summaryrefslogtreecommitdiff
path: root/src/lib/libcrypto/ec/ec2_smpl.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/lib/libcrypto/ec/ec2_smpl.c')
-rw-r--r--src/lib/libcrypto/ec/ec2_smpl.c723
1 files changed, 0 insertions, 723 deletions
diff --git a/src/lib/libcrypto/ec/ec2_smpl.c b/src/lib/libcrypto/ec/ec2_smpl.c
deleted file mode 100644
index 850159cb25..0000000000
--- a/src/lib/libcrypto/ec/ec2_smpl.c
+++ /dev/null
@@ -1,723 +0,0 @@
1/* $OpenBSD: ec2_smpl.c,v 1.35 2023/04/11 18:58:20 jsing Exp $ */
2/* ====================================================================
3 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
4 *
5 * The Elliptic Curve Public-Key Crypto Library (ECC Code) included
6 * herein is developed by SUN MICROSYSTEMS, INC., and is contributed
7 * to the OpenSSL project.
8 *
9 * The ECC Code is licensed pursuant to the OpenSSL open source
10 * license provided below.
11 *
12 * The software is originally written by Sheueling Chang Shantz and
13 * Douglas Stebila of Sun Microsystems Laboratories.
14 *
15 */
16/* ====================================================================
17 * Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved.
18 *
19 * Redistribution and use in source and binary forms, with or without
20 * modification, are permitted provided that the following conditions
21 * are met:
22 *
23 * 1. Redistributions of source code must retain the above copyright
24 * notice, this list of conditions and the following disclaimer.
25 *
26 * 2. Redistributions in binary form must reproduce the above copyright
27 * notice, this list of conditions and the following disclaimer in
28 * the documentation and/or other materials provided with the
29 * distribution.
30 *
31 * 3. All advertising materials mentioning features or use of this
32 * software must display the following acknowledgment:
33 * "This product includes software developed by the OpenSSL Project
34 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
35 *
36 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
37 * endorse or promote products derived from this software without
38 * prior written permission. For written permission, please contact
39 * openssl-core@openssl.org.
40 *
41 * 5. Products derived from this software may not be called "OpenSSL"
42 * nor may "OpenSSL" appear in their names without prior written
43 * permission of the OpenSSL Project.
44 *
45 * 6. Redistributions of any form whatsoever must retain the following
46 * acknowledgment:
47 * "This product includes software developed by the OpenSSL Project
48 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
49 *
50 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
51 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
53 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
54 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
55 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
56 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
57 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
58 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
59 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
60 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
61 * OF THE POSSIBILITY OF SUCH DAMAGE.
62 * ====================================================================
63 *
64 * This product includes cryptographic software written by Eric Young
65 * (eay@cryptsoft.com). This product includes software written by Tim
66 * Hudson (tjh@cryptsoft.com).
67 *
68 */
69
70#include <openssl/opensslconf.h>
71
72#include <openssl/err.h>
73
74#include "ec_local.h"
75
76#ifndef OPENSSL_NO_EC2M
77
78/*
79 * Initialize a GF(2^m)-based EC_GROUP structure.
80 * Note that all other members are handled by EC_GROUP_new.
81 */
82static int
83ec_GF2m_simple_group_init(EC_GROUP *group)
84{
85 BN_init(&group->field);
86 BN_init(&group->a);
87 BN_init(&group->b);
88 return 1;
89}
90
91/*
92 * Clear and free a GF(2^m)-based EC_GROUP structure.
93 * Note that all other members are handled by EC_GROUP_free.
94 */
95static void
96ec_GF2m_simple_group_finish(EC_GROUP *group)
97{
98 BN_free(&group->field);
99 BN_free(&group->a);
100 BN_free(&group->b);
101 group->poly[0] = 0;
102 group->poly[1] = 0;
103 group->poly[2] = 0;
104 group->poly[3] = 0;
105 group->poly[4] = 0;
106 group->poly[5] = -1;
107}
108
109/*
110 * Copy a GF(2^m)-based EC_GROUP structure.
111 * Note that all other members are handled by EC_GROUP_copy.
112 */
113static int
114ec_GF2m_simple_group_copy(EC_GROUP *dest, const EC_GROUP *src)
115{
116 int i;
117
118 if (!bn_copy(&dest->field, &src->field))
119 return 0;
120 if (!bn_copy(&dest->a, &src->a))
121 return 0;
122 if (!bn_copy(&dest->b, &src->b))
123 return 0;
124 dest->poly[0] = src->poly[0];
125 dest->poly[1] = src->poly[1];
126 dest->poly[2] = src->poly[2];
127 dest->poly[3] = src->poly[3];
128 dest->poly[4] = src->poly[4];
129 dest->poly[5] = src->poly[5];
130 if (!bn_expand(&dest->a, dest->poly[0]))
131 return 0;
132 if (!bn_expand(&dest->b, dest->poly[0]))
133 return 0;
134 for (i = dest->a.top; i < dest->a.dmax; i++)
135 dest->a.d[i] = 0;
136 for (i = dest->b.top; i < dest->b.dmax; i++)
137 dest->b.d[i] = 0;
138 return 1;
139}
140
141/* Set the curve parameters of an EC_GROUP structure. */
142static int
143ec_GF2m_simple_group_set_curve(EC_GROUP *group,
144 const BIGNUM *p, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
145{
146 int ret = 0, i;
147
148 /* group->field */
149 if (!bn_copy(&group->field, p))
150 goto err;
151 i = BN_GF2m_poly2arr(&group->field, group->poly, 6) - 1;
152 if ((i != 5) && (i != 3)) {
153 ECerror(EC_R_UNSUPPORTED_FIELD);
154 goto err;
155 }
156 /* group->a */
157 if (!BN_GF2m_mod_arr(&group->a, a, group->poly))
158 goto err;
159 if (!bn_expand(&group->a, group->poly[0]))
160 goto err;
161 for (i = group->a.top; i < group->a.dmax; i++)
162 group->a.d[i] = 0;
163
164 /* group->b */
165 if (!BN_GF2m_mod_arr(&group->b, b, group->poly))
166 goto err;
167 if (!bn_expand(&group->b, group->poly[0]))
168 goto err;
169 for (i = group->b.top; i < group->b.dmax; i++)
170 group->b.d[i] = 0;
171
172 ret = 1;
173 err:
174 return ret;
175}
176
177/*
178 * Get the curve parameters of an EC_GROUP structure.
179 * If p, a, or b are NULL then there values will not be set but the method will return with success.
180 */
181static int
182ec_GF2m_simple_group_get_curve(const EC_GROUP *group,
183 BIGNUM *p, BIGNUM *a, BIGNUM *b, BN_CTX *ctx)
184{
185 int ret = 0;
186
187 if (p != NULL) {
188 if (!bn_copy(p, &group->field))
189 return 0;
190 }
191 if (a != NULL) {
192 if (!bn_copy(a, &group->a))
193 goto err;
194 }
195 if (b != NULL) {
196 if (!bn_copy(b, &group->b))
197 goto err;
198 }
199 ret = 1;
200
201 err:
202 return ret;
203}
204
205/* Gets the degree of the field. For a curve over GF(2^m) this is the value m. */
206static int
207ec_GF2m_simple_group_get_degree(const EC_GROUP *group)
208{
209 return BN_num_bits(&group->field) - 1;
210}
211
212/*
213 * Checks the discriminant of the curve.
214 * y^2 + x*y = x^3 + a*x^2 + b is an elliptic curve <=> b != 0 (mod p)
215 */
216static int
217ec_GF2m_simple_group_check_discriminant(const EC_GROUP *group, BN_CTX *ctx)
218{
219 BIGNUM *b;
220 int ret = 0;
221
222 BN_CTX_start(ctx);
223
224 if ((b = BN_CTX_get(ctx)) == NULL)
225 goto err;
226
227 if (!BN_GF2m_mod_arr(b, &group->b, group->poly))
228 goto err;
229
230 /*
231 * check the discriminant: y^2 + x*y = x^3 + a*x^2 + b is an elliptic
232 * curve <=> b != 0 (mod p)
233 */
234 if (BN_is_zero(b))
235 goto err;
236
237 ret = 1;
238
239 err:
240 BN_CTX_end(ctx);
241
242 return ret;
243}
244
245/* Initializes an EC_POINT. */
246static int
247ec_GF2m_simple_point_init(EC_POINT *point)
248{
249 BN_init(&point->X);
250 BN_init(&point->Y);
251 BN_init(&point->Z);
252 return 1;
253}
254
255/* Clears and frees an EC_POINT. */
256static void
257ec_GF2m_simple_point_finish(EC_POINT *point)
258{
259 BN_free(&point->X);
260 BN_free(&point->Y);
261 BN_free(&point->Z);
262 point->Z_is_one = 0;
263}
264
265/* Copy the contents of one EC_POINT into another. Assumes dest is initialized. */
266static int
267ec_GF2m_simple_point_copy(EC_POINT *dest, const EC_POINT *src)
268{
269 if (!bn_copy(&dest->X, &src->X))
270 return 0;
271 if (!bn_copy(&dest->Y, &src->Y))
272 return 0;
273 if (!bn_copy(&dest->Z, &src->Z))
274 return 0;
275 dest->Z_is_one = src->Z_is_one;
276
277 return 1;
278}
279
280/*
281 * Set an EC_POINT to the point at infinity.
282 * A point at infinity is represented by having Z=0.
283 */
284static int
285ec_GF2m_simple_point_set_to_infinity(const EC_GROUP *group, EC_POINT *point)
286{
287 point->Z_is_one = 0;
288 BN_zero(&point->Z);
289 return 1;
290}
291
292/*
293 * Set the coordinates of an EC_POINT using affine coordinates.
294 * Note that the simple implementation only uses affine coordinates.
295 */
296static int
297ec_GF2m_simple_point_set_affine_coordinates(const EC_GROUP *group, EC_POINT *point,
298 const BIGNUM *x, const BIGNUM *y, BN_CTX *ctx)
299{
300 int ret = 0;
301 if (x == NULL || y == NULL) {
302 ECerror(ERR_R_PASSED_NULL_PARAMETER);
303 return 0;
304 }
305 if (!bn_copy(&point->X, x))
306 goto err;
307 BN_set_negative(&point->X, 0);
308 if (!bn_copy(&point->Y, y))
309 goto err;
310 BN_set_negative(&point->Y, 0);
311 if (!bn_copy(&point->Z, BN_value_one()))
312 goto err;
313 BN_set_negative(&point->Z, 0);
314 point->Z_is_one = 1;
315 ret = 1;
316
317 err:
318 return ret;
319}
320
321/*
322 * Gets the affine coordinates of an EC_POINT.
323 * Note that the simple implementation only uses affine coordinates.
324 */
325static int
326ec_GF2m_simple_point_get_affine_coordinates(const EC_GROUP *group,
327 const EC_POINT *point, BIGNUM *x, BIGNUM *y, BN_CTX *ctx)
328{
329 int ret = 0;
330
331 if (EC_POINT_is_at_infinity(group, point) > 0) {
332 ECerror(EC_R_POINT_AT_INFINITY);
333 return 0;
334 }
335 if (BN_cmp(&point->Z, BN_value_one())) {
336 ECerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
337 return 0;
338 }
339 if (x != NULL) {
340 if (!bn_copy(x, &point->X))
341 goto err;
342 BN_set_negative(x, 0);
343 }
344 if (y != NULL) {
345 if (!bn_copy(y, &point->Y))
346 goto err;
347 BN_set_negative(y, 0);
348 }
349 ret = 1;
350
351 err:
352 return ret;
353}
354
355/*
356 * Computes a + b and stores the result in r. r could be a or b, a could be b.
357 * Uses algorithm A.10.2 of IEEE P1363.
358 */
359static int
360ec_GF2m_simple_add(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a,
361 const EC_POINT *b, BN_CTX *ctx)
362{
363 BIGNUM *x0, *y0, *x1, *y1, *x2, *y2, *s, *t;
364 int ret = 0;
365
366 if (EC_POINT_is_at_infinity(group, a) > 0) {
367 if (!EC_POINT_copy(r, b))
368 return 0;
369 return 1;
370 }
371 if (EC_POINT_is_at_infinity(group, b) > 0) {
372 if (!EC_POINT_copy(r, a))
373 return 0;
374 return 1;
375 }
376
377 BN_CTX_start(ctx);
378
379 if ((x0 = BN_CTX_get(ctx)) == NULL)
380 goto err;
381 if ((y0 = BN_CTX_get(ctx)) == NULL)
382 goto err;
383 if ((x1 = BN_CTX_get(ctx)) == NULL)
384 goto err;
385 if ((y1 = BN_CTX_get(ctx)) == NULL)
386 goto err;
387 if ((x2 = BN_CTX_get(ctx)) == NULL)
388 goto err;
389 if ((y2 = BN_CTX_get(ctx)) == NULL)
390 goto err;
391 if ((s = BN_CTX_get(ctx)) == NULL)
392 goto err;
393 if ((t = BN_CTX_get(ctx)) == NULL)
394 goto err;
395
396 if (a->Z_is_one) {
397 if (!bn_copy(x0, &a->X))
398 goto err;
399 if (!bn_copy(y0, &a->Y))
400 goto err;
401 } else {
402 if (!EC_POINT_get_affine_coordinates(group, a, x0, y0, ctx))
403 goto err;
404 }
405 if (b->Z_is_one) {
406 if (!bn_copy(x1, &b->X))
407 goto err;
408 if (!bn_copy(y1, &b->Y))
409 goto err;
410 } else {
411 if (!EC_POINT_get_affine_coordinates(group, b, x1, y1, ctx))
412 goto err;
413 }
414
415 if (BN_GF2m_cmp(x0, x1)) {
416 if (!BN_GF2m_add(t, x0, x1))
417 goto err;
418 if (!BN_GF2m_add(s, y0, y1))
419 goto err;
420 if (!group->meth->field_div(group, s, s, t, ctx))
421 goto err;
422 if (!group->meth->field_sqr(group, x2, s, ctx))
423 goto err;
424 if (!BN_GF2m_add(x2, x2, &group->a))
425 goto err;
426 if (!BN_GF2m_add(x2, x2, s))
427 goto err;
428 if (!BN_GF2m_add(x2, x2, t))
429 goto err;
430 } else {
431 if (BN_GF2m_cmp(y0, y1) || BN_is_zero(x1)) {
432 if (!EC_POINT_set_to_infinity(group, r))
433 goto err;
434 ret = 1;
435 goto err;
436 }
437 if (!group->meth->field_div(group, s, y1, x1, ctx))
438 goto err;
439 if (!BN_GF2m_add(s, s, x1))
440 goto err;
441
442 if (!group->meth->field_sqr(group, x2, s, ctx))
443 goto err;
444 if (!BN_GF2m_add(x2, x2, s))
445 goto err;
446 if (!BN_GF2m_add(x2, x2, &group->a))
447 goto err;
448 }
449
450 if (!BN_GF2m_add(y2, x1, x2))
451 goto err;
452 if (!group->meth->field_mul(group, y2, y2, s, ctx))
453 goto err;
454 if (!BN_GF2m_add(y2, y2, x2))
455 goto err;
456 if (!BN_GF2m_add(y2, y2, y1))
457 goto err;
458
459 if (!EC_POINT_set_affine_coordinates(group, r, x2, y2, ctx))
460 goto err;
461
462 ret = 1;
463
464 err:
465 BN_CTX_end(ctx);
466
467 return ret;
468}
469
470/*
471 * Computes 2 * a and stores the result in r. r could be a.
472 * Uses algorithm A.10.2 of IEEE P1363.
473 */
474static int
475ec_GF2m_simple_dbl(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a,
476 BN_CTX *ctx)
477{
478 return ec_GF2m_simple_add(group, r, a, a, ctx);
479}
480
481static int
482ec_GF2m_simple_invert(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx)
483{
484 if (EC_POINT_is_at_infinity(group, point) > 0 || BN_is_zero(&point->Y))
485 /* point is its own inverse */
486 return 1;
487
488 if (!EC_POINT_make_affine(group, point, ctx))
489 return 0;
490 return BN_GF2m_add(&point->Y, &point->X, &point->Y);
491}
492
493/* Indicates whether the given point is the point at infinity. */
494static int
495ec_GF2m_simple_is_at_infinity(const EC_GROUP *group, const EC_POINT *point)
496{
497 return BN_is_zero(&point->Z);
498}
499
500/*
501 * Determines whether the given EC_POINT is an actual point on the curve defined
502 * in the EC_GROUP. A point is valid if it satisfies the Weierstrass equation:
503 * y^2 + x*y = x^3 + a*x^2 + b.
504 */
505static int
506ec_GF2m_simple_is_on_curve(const EC_GROUP *group, const EC_POINT *point, BN_CTX *ctx)
507{
508 int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *, BN_CTX *);
509 int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
510 BIGNUM *lh, *y2;
511 int ret = -1;
512
513 if (EC_POINT_is_at_infinity(group, point) > 0)
514 return 1;
515
516 field_mul = group->meth->field_mul;
517 field_sqr = group->meth->field_sqr;
518
519 /* only support affine coordinates */
520 if (!point->Z_is_one)
521 return -1;
522
523 BN_CTX_start(ctx);
524
525 if ((y2 = BN_CTX_get(ctx)) == NULL)
526 goto err;
527 if ((lh = BN_CTX_get(ctx)) == NULL)
528 goto err;
529
530 /*
531 * We have a curve defined by a Weierstrass equation y^2 + x*y = x^3
532 * + a*x^2 + b. <=> x^3 + a*x^2 + x*y + b + y^2 = 0 <=> ((x + a) * x
533 * + y ) * x + b + y^2 = 0
534 */
535 if (!BN_GF2m_add(lh, &point->X, &group->a))
536 goto err;
537 if (!field_mul(group, lh, lh, &point->X, ctx))
538 goto err;
539 if (!BN_GF2m_add(lh, lh, &point->Y))
540 goto err;
541 if (!field_mul(group, lh, lh, &point->X, ctx))
542 goto err;
543 if (!BN_GF2m_add(lh, lh, &group->b))
544 goto err;
545 if (!field_sqr(group, y2, &point->Y, ctx))
546 goto err;
547 if (!BN_GF2m_add(lh, lh, y2))
548 goto err;
549
550 ret = BN_is_zero(lh);
551
552 err:
553 BN_CTX_end(ctx);
554
555 return ret;
556}
557
558/*
559 * Indicates whether two points are equal.
560 * Return values:
561 * -1 error
562 * 0 equal (in affine coordinates)
563 * 1 not equal
564 */
565static int
566ec_GF2m_simple_cmp(const EC_GROUP *group, const EC_POINT *a,
567 const EC_POINT *b, BN_CTX *ctx)
568{
569 BIGNUM *aX, *aY, *bX, *bY;
570 int ret = -1;
571
572 if (EC_POINT_is_at_infinity(group, a) > 0)
573 return EC_POINT_is_at_infinity(group, b) > 0 ? 0 : 1;
574
575 if (EC_POINT_is_at_infinity(group, b) > 0)
576 return 1;
577
578 if (a->Z_is_one && b->Z_is_one)
579 return ((BN_cmp(&a->X, &b->X) == 0) && BN_cmp(&a->Y, &b->Y) == 0) ? 0 : 1;
580
581 BN_CTX_start(ctx);
582
583 if ((aX = BN_CTX_get(ctx)) == NULL)
584 goto err;
585 if ((aY = BN_CTX_get(ctx)) == NULL)
586 goto err;
587 if ((bX = BN_CTX_get(ctx)) == NULL)
588 goto err;
589 if ((bY = BN_CTX_get(ctx)) == NULL)
590 goto err;
591
592 if (!EC_POINT_get_affine_coordinates(group, a, aX, aY, ctx))
593 goto err;
594 if (!EC_POINT_get_affine_coordinates(group, b, bX, bY, ctx))
595 goto err;
596 ret = ((BN_cmp(aX, bX) == 0) && BN_cmp(aY, bY) == 0) ? 0 : 1;
597
598 err:
599 BN_CTX_end(ctx);
600
601 return ret;
602}
603
604/* Forces the given EC_POINT to internally use affine coordinates. */
605static int
606ec_GF2m_simple_make_affine(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx)
607{
608 BIGNUM *x, *y;
609 int ret = 0;
610
611 if (point->Z_is_one || EC_POINT_is_at_infinity(group, point) > 0)
612 return 1;
613
614 BN_CTX_start(ctx);
615
616 if ((x = BN_CTX_get(ctx)) == NULL)
617 goto err;
618 if ((y = BN_CTX_get(ctx)) == NULL)
619 goto err;
620
621 if (!EC_POINT_get_affine_coordinates(group, point, x, y, ctx))
622 goto err;
623 if (!bn_copy(&point->X, x))
624 goto err;
625 if (!bn_copy(&point->Y, y))
626 goto err;
627 if (!BN_one(&point->Z))
628 goto err;
629
630 ret = 1;
631
632 err:
633 BN_CTX_end(ctx);
634
635 return ret;
636}
637
638/* Forces each of the EC_POINTs in the given array to use affine coordinates. */
639static int
640ec_GF2m_simple_points_make_affine(const EC_GROUP *group, size_t num,
641 EC_POINT *points[], BN_CTX *ctx)
642{
643 size_t i;
644
645 for (i = 0; i < num; i++) {
646 if (!group->meth->make_affine(group, points[i], ctx))
647 return 0;
648 }
649
650 return 1;
651}
652
653/* Wrapper to simple binary polynomial field multiplication implementation. */
654static int
655ec_GF2m_simple_field_mul(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a,
656 const BIGNUM *b, BN_CTX *ctx)
657{
658 return BN_GF2m_mod_mul_arr(r, a, b, group->poly, ctx);
659}
660
661/* Wrapper to simple binary polynomial field squaring implementation. */
662static int
663ec_GF2m_simple_field_sqr(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a,
664 BN_CTX *ctx)
665{
666 return BN_GF2m_mod_sqr_arr(r, a, group->poly, ctx);
667}
668
669/* Wrapper to simple binary polynomial field division implementation. */
670static int
671ec_GF2m_simple_field_div(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a,
672 const BIGNUM *b, BN_CTX *ctx)
673{
674 return BN_GF2m_mod_div(r, a, b, &group->field, ctx);
675}
676
677static const EC_METHOD ec_GF2m_simple_method = {
678 .field_type = NID_X9_62_characteristic_two_field,
679 .group_init = ec_GF2m_simple_group_init,
680 .group_finish = ec_GF2m_simple_group_finish,
681 .group_copy = ec_GF2m_simple_group_copy,
682 .group_set_curve = ec_GF2m_simple_group_set_curve,
683 .group_get_curve = ec_GF2m_simple_group_get_curve,
684 .group_get_degree = ec_GF2m_simple_group_get_degree,
685 .group_order_bits = ec_group_simple_order_bits,
686 .group_check_discriminant = ec_GF2m_simple_group_check_discriminant,
687 .point_init = ec_GF2m_simple_point_init,
688 .point_finish = ec_GF2m_simple_point_finish,
689 .point_copy = ec_GF2m_simple_point_copy,
690 .point_set_to_infinity = ec_GF2m_simple_point_set_to_infinity,
691 .point_set_affine_coordinates =
692 ec_GF2m_simple_point_set_affine_coordinates,
693 .point_get_affine_coordinates =
694 ec_GF2m_simple_point_get_affine_coordinates,
695 .point_set_compressed_coordinates =
696 ec_GF2m_simple_set_compressed_coordinates,
697 .point2oct = ec_GF2m_simple_point2oct,
698 .oct2point = ec_GF2m_simple_oct2point,
699 .add = ec_GF2m_simple_add,
700 .dbl = ec_GF2m_simple_dbl,
701 .invert = ec_GF2m_simple_invert,
702 .is_at_infinity = ec_GF2m_simple_is_at_infinity,
703 .is_on_curve = ec_GF2m_simple_is_on_curve,
704 .point_cmp = ec_GF2m_simple_cmp,
705 .make_affine = ec_GF2m_simple_make_affine,
706 .points_make_affine = ec_GF2m_simple_points_make_affine,
707 .mul_generator_ct = ec_GFp_simple_mul_generator_ct,
708 .mul_single_ct = ec_GFp_simple_mul_single_ct,
709 .mul_double_nonct = ec_GFp_simple_mul_double_nonct,
710 .precompute_mult = ec_GF2m_precompute_mult,
711 .have_precompute_mult = ec_GF2m_have_precompute_mult,
712 .field_mul = ec_GF2m_simple_field_mul,
713 .field_sqr = ec_GF2m_simple_field_sqr,
714 .field_div = ec_GF2m_simple_field_div,
715 .blind_coordinates = NULL,
716};
717
718const EC_METHOD *
719EC_GF2m_simple_method(void)
720{
721 return &ec_GF2m_simple_method;
722}
723#endif