recover_init() function initializes a public key algorithm | ||
| 20 | context using key B<pkey> for a verify recover operation. | ||
| 21 | |||
| 22 | The EVP_PKEY_verify_recover() function recovers signed data | ||
| 23 | using B<ctx>. The signature is specified using the B<sig> and | ||
| 24 | B<siglen> parameters. If B<rout> is B<NULL> then the maximum size of the output | ||
| 25 | buffer is written to the B<routlen> parameter. If B<rout> is not B<NULL> then | ||
| 26 | before the call the B<routlen> parameter should contain the length of the | ||
| 27 | B<rout> buffer, if the call is successful recovered data is written to | ||
| 28 | B<rout> and the amount of data written to B<routlen>. | ||
| 29 | |||
| 30 | =head1 NOTES | ||
| 31 | |||
| 32 | Normally an application is only interested in whether a signature verification | ||
| 33 | operation is successful in those cases the EVP_verify() function should be | ||
| 34 | used. | ||
| 35 | |||
| 36 | Sometimes however it is useful to obtain the data originally signed using a | ||
| 37 | signing operation. Only certain public key algorithms can recover a signature | ||
| 38 | in this way (for example RSA in PKCS padding mode). | ||
| 39 | |||
| 40 | After the call to EVP_PKEY_verify_recover_init() algorithm specific control | ||
| 41 | operations can be performed to set any appropriate parameters for the | ||
| 42 | operation. | ||
| 43 | |||
| 44 | The function EVP_PKEY_verify_recover() can be called more than once on the same | ||
| 45 | context if several operations are performed using the same parameters. | ||
| 46 | |||
| 47 | =head1 RETURN VALUES | ||
| 48 | |||
| 49 | EVP_PKEY_verify_recover_init() and EVP_PKEY_verify_recover() return 1 for | ||
| 50 | success | ||
| 51 | and 0 or a negative value for failure. In particular a return value of -2 | ||
| 52 | indicates the operation is not supported by the public key algorithm. | ||
| 53 | |||
| 54 | =head1 EXAMPLE | ||
| 55 | |||
| 56 | Recover digest originally signed using PKCS#1 and SHA256 digest: | ||
| 57 | |||
| 58 | #include <openssl/evp.h> | ||
| 59 | #include <openssl/rsa.h> | ||
| 60 | |||
| 61 | EVP_PKEY_CTX *ctx; | ||
| 62 | unsigned char *rout, *sig; | ||
| 63 | size_t routlen, siglen; | ||
| 64 | EVP_PKEY *verify_key; | ||
| 65 | /* NB: assumes verify_key, sig and siglen are already set up | ||
| 66 | * and that verify_key is an RSA public key | ||
| 67 | */ | ||
| 68 | ctx = EVP_PKEY_CTX_new(verify_key); | ||
| 69 | if (!ctx) | ||
| 70 | /* Error occurred */ | ||
| 71 | if (EVP_PKEY_verify_recover_init(ctx) <= 0) | ||
| 72 | /* Error */ | ||
| 73 | if (EVP_PKEY_CTX_set_rsa_padding(ctx, RSA_PKCS1_PADDING) <= 0) | ||
| 74 | /* Error */ | ||
| 75 | if (EVP_PKEY_CTX_set_signature_md(ctx, EVP_sha256()) <= 0) | ||
| 76 | /* Error */ | ||
| 77 | |||
| 78 | /* Determine buffer length */ | ||
| 79 | if (EVP_PKEY_verify_recover(ctx, NULL, &routlen, sig, siglen) <= 0) | ||
| 80 | /* Error */ | ||
| 81 | |||
| 82 | rout = malloc(routlen); | ||
| 83 | |||
| 84 | if (!rout) | ||
| 85 | /* malloc failure */ | ||
| 86 | |||
| 87 | if (EVP_PKEY_verify_recover(ctx, rout, &routlen, sig, siglen) <= 0) | ||
| 88 | /* Error */ | ||
| 89 | |||
| 90 | /* Recovered data is routlen bytes written to buffer rout */ | ||
| 91 | |||
| 92 | =head1 SEE ALSO | ||
| 93 | |||
| 94 | L<EVP_PKEY_CTX_new(3)|EVP_PKEY_CTX_new(3)>, | ||
| 95 | L<EVP_PKEY_encrypt(3)|EVP_PKEY_encrypt(3)>, | ||
| 96 | L<EVP_PKEY_decrypt(3)|EVP_PKEY_decrypt(3)>, | ||
| 97 | L<EVP_PKEY_sign(3)|EVP_PKEY_sign(3)>, | ||
| 98 | L<EVP_PKEY_verify(3)|EVP_PKEY_verify(3)>, | ||
| 99 | L<EVP_PKEY_derive(3)|EVP_PKEY_derive(3)> | ||
| 100 | |||
| 101 | =head1 HISTORY | ||
| 102 | |||
| 103 | These functions were first added to OpenSSL 1.0.0. | ||
| 104 | |||
| 105 | =cut | ||
diff --git a/src/lib/libcrypto/doc/EVP_SealInit.pod b/src/lib/libcrypto/doc/EVP_SealInit.pod deleted file mode 100644 index 76eebb72a9..0000000000 --- a/src/lib/libcrypto/doc/EVP_SealInit.pod +++ /dev/null | |||
| @@ -1,82 +0,0 @@ | |||
| 1 | =pod | ||
| 2 | |||
| 3 | =head1 NAME | ||
| 4 | |||
| 5 | EVP_SealInit, EVP_SealUpdate, EVP_SealFinal - EVP envelope encryption | ||
| 6 | |||
| 7 | =head1 SYNOPSIS | ||
| 8 | |||
| 9 | #include <openssl/evp.h> | ||
| 10 | |||
| 11 | int EVP_SealInit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *type, | ||
| 12 | unsigned char **ek, int *ekl, unsigned char *iv, | ||
| 13 | EVP_PKEY **pubk, int npubk); | ||
| 14 | int EVP_SealUpdate(EVP_CIPHER_CTX *ctx, unsigned char *out, | ||
| 15 | int *outl, unsigned char *in, int inl); | ||
| 16 | int EVP_SealFinal(EVP_CIPHER_CTX *ctx, unsigned char *out, | ||
| 17 | int *outl); | ||
| 18 | |||
| 19 | =head1 DESCRIPTION | ||
| 20 | |||
| 21 | The EVP envelope routines are a high level interface to envelope | ||
| 22 | encryption. They generate a random key and IV (if required) then | ||
| 23 | "envelope" it by using public key encryption. Data can then be | ||
| 24 | encrypted using this key. | ||
| 25 | |||
| 26 | EVP_SealInit() initializes a cipher context B<ctx> for encryption | ||
| 27 | with cipher B<type> using a random secret key and IV. B<type> is normally | ||
| 28 | supplied by a function such as EVP_aes_256_cbc(). The secret key is encrypted | ||
| 29 | using one or more public keys, this allows the same encrypted data to be | ||
| 30 | decrypted using any of the corresponding private keys. B<ek> is an array of | ||
| 31 | buffers where the public key encrypted secret key will be written, each buffer | ||
| 32 | must contain enough room for the corresponding encrypted key: that is | ||
| 33 | B<ek[i]> must have room for B<EVP_PKEY_size(pubk[i])> bytes. The actual | ||
| 34 | size of each encrypted secret key is written to the array B<ekl>. B<pubk> is | ||
| 35 | an array of B<npubk> public keys. | ||
| 36 | |||
| 37 | The B<iv> parameter is a buffer where the generated IV is written to. It must | ||
| 38 | contain enough room for the corresponding cipher's IV, as determined by (for | ||
| 39 | example) EVP_CIPHER_iv_length(type). | ||
| 40 | |||
| 41 | If the cipher does not require an IV then the B<iv> parameter is ignored | ||
| 42 | and can be B<NULL>. | ||
| 43 | |||
| 44 | EVP_SealUpdate() and EVP_SealFinal() have exactly the same properties | ||
| 45 | as the EVP_EncryptUpdate() and EVP_EncryptFinal() routines, as | ||
| 46 | documented on the L<EVP_EncryptInit(3)|EVP_EncryptInit(3)> manual | ||
| 47 | page. | ||
| 48 | |||
| 49 | =head1 RETURN VALUES | ||
| 50 | |||
| 51 | EVP_SealInit() returns 0 on error or B<npubk> if successful. | ||
| 52 | |||
| 53 | EVP_SealUpdate() and EVP_SealFinal() return 1 for success and 0 for | ||
| 54 | failure. | ||
| 55 | |||
| 56 | =head1 NOTES | ||
| 57 | |||
| 58 | The public key must be RSA because it is the only OpenSSL public key | ||
| 59 | algorithm that supports key transport. | ||
| 60 | |||
| 61 | Envelope encryption is the usual method of using public key encryption | ||
| 62 | on large amounts of data, this is because public key encryption is slow | ||
| 63 | but symmetric encryption is fast. So symmetric encryption is used for | ||
| 64 | bulk encryption and the small random symmetric key used is transferred | ||
| 65 | using public key encryption. | ||
| 66 | |||
| 67 | It is possible to call EVP_SealInit() twice in the same way as | ||
| 68 | EVP_EncryptInit(). The first call should have B<npubk> set to 0 | ||
| 69 | and (after setting any cipher parameters) it should be called again | ||
| 70 | with B<type> set to NULL. | ||
| 71 | |||
| 72 | =head1 SEE ALSO | ||
| 73 | |||
| 74 | L<evp(3)|evp(3)>, L<rand(3)|rand(3)>, | ||
| 75 | L<EVP_EncryptInit(3)|EVP_EncryptInit(3)>, | ||
| 76 | L<EVP_OpenInit(3)|EVP_OpenInit(3)> | ||
| 77 | |||
| 78 | =head1 HISTORY | ||
| 79 | |||
| 80 | EVP_SealFinal() did not return a value before OpenSSL 0.9.7. | ||
| 81 | |||
| 82 | =cut | ||
diff --git a/src/lib/libcrypto/doc/EVP_SignInit.pod b/src/lib/libcrypto/doc/EVP_SignInit.pod deleted file mode 100644 index 6882211e02..0000000000 --- a/src/lib/libcrypto/doc/EVP_SignInit.pod +++ /dev/null | |||
| @@ -1,103 +0,0 @@ | |||
| 1 | =pod | ||
| 2 | |||
| 3 | =head1 NAME | ||
| 4 | |||
| 5 | EVP_SignInit, EVP_SignUpdate, EVP_SignFinal, EVP_PKEY_size | ||
| 6 | - EVP signing functions | ||
| 7 | |||
| 8 | =head1 SYNOPSIS | ||
| 9 | |||
| 10 | #include <openssl/evp.h> | ||
| 11 | |||
| 12 | int EVP_SignInit_ex(EVP_MD_CTX *ctx, const EVP_MD *type, ENGINE *impl); | ||
| 13 | int EVP_SignUpdate(EVP_MD_CTX *ctx, const void *d, unsigned int cnt); | ||
| 14 | int EVP_SignFinal(EVP_MD_CTX *ctx,unsigned char *sig,unsigned int *s, EVP_PKEY *pkey); | ||
| 15 | |||
| 16 | void EVP_SignInit(EVP_MD_CTX *ctx, const EVP_MD *type); | ||
| 17 | |||
| 18 | int EVP_PKEY_size(EVP_PKEY *pkey); | ||
| 19 | |||
| 20 | =head1 DESCRIPTION | ||
| 21 | |||
| 22 | The EVP signature routines are a high level interface to digital | ||
| 23 | signatures. | ||
| 24 | |||
| 25 | EVP_SignInit_ex() sets up signing context B<ctx> to use digest | ||
| 26 | B<type> from ENGINE B<impl>. B<ctx> must be initialized with | ||
| 27 | EVP_MD_CTX_init() before calling this function. | ||
| 28 | |||
| 29 | EVP_SignUpdate() hashes B<cnt> bytes of data at B<d> into the | ||
| 30 | signature context B<ctx>. This function can be called several times on the | ||
| 31 | same B<ctx> to include additional data. | ||
| 32 | |||
| 33 | EVP_SignFinal() signs the data in B<ctx> using the private key B<pkey> and | ||
| 34 | places the signature in B<sig>. B<sig> must be at least EVP_PKEY_size(pkey) | ||
| 35 | bytes in size. B<s> is an OUT parameter, and not used as an IN parameter. | ||
| 36 | The number of bytes of data written (i.e. the length of the signature) | ||
| 37 | will be written to the integer at B<s>, at most EVP_PKEY_size(pkey) bytes | ||
| 38 | will be written. | ||
| 39 | |||
| 40 | EVP_SignInit() initializes a signing context B<ctx> to use the default | ||
| 41 | implementation of digest B<type>. | ||
| 42 | |||
| 43 | EVP_PKEY_size() returns the maximum size of a signature in bytes. The actual | ||
| 44 | signature returned by EVP_SignFinal() may be smaller. | ||
| 45 | |||
| 46 | =head1 RETURN VALUES | ||
| 47 | |||
| 48 | EVP_SignInit_ex(), EVP_SignUpdate() and EVP_SignFinal() return 1 | ||
| 49 | for success and 0 for failure. | ||
| 50 | |||
| 51 | EVP_PKEY_size() returns the maximum size of a signature in bytes. | ||
| 52 | |||
| 53 | The error codes can be obtained by L<ERR_get_error(3)|ERR_get_error(3)>. | ||
| 54 | |||
| 55 | =head1 NOTES | ||
| 56 | |||
| 57 | The B<EVP> interface to digital signatures should almost always be used in | ||
| 58 | preference to the low level interfaces. This is because the code then becomes | ||
| 59 | transparent to the algorithm used and much more flexible. | ||
| 60 | |||
| 61 | Due to the link between message digests and public key algorithms the correct | ||
| 62 | digest algorithm must be used with the correct public key type. A list of | ||
| 63 | algorithms and associated public key algorithms appears in | ||
| 64 | L<EVP_DigestInit(3)|EVP_DigestInit(3)>. | ||
| 65 | |||
| 66 | The call to EVP_SignFinal() internally finalizes a copy of the digest context. | ||
| 67 | This means that calls to EVP_SignUpdate() and EVP_SignFinal() can be called | ||
| 68 | later to digest and sign additional data. | ||
| 69 | |||
| 70 | Since only a copy of the digest context is ever finalized the context must | ||
| 71 | be cleaned up after use by calling EVP_MD_CTX_cleanup() or a memory leak | ||
| 72 | will occur. | ||
| 73 | |||
| 74 | =head1 BUGS | ||
| 75 | |||
| 76 | Older versions of this documentation wrongly stated that calls to | ||
| 77 | EVP_SignUpdate() could not be made after calling EVP_SignFinal(). | ||
| 78 | |||
| 79 | Since the private key is passed in the call to EVP_SignFinal() any error | ||
| 80 | relating to the private key (for example an unsuitable key and digest | ||
| 81 | combination) will not be indicated until after potentially large amounts of | ||
| 82 | data have been passed through EVP_SignUpdate(). | ||
| 83 | |||
| 84 | It is not possible to change the signing parameters using these function. | ||
| 85 | |||
| 86 | The previous two bugs are fixed in the newer EVP_SignDigest*() function. | ||
| 87 | |||
| 88 | =head1 SEE ALSO | ||
| 89 | |||
| 90 | L<EVP_VerifyInit(3)|EVP_VerifyInit(3)>, | ||
| 91 | L<EVP_DigestInit(3)|EVP_DigestInit(3)>, L<err(3)|err(3)>, | ||
| 92 | L<evp(3)|evp(3)>, L<hmac(3)|hmac(3)>, L<md2(3)|md2(3)>, | ||
| 93 | L<md5(3)|md5(3)>, L<ripemd(3)|ripemd(3)>, | ||
| 94 | L<sha(3)|sha(3)>, L<dgst(1)|dgst(1)> | ||
| 95 | |||
| 96 | =head1 HISTORY | ||
| 97 | |||
| 98 | EVP_SignInit(), EVP_SignUpdate() and EVP_SignFinal() are | ||
| 99 | available in all versions of SSLeay and OpenSSL. | ||
| 100 | |||
| 101 | EVP_SignInit_ex() was added in OpenSSL 0.9.7. | ||
| 102 | |||
| 103 | =cut | ||
diff --git a/src/lib/libcrypto/doc/EVP_VerifyInit.pod b/src/lib/libcrypto/doc/EVP_VerifyInit.pod deleted file mode 100644 index b0d3f8e4c9..0000000000 --- a/src/lib/libcrypto/doc/EVP_VerifyInit.pod +++ /dev/null | |||
| @@ -1,96 +0,0 @@ | |||
| 1 | =pod | ||
| 2 | |||
| 3 | =head1 NAME | ||
| 4 | |||
| 5 | EVP_VerifyInit, EVP_VerifyUpdate, EVP_VerifyFinal - EVP signature verification | ||
| 6 | functions | ||
| 7 | |||
| 8 | =head1 SYNOPSIS | ||
| 9 | |||
| 10 | #include <openssl/evp.h> | ||
| 11 | |||
| 12 | int EVP_VerifyInit_ex(EVP_MD_CTX *ctx, const EVP_MD *type, ENGINE *impl); | ||
| 13 | int EVP_VerifyUpdate(EVP_MD_CTX *ctx, const void *d, unsigned int cnt); | ||
| 14 | int EVP_VerifyFinal(EVP_MD_CTX *ctx,unsigned char *sigbuf, unsigned int siglen,EVP_PKEY *pkey); | ||
| 15 | |||
| 16 | int EVP_VerifyInit(EVP_MD_CTX *ctx, const EVP_MD *type); | ||
| 17 | |||
| 18 | =head1 DESCRIPTION | ||
| 19 | |||
| 20 | The EVP signature verification routines are a high level interface to digital | ||
| 21 | signatures. | ||
| 22 | |||
| 23 | EVP_VerifyInit_ex() sets up verification context B<ctx> to use digest | ||
| 24 | B<type> from ENGINE B<impl>. B<ctx> must be initialized by calling | ||
| 25 | EVP_MD_CTX_init() before calling this function. | ||
| 26 | |||
| 27 | EVP_VerifyUpdate() hashes B<cnt> bytes of data at B<d> into the | ||
| 28 | verification context B<ctx>. This function can be called several times on the | ||
| 29 | same B<ctx> to include additional data. | ||
| 30 | |||
| 31 | EVP_VerifyFinal() verifies the data in B<ctx> using the public key B<pkey> | ||
| 32 | and against the B<siglen> bytes at B<sigbuf>. | ||
| 33 | |||
| 34 | EVP_VerifyInit() initializes verification context B<ctx> to use the default | ||
| 35 | implementation of digest B<type>. | ||
| 36 | |||
| 37 | =head1 RETURN VALUES | ||
| 38 | |||
| 39 | EVP_VerifyInit_ex() and EVP_VerifyUpdate() return 1 for success and 0 for | ||
| 40 | failure. | ||
| 41 | |||
| 42 | EVP_VerifyFinal() returns 1 for a correct signature, 0 for failure and -1 if | ||
| 43 | some other error occurred. | ||
| 44 | |||
| 45 | The error codes can be obtained by L<ERR_get_error(3)|ERR_get_error(3)>. | ||
| 46 | |||
| 47 | =head1 NOTES | ||
| 48 | |||
| 49 | The B<EVP> interface to digital signatures should almost always be used in | ||
| 50 | preference to the low level interfaces. This is because the code then becomes | ||
| 51 | transparent to the algorithm used and much more flexible. | ||
| 52 | |||
| 53 | Due to the link between message digests and public key algorithms the correct | ||
| 54 | digest algorithm must be used with the correct public key type. A list of | ||
| 55 | algorithms and associated public key algorithms appears in | ||
| 56 | L<EVP_DigestInit(3)|EVP_DigestInit(3)>. | ||
| 57 | |||
| 58 | The call to EVP_VerifyFinal() internally finalizes a copy of the digest context. | ||
| 59 | This means that calls to EVP_VerifyUpdate() and EVP_VerifyFinal() can be called | ||
| 60 | later to digest and verify additional data. | ||
| 61 | |||
| 62 | Since only a copy of the digest context is ever finalized the context must | ||
| 63 | be cleaned up after use by calling EVP_MD_CTX_cleanup() or a memory leak | ||
| 64 | will occur. | ||
| 65 | |||
| 66 | =head1 BUGS | ||
| 67 | |||
| 68 | Older versions of this documentation wrongly stated that calls to | ||
| 69 | EVP_VerifyUpdate() could not be made after calling EVP_VerifyFinal(). | ||
| 70 | |||
| 71 | Since the public key is passed in the call to EVP_SignFinal() any error | ||
| 72 | relating to the private key (for example an unsuitable key and digest | ||
| 73 | combination) will not be indicated until after potentially large amounts of | ||
| 74 | data have been passed through EVP_SignUpdate(). | ||
| 75 | |||
| 76 | It is not possible to change the signing parameters using these function. | ||
| 77 | |||
| 78 | The previous two bugs are fixed in the newer EVP_VerifyDigest*() function. | ||
| 79 | |||
| 80 | =head1 SEE ALSO | ||
| 81 | |||
| 82 | L<evp(3)|evp(3)>, | ||
| 83 | L<EVP_SignInit(3)|EVP_SignInit(3)>, | ||
| 84 | L<EVP_DigestInit(3)|EVP_DigestInit(3)>, L<err(3)|err(3)>, | ||
| 85 | L<evp(3)|evp(3)>, L<hmac(3)|hmac(3)>, L<md2(3)|md2(3)>, | ||
| 86 | L<md5(3)|md5(3)>, L<ripemd(3)|ripemd(3)>, | ||
| 87 | L<sha(3)|sha(3)>, L<dgst(1)|dgst(1)> | ||
| 88 | |||
| 89 | =head1 HISTORY | ||
| 90 | |||
| 91 | EVP_VerifyInit(), EVP_VerifyUpdate() and EVP_VerifyFinal() are | ||
| 92 | available in all versions of SSLeay and OpenSSL. | ||
| 93 | |||
| 94 | EVP_VerifyInit_ex() was added in OpenSSL 0.9.7 | ||
| 95 | |||
| 96 | =cut | ||
diff --git a/src/lib/libcrypto/doc/evp.pod b/src/lib/libcrypto/doc/evp.pod deleted file mode 100644 index dfd96d3b98..0000000000 --- a/src/lib/libcrypto/doc/evp.pod +++ /dev/null | |||
| @@ -1,107 +0,0 @@ | |||
| 1 | =pod | ||
| 2 | |||
| 3 | =head1 NAME | ||
| 4 | |||
| 5 | evp - high-level cryptographic functions | ||
| 6 | |||
| 7 | =head1 SYNOPSIS | ||
| 8 | |||
| 9 | #include <openssl/evp.h> | ||
| 10 | |||
| 11 | =head1 DESCRIPTION | ||
| 12 | |||
| 13 | The EVP library provides a high-level interface to cryptographic | ||
| 14 | functions. | ||
| 15 | |||
| 16 | L<B<EVP_Seal>I<...>|EVP_SealInit(3)> and L<B<EVP_Open>I<...>|EVP_OpenInit(3)> | ||
| 17 | provide public key encryption and decryption to implement digital "envelopes". | ||
| 18 | |||
| 19 | The L<B<EVP_DigestSign>I<...>|EVP_DigestSignInit(3)> and | ||
| 20 | L<B<EVP_DigestVerify>I<...>|EVP_DigestVerifyInit(3)> functions implement | ||
| 21 | digital signatures and Message Authentication Codes (MACs). Also see the older | ||
| 22 | L<B<EVP_Sign>I<...>|EVP_SignInit(3)> and L<B<EVP_Verify>I<...>|EVP_VerifyInit(3)> | ||
| 23 | functions. | ||
| 24 | |||
| 25 | Symmetric encryption is available with the L<B<EVP_Encrypt>I<...>|EVP_EncryptInit(3)> | ||
| 26 | functions. The L<B<EVP_Digest>I<...>|EVP_DigestInit(3)> functions provide message digests. | ||
| 27 | |||
| 28 | Authenticated encryption with additional data (AEAD) is available with | ||
| 29 | the L<B<EVP_AEAD>I<...>|EVP_AEAD_CTX_init(3)> functions. | ||
| 30 | |||
| 31 | The B<EVP_PKEY>I<...> functions provide a high level interface to | ||
| 32 | asymmetric algorithms. To create a new EVP_PKEY see | ||
| 33 | L<EVP_PKEY_new(3)|EVP_PKEY_new(3)>. EVP_PKEYs can be associated | ||
| 34 | with a private key of a particular algorithm by using the functions | ||
| 35 | described on the L<EVP_PKEY_set1_RSA(3)|EVP_PKEY_set1_RSA(3)> page, or | ||
| 36 | new keys can be generated using L<EVP_PKEY_keygen(3)|EVP_PKEY_keygen(3)>. | ||
| 37 | EVP_PKEYs can be compared using L<EVP_PKEY_cmp(3)|EVP_PKEY_cmp(3)>, or printed using | ||
| 38 | L<EVP_PKEY_print_private(3)|EVP_PKEY_print_private(3)>. | ||
| 39 | |||
| 40 | The EVP_PKEY functions support the full range of asymmetric algorithm operations: | ||
| 41 | |||
| 42 | =over | ||
| 43 | |||
| 44 | =item For key agreement see L<EVP_PKEY_derive(3)|EVP_PKEY_derive(3)> | ||
| 45 | |||
| 46 | =item For signing and verifying see L<EVP_PKEY_sign(3)|EVP_PKEY_sign(3)>, | ||
| 47 | L<EVP_PKEY_verify(3)|EVP_PKEY_verify(3)> and L<EVP_PKEY_verify_recover(3)|EVP_PKEY_verify_recover(3)>. | ||
| 48 | However, note that | ||
| 49 | these functions do not perform a digest of the data to be signed. Therefore | ||
| 50 | normally you would use the L<B<EVP_DigestSign>I<...>|EVP_DigestSignInit(3)> | ||
| 51 | functions for this purpose. | ||
| 52 | |||
| 53 | =item For encryption and decryption see L<EVP_PKEY_encrypt(3)|EVP_PKEY_encrypt(3)> | ||
| 54 | and L<EVP_PKEY_decrypt(3)|EVP_PKEY_decrypt(3)> respectively. However, note that | ||
| 55 | these functions perform encryption and decryption only. As public key | ||
| 56 | encryption is an expensive operation, normally you would wrap | ||
| 57 | an encrypted message in a "digital envelope" using the L<B<EVP_Seal>I<...>|EVP_SealInit(3)> and | ||
| 58 | L<B<EVP_Open>I<...>|EVP_OpenInit(3)> functions. | ||
| 59 | |||
| 60 | =back | ||
| 61 | |||
| 62 | The L<EVP_BytesToKey(3)|EVP_BytesToKey(3)> function provides some limited support for password | ||
| 63 | based encryption. Careful selection of the parameters will provide a PKCS#5 PBKDF1 compatible | ||
| 64 | implementation. However, new applications should not typically use this (preferring, for example, | ||
| 65 | PBKDF2 from PCKS#5). | ||
| 66 | |||
| 67 | Algorithms are loaded with L<OpenSSL_add_all_algorithms(3)|OpenSSL_add_all_algorithms(3)>. | ||
| 68 | |||
| 69 | All the symmetric algorithms (ciphers), digests and asymmetric algorithms | ||
| 70 | (public key algorithms) can be replaced by L<ENGINE|engine(3)> modules providing alternative | ||
| 71 | implementations. If ENGINE implementations of ciphers or digests are registered | ||
| 72 | as defaults, then the various EVP functions will automatically use those | ||
| 73 | implementations automatically in preference to built in software | ||
| 74 | implementations. For more information, consult the engine(3) man page. | ||
| 75 | |||
| 76 | Although low level algorithm specific functions exist for many algorithms | ||
| 77 | their use is discouraged. They cannot be used with an ENGINE and ENGINE | ||
| 78 | versions of new algorithms cannot be accessed using the low level functions. | ||
| 79 | Also makes code harder to adapt to new algorithms and some options are not | ||
| 80 | cleanly supported at the low level and some operations are more efficient | ||
| 81 | using the high level interface. | ||
| 82 | |||
| 83 | =head1 SEE ALSO | ||
| 84 | |||
| 85 | L<EVP_DigestInit(3)|EVP_DigestInit(3)>, | ||
| 86 | L<EVP_EncryptInit(3)|EVP_EncryptInit(3)>, | ||
| 87 | L<EVP_AEAD_CTX_init(3)|EVP_AEAD_CTX_init(3)>, | ||
| 88 | L<EVP_OpenInit(3)|EVP_OpenInit(3)>, | ||
| 89 | L<EVP_SealInit(3)|EVP_SealInit(3)>, | ||
| 90 | L<EVP_DigestSignInit(3)|EVP_DigestSignInit(3)>, | ||
| 91 | L<EVP_SignInit(3)|EVP_SignInit(3)>, | ||
| 92 | L<EVP_VerifyInit(3)|EVP_VerifyInit(3)>, | ||
| 93 | L<EVP_PKEY_new(3)|EVP_PKEY_new(3)>, | ||
| 94 | L<EVP_PKEY_set1_RSA(3)|EVP_PKEY_set1_RSA(3)>, | ||
| 95 | L<EVP_PKEY_keygen(3)|EVP_PKEY_keygen(3)>, | ||
| 96 | L<EVP_PKEY_print_private(3)|EVP_PKEY_print_private(3)>, | ||
| 97 | L<EVP_PKEY_decrypt(3)|EVP_PKEY_decrypt(3)>, | ||
| 98 | L<EVP_PKEY_encrypt(3)|EVP_PKEY_encrypt(3)>, | ||
| 99 | L<EVP_PKEY_sign(3)|EVP_PKEY_sign(3)>, | ||
| 100 | L<EVP_PKEY_verify(3)|EVP_PKEY_verify(3)>, | ||
| 101 | L<EVP_PKEY_verify_recover(3)|EVP_PKEY_verify_recover(3)>, | ||
| 102 | L<EVP_PKEY_derive(3)|EVP_PKEY_derive(3)>, | ||
| 103 | L<EVP_BytesToKey(3)|EVP_BytesToKey(3)>, | ||
| 104 | L<OpenSSL_add_all_algorithms(3)|OpenSSL_add_all_algorithms(3)>, | ||
| 105 | L<engine(3)|engine(3)> | ||
| 106 | |||
| 107 | =cut | ||
