diff options
Diffstat (limited to 'src/lib/libcrypto/ec/ec2_mult.c')
-rw-r--r-- | src/lib/libcrypto/ec/ec2_mult.c | 390 |
1 files changed, 390 insertions, 0 deletions
diff --git a/src/lib/libcrypto/ec/ec2_mult.c b/src/lib/libcrypto/ec/ec2_mult.c new file mode 100644 index 0000000000..26f4a783fc --- /dev/null +++ b/src/lib/libcrypto/ec/ec2_mult.c | |||
@@ -0,0 +1,390 @@ | |||
1 | /* crypto/ec/ec2_mult.c */ | ||
2 | /* ==================================================================== | ||
3 | * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. | ||
4 | * | ||
5 | * The Elliptic Curve Public-Key Crypto Library (ECC Code) included | ||
6 | * herein is developed by SUN MICROSYSTEMS, INC., and is contributed | ||
7 | * to the OpenSSL project. | ||
8 | * | ||
9 | * The ECC Code is licensed pursuant to the OpenSSL open source | ||
10 | * license provided below. | ||
11 | * | ||
12 | * The software is originally written by Sheueling Chang Shantz and | ||
13 | * Douglas Stebila of Sun Microsystems Laboratories. | ||
14 | * | ||
15 | */ | ||
16 | /* ==================================================================== | ||
17 | * Copyright (c) 1998-2003 The OpenSSL Project. All rights reserved. | ||
18 | * | ||
19 | * Redistribution and use in source and binary forms, with or without | ||
20 | * modification, are permitted provided that the following conditions | ||
21 | * are met: | ||
22 | * | ||
23 | * 1. Redistributions of source code must retain the above copyright | ||
24 | * notice, this list of conditions and the following disclaimer. | ||
25 | * | ||
26 | * 2. Redistributions in binary form must reproduce the above copyright | ||
27 | * notice, this list of conditions and the following disclaimer in | ||
28 | * the documentation and/or other materials provided with the | ||
29 | * distribution. | ||
30 | * | ||
31 | * 3. All advertising materials mentioning features or use of this | ||
32 | * software must display the following acknowledgment: | ||
33 | * "This product includes software developed by the OpenSSL Project | ||
34 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | ||
35 | * | ||
36 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
37 | * endorse or promote products derived from this software without | ||
38 | * prior written permission. For written permission, please contact | ||
39 | * openssl-core@openssl.org. | ||
40 | * | ||
41 | * 5. Products derived from this software may not be called "OpenSSL" | ||
42 | * nor may "OpenSSL" appear in their names without prior written | ||
43 | * permission of the OpenSSL Project. | ||
44 | * | ||
45 | * 6. Redistributions of any form whatsoever must retain the following | ||
46 | * acknowledgment: | ||
47 | * "This product includes software developed by the OpenSSL Project | ||
48 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" | ||
49 | * | ||
50 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
51 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
52 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
53 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
54 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
55 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
56 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
57 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
58 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
59 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
60 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
61 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
62 | * ==================================================================== | ||
63 | * | ||
64 | * This product includes cryptographic software written by Eric Young | ||
65 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
66 | * Hudson (tjh@cryptsoft.com). | ||
67 | * | ||
68 | */ | ||
69 | |||
70 | #include <openssl/err.h> | ||
71 | |||
72 | #include "ec_lcl.h" | ||
73 | |||
74 | #ifndef OPENSSL_NO_EC2M | ||
75 | |||
76 | |||
77 | /* Compute the x-coordinate x/z for the point 2*(x/z) in Montgomery projective | ||
78 | * coordinates. | ||
79 | * Uses algorithm Mdouble in appendix of | ||
80 | * Lopez, J. and Dahab, R. "Fast multiplication on elliptic curves over | ||
81 | * GF(2^m) without precomputation" (CHES '99, LNCS 1717). | ||
82 | * modified to not require precomputation of c=b^{2^{m-1}}. | ||
83 | */ | ||
84 | static int gf2m_Mdouble(const EC_GROUP *group, BIGNUM *x, BIGNUM *z, BN_CTX *ctx) | ||
85 | { | ||
86 | BIGNUM *t1; | ||
87 | int ret = 0; | ||
88 | |||
89 | /* Since Mdouble is static we can guarantee that ctx != NULL. */ | ||
90 | BN_CTX_start(ctx); | ||
91 | t1 = BN_CTX_get(ctx); | ||
92 | if (t1 == NULL) goto err; | ||
93 | |||
94 | if (!group->meth->field_sqr(group, x, x, ctx)) goto err; | ||
95 | if (!group->meth->field_sqr(group, t1, z, ctx)) goto err; | ||
96 | if (!group->meth->field_mul(group, z, x, t1, ctx)) goto err; | ||
97 | if (!group->meth->field_sqr(group, x, x, ctx)) goto err; | ||
98 | if (!group->meth->field_sqr(group, t1, t1, ctx)) goto err; | ||
99 | if (!group->meth->field_mul(group, t1, &group->b, t1, ctx)) goto err; | ||
100 | if (!BN_GF2m_add(x, x, t1)) goto err; | ||
101 | |||
102 | ret = 1; | ||
103 | |||
104 | err: | ||
105 | BN_CTX_end(ctx); | ||
106 | return ret; | ||
107 | } | ||
108 | |||
109 | /* Compute the x-coordinate x1/z1 for the point (x1/z1)+(x2/x2) in Montgomery | ||
110 | * projective coordinates. | ||
111 | * Uses algorithm Madd in appendix of | ||
112 | * Lopez, J. and Dahab, R. "Fast multiplication on elliptic curves over | ||
113 | * GF(2^m) without precomputation" (CHES '99, LNCS 1717). | ||
114 | */ | ||
115 | static int gf2m_Madd(const EC_GROUP *group, const BIGNUM *x, BIGNUM *x1, BIGNUM *z1, | ||
116 | const BIGNUM *x2, const BIGNUM *z2, BN_CTX *ctx) | ||
117 | { | ||
118 | BIGNUM *t1, *t2; | ||
119 | int ret = 0; | ||
120 | |||
121 | /* Since Madd is static we can guarantee that ctx != NULL. */ | ||
122 | BN_CTX_start(ctx); | ||
123 | t1 = BN_CTX_get(ctx); | ||
124 | t2 = BN_CTX_get(ctx); | ||
125 | if (t2 == NULL) goto err; | ||
126 | |||
127 | if (!BN_copy(t1, x)) goto err; | ||
128 | if (!group->meth->field_mul(group, x1, x1, z2, ctx)) goto err; | ||
129 | if (!group->meth->field_mul(group, z1, z1, x2, ctx)) goto err; | ||
130 | if (!group->meth->field_mul(group, t2, x1, z1, ctx)) goto err; | ||
131 | if (!BN_GF2m_add(z1, z1, x1)) goto err; | ||
132 | if (!group->meth->field_sqr(group, z1, z1, ctx)) goto err; | ||
133 | if (!group->meth->field_mul(group, x1, z1, t1, ctx)) goto err; | ||
134 | if (!BN_GF2m_add(x1, x1, t2)) goto err; | ||
135 | |||
136 | ret = 1; | ||
137 | |||
138 | err: | ||
139 | BN_CTX_end(ctx); | ||
140 | return ret; | ||
141 | } | ||
142 | |||
143 | /* Compute the x, y affine coordinates from the point (x1, z1) (x2, z2) | ||
144 | * using Montgomery point multiplication algorithm Mxy() in appendix of | ||
145 | * Lopez, J. and Dahab, R. "Fast multiplication on elliptic curves over | ||
146 | * GF(2^m) without precomputation" (CHES '99, LNCS 1717). | ||
147 | * Returns: | ||
148 | * 0 on error | ||
149 | * 1 if return value should be the point at infinity | ||
150 | * 2 otherwise | ||
151 | */ | ||
152 | static int gf2m_Mxy(const EC_GROUP *group, const BIGNUM *x, const BIGNUM *y, BIGNUM *x1, | ||
153 | BIGNUM *z1, BIGNUM *x2, BIGNUM *z2, BN_CTX *ctx) | ||
154 | { | ||
155 | BIGNUM *t3, *t4, *t5; | ||
156 | int ret = 0; | ||
157 | |||
158 | if (BN_is_zero(z1)) | ||
159 | { | ||
160 | BN_zero(x2); | ||
161 | BN_zero(z2); | ||
162 | return 1; | ||
163 | } | ||
164 | |||
165 | if (BN_is_zero(z2)) | ||
166 | { | ||
167 | if (!BN_copy(x2, x)) return 0; | ||
168 | if (!BN_GF2m_add(z2, x, y)) return 0; | ||
169 | return 2; | ||
170 | } | ||
171 | |||
172 | /* Since Mxy is static we can guarantee that ctx != NULL. */ | ||
173 | BN_CTX_start(ctx); | ||
174 | t3 = BN_CTX_get(ctx); | ||
175 | t4 = BN_CTX_get(ctx); | ||
176 | t5 = BN_CTX_get(ctx); | ||
177 | if (t5 == NULL) goto err; | ||
178 | |||
179 | if (!BN_one(t5)) goto err; | ||
180 | |||
181 | if (!group->meth->field_mul(group, t3, z1, z2, ctx)) goto err; | ||
182 | |||
183 | if (!group->meth->field_mul(group, z1, z1, x, ctx)) goto err; | ||
184 | if (!BN_GF2m_add(z1, z1, x1)) goto err; | ||
185 | if (!group->meth->field_mul(group, z2, z2, x, ctx)) goto err; | ||
186 | if (!group->meth->field_mul(group, x1, z2, x1, ctx)) goto err; | ||
187 | if (!BN_GF2m_add(z2, z2, x2)) goto err; | ||
188 | |||
189 | if (!group->meth->field_mul(group, z2, z2, z1, ctx)) goto err; | ||
190 | if (!group->meth->field_sqr(group, t4, x, ctx)) goto err; | ||
191 | if (!BN_GF2m_add(t4, t4, y)) goto err; | ||
192 | if (!group->meth->field_mul(group, t4, t4, t3, ctx)) goto err; | ||
193 | if (!BN_GF2m_add(t4, t4, z2)) goto err; | ||
194 | |||
195 | if (!group->meth->field_mul(group, t3, t3, x, ctx)) goto err; | ||
196 | if (!group->meth->field_div(group, t3, t5, t3, ctx)) goto err; | ||
197 | if (!group->meth->field_mul(group, t4, t3, t4, ctx)) goto err; | ||
198 | if (!group->meth->field_mul(group, x2, x1, t3, ctx)) goto err; | ||
199 | if (!BN_GF2m_add(z2, x2, x)) goto err; | ||
200 | |||
201 | if (!group->meth->field_mul(group, z2, z2, t4, ctx)) goto err; | ||
202 | if (!BN_GF2m_add(z2, z2, y)) goto err; | ||
203 | |||
204 | ret = 2; | ||
205 | |||
206 | err: | ||
207 | BN_CTX_end(ctx); | ||
208 | return ret; | ||
209 | } | ||
210 | |||
211 | /* Computes scalar*point and stores the result in r. | ||
212 | * point can not equal r. | ||
213 | * Uses algorithm 2P of | ||
214 | * Lopez, J. and Dahab, R. "Fast multiplication on elliptic curves over | ||
215 | * GF(2^m) without precomputation" (CHES '99, LNCS 1717). | ||
216 | */ | ||
217 | static int ec_GF2m_montgomery_point_multiply(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar, | ||
218 | const EC_POINT *point, BN_CTX *ctx) | ||
219 | { | ||
220 | BIGNUM *x1, *x2, *z1, *z2; | ||
221 | int ret = 0, i; | ||
222 | BN_ULONG mask,word; | ||
223 | |||
224 | if (r == point) | ||
225 | { | ||
226 | ECerr(EC_F_EC_GF2M_MONTGOMERY_POINT_MULTIPLY, EC_R_INVALID_ARGUMENT); | ||
227 | return 0; | ||
228 | } | ||
229 | |||
230 | /* if result should be point at infinity */ | ||
231 | if ((scalar == NULL) || BN_is_zero(scalar) || (point == NULL) || | ||
232 | EC_POINT_is_at_infinity(group, point)) | ||
233 | { | ||
234 | return EC_POINT_set_to_infinity(group, r); | ||
235 | } | ||
236 | |||
237 | /* only support affine coordinates */ | ||
238 | if (!point->Z_is_one) return 0; | ||
239 | |||
240 | /* Since point_multiply is static we can guarantee that ctx != NULL. */ | ||
241 | BN_CTX_start(ctx); | ||
242 | x1 = BN_CTX_get(ctx); | ||
243 | z1 = BN_CTX_get(ctx); | ||
244 | if (z1 == NULL) goto err; | ||
245 | |||
246 | x2 = &r->X; | ||
247 | z2 = &r->Y; | ||
248 | |||
249 | if (!BN_GF2m_mod_arr(x1, &point->X, group->poly)) goto err; /* x1 = x */ | ||
250 | if (!BN_one(z1)) goto err; /* z1 = 1 */ | ||
251 | if (!group->meth->field_sqr(group, z2, x1, ctx)) goto err; /* z2 = x1^2 = x^2 */ | ||
252 | if (!group->meth->field_sqr(group, x2, z2, ctx)) goto err; | ||
253 | if (!BN_GF2m_add(x2, x2, &group->b)) goto err; /* x2 = x^4 + b */ | ||
254 | |||
255 | /* find top most bit and go one past it */ | ||
256 | i = scalar->top - 1; | ||
257 | mask = BN_TBIT; | ||
258 | word = scalar->d[i]; | ||
259 | while (!(word & mask)) mask >>= 1; | ||
260 | mask >>= 1; | ||
261 | /* if top most bit was at word break, go to next word */ | ||
262 | if (!mask) | ||
263 | { | ||
264 | i--; | ||
265 | mask = BN_TBIT; | ||
266 | } | ||
267 | |||
268 | for (; i >= 0; i--) | ||
269 | { | ||
270 | word = scalar->d[i]; | ||
271 | while (mask) | ||
272 | { | ||
273 | if (word & mask) | ||
274 | { | ||
275 | if (!gf2m_Madd(group, &point->X, x1, z1, x2, z2, ctx)) goto err; | ||
276 | if (!gf2m_Mdouble(group, x2, z2, ctx)) goto err; | ||
277 | } | ||
278 | else | ||
279 | { | ||
280 | if (!gf2m_Madd(group, &point->X, x2, z2, x1, z1, ctx)) goto err; | ||
281 | if (!gf2m_Mdouble(group, x1, z1, ctx)) goto err; | ||
282 | } | ||
283 | mask >>= 1; | ||
284 | } | ||
285 | mask = BN_TBIT; | ||
286 | } | ||
287 | |||
288 | /* convert out of "projective" coordinates */ | ||
289 | i = gf2m_Mxy(group, &point->X, &point->Y, x1, z1, x2, z2, ctx); | ||
290 | if (i == 0) goto err; | ||
291 | else if (i == 1) | ||
292 | { | ||
293 | if (!EC_POINT_set_to_infinity(group, r)) goto err; | ||
294 | } | ||
295 | else | ||
296 | { | ||
297 | if (!BN_one(&r->Z)) goto err; | ||
298 | r->Z_is_one = 1; | ||
299 | } | ||
300 | |||
301 | /* GF(2^m) field elements should always have BIGNUM::neg = 0 */ | ||
302 | BN_set_negative(&r->X, 0); | ||
303 | BN_set_negative(&r->Y, 0); | ||
304 | |||
305 | ret = 1; | ||
306 | |||
307 | err: | ||
308 | BN_CTX_end(ctx); | ||
309 | return ret; | ||
310 | } | ||
311 | |||
312 | |||
313 | /* Computes the sum | ||
314 | * scalar*group->generator + scalars[0]*points[0] + ... + scalars[num-1]*points[num-1] | ||
315 | * gracefully ignoring NULL scalar values. | ||
316 | */ | ||
317 | int ec_GF2m_simple_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar, | ||
318 | size_t num, const EC_POINT *points[], const BIGNUM *scalars[], BN_CTX *ctx) | ||
319 | { | ||
320 | BN_CTX *new_ctx = NULL; | ||
321 | int ret = 0; | ||
322 | size_t i; | ||
323 | EC_POINT *p=NULL; | ||
324 | EC_POINT *acc = NULL; | ||
325 | |||
326 | if (ctx == NULL) | ||
327 | { | ||
328 | ctx = new_ctx = BN_CTX_new(); | ||
329 | if (ctx == NULL) | ||
330 | return 0; | ||
331 | } | ||
332 | |||
333 | /* This implementation is more efficient than the wNAF implementation for 2 | ||
334 | * or fewer points. Use the ec_wNAF_mul implementation for 3 or more points, | ||
335 | * or if we can perform a fast multiplication based on precomputation. | ||
336 | */ | ||
337 | if ((scalar && (num > 1)) || (num > 2) || (num == 0 && EC_GROUP_have_precompute_mult(group))) | ||
338 | { | ||
339 | ret = ec_wNAF_mul(group, r, scalar, num, points, scalars, ctx); | ||
340 | goto err; | ||
341 | } | ||
342 | |||
343 | if ((p = EC_POINT_new(group)) == NULL) goto err; | ||
344 | if ((acc = EC_POINT_new(group)) == NULL) goto err; | ||
345 | |||
346 | if (!EC_POINT_set_to_infinity(group, acc)) goto err; | ||
347 | |||
348 | if (scalar) | ||
349 | { | ||
350 | if (!ec_GF2m_montgomery_point_multiply(group, p, scalar, group->generator, ctx)) goto err; | ||
351 | if (BN_is_negative(scalar)) | ||
352 | if (!group->meth->invert(group, p, ctx)) goto err; | ||
353 | if (!group->meth->add(group, acc, acc, p, ctx)) goto err; | ||
354 | } | ||
355 | |||
356 | for (i = 0; i < num; i++) | ||
357 | { | ||
358 | if (!ec_GF2m_montgomery_point_multiply(group, p, scalars[i], points[i], ctx)) goto err; | ||
359 | if (BN_is_negative(scalars[i])) | ||
360 | if (!group->meth->invert(group, p, ctx)) goto err; | ||
361 | if (!group->meth->add(group, acc, acc, p, ctx)) goto err; | ||
362 | } | ||
363 | |||
364 | if (!EC_POINT_copy(r, acc)) goto err; | ||
365 | |||
366 | ret = 1; | ||
367 | |||
368 | err: | ||
369 | if (p) EC_POINT_free(p); | ||
370 | if (acc) EC_POINT_free(acc); | ||
371 | if (new_ctx != NULL) | ||
372 | BN_CTX_free(new_ctx); | ||
373 | return ret; | ||
374 | } | ||
375 | |||
376 | |||
377 | /* Precomputation for point multiplication: fall back to wNAF methods | ||
378 | * because ec_GF2m_simple_mul() uses ec_wNAF_mul() if appropriate */ | ||
379 | |||
380 | int ec_GF2m_precompute_mult(EC_GROUP *group, BN_CTX *ctx) | ||
381 | { | ||
382 | return ec_wNAF_precompute_mult(group, ctx); | ||
383 | } | ||
384 | |||
385 | int ec_GF2m_have_precompute_mult(const EC_GROUP *group) | ||
386 | { | ||
387 | return ec_wNAF_have_precompute_mult(group); | ||
388 | } | ||
389 | |||
390 | #endif | ||