diff options
Diffstat (limited to 'src/lib/libcrypto/ec/ec2_mult.c')
| -rw-r--r-- | src/lib/libcrypto/ec/ec2_mult.c | 380 |
1 files changed, 380 insertions, 0 deletions
diff --git a/src/lib/libcrypto/ec/ec2_mult.c b/src/lib/libcrypto/ec/ec2_mult.c new file mode 100644 index 0000000000..ff368fd7d7 --- /dev/null +++ b/src/lib/libcrypto/ec/ec2_mult.c | |||
| @@ -0,0 +1,380 @@ | |||
| 1 | /* crypto/ec/ec2_mult.c */ | ||
| 2 | /* ==================================================================== | ||
| 3 | * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. | ||
| 4 | * | ||
| 5 | * The Elliptic Curve Public-Key Crypto Library (ECC Code) included | ||
| 6 | * herein is developed by SUN MICROSYSTEMS, INC., and is contributed | ||
| 7 | * to the OpenSSL project. | ||
| 8 | * | ||
| 9 | * The ECC Code is licensed pursuant to the OpenSSL open source | ||
| 10 | * license provided below. | ||
| 11 | * | ||
| 12 | * The software is originally written by Sheueling Chang Shantz and | ||
| 13 | * Douglas Stebila of Sun Microsystems Laboratories. | ||
| 14 | * | ||
| 15 | */ | ||
| 16 | /* ==================================================================== | ||
| 17 | * Copyright (c) 1998-2003 The OpenSSL Project. All rights reserved. | ||
| 18 | * | ||
| 19 | * Redistribution and use in source and binary forms, with or without | ||
| 20 | * modification, are permitted provided that the following conditions | ||
| 21 | * are met: | ||
| 22 | * | ||
| 23 | * 1. Redistributions of source code must retain the above copyright | ||
| 24 | * notice, this list of conditions and the following disclaimer. | ||
| 25 | * | ||
| 26 | * 2. Redistributions in binary form must reproduce the above copyright | ||
| 27 | * notice, this list of conditions and the following disclaimer in | ||
| 28 | * the documentation and/or other materials provided with the | ||
| 29 | * distribution. | ||
| 30 | * | ||
| 31 | * 3. All advertising materials mentioning features or use of this | ||
| 32 | * software must display the following acknowledgment: | ||
| 33 | * "This product includes software developed by the OpenSSL Project | ||
| 34 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | ||
| 35 | * | ||
| 36 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
| 37 | * endorse or promote products derived from this software without | ||
| 38 | * prior written permission. For written permission, please contact | ||
| 39 | * openssl-core@openssl.org. | ||
| 40 | * | ||
| 41 | * 5. Products derived from this software may not be called "OpenSSL" | ||
| 42 | * nor may "OpenSSL" appear in their names without prior written | ||
| 43 | * permission of the OpenSSL Project. | ||
| 44 | * | ||
| 45 | * 6. Redistributions of any form whatsoever must retain the following | ||
| 46 | * acknowledgment: | ||
| 47 | * "This product includes software developed by the OpenSSL Project | ||
| 48 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" | ||
| 49 | * | ||
| 50 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
| 51 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
| 52 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
| 53 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
| 54 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
| 55 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
| 56 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
| 57 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
| 58 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
| 59 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
| 60 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
| 61 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
| 62 | * ==================================================================== | ||
| 63 | * | ||
| 64 | * This product includes cryptographic software written by Eric Young | ||
| 65 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
| 66 | * Hudson (tjh@cryptsoft.com). | ||
| 67 | * | ||
| 68 | */ | ||
| 69 | |||
| 70 | #include <openssl/err.h> | ||
| 71 | |||
| 72 | #include "ec_lcl.h" | ||
| 73 | |||
| 74 | |||
| 75 | /* Compute the x-coordinate x/z for the point 2*(x/z) in Montgomery projective | ||
| 76 | * coordinates. | ||
| 77 | * Uses algorithm Mdouble in appendix of | ||
| 78 | * Lopez, J. and Dahab, R. "Fast multiplication on elliptic curves over | ||
| 79 | * GF(2^m) without precomputation". | ||
| 80 | * modified to not require precomputation of c=b^{2^{m-1}}. | ||
| 81 | */ | ||
| 82 | static int gf2m_Mdouble(const EC_GROUP *group, BIGNUM *x, BIGNUM *z, BN_CTX *ctx) | ||
| 83 | { | ||
| 84 | BIGNUM *t1; | ||
| 85 | int ret = 0; | ||
| 86 | |||
| 87 | /* Since Mdouble is static we can guarantee that ctx != NULL. */ | ||
| 88 | BN_CTX_start(ctx); | ||
| 89 | t1 = BN_CTX_get(ctx); | ||
| 90 | if (t1 == NULL) goto err; | ||
| 91 | |||
| 92 | if (!group->meth->field_sqr(group, x, x, ctx)) goto err; | ||
| 93 | if (!group->meth->field_sqr(group, t1, z, ctx)) goto err; | ||
| 94 | if (!group->meth->field_mul(group, z, x, t1, ctx)) goto err; | ||
| 95 | if (!group->meth->field_sqr(group, x, x, ctx)) goto err; | ||
| 96 | if (!group->meth->field_sqr(group, t1, t1, ctx)) goto err; | ||
| 97 | if (!group->meth->field_mul(group, t1, &group->b, t1, ctx)) goto err; | ||
| 98 | if (!BN_GF2m_add(x, x, t1)) goto err; | ||
| 99 | |||
| 100 | ret = 1; | ||
| 101 | |||
| 102 | err: | ||
| 103 | BN_CTX_end(ctx); | ||
| 104 | return ret; | ||
| 105 | } | ||
| 106 | |||
| 107 | /* Compute the x-coordinate x1/z1 for the point (x1/z1)+(x2/x2) in Montgomery | ||
| 108 | * projective coordinates. | ||
| 109 | * Uses algorithm Madd in appendix of | ||
| 110 | * Lopex, J. and Dahab, R. "Fast multiplication on elliptic curves over | ||
| 111 | * GF(2^m) without precomputation". | ||
| 112 | */ | ||
| 113 | static int gf2m_Madd(const EC_GROUP *group, const BIGNUM *x, BIGNUM *x1, BIGNUM *z1, | ||
| 114 | const BIGNUM *x2, const BIGNUM *z2, BN_CTX *ctx) | ||
| 115 | { | ||
| 116 | BIGNUM *t1, *t2; | ||
| 117 | int ret = 0; | ||
| 118 | |||
| 119 | /* Since Madd is static we can guarantee that ctx != NULL. */ | ||
| 120 | BN_CTX_start(ctx); | ||
| 121 | t1 = BN_CTX_get(ctx); | ||
| 122 | t2 = BN_CTX_get(ctx); | ||
| 123 | if (t2 == NULL) goto err; | ||
| 124 | |||
| 125 | if (!BN_copy(t1, x)) goto err; | ||
| 126 | if (!group->meth->field_mul(group, x1, x1, z2, ctx)) goto err; | ||
| 127 | if (!group->meth->field_mul(group, z1, z1, x2, ctx)) goto err; | ||
| 128 | if (!group->meth->field_mul(group, t2, x1, z1, ctx)) goto err; | ||
| 129 | if (!BN_GF2m_add(z1, z1, x1)) goto err; | ||
| 130 | if (!group->meth->field_sqr(group, z1, z1, ctx)) goto err; | ||
| 131 | if (!group->meth->field_mul(group, x1, z1, t1, ctx)) goto err; | ||
| 132 | if (!BN_GF2m_add(x1, x1, t2)) goto err; | ||
| 133 | |||
| 134 | ret = 1; | ||
| 135 | |||
| 136 | err: | ||
| 137 | BN_CTX_end(ctx); | ||
| 138 | return ret; | ||
| 139 | } | ||
| 140 | |||
| 141 | /* Compute the x, y affine coordinates from the point (x1, z1) (x2, z2) | ||
| 142 | * using Montgomery point multiplication algorithm Mxy() in appendix of | ||
| 143 | * Lopex, J. and Dahab, R. "Fast multiplication on elliptic curves over | ||
| 144 | * GF(2^m) without precomputation". | ||
| 145 | * Returns: | ||
| 146 | * 0 on error | ||
| 147 | * 1 if return value should be the point at infinity | ||
| 148 | * 2 otherwise | ||
| 149 | */ | ||
| 150 | static int gf2m_Mxy(const EC_GROUP *group, const BIGNUM *x, const BIGNUM *y, BIGNUM *x1, | ||
| 151 | BIGNUM *z1, BIGNUM *x2, BIGNUM *z2, BN_CTX *ctx) | ||
| 152 | { | ||
| 153 | BIGNUM *t3, *t4, *t5; | ||
| 154 | int ret = 0; | ||
| 155 | |||
| 156 | if (BN_is_zero(z1)) | ||
| 157 | { | ||
| 158 | BN_zero(x2); | ||
| 159 | BN_zero(z2); | ||
| 160 | return 1; | ||
| 161 | } | ||
| 162 | |||
| 163 | if (BN_is_zero(z2)) | ||
| 164 | { | ||
| 165 | if (!BN_copy(x2, x)) return 0; | ||
| 166 | if (!BN_GF2m_add(z2, x, y)) return 0; | ||
| 167 | return 2; | ||
| 168 | } | ||
| 169 | |||
| 170 | /* Since Mxy is static we can guarantee that ctx != NULL. */ | ||
| 171 | BN_CTX_start(ctx); | ||
| 172 | t3 = BN_CTX_get(ctx); | ||
| 173 | t4 = BN_CTX_get(ctx); | ||
| 174 | t5 = BN_CTX_get(ctx); | ||
| 175 | if (t5 == NULL) goto err; | ||
| 176 | |||
| 177 | if (!BN_one(t5)) goto err; | ||
| 178 | |||
| 179 | if (!group->meth->field_mul(group, t3, z1, z2, ctx)) goto err; | ||
| 180 | |||
| 181 | if (!group->meth->field_mul(group, z1, z1, x, ctx)) goto err; | ||
| 182 | if (!BN_GF2m_add(z1, z1, x1)) goto err; | ||
| 183 | if (!group->meth->field_mul(group, z2, z2, x, ctx)) goto err; | ||
| 184 | if (!group->meth->field_mul(group, x1, z2, x1, ctx)) goto err; | ||
| 185 | if (!BN_GF2m_add(z2, z2, x2)) goto err; | ||
| 186 | |||
| 187 | if (!group->meth->field_mul(group, z2, z2, z1, ctx)) goto err; | ||
| 188 | if (!group->meth->field_sqr(group, t4, x, ctx)) goto err; | ||
| 189 | if (!BN_GF2m_add(t4, t4, y)) goto err; | ||
| 190 | if (!group->meth->field_mul(group, t4, t4, t3, ctx)) goto err; | ||
| 191 | if (!BN_GF2m_add(t4, t4, z2)) goto err; | ||
| 192 | |||
| 193 | if (!group->meth->field_mul(group, t3, t3, x, ctx)) goto err; | ||
| 194 | if (!group->meth->field_div(group, t3, t5, t3, ctx)) goto err; | ||
| 195 | if (!group->meth->field_mul(group, t4, t3, t4, ctx)) goto err; | ||
| 196 | if (!group->meth->field_mul(group, x2, x1, t3, ctx)) goto err; | ||
| 197 | if (!BN_GF2m_add(z2, x2, x)) goto err; | ||
| 198 | |||
| 199 | if (!group->meth->field_mul(group, z2, z2, t4, ctx)) goto err; | ||
| 200 | if (!BN_GF2m_add(z2, z2, y)) goto err; | ||
| 201 | |||
| 202 | ret = 2; | ||
| 203 | |||
| 204 | err: | ||
| 205 | BN_CTX_end(ctx); | ||
| 206 | return ret; | ||
| 207 | } | ||
| 208 | |||
| 209 | /* Computes scalar*point and stores the result in r. | ||
| 210 | * point can not equal r. | ||
| 211 | * Uses algorithm 2P of | ||
| 212 | * Lopex, J. and Dahab, R. "Fast multiplication on elliptic curves over | ||
| 213 | * GF(2^m) without precomputation". | ||
| 214 | */ | ||
| 215 | static int ec_GF2m_montgomery_point_multiply(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar, | ||
| 216 | const EC_POINT *point, BN_CTX *ctx) | ||
| 217 | { | ||
| 218 | BIGNUM *x1, *x2, *z1, *z2; | ||
| 219 | int ret = 0, i, j; | ||
| 220 | BN_ULONG mask; | ||
| 221 | |||
| 222 | if (r == point) | ||
| 223 | { | ||
| 224 | ECerr(EC_F_EC_GF2M_MONTGOMERY_POINT_MULTIPLY, EC_R_INVALID_ARGUMENT); | ||
| 225 | return 0; | ||
| 226 | } | ||
| 227 | |||
| 228 | /* if result should be point at infinity */ | ||
| 229 | if ((scalar == NULL) || BN_is_zero(scalar) || (point == NULL) || | ||
| 230 | EC_POINT_is_at_infinity(group, point)) | ||
| 231 | { | ||
| 232 | return EC_POINT_set_to_infinity(group, r); | ||
| 233 | } | ||
| 234 | |||
| 235 | /* only support affine coordinates */ | ||
| 236 | if (!point->Z_is_one) return 0; | ||
| 237 | |||
| 238 | /* Since point_multiply is static we can guarantee that ctx != NULL. */ | ||
| 239 | BN_CTX_start(ctx); | ||
| 240 | x1 = BN_CTX_get(ctx); | ||
| 241 | z1 = BN_CTX_get(ctx); | ||
| 242 | if (z1 == NULL) goto err; | ||
| 243 | |||
| 244 | x2 = &r->X; | ||
| 245 | z2 = &r->Y; | ||
| 246 | |||
| 247 | if (!BN_GF2m_mod_arr(x1, &point->X, group->poly)) goto err; /* x1 = x */ | ||
| 248 | if (!BN_one(z1)) goto err; /* z1 = 1 */ | ||
| 249 | if (!group->meth->field_sqr(group, z2, x1, ctx)) goto err; /* z2 = x1^2 = x^2 */ | ||
| 250 | if (!group->meth->field_sqr(group, x2, z2, ctx)) goto err; | ||
| 251 | if (!BN_GF2m_add(x2, x2, &group->b)) goto err; /* x2 = x^4 + b */ | ||
| 252 | |||
| 253 | /* find top most bit and go one past it */ | ||
| 254 | i = scalar->top - 1; j = BN_BITS2 - 1; | ||
| 255 | mask = BN_TBIT; | ||
| 256 | while (!(scalar->d[i] & mask)) { mask >>= 1; j--; } | ||
| 257 | mask >>= 1; j--; | ||
| 258 | /* if top most bit was at word break, go to next word */ | ||
| 259 | if (!mask) | ||
| 260 | { | ||
| 261 | i--; j = BN_BITS2 - 1; | ||
| 262 | mask = BN_TBIT; | ||
| 263 | } | ||
| 264 | |||
| 265 | for (; i >= 0; i--) | ||
| 266 | { | ||
| 267 | for (; j >= 0; j--) | ||
| 268 | { | ||
| 269 | if (scalar->d[i] & mask) | ||
| 270 | { | ||
| 271 | if (!gf2m_Madd(group, &point->X, x1, z1, x2, z2, ctx)) goto err; | ||
| 272 | if (!gf2m_Mdouble(group, x2, z2, ctx)) goto err; | ||
| 273 | } | ||
| 274 | else | ||
| 275 | { | ||
| 276 | if (!gf2m_Madd(group, &point->X, x2, z2, x1, z1, ctx)) goto err; | ||
| 277 | if (!gf2m_Mdouble(group, x1, z1, ctx)) goto err; | ||
| 278 | } | ||
| 279 | mask >>= 1; | ||
| 280 | } | ||
| 281 | j = BN_BITS2 - 1; | ||
| 282 | mask = BN_TBIT; | ||
| 283 | } | ||
| 284 | |||
| 285 | /* convert out of "projective" coordinates */ | ||
| 286 | i = gf2m_Mxy(group, &point->X, &point->Y, x1, z1, x2, z2, ctx); | ||
| 287 | if (i == 0) goto err; | ||
| 288 | else if (i == 1) | ||
| 289 | { | ||
| 290 | if (!EC_POINT_set_to_infinity(group, r)) goto err; | ||
| 291 | } | ||
| 292 | else | ||
| 293 | { | ||
| 294 | if (!BN_one(&r->Z)) goto err; | ||
| 295 | r->Z_is_one = 1; | ||
| 296 | } | ||
| 297 | |||
| 298 | /* GF(2^m) field elements should always have BIGNUM::neg = 0 */ | ||
| 299 | BN_set_negative(&r->X, 0); | ||
| 300 | BN_set_negative(&r->Y, 0); | ||
| 301 | |||
| 302 | ret = 1; | ||
| 303 | |||
| 304 | err: | ||
| 305 | BN_CTX_end(ctx); | ||
| 306 | return ret; | ||
| 307 | } | ||
| 308 | |||
| 309 | |||
| 310 | /* Computes the sum | ||
| 311 | * scalar*group->generator + scalars[0]*points[0] + ... + scalars[num-1]*points[num-1] | ||
| 312 | * gracefully ignoring NULL scalar values. | ||
| 313 | */ | ||
| 314 | int ec_GF2m_simple_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar, | ||
| 315 | size_t num, const EC_POINT *points[], const BIGNUM *scalars[], BN_CTX *ctx) | ||
| 316 | { | ||
| 317 | BN_CTX *new_ctx = NULL; | ||
| 318 | int ret = 0; | ||
| 319 | size_t i; | ||
| 320 | EC_POINT *p=NULL; | ||
| 321 | |||
| 322 | if (ctx == NULL) | ||
| 323 | { | ||
| 324 | ctx = new_ctx = BN_CTX_new(); | ||
| 325 | if (ctx == NULL) | ||
| 326 | return 0; | ||
| 327 | } | ||
| 328 | |||
| 329 | /* This implementation is more efficient than the wNAF implementation for 2 | ||
| 330 | * or fewer points. Use the ec_wNAF_mul implementation for 3 or more points, | ||
| 331 | * or if we can perform a fast multiplication based on precomputation. | ||
| 332 | */ | ||
| 333 | if ((scalar && (num > 1)) || (num > 2) || (num == 0 && EC_GROUP_have_precompute_mult(group))) | ||
| 334 | { | ||
| 335 | ret = ec_wNAF_mul(group, r, scalar, num, points, scalars, ctx); | ||
| 336 | goto err; | ||
| 337 | } | ||
| 338 | |||
| 339 | if ((p = EC_POINT_new(group)) == NULL) goto err; | ||
| 340 | |||
| 341 | if (!EC_POINT_set_to_infinity(group, r)) goto err; | ||
| 342 | |||
| 343 | if (scalar) | ||
| 344 | { | ||
| 345 | if (!ec_GF2m_montgomery_point_multiply(group, p, scalar, group->generator, ctx)) goto err; | ||
| 346 | if (BN_is_negative(scalar)) | ||
| 347 | if (!group->meth->invert(group, p, ctx)) goto err; | ||
| 348 | if (!group->meth->add(group, r, r, p, ctx)) goto err; | ||
| 349 | } | ||
| 350 | |||
| 351 | for (i = 0; i < num; i++) | ||
| 352 | { | ||
| 353 | if (!ec_GF2m_montgomery_point_multiply(group, p, scalars[i], points[i], ctx)) goto err; | ||
| 354 | if (BN_is_negative(scalars[i])) | ||
| 355 | if (!group->meth->invert(group, p, ctx)) goto err; | ||
| 356 | if (!group->meth->add(group, r, r, p, ctx)) goto err; | ||
| 357 | } | ||
| 358 | |||
| 359 | ret = 1; | ||
| 360 | |||
| 361 | err: | ||
| 362 | if (p) EC_POINT_free(p); | ||
| 363 | if (new_ctx != NULL) | ||
| 364 | BN_CTX_free(new_ctx); | ||
| 365 | return ret; | ||
| 366 | } | ||
| 367 | |||
| 368 | |||
| 369 | /* Precomputation for point multiplication: fall back to wNAF methods | ||
| 370 | * because ec_GF2m_simple_mul() uses ec_wNAF_mul() if appropriate */ | ||
| 371 | |||
| 372 | int ec_GF2m_precompute_mult(EC_GROUP *group, BN_CTX *ctx) | ||
| 373 | { | ||
| 374 | return ec_wNAF_precompute_mult(group, ctx); | ||
| 375 | } | ||
| 376 | |||
| 377 | int ec_GF2m_have_precompute_mult(const EC_GROUP *group) | ||
| 378 | { | ||
| 379 | return ec_wNAF_have_precompute_mult(group); | ||
| 380 | } | ||
